xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include <cassert>
44 #include <iterator>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
54   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
55   VPSlotTracker SlotTracker(
56       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
57   V.print(OS, SlotTracker);
58   return OS;
59 }
60 
61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
62     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
63   if (Def)
64     Def->addDefinedValue(this);
65 }
66 
67 VPValue::~VPValue() {
68   assert(Users.empty() && "trying to delete a VPValue with remaining users");
69   if (Def)
70     Def->removeDefinedValue(this);
71 }
72 
73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
74   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
75     R->print(OS, "", SlotTracker);
76   else
77     printAsOperand(OS, SlotTracker);
78 }
79 
80 void VPValue::dump() const {
81   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
82   VPSlotTracker SlotTracker(
83       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
84   print(dbgs(), SlotTracker);
85   dbgs() << "\n";
86 }
87 
88 void VPDef::dump() const {
89   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
90   VPSlotTracker SlotTracker(
91       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
92   print(dbgs(), "", SlotTracker);
93   dbgs() << "\n";
94 }
95 
96 VPUser *VPRecipeBase::toVPUser() {
97   if (auto *U = dyn_cast<VPInstruction>(this))
98     return U;
99   if (auto *U = dyn_cast<VPWidenRecipe>(this))
100     return U;
101   if (auto *U = dyn_cast<VPWidenCallRecipe>(this))
102     return U;
103   if (auto *U = dyn_cast<VPWidenSelectRecipe>(this))
104     return U;
105   if (auto *U = dyn_cast<VPWidenGEPRecipe>(this))
106     return U;
107   if (auto *U = dyn_cast<VPBlendRecipe>(this))
108     return U;
109   if (auto *U = dyn_cast<VPInterleaveRecipe>(this))
110     return U;
111   if (auto *U = dyn_cast<VPReplicateRecipe>(this))
112     return U;
113   if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this))
114     return U;
115   if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
116     return U;
117   if (auto *U = dyn_cast<VPReductionRecipe>(this))
118     return U;
119   if (auto *U = dyn_cast<VPPredInstPHIRecipe>(this))
120     return U;
121   return nullptr;
122 }
123 
124 // Get the top-most entry block of \p Start. This is the entry block of the
125 // containing VPlan. This function is templated to support both const and non-const blocks
126 template <typename T> static T *getPlanEntry(T *Start) {
127   T *Next = Start;
128   T *Current = Start;
129   while ((Next = Next->getParent()))
130     Current = Next;
131 
132   SmallSetVector<T *, 8> WorkList;
133   WorkList.insert(Current);
134 
135   for (unsigned i = 0; i < WorkList.size(); i++) {
136     T *Current = WorkList[i];
137     if (Current->getNumPredecessors() == 0)
138       return Current;
139     auto &Predecessors = Current->getPredecessors();
140     WorkList.insert(Predecessors.begin(), Predecessors.end());
141   }
142 
143   llvm_unreachable("VPlan without any entry node without predecessors");
144 }
145 
146 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
147 
148 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
149 
150 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
151 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
152   const VPBlockBase *Block = this;
153   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
154     Block = Region->getEntry();
155   return cast<VPBasicBlock>(Block);
156 }
157 
158 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
159   VPBlockBase *Block = this;
160   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
165 void VPBlockBase::setPlan(VPlan *ParentPlan) {
166   assert(ParentPlan->getEntry() == this &&
167          "Can only set plan on its entry block.");
168   Plan = ParentPlan;
169 }
170 
171 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
172 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
173   const VPBlockBase *Block = this;
174   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
175     Block = Region->getExit();
176   return cast<VPBasicBlock>(Block);
177 }
178 
179 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
180   VPBlockBase *Block = this;
181   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
182     Block = Region->getExit();
183   return cast<VPBasicBlock>(Block);
184 }
185 
186 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
187   if (!Successors.empty() || !Parent)
188     return this;
189   assert(Parent->getExit() == this &&
190          "Block w/o successors not the exit of its parent.");
191   return Parent->getEnclosingBlockWithSuccessors();
192 }
193 
194 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
195   if (!Predecessors.empty() || !Parent)
196     return this;
197   assert(Parent->getEntry() == this &&
198          "Block w/o predecessors not the entry of its parent.");
199   return Parent->getEnclosingBlockWithPredecessors();
200 }
201 
202 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
203   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
204 
205   for (VPBlockBase *Block : Blocks)
206     delete Block;
207 }
208 
209 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
210   iterator It = begin();
211   while (It != end() && (isa<VPWidenPHIRecipe>(&*It) ||
212                          isa<VPWidenIntOrFpInductionRecipe>(&*It) ||
213                          isa<VPPredInstPHIRecipe>(&*It) ||
214                          isa<VPWidenCanonicalIVRecipe>(&*It)))
215     It++;
216   return It;
217 }
218 
219 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
220   if (!Def->getDef() && OrigLoop->isLoopInvariant(Def->getLiveInIRValue()))
221     return Def->getLiveInIRValue();
222 
223   if (hasScalarValue(Def, Instance))
224     return Data.PerPartScalars[Def][Instance.Part][Instance.Lane];
225 
226   if (hasVectorValue(Def, Instance.Part)) {
227     assert(Data.PerPartOutput.count(Def));
228     auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
229     if (!VecPart->getType()->isVectorTy()) {
230       assert(Instance.Lane == 0 && "cannot get lane > 0 for scalar");
231       return VecPart;
232     }
233     // TODO: Cache created scalar values.
