xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanDominatorTree.h"
23 #include "VPlanPatternMatch.h"
24 #include "llvm/ADT/PostOrderIterator.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/GenericDomTreeConstruction.h"
42 #include "llvm/Support/GraphWriter.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopVersioning.h"
46 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
47 #include <cassert>
48 #include <string>
49 #include <vector>
50 
51 using namespace llvm;
52 using namespace llvm::VPlanPatternMatch;
53 
54 namespace llvm {
55 extern cl::opt<bool> EnableVPlanNativePath;
56 }
57 
58 #define DEBUG_TYPE "vplan"
59 
60 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
61 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
62   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
63   VPSlotTracker SlotTracker(
64       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
65   V.print(OS, SlotTracker);
66   return OS;
67 }
68 #endif
69 
70 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
71                                 const ElementCount &VF) const {
72   switch (LaneKind) {
73   case VPLane::Kind::ScalableLast:
74     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
75     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
76                              Builder.getInt32(VF.getKnownMinValue() - Lane));
77   case VPLane::Kind::First:
78     return Builder.getInt32(Lane);
79   }
80   llvm_unreachable("Unknown lane kind");
81 }
82 
83 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
84     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
85   if (Def)
86     Def->addDefinedValue(this);
87 }
88 
89 VPValue::~VPValue() {
90   assert(Users.empty() && "trying to delete a VPValue with remaining users");
91   if (Def)
92     Def->removeDefinedValue(this);
93 }
94 
95 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
96 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
97   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
98     R->print(OS, "", SlotTracker);
99   else
100     printAsOperand(OS, SlotTracker);
101 }
102 
103 void VPValue::dump() const {
104   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
105   VPSlotTracker SlotTracker(
106       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
107   print(dbgs(), SlotTracker);
108   dbgs() << "\n";
109 }
110 
111 void VPDef::dump() const {
112   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
113   VPSlotTracker SlotTracker(
114       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
115   print(dbgs(), "", SlotTracker);
116   dbgs() << "\n";
117 }
118 #endif
119 
120 VPRecipeBase *VPValue::getDefiningRecipe() {
121   return cast_or_null<VPRecipeBase>(Def);
122 }
123 
124 const VPRecipeBase *VPValue::getDefiningRecipe() const {
125   return cast_or_null<VPRecipeBase>(Def);
126 }
127 
128 // Get the top-most entry block of \p Start. This is the entry block of the
129 // containing VPlan. This function is templated to support both const and non-const blocks
130 template <typename T> static T *getPlanEntry(T *Start) {
131   T *Next = Start;
132   T *Current = Start;
133   while ((Next = Next->getParent()))
134     Current = Next;
135 
136   SmallSetVector<T *, 8> WorkList;
137   WorkList.insert(Current);
138 
139   for (unsigned i = 0; i < WorkList.size(); i++) {
140     T *Current = WorkList[i];
141     if (Current->getNumPredecessors() == 0)
142       return Current;
143     auto &Predecessors = Current->getPredecessors();
144     WorkList.insert(Predecessors.begin(), Predecessors.end());
145   }
146 
147   llvm_unreachable("VPlan without any entry node without predecessors");
148 }
149 
150 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
151 
152 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
153 
154 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
155 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
156   const VPBlockBase *Block = this;
157   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
158     Block = Region->getEntry();
159   return cast<VPBasicBlock>(Block);
160 }
161 
162 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
163   VPBlockBase *Block = this;
164   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
165     Block = Region->getEntry();
166   return cast<VPBasicBlock>(Block);
167 }
168 
169 void VPBlockBase::setPlan(VPlan *ParentPlan) {
170   assert(
171       (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
172       "Can only set plan on its entry or preheader block.");
173   Plan = ParentPlan;
174 }
175 
176 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
177 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
178   const VPBlockBase *Block = this;
179   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
180     Block = Region->getExiting();
181   return cast<VPBasicBlock>(Block);
182 }
183 
184 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
185   VPBlockBase *Block = this;
186   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
187     Block = Region->getExiting();
188   return cast<VPBasicBlock>(Block);
189 }
190 
191 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
192   if (!Successors.empty() || !Parent)
193     return this;
194   assert(Parent->getExiting() == this &&
195          "Block w/o successors not the exiting block of its parent.");
196   return Parent->getEnclosingBlockWithSuccessors();
197 }
198 
199 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
200   if (!Predecessors.empty() || !Parent)
201     return this;
202   assert(Parent->getEntry() == this &&
203          "Block w/o predecessors not the entry of its parent.");
204   return Parent->getEnclosingBlockWithPredecessors();
205 }
206 
207 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
208   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
209     delete Block;
210 }
211 
212 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
213   iterator It = begin();
214   while (It != end() && It->isPhi())
215     It++;
216   return It;
217 }
218 
219 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
220                                    DominatorTree *DT, IRBuilderBase &Builder,
221                                    InnerLoopVectorizer *ILV, VPlan *Plan,
222                                    LLVMContext &Ctx)
223     : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
224       LVer(nullptr),
225       TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {}
226 
227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228   if (Def->isLiveIn())
229     return Def->getLiveInIRValue();
230 
231   if (hasScalarValue(Def, Instance)) {
232     return Data
233         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234   }
235   if (!Instance.Lane.isFirstLane() &&
236       vputils::isUniformAfterVectorization(Def) &&
237       hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) {
238     return Data.PerPartScalars[Def][Instance.Part][0];
239   }
240 
241   assert(hasVectorValue(Def, Instance.Part));
242   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
243   if (!VecPart->getType()->isVectorTy()) {
244     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
245     return VecPart;
246   }
247   // TODO: Cache created scalar values.
248   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
249   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
250   // set(Def, Extract, Instance);
251   return Extract;
252 }
253 
254 Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) {
255   if (NeedsScalar) {
256     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) ||
257             !vputils::onlyFirstLaneUsed(Def) ||
258             (hasScalarValue(Def, VPIteration(Part, 0)) &&
259              Data.PerPartScalars[Def][Part].size() == 1)) &&
260            "Trying to access a single scalar per part but has multiple scalars "
261            "per part.");
262     return get(Def, VPIteration(Part, 0));
263   }
264 
265   // If Values have been set for this Def return the one relevant for \p Part.
266   if (hasVectorValue(Def, Part))
267     return Data.PerPartOutput[Def][Part];
268 
269   auto GetBroadcastInstrs = [this, Def](Value *V) {
270     bool SafeToHoist = Def->isDefinedOutsideVectorRegions();
271     if (VF.isScalar())
272       return V;
273     // Place the code for broadcasting invariant variables in the new preheader.
