1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanCFG.h" 21 #include "VPlanDominatorTree.h" 22 #include "llvm/ADT/DepthFirstIterator.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GenericDomTreeConstruction.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/LoopVersioning.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 VPRecipeBase *VPValue::getDefiningRecipe() { 114 return cast_or_null<VPRecipeBase>(Def); 115 } 116 117 const VPRecipeBase *VPValue::getDefiningRecipe() const { 118 return cast_or_null<VPRecipeBase>(Def); 119 } 120 121 // Get the top-most entry block of \p Start. This is the entry block of the 122 // containing VPlan. This function is templated to support both const and non-const blocks 123 template <typename T> static T *getPlanEntry(T *Start) { 124 T *Next = Start; 125 T *Current = Start; 126 while ((Next = Next->getParent())) 127 Current = Next; 128 129 SmallSetVector<T *, 8> WorkList; 130 WorkList.insert(Current); 131 132 for (unsigned i = 0; i < WorkList.size(); i++) { 133 T *Current = WorkList[i]; 134 if (Current->getNumPredecessors() == 0) 135 return Current; 136 auto &Predecessors = Current->getPredecessors(); 137 WorkList.insert(Predecessors.begin(), Predecessors.end()); 138 } 139 140 llvm_unreachable("VPlan without any entry node without predecessors"); 141 } 142 143 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 144 145 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 146 147 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 148 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 149 const VPBlockBase *Block = this; 150 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 151 Block = Region->getEntry(); 152 return cast<VPBasicBlock>(Block); 153 } 154 155 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 156 VPBlockBase *Block = this; 157 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 158 Block = Region->getEntry(); 159 return cast<VPBasicBlock>(Block); 160 } 161 162 void VPBlockBase::setPlan(VPlan *ParentPlan) { 163 assert(ParentPlan->getEntry() == this && 164 "Can only set plan on its entry block."); 165 Plan = ParentPlan; 166 } 167 168 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 169 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 170 const VPBlockBase *Block = this; 171 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 172 Block = Region->getExiting(); 173 return cast<VPBasicBlock>(Block); 174 } 175 176 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 177 VPBlockBase *Block = this; 178 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 179 Block = Region->getExiting(); 180 return cast<VPBasicBlock>(Block); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 184 if (!Successors.empty() || !Parent) 185 return this; 186 assert(Parent->getExiting() == this && 187 "Block w/o successors not the exiting block of its parent."); 188 return Parent->getEnclosingBlockWithSuccessors(); 189 } 190 191 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 192 if (!Predecessors.empty() || !Parent) 193 return this; 194 assert(Parent->getEntry() == this && 195 "Block w/o predecessors not the entry of its parent."); 196 return Parent->getEnclosingBlockWithPredecessors(); 197 } 198 199 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 200 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 201 delete Block; 202 } 203 204 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 205 iterator It = begin(); 206 while (It != end() && It->isPhi()) 207 It++; 208 return It; 209 } 210 211 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 212 if (!Def->hasDefiningRecipe()) 213 return Def->getLiveInIRValue(); 214 215 if (hasScalarValue(Def, Instance)) { 216 return Data 217 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 218 } 219 220 assert(hasVectorValue(Def, Instance.Part)); 221 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 222 if (!VecPart->getType()->isVectorTy()) { 223 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 224 return VecPart; 225 } 226 // TODO: Cache created scalar values. 227 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 228 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 229 // set(Def, Extract, Instance); 230 return Extract; 231 } 232 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 233 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 234 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 235 } 236 237 void VPTransformState::addNewMetadata(Instruction *To, 238 const Instruction *Orig) { 239 // If the loop was versioned with memchecks, add the corresponding no-alias 240 // metadata. 