234     return Builder.CreateExtractElement(VecPart,
235                                         Builder.getInt32(Instance.Lane));
236   }
237   return Callback.getOrCreateScalarValue(VPValue2Value[Def], Instance);
238 }
239 
240 BasicBlock *
241 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
242   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
243   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
244   BasicBlock *PrevBB = CFG.PrevBB;
245   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
246                                          PrevBB->getParent(), CFG.LastBB);
247   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
248 
249   // Hook up the new basic block to its predecessors.
250   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
251     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
252     auto &PredVPSuccessors = PredVPBB->getSuccessors();
253     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
254 
255     // In outer loop vectorization scenario, the predecessor BBlock may not yet
256     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
257     // vectorization. We do not encounter this case in inner loop vectorization
258     // as we start out by building a loop skeleton with the vector loop header
259     // and latch blocks. As a result, we never enter this function for the
260     // header block in the non VPlan-native path.
261     if (!PredBB) {
262       assert(EnableVPlanNativePath &&
263              "Unexpected null predecessor in non VPlan-native path");
264       CFG.VPBBsToFix.push_back(PredVPBB);
265       continue;
266     }
267 
268     assert(PredBB && "Predecessor basic-block not found building successor.");
269     auto *PredBBTerminator = PredBB->getTerminator();
270     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
271     if (isa<UnreachableInst>(PredBBTerminator)) {
272       assert(PredVPSuccessors.size() == 1 &&
273              "Predecessor ending w/o branch must have single successor.");
274       PredBBTerminator->eraseFromParent();
275       BranchInst::Create(NewBB, PredBB);
276     } else {
277       assert(PredVPSuccessors.size() == 2 &&
278              "Predecessor ending with branch must have two successors.");
279       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
280       assert(!PredBBTerminator->getSuccessor(idx) &&
281              "Trying to reset an existing successor block.");
282       PredBBTerminator->setSuccessor(idx, NewBB);
283     }
284   }
285   return NewBB;
286 }
287 
288 void VPBasicBlock::execute(VPTransformState *State) {
289   bool Replica = State->Instance &&
290                  !(State->Instance->Part == 0 && State->Instance->Lane == 0);
291   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
292   VPBlockBase *SingleHPred = nullptr;
293   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
294 
295   // 1. Create an IR basic block, or reuse the last one if possible.
296   // The last IR basic block is reused, as an optimization, in three cases:
297   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
298   // B. when the current VPBB has a single (hierarchical) predecessor which
299   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
300   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
301   //    is the exit of this region from a previous instance, or the predecessor
302   //    of this region.
303   if (PrevVPBB && /* A */
304       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
305         SingleHPred->getExitBasicBlock() == PrevVPBB &&
306         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
307       !(Replica && getPredecessors().empty())) {       /* C */
308     NewBB = createEmptyBasicBlock(State->CFG);
309     State->Builder.SetInsertPoint(NewBB);
310     // Temporarily terminate with unreachable until CFG is rewired.
311     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
312     State->Builder.SetInsertPoint(Terminator);
313     // Register NewBB in its loop. In innermost loops its the same for all BB's.
314     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
315     L->addBasicBlockToLoop(NewBB, *State->LI);
316     State->CFG.PrevBB = NewBB;
317   }
318 
319   // 2. Fill the IR basic block with IR instructions.
