xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/ValueMapper.cpp (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MapValue function, which is shared by various parts of
10 // the lib/Transforms/Utils library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/ValueMapper.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalAlias.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include <cassert>
43 #include <limits>
44 #include <memory>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "value-mapper"
50 
51 // Out of line method to get vtable etc for class.
52 void ValueMapTypeRemapper::anchor() {}
53 void ValueMaterializer::anchor() {}
54 
55 namespace {
56 
57 /// A basic block used in a BlockAddress whose function body is not yet
58 /// materialized.
59 struct DelayedBasicBlock {
60   BasicBlock *OldBB;
61   std::unique_ptr<BasicBlock> TempBB;
62 
63   DelayedBasicBlock(const BlockAddress &Old)
64       : OldBB(Old.getBasicBlock()),
65         TempBB(BasicBlock::Create(Old.getContext())) {}
66 };
67 
68 struct WorklistEntry {
69   enum EntryKind {
70     MapGlobalInit,
71     MapAppendingVar,
72     MapAliasOrIFunc,
73     RemapFunction
74   };
75   struct GVInitTy {
76     GlobalVariable *GV;
77     Constant *Init;
78   };
79   struct AppendingGVTy {
80     GlobalVariable *GV;
81     Constant *InitPrefix;
82   };
83   struct AliasOrIFuncTy {
84     GlobalValue *GV;
85     Constant *Target;
86   };
87 
88   unsigned Kind : 2;
89   unsigned MCID : 29;
90   unsigned AppendingGVIsOldCtorDtor : 1;
91   unsigned AppendingGVNumNewMembers;
92   union {
93     GVInitTy GVInit;
94     AppendingGVTy AppendingGV;
95     AliasOrIFuncTy AliasOrIFunc;
96     Function *RemapF;
97   } Data;
98 };
99 
100 struct MappingContext {
101   ValueToValueMapTy *VM;
102   ValueMaterializer *Materializer = nullptr;
103 
104   /// Construct a MappingContext with a value map and materializer.
105   explicit MappingContext(ValueToValueMapTy &VM,
106                           ValueMaterializer *Materializer = nullptr)
107       : VM(&VM), Materializer(Materializer) {}
108 };
109 
110 class Mapper {
111   friend class MDNodeMapper;
112 
113 #ifndef NDEBUG
114   DenseSet<GlobalValue *> AlreadyScheduled;
115 #endif
116 
117   RemapFlags Flags;
118   ValueMapTypeRemapper *TypeMapper;
119   unsigned CurrentMCID = 0;
120   SmallVector<MappingContext, 2> MCs;
121   SmallVector<WorklistEntry, 4> Worklist;
122   SmallVector<DelayedBasicBlock, 1> DelayedBBs;
123   SmallVector<Constant *, 16> AppendingInits;
124 
125 public:
126   Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
127          ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
128       : Flags(Flags), TypeMapper(TypeMapper),
129         MCs(1, MappingContext(VM, Materializer)) {}
130 
131   /// ValueMapper should explicitly call \a flush() before destruction.
132   ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
133 
134   bool hasWorkToDo() const { return !Worklist.empty(); }
135 
136   unsigned
137   registerAlternateMappingContext(ValueToValueMapTy &VM,
138                                   ValueMaterializer *Materializer = nullptr) {
139     MCs.push_back(MappingContext(VM, Materializer));
140     return MCs.size() - 1;
141   }
142 
143   void addFlags(RemapFlags Flags);
144 
145   void remapGlobalObjectMetadata(GlobalObject &GO);
146 
147   Value *mapValue(const Value *V);
148   void remapInstruction(Instruction *I);
149   void remapFunction(Function &F);
150 
151   Constant *mapConstant(const Constant *C) {
152     return cast_or_null<Constant>(mapValue(C));
153   }
154 
155   /// Map metadata.
156   ///
157   /// Find the mapping for MD.  Guarantees that the return will be resolved
158   /// (not an MDNode, or MDNode::isResolved() returns true).
159   Metadata *mapMetadata(const Metadata *MD);
160 
161   void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
162                                     unsigned MCID);
163   void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
164                                     bool IsOldCtorDtor,
165                                     ArrayRef<Constant *> NewMembers,
166                                     unsigned MCID);
167   void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
168                                unsigned MCID);
169   void scheduleRemapFunction(Function &F, unsigned MCID);
170 
171   void flush();
172 
173 private:
174   void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
175                             bool IsOldCtorDtor,
176                             ArrayRef<Constant *> NewMembers);
177 
178   ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
179   ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
180 
181   Value *mapBlockAddress(const BlockAddress &BA);
182 
183   /// Map metadata that doesn't require visiting operands.
184   Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
185 
186   Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
187   Metadata *mapToSelf(const Metadata *MD);
188 };
189 
190 class MDNodeMapper {
191   Mapper &M;
192 
193   /// Data about a node in \a UniquedGraph.