274     IRBuilder<>::InsertPointGuard Guard(Builder);
275     if (SafeToHoist) {
276       BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>(
277           Plan->getVectorLoopRegion()->getSinglePredecessor())];
278       if (LoopVectorPreHeader)
279         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
280     }
281 
282     // Place the code for broadcasting invariant variables in the new preheader.
283     // Broadcast the scalar into all locations in the vector.
284     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
285 
286     return Shuf;
287   };
288 
289   if (!hasScalarValue(Def, {Part, 0})) {
290     assert(Def->isLiveIn() && "expected a live-in");
291     if (Part != 0)
292       return get(Def, 0);
293     Value *IRV = Def->getLiveInIRValue();
294     Value *B = GetBroadcastInstrs(IRV);
295     set(Def, B, Part);
296     return B;
297   }
298 
299   Value *ScalarValue = get(Def, {Part, 0});
300   // If we aren't vectorizing, we can just copy the scalar map values over
301   // to the vector map.
302   if (VF.isScalar()) {
303     set(Def, ScalarValue, Part);
304     return ScalarValue;
305   }
306 
307   bool IsUniform = vputils::isUniformAfterVectorization(Def);
308 
309   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
310   // Check if there is a scalar value for the selected lane.
311   if (!hasScalarValue(Def, {Part, LastLane})) {
312     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
313     // VPExpandSCEVRecipes can also be uniform.
314     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
315             isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
316             isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
317            "unexpected recipe found to be invariant");
318     IsUniform = true;
319     LastLane = 0;
320   }
321 
322   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
323   // Set the insert point after the last scalarized instruction or after the
324   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
325   // will directly follow the scalar definitions.
326   auto OldIP = Builder.saveIP();
327   auto NewIP =
328       isa<PHINode>(LastInst)
329           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
330           : std::next(BasicBlock::iterator(LastInst));
331   Builder.SetInsertPoint(&*NewIP);
332 
333   // However, if we are vectorizing, we need to construct the vector values.
334   // If the value is known to be uniform after vectorization, we can just
335   // broadcast the scalar value corresponding to lane zero for each unroll
336   // iteration. Otherwise, we construct the vector values using
337   // insertelement instructions. Since the resulting vectors are stored in
338   // State, we will only generate the insertelements once.
339   Value *VectorValue = nullptr;
340   if (IsUniform) {
341     VectorValue = GetBroadcastInstrs(ScalarValue);
342     set(Def, VectorValue, Part);
343   } else {
344     // Initialize packing with insertelements to start from undef.
345     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
346     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
347     set(Def, Undef, Part);
348     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
349       packScalarIntoVectorValue(Def, {Part, Lane});
350     VectorValue = get(Def, Part);
351   }
352   Builder.restoreIP(OldIP);
353   return VectorValue;
354 }
355 
356 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
357   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
358   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
359 }
360 
361 void VPTransformState::addNewMetadata(Instruction *To,
362                                       const Instruction *Orig) {
363   // If the loop was versioned with memchecks, add the corresponding no-alias
364   // metadata.
365   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
366     LVer->annotateInstWithNoAlias(To, Orig);
367 }
368 
369 void VPTransformState::addMetadata(Value *To, Instruction *From) {
370   // No source instruction to transfer metadata from?
371   if (!From)
372     return;
373 
374   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
375     propagateMetadata(ToI, From);
376     addNewMetadata(ToI, From);
377   }
378 }
379 
380 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
381   const DILocation *DIL = DL;
382   // When a FSDiscriminator is enabled, we don't need to add the multiply
383   // factors to the discriminators.
384   if (DIL &&
385       Builder.GetInsertBlock()
386           ->getParent()
387           ->shouldEmitDebugInfoForProfiling() &&
388       !EnableFSDiscriminator) {
389     // FIXME: For scalable vectors, assume vscale=1.
390     auto NewDIL =
391         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
392     if (NewDIL)
393       Builder.SetCurrentDebugLocation(*NewDIL);
394     else
395       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
396                         << DIL->getFilename() << " Line: " << DIL->getLine());
397   } else
398     Builder.SetCurrentDebugLocation(DIL);
399 }
400 
401 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
402                                                  const VPIteration &Instance) {
403   Value *ScalarInst = get(Def, Instance);
404   Value *VectorValue = get(Def, Instance.Part);
405   VectorValue = Builder.CreateInsertElement(
406       VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF));
407   set(Def, VectorValue, Instance.Part);
408 }
409 
410 BasicBlock *
411 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
412   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
413   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
414   BasicBlock *PrevBB = CFG.PrevBB;
415   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
416                                          PrevBB->getParent(), CFG.ExitBB);
417   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
418 
419   // Hook up the new basic block to its predecessors.
420   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
421     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
422     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
423     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
424 
425     assert(PredBB && "Predecessor basic-block not found building successor.");
426     auto *PredBBTerminator = PredBB->getTerminator();
427     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
428 
429     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
430     if (isa<UnreachableInst>(PredBBTerminator)) {
431       assert(PredVPSuccessors.size() == 1 &&
432              "Predecessor ending w/o branch must have single successor.");
433       DebugLoc DL = PredBBTerminator->getDebugLoc();
434       PredBBTerminator->eraseFromParent();
435       auto *Br = BranchInst::Create(NewBB, PredBB);
436       Br->setDebugLoc(DL);
437     } else if (TermBr && !TermBr->isConditional()) {
438       TermBr->setSuccessor(0, NewBB);
439     } else {
440       // Set each forward successor here when it is created, excluding
441       // backedges. A backward successor is set when the branch is created.
442       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
443       assert(!TermBr->getSuccessor(idx) &&
444              "Trying to reset an existing successor block.");
445       TermBr->setSuccessor(idx, NewBB);
446     }
447     CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
448   }
449   return NewBB;
450 }
451 
452 void VPIRBasicBlock::execute(VPTransformState *State) {
453   assert(getHierarchicalSuccessors().size() <= 2 &&
454          "VPIRBasicBlock can have at most two successors at the moment!");
455   State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator());
456   executeRecipes(State, getIRBasicBlock());
457   if (getSingleSuccessor()) {
458     assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator()));
459     auto *Br = State->Builder.CreateBr(getIRBasicBlock());
460     Br->setOperand(0, nullptr);
461     getIRBasicBlock()->getTerminator()->eraseFromParent();
462   }
463 
464   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
465     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
466     BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB];
467     assert(PredBB && "Predecessor basic-block not found building successor.");
468     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
469 
470     auto *PredBBTerminator = PredBB->getTerminator();
471     auto *TermBr = cast<BranchInst>(PredBBTerminator);
472     // Set each forward successor here when it is created, excluding
473     // backedges. A backward successor is set when the branch is created.