320   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
321                     << " in BB:" << NewBB->getName() << '\n');
322 
323   State->CFG.VPBB2IRBB[this] = NewBB;
324   State->CFG.PrevVPBB = this;
325 
326   for (VPRecipeBase &Recipe : Recipes)
327     Recipe.execute(*State);
328 
329   VPValue *CBV;
330   if (EnableVPlanNativePath && (CBV = getCondBit())) {
331     Value *IRCBV = CBV->getUnderlyingValue();
332     assert(IRCBV && "Unexpected null underlying value for condition bit");
333 
334     // Condition bit value in a VPBasicBlock is used as the branch selector. In
335     // the VPlan-native path case, since all branches are uniform we generate a
336     // branch instruction using the condition value from vector lane 0 and dummy
337     // successors. The successors are fixed later when the successor blocks are
338     // visited.
339     Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
340     NewCond = State->Builder.CreateExtractElement(NewCond,
341                                                   State->Builder.getInt32(0));
342 
343     // Replace the temporary unreachable terminator with the new conditional
344     // branch.
345     auto *CurrentTerminator = NewBB->getTerminator();
346     assert(isa<UnreachableInst>(CurrentTerminator) &&
347            "Expected to replace unreachable terminator with conditional "
348            "branch.");
349     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
350     CondBr->setSuccessor(0, nullptr);
351     ReplaceInstWithInst(CurrentTerminator, CondBr);
352   }
353 
354   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
355 }
356 
357 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
358   for (VPRecipeBase &R : Recipes) {
359     for (auto *Def : R.definedValues())
360       Def->replaceAllUsesWith(NewValue);
361 
362     if (auto *User = R.toVPUser())
363       for (unsigned I = 0, E = User->getNumOperands(); I != E; I++)
364         User->setOperand(I, NewValue);
365   }
366 }
367 
368 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
369   for (VPBlockBase *Block : depth_first(Entry))
370     // Drop all references in VPBasicBlocks and replace all uses with
371     // DummyValue.
372     Block->dropAllReferences(NewValue);
373 }
374 
375 void VPRegionBlock::execute(VPTransformState *State) {
376   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
377 
378   if (!isReplicator()) {
379     // Visit the VPBlocks connected to "this", starting from it.
380     for (VPBlockBase *Block : RPOT) {
381       if (EnableVPlanNativePath) {
382         // The inner loop vectorization path does not represent loop preheader
383         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
384         // vectorizing loop preheader block. In future, we may replace this
385         // check with the check for loop preheader.
386         if (Block->getNumPredecessors() == 0)
387           continue;
388 
389         // Skip vectorizing loop exit block. In future, we may replace this
390         // check with the check for loop exit.
391         if (Block->getNumSuccessors() == 0)
392           continue;
393       }
394 
395       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
396       Block->execute(State);
397     }
398     return;
399   }
400 
401   assert(!State->Instance && "Replicating a Region with non-null instance.");
402 
403   // Enter replicating mode.
404   State->Instance = {0, 0};
405 
406   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
407     State->Instance->Part = Part;
408     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
409     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
410          ++Lane) {
411       State->Instance->Lane = Lane;
412       // Visit the VPBlocks connected to \p this, starting from it.
413       for (VPBlockBase *Block : RPOT) {
414         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
415         Block->execute(State);
416       }
417     }
418   }
419 
420   // Exit replicating mode.