241 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 242 LVer->annotateInstWithNoAlias(To, Orig); 243 } 244 245 void VPTransformState::addMetadata(Instruction *To, Instruction *From) { 246 propagateMetadata(To, From); 247 addNewMetadata(To, From); 248 } 249 250 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) { 251 for (Value *V : To) { 252 if (Instruction *I = dyn_cast<Instruction>(V)) 253 addMetadata(I, From); 254 } 255 } 256 257 void VPTransformState::setDebugLocFromInst(const Value *V) { 258 const Instruction *Inst = dyn_cast<Instruction>(V); 259 if (!Inst) { 260 Builder.SetCurrentDebugLocation(DebugLoc()); 261 return; 262 } 263 264 const DILocation *DIL = Inst->getDebugLoc(); 265 // When a FSDiscriminator is enabled, we don't need to add the multiply 266 // factors to the discriminators. 267 if (DIL && Inst->getFunction()->shouldEmitDebugInfoForProfiling() && 268 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 269 // FIXME: For scalable vectors, assume vscale=1. 270 auto NewDIL = 271 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 272 if (NewDIL) 273 Builder.SetCurrentDebugLocation(*NewDIL); 274 else 275 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 276 << DIL->getFilename() << " Line: " << DIL->getLine()); 277 } else 278 Builder.SetCurrentDebugLocation(DIL); 279 } 280 281 BasicBlock * 282 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 283 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 284 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 285 BasicBlock *PrevBB = CFG.PrevBB; 286 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 287 PrevBB->getParent(), CFG.ExitBB); 288 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 289 290 // Hook up the new basic block to its predecessors. 291 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 292 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 293 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 294 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 295 296 assert(PredBB && "Predecessor basic-block not found building successor."); 297 auto *PredBBTerminator = PredBB->getTerminator(); 298 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 299 300 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 301 if (isa<UnreachableInst>(PredBBTerminator)) { 302 assert(PredVPSuccessors.size() == 1 && 303 "Predecessor ending w/o branch must have single successor."); 304 DebugLoc DL = PredBBTerminator->getDebugLoc(); 305 PredBBTerminator->eraseFromParent(); 306 auto *Br = BranchInst::Create(NewBB, PredBB); 307 Br->setDebugLoc(DL); 308 } else if (TermBr && !TermBr->isConditional()) { 309 TermBr->setSuccessor(0, NewBB); 310 } else { 311 // Set each forward successor here when it is created, excluding 312 // backedges. A backward successor is set when the branch is created. 313 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 314 assert(!TermBr->getSuccessor(idx) && 315 "Trying to reset an existing successor block."); 316 TermBr->setSuccessor(idx, NewBB); 317 } 318 } 319 return NewBB; 320 } 321 322 void VPBasicBlock::execute(VPTransformState *State) { 323 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 324 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 325 VPBlockBase *SingleHPred = nullptr; 326 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 327 328 auto IsLoopRegion = [](VPBlockBase *BB) { 329 auto *R = dyn_cast<VPRegionBlock>(BB); 330 return R && !R->isReplicator(); 331 }; 332 333 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 334 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 335 // ExitBB can be re-used for the exit block of the Plan. 336 NewBB = State->CFG.ExitBB; 337 State->CFG.PrevBB = NewBB; 338 339 // Update the branch instruction in the predecessor to branch to ExitBB. 340 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 341 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 342 assert(PredVPB->getSingleSuccessor() == this && 343 "predecessor must have the current block as only successor"); 344 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 345 // The Exit block of a loop is always set to be successor 0 of the Exiting 346 // block. 