xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/ValueMapper.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MapValue function, which is shared by various parts of
10 // the lib/Transforms/Utils library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/ValueMapper.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include <cassert>
42 #include <limits>
43 #include <memory>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 // Out of line method to get vtable etc for class.
49 void ValueMapTypeRemapper::anchor() {}
50 void ValueMaterializer::anchor() {}
51 
52 namespace {
53 
54 /// A basic block used in a BlockAddress whose function body is not yet
55 /// materialized.
56 struct DelayedBasicBlock {
57   BasicBlock *OldBB;
58   std::unique_ptr<BasicBlock> TempBB;
59 
60   DelayedBasicBlock(const BlockAddress &Old)
61       : OldBB(Old.getBasicBlock()),
62         TempBB(BasicBlock::Create(Old.getContext())) {}
63 };
64 
65 struct WorklistEntry {
66   enum EntryKind {
67     MapGlobalInit,
68     MapAppendingVar,
69     MapGlobalAliasee,
70     RemapFunction
71   };
72   struct GVInitTy {
73     GlobalVariable *GV;
74     Constant *Init;
75   };
76   struct AppendingGVTy {
77     GlobalVariable *GV;
78     Constant *InitPrefix;
79   };
80   struct GlobalAliaseeTy {
81     GlobalAlias *GA;
82     Constant *Aliasee;
83   };
84 
85   unsigned Kind : 2;
86   unsigned MCID : 29;
87   unsigned AppendingGVIsOldCtorDtor : 1;
88   unsigned AppendingGVNumNewMembers;
89   union {
90     GVInitTy GVInit;
91     AppendingGVTy AppendingGV;
92     GlobalAliaseeTy GlobalAliasee;
93     Function *RemapF;
94   } Data;
95 };
96 
97 struct MappingContext {
98   ValueToValueMapTy *VM;
99   ValueMaterializer *Materializer = nullptr;
100 
101   /// Construct a MappingContext with a value map and materializer.
102   explicit MappingContext(ValueToValueMapTy &VM,
103                           ValueMaterializer *Materializer = nullptr)
104       : VM(&VM), Materializer(Materializer) {}
105 };
106 
107 class Mapper {
108   friend class MDNodeMapper;
109 
110 #ifndef NDEBUG
111   DenseSet<GlobalValue *> AlreadyScheduled;
112 #endif
113 
114   RemapFlags Flags;
115   ValueMapTypeRemapper *TypeMapper;
116   unsigned CurrentMCID = 0;
117   SmallVector<MappingContext, 2> MCs;
118   SmallVector<WorklistEntry, 4> Worklist;
119   SmallVector<DelayedBasicBlock, 1> DelayedBBs;
120   SmallVector<Constant *, 16> AppendingInits;
121 
122 public:
123   Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
124          ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
125       : Flags(Flags), TypeMapper(TypeMapper),
126         MCs(1, MappingContext(VM, Materializer)) {}
127 
128   /// ValueMapper should explicitly call \a flush() before destruction.
129   ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
130 
131   bool hasWorkToDo() const { return !Worklist.empty(); }
132 
133   unsigned
134   registerAlternateMappingContext(ValueToValueMapTy &VM,
135                                   ValueMaterializer *Materializer = nullptr) {
136     MCs.push_back(MappingContext(VM, Materializer));
137     return MCs.size() - 1;
138   }
139 
140   void addFlags(RemapFlags Flags);
141 
142   void remapGlobalObjectMetadata(GlobalObject &GO);
143 
144   Value *mapValue(const Value *V);
145   void remapInstruction(Instruction *I);
146   void remapFunction(Function &F);
147 
148   Constant *mapConstant(const Constant *C) {
149     return cast_or_null<Constant>(mapValue(C));
150   }
151 
152   /// Map metadata.
153   ///
154   /// Find the mapping for MD.  Guarantees that the return will be resolved
155   /// (not an MDNode, or MDNode::isResolved() returns true).
156   Metadata *mapMetadata(const Metadata *MD);
157 
158   void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
159                                     unsigned MCID);
160   void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
161                                     bool IsOldCtorDtor,
162                                     ArrayRef<Constant *> NewMembers,
163                                     unsigned MCID);
164   void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
165                                 unsigned MCID);
166   void scheduleRemapFunction(Function &F, unsigned MCID);
167 
168   void flush();
169 
170 private:
171   void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
172   void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
173                             bool IsOldCtorDtor,
174                             ArrayRef<Constant *> NewMembers);
175   void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
176   void remapFunction(Function &F, ValueToValueMapTy &VM);
177 
178   ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
179   ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
180 
181   Value *mapBlockAddress(const BlockAddress &BA);
182 
183   /// Map metadata that doesn't require visiting operands.
