1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MapValue function, which is shared by various parts of 10 // the lib/Transforms/Utils library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/ValueMapper.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalObject.h" 31 #include "llvm/IR/GlobalIndirectSymbol.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include <cassert> 42 #include <limits> 43 #include <memory> 44 #include <utility> 45 46 using namespace llvm; 47 48 // Out of line method to get vtable etc for class. 49 void ValueMapTypeRemapper::anchor() {} 50 void ValueMaterializer::anchor() {} 51 52 namespace { 53 54 /// A basic block used in a BlockAddress whose function body is not yet 55 /// materialized. 56 struct DelayedBasicBlock { 57 BasicBlock *OldBB; 58 std::unique_ptr<BasicBlock> TempBB; 59 60 DelayedBasicBlock(const BlockAddress &Old) 61 : OldBB(Old.getBasicBlock()), 62 TempBB(BasicBlock::Create(Old.getContext())) {} 63 }; 64 65 struct WorklistEntry { 66 enum EntryKind { 67 MapGlobalInit, 68 MapAppendingVar, 69 MapGlobalIndirectSymbol, 70 RemapFunction 71 }; 72 struct GVInitTy { 73 GlobalVariable *GV; 74 Constant *Init; 75 }; 76 struct AppendingGVTy { 77 GlobalVariable *GV; 78 Constant *InitPrefix; 79 }; 80 struct GlobalIndirectSymbolTy { 81 GlobalIndirectSymbol *GIS; 82 Constant *Target; 83 }; 84 85 unsigned Kind : 2; 86 unsigned MCID : 29; 87 unsigned AppendingGVIsOldCtorDtor : 1; 88 unsigned AppendingGVNumNewMembers; 89 union { 90 GVInitTy GVInit; 91 AppendingGVTy AppendingGV; 92 GlobalIndirectSymbolTy GlobalIndirectSymbol; 93 Function *RemapF; 94 } Data; 95 }; 96 97 struct MappingContext { 98 ValueToValueMapTy *VM; 99 ValueMaterializer *Materializer = nullptr; 100 101 /// Construct a MappingContext with a value map and materializer. 102 explicit MappingContext(ValueToValueMapTy &VM, 103 ValueMaterializer *Materializer = nullptr) 104 : VM(&VM), Materializer(Materializer) {} 105 }; 106 107 class Mapper { 108 friend class MDNodeMapper; 109 110 #ifndef NDEBUG 111 DenseSet<GlobalValue *> AlreadyScheduled; 112 #endif 113 114 RemapFlags Flags; 115 ValueMapTypeRemapper *TypeMapper; 116 unsigned CurrentMCID = 0; 117 SmallVector<MappingContext, 2> MCs; 118 SmallVector<WorklistEntry, 4> Worklist; 119 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 120 SmallVector<Constant *, 16> AppendingInits; 121 122 public: 123 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 124 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 125 : Flags(Flags), TypeMapper(TypeMapper), 126 MCs(1, MappingContext(VM, Materializer)) {} 127 128 /// ValueMapper should explicitly call \a flush() before destruction. 129 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 130 131 bool hasWorkToDo() const { return !Worklist.empty(); } 132 133 unsigned 134 registerAlternateMappingContext(ValueToValueMapTy &VM, 135 ValueMaterializer *Materializer = nullptr) { 136 MCs.push_back(MappingContext(VM, Materializer)); 137 return MCs.size() - 1; 138 } 139 140 void addFlags(RemapFlags Flags); 141 142 void remapGlobalObjectMetadata(GlobalObject &GO); 143 144 Value *mapValue(const Value *V); 145 void remapInstruction(Instruction *I); 146 void remapFunction(Function &F); 147 148 Constant *mapConstant(const Constant *C) { 149 return cast_or_null<Constant>(mapValue(C)); 150 } 151 152 /// Map metadata. 153 /// 154 /// Find the mapping for MD. Guarantees that the return will be resolved 155 /// (not an MDNode, or MDNode::isResolved() returns true). 156 Metadata *mapMetadata(const Metadata *MD); 157 158 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 159 unsigned MCID); 160 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 161 bool IsOldCtorDtor, 162 ArrayRef<Constant *> NewMembers, 163 unsigned MCID); 164 void scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, Constant &Target, 165 unsigned MCID); 166 void scheduleRemapFunction(Function &F, unsigned MCID); 167 168 void flush(); 169 170 private: 171 void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); 172 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 173 bool IsOldCtorDtor, 174 ArrayRef<Constant *> NewMembers); 175 void mapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, Constant &Target); 176 void remapFunction(Function &F, ValueToValueMapTy &VM); 177 178 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 179 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 180 181 Value *mapBlockAddress(const BlockAddress &BA); 182 183 /// Map metadata that doesn't require visiting operands. 