1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MapValue function, which is shared by various parts of 10 // the lib/Transforms/Utils library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/ValueMapper.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/IR/Argument.h" 21 #include "llvm/IR/BasicBlock.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/GlobalIFunc.h" 29 #include "llvm/IR/GlobalObject.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include <cassert> 42 #include <limits> 43 #include <memory> 44 #include <utility> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "value-mapper" 49 50 // Out of line method to get vtable etc for class. 51 void ValueMapTypeRemapper::anchor() {} 52 void ValueMaterializer::anchor() {} 53 54 namespace { 55 56 /// A basic block used in a BlockAddress whose function body is not yet 57 /// materialized. 58 struct DelayedBasicBlock { 59 BasicBlock *OldBB; 60 std::unique_ptr<BasicBlock> TempBB; 61 62 DelayedBasicBlock(const BlockAddress &Old) 63 : OldBB(Old.getBasicBlock()), 64 TempBB(BasicBlock::Create(Old.getContext())) {} 65 }; 66 67 struct WorklistEntry { 68 enum EntryKind { 69 MapGlobalInit, 70 MapAppendingVar, 71 MapAliasOrIFunc, 72 RemapFunction 73 }; 74 struct GVInitTy { 75 GlobalVariable *GV; 76 Constant *Init; 77 }; 78 struct AppendingGVTy { 79 GlobalVariable *GV; 80 Constant *InitPrefix; 81 }; 82 struct AliasOrIFuncTy { 83 GlobalValue *GV; 84 Constant *Target; 85 }; 86 87 unsigned Kind : 2; 88 unsigned MCID : 29; 89 unsigned AppendingGVIsOldCtorDtor : 1; 90 unsigned AppendingGVNumNewMembers; 91 union { 92 GVInitTy GVInit; 93 AppendingGVTy AppendingGV; 94 AliasOrIFuncTy AliasOrIFunc; 95 Function *RemapF; 96 } Data; 97 }; 98 99 struct MappingContext { 100 ValueToValueMapTy *VM; 101 ValueMaterializer *Materializer = nullptr; 102 103 /// Construct a MappingContext with a value map and materializer. 104 explicit MappingContext(ValueToValueMapTy &VM, 105 ValueMaterializer *Materializer = nullptr) 106 : VM(&VM), Materializer(Materializer) {} 107 }; 108 109 class Mapper { 110 friend class MDNodeMapper; 111 112 #ifndef NDEBUG 113 DenseSet<GlobalValue *> AlreadyScheduled; 114 #endif 115 116 RemapFlags Flags; 117 ValueMapTypeRemapper *TypeMapper; 118 unsigned CurrentMCID = 0; 119 SmallVector<MappingContext, 2> MCs; 120 SmallVector<WorklistEntry, 4> Worklist; 121 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 122 SmallVector<Constant *, 16> AppendingInits; 123 124 public: 125 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 126 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 127 : Flags(Flags), TypeMapper(TypeMapper), 128 MCs(1, MappingContext(VM, Materializer)) {} 129 130 /// ValueMapper should explicitly call \a flush() before destruction. 131 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 132 133 bool hasWorkToDo() const { return !Worklist.empty(); } 134 135 unsigned 136 registerAlternateMappingContext(ValueToValueMapTy &VM, 137 ValueMaterializer *Materializer = nullptr) { 138 MCs.push_back(MappingContext(VM, Materializer)); 139 return MCs.size() - 1; 140 } 141 142 void addFlags(RemapFlags Flags); 143 144 void remapGlobalObjectMetadata(GlobalObject &GO); 145 146 Value *mapValue(const Value *V); 147 void remapInstruction(Instruction *I); 148 void remapFunction(Function &F); 149 void remapDbgRecord(DbgRecord &DVR); 150 151 Constant *mapConstant(const Constant *C) { 152 return cast_or_null<Constant>(mapValue(C)); 153 } 154 155 /// Map metadata. 156 /// 157 /// Find the mapping for MD. Guarantees that the return will be resolved 158 /// (not an MDNode, or MDNode::isResolved() returns true). 159 Metadata *mapMetadata(const Metadata *MD); 160 161 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 162 unsigned MCID); 163 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 164 bool IsOldCtorDtor, 165 ArrayRef<Constant *> NewMembers, 166 unsigned MCID); 167 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 168 unsigned MCID); 169 void scheduleRemapFunction(Function &F, unsigned MCID); 170 171 void flush(); 172 173 private: 174 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 175 bool IsOldCtorDtor, 176 ArrayRef<Constant *> NewMembers); 177 178 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 179 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 180 181 Value *mapBlockAddress(const BlockAddress &BA); 182 183 /// Map metadata that doesn't require visiting operands. 184 std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 185 186 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 187 Metadata *mapToSelf(const Metadata *MD); 188 }; 189 190 class MDNodeMapper { 191 Mapper &M; 192 193 /// Data about a node in \a UniquedGraph. 194 struct Data { 195 bool HasChanged = false; 196 unsigned ID = std::numeric_limits<unsigned>::max(); 197 TempMDNode Placeholder; 198 }; 199 200 /// A graph of uniqued nodes. 201 struct UniquedGraph { 202 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 203 SmallVector<MDNode *, 16> POT; // Post-order traversal. 204 205 /// Propagate changed operands through the post-order traversal. 