184   Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
185 
186   Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
187   Metadata *mapToSelf(const Metadata *MD);
188 };
189 
190 class MDNodeMapper {
191   Mapper &M;
192 
193   /// Data about a node in \a UniquedGraph.
194   struct Data {
195     bool HasChanged = false;
196     unsigned ID = std::numeric_limits<unsigned>::max();
197     TempMDNode Placeholder;
198   };
199 
200   /// A graph of uniqued nodes.
201   struct UniquedGraph {
202     SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
203     SmallVector<MDNode *, 16> POT;                  // Post-order traversal.
204 
205     /// Propagate changed operands through the post-order traversal.
206     ///
207     /// Iteratively update \a Data::HasChanged for each node based on \a
208     /// Data::HasChanged of its operands, until fixed point.
209     void propagateChanges();
210 
211     /// Get a forward reference to a node to use as an operand.
212     Metadata &getFwdReference(MDNode &Op);
213   };
214 
215   /// Worklist of distinct nodes whose operands need to be remapped.
216   SmallVector<MDNode *, 16> DistinctWorklist;
217 
218   // Storage for a UniquedGraph.
219   SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
220   SmallVector<MDNode *, 16> POTStorage;
221 
222 public:
223   MDNodeMapper(Mapper &M) : M(M) {}
224 
225   /// Map a metadata node (and its transitive operands).
226   ///
227   /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
228   /// algorithm handles distinct nodes and uniqued node subgraphs using
229   /// different strategies.
230   ///
231   /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
232   /// using \a mapDistinctNode().  Their mapping can always be computed
233   /// immediately without visiting operands, even if their operands change.
234   ///
235   /// The mapping for uniqued nodes depends on whether their operands change.
236   /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
237   /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
238   /// added to \a DistinctWorklist with \a mapDistinctNode().
239   ///
240   /// After mapping \c N itself, this function remaps the operands of the
241   /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
242   /// N has been mapped.
243   Metadata *map(const MDNode &N);
244 
245 private:
246   /// Map a top-level uniqued node and the uniqued subgraph underneath it.
247   ///
248   /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
249   /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
250   /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
251   /// operands uses the identity mapping.
252   ///
253   /// The algorithm works as follows:
254   ///
255   ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
256   ///     save the post-order traversal in the given \a UniquedGraph, tracking
257   ///     nodes' operands change.
258   ///
259   ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
260   ///     through the \a UniquedGraph until fixed point, following the rule
261   ///     that if a node changes, any node that references must also change.
262   ///
263   ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
264   ///     (referencing new operands) where necessary.
265   Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
266 
267   /// Try to map the operand of an \a MDNode.
268   ///
269   /// If \c Op is already mapped, return the mapping.  If it's not an \a
270   /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
271   /// return the result of \a mapDistinctNode().
272   ///
273   /// \return None if \c Op is an unmapped uniqued \a MDNode.
274   /// \post getMappedOp(Op) only returns None if this returns None.
275   Optional<Metadata *> tryToMapOperand(const Metadata *Op);
276 
277   /// Map a distinct node.
278   ///
279   /// Return the mapping for the distinct node \c N, saving the result in \a
280   /// DistinctWorklist for later remapping.
281   ///
282   /// \pre \c N is not yet mapped.
283   /// \pre \c N.isDistinct().
284   MDNode *mapDistinctNode(const MDNode &N);
285 
286   /// Get a previously mapped node.
287   Optional<Metadata *> getMappedOp(const Metadata *Op) const;
288 
289   /// Create a post-order traversal of an unmapped uniqued node subgraph.
290   ///
291   /// This traverses the metadata graph deeply enough to map \c FirstN.  It
292   /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
293   /// metadata that has already been mapped will not be part of the POT.
294   ///
295   /// Each node that has a changed operand from outside the graph (e.g., a
296   /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
297   /// is marked with \a Data::HasChanged.
298   ///
299   /// \return \c true if any nodes in \c G have \a Data::HasChanged.
300   /// \post \c G.POT is a post-order traversal ending with \c FirstN.
301   /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
302   /// to change because of operands outside the graph.