347 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 348 } else if (PrevVPBB && /* A */ 349 !((SingleHPred = getSingleHierarchicalPredecessor()) && 350 SingleHPred->getExitingBasicBlock() == PrevVPBB && 351 PrevVPBB->getSingleHierarchicalSuccessor() && 352 (SingleHPred->getParent() == getEnclosingLoopRegion() && 353 !IsLoopRegion(SingleHPred))) && /* B */ 354 !(Replica && getPredecessors().empty())) { /* C */ 355 // The last IR basic block is reused, as an optimization, in three cases: 356 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 357 // B. when the current VPBB has a single (hierarchical) predecessor which 358 // is PrevVPBB and the latter has a single (hierarchical) successor which 359 // both are in the same non-replicator region; and 360 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 361 // is the exiting VPBB of this region from a previous instance, or the 362 // predecessor of this region. 363 364 NewBB = createEmptyBasicBlock(State->CFG); 365 State->Builder.SetInsertPoint(NewBB); 366 // Temporarily terminate with unreachable until CFG is rewired. 367 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 368 // Register NewBB in its loop. In innermost loops its the same for all 369 // BB's. 370 if (State->CurrentVectorLoop) 371 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 372 State->Builder.SetInsertPoint(Terminator); 373 State->CFG.PrevBB = NewBB; 374 } 375 376 // 2. Fill the IR basic block with IR instructions. 377 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 378 << " in BB:" << NewBB->getName() << '\n'); 379 380 State->CFG.VPBB2IRBB[this] = NewBB; 381 State->CFG.PrevVPBB = this; 382 383 for (VPRecipeBase &Recipe : Recipes) 384 Recipe.execute(*State); 385 386 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 387 } 388 389 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 390 for (VPRecipeBase &R : Recipes) { 391 for (auto *Def : R.definedValues()) 392 Def->replaceAllUsesWith(NewValue); 393 394 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 395 R.setOperand(I, NewValue); 396 } 397 } 398 399 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 400 assert((SplitAt == end() || SplitAt->getParent() == this) && 401 "can only split at a position in the same block"); 402 403 SmallVector<VPBlockBase *, 2> Succs(successors()); 404 // First, disconnect the current block from its successors. 405 for (VPBlockBase *Succ : Succs) 406 VPBlockUtils::disconnectBlocks(this, Succ); 407 408 // Create new empty block after the block to split. 409 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 410 VPBlockUtils::insertBlockAfter(SplitBlock, this); 411 412 // Add successors for block to split to new block. 413 for (VPBlockBase *Succ : Succs) 414 VPBlockUtils::connectBlocks(SplitBlock, Succ); 415 416 // Finally, move the recipes starting at SplitAt to new block. 417 for (VPRecipeBase &ToMove : 418 make_early_inc_range(make_range(SplitAt, this->end()))) 419 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 420 421 return SplitBlock; 422 } 423 424 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 425 VPRegionBlock *P = getParent(); 426 if (P && P->isReplicator()) { 427 P = P->getParent(); 428 assert(!cast<VPRegionBlock>(P)->isReplicator() && 429 "unexpected nested replicate regions"); 430 } 431 return P; 432 } 433 434 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 435 if (VPBB->empty()) { 436 assert( 437 VPBB->getNumSuccessors() < 2 && 438 "block with multiple successors doesn't have a recipe as terminator"); 439 return false; 440 } 441 442 const VPRecipeBase *R = &VPBB->back(); 443 auto *VPI = dyn_cast<VPInstruction>(R); 444 bool IsCondBranch = 445 isa<VPBranchOnMaskRecipe>(R) || 446 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 447 VPI->getOpcode() == VPInstruction::BranchOnCount)); 448 (void)IsCondBranch; 449 450 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 451 assert(IsCondBranch && "block with multiple successors not terminated by " 452 "conditional branch recipe"); 453 454 return true; 455 } 456 457 assert( 458 !IsCondBranch && 459 "block with 0 or 1 successors terminated by conditional branch recipe"); 460 return false; 461 } 462 463 VPRecipeBase *VPBasicBlock::getTerminator() { 464 if (hasConditionalTerminator(this)) 465 return &back(); 466 return nullptr; 467 } 468 469 const VPRecipeBase *VPBasicBlock::getTerminator() const { 470 if (hasConditionalTerminator(this)) 471 return &back(); 472 return nullptr; 473 } 474 475 bool VPBasicBlock::isExiting() const { 476 return getParent()->getExitingBasicBlock() == this; 477 } 478 479 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 480 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 481 if (getSuccessors().empty()) { 482 O << Indent << "No successors\n"; 483 } else { 484 O << Indent << "Successor(s): "; 485 ListSeparator LS; 486 for (auto *Succ : getSuccessors()) 487 O << LS << Succ->getName(); 488 O << '\n'; 489 } 490 } 491 492 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 493 VPSlotTracker &SlotTracker) const { 494 O << Indent << getName() << ":\n"; 495 496 auto RecipeIndent = Indent + " "; 497 for (const VPRecipeBase &Recipe : *this) { 498 Recipe.print(O, RecipeIndent, SlotTracker); 499 O << '\n'; 500 } 501 502 printSuccessors(O, Indent); 503 } 504 #endif 505 506 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 507 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 508 // Drop all references in VPBasicBlocks and replace all uses with 509 // DummyValue. 510 Block->dropAllReferences(NewValue); 511 } 512 513 void VPRegionBlock::execute(VPTransformState *State) { 514 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 515 RPOT(Entry); 516 517 if (!isReplicator()) { 518 // Create and register the new vector loop. 519 Loop *PrevLoop = State->CurrentVectorLoop; 520 State->CurrentVectorLoop = State->LI->AllocateLoop(); 521 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 522 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 523 524 // Insert the new loop into the loop nest and register the new basic blocks 525 // before calling any utilities such as SCEV that require valid LoopInfo. 526 if (ParentLoop) 527 ParentLoop->addChildLoop(State->CurrentVectorLoop); 528 else 529 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 530 531 // Visit the VPBlocks connected to "this", starting from it. 532 for (VPBlockBase *Block : RPOT) { 533 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 534 Block->execute(State); 535 } 536 537 State->CurrentVectorLoop = PrevLoop; 538 return; 539 } 540 541 assert(!State->Instance && "Replicating a Region with non-null instance."); 542 543 // Enter replicating mode. 544 State->Instance = VPIteration(0, 0); 545 546 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 547 State->Instance->Part = Part; 548 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 549 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 550 ++Lane) { 551 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 552 // Visit the VPBlocks connected to \p this, starting from it. 553 for (VPBlockBase *Block : RPOT) { 554 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 555 Block->execute(State); 556 } 557 } 558 } 559 560 // Exit replicating mode. 561 State->Instance.reset(); 562 } 563 564 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 565 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 566 VPSlotTracker &SlotTracker) const { 567 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 568 auto NewIndent = Indent + " "; 569 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 570 O << '\n'; 571 BlockBase->print(O, NewIndent, SlotTracker); 572 } 573 O << Indent << "}\n"; 574 575 printSuccessors(O, Indent); 576 } 577 #endif 578 579 VPlan::~VPlan() { 580 clearLiveOuts(); 581 582 if (Entry) { 583 VPValue DummyValue; 584 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 585 Block->dropAllReferences(&DummyValue); 586 587 VPBlockBase::deleteCFG(Entry); 588 } 589 for (VPValue *VPV : VPValuesToFree) 590 delete VPV; 591 if (TripCount) 592 delete TripCount; 593 if (BackedgeTakenCount) 594 delete BackedgeTakenCount; 595 for (auto &P : VPExternalDefs) 596 delete P.second; 597 } 598 599 VPActiveLaneMaskPHIRecipe *VPlan::getActiveLaneMaskPhi() { 600 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 601 for (VPRecipeBase &R : Header->phis()) { 602 if (isa<VPActiveLaneMaskPHIRecipe>(&R)) 603 return cast<VPActiveLaneMaskPHIRecipe>(&R); 604 } 605 return nullptr; 606 } 607 608 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 609 Value *CanonicalIVStartValue, 610 VPTransformState &State, 611 bool IsEpilogueVectorization) { 612 613 // Check if the trip count is needed, and if so build it. 614 if (TripCount && TripCount->getNumUsers()) { 615 