1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MapValue function, which is shared by various parts of 10 // the lib/Transforms/Utils library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/ValueMapper.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/IR/Argument.h" 21 #include "llvm/IR/BasicBlock.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/GlobalIFunc.h" 29 #include "llvm/IR/GlobalObject.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/Debug.h" 40 #include <cassert> 41 #include <limits> 42 #include <memory> 43 #include <utility> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "value-mapper" 48 49 // Out of line method to get vtable etc for class. 50 void ValueMapTypeRemapper::anchor() {} 51 void ValueMaterializer::anchor() {} 52 53 namespace { 54 55 /// A basic block used in a BlockAddress whose function body is not yet 56 /// materialized. 57 struct DelayedBasicBlock { 58 BasicBlock *OldBB; 59 std::unique_ptr<BasicBlock> TempBB; 60 61 DelayedBasicBlock(const BlockAddress &Old) 62 : OldBB(Old.getBasicBlock()), 63 TempBB(BasicBlock::Create(Old.getContext())) {} 64 }; 65 66 struct WorklistEntry { 67 enum EntryKind { 68 MapGlobalInit, 69 MapAppendingVar, 70 MapAliasOrIFunc, 71 RemapFunction 72 }; 73 struct GVInitTy { 74 GlobalVariable *GV; 75 Constant *Init; 76 }; 77 struct AppendingGVTy { 78 GlobalVariable *GV; 79 Constant *InitPrefix; 80 }; 81 struct AliasOrIFuncTy { 82 GlobalValue *GV; 83 Constant *Target; 84 }; 85 86 unsigned Kind : 2; 87 unsigned MCID : 29; 88 unsigned AppendingGVIsOldCtorDtor : 1; 89 unsigned AppendingGVNumNewMembers; 90 union { 91 GVInitTy GVInit; 92 AppendingGVTy AppendingGV; 93 AliasOrIFuncTy AliasOrIFunc; 94 Function *RemapF; 95 } Data; 96 }; 97 98 struct MappingContext { 99 ValueToValueMapTy *VM; 100 ValueMaterializer *Materializer = nullptr; 101 102 /// Construct a MappingContext with a value map and materializer. 103 explicit MappingContext(ValueToValueMapTy &VM, 104 ValueMaterializer *Materializer = nullptr) 105 : VM(&VM), Materializer(Materializer) {} 106 }; 107 108 class Mapper { 109 friend class MDNodeMapper; 110 111 #ifndef NDEBUG 112 DenseSet<GlobalValue *> AlreadyScheduled; 113 #endif 114 115 RemapFlags Flags; 116 ValueMapTypeRemapper *TypeMapper; 117 unsigned CurrentMCID = 0; 118 SmallVector<MappingContext, 2> MCs; 119 SmallVector<WorklistEntry, 4> Worklist; 120 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 121 SmallVector<Constant *, 16> AppendingInits; 122 123 public: 124 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 125 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 126 : Flags(Flags), TypeMapper(TypeMapper), 127 MCs(1, MappingContext(VM, Materializer)) {} 128 129 /// ValueMapper should explicitly call \a flush() before destruction. 130 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 131 132 bool hasWorkToDo() const { return !Worklist.empty(); } 133 134 unsigned 135 registerAlternateMappingContext(ValueToValueMapTy &VM, 136 ValueMaterializer *Materializer = nullptr) { 137 MCs.push_back(MappingContext(VM, Materializer)); 138 return MCs.size() - 1; 139 } 140 141 void addFlags(RemapFlags Flags); 142 143 void remapGlobalObjectMetadata(GlobalObject &GO); 144 145 Value *mapValue(const Value *V); 146 void remapInstruction(Instruction *I); 147 void remapFunction(Function &F); 148 149 Constant *mapConstant(const Constant *C) { 150 return cast_or_null<Constant>(mapValue(C)); 151 } 152 153 /// Map metadata. 154 /// 155 /// Find the mapping for MD. Guarantees that the return will be resolved 156 /// (not an MDNode, or MDNode::isResolved() returns true). 157 Metadata *mapMetadata(const Metadata *MD); 158 159 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 160 unsigned MCID); 161 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 162 bool IsOldCtorDtor, 163 ArrayRef<Constant *> NewMembers, 164 unsigned MCID); 165 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 166 unsigned MCID); 167 void scheduleRemapFunction(Function &F, unsigned MCID); 168 169 void flush(); 170 171 private: 172 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 173 bool IsOldCtorDtor, 174 ArrayRef<Constant *> NewMembers); 175 176 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 177 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 178 179 Value *mapBlockAddress(const BlockAddress &BA); 180 181 /// Map metadata that doesn't require visiting operands. 182 std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 183 184 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 185 Metadata *mapToSelf(const Metadata *MD); 186 }; 187 188 class MDNodeMapper { 189 Mapper &M; 190 191 /// Data about a node in \a UniquedGraph. 192 struct Data { 193 bool HasChanged = false; 194 unsigned ID = std::numeric_limits<unsigned>::max(); 195 TempMDNode Placeholder; 196 }; 197 198 /// A graph of uniqued nodes. 