206 /// 207 /// Iteratively update \a Data::HasChanged for each node based on \a 208 /// Data::HasChanged of its operands, until fixed point. 209 void propagateChanges(); 210 211 /// Get a forward reference to a node to use as an operand. 212 Metadata &getFwdReference(MDNode &Op); 213 }; 214 215 /// Worklist of distinct nodes whose operands need to be remapped. 216 SmallVector<MDNode *, 16> DistinctWorklist; 217 218 // Storage for a UniquedGraph. 219 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 220 SmallVector<MDNode *, 16> POTStorage; 221 222 public: 223 MDNodeMapper(Mapper &M) : M(M) {} 224 225 /// Map a metadata node (and its transitive operands). 226 /// 227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 228 /// algorithm handles distinct nodes and uniqued node subgraphs using 229 /// different strategies. 230 /// 231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 232 /// using \a mapDistinctNode(). Their mapping can always be computed 233 /// immediately without visiting operands, even if their operands change. 234 /// 235 /// The mapping for uniqued nodes depends on whether their operands change. 236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 238 /// added to \a DistinctWorklist with \a mapDistinctNode(). 239 /// 240 /// After mapping \c N itself, this function remaps the operands of the 241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 242 /// N has been mapped. 243 Metadata *map(const MDNode &N); 244 245 private: 246 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 247 /// 248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 251 /// operands uses the identity mapping. 252 /// 253 /// The algorithm works as follows: 254 /// 255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 256 /// save the post-order traversal in the given \a UniquedGraph, tracking 257 /// nodes' operands change. 258 /// 259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 260 /// through the \a UniquedGraph until fixed point, following the rule 261 /// that if a node changes, any node that references must also change. 262 /// 263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 264 /// (referencing new operands) where necessary. 265 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 266 267 /// Try to map the operand of an \a MDNode. 268 /// 269 /// If \c Op is already mapped, return the mapping. If it's not an \a 270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 271 /// return the result of \a mapDistinctNode(). 272 /// 273 /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode. 274 /// \post getMappedOp(Op) only returns std::nullopt if this returns 275 /// std::nullopt. 276 std::optional<Metadata *> tryToMapOperand(const Metadata *Op); 277 278 /// Map a distinct node. 279 /// 280 /// Return the mapping for the distinct node \c N, saving the result in \a 281 /// DistinctWorklist for later remapping. 282 /// 283 /// \pre \c N is not yet mapped. 284 /// \pre \c N.isDistinct(). 285 MDNode *mapDistinctNode(const MDNode &N); 286 287 /// Get a previously mapped node. 288 std::optional<Metadata *> getMappedOp(const Metadata *Op) const; 289 290 /// Create a post-order traversal of an unmapped uniqued node subgraph. 291 /// 292 /// This traverses the metadata graph deeply enough to map \c FirstN. It 293 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 294 /// metadata that has already been mapped will not be part of the POT. 295 /// 296 /// Each node that has a changed operand from outside the graph (e.g., a 297 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 298 /// is marked with \a Data::HasChanged. 299 /// 300 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 301 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 302 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 303 /// to change because of operands outside the graph. 304 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 305 306 /// Visit the operands of a uniqued node in the POT. 307 /// 308 /// Visit the operands in the range from \c I to \c E, returning the first 309 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 310 /// where to continue the loop through the operands. 311 /// 312 /// This sets \c HasChanged if any of the visited operands change. 313 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 314 MDNode::op_iterator E, bool &HasChanged); 315 316 /// Map all the nodes in the given uniqued graph. 317 /// 318 /// This visits all the nodes in \c G in post-order, using the identity 319 /// mapping or creating a new node depending on \a Data::HasChanged. 320 /// 321 /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for 322 /// any of their operands outside of \c G. \pre \a Data::HasChanged is true 323 /// for a node in \c G iff any of its operands have changed. \post \a 324 /// getMappedOp() returns the mapped node for every node in \c G. 325 void mapNodesInPOT(UniquedGraph &G); 326 327 /// Remap a node's operands using the given functor. 328 /// 329 /// Iterate through the operands of \c N and update them in place using \c 330 /// mapOperand. 331 /// 332 /// \pre N.isDistinct() or N.isTemporary(). 