184 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 185 186 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 187 Metadata *mapToSelf(const Metadata *MD); 188 }; 189 190 class MDNodeMapper { 191 Mapper &M; 192 193 /// Data about a node in \a UniquedGraph. 194 struct Data { 195 bool HasChanged = false; 196 unsigned ID = std::numeric_limits<unsigned>::max(); 197 TempMDNode Placeholder; 198 }; 199 200 /// A graph of uniqued nodes. 201 struct UniquedGraph { 202 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 203 SmallVector<MDNode *, 16> POT; // Post-order traversal. 204 205 /// Propagate changed operands through the post-order traversal. 206 /// 207 /// Iteratively update \a Data::HasChanged for each node based on \a 208 /// Data::HasChanged of its operands, until fixed point. 209 void propagateChanges(); 210 211 /// Get a forward reference to a node to use as an operand. 212 Metadata &getFwdReference(MDNode &Op); 213 }; 214 215 /// Worklist of distinct nodes whose operands need to be remapped. 216 SmallVector<MDNode *, 16> DistinctWorklist; 217 218 // Storage for a UniquedGraph. 219 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 220 SmallVector<MDNode *, 16> POTStorage; 221 222 public: 223 MDNodeMapper(Mapper &M) : M(M) {} 224 225 /// Map a metadata node (and its transitive operands). 226 /// 227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 228 /// algorithm handles distinct nodes and uniqued node subgraphs using 229 /// different strategies. 230 /// 231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 232 /// using \a mapDistinctNode(). Their mapping can always be computed 233 /// immediately without visiting operands, even if their operands change. 234 /// 235 /// The mapping for uniqued nodes depends on whether their operands change. 236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 238 /// added to \a DistinctWorklist with \a mapDistinctNode(). 239 /// 240 /// After mapping \c N itself, this function remaps the operands of the 241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 242 /// N has been mapped. 243 Metadata *map(const MDNode &N); 244 245 private: 246 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 247 /// 248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 251 /// operands uses the identity mapping. 252 /// 253 /// The algorithm works as follows: 254 /// 255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 256 /// save the post-order traversal in the given \a UniquedGraph, tracking 257 /// nodes' operands change. 258 /// 259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 260 /// through the \a UniquedGraph until fixed point, following the rule 261 /// that if a node changes, any node that references must also change. 262 /// 263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 264 /// (referencing new operands) where necessary. 265 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 266 267 /// Try to map the operand of an \a MDNode. 268 /// 269 /// If \c Op is already mapped, return the mapping. If it's not an \a 270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 271 /// return the result of \a mapDistinctNode(). 272 /// 273 /// \return None if \c Op is an unmapped uniqued \a MDNode. 274 /// \post getMappedOp(Op) only returns None if this returns None. 275 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 276 277 /// Map a distinct node. 278 /// 279 /// Return the mapping for the distinct node \c N, saving the result in \a 280 /// DistinctWorklist for later remapping. 281 /// 282 /// \pre \c N is not yet mapped. 283 /// \pre \c N.isDistinct(). 284 MDNode *mapDistinctNode(const MDNode &N); 285 286 /// Get a previously mapped node. 287 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 288 289 /// Create a post-order traversal of an unmapped uniqued node subgraph. 290 /// 291 /// This traverses the metadata graph deeply enough to map \c FirstN. It 292 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 293 /// metadata that has already been mapped will not be part of the POT. 294 /// 295 /// Each node that has a changed operand from outside the graph (e.g., a 296 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 297 /// is marked with \a Data::HasChanged. 298 /// 299 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 300 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 301 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 302 /// to change because of operands outside the graph. 