199 struct UniquedGraph { 200 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 201 SmallVector<MDNode *, 16> POT; // Post-order traversal. 202 203 /// Propagate changed operands through the post-order traversal. 204 /// 205 /// Iteratively update \a Data::HasChanged for each node based on \a 206 /// Data::HasChanged of its operands, until fixed point. 207 void propagateChanges(); 208 209 /// Get a forward reference to a node to use as an operand. 210 Metadata &getFwdReference(MDNode &Op); 211 }; 212 213 /// Worklist of distinct nodes whose operands need to be remapped. 214 SmallVector<MDNode *, 16> DistinctWorklist; 215 216 // Storage for a UniquedGraph. 217 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 218 SmallVector<MDNode *, 16> POTStorage; 219 220 public: 221 MDNodeMapper(Mapper &M) : M(M) {} 222 223 /// Map a metadata node (and its transitive operands). 224 /// 225 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 226 /// algorithm handles distinct nodes and uniqued node subgraphs using 227 /// different strategies. 228 /// 229 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 230 /// using \a mapDistinctNode(). Their mapping can always be computed 231 /// immediately without visiting operands, even if their operands change. 232 /// 233 /// The mapping for uniqued nodes depends on whether their operands change. 234 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 235 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 236 /// added to \a DistinctWorklist with \a mapDistinctNode(). 237 /// 238 /// After mapping \c N itself, this function remaps the operands of the 239 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 240 /// N has been mapped. 241 Metadata *map(const MDNode &N); 242 243 private: 244 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 245 /// 246 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 247 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 248 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 249 /// operands uses the identity mapping. 250 /// 251 /// The algorithm works as follows: 252 /// 253 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 254 /// save the post-order traversal in the given \a UniquedGraph, tracking 255 /// nodes' operands change. 256 /// 257 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 258 /// through the \a UniquedGraph until fixed point, following the rule 259 /// that if a node changes, any node that references must also change. 260 /// 261 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 262 /// (referencing new operands) where necessary. 263 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 264 265 /// Try to map the operand of an \a MDNode. 266 /// 267 /// If \c Op is already mapped, return the mapping. If it's not an \a 268 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 269 /// return the result of \a mapDistinctNode(). 270 /// 271 /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode. 272 /// \post getMappedOp(Op) only returns std::nullopt if this returns 273 /// std::nullopt. 274 std::optional<Metadata *> tryToMapOperand(const Metadata *Op); 275 276 /// Map a distinct node. 277 /// 278 /// Return the mapping for the distinct node \c N, saving the result in \a 279 /// DistinctWorklist for later remapping. 280 /// 281 /// \pre \c N is not yet mapped. 282 /// \pre \c N.isDistinct(). 283 MDNode *mapDistinctNode(const MDNode &N); 284 285 /// Get a previously mapped node. 286 std::optional<Metadata *> getMappedOp(const Metadata *Op) const; 287 288 /// Create a post-order traversal of an unmapped uniqued node subgraph. 289 /// 290 /// This traverses the metadata graph deeply enough to map \c FirstN. It 291 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 292 /// metadata that has already been mapped will not be part of the POT. 293 /// 294 /// Each node that has a changed operand from outside the graph (e.g., a 295 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 296 /// is marked with \a Data::HasChanged. 297 /// 298 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 299 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 300 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 301 /// to change because of operands outside the graph. 302 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 303 304 /// Visit the operands of a uniqued node in the POT. 305 /// 306 /// Visit the operands in the range from \c I to \c E, returning the first 307 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 308 /// where to continue the loop through the operands. 309 /// 310 /// This sets \c HasChanged if any of the visited operands change. 311 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 312 MDNode::op_iterator E, bool &HasChanged); 313 314 /// Map all the nodes in the given uniqued graph. 315 /// 316 /// This visits all the nodes in \c G in post-order, using the identity 317 /// mapping or creating a new node depending on \a Data::HasChanged. 