194   struct Data {
195     bool HasChanged = false;
196     unsigned ID = std::numeric_limits<unsigned>::max();
197     TempMDNode Placeholder;
198   };
199 
200   /// A graph of uniqued nodes.
201   struct UniquedGraph {
202     SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
203     SmallVector<MDNode *, 16> POT;                  // Post-order traversal.
204 
205     /// Propagate changed operands through the post-order traversal.
206     ///
207     /// Iteratively update \a Data::HasChanged for each node based on \a
208     /// Data::HasChanged of its operands, until fixed point.
209     void propagateChanges();
210 
211     /// Get a forward reference to a node to use as an operand.
212     Metadata &getFwdReference(MDNode &Op);
213   };
214 
215   /// Worklist of distinct nodes whose operands need to be remapped.
216   SmallVector<MDNode *, 16> DistinctWorklist;
217 
218   // Storage for a UniquedGraph.
219   SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
220   SmallVector<MDNode *, 16> POTStorage;
221 
222 public:
223   MDNodeMapper(Mapper &M) : M(M) {}
224 
225   /// Map a metadata node (and its transitive operands).
226   ///
227   /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
228   /// algorithm handles distinct nodes and uniqued node subgraphs using
229   /// different strategies.
230   ///
231   /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
232   /// using \a mapDistinctNode().  Their mapping can always be computed
233   /// immediately without visiting operands, even if their operands change.
234   ///
235   /// The mapping for uniqued nodes depends on whether their operands change.
236   /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
237   /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
238   /// added to \a DistinctWorklist with \a mapDistinctNode().
239   ///
240   /// After mapping \c N itself, this function remaps the operands of the
241   /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
242   /// N has been mapped.
243   Metadata *map(const MDNode &N);
244 
245 private:
246   /// Map a top-level uniqued node and the uniqued subgraph underneath it.
247   ///
248   /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
249   /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
250   /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
251   /// operands uses the identity mapping.
252   ///
253   /// The algorithm works as follows:
254   ///
255   ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
256   ///     save the post-order traversal in the given \a UniquedGraph, tracking
257   ///     nodes' operands change.
258   ///
259   ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
260   ///     through the \a UniquedGraph until fixed point, following the rule
261   ///     that if a node changes, any node that references must also change.
262   ///
263   ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
264   ///     (referencing new operands) where necessary.
265   Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
266 
267   /// Try to map the operand of an \a MDNode.
268   ///
269   /// If \c Op is already mapped, return the mapping.  If it's not an \a
270   /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
271   /// return the result of \a mapDistinctNode().
272   ///
273   /// \return None if \c Op is an unmapped uniqued \a MDNode.
274   /// \post getMappedOp(Op) only returns None if this returns None.
275   Optional<Metadata *> tryToMapOperand(const Metadata *Op);
276 
277   /// Map a distinct node.
278   ///
279   /// Return the mapping for the distinct node \c N, saving the result in \a
280   /// DistinctWorklist for later remapping.
281   ///
282   /// \pre \c N is not yet mapped.
283   /// \pre \c N.isDistinct().
284   MDNode *mapDistinctNode(const MDNode &N);
285 
286   /// Get a previously mapped node.
287   Optional<Metadata *> getMappedOp(const Metadata *Op) const;
288 
289   /// Create a post-order traversal of an unmapped uniqued node subgraph.
290   ///
291   /// This traverses the metadata graph deeply enough to map \c FirstN.  It
292   /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
293   /// metadata that has already been mapped will not be part of the POT.
294   ///
295   /// Each node that has a changed operand from outside the graph (e.g., a
296   /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
297   /// is marked with \a Data::HasChanged.
298   ///
299   /// \return \c true if any nodes in \c G have \a Data::HasChanged.
300   /// \post \c G.POT is a post-order traversal ending with \c FirstN.
301   /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
302   /// to change because of operands outside the graph.
303   bool createPOT(UniquedGraph &G, const MDNode &FirstN);
304 
305   /// Visit the operands of a uniqued node in the POT.
306   ///
307   /// Visit the operands in the range from \c I to \c E, returning the first
308   /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
309   /// where to continue the loop through the operands.
310   ///
311   /// This sets \c HasChanged if any of the visited operands change.
312   MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
313                         MDNode::op_iterator E, bool &HasChanged);
314 
315   /// Map all the nodes in the given uniqued graph.
316   ///
317   /// This visits all the nodes in \c G in post-order, using the identity
318   /// mapping or creating a new node depending on \a Data::HasChanged.
319   ///
320   /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
321   /// their operands outside of \c G.
322   /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
323   /// operands have changed.
324   /// \post \a getMappedOp() returns the mapped node for every node in \c G.
325   void mapNodesInPOT(UniquedGraph &G);
326 
327   /// Remap a node's operands using the given functor.