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 616 State.set(TripCount, TripCountV, Part); 617 } 618 619 // Check if the backedge taken count is needed, and if so build it. 620 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 621 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 622 auto *TCMO = Builder.CreateSub(TripCountV, 623 ConstantInt::get(TripCountV->getType(), 1), 624 "trip.count.minus.1"); 625 auto VF = State.VF; 626 Value *VTCMO = 627 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 628 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 629 State.set(BackedgeTakenCount, VTCMO, Part); 630 } 631 632 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 633 State.set(&VectorTripCount, VectorTripCountV, Part); 634 635 // When vectorizing the epilogue loop, the canonical induction start value 636 // needs to be changed from zero to the value after the main vector loop. 637 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 638 if (CanonicalIVStartValue) { 639 VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue); 640 auto *IV = getCanonicalIV(); 641 assert(all_of(IV->users(), 642 [](const VPUser *U) { 643 if (isa<VPScalarIVStepsRecipe>(U) || 644 isa<VPDerivedIVRecipe>(U)) 645 return true; 646 auto *VPI = cast<VPInstruction>(U); 647 return VPI->getOpcode() == 648 VPInstruction::CanonicalIVIncrement || 649 VPI->getOpcode() == 650 VPInstruction::CanonicalIVIncrementNUW; 651 }) && 652 "the canonical IV should only be used by its increments or " 653 "ScalarIVSteps when " 654 "resetting the start value"); 655 IV->setOperand(0, VPV); 656 } 657 } 658 659 /// Generate the code inside the preheader and body of the vectorized loop. 660 /// Assumes a single pre-header basic-block was created for this. Introduce 661 /// additional basic-blocks as needed, and fill them all. 662 void VPlan::execute(VPTransformState *State) { 663 // Set the reverse mapping from VPValues to Values for code generation. 664 for (auto &Entry : Value2VPValue) 665 State->VPValue2Value[Entry.second] = Entry.first; 666 667 // Initialize CFG state. 668 State->CFG.PrevVPBB = nullptr; 669 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 670 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 671 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 672 673 // Generate code in the loop pre-header and body. 674 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 675 Block->execute(State); 676 677 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 678 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 679 680 // Fix the latch value of canonical, reduction and first-order recurrences 681 // phis in the vector loop. 682 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 683 for (VPRecipeBase &R : Header->phis()) { 684 // Skip phi-like recipes that generate their backedege values themselves. 685 if (isa<VPWidenPHIRecipe>(&R)) 686 continue; 687 688 if (isa<VPWidenPointerInductionRecipe>(&R) || 689 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 690 PHINode *Phi = nullptr; 691 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 692 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 693 } else { 694 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 695 // TODO: Split off the case that all users of a pointer phi are scalar 696 // from the VPWidenPointerInductionRecipe. 697 if (WidenPhi->onlyScalarsGenerated(State->VF)) 698 continue; 699 700 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 701 Phi = cast<PHINode>(GEP->getPointerOperand()); 702 } 703 704 Phi->setIncomingBlock(1, VectorLatchBB); 705 706 // Move the last step to the end of the latch block. This ensures 707 // consistent placement of all induction updates. 708 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 709 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 710 continue; 711 } 712 713 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 714 // For canonical IV, first-order recurrences and in-order reduction phis, 715 // only a single part is generated, which provides the last part from the 716 // previous iteration. For non-ordered reductions all UF parts are 717 // generated. 