474     const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
475     unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
476     assert(!TermBr->getSuccessor(idx) &&
477            "Trying to reset an existing successor block.");
478     TermBr->setSuccessor(idx, IRBB);
479     State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}});
480   }
481 }
482 
483 void VPBasicBlock::execute(VPTransformState *State) {
484   bool Replica = State->Instance && !State->Instance->isFirstIteration();
485   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
486   VPBlockBase *SingleHPred = nullptr;
487   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
488 
489   auto IsLoopRegion = [](VPBlockBase *BB) {
490     auto *R = dyn_cast<VPRegionBlock>(BB);
491     return R && !R->isReplicator();
492   };
493 
494   // 1. Create an IR basic block.
495   if (PrevVPBB && /* A */
496       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
497         SingleHPred->getExitingBasicBlock() == PrevVPBB &&
498         PrevVPBB->getSingleHierarchicalSuccessor() &&
499         (SingleHPred->getParent() == getEnclosingLoopRegion() &&
500          !IsLoopRegion(SingleHPred))) &&         /* B */
501       !(Replica && getPredecessors().empty())) { /* C */
502     // The last IR basic block is reused, as an optimization, in three cases:
503     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
504     // B. when the current VPBB has a single (hierarchical) predecessor which
505     //    is PrevVPBB and the latter has a single (hierarchical) successor which
506     //    both are in the same non-replicator region; and
507     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
508     //    is the exiting VPBB of this region from a previous instance, or the
509     //    predecessor of this region.
510 
511     NewBB = createEmptyBasicBlock(State->CFG);
512     State->Builder.SetInsertPoint(NewBB);
513     // Temporarily terminate with unreachable until CFG is rewired.
514     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
515     // Register NewBB in its loop. In innermost loops its the same for all
516     // BB's.
517     if (State->CurrentVectorLoop)
518       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
519     State->Builder.SetInsertPoint(Terminator);
520     State->CFG.PrevBB = NewBB;
521   }
522 
523   // 2. Fill the IR basic block with IR instructions.
524   executeRecipes(State, NewBB);
525 }
526 
527 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
528   for (VPRecipeBase &R : Recipes) {
529     for (auto *Def : R.definedValues())
530       Def->replaceAllUsesWith(NewValue);
531 
532     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
533       R.setOperand(I, NewValue);
534   }
535 }
536 
537 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
538   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
539                     << " in BB:" << BB->getName() << '\n');
540 
541   State->CFG.VPBB2IRBB[this] = BB;
542   State->CFG.PrevVPBB = this;
543 
544   for (VPRecipeBase &Recipe : Recipes)
545     Recipe.execute(*State);
546 
547   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
548 }
549 
550 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
551   assert((SplitAt == end() || SplitAt->getParent() == this) &&
552          "can only split at a position in the same block");
553 
554   SmallVector<VPBlockBase *, 2> Succs(successors());
555   // First, disconnect the current block from its successors.
556   for (VPBlockBase *Succ : Succs)
557     VPBlockUtils::disconnectBlocks(this, Succ);
558 
559   // Create new empty block after the block to split.
560   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
561   VPBlockUtils::insertBlockAfter(SplitBlock, this);
562 
563   // Add successors for block to split to new block.
564   for (VPBlockBase *Succ : Succs)
565     VPBlockUtils::connectBlocks(SplitBlock, Succ);
566 
567   // Finally, move the recipes starting at SplitAt to new block.
568   for (VPRecipeBase &ToMove :
569        make_early_inc_range(make_range(SplitAt, this->end())))
570     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
571 
572   return SplitBlock;
573 }
574 
575 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
576   VPRegionBlock *P = getParent();
577   if (P && P->isReplicator()) {
578     P = P->getParent();
579     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
580            "unexpected nested replicate regions");
581   }
582   return P;
583 }
584 
585 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
586   if (VPBB->empty()) {
587     assert(
588         VPBB->getNumSuccessors() < 2 &&
589         "block with multiple successors doesn't have a recipe as terminator");
590     return false;
591   }
592 
593   const VPRecipeBase *R = &VPBB->back();
594   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
595                       match(R, m_BranchOnCond(m_VPValue())) ||
596                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
597   (void)IsCondBranch;
598 
599   if (VPBB->getNumSuccessors() >= 2 ||
600       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
601     assert(IsCondBranch && "block with multiple successors not terminated by "
602                            "conditional branch recipe");
603 
604     return true;
605   }
606 
607   assert(
608       !IsCondBranch &&
609       "block with 0 or 1 successors terminated by conditional branch recipe");
610   return false;
611 }
612 
613 VPRecipeBase *VPBasicBlock::getTerminator() {
614   if (hasConditionalTerminator(this))
615     return &back();
616   return nullptr;
617 }
618 
619 const VPRecipeBase *VPBasicBlock::getTerminator() const {
620   if (hasConditionalTerminator(this))
621     return &back();
622   return nullptr;
623 }
624 
625 bool VPBasicBlock::isExiting() const {
626   return getParent() && getParent()->getExitingBasicBlock() == this;
627 }
628 
629 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
630 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
631   if (getSuccessors().empty()) {
632     O << Indent << "No successors\n";
633   } else {
634     O << Indent << "Successor(s): ";
635     ListSeparator LS;
636     for (auto *Succ : getSuccessors())
637       O << LS << Succ->getName();
638     O << '\n';
639   }
640 }
641 
642 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
643                          VPSlotTracker &SlotTracker) const {
644   O << Indent << getName() << ":\n";
645 
646   auto RecipeIndent = Indent + "  ";
647   for (const VPRecipeBase &Recipe : *this) {
648     Recipe.print(O, RecipeIndent, SlotTracker);
649     O << '\n';
650   }
651 
652   printSuccessors(O, Indent);
653 }
654 #endif
655 
656 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
657 
658 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
659 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
660 // Remapping of operands must be done separately. Returns a pair with the new
661 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
662 // region, return nullptr for the exiting block.
663 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
664   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
665   VPBlockBase *Exiting = nullptr;
666   bool InRegion = Entry->getParent();
667   // First, clone blocks reachable from Entry.
