xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/ValueMapper.cpp (revision 61898cde69374d5a9994e2074605bc4101aff72d)
1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MapValue function, which is shared by various parts of
10 // the lib/Transforms/Utils library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/ValueMapper.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalObject.h"
31 #include "llvm/IR/GlobalIndirectSymbol.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include <cassert>
42 #include <limits>
43 #include <memory>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 // Out of line method to get vtable etc for class.
49 void ValueMapTypeRemapper::anchor() {}
50 void ValueMaterializer::anchor() {}
51 
52 namespace {
53 
54 /// A basic block used in a BlockAddress whose function body is not yet
55 /// materialized.
56 struct DelayedBasicBlock {
57   BasicBlock *OldBB;
58   std::unique_ptr<BasicBlock> TempBB;
59 
60   DelayedBasicBlock(const BlockAddress &Old)
61       : OldBB(Old.getBasicBlock()),
62         TempBB(BasicBlock::Create(Old.getContext())) {}
63 };
64 
65 struct WorklistEntry {
66   enum EntryKind {
67     MapGlobalInit,
68     MapAppendingVar,
69     MapGlobalIndirectSymbol,
70     RemapFunction
71   };
72   struct GVInitTy {
73     GlobalVariable *GV;
74     Constant *Init;
75   };
76   struct AppendingGVTy {
77     GlobalVariable *GV;
78     Constant *InitPrefix;
79   };
80   struct GlobalIndirectSymbolTy {
81     GlobalIndirectSymbol *GIS;
82     Constant *Target;
83   };
84 
85   unsigned Kind : 2;
86   unsigned MCID : 29;
87   unsigned AppendingGVIsOldCtorDtor : 1;
88   unsigned AppendingGVNumNewMembers;
89   union {
90     GVInitTy GVInit;
91     AppendingGVTy AppendingGV;
92     GlobalIndirectSymbolTy GlobalIndirectSymbol;
93     Function *RemapF;
94   } Data;
95 };
96 
97 struct MappingContext {
98   ValueToValueMapTy *VM;
99   ValueMaterializer *Materializer = nullptr;
100 
101   /// Construct a MappingContext with a value map and materializer.
102   explicit MappingContext(ValueToValueMapTy &VM,
103                           ValueMaterializer *Materializer = nullptr)
104       : VM(&VM), Materializer(Materializer) {}
105 };
106 
107 class Mapper {
108   friend class MDNodeMapper;
109 
110 #ifndef NDEBUG
111   DenseSet<GlobalValue *> AlreadyScheduled;
112 #endif
113 
114   RemapFlags Flags;
115   ValueMapTypeRemapper *TypeMapper;
116   unsigned CurrentMCID = 0;
117   SmallVector<MappingContext, 2> MCs;
118   SmallVector<WorklistEntry, 4> Worklist;
119   SmallVector<DelayedBasicBlock, 1> DelayedBBs;
120   SmallVector<Constant *, 16> AppendingInits;
121 
122 public:
123   Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
124          ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
125       : Flags(Flags), TypeMapper(TypeMapper),
126         MCs(1, MappingContext(VM, Materializer)) {}
127 
128   /// ValueMapper should explicitly call \a flush() before destruction.
129   ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
130 
131   bool hasWorkToDo() const { return !Worklist.empty(); }
132 
133   unsigned
134   registerAlternateMappingContext(ValueToValueMapTy &VM,
135                                   ValueMaterializer *Materializer = nullptr) {
136     MCs.push_back(MappingContext(VM, Materializer));
137     return MCs.size() - 1;
138   }
139 
140   void addFlags(RemapFlags Flags);
141 
142   void remapGlobalObjectMetadata(GlobalObject &GO);
143 
144   Value *mapValue(const Value *V);
145   void remapInstruction(Instruction *I);
146   void remapFunction(Function &F);
147 
148   Constant *mapConstant(const Constant *C) {
149     return cast_or_null<Constant>(mapValue(C));
150   }
151 
152   /// Map metadata.
153   ///
154   /// Find the mapping for MD.  Guarantees that the return will be resolved
155   /// (not an MDNode, or MDNode::isResolved() returns true).
156   Metadata *mapMetadata(const Metadata *MD);
157 
158   void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
159                                     unsigned MCID);
160   void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
161                                     bool IsOldCtorDtor,
162                                     ArrayRef<Constant *> NewMembers,
163                                     unsigned MCID);
164   void scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, Constant &Target,
165                                        unsigned MCID);
166   void scheduleRemapFunction(Function &F, unsigned MCID);
167 
168   void flush();
169 
170 private:
171   void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
172   void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
173                             bool IsOldCtorDtor,
174                             ArrayRef<Constant *> NewMembers);
175   void mapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, Constant &Target);
176   void remapFunction(Function &F, ValueToValueMapTy &VM);
177 
178   ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
179   ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
180 
181   Value *mapBlockAddress(const BlockAddress &BA);
182 
183   /// Map metadata that doesn't require visiting operands.