318 /// 319 /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for 320 /// any of their operands outside of \c G. \pre \a Data::HasChanged is true 321 /// for a node in \c G iff any of its operands have changed. \post \a 322 /// getMappedOp() returns the mapped node for every node in \c G. 323 void mapNodesInPOT(UniquedGraph &G); 324 325 /// Remap a node's operands using the given functor. 326 /// 327 /// Iterate through the operands of \c N and update them in place using \c 328 /// mapOperand. 329 /// 330 /// \pre N.isDistinct() or N.isTemporary(). 331 template <class OperandMapper> 332 void remapOperands(MDNode &N, OperandMapper mapOperand); 333 }; 334 335 } // end anonymous namespace 336 337 Value *Mapper::mapValue(const Value *V) { 338 ValueToValueMapTy::iterator I = getVM().find(V); 339 340 // If the value already exists in the map, use it. 341 if (I != getVM().end()) { 342 assert(I->second && "Unexpected null mapping"); 343 return I->second; 344 } 345 346 // If we have a materializer and it can materialize a value, use that. 347 if (auto *Materializer = getMaterializer()) { 348 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 349 getVM()[V] = NewV; 350 return NewV; 351 } 352 } 353 354 // Global values do not need to be seeded into the VM if they 355 // are using the identity mapping. 356 if (isa<GlobalValue>(V)) { 357 if (Flags & RF_NullMapMissingGlobalValues) 358 return nullptr; 359 return getVM()[V] = const_cast<Value *>(V); 360 } 361 362 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 363 // Inline asm may need *type* remapping. 364 FunctionType *NewTy = IA->getFunctionType(); 365 if (TypeMapper) { 366 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 367 368 if (NewTy != IA->getFunctionType()) 369 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 370 IA->hasSideEffects(), IA->isAlignStack(), 371 IA->getDialect(), IA->canThrow()); 372 } 373 374 return getVM()[V] = const_cast<Value *>(V); 375 } 376 377 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 378 const Metadata *MD = MDV->getMetadata(); 379 380 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 381 // Look through to grab the local value. 382 if (Value *LV = mapValue(LAM->getValue())) { 383 if (V == LAM->getValue()) 384 return const_cast<Value *>(V); 385 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 386 } 387 388 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 389 // ensures metadata operands only reference defined SSA values. 390 return (Flags & RF_IgnoreMissingLocals) 391 ? nullptr 392 : MetadataAsValue::get( 393 V->getContext(), 394 MDTuple::get(V->getContext(), std::nullopt)); 395 } 396 if (auto *AL = dyn_cast<DIArgList>(MD)) { 397 SmallVector<ValueAsMetadata *, 4> MappedArgs; 398 for (auto *VAM : AL->getArgs()) { 399 // Map both Local and Constant VAMs here; they will both ultimately 400 // be mapped via mapValue. The exceptions are constants when we have no 401 // module level changes and locals when they have no existing mapped 402 // value and RF_IgnoreMissingLocals is set; these have identity 403 // mappings. 404 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) { 405 MappedArgs.push_back(VAM); 406 } else if (Value *LV = mapValue(VAM->getValue())) { 407 MappedArgs.push_back( 408 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV)); 409 } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(VAM)) { 410 MappedArgs.push_back(VAM); 411 } else { 412 // If we cannot map the value, set the argument as undef. 413 MappedArgs.push_back(ValueAsMetadata::get( 414 UndefValue::get(VAM->getValue()->getType()))); 415 } 416 } 417 return MetadataAsValue::get(V->getContext(), 418 DIArgList::get(V->getContext(), MappedArgs)); 419 } 420 421 // If this is a module-level metadata and we know that nothing at the module 422 // level is changing, then use an identity mapping. 423 if (Flags & RF_NoModuleLevelChanges) 424 return getVM()[V] = const_cast<Value *>(V); 425 426 // Map the metadata and turn it into a value. 427 auto *MappedMD = mapMetadata(MD); 428 if (MD == MappedMD) 429 return getVM()[V] = const_cast<Value *>(V); 430 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 431 } 432 433 // Okay, this either must be a constant (which may or may not be mappable) or 434 // is something that is not in the mapping table. 