421   State->Instance.reset();
422 }
423 
424 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
425   assert(!Parent && "Recipe already in some VPBasicBlock");
426   assert(InsertPos->getParent() &&
427          "Insertion position not in any VPBasicBlock");
428   Parent = InsertPos->getParent();
429   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
430 }
431 
432 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
433   assert(!Parent && "Recipe already in some VPBasicBlock");
434   assert(InsertPos->getParent() &&
435          "Insertion position not in any VPBasicBlock");
436   Parent = InsertPos->getParent();
437   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
438 }
439 
440 void VPRecipeBase::removeFromParent() {
441   assert(getParent() && "Recipe not in any VPBasicBlock");
442   getParent()->getRecipeList().remove(getIterator());
443   Parent = nullptr;
444 }
445 
446 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
447   assert(getParent() && "Recipe not in any VPBasicBlock");
448   return getParent()->getRecipeList().erase(getIterator());
449 }
450 
451 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
452   removeFromParent();
453   insertAfter(InsertPos);
454 }
455 
456 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
457                               iplist<VPRecipeBase>::iterator I) {
458   assert(I == BB.end() || I->getParent() == &BB);
459   removeFromParent();
460   Parent = &BB;
461   BB.getRecipeList().insert(I, this);
462 }
463 
464 void VPInstruction::generateInstruction(VPTransformState &State,
465                                         unsigned Part) {
466   IRBuilder<> &Builder = State.Builder;
467 
468   if (Instruction::isBinaryOp(getOpcode())) {
469     Value *A = State.get(getOperand(0), Part);
470     Value *B = State.get(getOperand(1), Part);
471     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
472     State.set(this, V, Part);
473     return;
474   }
475 
476   switch (getOpcode()) {
477   case VPInstruction::Not: {
478     Value *A = State.get(getOperand(0), Part);
479     Value *V = Builder.CreateNot(A);
480     State.set(this, V, Part);
481     break;
482   }
483   case VPInstruction::ICmpULE: {
484     Value *IV = State.get(getOperand(0), Part);
485     Value *TC = State.get(getOperand(1), Part);
486     Value *V = Builder.CreateICmpULE(IV, TC);
487     State.set(this, V, Part);
488     break;
489   }
490   case Instruction::Select: {
491     Value *Cond = State.get(getOperand(0), Part);
492     Value *Op1 = State.get(getOperand(1), Part);
493     Value *Op2 = State.get(getOperand(2), Part);
494     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
495     State.set(this, V, Part);
496     break;
497   }
498   case VPInstruction::ActiveLaneMask: {
499     // Get first lane of vector induction variable.
500     Value *VIVElem0 = State.get(getOperand(0), {Part, 0});
501     // Get the original loop tripcount.
502     Value *ScalarTC = State.TripCount;
503 
504     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
505     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
506     Instruction *Call = Builder.CreateIntrinsic(
507         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
508         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
509     State.set(this, Call, Part);
510     break;
511   }
512   default:
513     llvm_unreachable("Unsupported opcode for instruction");
514   }
515 }
516 
517 void VPInstruction::execute(VPTransformState &State) {
518   assert(!State.Instance && "VPInstruction executing an Instance");
519   for (unsigned Part = 0; Part < State.UF; ++Part)
520     generateInstruction(State, Part);
521 }
522 
523 void VPInstruction::dump() const {
524   VPSlotTracker SlotTracker(getParent()->getPlan());
525   print(dbgs(), "", SlotTracker);
526 }
527 
528 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
529                           VPSlotTracker &SlotTracker) const {
530   O << "EMIT ";
531 
532   if (hasResult()) {
533     printAsOperand(O, SlotTracker);
534     O << " = ";
535   }
536 
537   switch (getOpcode()) {
538   case VPInstruction::Not:
539     O << "not";
540     break;
541   case VPInstruction::ICmpULE:
542     O << "icmp ule";
543     break;
544   case VPInstruction::SLPLoad:
545     O << "combined load";
546     break;
547   case VPInstruction::SLPStore:
548     O << "combined store";
549     break;
550   case VPInstruction::ActiveLaneMask:
551     O << "active lane mask";
552     break;
553 
554   default:
555     O << Instruction::getOpcodeName(getOpcode());
556   }
557 
558   for (const VPValue *Operand : operands()) {
559     O << " ";
560     Operand->printAsOperand(O, SlotTracker);
561   }
562 }
563 
564 /// Generate the code inside the body of the vectorized loop. Assumes a single
565 /// LoopVectorBody basic-block was created for this. Introduce additional
566 /// basic-blocks as needed, and fill them all.
567 void VPlan::execute(VPTransformState *State) {
568   // -1. Check if the backedge taken count is needed, and if so build it.
569   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
570     Value *TC = State->TripCount;
571     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
572     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
573                                    "trip.count.minus.1");
574     auto VF = State->VF;
575     Value *VTCMO =
576         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
577     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
578       State->set(BackedgeTakenCount, VTCMO, Part);
579   }
580 
581   // 0. Set the reverse mapping from VPValues to Values for code generation.
582   for (auto &Entry : Value2VPValue)
583     State->VPValue2Value[Entry.second] = Entry.first;
584 
585   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
586   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
587   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
588 
589   // 1. Make room to generate basic-blocks inside loop body if needed.
590   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
591       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
592   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
593   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
594   // Remove the edge between Header and Latch to allow other connections.
595   // Temporarily terminate with unreachable until CFG is rewired.
596   // Note: this asserts the generated code's assumption that
597   // getFirstInsertionPt() can be dereferenced into an Instruction.