184   Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
185 
186   Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
187   Metadata *mapToSelf(const Metadata *MD);
188 };
189 
190 class MDNodeMapper {
191   Mapper &M;
192 
193   /// Data about a node in \a UniquedGraph.
194   struct Data {
195     bool HasChanged = false;
196     unsigned ID = std::numeric_limits<unsigned>::max();
197     TempMDNode Placeholder;
198   };
199 
200   /// A graph of uniqued nodes.
201   struct UniquedGraph {
202     SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
203     SmallVector<MDNode *, 16> POT;                  // Post-order traversal.
204 
205     /// Propagate changed operands through the post-order traversal.
206     ///
207     /// Iteratively update \a Data::HasChanged for each node based on \a
208     /// Data::HasChanged of its operands, until fixed point.
209     void propagateChanges();
210 
211     /// Get a forward reference to a node to use as an operand.
212     Metadata &getFwdReference(MDNode &Op);
213   };
214 
215   /// Worklist of distinct nodes whose operands need to be remapped.
216   SmallVector<MDNode *, 16> DistinctWorklist;
217 
218   // Storage for a UniquedGraph.
219   SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
220   SmallVector<MDNode *, 16> POTStorage;
221 
222 public:
223   MDNodeMapper(Mapper &M) : M(M) {}
224 
225   /// Map a metadata node (and its transitive operands).
226   ///
227   /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
228   /// algorithm handles distinct nodes and uniqued node subgraphs using
229   /// different strategies.
230   ///
231   /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
232   /// using \a mapDistinctNode().  Their mapping can always be computed
233   /// immediately without visiting operands, even if their operands change.
234   ///
235   /// The mapping for uniqued nodes depends on whether their operands change.
236   /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
237   /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
238   /// added to \a DistinctWorklist with \a mapDistinctNode().
239   ///
240   /// After mapping \c N itself, this function remaps the operands of the
241   /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
242   /// N has been mapped.
243   Metadata *map(const MDNode &N);
244 
245 private:
246   /// Map a top-level uniqued node and the uniqued subgraph underneath it.
247   ///
248   /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
249   /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
250   /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
251   /// operands uses the identity mapping.
252   ///
253   /// The algorithm works as follows:
254   ///
255   ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
256   ///     save the post-order traversal in the given \a UniquedGraph, tracking
257   ///     nodes' operands change.
258   ///
259   ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
260   ///     through the \a UniquedGraph until fixed point, following the rule
261   ///     that if a node changes, any node that references must also change.
262   ///
263   ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
264   ///     (referencing new operands) where necessary.
265   Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
266 
267   /// Try to map the operand of an \a MDNode.
268   ///
269   /// If \c Op is already mapped, return the mapping.  If it's not an \a
270   /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
271   /// return the result of \a mapDistinctNode().
272   ///
273   /// \return None if \c Op is an unmapped uniqued \a MDNode.
274   /// \post getMappedOp(Op) only returns None if this returns None.
275   Optional<Metadata *> tryToMapOperand(const Metadata *Op);
276 
277   /// Map a distinct node.
278   ///
279   /// Return the mapping for the distinct node \c N, saving the result in \a
280   /// DistinctWorklist for later remapping.
281   ///
282   /// \pre \c N is not yet mapped.
283   /// \pre \c N.isDistinct().
284   MDNode *mapDistinctNode(const MDNode &N);
285 
286   /// Get a previously mapped node.
287   Optional<Metadata *> getMappedOp(const Metadata *Op) const;
288 
289   /// Create a post-order traversal of an unmapped uniqued node subgraph.
290   ///
291   /// This traverses the metadata graph deeply enough to map \c FirstN.  It
292   /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
293   /// metadata that has already been mapped will not be part of the POT.
294   ///
295   /// Each node that has a changed operand from outside the graph (e.g., a
296   /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
297   /// is marked with \a Data::HasChanged.
298   ///
299   /// \return \c true if any nodes in \c G have \a Data::HasChanged.
300   /// \post \c G.POT is a post-order traversal ending with \c FirstN.
301   /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
302   /// to change because of operands outside the graph.
303   bool createPOT(UniquedGraph &G, const MDNode &FirstN);
304 
305   /// Visit the operands of a uniqued node in the POT.