435 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 436 if (!C) 437 return nullptr; 438 439 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 440 return mapBlockAddress(*BA); 441 442 if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) { 443 auto *Val = mapValue(E->getGlobalValue()); 444 GlobalValue *GV = dyn_cast<GlobalValue>(Val); 445 if (GV) 446 return getVM()[E] = DSOLocalEquivalent::get(GV); 447 448 auto *Func = cast<Function>(Val->stripPointerCastsAndAliases()); 449 Type *NewTy = E->getType(); 450 if (TypeMapper) 451 NewTy = TypeMapper->remapType(NewTy); 452 return getVM()[E] = llvm::ConstantExpr::getBitCast( 453 DSOLocalEquivalent::get(Func), NewTy); 454 } 455 456 if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 457 auto *Val = mapValue(NC->getGlobalValue()); 458 GlobalValue *GV = cast<GlobalValue>(Val); 459 return getVM()[NC] = NoCFIValue::get(GV); 460 } 461 462 auto mapValueOrNull = [this](Value *V) { 463 auto Mapped = mapValue(V); 464 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 465 "Unexpected null mapping for constant operand without " 466 "NullMapMissingGlobalValues flag"); 467 return Mapped; 468 }; 469 470 // Otherwise, we have some other constant to remap. Start by checking to see 471 // if all operands have an identity remapping. 472 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 473 Value *Mapped = nullptr; 474 for (; OpNo != NumOperands; ++OpNo) { 475 Value *Op = C->getOperand(OpNo); 476 Mapped = mapValueOrNull(Op); 477 if (!Mapped) 478 return nullptr; 479 if (Mapped != Op) 480 break; 481 } 482 483 // See if the type mapper wants to remap the type as well. 484 Type *NewTy = C->getType(); 485 if (TypeMapper) 486 NewTy = TypeMapper->remapType(NewTy); 487 488 // If the result type and all operands match up, then just insert an identity 489 // mapping. 490 if (OpNo == NumOperands && NewTy == C->getType()) 491 return getVM()[V] = C; 492 493 // Okay, we need to create a new constant. We've already processed some or 494 // all of the operands, set them all up now. 495 SmallVector<Constant*, 8> Ops; 496 Ops.reserve(NumOperands); 497 for (unsigned j = 0; j != OpNo; ++j) 498 Ops.push_back(cast<Constant>(C->getOperand(j))); 499 500 // If one of the operands mismatch, push it and the other mapped operands. 501 if (OpNo != NumOperands) { 502 Ops.push_back(cast<Constant>(Mapped)); 503 504 // Map the rest of the operands that aren't processed yet. 505 for (++OpNo; OpNo != NumOperands; ++OpNo) { 506 Mapped = mapValueOrNull(C->getOperand(OpNo)); 507 if (!Mapped) 508 return nullptr; 509 Ops.push_back(cast<Constant>(Mapped)); 510 } 511 } 512 Type *NewSrcTy = nullptr; 513 if (TypeMapper) 514 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 515 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 516 517 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 518 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 519 if (isa<ConstantArray>(C)) 520 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 521 if (isa<ConstantStruct>(C)) 522 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 523 if (isa<ConstantVector>(C)) 524 return getVM()[V] = ConstantVector::get(Ops); 525 // If this is a no-operand constant, it must be because the type was remapped. 526 if (isa<PoisonValue>(C)) 527 return getVM()[V] = PoisonValue::get(NewTy); 528 if (isa<UndefValue>(C)) 529 return getVM()[V] = UndefValue::get(NewTy); 530 if (isa<ConstantAggregateZero>(C)) 531 return getVM()[V] = ConstantAggregateZero::get(NewTy); 532 if (isa<ConstantTargetNone>(C)) 533 return getVM()[V] = Constant::getNullValue(NewTy); 534 assert(isa<ConstantPointerNull>(C)); 535 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 536 } 537 538 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 539 Function *F = cast<Function>(mapValue(BA.getFunction())); 540 541 // F may not have materialized its initializer. In that case, create a 542 // dummy basic block for now, and replace it once we've materialized all 543 // the initializers. 544 BasicBlock *BB; 545 if (F->empty()) { 546 DelayedBBs.push_back(DelayedBasicBlock(BA)); 547 BB = DelayedBBs.back().TempBB.get(); 548 } else { 549 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 550 } 551 552 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 553 } 554 555 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 556 getVM().MD()[Key].reset(Val); 557 return Val; 558 } 559 560 Metadata *Mapper::mapToSelf(const Metadata *MD) { 561 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 562 } 563 564 std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 565 if (!Op) 566 return nullptr; 567 568 if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 569 #ifndef NDEBUG 570 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 571 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 572 M.getVM().getMappedMD(Op)) && 573 "Expected Value to be memoized"); 574 else 575 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 576 "Expected result to be memoized"); 577 #endif 578 return *MappedOp; 579 } 580 581 const MDNode &N = *cast<MDNode>(Op); 582 if (N.isDistinct()) 583 return mapDistinctNode(N); 584 return std::nullopt; 585 } 586 587 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 588 assert(N.isDistinct() && "Expected a distinct node"); 589 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 590 Metadata *NewM = nullptr; 591 592 if (M.Flags & RF_ReuseAndMutateDistinctMDs) { 593 NewM = M.mapToSelf(&N); 594 } else { 595 NewM = MDNode::replaceWithDistinct(N.clone()); 596 