598   VectorHeaderBB->getTerminator()->eraseFromParent();
599   State->Builder.SetInsertPoint(VectorHeaderBB);
600   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
601   State->Builder.SetInsertPoint(Terminator);
602 
603   // 2. Generate code in loop body.
604   State->CFG.PrevVPBB = nullptr;
605   State->CFG.PrevBB = VectorHeaderBB;
606   State->CFG.LastBB = VectorLatchBB;
607 
608   for (VPBlockBase *Block : depth_first(Entry))
609     Block->execute(State);
610 
611   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
612   // VPBB's successors.
613   for (auto VPBB : State->CFG.VPBBsToFix) {
614     assert(EnableVPlanNativePath &&
615            "Unexpected VPBBsToFix in non VPlan-native path");
616     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
617     assert(BB && "Unexpected null basic block for VPBB");
618 
619     unsigned Idx = 0;
620     auto *BBTerminator = BB->getTerminator();
621 
622     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
623       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
624       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
625       ++Idx;
626     }
627   }
628 
629   // 3. Merge the temporary latch created with the last basic-block filled.
630   BasicBlock *LastBB = State->CFG.PrevBB;
631   // Connect LastBB to VectorLatchBB to facilitate their merge.
632   assert((EnableVPlanNativePath ||
633           isa<UnreachableInst>(LastBB->getTerminator())) &&
634          "Expected InnerLoop VPlan CFG to terminate with unreachable");
635   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
636          "Expected VPlan CFG to terminate with branch in NativePath");
637   LastBB->getTerminator()->eraseFromParent();
638   BranchInst::Create(VectorLatchBB, LastBB);
639 
640   // Merge LastBB with Latch.
641   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
642   (void)Merged;
643   assert(Merged && "Could not merge last basic block with latch.");
644   VectorLatchBB = LastBB;
645 
646   // We do not attempt to preserve DT for outer loop vectorization currently.
647   if (!EnableVPlanNativePath)
648     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
649                         L->getExitBlock());
650 }
651 
652 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
653 LLVM_DUMP_METHOD
654 void VPlan::dump() const { dbgs() << *this << '\n'; }
655 #endif
656 
657 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
658                                 BasicBlock *LoopLatchBB,
659                                 BasicBlock *LoopExitBB) {
660   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
661   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
662   // The vector body may be more than a single basic-block by this point.
663   // Update the dominator tree information inside the vector body by propagating
664   // it from header to latch, expecting only triangular control-flow, if any.
665   BasicBlock *PostDomSucc = nullptr;
666   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
667     // Get the list of successors of this block.
668     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
669     assert(Succs.size() <= 2 &&
670            "Basic block in vector loop has more than 2 successors.");
671     PostDomSucc = Succs[0];
672     if (Succs.size() == 1) {
673       assert(PostDomSucc->getSinglePredecessor() &&
674              "PostDom successor has more than one predecessor.");
675       DT->addNewBlock(PostDomSucc, BB);
676       continue;
677     }
678     BasicBlock *InterimSucc = Succs[1];
679     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
680       PostDomSucc = Succs[1];
681       InterimSucc = Succs[0];
682     }
683     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
684            "One successor of a basic block does not lead to the other.");
685     assert(InterimSucc->getSinglePredecessor() &&
686            "Interim successor has more than one predecessor.");
687     assert(PostDomSucc->hasNPredecessors(2) &&
688            "PostDom successor has more than two predecessors.");
689     DT->addNewBlock(InterimSucc, BB);
690     DT->addNewBlock(PostDomSucc, BB);
691   }
692   // Latch block is a new dominator for the loop exit.
693   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
694   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
695 }
696 
697 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
698   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
699          Twine(getOrCreateBID(Block));
700 }
701 
702 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
703   const std::string &Name = Block->getName();
704   if (!Name.empty())
705     return Name;
706   return "VPB" + Twine(getOrCreateBID(Block));
707 }
708 
709 void VPlanPrinter::dump() {
710   Depth = 1;
711   bumpIndent(0);
712   OS << "digraph VPlan {\n";
713   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
714   if (!Plan.getName().empty())
715     OS << "\\n" << DOT::EscapeString(Plan.getName());
716   if (Plan.BackedgeTakenCount) {
717     OS << ", where:\\n";
718     Plan.BackedgeTakenCount->print(OS, SlotTracker);
719     OS << " := BackedgeTakenCount";
720   }
721   OS << "\"]\n";
722   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
723   OS << "edge [fontname=Courier, fontsize=30]\n";
724   OS << "compound=true\n";
725 
726   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
727     dumpBlock(Block);
728 
729   OS << "}\n";
730 }
731 
732 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
733   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
734     dumpBasicBlock(BasicBlock);
735   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
736     dumpRegion(Region);
737   else
738     llvm_unreachable("Unsupported kind of VPBlock.");
739 }
740 
741 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
742                             bool Hidden, const Twine &Label) {
743   // Due to "dot" we print an edge between two regions as an edge between the
744   // exit basic block and the entry basic of the respective regions.