303 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 304 305 /// Visit the operands of a uniqued node in the POT. 306 /// 307 /// Visit the operands in the range from \c I to \c E, returning the first 308 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 309 /// where to continue the loop through the operands. 310 /// 311 /// This sets \c HasChanged if any of the visited operands change. 312 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 313 MDNode::op_iterator E, bool &HasChanged); 314 315 /// Map all the nodes in the given uniqued graph. 316 /// 317 /// This visits all the nodes in \c G in post-order, using the identity 318 /// mapping or creating a new node depending on \a Data::HasChanged. 319 /// 320 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 321 /// their operands outside of \c G. 322 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 323 /// operands have changed. 324 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 325 void mapNodesInPOT(UniquedGraph &G); 326 327 /// Remap a node's operands using the given functor. 328 /// 329 /// Iterate through the operands of \c N and update them in place using \c 330 /// mapOperand. 331 /// 332 /// \pre N.isDistinct() or N.isTemporary(). 333 template <class OperandMapper> 334 void remapOperands(MDNode &N, OperandMapper mapOperand); 335 }; 336 337 } // end anonymous namespace 338 339 Value *Mapper::mapValue(const Value *V) { 340 ValueToValueMapTy::iterator I = getVM().find(V); 341 342 // If the value already exists in the map, use it. 343 if (I != getVM().end()) { 344 assert(I->second && "Unexpected null mapping"); 345 return I->second; 346 } 347 348 // If we have a materializer and it can materialize a value, use that. 349 if (auto *Materializer = getMaterializer()) { 350 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 351 getVM()[V] = NewV; 352 return NewV; 353 } 354 } 355 356 // Global values do not need to be seeded into the VM if they 357 // are using the identity mapping. 358 if (isa<GlobalValue>(V)) { 359 if (Flags & RF_NullMapMissingGlobalValues) 360 return nullptr; 361 return getVM()[V] = const_cast<Value *>(V); 362 } 363 364 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 365 // Inline asm may need *type* remapping. 366 FunctionType *NewTy = IA->getFunctionType(); 367 if (TypeMapper) { 368 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 369 370 if (NewTy != IA->getFunctionType()) 371 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 372 IA->hasSideEffects(), IA->isAlignStack(), 373 IA->getDialect()); 374 } 375 376 return getVM()[V] = const_cast<Value *>(V); 377 } 378 379 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 380 const Metadata *MD = MDV->getMetadata(); 381 382 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 383 // Look through to grab the local value. 384 if (Value *LV = mapValue(LAM->getValue())) { 385 if (V == LAM->getValue()) 386 return const_cast<Value *>(V); 387 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 388 } 389 390 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 391 // ensures metadata operands only reference defined SSA values. 392 return (Flags & RF_IgnoreMissingLocals) 393 ? nullptr 394 : MetadataAsValue::get(V->getContext(), 395 MDTuple::get(V->getContext(), None)); 396 } 397 398 // If this is a module-level metadata and we know that nothing at the module 399 // level is changing, then use an identity mapping. 400 if (Flags & RF_NoModuleLevelChanges) 401 return getVM()[V] = const_cast<Value *>(V); 402 403 // Map the metadata and turn it into a value. 404 auto *MappedMD = mapMetadata(MD); 405 if (MD == MappedMD) 406 return getVM()[V] = const_cast<Value *>(V); 407 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 408 } 409 410 // Okay, this either must be a constant (which may or may not be mappable) or 411 // is something that is not in the mapping table. 412 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 413 if (!C) 414 return nullptr; 415 416 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 417 return mapBlockAddress(*BA); 418 419 auto mapValueOrNull = [this](Value *V) { 420 auto Mapped = mapValue(V); 421 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 422 "Unexpected null mapping for constant operand without " 423 "NullMapMissingGlobalValues flag"); 424 return Mapped; 425 }; 426 427 // Otherwise, we have some other constant to remap. Start by checking to see 428 // if all operands have an identity remapping. 