718 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 719 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 720 (isa<VPReductionPHIRecipe>(PhiR) && 721 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 722 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 723 724 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 725 Value *Phi = State->get(PhiR, Part); 726 Value *Val = State->get(PhiR->getBackedgeValue(), 727 SinglePartNeeded ? State->UF - 1 : Part); 728 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 729 } 730 } 731 732 // We do not attempt to preserve DT for outer loop vectorization currently. 733 if (!EnableVPlanNativePath) { 734 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 735 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 736 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 737 State->CFG.ExitBB); 738 } 739 } 740 741 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 742 LLVM_DUMP_METHOD 743 void VPlan::print(raw_ostream &O) const { 744 VPSlotTracker SlotTracker(this); 745 746 O << "VPlan '" << getName() << "' {"; 747 748 if (VectorTripCount.getNumUsers() > 0) { 749 O << "\nLive-in "; 750 VectorTripCount.printAsOperand(O, SlotTracker); 751 O << " = vector-trip-count\n"; 752 } 753 754 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 755 O << "\nLive-in "; 756 BackedgeTakenCount->printAsOperand(O, SlotTracker); 757 O << " = backedge-taken count\n"; 758 } 759 760 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 761 O << '\n'; 762 Block->print(O, "", SlotTracker); 763 } 764 765 if (!LiveOuts.empty()) 766 O << "\n"; 767 for (const auto &KV : LiveOuts) { 768 O << "Live-out "; 769 KV.second->getPhi()->printAsOperand(O); 770 O << " = "; 771 KV.second->getOperand(0)->printAsOperand(O, SlotTracker); 772 O << "\n"; 773 } 774 775 O << "}\n"; 776 } 777 778 std::string VPlan::getName() const { 779 std::string Out; 780 raw_string_ostream RSO(Out); 781 RSO << Name << " for "; 782 if (!VFs.empty()) { 783 RSO << "VF={" << VFs[0]; 784 for (ElementCount VF : drop_begin(VFs)) 785 RSO << "," << VF; 786 RSO << "},"; 787 } 788 789 if (UFs.empty()) { 790 RSO << "UF>=1"; 791 } else { 792 RSO << "UF={" << UFs[0]; 793 for (unsigned UF : drop_begin(UFs)) 794 RSO << "," << UF; 795 RSO << "}"; 796 } 797 798 return Out; 799 } 800 801 LLVM_DUMP_METHOD 802 void VPlan::printDOT(raw_ostream &O) const { 803 VPlanPrinter Printer(O, *this); 804 Printer.dump(); 805 } 806 807 LLVM_DUMP_METHOD 808 void VPlan::dump() const { print(dbgs()); } 809 #endif 810 811 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 812 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 813 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 814 } 815 816 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 817 BasicBlock *LoopLatchBB, 818 BasicBlock *LoopExitBB) { 819 // The vector body may be more than a single basic-block by this point. 820 // Update the dominator tree information inside the vector body by propagating 821 // it from header to latch, expecting only triangular control-flow, if any. 822 BasicBlock *PostDomSucc = nullptr; 823 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 824 // Get the list of successors of this block. 825 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 826 assert(Succs.size() <= 2 && 827 "Basic block in vector loop has more than 2 successors."); 828 PostDomSucc = Succs[0]; 829 if (Succs.size() == 1) { 830 assert(PostDomSucc->getSinglePredecessor() && 831 "PostDom successor has more than one predecessor."); 832 DT->addNewBlock(PostDomSucc, BB); 833 continue; 834 } 835 BasicBlock *InterimSucc = Succs[1]; 836 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 837 PostDomSucc = Succs[1]; 838 InterimSucc = Succs[0]; 839 } 840 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 841 "One successor of a basic block does not lead to the other."); 842 assert(InterimSucc->getSinglePredecessor() && 843 "Interim successor has more than one predecessor."); 844 assert(PostDomSucc->hasNPredecessors(2) && 845 "PostDom successor has more than two predecessors."); 846 DT->addNewBlock(InterimSucc, BB); 847 DT->addNewBlock(PostDomSucc, BB); 848 } 849 // Latch block is a new dominator for the loop exit. 850 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 851 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 852 } 853 854 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 855 856 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 857 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 858 Twine(getOrCreateBID(Block)); 859 } 860 861 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 862 const