328   ///
329   /// Iterate through the operands of \c N and update them in place using \c
330   /// mapOperand.
331   ///
332   /// \pre N.isDistinct() or N.isTemporary().
333   template <class OperandMapper>
334   void remapOperands(MDNode &N, OperandMapper mapOperand);
335 };
336 
337 } // end anonymous namespace
338 
339 Value *Mapper::mapValue(const Value *V) {
340   ValueToValueMapTy::iterator I = getVM().find(V);
341 
342   // If the value already exists in the map, use it.
343   if (I != getVM().end()) {
344     assert(I->second && "Unexpected null mapping");
345     return I->second;
346   }
347 
348   // If we have a materializer and it can materialize a value, use that.
349   if (auto *Materializer = getMaterializer()) {
350     if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
351       getVM()[V] = NewV;
352       return NewV;
353     }
354   }
355 
356   // Global values do not need to be seeded into the VM if they
357   // are using the identity mapping.
358   if (isa<GlobalValue>(V)) {
359     if (Flags & RF_NullMapMissingGlobalValues)
360       return nullptr;
361     return getVM()[V] = const_cast<Value *>(V);
362   }
363 
364   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
365     // Inline asm may need *type* remapping.
366     FunctionType *NewTy = IA->getFunctionType();
367     if (TypeMapper) {
368       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
369 
370       if (NewTy != IA->getFunctionType())
371         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
372                            IA->hasSideEffects(), IA->isAlignStack(),
373                            IA->getDialect(), IA->canThrow());
374     }
375 
376     return getVM()[V] = const_cast<Value *>(V);
377   }
378 
379   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
380     const Metadata *MD = MDV->getMetadata();
381 
382     if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
383       // Look through to grab the local value.
384       if (Value *LV = mapValue(LAM->getValue())) {
385         if (V == LAM->getValue())
386           return const_cast<Value *>(V);
387         return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
388       }
389 
390       // FIXME: always return nullptr once Verifier::verifyDominatesUse()
391       // ensures metadata operands only reference defined SSA values.
392       return (Flags & RF_IgnoreMissingLocals)
393                  ? nullptr
394                  : MetadataAsValue::get(V->getContext(),
395                                         MDTuple::get(V->getContext(), None));
396     }
397     if (auto *AL = dyn_cast<DIArgList>(MD)) {
398       SmallVector<ValueAsMetadata *, 4> MappedArgs;
399       for (auto *VAM : AL->getArgs()) {
400         // Map both Local and Constant VAMs here; they will both ultimately
401         // be mapped via mapValue. The exceptions are constants when we have no
402         // module level changes and locals when they have no existing mapped
403         // value and RF_IgnoreMissingLocals is set; these have identity
404         // mappings.
405         if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) {
406           MappedArgs.push_back(VAM);
407         } else if (Value *LV = mapValue(VAM->getValue())) {
408           MappedArgs.push_back(
409               LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV));
410         } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(VAM)) {
411             MappedArgs.push_back(VAM);
412         } else {
413           // If we cannot map the value, set the argument as undef.
414           MappedArgs.push_back(ValueAsMetadata::get(
415               UndefValue::get(VAM->getValue()->getType())));
416         }
417       }
418       return MetadataAsValue::get(V->getContext(),
419                                   DIArgList::get(V->getContext(), MappedArgs));
420     }
421 
422     // If this is a module-level metadata and we know that nothing at the module
423     // level is changing, then use an identity mapping.
424     if (Flags & RF_NoModuleLevelChanges)
425       return getVM()[V] = const_cast<Value *>(V);
426 
427     // Map the metadata and turn it into a value.
428     auto *MappedMD = mapMetadata(MD);
429     if (MD == MappedMD)
430       return getVM()[V] = const_cast<Value *>(V);
431     return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
432   }
433 
434   // Okay, this either must be a constant (which may or may not be mappable) or
435   // is something that is not in the mapping table.
436   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
437   if (!C)
438     return nullptr;
439 
440   if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
441     return mapBlockAddress(*BA);
442 
443   if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) {
444     auto *Val = mapValue(E->getGlobalValue());
445     GlobalValue *GV = dyn_cast<GlobalValue>(Val);
446     if (GV)
447       return getVM()[E] = DSOLocalEquivalent::get(GV);
448 
449     auto *Func = cast<Function>(Val->stripPointerCastsAndAliases());
450     Type *NewTy = E->getType();
451     if (TypeMapper)
452       NewTy = TypeMapper->remapType(NewTy);
453     return getVM()[E] = llvm::ConstantExpr::getBitCast(
454                DSOLocalEquivalent::get(Func), NewTy);
455   }
456 
457   if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
458     auto *Val = mapValue(NC->getGlobalValue());
459     GlobalValue *GV = cast<GlobalValue>(Val);
460     return getVM()[NC] = NoCFIValue::get(GV);
461   }
462 
463   auto mapValueOrNull = [this](Value *V) {
464     auto Mapped = mapValue(V);
465     assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
466            "Unexpected null mapping for constant operand without "
467            "NullMapMissingGlobalValues flag");
468     return Mapped;
469   };
470 
471   // Otherwise, we have some other constant to remap.  Start by checking to see
472   // if all operands have an identity remapping.