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n" 597 << "To " << *NewM << "\n\n"); 598 M.mapToMetadata(&N, NewM); 599 } 600 DistinctWorklist.push_back(cast<MDNode>(NewM)); 601 602 return DistinctWorklist.back(); 603 } 604 605 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 606 Value *MappedV) { 607 if (CMD.getValue() == MappedV) 608 return const_cast<ConstantAsMetadata *>(&CMD); 609 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 610 } 611 612 std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 613 if (!Op) 614 return nullptr; 615 616 if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 617 return *MappedOp; 618 619 if (isa<MDString>(Op)) 620 return const_cast<Metadata *>(Op); 621 622 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 623 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 624 625 return std::nullopt; 626 } 627 628 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 629 auto Where = Info.find(&Op); 630 assert(Where != Info.end() && "Expected a valid reference"); 631 632 auto &OpD = Where->second; 633 if (!OpD.HasChanged) 634 return Op; 635 636 // Lazily construct a temporary node. 637 if (!OpD.Placeholder) 638 OpD.Placeholder = Op.clone(); 639 640 return *OpD.Placeholder; 641 } 642 643 template <class OperandMapper> 644 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 645 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 646 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 647 Metadata *Old = N.getOperand(I); 648 Metadata *New = mapOperand(Old); 649 if (Old != New) 650 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in " 651 << N << "\n"); 652 653 if (Old != New) 654 N.replaceOperandWith(I, New); 655 } 656 } 657 658 namespace { 659 660 /// An entry in the worklist for the post-order traversal. 661 struct POTWorklistEntry { 662 MDNode *N; ///< Current node. 663 MDNode::op_iterator Op; ///< Current operand of \c N. 664 665 /// Keep a flag of whether operands have changed in the worklist to avoid 666 /// hitting the map in \a UniquedGraph. 667 bool HasChanged = false; 668 669 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 670 }; 671 672 } // end anonymous namespace 673 674 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 675 assert(G.Info.empty() && "Expected a fresh traversal"); 676 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 677 678 // Construct a post-order traversal of the uniqued subgraph under FirstN. 679 bool AnyChanges = false; 680 SmallVector<POTWorklistEntry, 16> Worklist; 681 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 682 (void)G.Info[&FirstN]; 683 while (!Worklist.empty()) { 684 // Start or continue the traversal through the this node's operands. 685 auto &WE = Worklist.back(); 686 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 687 // Push a new node to traverse first. 688 Worklist.push_back(POTWorklistEntry(*N)); 689 continue; 690 } 691 692 // Push the node onto the POT. 693 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 694 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 695 auto &D = G.Info[WE.N]; 696 AnyChanges |= D.HasChanged = WE.HasChanged; 697 D.ID = G.POT.size(); 698 G.POT.push_back(WE.N); 699 700 // Pop the node off the worklist. 701 Worklist.pop_back(); 702 } 703 return AnyChanges; 704 } 705 706 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 707 MDNode::op_iterator E, bool &HasChanged) { 708 while (I != E) { 709 Metadata *Op = *I++; // Increment even on early return. 710 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 711 // Check if the operand changes. 712 HasChanged |= Op != *MappedOp; 713 continue; 714 } 715 716 // A uniqued metadata node. 717 MDNode &OpN = *cast<MDNode>(Op); 718 assert(OpN.isUniqued() && 719 "Only uniqued operands cannot be mapped immediately"); 720 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 721 return &OpN; // This is a new one. Return it. 722 } 723 return nullptr; 724 } 725 726 void MDNodeMapper::UniquedGraph::propagateChanges() { 727 bool AnyChanges; 728 do { 729 AnyChanges = false; 730 for (MDNode *N : POT) { 731 auto &D = Info[N]; 732 if (D.HasChanged) 733 continue; 734 735 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 736 auto Where = Info.find(Op); 737 return Where != Info.end() && Where->second.HasChanged; 738 })) 739 continue; 740 741 AnyChanges = D.HasChanged = true; 742 } 743 } while (AnyChanges); 744 } 745 746 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 747 // Construct uniqued nodes, building forward references as necessary. 748 SmallVector<MDNode *, 16> CyclicNodes; 749 for (auto *N : G.POT) { 750 auto &D = G.Info[N]; 751 if (!D.HasChanged) { 752 // The node hasn't changed. 753 M.mapToSelf(N); 754 continue; 755 } 756 757 // Remember whether this node had a placeholder. 758 bool HadPlaceholder(D.Placeholder); 759 760 // Clone the uniqued node and remap the operands. 