429 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 430 Value *Mapped = nullptr; 431 for (; OpNo != NumOperands; ++OpNo) { 432 Value *Op = C->getOperand(OpNo); 433 Mapped = mapValueOrNull(Op); 434 if (!Mapped) 435 return nullptr; 436 if (Mapped != Op) 437 break; 438 } 439 440 // See if the type mapper wants to remap the type as well. 441 Type *NewTy = C->getType(); 442 if (TypeMapper) 443 NewTy = TypeMapper->remapType(NewTy); 444 445 // If the result type and all operands match up, then just insert an identity 446 // mapping. 447 if (OpNo == NumOperands && NewTy == C->getType()) 448 return getVM()[V] = C; 449 450 // Okay, we need to create a new constant. We've already processed some or 451 // all of the operands, set them all up now. 452 SmallVector<Constant*, 8> Ops; 453 Ops.reserve(NumOperands); 454 for (unsigned j = 0; j != OpNo; ++j) 455 Ops.push_back(cast<Constant>(C->getOperand(j))); 456 457 // If one of the operands mismatch, push it and the other mapped operands. 458 if (OpNo != NumOperands) { 459 Ops.push_back(cast<Constant>(Mapped)); 460 461 // Map the rest of the operands that aren't processed yet. 462 for (++OpNo; OpNo != NumOperands; ++OpNo) { 463 Mapped = mapValueOrNull(C->getOperand(OpNo)); 464 if (!Mapped) 465 return nullptr; 466 Ops.push_back(cast<Constant>(Mapped)); 467 } 468 } 469 Type *NewSrcTy = nullptr; 470 if (TypeMapper) 471 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 472 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 473 474 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 475 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 476 if (isa<ConstantArray>(C)) 477 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 478 if (isa<ConstantStruct>(C)) 479 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 480 if (isa<ConstantVector>(C)) 481 return getVM()[V] = ConstantVector::get(Ops); 482 // If this is a no-operand constant, it must be because the type was remapped. 483 if (isa<UndefValue>(C)) 484 return getVM()[V] = UndefValue::get(NewTy); 485 if (isa<ConstantAggregateZero>(C)) 486 return getVM()[V] = ConstantAggregateZero::get(NewTy); 487 assert(isa<ConstantPointerNull>(C)); 488 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 489 } 490 491 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 492 Function *F = cast<Function>(mapValue(BA.getFunction())); 493 494 // F may not have materialized its initializer. In that case, create a 495 // dummy basic block for now, and replace it once we've materialized all 496 // the initializers. 497 BasicBlock *BB; 498 if (F->empty()) { 499 DelayedBBs.push_back(DelayedBasicBlock(BA)); 500 BB = DelayedBBs.back().TempBB.get(); 501 } else { 502 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 503 } 504 505 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 506 } 507 508 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 509 getVM().MD()[Key].reset(Val); 510 return Val; 511 } 512 513 Metadata *Mapper::mapToSelf(const Metadata *MD) { 514 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 515 } 516 517 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 518 if (!Op) 519 return nullptr; 520 521 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 522 #ifndef NDEBUG 523 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 524 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 525 M.getVM().getMappedMD(Op)) && 526 "Expected Value to be memoized"); 527 else 528 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 529 "Expected result to be memoized"); 530 #endif 531 return *MappedOp; 532 } 533 534 const MDNode &N = *cast<MDNode>(Op); 535 if (N.isDistinct()) 536 return mapDistinctNode(N); 537 return None; 538 } 539 540 static Metadata *cloneOrBuildODR(const MDNode &N) { 541 auto *CT = dyn_cast<DICompositeType>(&N); 542 // If ODR type uniquing is enabled, we would have uniqued composite types 543 // with identifiers during bitcode reading, so we can just use CT. 544 if (CT && CT->getContext().isODRUniquingDebugTypes() && 545 CT->getIdentifier() != "") 546 return const_cast<DICompositeType *>(CT); 547 return MDNode::replaceWithDistinct(N.clone()); 548 } 549 550 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 551 assert(N.isDistinct() && "Expected a distinct node"); 552 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 553 DistinctWorklist.push_back( 554 cast<MDNode>((M.Flags & RF_MoveDistinctMDs) 555 ? M.mapToSelf(&N) 556 : M.mapToMetadata(&N, cloneOrBuildODR(N)))); 557 return DistinctWorklist.back(); 558 } 559 560 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 561 Value *MappedV) { 562 if (CMD.getValue() == MappedV) 563 return const_cast<ConstantAsMetadata *>(&CMD); 