473   unsigned OpNo = 0, NumOperands = C->getNumOperands();
474   Value *Mapped = nullptr;
475   for (; OpNo != NumOperands; ++OpNo) {
476     Value *Op = C->getOperand(OpNo);
477     Mapped = mapValueOrNull(Op);
478     if (!Mapped)
479       return nullptr;
480     if (Mapped != Op)
481       break;
482   }
483 
484   // See if the type mapper wants to remap the type as well.
485   Type *NewTy = C->getType();
486   if (TypeMapper)
487     NewTy = TypeMapper->remapType(NewTy);
488 
489   // If the result type and all operands match up, then just insert an identity
490   // mapping.
491   if (OpNo == NumOperands && NewTy == C->getType())
492     return getVM()[V] = C;
493 
494   // Okay, we need to create a new constant.  We've already processed some or
495   // all of the operands, set them all up now.
496   SmallVector<Constant*, 8> Ops;
497   Ops.reserve(NumOperands);
498   for (unsigned j = 0; j != OpNo; ++j)
499     Ops.push_back(cast<Constant>(C->getOperand(j)));
500 
501   // If one of the operands mismatch, push it and the other mapped operands.
502   if (OpNo != NumOperands) {
503     Ops.push_back(cast<Constant>(Mapped));
504 
505     // Map the rest of the operands that aren't processed yet.
506     for (++OpNo; OpNo != NumOperands; ++OpNo) {
507       Mapped = mapValueOrNull(C->getOperand(OpNo));
508       if (!Mapped)
509         return nullptr;
510       Ops.push_back(cast<Constant>(Mapped));
511     }
512   }
513   Type *NewSrcTy = nullptr;
514   if (TypeMapper)
515     if (auto *GEPO = dyn_cast<GEPOperator>(C))
516       NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
517 
518   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
519     return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
520   if (isa<ConstantArray>(C))
521     return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
522   if (isa<ConstantStruct>(C))
523     return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
524   if (isa<ConstantVector>(C))
525     return getVM()[V] = ConstantVector::get(Ops);
526   // If this is a no-operand constant, it must be because the type was remapped.
527   if (isa<UndefValue>(C))
528     return getVM()[V] = UndefValue::get(NewTy);
529   if (isa<ConstantAggregateZero>(C))
530     return getVM()[V] = ConstantAggregateZero::get(NewTy);
531   assert(isa<ConstantPointerNull>(C));
532   return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
533 }
534 
535 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
536   Function *F = cast<Function>(mapValue(BA.getFunction()));
537 
538   // F may not have materialized its initializer.  In that case, create a
539   // dummy basic block for now, and replace it once we've materialized all
540   // the initializers.
541   BasicBlock *BB;
542   if (F->empty()) {
543     DelayedBBs.push_back(DelayedBasicBlock(BA));
544     BB = DelayedBBs.back().TempBB.get();
545   } else {
546     BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
547   }
548 
549   return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
550 }
551 
552 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
553   getVM().MD()[Key].reset(Val);
554   return Val;
555 }
556 
557 Metadata *Mapper::mapToSelf(const Metadata *MD) {
558   return mapToMetadata(MD, const_cast<Metadata *>(MD));
559 }
560 
561 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
562   if (!Op)
563     return nullptr;
564 
565   if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
566 #ifndef NDEBUG
567     if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
568       assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
569               M.getVM().getMappedMD(Op)) &&
570              "Expected Value to be memoized");
571     else
572       assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
573              "Expected result to be memoized");
574 #endif
575     return *MappedOp;
576   }
577 
578   const MDNode &N = *cast<MDNode>(Op);
579   if (N.isDistinct())
580     return mapDistinctNode(N);
581   return None;
582 }
583 
584 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
585   assert(N.isDistinct() && "Expected a distinct node");
586   assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
587   Metadata *NewM = nullptr;
588 
589   if (M.Flags & RF_ReuseAndMutateDistinctMDs) {
590     NewM = M.mapToSelf(&N);
591   } else {
592     NewM = MDNode::replaceWithDistinct(N.clone());
593     LLVM_DEBUG(dbgs() << "\nMap " << N << "\n"
594                       << "To  " << *NewM << "\n\n");
595     M.mapToMetadata(&N, NewM);
596   }
597   DistinctWorklist.push_back(cast<MDNode>(NewM));
598 
599   return DistinctWorklist.back();
600 }
601 
602 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
603                                                   Value *MappedV) {
604   if (CMD.getValue() == MappedV)
605     return const_cast<ConstantAsMetadata *>(&CMD);
606   return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
607 }
608 
609 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
610   if (!Op)
611     return nullptr;
612 
613   if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
614     return *MappedOp;
615 
616   if (isa<MDString>(Op))
617     return const_cast<Metadata *>(Op);
618 
619   if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
620     return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
621 
622   return None;
623 }
624 
625 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
626   auto Where = Info.find(&Op);
627   assert(Where != Info.end() && "Expected a valid reference");
628 
629   auto &OpD = Where->second;
630   if (!OpD.HasChanged)
631     return Op;
632 
633   // Lazily construct a temporary node.