333 template <class OperandMapper> 334 void remapOperands(MDNode &N, OperandMapper mapOperand); 335 }; 336 337 } // end anonymous namespace 338 339 Value *Mapper::mapValue(const Value *V) { 340 ValueToValueMapTy::iterator I = getVM().find(V); 341 342 // If the value already exists in the map, use it. 343 if (I != getVM().end()) { 344 assert(I->second && "Unexpected null mapping"); 345 return I->second; 346 } 347 348 // If we have a materializer and it can materialize a value, use that. 349 if (auto *Materializer = getMaterializer()) { 350 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 351 getVM()[V] = NewV; 352 return NewV; 353 } 354 } 355 356 // Global values do not need to be seeded into the VM if they 357 // are using the identity mapping. 358 if (isa<GlobalValue>(V)) { 359 if (Flags & RF_NullMapMissingGlobalValues) 360 return nullptr; 361 return getVM()[V] = const_cast<Value *>(V); 362 } 363 364 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 365 // Inline asm may need *type* remapping. 366 FunctionType *NewTy = IA->getFunctionType(); 367 if (TypeMapper) { 368 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 369 370 if (NewTy != IA->getFunctionType()) 371 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 372 IA->hasSideEffects(), IA->isAlignStack(), 373 IA->getDialect(), IA->canThrow()); 374 } 375 376 return getVM()[V] = const_cast<Value *>(V); 377 } 378 379 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 380 const Metadata *MD = MDV->getMetadata(); 381 382 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 383 // Look through to grab the local value. 384 if (Value *LV = mapValue(LAM->getValue())) { 385 if (V == LAM->getValue()) 386 return const_cast<Value *>(V); 387 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 388 } 389 390 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 391 // ensures metadata operands only reference defined SSA values. 392 return (Flags & RF_IgnoreMissingLocals) 393 ? nullptr 394 : MetadataAsValue::get( 395 V->getContext(), 396 MDTuple::get(V->getContext(), std::nullopt)); 397 } 398 if (auto *AL = dyn_cast<DIArgList>(MD)) { 399 SmallVector<ValueAsMetadata *, 4> MappedArgs; 400 for (auto *VAM : AL->getArgs()) { 401 // Map both Local and Constant VAMs here; they will both ultimately 402 // be mapped via mapValue. The exceptions are constants when we have no 403 // module level changes and locals when they have no existing mapped 404 // value and RF_IgnoreMissingLocals is set; these have identity 405 // mappings. 406 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) { 407 MappedArgs.push_back(VAM); 408 } else if (Value *LV = mapValue(VAM->getValue())) { 409 MappedArgs.push_back( 410 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV)); 411 } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(VAM)) { 412 MappedArgs.push_back(VAM); 413 } else { 414 // If we cannot map the value, set the argument as undef. 415 MappedArgs.push_back(ValueAsMetadata::get( 416 UndefValue::get(VAM->getValue()->getType()))); 417 } 418 } 419 return MetadataAsValue::get(V->getContext(), 420 DIArgList::get(V->getContext(), MappedArgs)); 421 } 422 423 // If this is a module-level metadata and we know that nothing at the module 424 // level is changing, then use an identity mapping. 425 if (Flags & RF_NoModuleLevelChanges) 426 return getVM()[V] = const_cast<Value *>(V); 427 428 // Map the metadata and turn it into a value. 429 auto *MappedMD = mapMetadata(MD); 430 if (MD == MappedMD) 431 return getVM()[V] = const_cast<Value *>(V); 432 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 433 } 434 435 // Okay, this either must be a constant (which may or may not be mappable) or 436 // is something that is not in the mapping table. 437 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 438 if (!C) 439 return nullptr; 440 441 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 442 return mapBlockAddress(*BA); 443 444 if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) { 445 auto *Val = mapValue(E->getGlobalValue()); 446 GlobalValue *GV = dyn_cast<GlobalValue>(Val); 447 if (GV) 448 return getVM()[E] = DSOLocalEquivalent::get(GV); 449 450 auto *Func = cast<Function>(Val->stripPointerCastsAndAliases()); 451 Type *NewTy = E->getType(); 452 if (TypeMapper) 453 NewTy = TypeMapper->remapType(NewTy); 454 return getVM()[E] = llvm::ConstantExpr::getBitCast( 455 DSOLocalEquivalent::get(Func), NewTy); 456 } 457 458 if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 459 auto *Val = mapValue(NC->getGlobalValue()); 460 GlobalValue *GV = cast<GlobalValue>(Val); 461 return getVM()[NC] = NoCFIValue::get(GV); 462 } 463 464 auto mapValueOrNull = [this](Value *V) { 465 auto Mapped = mapValue(V); 466 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 467 "Unexpected null mapping for constant operand without " 468 "NullMapMissingGlobalValues flag"); 469 return Mapped; 470 }; 471 472 // Otherwise, we have some other constant to remap. Start by checking to see 473 // if all operands have an identity remapping. 