745   const VPBlockBase *Tail = From->getExitBasicBlock();
746   const VPBlockBase *Head = To->getEntryBasicBlock();
747   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
748   OS << " [ label=\"" << Label << '\"';
749   if (Tail != From)
750     OS << " ltail=" << getUID(From);
751   if (Head != To)
752     OS << " lhead=" << getUID(To);
753   if (Hidden)
754     OS << "; splines=none";
755   OS << "]\n";
756 }
757 
758 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
759   auto &Successors = Block->getSuccessors();
760   if (Successors.size() == 1)
761     drawEdge(Block, Successors.front(), false, "");
762   else if (Successors.size() == 2) {
763     drawEdge(Block, Successors.front(), false, "T");
764     drawEdge(Block, Successors.back(), false, "F");
765   } else {
766     unsigned SuccessorNumber = 0;
767     for (auto *Successor : Successors)
768       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
769   }
770 }
771 
772 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
773   OS << Indent << getUID(BasicBlock) << " [label =\n";
774   bumpIndent(1);
775   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
776   bumpIndent(1);
777 
778   // Dump the block predicate.
779   const VPValue *Pred = BasicBlock->getPredicate();
780   if (Pred) {
781     OS << " +\n" << Indent << " \"BlockPredicate: \"";
782     if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
783       PredI->printAsOperand(OS, SlotTracker);
784       OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
785          << ")\\l\"";
786     } else
787       Pred->printAsOperand(OS, SlotTracker);
788   }
789 
790   for (const VPRecipeBase &Recipe : *BasicBlock) {
791     OS << " +\n" << Indent << "\"";
792     Recipe.print(OS, Indent, SlotTracker);
793     OS << "\\l\"";
794   }
795 
796   // Dump the condition bit.
797   const VPValue *CBV = BasicBlock->getCondBit();
798   if (CBV) {
799     OS << " +\n" << Indent << " \"CondBit: ";
800     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
801       CBI->printAsOperand(OS, SlotTracker);
802       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
803     } else {
804       CBV->printAsOperand(OS, SlotTracker);
805       OS << "\"";
806     }
807   }
808 
809   bumpIndent(-2);
810   OS << "\n" << Indent << "]\n";
811   dumpEdges(BasicBlock);
812 }
813 
814 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
815   OS << Indent << "subgraph " << getUID(Region) << " {\n";
816   bumpIndent(1);
817   OS << Indent << "fontname=Courier\n"
818      << Indent << "label=\""
819      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
820      << DOT::EscapeString(Region->getName()) << "\"\n";
821   // Dump the blocks of the region.