306   ///
307   /// Visit the operands in the range from \c I to \c E, returning the first
308   /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
309   /// where to continue the loop through the operands.
310   ///
311   /// This sets \c HasChanged if any of the visited operands change.
312   MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
313                         MDNode::op_iterator E, bool &HasChanged);
314 
315   /// Map all the nodes in the given uniqued graph.
316   ///
317   /// This visits all the nodes in \c G in post-order, using the identity
318   /// mapping or creating a new node depending on \a Data::HasChanged.
319   ///
320   /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
321   /// their operands outside of \c G.
322   /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
323   /// operands have changed.
324   /// \post \a getMappedOp() returns the mapped node for every node in \c G.
325   void mapNodesInPOT(UniquedGraph &G);
326 
327   /// Remap a node's operands using the given functor.
328   ///
329   /// Iterate through the operands of \c N and update them in place using \c
330   /// mapOperand.
331   ///
332   /// \pre N.isDistinct() or N.isTemporary().
333   template <class OperandMapper>
334   void remapOperands(MDNode &N, OperandMapper mapOperand);
335 };
336 
337 } // end anonymous namespace
338 
339 Value *Mapper::mapValue(const Value *V) {
340   ValueToValueMapTy::iterator I = getVM().find(V);
341 
342   // If the value already exists in the map, use it.
343   if (I != getVM().end()) {
344     assert(I->second && "Unexpected null mapping");
345     return I->second;
346   }
347 
348   // If we have a materializer and it can materialize a value, use that.
349   if (auto *Materializer = getMaterializer()) {
350     if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
351       getVM()[V] = NewV;
352       return NewV;
353     }
354   }
355 
356   // Global values do not need to be seeded into the VM if they
357   // are using the identity mapping.
358   if (isa<GlobalValue>(V)) {
359     if (Flags & RF_NullMapMissingGlobalValues)
360       return nullptr;
361     return getVM()[V] = const_cast<Value *>(V);
362   }
363 
364   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
365     // Inline asm may need *type* remapping.
366     FunctionType *NewTy = IA->getFunctionType();
367     if (TypeMapper) {
368       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
369 
370       if (NewTy != IA->getFunctionType())
371         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
372                            IA->hasSideEffects(), IA->isAlignStack(),
373                            IA->getDialect());
374     }
375 
376     return getVM()[V] = const_cast<Value *>(V);
377   }
378 
379   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
380     const Metadata *MD = MDV->getMetadata();
381 
382     if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
383       // Look through to grab the local value.
384       if (Value *LV = mapValue(LAM->getValue())) {
385         if (V == LAM->getValue())
386           return const_cast<Value *>(V);
387         return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
388       }
389 
390       // FIXME: always return nullptr once Verifier::verifyDominatesUse()
391       // ensures metadata operands only reference defined SSA values.
392       return (Flags & RF_IgnoreMissingLocals)
393                  ? nullptr
394                  : MetadataAsValue::get(V->getContext(),
395                                         MDTuple::get(V->getContext(), None));
396     }
397 
398     // If this is a module-level metadata and we know that nothing at the module
399     // level is changing, then use an identity mapping.
400     if (Flags & RF_NoModuleLevelChanges)
401       return getVM()[V] = const_cast<Value *>(V);
402 
403     // Map the metadata and turn it into a value.
404     auto *MappedMD = mapMetadata(MD);
405     if (MD == MappedMD)
406       return getVM()[V] = const_cast<Value *>(V);
407     return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
408   }
409 
410   // Okay, this either must be a constant (which may or may not be mappable) or
411   // is something that is not in the mapping table.
412   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
413   if (!C)
414     return nullptr;
415 
416   if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
417     return mapBlockAddress(*BA);
418 
419   auto mapValueOrNull = [this](Value *V) {
420     auto Mapped = mapValue(V);
421     assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
422            "Unexpected null mapping for constant operand without "
423            "NullMapMissingGlobalValues flag");
424     return Mapped;
425   };
426 
427   // Otherwise, we have some other constant to remap.  Start by checking to see
428   // if all operands have an identity remapping.
429   unsigned OpNo = 0, NumOperands = C->getNumOperands();
430   Value *Mapped = nullptr;
431   for (; OpNo != NumOperands; ++OpNo) {
432     Value *Op = C->getOperand(OpNo);
433     Mapped = mapValueOrNull(Op);
434     if (!Mapped)
435       return nullptr;
436     if (Mapped != Op)
437       break;
438   }
439 
440   // See if the type mapper wants to remap the type as well.