303   bool createPOT(UniquedGraph &G, const MDNode &FirstN);
304 
305   /// Visit the operands of a uniqued node in the POT.
306   ///
307   /// Visit the operands in the range from \c I to \c E, returning the first
308   /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
309   /// where to continue the loop through the operands.
310   ///
311   /// This sets \c HasChanged if any of the visited operands change.
312   MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
313                         MDNode::op_iterator E, bool &HasChanged);
314 
315   /// Map all the nodes in the given uniqued graph.
316   ///
317   /// This visits all the nodes in \c G in post-order, using the identity
318   /// mapping or creating a new node depending on \a Data::HasChanged.
319   ///
320   /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
321   /// their operands outside of \c G.
322   /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
323   /// operands have changed.
324   /// \post \a getMappedOp() returns the mapped node for every node in \c G.
325   void mapNodesInPOT(UniquedGraph &G);
326 
327   /// Remap a node's operands using the given functor.
328   ///
329   /// Iterate through the operands of \c N and update them in place using \c
330   /// mapOperand.
331   ///
332   /// \pre N.isDistinct() or N.isTemporary().
333   template <class OperandMapper>
334   void remapOperands(MDNode &N, OperandMapper mapOperand);
335 };
336 
337 } // end anonymous namespace
338 
339 Value *Mapper::mapValue(const Value *V) {
340   ValueToValueMapTy::iterator I = getVM().find(V);
341 
342   // If the value already exists in the map, use it.
343   if (I != getVM().end()) {
344     assert(I->second && "Unexpected null mapping");
345     return I->second;
346   }
347 
348   // If we have a materializer and it can materialize a value, use that.
349   if (auto *Materializer = getMaterializer()) {
350     if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
351       getVM()[V] = NewV;
352       return NewV;
353     }
354   }
355 
356   // Global values do not need to be seeded into the VM if they
357   // are using the identity mapping.
358   if (isa<GlobalValue>(V)) {
359     if (Flags & RF_NullMapMissingGlobalValues)
360       return nullptr;
361     return getVM()[V] = const_cast<Value *>(V);
362   }
363 
364   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
365     // Inline asm may need *type* remapping.
366     FunctionType *NewTy = IA->getFunctionType();
367     if (TypeMapper) {
368       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
369 
370       if (NewTy != IA->getFunctionType())
371         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
372                            IA->hasSideEffects(), IA->isAlignStack());
373     }
374 
375     return getVM()[V] = const_cast<Value *>(V);
376   }
377 
378   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
379     const Metadata *MD = MDV->getMetadata();
380 
381     if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
382       // Look through to grab the local value.
383       if (Value *LV = mapValue(LAM->getValue())) {
384         if (V == LAM->getValue())
385           return const_cast<Value *>(V);
386         return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
387       }
388 
389       // FIXME: always return nullptr once Verifier::verifyDominatesUse()
390       // ensures metadata operands only reference defined SSA values.
391       return (Flags & RF_IgnoreMissingLocals)
392                  ? nullptr
393                  : MetadataAsValue::get(V->getContext(),
394                                         MDTuple::get(V->getContext(), None));
395     }
396 
397     // If this is a module-level metadata and we know that nothing at the module
398     // level is changing, then use an identity mapping.
399     if (Flags & RF_NoModuleLevelChanges)
400       return getVM()[V] = const_cast<Value *>(V);
401 
402     // Map the metadata and turn it into a value.
403     auto *MappedMD = mapMetadata(MD);
404     if (MD == MappedMD)
405       return getVM()[V] = const_cast<Value *>(V);
406     return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
407   }
408 
409   // Okay, this either must be a constant (which may or may not be mappable) or
410   // is something that is not in the mapping table.
411   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
412   if (!C)
413     return nullptr;
414 
415   if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
416     return mapBlockAddress(*BA);
417 
418   auto mapValueOrNull = [this](Value *V) {
419     auto Mapped = mapValue(V);
420     assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
421            "Unexpected null mapping for constant operand without "
422            "NullMapMissingGlobalValues flag");
423     return Mapped;
424   };
425 
426   // Otherwise, we have some other constant to remap.  Start by checking to see
427   // if all operands have an identity remapping.
428   unsigned OpNo = 0, NumOperands = C->getNumOperands();
429   Value *Mapped = nullptr;
430   for (; OpNo != NumOperands; ++OpNo) {
431     Value *Op = C->getOperand(OpNo);
432     Mapped = mapValueOrNull(Op);
433     if (!Mapped)
434       return nullptr;
435     if (Mapped != Op)
436       break;
437   }
438 
439   // See if the type mapper wants to remap the type as well.