564 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 565 } 566 567 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 568 if (!Op) 569 return nullptr; 570 571 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 572 return *MappedOp; 573 574 if (isa<MDString>(Op)) 575 return const_cast<Metadata *>(Op); 576 577 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 578 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 579 580 return None; 581 } 582 583 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 584 auto Where = Info.find(&Op); 585 assert(Where != Info.end() && "Expected a valid reference"); 586 587 auto &OpD = Where->second; 588 if (!OpD.HasChanged) 589 return Op; 590 591 // Lazily construct a temporary node. 592 if (!OpD.Placeholder) 593 OpD.Placeholder = Op.clone(); 594 595 return *OpD.Placeholder; 596 } 597 598 template <class OperandMapper> 599 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 600 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 601 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 602 Metadata *Old = N.getOperand(I); 603 Metadata *New = mapOperand(Old); 604 605 if (Old != New) 606 N.replaceOperandWith(I, New); 607 } 608 } 609 610 namespace { 611 612 /// An entry in the worklist for the post-order traversal. 613 struct POTWorklistEntry { 614 MDNode *N; ///< Current node. 615 MDNode::op_iterator Op; ///< Current operand of \c N. 616 617 /// Keep a flag of whether operands have changed in the worklist to avoid 618 /// hitting the map in \a UniquedGraph. 619 bool HasChanged = false; 620 621 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 622 }; 623 624 } // end anonymous namespace 625 626 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 627 assert(G.Info.empty() && "Expected a fresh traversal"); 628 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 629 630 // Construct a post-order traversal of the uniqued subgraph under FirstN. 631 bool AnyChanges = false; 632 SmallVector<POTWorklistEntry, 16> Worklist; 633 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 634 (void)G.Info[&FirstN]; 635 while (!Worklist.empty()) { 636 // Start or continue the traversal through the this node's operands. 637 auto &WE = Worklist.back(); 638 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 639 // Push a new node to traverse first. 640 Worklist.push_back(POTWorklistEntry(*N)); 641 continue; 642 } 643 644 // Push the node onto the POT. 645 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 646 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 647 auto &D = G.Info[WE.N]; 648 AnyChanges |= D.HasChanged = WE.HasChanged; 649 D.ID = G.POT.size(); 650 G.POT.push_back(WE.N); 651 652 // Pop the node off the worklist. 653 Worklist.pop_back(); 654 } 655 return AnyChanges; 656 } 657 658 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 659 MDNode::op_iterator E, bool &HasChanged) { 660 while (I != E) { 661 Metadata *Op = *I++; // Increment even on early return. 662 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 663 // Check if the operand changes. 664 HasChanged |= Op != *MappedOp; 665 continue; 666 } 667 668 // A uniqued metadata node. 669 MDNode &OpN = *cast<MDNode>(Op); 670 assert(OpN.isUniqued() && 671 "Only uniqued operands cannot be mapped immediately"); 672 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 673 return &OpN; // This is a new one. Return it. 674 } 675 return nullptr; 676 } 677 678 void MDNodeMapper::UniquedGraph::propagateChanges() { 679 bool AnyChanges; 680 do { 681 AnyChanges = false; 682 for (MDNode *N : POT) { 683 auto &D = Info[N]; 684 if (D.HasChanged) 685 continue; 686 687 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 688 auto Where = Info.find(Op); 689 return Where != Info.end() && Where->second.HasChanged; 690 })) 691 continue; 692 693 AnyChanges = D.HasChanged = true; 694 } 695 } while (AnyChanges); 696 } 697 698 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 699 // Construct uniqued nodes, building forward references as necessary. 700 SmallVector<MDNode *, 16> CyclicNodes; 701 for (auto *N : G.POT) { 702 auto &D = G.Info[N]; 703 if (!D.HasChanged) { 704 // The node hasn't changed. 705 M.mapToSelf(N); 706 continue; 707 } 708 709 // Remember whether this node had a placeholder. 710 bool HadPlaceholder(D.Placeholder); 711 712 // Clone the uniqued node and remap the operands. 