668   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
669     VPBlockBase *NewBB = BB->clone();
670     Old2NewVPBlocks[BB] = NewBB;
671     if (InRegion && BB->getNumSuccessors() == 0) {
672       assert(!Exiting && "Multiple exiting blocks?");
673       Exiting = BB;
674     }
675   }
676   assert((!InRegion || Exiting) && "regions must have a single exiting block");
677 
678   // Second, update the predecessors & successors of the cloned blocks.
679   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
680     VPBlockBase *NewBB = Old2NewVPBlocks[BB];
681     SmallVector<VPBlockBase *> NewPreds;
682     for (VPBlockBase *Pred : BB->getPredecessors()) {
683       NewPreds.push_back(Old2NewVPBlocks[Pred]);
684     }
685     NewBB->setPredecessors(NewPreds);
686     SmallVector<VPBlockBase *> NewSuccs;
687     for (VPBlockBase *Succ : BB->successors()) {
688       NewSuccs.push_back(Old2NewVPBlocks[Succ]);
689     }
690     NewBB->setSuccessors(NewSuccs);
691   }
692 
693 #if !defined(NDEBUG)
694   // Verify that the order of predecessors and successors matches in the cloned
695   // version.
696   for (const auto &[OldBB, NewBB] :
697        zip(vp_depth_first_shallow(Entry),
698            vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
699     for (const auto &[OldPred, NewPred] :
700          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
701       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
702 
703     for (const auto &[OldSucc, NewSucc] :
704          zip(OldBB->successors(), NewBB->successors()))
705       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
706   }
707 #endif
708 
709   return std::make_pair(Old2NewVPBlocks[Entry],
710                         Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
711 }
712 
713 VPRegionBlock *VPRegionBlock::clone() {
714   const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
715   auto *NewRegion =
716       new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
717   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
718     Block->setParent(NewRegion);
719   return NewRegion;
720 }
721 
722 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
723   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
724     // Drop all references in VPBasicBlocks and replace all uses with
725     // DummyValue.
726     Block->dropAllReferences(NewValue);
727 }
728 
729 void VPRegionBlock::execute(VPTransformState *State) {
730   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
731       RPOT(Entry);
732 
733   if (!isReplicator()) {
734     // Create and register the new vector loop.
735     Loop *PrevLoop = State->CurrentVectorLoop;
736     State->CurrentVectorLoop = State->LI->AllocateLoop();
737     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
738     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
739 
740     // Insert the new loop into the loop nest and register the new basic blocks
741     // before calling any utilities such as SCEV that require valid LoopInfo.
742     if (ParentLoop)
743       ParentLoop->addChildLoop(State->CurrentVectorLoop);
744     else
745       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
746 
747     // Visit the VPBlocks connected to "this", starting from it.
748     for (VPBlockBase *Block : RPOT) {
749       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
750       Block->execute(State);
751     }
752 
753     State->CurrentVectorLoop = PrevLoop;
754     return;
755   }
756 
757   assert(!State->Instance && "Replicating a Region with non-null instance.");
758 
759   // Enter replicating mode.
760   State->Instance = VPIteration(0, 0);
761 
762   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
763     State->Instance->Part = Part;
764     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
765     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
766          ++Lane) {
767       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
768       // Visit the VPBlocks connected to \p this, starting from it.
769       for (VPBlockBase *Block : RPOT) {
770         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
771         Block->execute(State);
772       }
773     }
774   }
775 
776   // Exit replicating mode.
777   State->Instance.reset();
778 }
779 
780 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
781   InstructionCost Cost = 0;
782   for (VPRecipeBase &R : Recipes)
783     Cost += R.cost(VF, Ctx);
784   return Cost;
785 }
786 
787 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
788   if (!isReplicator()) {
789     InstructionCost Cost = 0;
790     for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
791       Cost += Block->cost(VF, Ctx);
792     InstructionCost BackedgeCost =
793         Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
794     LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
795                       << ": vector loop backedge\n");
796     Cost += BackedgeCost;
797     return Cost;
798   }
799 
800   // Compute the cost of a replicate region. Replicating isn't supported for
801   // scalable vectors, return an invalid cost for them.
802   // TODO: Discard scalable VPlans with replicate recipes earlier after
803   // construction.
804   if (VF.isScalable())
805     return InstructionCost::getInvalid();
806 
807   // First compute the cost of the conditionally executed recipes, followed by
808   // account for the branching cost, except if the mask is a header mask or
809   // uniform condition.
810   using namespace llvm::VPlanPatternMatch;
811   VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
812   InstructionCost ThenCost = Then->cost(VF, Ctx);
813 
814   // For the scalar case, we may not always execute the original predicated
815   // block, Thus, scale the block's cost by the probability of executing it.
816   if (VF.isScalar())
817     return ThenCost / getReciprocalPredBlockProb();
818 
819   return ThenCost;
820 }
821 
822 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
823 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
824                           VPSlotTracker &SlotTracker) const {
825   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
826   auto NewIndent = Indent + "  ";
827   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
828     O << '\n';
829     BlockBase->print(O, NewIndent, SlotTracker);
830   }
831   O << Indent << "}\n";
832 
833   printSuccessors(O, Indent);
834 }
835 #endif
836 
837 VPlan::~VPlan() {
838   for (auto &KV : LiveOuts)
839     delete KV.second;
840   LiveOuts.clear();
841 
842   if (Entry) {
843     VPValue DummyValue;
844     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
845       Block->dropAllReferences(&DummyValue);
846 
847     VPBlockBase::deleteCFG(Entry);
848 
849     Preheader->dropAllReferences(&DummyValue);
850     delete Preheader;
851   }
852   for (VPValue *VPV : VPLiveInsToFree)
853     delete VPV;
854   if (BackedgeTakenCount)
855     delete BackedgeTakenCount;
856 }
857 
858 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE,
859                                    bool RequiresScalarEpilogueCheck,
860                                    bool TailFolded, Loop *TheLoop) {
861   VPIRBasicBlock *Entry = new VPIRBasicBlock(TheLoop->getLoopPreheader());
862   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
863   auto Plan = std::make_unique<VPlan>(Entry, VecPreheader);
864   Plan->TripCount =
865       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
866   // Create VPRegionBlock, with empty header and latch blocks, to be filled
867   // during processing later.
868   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
869   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
870   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
871   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
872                                       false /*isReplicator*/);
873 
874   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
875   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
876   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
877 
878   VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
879   if (!RequiresScalarEpilogueCheck) {
880     VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
881     return Plan;
882   }
883 
884   // If needed, add a check in the middle block to see if we have completed
885   // all of the iterations in the first vector loop.  Three cases:
886   // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
887   //    Thus if tail is to be folded, we know we don't need to run the
888   //    remainder and we can set the condition to true.