440   Type *NewTy = C->getType();
441   if (TypeMapper)
442     NewTy = TypeMapper->remapType(NewTy);
443 
444   // If the result type and all operands match up, then just insert an identity
445   // mapping.
446   if (OpNo == NumOperands && NewTy == C->getType())
447     return getVM()[V] = C;
448 
449   // Okay, we need to create a new constant.  We've already processed some or
450   // all of the operands, set them all up now.
451   SmallVector<Constant*, 8> Ops;
452   Ops.reserve(NumOperands);
453   for (unsigned j = 0; j != OpNo; ++j)
454     Ops.push_back(cast<Constant>(C->getOperand(j)));
455 
456   // If one of the operands mismatch, push it and the other mapped operands.
457   if (OpNo != NumOperands) {
458     Ops.push_back(cast<Constant>(Mapped));
459 
460     // Map the rest of the operands that aren't processed yet.
461     for (++OpNo; OpNo != NumOperands; ++OpNo) {
462       Mapped = mapValueOrNull(C->getOperand(OpNo));
463       if (!Mapped)
464         return nullptr;
465       Ops.push_back(cast<Constant>(Mapped));
466     }
467   }
468   Type *NewSrcTy = nullptr;
469   if (TypeMapper)
470     if (auto *GEPO = dyn_cast<GEPOperator>(C))
471       NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
472 
473   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
474     return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
475   if (isa<ConstantArray>(C))
476     return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
477   if (isa<ConstantStruct>(C))
478     return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
479   if (isa<ConstantVector>(C))
480     return getVM()[V] = ConstantVector::get(Ops);
481   // If this is a no-operand constant, it must be because the type was remapped.
482   if (isa<UndefValue>(C))
483     return getVM()[V] = UndefValue::get(NewTy);
484   if (isa<ConstantAggregateZero>(C))
485     return getVM()[V] = ConstantAggregateZero::get(NewTy);
486   assert(isa<ConstantPointerNull>(C));
487   return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
488 }
489 
490 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
491   Function *F = cast<Function>(mapValue(BA.getFunction()));
492 
493   // F may not have materialized its initializer.  In that case, create a
494   // dummy basic block for now, and replace it once we've materialized all
495   // the initializers.
496   BasicBlock *BB;
497   if (F->empty()) {
498     DelayedBBs.push_back(DelayedBasicBlock(BA));
499     BB = DelayedBBs.back().TempBB.get();
500   } else {
501     BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
502   }
503 
504   return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
505 }
506 
507 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
508   getVM().MD()[Key].reset(Val);
509   return Val;
510 }
511 
512 Metadata *Mapper::mapToSelf(const Metadata *MD) {
513   return mapToMetadata(MD, const_cast<Metadata *>(MD));
514 }
515 
516 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
517   if (!Op)
518     return nullptr;
519 
520   if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
521 #ifndef NDEBUG
522     if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
523       assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
524               M.getVM().getMappedMD(Op)) &&
525              "Expected Value to be memoized");
526     else
527       assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
528              "Expected result to be memoized");
529 #endif
530     return *MappedOp;
531   }
532 
533   const MDNode &N = *cast<MDNode>(Op);
534   if (N.isDistinct())
535     return mapDistinctNode(N);
536   return None;
537 }
538 
539 static Metadata *cloneOrBuildODR(const MDNode &N) {
540   auto *CT = dyn_cast<DICompositeType>(&N);
541   // If ODR type uniquing is enabled, we would have uniqued composite types
542   // with identifiers during bitcode reading, so we can just use CT.