634   if (!OpD.Placeholder)
635     OpD.Placeholder = Op.clone();
636 
637   return *OpD.Placeholder;
638 }
639 
640 template <class OperandMapper>
641 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
642   assert(!N.isUniqued() && "Expected distinct or temporary nodes");
643   for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
644     Metadata *Old = N.getOperand(I);
645     Metadata *New = mapOperand(Old);
646     if (Old != New)
647       LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in "
648                         << N << "\n");
649 
650     if (Old != New)
651       N.replaceOperandWith(I, New);
652   }
653 }
654 
655 namespace {
656 
657 /// An entry in the worklist for the post-order traversal.
658 struct POTWorklistEntry {
659   MDNode *N;              ///< Current node.
660   MDNode::op_iterator Op; ///< Current operand of \c N.
661 
662   /// Keep a flag of whether operands have changed in the worklist to avoid
663   /// hitting the map in \a UniquedGraph.
664   bool HasChanged = false;
665 
666   POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
667 };
668 
669 } // end anonymous namespace
670 
671 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
672   assert(G.Info.empty() && "Expected a fresh traversal");
673   assert(FirstN.isUniqued() && "Expected uniqued node in POT");
674 
675   // Construct a post-order traversal of the uniqued subgraph under FirstN.
676   bool AnyChanges = false;
677   SmallVector<POTWorklistEntry, 16> Worklist;
678   Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
679   (void)G.Info[&FirstN];
680   while (!Worklist.empty()) {
681     // Start or continue the traversal through the this node's operands.
682     auto &WE = Worklist.back();
683     if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
684       // Push a new node to traverse first.
685       Worklist.push_back(POTWorklistEntry(*N));
686       continue;
687     }
688 
689     // Push the node onto the POT.
690     assert(WE.N->isUniqued() && "Expected only uniqued nodes");
691     assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
692     auto &D = G.Info[WE.N];
693     AnyChanges |= D.HasChanged = WE.HasChanged;
694     D.ID = G.POT.size();
695     G.POT.push_back(WE.N);
696 
697     // Pop the node off the worklist.
698     Worklist.pop_back();
699   }
700   return AnyChanges;
701 }
702 
703 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
704                                     MDNode::op_iterator E, bool &HasChanged) {
705   while (I != E) {
706     Metadata *Op = *I++; // Increment even on early return.
707     if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
708       // Check if the operand changes.
709       HasChanged |= Op != *MappedOp;
710       continue;
711     }
712 
713     // A uniqued metadata node.
714     MDNode &OpN = *cast<MDNode>(Op);
715     assert(OpN.isUniqued() &&
716            "Only uniqued operands cannot be mapped immediately");
717     if (G.Info.insert(std::make_pair(&OpN, Data())).second)
718       return &OpN; // This is a new one.  Return it.
719   }
720   return nullptr;
721 }
722 
723 void MDNodeMapper::UniquedGraph::propagateChanges() {
724   bool AnyChanges;
725   do {
726     AnyChanges = false;
727     for (MDNode *N : POT) {
728       auto &D = Info[N];
729       if (D.HasChanged)
730         continue;
731 
732       if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
733             auto Where = Info.find(Op);
734             return Where != Info.end() && Where->second.HasChanged;
735           }))
736         continue;
737 
738       AnyChanges = D.HasChanged = true;
739     }
740   } while (AnyChanges);
741 }
742 
743 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
744   // Construct uniqued nodes, building forward references as necessary.
745   SmallVector<MDNode *, 16> CyclicNodes;
746   for (auto *N : G.POT) {
747     auto &D = G.Info[N];
748     if (!D.HasChanged) {
749       // The node hasn't changed.
750       M.mapToSelf(N);
751       continue;
752     }
753 
754     // Remember whether this node had a placeholder.
755     bool HadPlaceholder(D.Placeholder);
756 
757     // Clone the uniqued node and remap the operands.