889   // 2) If we require a scalar epilogue, there is no conditional branch as
890   //    we unconditionally branch to the scalar preheader.  Do nothing.
891   // 3) Otherwise, construct a runtime check.
892   BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock();
893   auto *VPExitBlock = new VPIRBasicBlock(IRExitBlock);
894   // The connection order corresponds to the operands of the conditional branch.
895   VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
896   VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
897 
898   auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
899   // Here we use the same DebugLoc as the scalar loop latch terminator instead
900   // of the corresponding compare because they may have ended up with
901   // different line numbers and we want to avoid awkward line stepping while
902   // debugging. Eg. if the compare has got a line number inside the loop.
903   VPBuilder Builder(MiddleVPBB);
904   VPValue *Cmp =
905       TailFolded
906           ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
907                 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
908           : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
909                                &Plan->getVectorTripCount(),
910                                ScalarLatchTerm->getDebugLoc(), "cmp.n");
911   Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
912                        ScalarLatchTerm->getDebugLoc());
913   return Plan;
914 }
915 
916 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
917                              Value *CanonicalIVStartValue,
918                              VPTransformState &State) {
919   // Check if the backedge taken count is needed, and if so build it.
920   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
921     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
922     auto *TCMO = Builder.CreateSub(TripCountV,
923                                    ConstantInt::get(TripCountV->getType(), 1),
924                                    "trip.count.minus.1");
925     BackedgeTakenCount->setUnderlyingValue(TCMO);
926   }
927 
928   VectorTripCount.setUnderlyingValue(VectorTripCountV);
929 
930   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
931   // FIXME: Model VF * UF computation completely in VPlan.
932   VFxUF.setUnderlyingValue(
933       createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF));
934 
935   // When vectorizing the epilogue loop, the canonical induction start value
936   // needs to be changed from zero to the value after the main vector loop.
937   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
938   if (CanonicalIVStartValue) {
939     VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue);
940     auto *IV = getCanonicalIV();
941     assert(all_of(IV->users(),
942                   [](const VPUser *U) {
943                     return isa<VPScalarIVStepsRecipe>(U) ||
944                            isa<VPScalarCastRecipe>(U) ||
945                            isa<VPDerivedIVRecipe>(U) ||
946                            cast<VPInstruction>(U)->getOpcode() ==
947                                Instruction::Add;
948                   }) &&
949            "the canonical IV should only be used by its increment or "
950            "ScalarIVSteps when resetting the start value");
951     IV->setOperand(0, VPV);
952   }
953 }
954 
955 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
956 /// VPBB are moved to the newly created VPIRBasicBlock.  VPBB must have a single
957 /// predecessor, which is rewired to the new VPIRBasicBlock. All successors of
958 /// VPBB, if any, are rewired to the new VPIRBasicBlock.
959 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
960   VPIRBasicBlock *IRMiddleVPBB = new VPIRBasicBlock(IRBB);
961   for (auto &R : make_early_inc_range(*VPBB))
962     R.moveBefore(*IRMiddleVPBB, IRMiddleVPBB->end());
963   VPBlockBase *PredVPBB = VPBB->getSinglePredecessor();
964   VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
965   VPBlockUtils::connectBlocks(PredVPBB, IRMiddleVPBB);
966   for (auto *Succ : to_vector(VPBB->getSuccessors())) {
967     VPBlockUtils::connectBlocks(IRMiddleVPBB, Succ);
968     VPBlockUtils::disconnectBlocks(VPBB, Succ);
969   }
970   delete VPBB;
971 }
972 
973 /// Generate the code inside the preheader and body of the vectorized loop.
974 /// Assumes a single pre-header basic-block was created for this. Introduce
975 /// additional basic-blocks as needed, and fill them all.
976 void VPlan::execute(VPTransformState *State) {
977   // Initialize CFG state.
978   State->CFG.PrevVPBB = nullptr;
979   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
980   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
981   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
982 
983   // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
984   cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
985   State->CFG.DTU.applyUpdates(
986       {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
987 
988   // Replace regular VPBB's for the middle and scalar preheader blocks with
989   // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during
990   // skeleton creation, so we can only create the VPIRBasicBlocks now during
991   // VPlan execution rather than earlier during VPlan construction.
992   BasicBlock *MiddleBB = State->CFG.ExitBB;
993   VPBasicBlock *MiddleVPBB =
994       cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor());
995   // Find the VPBB for the scalar preheader, relying on the current structure
996   // when creating the middle block and its successrs: if there's a single
997   // predecessor, it must be the scalar preheader. Otherwise, the second
998   // successor is the scalar preheader.
999   BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
1000   auto &MiddleSuccs = MiddleVPBB->getSuccessors();
1001   assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) &&
1002          "middle block has unexpected successors");
1003   VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>(
1004       MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]);
1005   assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) &&
1006          "scalar preheader cannot be wrapped already");
1007   replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh);
1008   replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB);
1009 
1010   // Disconnect the middle block from its single successor (the scalar loop
1011   // header) in both the CFG and DT. The branch will be recreated during VPlan
1012   // execution.
1013   auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1014   BrInst->insertBefore(MiddleBB->getTerminator());
1015   MiddleBB->getTerminator()->eraseFromParent();
1016   State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1017 
1018   // Generate code in the loop pre-header and body.
1019   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
1020     Block->execute(State);
1021 
1022   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1023   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1024 
1025   // Fix the latch value of canonical, reduction and first-order recurrences
1026   // phis in the vector loop.
1027   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1028   for (VPRecipeBase &R : Header->phis()) {
1029     // Skip phi-like recipes that generate their backedege values themselves.
1030     if (isa<VPWidenPHIRecipe>(&R))
1031       continue;
1032 
1033     if (isa<VPWidenPointerInductionRecipe>(&R) ||
1034         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1035       PHINode *Phi = nullptr;
1036       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1037         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
1038       } else {
1039         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1040         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1041                "recipe generating only scalars should have been replaced");
1042         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
1043         Phi = cast<PHINode>(GEP->getPointerOperand());
1044       }
1045 
1046       Phi->setIncomingBlock(1, VectorLatchBB);
1047 
1048       // Move the last step to the end of the latch block. This ensures
1049       // consistent placement of all induction updates.