474 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 475 Value *Mapped = nullptr; 476 for (; OpNo != NumOperands; ++OpNo) { 477 Value *Op = C->getOperand(OpNo); 478 Mapped = mapValueOrNull(Op); 479 if (!Mapped) 480 return nullptr; 481 if (Mapped != Op) 482 break; 483 } 484 485 // See if the type mapper wants to remap the type as well. 486 Type *NewTy = C->getType(); 487 if (TypeMapper) 488 NewTy = TypeMapper->remapType(NewTy); 489 490 // If the result type and all operands match up, then just insert an identity 491 // mapping. 492 if (OpNo == NumOperands && NewTy == C->getType()) 493 return getVM()[V] = C; 494 495 // Okay, we need to create a new constant. We've already processed some or 496 // all of the operands, set them all up now. 497 SmallVector<Constant*, 8> Ops; 498 Ops.reserve(NumOperands); 499 for (unsigned j = 0; j != OpNo; ++j) 500 Ops.push_back(cast<Constant>(C->getOperand(j))); 501 502 // If one of the operands mismatch, push it and the other mapped operands. 503 if (OpNo != NumOperands) { 504 Ops.push_back(cast<Constant>(Mapped)); 505 506 // Map the rest of the operands that aren't processed yet. 507 for (++OpNo; OpNo != NumOperands; ++OpNo) { 508 Mapped = mapValueOrNull(C->getOperand(OpNo)); 509 if (!Mapped) 510 return nullptr; 511 Ops.push_back(cast<Constant>(Mapped)); 512 } 513 } 514 Type *NewSrcTy = nullptr; 515 if (TypeMapper) 516 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 517 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 518 519 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 520 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 521 if (isa<ConstantArray>(C)) 522 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 523 if (isa<ConstantStruct>(C)) 524 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 525 if (isa<ConstantVector>(C)) 526 return getVM()[V] = ConstantVector::get(Ops); 527 // If this is a no-operand constant, it must be because the type was remapped. 528 if (isa<PoisonValue>(C)) 529 return getVM()[V] = PoisonValue::get(NewTy); 530 if (isa<UndefValue>(C)) 531 return getVM()[V] = UndefValue::get(NewTy); 532 if (isa<ConstantAggregateZero>(C)) 533 return getVM()[V] = ConstantAggregateZero::get(NewTy); 534 if (isa<ConstantTargetNone>(C)) 535 return getVM()[V] = Constant::getNullValue(NewTy); 536 assert(isa<ConstantPointerNull>(C)); 537 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 538 } 539 540 void Mapper::remapDbgRecord(DbgRecord &DR) { 541 // Remap DILocations. 542 auto *MappedDILoc = mapMetadata(DR.getDebugLoc()); 543 DR.setDebugLoc(DebugLoc(cast<DILocation>(MappedDILoc))); 544 545 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 546 // Remap labels. 547 DLR->setLabel(cast<DILabel>(mapMetadata(DLR->getLabel()))); 548 return; 549 } 550 551 DbgVariableRecord &V = cast<DbgVariableRecord>(DR); 552 // Remap variables. 553 auto *MappedVar = mapMetadata(V.getVariable()); 554 V.setVariable(cast<DILocalVariable>(MappedVar)); 555 556 bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals; 557 558 if (V.isDbgAssign()) { 559 auto *NewAddr = mapValue(V.getAddress()); 560 if (!IgnoreMissingLocals && !NewAddr) 561 V.setKillAddress(); 562 else if (NewAddr) 563 V.setAddress(NewAddr); 564 V.setAssignId(cast<DIAssignID>(mapMetadata(V.getAssignID()))); 565 } 566 567 // Find Value operands and remap those. 568 SmallVector<Value *, 4> Vals, NewVals; 569 for (Value *Val : V.location_ops()) 570 Vals.push_back(Val); 571 for (Value *Val : Vals) 572 NewVals.push_back(mapValue(Val)); 573 574 // If there are no changes to the Value operands, finished. 575 if (Vals == NewVals) 576 return; 577 578 // Otherwise, do some replacement. 579 if (!IgnoreMissingLocals && 580 llvm::any_of(NewVals, [&](Value *V) { return V == nullptr; })) { 581 V.setKillLocation(); 582 } else { 583 // Either we have all non-empty NewVals, or we're permitted to ignore 584 // missing locals. 585 for (unsigned int I = 0; I < Vals.size(); ++I) 586 if (NewVals[I]) 587 V.replaceVariableLocationOp(I, NewVals[I]); 588 } 589 } 590 591 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 592 Function *F = cast<Function>(mapValue(BA.getFunction())); 593 594 // F may not have materialized its initializer. In that case, create a 595 // dummy basic block for now, and replace it once we've materialized all 596 // the initializers. 597 BasicBlock *BB; 598 if (F->empty()) { 599 DelayedBBs.push_back(DelayedBasicBlock(BA)); 600 BB = DelayedBBs.back().TempBB.get(); 601 } else { 602 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 603 } 604 605 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 606 } 607 608 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 609 getVM().MD()[Key].reset(Val); 610 return Val; 611 } 612 613 Metadata *Mapper::mapToSelf(const Metadata *MD) { 614 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 615 } 616 617 std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 618 if (!Op) 619 return nullptr; 620 621 if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 622 #ifndef NDEBUG 623 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 624 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 625 M.getVM().getMappedMD(Op)) && 626 "Expected Value to be memoized"); 627 else 628 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 629 "Expected result to be memoized"); 630 #endif 631 return *MappedOp; 632 } 633 634 