758     TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
759     remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
760       if (Optional<Metadata *> MappedOp = getMappedOp(Old))
761         return *MappedOp;
762       (void)D;
763       assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
764       return &G.getFwdReference(*cast<MDNode>(Old));
765     });
766 
767     auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
768     if (N && NewN && N != NewN) {
769       LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n"
770                         << "To  " << *NewN << "\n\n");
771     }
772 
773     M.mapToMetadata(N, NewN);
774 
775     // Nodes that were referenced out of order in the POT are involved in a
776     // uniquing cycle.
777     if (HadPlaceholder)
778       CyclicNodes.push_back(NewN);
779   }
780 
781   // Resolve cycles.
782   for (auto *N : CyclicNodes)
783     if (!N->isResolved())
784       N->resolveCycles();
785 }
786 
787 Metadata *MDNodeMapper::map(const MDNode &N) {
788   assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
789   assert(!(M.Flags & RF_NoModuleLevelChanges) &&
790          "MDNodeMapper::map assumes module-level changes");
791 
792   // Require resolved nodes whenever metadata might be remapped.
793   assert(N.isResolved() && "Unexpected unresolved node");
794 
795   Metadata *MappedN =
796       N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
797   while (!DistinctWorklist.empty())
798     remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
799       if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
800         return *MappedOp;
801       return mapTopLevelUniquedNode(*cast<MDNode>(Old));
802     });
803   return MappedN;
804 }
805 
806 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
807   assert(FirstN.isUniqued() && "Expected uniqued node");
808 
809   // Create a post-order traversal of uniqued nodes under FirstN.
810   UniquedGraph G;
811   if (!createPOT(G, FirstN)) {
812     // Return early if no nodes have changed.
813     for (const MDNode *N : G.POT)
814       M.mapToSelf(N);
815     return &const_cast<MDNode &>(FirstN);
816   }
817 
818   // Update graph with all nodes that have changed.
819   G.propagateChanges();
820 
821   // Map all the nodes in the graph.
822   mapNodesInPOT(G);
823 
824   // Return the original node, remapped.
825   return *getMappedOp(&FirstN);
826 }
827 
828 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
829   // If the value already exists in the map, use it.
830   if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
831     return *NewMD;
832 
833   if (isa<MDString>(MD))
834     return const_cast<Metadata *>(MD);
835 
836   // This is a module-level metadata.  If nothing at the module level is
837   // changing, use an identity mapping.
838   if ((Flags & RF_NoModuleLevelChanges))
839     return const_cast<Metadata *>(MD);
840 
841   if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
842     // Don't memoize ConstantAsMetadata.  Instead of lasting until the
843     // LLVMContext is destroyed, they can be deleted when the GlobalValue they
844     // reference is destructed.  These aren't super common, so the extra
845     // indirection isn't that expensive.
846     return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
847   }
848 
849   assert(isa<MDNode>(MD) && "Expected a metadata node");
850 
851   return None;
852 }
853 
854 Metadata *Mapper::mapMetadata(const Metadata *MD) {
855   assert(MD && "Expected valid metadata");
856   assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
857 
858   if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
859     return *NewMD;
860 
861   return MDNodeMapper(*this).map(*cast<MDNode>(MD));
862 }
863 
864 void Mapper::flush() {
865   // Flush out the worklist of global values.
866   while (!Worklist.empty()) {
867     WorklistEntry E = Worklist.pop_back_val();
868     CurrentMCID = E.MCID;
869     switch (E.Kind) {
870     case WorklistEntry::MapGlobalInit:
871       E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
872       remapGlobalObjectMetadata(*E.Data.GVInit.GV);
873       break;
874     case WorklistEntry::MapAppendingVar: {
875       unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
876       // mapAppendingVariable call can change AppendingInits if initalizer for
877       // the variable depends on another appending global, because of that inits
878       // need to be extracted and updated before the call.
879       SmallVector<Constant *, 8> NewInits(
880           drop_begin(AppendingInits, PrefixSize));
881       AppendingInits.resize(PrefixSize);
882       mapAppendingVariable(*E.Data.AppendingGV.GV,
883                            E.Data.AppendingGV.InitPrefix,
884                            E.AppendingGVIsOldCtorDtor, makeArrayRef(NewInits));
885       break;
886     }
887     case WorklistEntry::MapAliasOrIFunc: {
888       GlobalValue *GV = E.Data.AliasOrIFunc.GV;
889       Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target);
890       if (auto *GA = dyn_cast<GlobalAlias>(GV))
891         GA->setAliasee(Target);
892       else if (auto *GI = dyn_cast<GlobalIFunc>(GV))
893         GI->setResolver(Target);
894       else
895         llvm_unreachable("Not alias or ifunc");
896       break;
897     }
898     case WorklistEntry::RemapFunction:
899       remapFunction(*E.Data.RemapF);
900       break;
901     }
902   }
903   CurrentMCID = 0;
904 
905   // Finish logic for block addresses now that all global values have been
906   // handled.