713 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 714 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 715 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 716 return *MappedOp; 717 (void)D; 718 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 719 return &G.getFwdReference(*cast<MDNode>(Old)); 720 }); 721 722 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 723 M.mapToMetadata(N, NewN); 724 725 // Nodes that were referenced out of order in the POT are involved in a 726 // uniquing cycle. 727 if (HadPlaceholder) 728 CyclicNodes.push_back(NewN); 729 } 730 731 // Resolve cycles. 732 for (auto *N : CyclicNodes) 733 if (!N->isResolved()) 734 N->resolveCycles(); 735 } 736 737 Metadata *MDNodeMapper::map(const MDNode &N) { 738 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 739 assert(!(M.Flags & RF_NoModuleLevelChanges) && 740 "MDNodeMapper::map assumes module-level changes"); 741 742 // Require resolved nodes whenever metadata might be remapped. 743 assert(N.isResolved() && "Unexpected unresolved node"); 744 745 Metadata *MappedN = 746 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 747 while (!DistinctWorklist.empty()) 748 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 749 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 750 return *MappedOp; 751 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 752 }); 753 return MappedN; 754 } 755 756 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 757 assert(FirstN.isUniqued() && "Expected uniqued node"); 758 759 // Create a post-order traversal of uniqued nodes under FirstN. 760 UniquedGraph G; 761 if (!createPOT(G, FirstN)) { 762 // Return early if no nodes have changed. 763 for (const MDNode *N : G.POT) 764 M.mapToSelf(N); 765 return &const_cast<MDNode &>(FirstN); 766 } 767 768 // Update graph with all nodes that have changed. 769 G.propagateChanges(); 770 771 // Map all the nodes in the graph. 772 mapNodesInPOT(G); 773 774 // Return the original node, remapped. 775 return *getMappedOp(&FirstN); 776 } 777 778 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 779 // If the value already exists in the map, use it. 780 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 781 return *NewMD; 782 783 if (isa<MDString>(MD)) 784 return const_cast<Metadata *>(MD); 785 786 // This is a module-level metadata. If nothing at the module level is 787 // changing, use an identity mapping. 788 if ((Flags & RF_NoModuleLevelChanges)) 789 return const_cast<Metadata *>(MD); 790 791 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 792 // Don't memoize ConstantAsMetadata. Instead of lasting until the 793 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 794 // reference is destructed. These aren't super common, so the extra 795 // indirection isn't that expensive. 796 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 797 } 798 799 assert(isa<MDNode>(MD) && "Expected a metadata node"); 800 801 return None; 802 } 803 804 Metadata *Mapper::mapMetadata(const Metadata *MD) { 805 assert(MD && "Expected valid metadata"); 806 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 807 808 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 809 return *NewMD; 810 811 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 812 } 813 814 void Mapper::flush() { 815 // Flush out the worklist of global values. 816 while (!Worklist.empty()) { 817 WorklistEntry E = Worklist.pop_back_val(); 818 CurrentMCID = E.MCID; 819 switch (E.Kind) { 820 case WorklistEntry::MapGlobalInit: 821 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 822 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 823 break; 824 case WorklistEntry::MapAppendingVar: { 825 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 826 mapAppendingVariable(*E.Data.AppendingGV.GV, 827 E.Data.AppendingGV.InitPrefix, 828 E.AppendingGVIsOldCtorDtor, 829 makeArrayRef(AppendingInits).slice(PrefixSize)); 830 AppendingInits.resize(PrefixSize); 831 break; 832 } 833 case WorklistEntry::MapGlobalIndirectSymbol: 834 E.Data.GlobalIndirectSymbol.GIS->setIndirectSymbol( 835 mapConstant(E.Data.GlobalIndirectSymbol.Target)); 836 break; 837 case WorklistEntry::RemapFunction: 838 remapFunction(*E.Data.RemapF); 839 break; 840 } 841 } 842 CurrentMCID = 0; 843 844 // Finish logic for block addresses now that all global values have been 845 // handled. 846 while (!DelayedBBs.empty()) { 847 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 848 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 849 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 850 } 851 } 852 853 void Mapper::remapInstruction(Instruction *I) { 854 // Remap operands. 