const MDNode &N = *cast<MDNode>(Op); 635 if (N.isDistinct()) 636 return mapDistinctNode(N); 637 return std::nullopt; 638 } 639 640 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 641 assert(N.isDistinct() && "Expected a distinct node"); 642 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 643 Metadata *NewM = nullptr; 644 645 if (M.Flags & RF_ReuseAndMutateDistinctMDs) { 646 NewM = M.mapToSelf(&N); 647 } else { 648 NewM = MDNode::replaceWithDistinct(N.clone()); 649 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n" 650 << "To " << *NewM << "\n\n"); 651 M.mapToMetadata(&N, NewM); 652 } 653 DistinctWorklist.push_back(cast<MDNode>(NewM)); 654 655 return DistinctWorklist.back(); 656 } 657 658 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 659 Value *MappedV) { 660 if (CMD.getValue() == MappedV) 661 return const_cast<ConstantAsMetadata *>(&CMD); 662 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 663 } 664 665 std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 666 if (!Op) 667 return nullptr; 668 669 if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 670 return *MappedOp; 671 672 if (isa<MDString>(Op)) 673 return const_cast<Metadata *>(Op); 674 675 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 676 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 677 678 return std::nullopt; 679 } 680 681 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 682 auto Where = Info.find(&Op); 683 assert(Where != Info.end() && "Expected a valid reference"); 684 685 auto &OpD = Where->second; 686 if (!OpD.HasChanged) 687 return Op; 688 689 // Lazily construct a temporary node. 690 if (!OpD.Placeholder) 691 OpD.Placeholder = Op.clone(); 692 693 return *OpD.Placeholder; 694 } 695 696 template <class OperandMapper> 697 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 698 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 699 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 700 Metadata *Old = N.getOperand(I); 701 Metadata *New = mapOperand(Old); 702 if (Old != New) 703 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in " 704 << N << "\n"); 705 706 if (Old != New) 707 N.replaceOperandWith(I, New); 708 } 709 } 710 711 namespace { 712 713 /// An entry in the worklist for the post-order traversal. 714 struct POTWorklistEntry { 715 MDNode *N; ///< Current node. 716 MDNode::op_iterator Op; ///< Current operand of \c N. 717 718 /// Keep a flag of whether operands have changed in the worklist to avoid 719 /// hitting the map in \a UniquedGraph. 720 bool HasChanged = false; 721 722 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 723 }; 724 725 } // end anonymous namespace 726 727 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 728 assert(G.Info.empty() && "Expected a fresh traversal"); 729 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 730 731 // Construct a post-order traversal of the uniqued subgraph under FirstN. 732 bool AnyChanges = false; 733 SmallVector<POTWorklistEntry, 16> Worklist; 734 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 735 (void)G.Info[&FirstN]; 736 while (!Worklist.empty()) { 737 // Start or continue the traversal through the this node's operands. 738 auto &WE = Worklist.back(); 739 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 740 // Push a new node to traverse first. 741 Worklist.push_back(POTWorklistEntry(*N)); 742 continue; 743 } 744 745 // Push the node onto the POT. 746 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 747 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 748 auto &D = G.Info[WE.N]; 749 AnyChanges |= D.HasChanged = WE.HasChanged; 750 D.ID = G.POT.size(); 751 G.POT.push_back(WE.N); 752 753 // Pop the node off the worklist. 754 Worklist.pop_back(); 755 } 756 return AnyChanges; 757 } 758 759 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 760 MDNode::op_iterator E, bool &HasChanged) { 761 while (I != E) { 762 Metadata *Op = *I++; // Increment even on early return. 763 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 764 // Check if the operand changes. 765 HasChanged |= Op != *MappedOp; 766 continue; 767 } 768 769 // A uniqued metadata node. 770 MDNode &OpN = *cast<MDNode>(Op); 771 assert(OpN.isUniqued() && 772 "Only uniqued operands cannot be mapped immediately"); 773 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 774 return &OpN; // This is a new one. Return it. 775 } 776 return nullptr; 777 } 778 779 void MDNodeMapper::UniquedGraph::propagateChanges() { 780 bool AnyChanges; 781 do { 782 AnyChanges = false; 783 for (MDNode *N : POT) { 784 auto &D = Info[N]; 785 if (D.HasChanged) 786 continue; 787 788 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 789 auto Where = Info.find(Op); 790 return Where != Info.end() && Where->second.HasChanged; 791 })) 792 continue; 793 794 AnyChanges = D.HasChanged = true; 795 } 796 } while (AnyChanges); 797 } 798 799 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 800 // Construct uniqued nodes, building forward references as necessary. 801 SmallVector<MDNode *, 16> CyclicNodes; 802 for (auto *N : G.POT) { 803 auto &D = G.Info[N]; 804 if (!D.HasChanged) { 805 // The node hasn't changed. 