441   Type *NewTy = C->getType();
442   if (TypeMapper)
443     NewTy = TypeMapper->remapType(NewTy);
444 
445   // If the result type and all operands match up, then just insert an identity
446   // mapping.
447   if (OpNo == NumOperands && NewTy == C->getType())
448     return getVM()[V] = C;
449 
450   // Okay, we need to create a new constant.  We've already processed some or
451   // all of the operands, set them all up now.
452   SmallVector<Constant*, 8> Ops;
453   Ops.reserve(NumOperands);
454   for (unsigned j = 0; j != OpNo; ++j)
455     Ops.push_back(cast<Constant>(C->getOperand(j)));
456 
457   // If one of the operands mismatch, push it and the other mapped operands.
458   if (OpNo != NumOperands) {
459     Ops.push_back(cast<Constant>(Mapped));
460 
461     // Map the rest of the operands that aren't processed yet.
462     for (++OpNo; OpNo != NumOperands; ++OpNo) {
463       Mapped = mapValueOrNull(C->getOperand(OpNo));
464       if (!Mapped)
465         return nullptr;
466       Ops.push_back(cast<Constant>(Mapped));
467     }
468   }
469   Type *NewSrcTy = nullptr;
470   if (TypeMapper)
471     if (auto *GEPO = dyn_cast<GEPOperator>(C))
472       NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
473 
474   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
475     return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
476   if (isa<ConstantArray>(C))
477     return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
478   if (isa<ConstantStruct>(C))
479     return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
480   if (isa<ConstantVector>(C))
481     return getVM()[V] = ConstantVector::get(Ops);
482   // If this is a no-operand constant, it must be because the type was remapped.
483   if (isa<UndefValue>(C))
484     return getVM()[V] = UndefValue::get(NewTy);
485   if (isa<ConstantAggregateZero>(C))
486     return getVM()[V] = ConstantAggregateZero::get(NewTy);
487   assert(isa<ConstantPointerNull>(C));
488   return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
489 }
490 
491 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
492   Function *F = cast<Function>(mapValue(BA.getFunction()));
493 
494   // F may not have materialized its initializer.  In that case, create a
495   // dummy basic block for now, and replace it once we've materialized all
496   // the initializers.
497   BasicBlock *BB;
498   if (F->empty()) {
499     DelayedBBs.push_back(DelayedBasicBlock(BA));
500     BB = DelayedBBs.back().TempBB.get();
501   } else {
502     BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
503   }
504 
505   return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
506 }
507 
508 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
509   getVM().MD()[Key].reset(Val);
510   return Val;
511 }
512 
513 Metadata *Mapper::mapToSelf(const Metadata *MD) {
514   return mapToMetadata(MD, const_cast<Metadata *>(MD));
515 }
516 
517 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
518   if (!Op)
519     return nullptr;
520 
521   if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
522 #ifndef NDEBUG
523     if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
524       assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
525               M.getVM().getMappedMD(Op)) &&
526              "Expected Value to be memoized");
527     else
528       assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
529              "Expected result to be memoized");
530 #endif
531     return *MappedOp;
532   }
533 
534   const MDNode &N = *cast<MDNode>(Op);
535   if (N.isDistinct())
536     return mapDistinctNode(N);
537   return None;
538 }
539 
540 static Metadata *cloneOrBuildODR(const MDNode &N) {
541   auto *CT = dyn_cast<DICompositeType>(&N);
542   // If ODR type uniquing is enabled, we would have uniqued composite types
543   // with identifiers during bitcode reading, so we can just use CT.
544   if (CT && CT->getContext().isODRUniquingDebugTypes() &&
545       CT->getIdentifier() != "")
546     return const_cast<DICompositeType *>(CT);
547   return MDNode::replaceWithDistinct(N.clone());
548 }
549 
550 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
551   assert(N.isDistinct() && "Expected a distinct node");
552   assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
553   DistinctWorklist.push_back(
554       cast<MDNode>((M.Flags & RF_MoveDistinctMDs)
555                        ? M.mapToSelf(&N)
556                        : M.mapToMetadata(&N, cloneOrBuildODR(N))));
557   return DistinctWorklist.back();
558 }
559 
560 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
561                                                   Value *MappedV) {
562   if (CMD.getValue() == MappedV)
563     return const_cast<ConstantAsMetadata *>(&CMD);
564   return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
565 }
566 
567 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
568   if (!Op)
569     return nullptr;
570 
571   if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
572     return *MappedOp;
573 
574   if (isa<MDString>(Op))
575     return const_cast<Metadata *>(Op);
576 
577   if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
578     return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
579 
580   return None;
581 }
582 
583 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
584   auto Where = Info.find(&Op);
585   assert(Where != Info.end() && "Expected a valid reference");
586 
587   auto &OpD = Where->second;
588   if (!OpD.HasChanged)
589     return Op;
590 
591   // Lazily construct a temporary node.