855 for (Use &Op : I->operands()) { 856 Value *V = mapValue(Op); 857 // If we aren't ignoring missing entries, assert that something happened. 858 if (V) 859 Op = V; 860 else 861 assert((Flags & RF_IgnoreMissingLocals) && 862 "Referenced value not in value map!"); 863 } 864 865 // Remap phi nodes' incoming blocks. 866 if (PHINode *PN = dyn_cast<PHINode>(I)) { 867 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 868 Value *V = mapValue(PN->getIncomingBlock(i)); 869 // If we aren't ignoring missing entries, assert that something happened. 870 if (V) 871 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 872 else 873 assert((Flags & RF_IgnoreMissingLocals) && 874 "Referenced block not in value map!"); 875 } 876 } 877 878 // Remap attached metadata. 879 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 880 I->getAllMetadata(MDs); 881 for (const auto &MI : MDs) { 882 MDNode *Old = MI.second; 883 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 884 if (New != Old) 885 I->setMetadata(MI.first, New); 886 } 887 888 if (!TypeMapper) 889 return; 890 891 // If the instruction's type is being remapped, do so now. 892 if (auto CS = CallSite(I)) { 893 SmallVector<Type *, 3> Tys; 894 FunctionType *FTy = CS.getFunctionType(); 895 Tys.reserve(FTy->getNumParams()); 896 for (Type *Ty : FTy->params()) 897 Tys.push_back(TypeMapper->remapType(Ty)); 898 CS.mutateFunctionType(FunctionType::get( 899 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 900 901 LLVMContext &C = CS->getContext(); 902 AttributeList Attrs = CS.getAttributes(); 903 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 904 if (Attrs.hasAttribute(i, Attribute::ByVal)) { 905 Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType(); 906 if (!Ty) 907 continue; 908 909 Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal); 910 Attrs = Attrs.addAttribute( 911 C, i, Attribute::getWithByValType(C, TypeMapper->remapType(Ty))); 912 } 913 } 914 CS.setAttributes(Attrs); 915 return; 916 } 917 if (auto *AI = dyn_cast<AllocaInst>(I)) 918 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 919 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 920 GEP->setSourceElementType( 921 TypeMapper->remapType(GEP->getSourceElementType())); 922 GEP->setResultElementType( 923 TypeMapper->remapType(GEP->getResultElementType())); 924 } 925 I->mutateType(TypeMapper->remapType(I->getType())); 926 } 927 928 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 929 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 930 GO.getAllMetadata(MDs); 931 GO.clearMetadata(); 932 for (const auto &I : MDs) 933 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 934 } 935 936 void Mapper::remapFunction(Function &F) { 937 // Remap the operands. 938 for (Use &Op : F.operands()) 939 if (Op) 940 Op = mapValue(Op); 941 942 // Remap the metadata attachments. 943 remapGlobalObjectMetadata(F); 944 945 // Remap the argument types. 946 if (TypeMapper) 947 for (Argument &A : F.args()) 948 A.mutateType(TypeMapper->remapType(A.getType())); 949 950 // Remap the instructions. 951 for (BasicBlock &BB : F) 952 for (Instruction &I : BB) 953 remapInstruction(&I); 954 } 955 956 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 957 bool IsOldCtorDtor, 958 ArrayRef<Constant *> NewMembers) { 959 SmallVector<Constant *, 16> Elements; 960 if (InitPrefix) { 961 unsigned NumElements = 962 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 963 for (unsigned I = 0; I != NumElements; ++I) 964 Elements.push_back(InitPrefix->getAggregateElement(I)); 965 } 966 967 PointerType *VoidPtrTy; 968 Type *EltTy; 969 if (IsOldCtorDtor) { 970 // FIXME: This upgrade is done during linking to support the C API. See 971 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 972 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 973 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 974 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 975 EltTy = StructType::get(GV.getContext(), Tys, false); 976 } 977 978 for (auto *V : NewMembers) { 979 Constant *NewV; 980 if (IsOldCtorDtor) { 981 auto *S = cast<ConstantStruct>(V); 982 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 983 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 984 Constant *Null = Constant::getNullValue(VoidPtrTy); 985 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 986 } else { 987 NewV = cast_or_null<Constant>(mapValue(V)); 988 } 989 Elements.push_back(NewV); 990 } 991 992 GV.setInitializer(ConstantArray::get( 993 cast<ArrayType>(GV.getType()->getElementType()), Elements)); 994 } 995 996 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 