806 M.mapToSelf(N); 807 continue; 808 } 809 810 // Remember whether this node had a placeholder. 811 bool HadPlaceholder(D.Placeholder); 812 813 // Clone the uniqued node and remap the operands. 814 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 815 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 816 if (std::optional<Metadata *> MappedOp = getMappedOp(Old)) 817 return *MappedOp; 818 (void)D; 819 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 820 return &G.getFwdReference(*cast<MDNode>(Old)); 821 }); 822 823 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 824 if (N && NewN && N != NewN) { 825 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n" 826 << "To " << *NewN << "\n\n"); 827 } 828 829 M.mapToMetadata(N, NewN); 830 831 // Nodes that were referenced out of order in the POT are involved in a 832 // uniquing cycle. 833 if (HadPlaceholder) 834 CyclicNodes.push_back(NewN); 835 } 836 837 // Resolve cycles. 838 for (auto *N : CyclicNodes) 839 if (!N->isResolved()) 840 N->resolveCycles(); 841 } 842 843 Metadata *MDNodeMapper::map(const MDNode &N) { 844 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 845 assert(!(M.Flags & RF_NoModuleLevelChanges) && 846 "MDNodeMapper::map assumes module-level changes"); 847 848 // Require resolved nodes whenever metadata might be remapped. 849 assert(N.isResolved() && "Unexpected unresolved node"); 850 851 Metadata *MappedN = 852 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 853 while (!DistinctWorklist.empty()) 854 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 855 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Old)) 856 return *MappedOp; 857 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 858 }); 859 return MappedN; 860 } 861 862 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 863 assert(FirstN.isUniqued() && "Expected uniqued node"); 864 865 // Create a post-order traversal of uniqued nodes under FirstN. 866 UniquedGraph G; 867 if (!createPOT(G, FirstN)) { 868 // Return early if no nodes have changed. 869 for (const MDNode *N : G.POT) 870 M.mapToSelf(N); 871 return &const_cast<MDNode &>(FirstN); 872 } 873 874 // Update graph with all nodes that have changed. 875 G.propagateChanges(); 876 877 // Map all the nodes in the graph. 878 mapNodesInPOT(G); 879 880 // Return the original node, remapped. 881 return *getMappedOp(&FirstN); 882 } 883 884 std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 885 // If the value already exists in the map, use it. 886 if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 887 return *NewMD; 888 889 if (isa<MDString>(MD)) 890 return const_cast<Metadata *>(MD); 891 892 // This is a module-level metadata. If nothing at the module level is 893 // changing, use an identity mapping. 894 if ((Flags & RF_NoModuleLevelChanges)) 895 return const_cast<Metadata *>(MD); 896 897 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 898 // Don't memoize ConstantAsMetadata. Instead of lasting until the 899 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 900 // reference is destructed. These aren't super common, so the extra 901 // indirection isn't that expensive. 902 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 903 } 904 905 assert(isa<MDNode>(MD) && "Expected a metadata node"); 906 907 return std::nullopt; 908 } 909 910 Metadata *Mapper::mapMetadata(const Metadata *MD) { 911 assert(MD && "Expected valid metadata"); 912 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 913 914 if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 915 return *NewMD; 916 917 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 918 } 919 920 void Mapper::flush() { 921 // Flush out the worklist of global values. 922 while (!Worklist.empty()) { 923 WorklistEntry E = Worklist.pop_back_val(); 924 CurrentMCID = E.MCID; 925 switch (E.Kind) { 926 case WorklistEntry::MapGlobalInit: 927 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 928 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 929 break; 930 case WorklistEntry::MapAppendingVar: { 931 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 932 // mapAppendingVariable call can change AppendingInits if initalizer for 933 // the variable depends on another appending global, because of that inits 934 // need to be extracted and updated before the call. 935 SmallVector<Constant *, 8> NewInits( 936 drop_begin(AppendingInits, PrefixSize)); 937 AppendingInits.resize(PrefixSize); 938 mapAppendingVariable(*E.Data.AppendingGV.GV, 939 E.Data.AppendingGV.InitPrefix, 940 E.AppendingGVIsOldCtorDtor, ArrayRef(NewInits)); 941 break; 942 } 943 case WorklistEntry::MapAliasOrIFunc: { 944 GlobalValue *GV = E.Data.AliasOrIFunc.GV; 945 Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target); 946 if (auto *GA = dyn_cast<GlobalAlias>(GV)) 947 GA->setAliasee(Target); 948 else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) 949 GI->setResolver(Target); 950 else 951 llvm_unreachable("Not alias or ifunc"); 952 break; 953 } 954 case WorklistEntry::RemapFunction: 955 remapFunction(*E.Data.RemapF); 956 break; 957 } 958 } 959 CurrentMCID = 0; 960 961 // Finish logic for block addresses now that all global values have been 962 // handled. 