907   while (!DelayedBBs.empty()) {
908     DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
909     BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
910     DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
911   }
912 }
913 
914 void Mapper::remapInstruction(Instruction *I) {
915   // Remap operands.
916   for (Use &Op : I->operands()) {
917     Value *V = mapValue(Op);
918     // If we aren't ignoring missing entries, assert that something happened.
919     if (V)
920       Op = V;
921     else
922       assert((Flags & RF_IgnoreMissingLocals) &&
923              "Referenced value not in value map!");
924   }
925 
926   // Remap phi nodes' incoming blocks.
927   if (PHINode *PN = dyn_cast<PHINode>(I)) {
928     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
929       Value *V = mapValue(PN->getIncomingBlock(i));
930       // If we aren't ignoring missing entries, assert that something happened.
931       if (V)
932         PN->setIncomingBlock(i, cast<BasicBlock>(V));
933       else
934         assert((Flags & RF_IgnoreMissingLocals) &&
935                "Referenced block not in value map!");
936     }
937   }
938 
939   // Remap attached metadata.
940   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
941   I->getAllMetadata(MDs);
942   for (const auto &MI : MDs) {
943     MDNode *Old = MI.second;
944     MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
945     if (New != Old)
946       I->setMetadata(MI.first, New);
947   }
948 
949   if (!TypeMapper)
950     return;
951 
952   // If the instruction's type is being remapped, do so now.
953   if (auto *CB = dyn_cast<CallBase>(I)) {
954     SmallVector<Type *, 3> Tys;
955     FunctionType *FTy = CB->getFunctionType();
956     Tys.reserve(FTy->getNumParams());
957     for (Type *Ty : FTy->params())
958       Tys.push_back(TypeMapper->remapType(Ty));
959     CB->mutateFunctionType(FunctionType::get(
960         TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
961 
962     LLVMContext &C = CB->getContext();
963     AttributeList Attrs = CB->getAttributes();
964     for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
965       for (int AttrIdx = Attribute::FirstTypeAttr;
966            AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
967         Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
968         if (Type *Ty =
969                 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) {
970           Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr,
971                                                     TypeMapper->remapType(Ty));
972           break;
973         }
974       }
975     }
976     CB->setAttributes(Attrs);
977     return;
978   }
979   if (auto *AI = dyn_cast<AllocaInst>(I))
980     AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
981   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
982     GEP->setSourceElementType(
983         TypeMapper->remapType(GEP->getSourceElementType()));
984     GEP->setResultElementType(
985         TypeMapper->remapType(GEP->getResultElementType()));
986   }
987   I->mutateType(TypeMapper->remapType(I->getType()));
988 }
989 
990 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
991   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
992   GO.getAllMetadata(MDs);
993   GO.clearMetadata();
994   for (const auto &I : MDs)
995     GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
996 }
997 
998 void Mapper::remapFunction(Function &F) {
999   // Remap the operands.
1000   for (Use &Op : F.operands())
1001     if (Op)
1002       Op = mapValue(Op);
1003 
1004   // Remap the metadata attachments.
1005   remapGlobalObjectMetadata(F);
1006 
1007   // Remap the argument types.
1008   if (TypeMapper)
1009     for (Argument &A : F.args())
1010       A.mutateType(TypeMapper->remapType(A.getType()));
1011 
1012   // Remap the instructions.
1013   for (BasicBlock &BB : F)
1014     for (Instruction &I : BB)
1015       remapInstruction(&I);
1016 }
1017 
1018 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
1019                                   bool IsOldCtorDtor,
1020                                   ArrayRef<Constant *> NewMembers) {
1021   SmallVector<Constant *, 16> Elements;
1022   if (InitPrefix) {
1023     unsigned NumElements =
1024         cast<ArrayType>(InitPrefix->getType())->getNumElements();
1025     for (unsigned I = 0; I != NumElements; ++I)
1026       Elements.push_back(InitPrefix->getAggregateElement(I));
1027   }
1028 
1029   PointerType *VoidPtrTy;
1030   Type *EltTy;
1031   if (IsOldCtorDtor) {
1032     // FIXME: This upgrade is done during linking to support the C API.  See
1033     // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
1034     VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
1035     auto &ST = *cast<StructType>(NewMembers.front()->getType());
1036     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
1037     EltTy = StructType::get(GV.getContext(), Tys, false);
1038   }
1039 
1040   for (auto *V : NewMembers) {
1041     Constant *NewV;
1042     if (IsOldCtorDtor) {
1043       auto *S = cast<ConstantStruct>(V);
1044       auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
1045       auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
1046       Constant *Null = Constant::getNullValue(VoidPtrTy);
1047       NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
1048     } else {
1049       NewV = cast_or_null<Constant>(mapValue(V));
1050     }
1051     Elements.push_back(NewV);
1052   }
1053 
1054   GV.setInitializer(
1055       ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements));
1056 }
1057 