1050       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1051       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1052       continue;
1053     }
1054 
1055     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1056     // For  canonical IV, first-order recurrences and in-order reduction phis,
1057     // only a single part is generated, which provides the last part from the
1058     // previous iteration. For non-ordered reductions all UF parts are
1059     // generated.
1060     bool SinglePartNeeded =
1061         isa<VPCanonicalIVPHIRecipe>(PhiR) ||
1062         isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
1063         (isa<VPReductionPHIRecipe>(PhiR) &&
1064          cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
1065     bool NeedsScalar =
1066         isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
1067         (isa<VPReductionPHIRecipe>(PhiR) &&
1068          cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1069     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
1070 
1071     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1072       Value *Phi = State->get(PhiR, Part, NeedsScalar);
1073       Value *Val =
1074           State->get(PhiR->getBackedgeValue(),
1075                      SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar);
1076       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1077     }
1078   }
1079 
1080   State->CFG.DTU.flush();
1081   assert(State->CFG.DTU.getDomTree().verify(
1082              DominatorTree::VerificationLevel::Fast) &&
1083          "DT not preserved correctly");
1084 }
1085 
1086 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1087   // For now only return the cost of the vector loop region, ignoring any other
1088   // blocks, like the preheader or middle blocks.
1089   return getVectorLoopRegion()->cost(VF, Ctx);
1090 }
1091 
1092 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1093 void VPlan::printLiveIns(raw_ostream &O) const {
1094   VPSlotTracker SlotTracker(this);
1095 
1096   if (VFxUF.getNumUsers() > 0) {
1097     O << "\nLive-in ";
1098     VFxUF.printAsOperand(O, SlotTracker);
1099     O << " = VF * UF";
1100   }
1101 
1102   if (VectorTripCount.getNumUsers() > 0) {
1103     O << "\nLive-in ";
1104     VectorTripCount.printAsOperand(O, SlotTracker);
1105     O << " = vector-trip-count";
1106   }
1107 
1108   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1109     O << "\nLive-in ";
1110     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1111     O << " = backedge-taken count";
1112   }
1113 
1114   O << "\n";
1115   if (TripCount->isLiveIn())
1116     O << "Live-in ";
1117   TripCount->printAsOperand(O, SlotTracker);
1118   O << " = original trip-count";
1119   O << "\n";
1120 }
1121 
1122 LLVM_DUMP_METHOD
1123 void VPlan::print(raw_ostream &O) const {
1124   VPSlotTracker SlotTracker(this);
1125 
1126   O << "VPlan '" << getName() << "' {";
1127 
1128   printLiveIns(O);
1129 
1130   if (!getPreheader()->empty()) {
1131     O << "\n";
1132     getPreheader()->print(O, "", SlotTracker);
1133   }
1134 
1135   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
1136     O << '\n';
1137     Block->print(O, "", SlotTracker);
1138   }
1139 
1140   if (!LiveOuts.empty())
1141     O << "\n";
1142   for (const auto &KV : LiveOuts) {
1143     KV.second->print(O, SlotTracker);
1144   }
1145 
1146   O << "}\n";
1147 }
1148 
1149 std::string VPlan::getName() const {
1150   std::string Out;
1151   raw_string_ostream RSO(Out);
1152   RSO << Name << " for ";
1153   if (!VFs.empty()) {
1154     RSO << "VF={" << VFs[0];
1155     for (ElementCount VF : drop_begin(VFs))
1156       RSO << "," << VF;
1157     RSO << "},";
1158   }
1159 
1160   if (UFs.empty()) {
1161     RSO << "UF>=1";
1162   } else {
1163     RSO << "UF={" << UFs[0];
1164     for (unsigned UF : drop_begin(UFs))
1165       RSO << "," << UF;
1166     RSO << "}";
1167   }
1168 
1169   return Out;
1170 }
1171 
1172 LLVM_DUMP_METHOD
1173 void VPlan::printDOT(raw_ostream &O) const {
1174   VPlanPrinter Printer(O, *this);
1175   Printer.dump();
1176 }
1177 
1178 LLVM_DUMP_METHOD
1179 void VPlan::dump() const { print(dbgs()); }
1180 #endif
1181 
1182 void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
1183   assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
1184   LiveOuts.insert({PN, new VPLiveOut(PN, V)});
1185 }
1186 
1187 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1188                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1189   // Update the operands of all cloned recipes starting at NewEntry. This
1190   // traverses all reachable blocks. This is done in two steps, to handle cycles
1191   // in PHI recipes.
1192   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1193       OldDeepRPOT(Entry);
1194   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1195       NewDeepRPOT(NewEntry);
1196   // First, collect all mappings from old to new VPValues defined by cloned
1197   // recipes.
1198   for (const auto &[OldBB, NewBB] :
1199        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1200            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1201     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1202            "blocks must have the same number of recipes");
1203     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1204       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1205              "recipes must have the same number of operands");
1206       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1207              "recipes must define the same number of operands");
1208       for (const auto &[OldV, NewV] :
1209            zip(OldR.definedValues(), NewR.definedValues()))
1210         Old2NewVPValues[OldV] = NewV;
1211     }
1212   }
1213 
1214   // Update all operands to use cloned VPValues.
1215   for (VPBasicBlock *NewBB :
1216        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1217     for (VPRecipeBase &NewR : *NewBB)
1218       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1219         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1220         NewR.setOperand(I, NewOp);
1221       }
1222   }
1223 }
1224 
1225 VPlan *VPlan::duplicate() {
1226   // Clone blocks.
1227   VPBasicBlock *NewPreheader = Preheader->clone();
1228   const auto &[NewEntry, __] = cloneFrom(Entry);
1229 
1230   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1231   auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry));
1232   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1233   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1234     Old2NewVPValues[OldLiveIn] =
1235         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1236   }
1237   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1238   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1239   if (BackedgeTakenCount) {
1240     NewPlan->BackedgeTakenCount = new VPValue();
1241     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1242   }
1243   assert(TripCount && "trip count must be set");
1244   if (TripCount->isLiveIn())
1245     Old2NewVPValues[TripCount] =
1246         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1247   // else NewTripCount will be created and inserted into Old2NewVPValues when
1248   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1249 
1250   remapOperands(Preheader, NewPreheader, Old2NewVPValues);
1251   remapOperands(Entry, NewEntry, Old2NewVPValues);
1252 
1253   // Clone live-outs.
1254   for (const auto &[_, LO] : LiveOuts)
1255     NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]);
1256 
1257   // Initialize remaining fields of cloned VPlan.
1258   NewPlan->VFs = VFs;
1259   NewPlan->UFs = UFs;
1260   // TODO: Adjust names.