963 while (!DelayedBBs.empty()) { 964 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 965 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 966 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 967 } 968 } 969 970 void Mapper::remapInstruction(Instruction *I) { 971 // Remap operands. 972 for (Use &Op : I->operands()) { 973 Value *V = mapValue(Op); 974 // If we aren't ignoring missing entries, assert that something happened. 975 if (V) 976 Op = V; 977 else 978 assert((Flags & RF_IgnoreMissingLocals) && 979 "Referenced value not in value map!"); 980 } 981 982 // Remap phi nodes' incoming blocks. 983 if (PHINode *PN = dyn_cast<PHINode>(I)) { 984 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 985 Value *V = mapValue(PN->getIncomingBlock(i)); 986 // If we aren't ignoring missing entries, assert that something happened. 987 if (V) 988 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 989 else 990 assert((Flags & RF_IgnoreMissingLocals) && 991 "Referenced block not in value map!"); 992 } 993 } 994 995 // Remap attached metadata. 996 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 997 I->getAllMetadata(MDs); 998 for (const auto &MI : MDs) { 999 MDNode *Old = MI.second; 1000 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 1001 if (New != Old) 1002 I->setMetadata(MI.first, New); 1003 } 1004 1005 if (!TypeMapper) 1006 return; 1007 1008 // If the instruction's type is being remapped, do so now. 1009 if (auto *CB = dyn_cast<CallBase>(I)) { 1010 SmallVector<Type *, 3> Tys; 1011 FunctionType *FTy = CB->getFunctionType(); 1012 Tys.reserve(FTy->getNumParams()); 1013 for (Type *Ty : FTy->params()) 1014 Tys.push_back(TypeMapper->remapType(Ty)); 1015 CB->mutateFunctionType(FunctionType::get( 1016 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 1017 1018 LLVMContext &C = CB->getContext(); 1019 AttributeList Attrs = CB->getAttributes(); 1020 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 1021 for (int AttrIdx = Attribute::FirstTypeAttr; 1022 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 1023 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 1024 if (Type *Ty = 1025 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 1026 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 1027 TypeMapper->remapType(Ty)); 1028 break; 1029 } 1030 } 1031 } 1032 CB->setAttributes(Attrs); 1033 return; 1034 } 1035 if (auto *AI = dyn_cast<AllocaInst>(I)) 1036 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 1037 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 1038 GEP->setSourceElementType( 1039 TypeMapper->remapType(GEP->getSourceElementType())); 1040 GEP->setResultElementType( 1041 TypeMapper->remapType(GEP->getResultElementType())); 1042 } 1043 I->mutateType(TypeMapper->remapType(I->getType())); 1044 } 1045 1046 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 1047 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1048 GO.getAllMetadata(MDs); 1049 GO.clearMetadata(); 1050 for (const auto &I : MDs) 1051 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 1052 } 1053 1054 void Mapper::remapFunction(Function &F) { 1055 // Remap the operands. 1056 for (Use &Op : F.operands()) 1057 if (Op) 1058 Op = mapValue(Op); 1059 1060 // Remap the metadata attachments. 1061 remapGlobalObjectMetadata(F); 1062 1063 // Remap the argument types. 1064 if (TypeMapper) 1065 for (Argument &A : F.args()) 1066 A.mutateType(TypeMapper->remapType(A.getType())); 1067 1068 // Remap the instructions. 1069 for (BasicBlock &BB : F) { 1070 for (Instruction &I : BB) { 1071 remapInstruction(&I); 1072 for (DbgRecord &DR : I.getDbgRecordRange()) 1073 remapDbgRecord(DR); 1074 } 1075 } 1076 } 1077 1078 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 1079 bool IsOldCtorDtor, 1080 ArrayRef<Constant *> NewMembers) { 1081 SmallVector<Constant *, 16> Elements; 1082 if (InitPrefix) { 1083 unsigned NumElements = 1084 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 1085 for (unsigned I = 0; I != NumElements; ++I) 1086 Elements.push_back(InitPrefix->getAggregateElement(I)); 1087 } 1088 1089 PointerType *VoidPtrTy; 1090 Type *EltTy; 1091 if (IsOldCtorDtor) { 1092 // FIXME: This upgrade is done during linking to support the C API. See 1093 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 1094 VoidPtrTy = PointerType::getUnqual(GV.getContext()); 1095 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 1096 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 1097 EltTy = StructType::get(GV.getContext(), Tys, false); 1098 } 1099 1100 for (auto *V : NewMembers) { 1101 Constant *NewV; 1102 if (IsOldCtorDtor) { 1103 auto *S = cast<ConstantStruct>(V); 1104 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 1105 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 1106 Constant *Null = Constant::getNullValue(VoidPtrTy); 1107 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 1108 } else { 1109 NewV = cast_or_null<Constant>(mapValue(V)); 1110 } 1111 Elements.push_back(NewV); 1112 } 1113 1114 GV.setInitializer( 1115 ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements)); 1116 } 1117 1118 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 