822   assert(Region->getEntry() && "Region contains no inner blocks.");
823   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
824     dumpBlock(Block);
825   bumpIndent(-1);
826   OS << Indent << "}\n";
827   dumpEdges(Region);
828 }
829 
830 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) {
831   std::string IngredientString;
832   raw_string_ostream RSO(IngredientString);
833   if (auto *Inst = dyn_cast<Instruction>(V)) {
834     if (!Inst->getType()->isVoidTy()) {
835       Inst->printAsOperand(RSO, false);
836       RSO << " = ";
837     }
838     RSO << Inst->getOpcodeName() << " ";
839     unsigned E = Inst->getNumOperands();
840     if (E > 0) {
841       Inst->getOperand(0)->printAsOperand(RSO, false);
842       for (unsigned I = 1; I < E; ++I)
843         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
844     }
845   } else // !Inst
846     V->printAsOperand(RSO, false);
847   RSO.flush();
848   O << DOT::EscapeString(IngredientString);
849 }
850 
851 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
852                               VPSlotTracker &SlotTracker) const {
853   O << "WIDEN-CALL ";
854 
855   auto *CI = cast<CallInst>(getUnderlyingInstr());
856   if (CI->getType()->isVoidTy())
857     O << "void ";
858   else {
859     printAsOperand(O, SlotTracker);
860     O << " = ";
861   }
862 
863   O << "call @" << CI->getCalledFunction()->getName() << "(";
864   printOperands(O, SlotTracker);
865   O << ")";
866 }
867 
868 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
869                                 VPSlotTracker &SlotTracker) const {
870   O << "WIDEN-SELECT ";
871   printAsOperand(O, SlotTracker);
872   O << " = select ";
873   getOperand(0)->printAsOperand(O, SlotTracker);
874   O << ", ";
875   getOperand(1)->printAsOperand(O, SlotTracker);
876   O << ", ";
877   getOperand(2)->printAsOperand(O, SlotTracker);
878   O << (InvariantCond ? " (condition is loop invariant)" : "");
879 }
880 
881 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
882                           VPSlotTracker &SlotTracker) const {
883   O << "WIDEN ";
884   printAsOperand(O, SlotTracker);
885   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
886   printOperands(O, SlotTracker);
887 }
888 
889 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
890                                           VPSlotTracker &SlotTracker) const {
891   O << "WIDEN-INDUCTION";
892   if (Trunc) {
893     O << "\\l\"";
894     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
895     O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc);
896   } else
897     O << " " << VPlanIngredient(IV);
898 }
899 
900 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
901                              VPSlotTracker &SlotTracker) const {
902   O << "WIDEN-GEP ";
903   O << (IsPtrLoopInvariant ? "Inv" : "Var");
904   size_t IndicesNumber = IsIndexLoopInvariant.size();
905   for (size_t I = 0; I < IndicesNumber; ++I)
906     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
907 
908   O << " ";
909   printAsOperand(O, SlotTracker);
910   O << " = getelementptr ";
911   printOperands(O, SlotTracker);
912 }
913 
914 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
915                              VPSlotTracker &SlotTracker) const {
916   O << "WIDEN-PHI " << VPlanIngredient(Phi);
917 }
918 
919 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
920                           VPSlotTracker &SlotTracker) const {
921   O << "BLEND ";
922   Phi->printAsOperand(O, false);
923   O << " =";
924   if (getNumIncomingValues() == 1) {
925     // Not a User of any mask: not really blending, this is a
926     // single-predecessor phi.
927     O << " ";
928     getIncomingValue(0)->printAsOperand(O, SlotTracker);
929   } else {
930     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
931       O << " ";
932       getIncomingValue(I)->printAsOperand(O, SlotTracker);
933       O << "/";
934       getMask(I)->printAsOperand(O, SlotTracker);
935     }
936   }
937 }
938 
939 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
940                               VPSlotTracker &SlotTracker) const {
941   O << "REDUCE ";
942   printAsOperand(O, SlotTracker);
943   O << " = ";
944   getChainOp()->printAsOperand(O, SlotTracker);
945   O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode())
946     << " (";
947   getVecOp()->printAsOperand(O, SlotTracker);
948   if (getCondOp()) {
949     O << ", ";
950     getCondOp()->printAsOperand(O, SlotTracker);
951   }
952   O << ")";
953 }
954 
955 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
956                               VPSlotTracker &SlotTracker) const {
957   O << (IsUniform ? "CLONE " : "REPLICATE ");
958 
959   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
960     printAsOperand(O, SlotTracker);
961     O << " = ";
962   }
963   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
964   printOperands(O, SlotTracker);
965 
966   if (AlsoPack)
967     O << " (S->V)";
968 }
969 
970 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
971                                 VPSlotTracker &SlotTracker) const {
972   O << "PHI-PREDICATED-INSTRUCTION ";
973   printOperands(O, SlotTracker);
974 }
975 
976 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
977                                            VPSlotTracker &SlotTracker) const {
978   O << "WIDEN ";
979 
980   if (!isStore()) {
981     getVPValue()->printAsOperand(O, SlotTracker);
982     O << " = ";
983   }
984   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
985 
986   printOperands(O, SlotTracker);
987 }
988 
989 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
990   Value *CanonicalIV = State.CanonicalIV;
991   Type *STy = CanonicalIV->getType();
992   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
993   ElementCount VF = State.VF;
994   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
995   Value *VStart = VF.isScalar()
996                       ? CanonicalIV
997                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
998                                                   CanonicalIV, "broadcast");
999   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1000     SmallVector<Constant *, 8> Indices;
1001     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
1002       Indices.push_back(
1003           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
1004     // If VF == 1, there is only one iteration in the loop above, thus the
1005     // element pushed back into Indices is ConstantInt::get(STy, Part)
1006     Constant *VStep =
1007         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
1008     // Add the consecutive indices to the vector value.