761 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 762 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 763 if (std::optional<Metadata *> MappedOp = getMappedOp(Old)) 764 return *MappedOp; 765 (void)D; 766 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 767 return &G.getFwdReference(*cast<MDNode>(Old)); 768 }); 769 770 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 771 if (N && NewN && N != NewN) { 772 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n" 773 << "To " << *NewN << "\n\n"); 774 } 775 776 M.mapToMetadata(N, NewN); 777 778 // Nodes that were referenced out of order in the POT are involved in a 779 // uniquing cycle. 780 if (HadPlaceholder) 781 CyclicNodes.push_back(NewN); 782 } 783 784 // Resolve cycles. 785 for (auto *N : CyclicNodes) 786 if (!N->isResolved()) 787 N->resolveCycles(); 788 } 789 790 Metadata *MDNodeMapper::map(const MDNode &N) { 791 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 792 assert(!(M.Flags & RF_NoModuleLevelChanges) && 793 "MDNodeMapper::map assumes module-level changes"); 794 795 // Require resolved nodes whenever metadata might be remapped. 796 assert(N.isResolved() && "Unexpected unresolved node"); 797 798 Metadata *MappedN = 799 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 800 while (!DistinctWorklist.empty()) 801 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 802 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Old)) 803 return *MappedOp; 804 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 805 }); 806 return MappedN; 807 } 808 809 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 810 assert(FirstN.isUniqued() && "Expected uniqued node"); 811 812 // Create a post-order traversal of uniqued nodes under FirstN. 813 UniquedGraph G; 814 if (!createPOT(G, FirstN)) { 815 // Return early if no nodes have changed. 816 for (const MDNode *N : G.POT) 817 M.mapToSelf(N); 818 return &const_cast<MDNode &>(FirstN); 819 } 820 821 // Update graph with all nodes that have changed. 822 G.propagateChanges(); 823 824 // Map all the nodes in the graph. 825 mapNodesInPOT(G); 826 827 // Return the original node, remapped. 828 return *getMappedOp(&FirstN); 829 } 830 831 std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 832 // If the value already exists in the map, use it. 833 if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 834 return *NewMD; 835 836 if (isa<MDString>(MD)) 837 return const_cast<Metadata *>(MD); 838 839 // This is a module-level metadata. If nothing at the module level is 840 // changing, use an identity mapping. 841 if ((Flags & RF_NoModuleLevelChanges)) 842 return const_cast<Metadata *>(MD); 843 844 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 845 // Don't memoize ConstantAsMetadata. Instead of lasting until the 846 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 847 // reference is destructed. These aren't super common, so the extra 848 // indirection isn't that expensive. 849 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 850 } 851 852 assert(isa<MDNode>(MD) && "Expected a metadata node"); 853 854 return std::nullopt; 855 } 856 857 Metadata *Mapper::mapMetadata(const Metadata *MD) { 858 assert(MD && "Expected valid metadata"); 859 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 860 861 if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 862 return *NewMD; 863 864 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 865 } 866 867 void Mapper::flush() { 868 // Flush out the worklist of global values. 869 while (!Worklist.empty()) { 870 WorklistEntry E = Worklist.pop_back_val(); 871 CurrentMCID = E.MCID; 872 switch (E.Kind) { 873 case WorklistEntry::MapGlobalInit: 874 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 875 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 876 break; 877 case WorklistEntry::MapAppendingVar: { 878 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 879 // mapAppendingVariable call can change AppendingInits if initalizer for 880 // the variable depends on another appending global, because of that inits 881 // need to be extracted and updated before the call. 882 SmallVector<Constant *, 8> NewInits( 883 drop_begin(AppendingInits, PrefixSize)); 884 AppendingInits.resize(PrefixSize); 885 mapAppendingVariable(*E.Data.AppendingGV.GV, 886 E.Data.AppendingGV.InitPrefix, 887 E.AppendingGVIsOldCtorDtor, ArrayRef(NewInits)); 888 break; 889 } 890 case WorklistEntry::MapAliasOrIFunc: { 891 GlobalValue *GV = E.Data.AliasOrIFunc.GV; 892 Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target); 893 if (auto *GA = dyn_cast<GlobalAlias>(GV)) 894 GA->setAliasee(Target); 895 else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) 896 GI->setResolver(Target); 897 else 898 llvm_unreachable("Not alias or ifunc"); 899 break; 900 } 901 case WorklistEntry::RemapFunction: 902 remapFunction(*E.Data.RemapF); 903 break; 904 } 905 } 906 CurrentMCID = 0; 907 908 // Finish logic for block addresses now that all global values have been 909 // handled. 