1058 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
1059                                           unsigned MCID) {
1060   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1061   assert(MCID < MCs.size() && "Invalid mapping context");
1062 
1063   WorklistEntry WE;
1064   WE.Kind = WorklistEntry::MapGlobalInit;
1065   WE.MCID = MCID;
1066   WE.Data.GVInit.GV = &GV;
1067   WE.Data.GVInit.Init = &Init;
1068   Worklist.push_back(WE);
1069 }
1070 
1071 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1072                                           Constant *InitPrefix,
1073                                           bool IsOldCtorDtor,
1074                                           ArrayRef<Constant *> NewMembers,
1075                                           unsigned MCID) {
1076   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1077   assert(MCID < MCs.size() && "Invalid mapping context");
1078 
1079   WorklistEntry WE;
1080   WE.Kind = WorklistEntry::MapAppendingVar;
1081   WE.MCID = MCID;
1082   WE.Data.AppendingGV.GV = &GV;
1083   WE.Data.AppendingGV.InitPrefix = InitPrefix;
1084   WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1085   WE.AppendingGVNumNewMembers = NewMembers.size();
1086   Worklist.push_back(WE);
1087   AppendingInits.append(NewMembers.begin(), NewMembers.end());
1088 }
1089 
1090 void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
1091                                      unsigned MCID) {
1092   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1093   assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) &&
1094          "Should be alias or ifunc");
1095   assert(MCID < MCs.size() && "Invalid mapping context");
1096 
1097   WorklistEntry WE;
1098   WE.Kind = WorklistEntry::MapAliasOrIFunc;
1099   WE.MCID = MCID;
1100   WE.Data.AliasOrIFunc.GV = &GV;
1101   WE.Data.AliasOrIFunc.Target = &Target;
1102   Worklist.push_back(WE);
1103 }
1104 
1105 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1106   assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1107   assert(MCID < MCs.size() && "Invalid mapping context");
1108 
1109   WorklistEntry WE;
1110   WE.Kind = WorklistEntry::RemapFunction;
1111   WE.MCID = MCID;
1112   WE.Data.RemapF = &F;
1113   Worklist.push_back(WE);
1114 }
1115 
1116 void Mapper::addFlags(RemapFlags Flags) {
1117   assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1118   this->Flags = this->Flags | Flags;
1119 }
1120 
1121 static Mapper *getAsMapper(void *pImpl) {
1122   return reinterpret_cast<Mapper *>(pImpl);
1123 }
1124 
1125 namespace {
1126 
1127 class FlushingMapper {
1128   Mapper &M;
1129 
1130 public:
1131   explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1132     assert(!M.hasWorkToDo() && "Expected to be flushed");
1133   }
1134 
1135   ~FlushingMapper() { M.flush(); }
1136 
1137   Mapper *operator->() const { return &M; }
1138 };
1139 
1140 } // end anonymous namespace
1141 
1142 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1143                          ValueMapTypeRemapper *TypeMapper,
1144                          ValueMaterializer *Materializer)
1145     : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1146 
1147 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1148 
1149 unsigned
1150 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1151                                              ValueMaterializer *Materializer) {
1152   return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1153 }
1154 
1155 void ValueMapper::addFlags(RemapFlags Flags) {
1156   FlushingMapper(pImpl)->addFlags(Flags);
1157 }
1158 
1159 Value *ValueMapper::mapValue(const Value &V) {
1160   return FlushingMapper(pImpl)->mapValue(&V);
1161 }
1162 
1163 Constant *ValueMapper::mapConstant(const Constant &C) {
1164   return cast_or_null<Constant>(mapValue(C));
1165 }
1166 
1167 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1168   return FlushingMapper(pImpl)->mapMetadata(&MD);
1169 }
1170 
1171 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1172   return cast_or_null<MDNode>(mapMetadata(N));
1173 }
1174 
1175 void ValueMapper::remapInstruction(Instruction &I) {
1176   FlushingMapper(pImpl)->remapInstruction(&I);
1177 }
1178 
1179 void ValueMapper::remapFunction(Function &F) {
1180   FlushingMapper(pImpl)->remapFunction(F);
1181 }
1182 
1183 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1184                                                Constant &Init,
1185                                                unsigned MCID) {
1186   getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1187 }
1188 
1189 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1190                                                Constant *InitPrefix,
1191                                                bool IsOldCtorDtor,
1192                                                ArrayRef<Constant *> NewMembers,
1193                                                unsigned MCID) {
1194   getAsMapper(pImpl)->scheduleMapAppendingVariable(
1195       GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1196 }
1197 
1198 void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee,
1199                                          unsigned MCID) {
1200   getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID);
1201 }
1202 
1203 void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver,
1204                                          unsigned MCID) {
1205   getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID);
1206 }
1207 
1208 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1209   getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1210 }
1211