543   if (CT && CT->getContext().isODRUniquingDebugTypes() &&
544       CT->getIdentifier() != "")
545     return const_cast<DICompositeType *>(CT);
546   return MDNode::replaceWithDistinct(N.clone());
547 }
548 
549 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
550   assert(N.isDistinct() && "Expected a distinct node");
551   assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
552   DistinctWorklist.push_back(
553       cast<MDNode>((M.Flags & RF_MoveDistinctMDs)
554                        ? M.mapToSelf(&N)
555                        : M.mapToMetadata(&N, cloneOrBuildODR(N))));
556   return DistinctWorklist.back();
557 }
558 
559 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
560                                                   Value *MappedV) {
561   if (CMD.getValue() == MappedV)
562     return const_cast<ConstantAsMetadata *>(&CMD);
563   return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
564 }
565 
566 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
567   if (!Op)
568     return nullptr;
569 
570   if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
571     return *MappedOp;
572 
573   if (isa<MDString>(Op))
574     return const_cast<Metadata *>(Op);
575 
576   if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
577     return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
578 
579   return None;
580 }
581 
582 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
583   auto Where = Info.find(&Op);
584   assert(Where != Info.end() && "Expected a valid reference");
585 
586   auto &OpD = Where->second;
587   if (!OpD.HasChanged)
588     return Op;
589 
590   // Lazily construct a temporary node.
591   if (!OpD.Placeholder)
592     OpD.Placeholder = Op.clone();
593 
594   return *OpD.Placeholder;
595 }
596 
597 template <class OperandMapper>
598 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
599   assert(!N.isUniqued() && "Expected distinct or temporary nodes");
600   for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
601     Metadata *Old = N.getOperand(I);
602     Metadata *New = mapOperand(Old);
603 
604     if (Old != New)
605       N.replaceOperandWith(I, New);
606   }
607 }
608 
609 namespace {
610 
611 /// An entry in the worklist for the post-order traversal.
612 struct POTWorklistEntry {
613   MDNode *N;              ///< Current node.
614   MDNode::op_iterator Op; ///< Current operand of \c N.
615 
616   /// Keep a flag of whether operands have changed in the worklist to avoid
617   /// hitting the map in \a UniquedGraph.
618   bool HasChanged = false;
619 
620   POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
621 };
622 
623 } // end anonymous namespace
624 
625 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
626   assert(G.Info.empty() && "Expected a fresh traversal");
627   assert(FirstN.isUniqued() && "Expected uniqued node in POT");
628 
629   // Construct a post-order traversal of the uniqued subgraph under FirstN.
630   bool AnyChanges = false;
631   SmallVector<POTWorklistEntry, 16> Worklist;
632   Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
633   (void)G.Info[&FirstN];
634   while (!Worklist.empty()) {
635     // Start or continue the traversal through the this node's operands.
636     auto &WE = Worklist.back();
637     if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
638       // Push a new node to traverse first.
639       Worklist.push_back(POTWorklistEntry(*N));
640       continue;
641     }
642 
643     // Push the node onto the POT.
644     assert(WE.N->isUniqued() && "Expected only uniqued nodes");
645     assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
646     auto &D = G.Info[WE.N];
647     AnyChanges |= D.HasChanged = WE.HasChanged;
648     D.ID = G.POT.size();
649     G.POT.push_back(WE.N);
650 
651     // Pop the node off the worklist.
652     Worklist.pop_back();
653   }
654   return AnyChanges;
655 }
656 
657 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
658                                     MDNode::op_iterator E, bool &HasChanged) {
659   while (I != E) {
660     Metadata *Op = *I++; // Increment even on early return.
661     if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
662       // Check if the operand changes.
663       HasChanged |= Op != *MappedOp;
664       continue;
665     }
666 
667     // A uniqued metadata node.
668     MDNode &OpN = *cast<MDNode>(Op);
669     assert(OpN.isUniqued() &&
670            "Only uniqued operands cannot be mapped immediately");
671     if (G.Info.insert(std::make_pair(&OpN, Data())).second)
672       return &OpN; // This is a new one.  Return it.
673   }
674   return nullptr;
675 }
676 
677 void MDNodeMapper::UniquedGraph::propagateChanges() {
678   bool AnyChanges;
679   do {
680     AnyChanges = false;
681     for (MDNode *N : POT) {
682       auto &D = Info[N];
683       if (D.HasChanged)
684         continue;
685 
686       if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
687             auto Where = Info.find(Op);
688             return Where != Info.end() && Where->second.HasChanged;
689           }))
690         continue;
691 
692       AnyChanges = D.HasChanged = true;
693     }
694   } while (AnyChanges);
695 }
696 
697 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
698   // Construct uniqued nodes, building forward references as necessary.
699   SmallVector<MDNode *, 16> CyclicNodes;
700   for (auto *N : G.POT) {
701     auto &D = G.Info[N];
702     if (!D.HasChanged) {
703       // The node hasn't changed.
704       M.mapToSelf(N);
705       continue;
706     }
707 
708     // Remember whether this node had a placeholder.