std::string &Name = Block->getName(); 863 if (!Name.empty()) 864 return Name; 865 return "VPB" + Twine(getOrCreateBID(Block)); 866 } 867 868 void VPlanPrinter::dump() { 869 Depth = 1; 870 bumpIndent(0); 871 OS << "digraph VPlan {\n"; 872 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 873 if (!Plan.getName().empty()) 874 OS << "\\n" << DOT::EscapeString(Plan.getName()); 875 if (Plan.BackedgeTakenCount) { 876 OS << ", where:\\n"; 877 Plan.BackedgeTakenCount->print(OS, SlotTracker); 878 OS << " := BackedgeTakenCount"; 879 } 880 OS << "\"]\n"; 881 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 882 OS << "edge [fontname=Courier, fontsize=30]\n"; 883 OS << "compound=true\n"; 884 885 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 886 dumpBlock(Block); 887 888 OS << "}\n"; 889 } 890 891 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 892 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 893 dumpBasicBlock(BasicBlock); 894 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 895 dumpRegion(Region); 896 else 897 llvm_unreachable("Unsupported kind of VPBlock."); 898 } 899 900 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 901 bool Hidden, const Twine &Label) { 902 // Due to "dot" we print an edge between two regions as an edge between the 903 // exiting basic block and the entry basic of the respective regions. 904 const VPBlockBase *Tail = From->getExitingBasicBlock(); 905 const VPBlockBase *Head = To->getEntryBasicBlock(); 906 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 907 OS << " [ label=\"" << Label << '\"'; 908 if (Tail != From) 909 OS << " ltail=" << getUID(From); 910 if (Head != To) 911 OS << " lhead=" << getUID(To); 912 if (Hidden) 913 OS << "; splines=none"; 914 OS << "]\n"; 915 } 916 917 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 918 auto &Successors = Block->getSuccessors(); 919 if (Successors.size() == 1) 920 drawEdge(Block, Successors.front(), false, ""); 921 else if (Successors.size() == 2) { 922 drawEdge(Block, Successors.front(), false, "T"); 923 drawEdge(Block, Successors.back(), false, "F"); 924 } else { 925 unsigned SuccessorNumber = 0; 926 for (auto *Successor : Successors) 927 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 928 } 929 } 930 931 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 932 // Implement dot-formatted dump by performing plain-text dump into the 933 // temporary storage followed by some post-processing. 934 OS << Indent << getUID(BasicBlock) << " [label =\n"; 935 bumpIndent(1); 936 std::string Str; 937 raw_string_ostream SS(Str); 938 // Use no indentation as we need to wrap the lines into quotes ourselves. 939 BasicBlock->print(SS, "", SlotTracker); 940 941 // We need to process each line of the output separately, so split 942 // single-string plain-text dump. 943 SmallVector<StringRef, 0> Lines; 944 StringRef(Str).rtrim('\n').split(Lines, "\n"); 945 946 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 947 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 948 }; 949 950 // Don't need the "+" after the last line. 951 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 952 EmitLine(Line, " +\n"); 953 EmitLine(Lines.back(), "\n"); 954 955 bumpIndent(-1); 956 OS << Indent << "]\n"; 957 958 dumpEdges(BasicBlock); 959 } 960 961 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 962 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 963 bumpIndent(1); 964 OS << Indent << "fontname=Courier\n" 965 << Indent << "label=\"" 966 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 967 << DOT::EscapeString(Region->getName()) << "\"\n"; 968 // Dump the blocks of the region. 969 assert(Region->getEntry() && "Region contains no inner blocks."); 970 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 971 dumpBlock(Block); 972 bumpIndent(-1); 973 OS << Indent << "}\n"; 974 dumpEdges(Region); 975 } 976 977 void VPlanIngredient::print(raw_ostream &O) const { 978 if (auto *Inst = dyn_cast<Instruction>(V)) { 979 if (!Inst->getType()->isVoidTy()) { 980 Inst->printAsOperand(O, false); 981 O << " = "; 982 } 983 O << Inst->getOpcodeName() << " "; 984 unsigned E = Inst->getNumOperands(); 985 if (E > 0) { 986 Inst->getOperand(0)->printAsOperand(O, false); 987 for (unsigned I = 1; I < E; ++I) 988 Inst->getOperand(I)->printAsOperand(O << ", ", false); 989 } 990 } else // !Inst 991 V->printAsOperand(O, false); 992 } 993 994 #endif 995 996 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 997 998 void VPValue::replaceAllUsesWith(VPValue *New) { 999 for (unsigned J = 0; J < getNumUsers();) { 1000 VPUser *User = Users[J]; 1001 unsigned NumUsers = getNumUsers(); 1002 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1003 if (User->getOperand(I) == this) 1004 User->setOperand(I, New); 1005 // If a user got removed after updating the current user, the next user to 1006 // update will be moved to the current position, so we only need to 1007 // increment the index if the number of users did not change. 