1119 unsigned MCID) { 1120 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1121 assert(MCID < MCs.size() && "Invalid mapping context"); 1122 1123 WorklistEntry WE; 1124 WE.Kind = WorklistEntry::MapGlobalInit; 1125 WE.MCID = MCID; 1126 WE.Data.GVInit.GV = &GV; 1127 WE.Data.GVInit.Init = &Init; 1128 Worklist.push_back(WE); 1129 } 1130 1131 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1132 Constant *InitPrefix, 1133 bool IsOldCtorDtor, 1134 ArrayRef<Constant *> NewMembers, 1135 unsigned MCID) { 1136 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1137 assert(MCID < MCs.size() && "Invalid mapping context"); 1138 1139 WorklistEntry WE; 1140 WE.Kind = WorklistEntry::MapAppendingVar; 1141 WE.MCID = MCID; 1142 WE.Data.AppendingGV.GV = &GV; 1143 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1144 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1145 WE.AppendingGVNumNewMembers = NewMembers.size(); 1146 Worklist.push_back(WE); 1147 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1148 } 1149 1150 void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 1151 unsigned MCID) { 1152 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1153 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) && 1154 "Should be alias or ifunc"); 1155 assert(MCID < MCs.size() && "Invalid mapping context"); 1156 1157 WorklistEntry WE; 1158 WE.Kind = WorklistEntry::MapAliasOrIFunc; 1159 WE.MCID = MCID; 1160 WE.Data.AliasOrIFunc.GV = &GV; 1161 WE.Data.AliasOrIFunc.Target = &Target; 1162 Worklist.push_back(WE); 1163 } 1164 1165 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1166 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1167 assert(MCID < MCs.size() && "Invalid mapping context"); 1168 1169 WorklistEntry WE; 1170 WE.Kind = WorklistEntry::RemapFunction; 1171 WE.MCID = MCID; 1172 WE.Data.RemapF = &F; 1173 Worklist.push_back(WE); 1174 } 1175 1176 void Mapper::addFlags(RemapFlags Flags) { 1177 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1178 this->Flags = this->Flags | Flags; 1179 } 1180 1181 static Mapper *getAsMapper(void *pImpl) { 1182 return reinterpret_cast<Mapper *>(pImpl); 1183 } 1184 1185 namespace { 1186 1187 class FlushingMapper { 1188 Mapper &M; 1189 1190 public: 1191 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1192 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1193 } 1194 1195 ~FlushingMapper() { M.flush(); } 1196 1197 Mapper *operator->() const { return &M; } 1198 }; 1199 1200 } // end anonymous namespace 1201 1202 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1203 ValueMapTypeRemapper *TypeMapper, 1204 ValueMaterializer *Materializer) 1205 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1206 1207 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1208 1209 unsigned 1210 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1211 ValueMaterializer *Materializer) { 1212 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1213 } 1214 1215 void ValueMapper::addFlags(RemapFlags Flags) { 1216 FlushingMapper(pImpl)->addFlags(Flags); 1217 } 1218 1219 Value *ValueMapper::mapValue(const Value &V) { 1220 return FlushingMapper(pImpl)->mapValue(&V); 1221 } 1222 1223 Constant *ValueMapper::mapConstant(const Constant &C) { 1224 return cast_or_null<Constant>(mapValue(C)); 1225 } 1226 1227 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1228 return FlushingMapper(pImpl)->mapMetadata(&MD); 1229 } 1230 1231 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1232 return cast_or_null<MDNode>(mapMetadata(N)); 1233 } 1234 1235 void ValueMapper::remapInstruction(Instruction &I) { 1236 FlushingMapper(pImpl)->remapInstruction(&I); 1237 } 1238 1239 void ValueMapper::remapDbgRecord(Module *M, DbgRecord &DR) { 1240 FlushingMapper(pImpl)->remapDbgRecord(DR); 1241 } 1242 1243 void ValueMapper::remapDbgRecordRange( 1244 Module *M, iterator_range<DbgRecord::self_iterator> Range) { 1245 for (DbgRecord &DR : Range) { 1246 remapDbgRecord(M, DR); 1247 } 1248 } 1249 1250 void ValueMapper::remapFunction(Function &F) { 1251 FlushingMapper(pImpl)->remapFunction(F); 1252 } 1253 1254 void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) { 1255 FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO); 1256 } 1257 1258 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1259 Constant &Init, 1260 unsigned MCID) { 1261 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1262 } 1263 1264 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1265 Constant *InitPrefix, 1266 bool IsOldCtorDtor, 1267 ArrayRef<Constant *> NewMembers, 1268 unsigned MCID) { 1269 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1270 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1271 } 1272 1273 void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, 1274 unsigned MCID) { 1275 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID); 1276 } 1277 1278 void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, 1279 unsigned MCID) { 1280 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID); 1281 } 1282 1283 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1284 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1285 } 1286