910 while (!DelayedBBs.empty()) { 911 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 912 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 913 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 914 } 915 } 916 917 void Mapper::remapInstruction(Instruction *I) { 918 // Remap operands. 919 for (Use &Op : I->operands()) { 920 Value *V = mapValue(Op); 921 // If we aren't ignoring missing entries, assert that something happened. 922 if (V) 923 Op = V; 924 else 925 assert((Flags & RF_IgnoreMissingLocals) && 926 "Referenced value not in value map!"); 927 } 928 929 // Remap phi nodes' incoming blocks. 930 if (PHINode *PN = dyn_cast<PHINode>(I)) { 931 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 932 Value *V = mapValue(PN->getIncomingBlock(i)); 933 // If we aren't ignoring missing entries, assert that something happened. 934 if (V) 935 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 936 else 937 assert((Flags & RF_IgnoreMissingLocals) && 938 "Referenced block not in value map!"); 939 } 940 } 941 942 // Remap attached metadata. 943 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 944 I->getAllMetadata(MDs); 945 for (const auto &MI : MDs) { 946 MDNode *Old = MI.second; 947 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 948 if (New != Old) 949 I->setMetadata(MI.first, New); 950 } 951 952 if (!TypeMapper) 953 return; 954 955 // If the instruction's type is being remapped, do so now. 956 if (auto *CB = dyn_cast<CallBase>(I)) { 957 SmallVector<Type *, 3> Tys; 958 FunctionType *FTy = CB->getFunctionType(); 959 Tys.reserve(FTy->getNumParams()); 960 for (Type *Ty : FTy->params()) 961 Tys.push_back(TypeMapper->remapType(Ty)); 962 CB->mutateFunctionType(FunctionType::get( 963 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 964 965 LLVMContext &C = CB->getContext(); 966 AttributeList Attrs = CB->getAttributes(); 967 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 968 for (int AttrIdx = Attribute::FirstTypeAttr; 969 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 970 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 971 if (Type *Ty = 972 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 973 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 974 TypeMapper->remapType(Ty)); 975 break; 976 } 977 } 978 } 979 CB->setAttributes(Attrs); 980 return; 981 } 982 if (auto *AI = dyn_cast<AllocaInst>(I)) 983 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 984 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 985 GEP->setSourceElementType( 986 TypeMapper->remapType(GEP->getSourceElementType())); 987 GEP->setResultElementType( 988 TypeMapper->remapType(GEP->getResultElementType())); 989 } 990 I->mutateType(TypeMapper->remapType(I->getType())); 991 } 992 993 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 994 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 995 GO.getAllMetadata(MDs); 996 GO.clearMetadata(); 997 for (const auto &I : MDs) 998 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 999 } 1000 1001 void Mapper::remapFunction(Function &F) { 1002 // Remap the operands. 1003 for (Use &Op : F.operands()) 1004 if (Op) 1005 Op = mapValue(Op); 1006 1007 // Remap the metadata attachments. 1008 remapGlobalObjectMetadata(F); 1009 1010 // Remap the argument types. 1011 if (TypeMapper) 1012 for (Argument &A : F.args()) 1013 A.mutateType(TypeMapper->remapType(A.getType())); 1014 1015 // Remap the instructions. 1016 for (BasicBlock &BB : F) 1017 for (Instruction &I : BB) 1018 remapInstruction(&I); 1019 } 1020 1021 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 1022 bool IsOldCtorDtor, 1023 ArrayRef<Constant *> NewMembers) { 1024 SmallVector<Constant *, 16> Elements; 1025 if (InitPrefix) { 1026 unsigned NumElements = 1027 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 1028 for (unsigned I = 0; I != NumElements; ++I) 1029 Elements.push_back(InitPrefix->getAggregateElement(I)); 1030 } 1031 1032 PointerType *VoidPtrTy; 1033 Type *EltTy; 1034 if (IsOldCtorDtor) { 1035 // FIXME: This upgrade is done during linking to support the C API. See 1036 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 1037 VoidPtrTy = PointerType::getUnqual(GV.getContext()); 1038 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 1039 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 1040 EltTy = StructType::get(GV.getContext(), Tys, false); 1041 } 1042 1043 for (auto *V : NewMembers) { 1044 Constant *NewV; 1045 if (IsOldCtorDtor) { 1046 auto *S = cast<ConstantStruct>(V); 1047 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 1048 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 1049 Constant *Null = Constant::getNullValue(VoidPtrTy); 1050 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 1051 } else { 1052 NewV = cast_or_null<Constant>(mapValue(V)); 1053 } 1054 Elements.push_back(NewV); 1055 } 1056 1057 GV.setInitializer( 1058 ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements)); 