1008 if (NumUsers == getNumUsers()) 1009 J++; 1010 } 1011 } 1012 1013 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1014 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1015 if (const Value *UV = getUnderlyingValue()) { 1016 OS << "ir<"; 1017 UV->printAsOperand(OS, false); 1018 OS << ">"; 1019 return; 1020 } 1021 1022 unsigned Slot = Tracker.getSlot(this); 1023 if (Slot == unsigned(-1)) 1024 OS << "<badref>"; 1025 else 1026 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1027 } 1028 1029 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1030 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1031 Op->printAsOperand(O, SlotTracker); 1032 }); 1033 } 1034 #endif 1035 1036 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1037 Old2NewTy &Old2New, 1038 InterleavedAccessInfo &IAI) { 1039 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1040 RPOT(Region->getEntry()); 1041 for (VPBlockBase *Base : RPOT) { 1042 visitBlock(Base, Old2New, IAI); 1043 } 1044 } 1045 1046 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1047 InterleavedAccessInfo &IAI) { 1048 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1049 for (VPRecipeBase &VPI : *VPBB) { 1050 if (isa<VPHeaderPHIRecipe>(&VPI)) 1051 continue; 1052 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1053 auto *VPInst = cast<VPInstruction>(&VPI); 1054 1055 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1056 if (!Inst) 1057 continue; 1058 auto *IG = IAI.getInterleaveGroup(Inst); 1059 if (!IG) 1060 continue; 1061 1062 auto NewIGIter = Old2New.find(IG); 1063 if (NewIGIter == Old2New.end()) 1064 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1065 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1066 1067 if (Inst == IG->getInsertPos()) 1068 Old2New[IG]->setInsertPos(VPInst); 1069 1070 InterleaveGroupMap[VPInst] = Old2New[IG]; 1071 InterleaveGroupMap[VPInst]->insertMember( 1072 VPInst, IG->getIndex(Inst), 1073 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1074 : IG->getFactor())); 1075 } 1076 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1077 visitRegion(Region, Old2New, IAI); 1078 else 1079 llvm_unreachable("Unsupported kind of VPBlock."); 1080 } 1081 1082 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1083 InterleavedAccessInfo &IAI) { 1084 Old2NewTy Old2New; 1085 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1086 } 1087 1088 void VPSlotTracker::assignSlot(const VPValue *V) { 1089 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1090 Slots[V] = NextSlot++; 1091 } 1092 1093 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1094 1095 for (const auto &P : Plan.VPExternalDefs) 1096 assignSlot(P.second); 1097 1098 assignSlot(&Plan.VectorTripCount); 1099 if (Plan.BackedgeTakenCount) 1100 assignSlot(Plan.BackedgeTakenCount); 1101 1102 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1103 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1104 for (const VPBasicBlock *VPBB : 1105 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1106 for (const VPRecipeBase &Recipe : *VPBB) 1107 for (VPValue *Def : Recipe.definedValues()) 1108 assignSlot(Def); 1109 } 1110 1111 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1112 return all_of(Def->users(), 1113 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1114 } 1115 1116 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1117 ScalarEvolution &SE) { 1118 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1119 return Plan.getOrAddExternalDef(E->getValue()); 1120 if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1121 return Plan.getOrAddExternalDef(E->getValue()); 1122 1123 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 1124 VPExpandSCEVRecipe *Step = new VPExpandSCEVRecipe(Expr, SE); 1125 Preheader->appendRecipe(Step); 1126 return Step; 1127 } 1128