592   if (!OpD.Placeholder)
593     OpD.Placeholder = Op.clone();
594 
595   return *OpD.Placeholder;
596 }
597 
598 template <class OperandMapper>
599 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
600   assert(!N.isUniqued() && "Expected distinct or temporary nodes");
601   for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
602     Metadata *Old = N.getOperand(I);
603     Metadata *New = mapOperand(Old);
604 
605     if (Old != New)
606       N.replaceOperandWith(I, New);
607   }
608 }
609 
610 namespace {
611 
612 /// An entry in the worklist for the post-order traversal.
613 struct POTWorklistEntry {
614   MDNode *N;              ///< Current node.
615   MDNode::op_iterator Op; ///< Current operand of \c N.
616 
617   /// Keep a flag of whether operands have changed in the worklist to avoid
618   /// hitting the map in \a UniquedGraph.
619   bool HasChanged = false;
620 
621   POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
622 };
623 
624 } // end anonymous namespace
625 
626 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
627   assert(G.Info.empty() && "Expected a fresh traversal");
628   assert(FirstN.isUniqued() && "Expected uniqued node in POT");
629 
630   // Construct a post-order traversal of the uniqued subgraph under FirstN.
631   bool AnyChanges = false;
632   SmallVector<POTWorklistEntry, 16> Worklist;
633   Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
634   (void)G.Info[&FirstN];
635   while (!Worklist.empty()) {
636     // Start or continue the traversal through the this node's operands.
637     auto &WE = Worklist.back();
638     if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
639       // Push a new node to traverse first.
640       Worklist.push_back(POTWorklistEntry(*N));
641       continue;
642     }
643 
644     // Push the node onto the POT.
645     assert(WE.N->isUniqued() && "Expected only uniqued nodes");
646     assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
647     auto &D = G.Info[WE.N];
648     AnyChanges |= D.HasChanged = WE.HasChanged;
649     D.ID = G.POT.size();
650     G.POT.push_back(WE.N);
651 
652     // Pop the node off the worklist.
653     Worklist.pop_back();
654   }
655   return AnyChanges;
656 }
657 
658 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
659                                     MDNode::op_iterator E, bool &HasChanged) {
660   while (I != E) {
661     Metadata *Op = *I++; // Increment even on early return.
662     if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
663       // Check if the operand changes.
664       HasChanged |= Op != *MappedOp;
665       continue;
666     }
667 
668     // A uniqued metadata node.
669     MDNode &OpN = *cast<MDNode>(Op);
670     assert(OpN.isUniqued() &&
671            "Only uniqued operands cannot be mapped immediately");
672     if (G.Info.insert(std::make_pair(&OpN, Data())).second)
673       return &OpN; // This is a new one.  Return it.
674   }
675   return nullptr;
676 }
677 
678 void MDNodeMapper::UniquedGraph::propagateChanges() {
679   bool AnyChanges;
680   do {
681     AnyChanges = false;
682     for (MDNode *N : POT) {
683       auto &D = Info[N];
684       if (D.HasChanged)
685         continue;
686 
687       if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
688             auto Where = Info.find(Op);
689             return Where != Info.end() && Where->second.HasChanged;
690           }))
691         continue;
692 
693       AnyChanges = D.HasChanged = true;
694     }
695   } while (AnyChanges);
696 }
697 
698 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
699   // Construct uniqued nodes, building forward references as necessary.
700   SmallVector<MDNode *, 16> CyclicNodes;
701   for (auto *N : G.POT) {
702     auto &D = G.Info[N];
703     if (!D.HasChanged) {
704       // The node hasn't changed.
705       M.mapToSelf(N);
706       continue;
707     }
708 
709     // Remember whether this node had a placeholder.
710     bool HadPlaceholder(D.Placeholder);
711 
712     // Clone the uniqued node and remap the operands.
713     TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
714     remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
715       if (Optional<Metadata *> MappedOp = getMappedOp(Old))
716         return *MappedOp;
717       (void)D;
718       assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
719       return &G.getFwdReference(*cast<MDNode>(Old));
720     });
721 
722     auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
723     M.mapToMetadata(N, NewN);
724 
725     // Nodes that were referenced out of order in the POT are involved in a
726     // uniquing cycle.