1261   NewPlan->Name = Name;
1262   assert(Old2NewVPValues.contains(TripCount) &&
1263          "TripCount must have been added to Old2NewVPValues");
1264   NewPlan->TripCount = Old2NewVPValues[TripCount];
1265   return NewPlan;
1266 }
1267 
1268 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1269 
1270 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1271   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1272          Twine(getOrCreateBID(Block));
1273 }
1274 
1275 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1276   const std::string &Name = Block->getName();
1277   if (!Name.empty())
1278     return Name;
1279   return "VPB" + Twine(getOrCreateBID(Block));
1280 }
1281 
1282 void VPlanPrinter::dump() {
1283   Depth = 1;
1284   bumpIndent(0);
1285   OS << "digraph VPlan {\n";
1286   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1287   if (!Plan.getName().empty())
1288     OS << "\\n" << DOT::EscapeString(Plan.getName());
1289 
1290   {
1291     // Print live-ins.
1292   std::string Str;
1293   raw_string_ostream SS(Str);
1294   Plan.printLiveIns(SS);
1295   SmallVector<StringRef, 0> Lines;
1296   StringRef(Str).rtrim('\n').split(Lines, "\n");
1297   for (auto Line : Lines)
1298     OS << DOT::EscapeString(Line.str()) << "\\n";
1299   }
1300 
1301   OS << "\"]\n";
1302   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1303   OS << "edge [fontname=Courier, fontsize=30]\n";
1304   OS << "compound=true\n";
1305 
1306   dumpBlock(Plan.getPreheader());
1307 
1308   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1309     dumpBlock(Block);
1310 
1311   OS << "}\n";
1312 }
1313 
1314 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1315   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1316     dumpBasicBlock(BasicBlock);
1317   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1318     dumpRegion(Region);
1319   else
1320     llvm_unreachable("Unsupported kind of VPBlock.");
1321 }
1322 
1323 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1324                             bool Hidden, const Twine &Label) {
1325   // Due to "dot" we print an edge between two regions as an edge between the
1326   // exiting basic block and the entry basic of the respective regions.
1327   const VPBlockBase *Tail = From->getExitingBasicBlock();
1328   const VPBlockBase *Head = To->getEntryBasicBlock();
1329   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1330   OS << " [ label=\"" << Label << '\"';
1331   if (Tail != From)
1332     OS << " ltail=" << getUID(From);
1333   if (Head != To)
1334     OS << " lhead=" << getUID(To);
1335   if (Hidden)
1336     OS << "; splines=none";
1337   OS << "]\n";
1338 }
1339 
1340 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1341   auto &Successors = Block->getSuccessors();
1342   if (Successors.size() == 1)
1343     drawEdge(Block, Successors.front(), false, "");
1344   else if (Successors.size() == 2) {
1345     drawEdge(Block, Successors.front(), false, "T");
1346     drawEdge(Block, Successors.back(), false, "F");
1347   } else {
1348     unsigned SuccessorNumber = 0;
1349     for (auto *Successor : Successors)
1350       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1351   }
1352 }
1353 
1354 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1355   // Implement dot-formatted dump by performing plain-text dump into the
1356   // temporary storage followed by some post-processing.
1357   OS << Indent << getUID(BasicBlock) << " [label =\n";
1358   bumpIndent(1);
1359   std::string Str;
1360   raw_string_ostream SS(Str);
1361   // Use no indentation as we need to wrap the lines into quotes ourselves.
1362   BasicBlock->print(SS, "", SlotTracker);
1363 
1364   // We need to process each line of the output separately, so split
1365   // single-string plain-text dump.
1366   SmallVector<StringRef, 0> Lines;
1367   StringRef(Str).rtrim('\n').split(Lines, "\n");
1368 
1369   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1370     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1371   };
1372 
1373   // Don't need the "+" after the last line.
1374   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1375     EmitLine(Line, " +\n");
1376   EmitLine(Lines.back(), "\n");
1377 
1378   bumpIndent(-1);
1379   OS << Indent << "]\n";
1380 
1381   dumpEdges(BasicBlock);
1382 }
1383 
1384 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1385   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1386   bumpIndent(1);
1387   OS << Indent << "fontname=Courier\n"
1388      << Indent << "label=\""
1389      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1390      << DOT::EscapeString(Region->getName()) << "\"\n";
1391   // Dump the blocks of the region.
1392   assert(Region->getEntry() && "Region contains no inner blocks.");
1393   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1394     dumpBlock(Block);
1395   bumpIndent(-1);
1396   OS << Indent << "}\n";
1397   dumpEdges(Region);
1398 }
1399 
1400 void VPlanIngredient::print(raw_ostream &O) const {
1401   if (auto *Inst = dyn_cast<Instruction>(V)) {
1402     if (!Inst->getType()->isVoidTy()) {
1403       Inst->printAsOperand(O, false);
1404       O << " = ";
1405     }
1406     O << Inst->getOpcodeName() << " ";
1407     unsigned E = Inst->getNumOperands();
1408     if (E > 0) {
1409       Inst->getOperand(0)->printAsOperand(O, false);
1410       for (unsigned I = 1; I < E; ++I)
1411         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1412     }
1413   } else // !Inst
1414     V->printAsOperand(O, false);
1415 }
1416 
1417 #endif
1418 
1419 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1420 
1421 void VPValue::replaceAllUsesWith(VPValue *New) {
1422   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1423 }
1424 
1425 void VPValue::replaceUsesWithIf(
1426     VPValue *New,
1427     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1428   // Note that this early exit is required for correctness; the implementation
1429   // below relies on the number of users for this VPValue to decrease, which
1430   // isn't the case if this == New.
1431   if (this == New)
1432     return;
1433 
1434   for (unsigned J = 0; J < getNumUsers();) {
1435     VPUser *User = Users[J];
1436     bool RemovedUser = false;
1437     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1438       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1439         continue;
1440 
1441       RemovedUser = true;
1442       User->setOperand(I, New);
1443     }
1444     // If a user got removed after updating the current user, the next user to
1445     // update will be moved to the current position, so we only need to
1446     // increment the index if the number of users did not change.