1059 } 1060 1061 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 1062 unsigned MCID) { 1063 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1064 assert(MCID < MCs.size() && "Invalid mapping context"); 1065 1066 WorklistEntry WE; 1067 WE.Kind = WorklistEntry::MapGlobalInit; 1068 WE.MCID = MCID; 1069 WE.Data.GVInit.GV = &GV; 1070 WE.Data.GVInit.Init = &Init; 1071 Worklist.push_back(WE); 1072 } 1073 1074 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1075 Constant *InitPrefix, 1076 bool IsOldCtorDtor, 1077 ArrayRef<Constant *> NewMembers, 1078 unsigned MCID) { 1079 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1080 assert(MCID < MCs.size() && "Invalid mapping context"); 1081 1082 WorklistEntry WE; 1083 WE.Kind = WorklistEntry::MapAppendingVar; 1084 WE.MCID = MCID; 1085 WE.Data.AppendingGV.GV = &GV; 1086 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1087 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1088 WE.AppendingGVNumNewMembers = NewMembers.size(); 1089 Worklist.push_back(WE); 1090 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1091 } 1092 1093 void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 1094 unsigned MCID) { 1095 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1096 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) && 1097 "Should be alias or ifunc"); 1098 assert(MCID < MCs.size() && "Invalid mapping context"); 1099 1100 WorklistEntry WE; 1101 WE.Kind = WorklistEntry::MapAliasOrIFunc; 1102 WE.MCID = MCID; 1103 WE.Data.AliasOrIFunc.GV = &GV; 1104 WE.Data.AliasOrIFunc.Target = &Target; 1105 Worklist.push_back(WE); 1106 } 1107 1108 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1109 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1110 assert(MCID < MCs.size() && "Invalid mapping context"); 1111 1112 WorklistEntry WE; 1113 WE.Kind = WorklistEntry::RemapFunction; 1114 WE.MCID = MCID; 1115 WE.Data.RemapF = &F; 1116 Worklist.push_back(WE); 1117 } 1118 1119 void Mapper::addFlags(RemapFlags Flags) { 1120 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1121 this->Flags = this->Flags | Flags; 1122 } 1123 1124 static Mapper *getAsMapper(void *pImpl) { 1125 return reinterpret_cast<Mapper *>(pImpl); 1126 } 1127 1128 namespace { 1129 1130 class FlushingMapper { 1131 Mapper &M; 1132 1133 public: 1134 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1135 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1136 } 1137 1138 ~FlushingMapper() { M.flush(); } 1139 1140 Mapper *operator->() const { return &M; } 1141 }; 1142 1143 } // end anonymous namespace 1144 1145 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1146 ValueMapTypeRemapper *TypeMapper, 1147 ValueMaterializer *Materializer) 1148 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1149 1150 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1151 1152 unsigned 1153 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1154 ValueMaterializer *Materializer) { 1155 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1156 } 1157 1158 void ValueMapper::addFlags(RemapFlags Flags) { 1159 FlushingMapper(pImpl)->addFlags(Flags); 1160 } 1161 1162 Value *ValueMapper::mapValue(const Value &V) { 1163 return FlushingMapper(pImpl)->mapValue(&V); 1164 } 1165 1166 Constant *ValueMapper::mapConstant(const Constant &C) { 1167 return cast_or_null<Constant>(mapValue(C)); 1168 } 1169 1170 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1171 return FlushingMapper(pImpl)->mapMetadata(&MD); 1172 } 1173 1174 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1175 return cast_or_null<MDNode>(mapMetadata(N)); 1176 } 1177 1178 void ValueMapper::remapInstruction(Instruction &I) { 1179 FlushingMapper(pImpl)->remapInstruction(&I); 1180 } 1181 1182 void ValueMapper::remapFunction(Function &F) { 1183 FlushingMapper(pImpl)->remapFunction(F); 1184 } 1185 1186 void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) { 1187 FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO); 1188 } 1189 1190 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1191 Constant &Init, 1192 unsigned MCID) { 1193 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1194 } 1195 1196 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1197 Constant *InitPrefix, 1198 bool IsOldCtorDtor, 1199 ArrayRef<Constant *> NewMembers, 1200 unsigned MCID) { 1201 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1202 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1203 } 1204 1205 void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, 1206 unsigned MCID) { 1207 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID); 1208 } 1209 1210 void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, 1211 unsigned MCID) { 1212 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID); 1213 } 1214 1215 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1216 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1217 } 1218