727     if (HadPlaceholder)
728       CyclicNodes.push_back(NewN);
729   }
730 
731   // Resolve cycles.
732   for (auto *N : CyclicNodes)
733     if (!N->isResolved())
734       N->resolveCycles();
735 }
736 
737 Metadata *MDNodeMapper::map(const MDNode &N) {
738   assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
739   assert(!(M.Flags & RF_NoModuleLevelChanges) &&
740          "MDNodeMapper::map assumes module-level changes");
741 
742   // Require resolved nodes whenever metadata might be remapped.
743   assert(N.isResolved() && "Unexpected unresolved node");
744 
745   Metadata *MappedN =
746       N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
747   while (!DistinctWorklist.empty())
748     remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
749       if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
750         return *MappedOp;
751       return mapTopLevelUniquedNode(*cast<MDNode>(Old));
752     });
753   return MappedN;
754 }
755 
756 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
757   assert(FirstN.isUniqued() && "Expected uniqued node");
758 
759   // Create a post-order traversal of uniqued nodes under FirstN.
760   UniquedGraph G;
761   if (!createPOT(G, FirstN)) {
762     // Return early if no nodes have changed.
763     for (const MDNode *N : G.POT)
764       M.mapToSelf(N);
765     return &const_cast<MDNode &>(FirstN);
766   }
767 
768   // Update graph with all nodes that have changed.
769   G.propagateChanges();
770 
771   // Map all the nodes in the graph.
772   mapNodesInPOT(G);
773 
774   // Return the original node, remapped.
775   return *getMappedOp(&FirstN);
776 }
777 
778 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
779   // If the value already exists in the map, use it.
780   if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
781     return *NewMD;
782 
783   if (isa<MDString>(MD))
784     return const_cast<Metadata *>(MD);
785 
786   // This is a module-level metadata.  If nothing at the module level is
787   // changing, use an identity mapping.
788   if ((Flags & RF_NoModuleLevelChanges))
789     return const_cast<Metadata *>(MD);
790 
791   if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
792     // Don't memoize ConstantAsMetadata.  Instead of lasting until the
793     // LLVMContext is destroyed, they can be deleted when the GlobalValue they
794     // reference is destructed.  These aren't super common, so the extra
795     // indirection isn't that expensive.
796     return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
797   }
798 
799   assert(isa<MDNode>(MD) && "Expected a metadata node");
800 
801   return None;
802 }
803 
804 Metadata *Mapper::mapMetadata(const Metadata *MD) {
805   assert(MD && "Expected valid metadata");
806   assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
807 
808   if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
809     return *NewMD;
810 
811   return MDNodeMapper(*this).map(*cast<MDNode>(MD));
812 }
813 
814 void Mapper::flush() {
815   // Flush out the worklist of global values.
816   while (!Worklist.empty()) {
817     WorklistEntry E = Worklist.pop_back_val();
818     CurrentMCID = E.MCID;
819     switch (E.Kind) {
820     case WorklistEntry::MapGlobalInit:
821       E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
822       remapGlobalObjectMetadata(*E.Data.GVInit.GV);
823       break;
824     case WorklistEntry::MapAppendingVar: {
825       unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
826       mapAppendingVariable(*E.Data.AppendingGV.GV,
827                            E.Data.AppendingGV.InitPrefix,
828                            E.AppendingGVIsOldCtorDtor,
829                            makeArrayRef(AppendingInits).slice(PrefixSize));
830       AppendingInits.resize(PrefixSize);
831       break;
832     }
833     case WorklistEntry::MapGlobalIndirectSymbol:
834       E.Data.GlobalIndirectSymbol.GIS->setIndirectSymbol(
835           mapConstant(E.Data.GlobalIndirectSymbol.Target));
836       break;
837     case WorklistEntry::RemapFunction:
838       remapFunction(*E.Data.RemapF);
839       break;
840     }
841   }
842   CurrentMCID = 0;
843 
844   // Finish logic for block addresses now that all global values have been
845   // handled.
846   while (!DelayedBBs.empty()) {
847     DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
848     BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
849     DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
850   }
851 }
852 
853 void Mapper::remapInstruction(Instruction *I) {
854   // Remap operands.
855   for (Use &Op : I->operands()) {
856     Value *V = mapValue(Op);
857     // If we aren't ignoring missing entries, assert that something happened.
858     if (V)
859       Op = V;
860     else
861       assert((Flags & RF_IgnoreMissingLocals) &&
862              "Referenced value not in value map!");
863   }
864 
865   // Remap phi nodes' incoming blocks.