1447     if (!RemovedUser)
1448       J++;
1449   }
1450 }
1451 
1452 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1454   OS << Tracker.getOrCreateName(this);
1455 }
1456 
1457 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1458   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1459     Op->printAsOperand(O, SlotTracker);
1460   });
1461 }
1462 #endif
1463 
1464 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1465                                           Old2NewTy &Old2New,
1466                                           InterleavedAccessInfo &IAI) {
1467   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1468       RPOT(Region->getEntry());
1469   for (VPBlockBase *Base : RPOT) {
1470     visitBlock(Base, Old2New, IAI);
1471   }
1472 }
1473 
1474 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1475                                          InterleavedAccessInfo &IAI) {
1476   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1477     for (VPRecipeBase &VPI : *VPBB) {
1478       if (isa<VPWidenPHIRecipe>(&VPI))
1479         continue;
1480       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1481       auto *VPInst = cast<VPInstruction>(&VPI);
1482 
1483       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1484       if (!Inst)
1485         continue;
1486       auto *IG = IAI.getInterleaveGroup(Inst);
1487       if (!IG)
1488         continue;
1489 
1490       auto NewIGIter = Old2New.find(IG);
1491       if (NewIGIter == Old2New.end())
1492         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1493             IG->getFactor(), IG->isReverse(), IG->getAlign());
1494 
1495       if (Inst == IG->getInsertPos())
1496         Old2New[IG]->setInsertPos(VPInst);
1497 
1498       InterleaveGroupMap[VPInst] = Old2New[IG];
1499       InterleaveGroupMap[VPInst]->insertMember(
1500           VPInst, IG->getIndex(Inst),
1501           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1502                                 : IG->getFactor()));
1503     }
1504   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1505     visitRegion(Region, Old2New, IAI);
1506   else
1507     llvm_unreachable("Unsupported kind of VPBlock.");
1508 }
1509 
1510 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1511                                                  InterleavedAccessInfo &IAI) {
1512   Old2NewTy Old2New;
1513   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1514 }
1515 
1516 void VPSlotTracker::assignName(const VPValue *V) {
1517   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1518   auto *UV = V->getUnderlyingValue();
1519   if (!UV) {
1520     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1521     NextSlot++;
1522     return;
1523   }
1524 
1525   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1526   // appending ".Number" to the name if there are multiple uses.
1527   std::string Name;
1528   raw_string_ostream S(Name);
1529   UV->printAsOperand(S, false);
1530   assert(!Name.empty() && "Name cannot be empty.");
1531   std::string BaseName = (Twine("ir<") + Name + Twine(">")).str();
1532 
1533   // First assign the base name for V.
1534   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1535   // Integer or FP constants with different types will result in he same string
1536   // due to stripping types.
1537   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1538     return;
1539 
1540   // If it is already used by C > 0 other VPValues, increase the version counter
1541   // C and use it for V.
1542   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1543   if (!UseInserted) {
1544     C->second++;
1545     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1546   }
1547 }
1548 
1549 void VPSlotTracker::assignNames(const VPlan &Plan) {
1550   if (Plan.VFxUF.getNumUsers() > 0)
1551     assignName(&Plan.VFxUF);
1552   assignName(&Plan.VectorTripCount);
1553   if (Plan.BackedgeTakenCount)
1554     assignName(Plan.BackedgeTakenCount);
1555   for (VPValue *LI : Plan.VPLiveInsToFree)
1556     assignName(LI);
1557   assignNames(Plan.getPreheader());
1558 
1559   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1560       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1561   for (const VPBasicBlock *VPBB :
1562        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1563     assignNames(VPBB);
1564 }
1565 
1566 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1567   for (const VPRecipeBase &Recipe : *VPBB)
1568     for (VPValue *Def : Recipe.definedValues())
1569       assignName(Def);
1570 }
1571 
1572 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1573   std::string Name = VPValue2Name.lookup(V);
1574   if (!Name.empty())
1575     return Name;
1576 
1577   // If no name was assigned, no VPlan was provided when creating the slot
1578   // tracker or it is not reachable from the provided VPlan. This can happen,
1579   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1580   // in a debugger.
1581   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1582   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1583   // here.
1584   const VPRecipeBase *DefR = V->getDefiningRecipe();
1585   (void)DefR;
1586   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1587          "VPValue defined by a recipe in a VPlan?");
1588 
1589   // Use the underlying value's name, if there is one.
1590   if (auto *UV = V->getUnderlyingValue()) {
1591     std::string Name;
1592     raw_string_ostream S(Name);
1593     UV->printAsOperand(S, false);
1594     return (Twine("ir<") + Name + ">").str();
1595   }
1596 
1597   return "<badref>";
1598 }
1599 
1600 bool vputils::onlyFirstLaneUsed(const VPValue *Def) {
1601   return all_of(Def->users(),
1602                 [Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); });
1603 }
1604 
1605 bool vputils::onlyFirstPartUsed(const VPValue *Def) {
1606   return all_of(Def->users(),
1607                 [Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); });
1608 }
1609 
1610 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
1611                                                 ScalarEvolution &SE) {
1612   if (auto *Expanded = Plan.getSCEVExpansion(Expr))
1613     return Expanded;
1614   VPValue *Expanded = nullptr;
1615   if (auto *E = dyn_cast<SCEVConstant>(Expr))
1616     Expanded = Plan.getOrAddLiveIn(E->getValue());
1617   else if (auto *E = dyn_cast<SCEVUnknown>(Expr))
1618     Expanded = Plan.getOrAddLiveIn(E->getValue());
1619   else {
1620     Expanded = new VPExpandSCEVRecipe(Expr, SE);
1621     Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe());
1622   }
1623   Plan.addSCEVExpansion(Expr, Expanded);
1624   return Expanded;
1625 }
1626 
1627 bool vputils::isHeaderMask(VPValue *V, VPlan &Plan) {
1628   if (isa<VPActiveLaneMaskPHIRecipe>(V))
1629     return true;
1630 
1631   auto IsWideCanonicalIV = [](VPValue *A) {
1632     return isa<VPWidenCanonicalIVRecipe>(A) ||
1633            (isa<VPWidenIntOrFpInductionRecipe>(A) &&
1634             cast<VPWidenIntOrFpInductionRecipe>(A)->isCanonical());
1635   };
1636 
1637   VPValue *A, *B;
1638   if (match(V, m_ActiveLaneMask(m_VPValue(A), m_VPValue(B))))
1639     return B == Plan.getTripCount() &&
1640            (match(A, m_ScalarIVSteps(m_CanonicalIV(), m_SpecificInt(1))) ||
1641             IsWideCanonicalIV(A));
1642 
1643   return match(V, m_Binary<Instruction::ICmp>(m_VPValue(A), m_VPValue(B))) &&
1644          IsWideCanonicalIV(A) && B == Plan.getOrCreateBackedgeTakenCount();
1645 }
1646