997 unsigned MCID) { 998 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 999 assert(MCID < MCs.size() && "Invalid mapping context"); 1000 1001 WorklistEntry WE; 1002 WE.Kind = WorklistEntry::MapGlobalInit; 1003 WE.MCID = MCID; 1004 WE.Data.GVInit.GV = &GV; 1005 WE.Data.GVInit.Init = &Init; 1006 Worklist.push_back(WE); 1007 } 1008 1009 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1010 Constant *InitPrefix, 1011 bool IsOldCtorDtor, 1012 ArrayRef<Constant *> NewMembers, 1013 unsigned MCID) { 1014 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1015 assert(MCID < MCs.size() && "Invalid mapping context"); 1016 1017 WorklistEntry WE; 1018 WE.Kind = WorklistEntry::MapAppendingVar; 1019 WE.MCID = MCID; 1020 WE.Data.AppendingGV.GV = &GV; 1021 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1022 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1023 WE.AppendingGVNumNewMembers = NewMembers.size(); 1024 Worklist.push_back(WE); 1025 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1026 } 1027 1028 void Mapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, 1029 Constant &Target, unsigned MCID) { 1030 assert(AlreadyScheduled.insert(&GIS).second && "Should not reschedule"); 1031 assert(MCID < MCs.size() && "Invalid mapping context"); 1032 1033 WorklistEntry WE; 1034 WE.Kind = WorklistEntry::MapGlobalIndirectSymbol; 1035 WE.MCID = MCID; 1036 WE.Data.GlobalIndirectSymbol.GIS = &GIS; 1037 WE.Data.GlobalIndirectSymbol.Target = &Target; 1038 Worklist.push_back(WE); 1039 } 1040 1041 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1042 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1043 assert(MCID < MCs.size() && "Invalid mapping context"); 1044 1045 WorklistEntry WE; 1046 WE.Kind = WorklistEntry::RemapFunction; 1047 WE.MCID = MCID; 1048 WE.Data.RemapF = &F; 1049 Worklist.push_back(WE); 1050 } 1051 1052 void Mapper::addFlags(RemapFlags Flags) { 1053 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1054 this->Flags = this->Flags | Flags; 1055 } 1056 1057 static Mapper *getAsMapper(void *pImpl) { 1058 return reinterpret_cast<Mapper *>(pImpl); 1059 } 1060 1061 namespace { 1062 1063 class FlushingMapper { 1064 Mapper &M; 1065 1066 public: 1067 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1068 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1069 } 1070 1071 ~FlushingMapper() { M.flush(); } 1072 1073 Mapper *operator->() const { return &M; } 1074 }; 1075 1076 } // end anonymous namespace 1077 1078 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1079 ValueMapTypeRemapper *TypeMapper, 1080 ValueMaterializer *Materializer) 1081 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1082 1083 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1084 1085 unsigned 1086 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1087 ValueMaterializer *Materializer) { 1088 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1089 } 1090 1091 void ValueMapper::addFlags(RemapFlags Flags) { 1092 FlushingMapper(pImpl)->addFlags(Flags); 1093 } 1094 1095 Value *ValueMapper::mapValue(const Value &V) { 1096 return FlushingMapper(pImpl)->mapValue(&V); 1097 } 1098 1099 Constant *ValueMapper::mapConstant(const Constant &C) { 1100 return cast_or_null<Constant>(mapValue(C)); 1101 } 1102 1103 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1104 return FlushingMapper(pImpl)->mapMetadata(&MD); 1105 } 1106 1107 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1108 return cast_or_null<MDNode>(mapMetadata(N)); 1109 } 1110 1111 void ValueMapper::remapInstruction(Instruction &I) { 1112 FlushingMapper(pImpl)->remapInstruction(&I); 1113 } 1114 1115 void ValueMapper::remapFunction(Function &F) { 1116 FlushingMapper(pImpl)->remapFunction(F); 1117 } 1118 1119 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1120 Constant &Init, 1121 unsigned MCID) { 1122 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1123 } 1124 1125 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1126 Constant *InitPrefix, 1127 bool IsOldCtorDtor, 1128 ArrayRef<Constant *> NewMembers, 1129 unsigned MCID) { 1130 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1131 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1132 } 1133 1134 void ValueMapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, 1135 Constant &Target, 1136 unsigned MCID) { 1137 getAsMapper(pImpl)->scheduleMapGlobalIndirectSymbol(GIS, Target, MCID); 1138 } 1139 1140 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1141 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1142 } 1143