1009     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1010     State.set(getVPValue(), CanonicalVectorIV, Part);
1011   }
1012 }
1013 
1014 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1015                                      VPSlotTracker &SlotTracker) const {
1016   O << "EMIT ";
1017   getVPValue()->printAsOperand(O, SlotTracker);
1018   O << " = WIDEN-CANONICAL-INDUCTION";
1019 }
1020 
1021 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1022 
1023 void VPValue::replaceAllUsesWith(VPValue *New) {
1024   for (unsigned J = 0; J < getNumUsers();) {
1025     VPUser *User = Users[J];
1026     unsigned NumUsers = getNumUsers();
1027     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1028       if (User->getOperand(I) == this)
1029         User->setOperand(I, New);
1030     // If a user got removed after updating the current user, the next user to
1031     // update will be moved to the current position, so we only need to
1032     // increment the index if the number of users did not change.
1033     if (NumUsers == getNumUsers())
1034       J++;
1035   }
1036 }
1037 
1038 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1039   if (const Value *UV = getUnderlyingValue()) {
1040     OS << "ir<";
1041     UV->printAsOperand(OS, false);
1042     OS << ">";
1043     return;
1044   }
1045 
1046   unsigned Slot = Tracker.getSlot(this);
1047   if (Slot == unsigned(-1))
1048     OS << "<badref>";
1049   else
1050     OS << "vp<%" << Tracker.getSlot(this) << ">";
1051 }
1052 
1053 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1054   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1055     Op->printAsOperand(O, SlotTracker);
1056   });
1057 }
1058 
1059 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1060                                           Old2NewTy &Old2New,
1061                                           InterleavedAccessInfo &IAI) {
1062   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1063   for (VPBlockBase *Base : RPOT) {
1064     visitBlock(Base, Old2New, IAI);
1065   }
1066 }
1067 
1068 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1069                                          InterleavedAccessInfo &IAI) {
1070   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1071     for (VPRecipeBase &VPI : *VPBB) {
1072       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1073       auto *VPInst = cast<VPInstruction>(&VPI);
1074       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1075       auto *IG = IAI.getInterleaveGroup(Inst);
1076       if (!IG)
1077         continue;
1078 
1079       auto NewIGIter = Old2New.find(IG);
1080       if (NewIGIter == Old2New.end())
1081         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1082             IG->getFactor(), IG->isReverse(), IG->getAlign());
1083 
1084       if (Inst == IG->getInsertPos())
1085         Old2New[IG]->setInsertPos(VPInst);
1086 
1087       InterleaveGroupMap[VPInst] = Old2New[IG];
1088       InterleaveGroupMap[VPInst]->insertMember(
1089           VPInst, IG->getIndex(Inst),
1090           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1091                                 : IG->getFactor()));
1092     }
1093   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1094     visitRegion(Region, Old2New, IAI);
1095   else
1096     llvm_unreachable("Unsupported kind of VPBlock.");
1097 }
1098 
1099 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1100                                                  InterleavedAccessInfo &IAI) {
1101   Old2NewTy Old2New;
1102   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1103 }
1104 
1105 void VPSlotTracker::assignSlot(const VPValue *V) {
1106   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1107   Slots[V] = NextSlot++;
1108 }
1109 
1110 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
1111   if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
1112     assignSlots(Region);
1113   else
1114     assignSlots(cast<VPBasicBlock>(VPBB));
1115 }
1116 
1117 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
1118   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
1119   for (const VPBlockBase *Block : RPOT)
1120     assignSlots(Block);
1121 }
1122 
1123 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1124   for (const VPRecipeBase &Recipe : *VPBB) {
1125     for (VPValue *Def : Recipe.definedValues())
1126       assignSlot(Def);
1127   }
1128 }
1129 
1130 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1131 
1132   for (const VPValue *V : Plan.VPExternalDefs)
1133     assignSlot(V);
1134 
1135   for (const VPValue *V : Plan.VPCBVs)
1136     assignSlot(V);
1137 
1138   if (Plan.BackedgeTakenCount)
1139     assignSlot(Plan.BackedgeTakenCount);
1140 
1141   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
1142   for (const VPBlockBase *Block : RPOT)
1143     assignSlots(Block);
1144 }
1145