866   if (PHINode *PN = dyn_cast<PHINode>(I)) {
867     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
868       Value *V = mapValue(PN->getIncomingBlock(i));
869       // If we aren't ignoring missing entries, assert that something happened.
870       if (V)
871         PN->setIncomingBlock(i, cast<BasicBlock>(V));
872       else
873         assert((Flags & RF_IgnoreMissingLocals) &&
874                "Referenced block not in value map!");
875     }
876   }
877 
878   // Remap attached metadata.
879   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
880   I->getAllMetadata(MDs);
881   for (const auto &MI : MDs) {
882     MDNode *Old = MI.second;
883     MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
884     if (New != Old)
885       I->setMetadata(MI.first, New);
886   }
887 
888   if (!TypeMapper)
889     return;
890 
891   // If the instruction's type is being remapped, do so now.
892   if (auto CS = CallSite(I)) {
893     SmallVector<Type *, 3> Tys;
894     FunctionType *FTy = CS.getFunctionType();
895     Tys.reserve(FTy->getNumParams());
896     for (Type *Ty : FTy->params())
897       Tys.push_back(TypeMapper->remapType(Ty));
898     CS.mutateFunctionType(FunctionType::get(
899         TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
900 
901     LLVMContext &C = CS->getContext();
902     AttributeList Attrs = CS.getAttributes();
903     for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
904       if (Attrs.hasAttribute(i, Attribute::ByVal)) {
905         Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType();
906         if (!Ty)
907           continue;
908 
909         Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal);
910         Attrs = Attrs.addAttribute(
911             C, i, Attribute::getWithByValType(C, TypeMapper->remapType(Ty)));
912       }
913     }
914     CS.setAttributes(Attrs);
915     return;
916   }
917   if (auto *AI = dyn_cast<AllocaInst>(I))
918     AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
919   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
920     GEP->setSourceElementType(
921         TypeMapper->remapType(GEP->getSourceElementType()));
922     GEP->setResultElementType(
923         TypeMapper->remapType(GEP->getResultElementType()));
924   }
925   I->mutateType(TypeMapper->remapType(I->getType()));
926 }
927 
928 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
929   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
930   GO.getAllMetadata(MDs);
931   GO.clearMetadata();
932   for (const auto &I : MDs)
933     GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
934 }
935 
936 void Mapper::remapFunction(Function &F) {
937   // Remap the operands.
938   for (Use &Op : F.operands())
939     if (Op)
940       Op = mapValue(Op);
941 
942   // Remap the metadata attachments.
943   remapGlobalObjectMetadata(F);
944 
945   // Remap the argument types.
946   if (TypeMapper)
947     for (Argument &A : F.args())
948       A.mutateType(TypeMapper->remapType(A.getType()));
949 
950   // Remap the instructions.
951   for (BasicBlock &BB : F)
952     for (Instruction &I : BB)
953       remapInstruction(&I);
954 }
955 
956 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
957                                   bool IsOldCtorDtor,
958                                   ArrayRef<Constant *> NewMembers) {
959   SmallVector<Constant *, 16> Elements;
960   if (InitPrefix) {
961     unsigned NumElements =
962         cast<ArrayType>(InitPrefix->getType())->getNumElements();
963     for (unsigned I = 0; I != NumElements; ++I)
964       Elements.push_back(InitPrefix->getAggregateElement(I));
965   }
966 
967   PointerType *VoidPtrTy;
968   Type *EltTy;
969   if (IsOldCtorDtor) {
970     // FIXME: This upgrade is done during linking to support the C API.  See
971     // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
972     VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
973     auto &ST = *cast<StructType>(NewMembers.front()->getType());
974     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
975     EltTy = StructType::get(GV.getContext(), Tys, false);
976   }
977 
978   for (auto *V : NewMembers) {
979     Constant *NewV;
980     if (IsOldCtorDtor) {
981       auto *S = cast<ConstantStruct>(V);
982       auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
983       auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
984       Constant *Null = Constant::getNullValue(VoidPtrTy);
985       NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
986     } else {
987       NewV = cast_or_null<Constant>(mapValue(V));
988     }
989     Elements.push_back(NewV);
990   }
991 
992   GV.setInitializer(ConstantArray::get(
993       cast<ArrayType>(GV.getType()->getElementType()), Elements));
994 }
995 
996 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
997                                           unsigned MCID) {
998   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
999   assert(MCID < MCs.size() && "Invalid mapping context");
1000 
1001   WorklistEntry WE;
1002   WE.Kind = WorklistEntry::MapGlobalInit;
1003   WE.MCID = MCID;
1004   WE.Data.GVInit.GV = &GV;
1005   WE.Data.GVInit.Init = &Init;
1006   Worklist.push_back(WE);
1007 }
1008 
1009 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1010                                           Constant *InitPrefix,
1011                                           bool IsOldCtorDtor,
1012                                           ArrayRef<Constant *> NewMembers,
1013                                           unsigned MCID) {
1014   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1015   assert(MCID < MCs.size() && "Invalid mapping context");
1016 
1017   WorklistEntry WE;
1018   WE.Kind = WorklistEntry::MapAppendingVar;
1019   WE.MCID = MCID;
1020   WE.Data.AppendingGV.GV = &GV;
1021   WE.Data.AppendingGV.InitPrefix = InitPrefix;
1022   WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1023   WE.AppendingGVNumNewMembers = NewMembers.size();
1024   Worklist.push_back(WE);
1025   AppendingInits.append(NewMembers.begin(), NewMembers.end());
1026 }
1027 
1028 void Mapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS,
1029                                              Constant &Target, unsigned MCID) {
1030   assert(AlreadyScheduled.insert(&GIS).second && "Should not reschedule");
1031   assert(MCID < MCs.size() && "Invalid mapping context");
1032 
1033   WorklistEntry WE;
1034   WE.Kind = WorklistEntry::MapGlobalIndirectSymbol;
1035   WE.MCID = MCID;
1036   WE.Data.GlobalIndirectSymbol.GIS = &GIS;
1037   WE.Data.GlobalIndirectSymbol.Target = &Target;
1038   Worklist.push_back(WE);
1039 }
1040 
1041 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1042   assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1043   assert(MCID < MCs.size() && "Invalid mapping context");
1044 
1045   WorklistEntry WE;
1046   WE.Kind = WorklistEntry::RemapFunction;
1047   WE.MCID = MCID;
1048   WE.Data.RemapF = &F;
1049   Worklist.push_back(WE);
1050 }
1051 
1052 void Mapper::addFlags(RemapFlags Flags) {
1053   assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1054   this->Flags = this->Flags | Flags;
1055 }
1056 
1057 static Mapper *getAsMapper(void *pImpl) {
1058   return reinterpret_cast<Mapper *>(pImpl);
1059 }
1060 
1061 namespace {
1062 
1063 class FlushingMapper {
1064   Mapper &M;
1065 
1066 public:
1067   explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1068     assert(!M.hasWorkToDo() && "Expected to be flushed");
1069   }
1070 
1071   ~FlushingMapper() { M.flush(); }
1072 
1073   Mapper *operator->() const { return &M; }
1074 };
1075 
1076 } // end anonymous namespace
1077 
1078 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1079                          ValueMapTypeRemapper *TypeMapper,
1080                          ValueMaterializer *Materializer)
1081     : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1082 
1083 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1084 
1085 unsigned
1086 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1087                                              ValueMaterializer *Materializer) {
1088   return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1089 }
1090 
1091 void ValueMapper::addFlags(RemapFlags Flags) {
1092   FlushingMapper(pImpl)->addFlags(Flags);
1093 }
1094 
1095 Value *ValueMapper::mapValue(const Value &V) {
1096   return FlushingMapper(pImpl)->mapValue(&V);
1097 }
1098 
1099 Constant *ValueMapper::mapConstant(const Constant &C) {
1100   return cast_or_null<Constant>(mapValue(C));
1101 }
1102 
1103 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1104   return FlushingMapper(pImpl)->mapMetadata(&MD);
1105 }
1106 
1107 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1108   return cast_or_null<MDNode>(mapMetadata(N));
1109 }
1110 
1111 void ValueMapper::remapInstruction(Instruction &I) {
1112   FlushingMapper(pImpl)->remapInstruction(&I);
1113 }
1114 
1115 void ValueMapper::remapFunction(Function &F) {
1116   FlushingMapper(pImpl)->remapFunction(F);
1117 }
1118 
1119 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1120                                                Constant &Init,
1121                                                unsigned MCID) {
1122   getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1123 }
1124 
1125 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1126                                                Constant *InitPrefix,
1127                                                bool IsOldCtorDtor,
1128                                                ArrayRef<Constant *> NewMembers,
1129                                                unsigned MCID) {
1130   getAsMapper(pImpl)->scheduleMapAppendingVariable(
1131       GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1132 }
1133 
1134 void ValueMapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS,
1135                                                   Constant &Target,
1136                                                   unsigned MCID) {
1137   getAsMapper(pImpl)->scheduleMapGlobalIndirectSymbol(GIS, Target, MCID);
1138 }
1139 
1140 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1141   getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1142 }
1143