709     bool HadPlaceholder(D.Placeholder);
710 
711     // Clone the uniqued node and remap the operands.
712     TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
713     remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
714       if (Optional<Metadata *> MappedOp = getMappedOp(Old))
715         return *MappedOp;
716       (void)D;
717       assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
718       return &G.getFwdReference(*cast<MDNode>(Old));
719     });
720 
721     auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
722     M.mapToMetadata(N, NewN);
723 
724     // Nodes that were referenced out of order in the POT are involved in a
725     // uniquing cycle.
726     if (HadPlaceholder)
727       CyclicNodes.push_back(NewN);
728   }
729 
730   // Resolve cycles.
731   for (auto *N : CyclicNodes)
732     if (!N->isResolved())
733       N->resolveCycles();
734 }
735 
736 Metadata *MDNodeMapper::map(const MDNode &N) {
737   assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
738   assert(!(M.Flags & RF_NoModuleLevelChanges) &&
739          "MDNodeMapper::map assumes module-level changes");
740 
741   // Require resolved nodes whenever metadata might be remapped.
742   assert(N.isResolved() && "Unexpected unresolved node");
743 
744   Metadata *MappedN =
745       N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
746   while (!DistinctWorklist.empty())
747     remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
748       if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
749         return *MappedOp;
750       return mapTopLevelUniquedNode(*cast<MDNode>(Old));
751     });
752   return MappedN;
753 }
754 
755 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
756   assert(FirstN.isUniqued() && "Expected uniqued node");
757 
758   // Create a post-order traversal of uniqued nodes under FirstN.
759   UniquedGraph G;
760   if (!createPOT(G, FirstN)) {
761     // Return early if no nodes have changed.
762     for (const MDNode *N : G.POT)
763       M.mapToSelf(N);
764     return &const_cast<MDNode &>(FirstN);
765   }
766 
767   // Update graph with all nodes that have changed.
768   G.propagateChanges();
769 
770   // Map all the nodes in the graph.
771   mapNodesInPOT(G);
772 
773   // Return the original node, remapped.
774   return *getMappedOp(&FirstN);
775 }
776 
777 namespace {
778 
779 struct MapMetadataDisabler {
780   ValueToValueMapTy &VM;
781 
782   MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
783     VM.disableMapMetadata();
784   }
785 
786   ~MapMetadataDisabler() { VM.enableMapMetadata(); }
787 };
788 
789 } // end anonymous namespace
790 
791 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
792   // If the value already exists in the map, use it.
793   if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
794     return *NewMD;
795 
796   if (isa<MDString>(MD))
797     return const_cast<Metadata *>(MD);
798 
799   // This is a module-level metadata.  If nothing at the module level is
800   // changing, use an identity mapping.
801   if ((Flags & RF_NoModuleLevelChanges))
802     return const_cast<Metadata *>(MD);
803 
804   if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
805     // Disallow recursion into metadata mapping through mapValue.
806     MapMetadataDisabler MMD(getVM());
807 
808     // Don't memoize ConstantAsMetadata.  Instead of lasting until the
809     // LLVMContext is destroyed, they can be deleted when the GlobalValue they
810     // reference is destructed.  These aren't super common, so the extra
811     // indirection isn't that expensive.
812     return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
813   }
814 
815   assert(isa<MDNode>(MD) && "Expected a metadata node");
816 
817   return None;
818 }
819 
820 Metadata *Mapper::mapMetadata(const Metadata *MD) {
821   assert(MD && "Expected valid metadata");
822   assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
823 
824   if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
825     return *NewMD;
826 
827   return MDNodeMapper(*this).map(*cast<MDNode>(MD));
828 }
829 
830 void Mapper::flush() {
831   // Flush out the worklist of global values.
832   while (!Worklist.empty()) {
833     WorklistEntry E = Worklist.pop_back_val();
834     CurrentMCID = E.MCID;
835     switch (E.Kind) {
836     case WorklistEntry::MapGlobalInit:
837       E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
838       remapGlobalObjectMetadata(*E.Data.GVInit.GV);
839       break;
840     case WorklistEntry::MapAppendingVar: {
841       unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
842       mapAppendingVariable(*E.Data.AppendingGV.GV,
843                            E.Data.AppendingGV.InitPrefix,
844                            E.AppendingGVIsOldCtorDtor,
845                            makeArrayRef(AppendingInits).slice(PrefixSize));
846       AppendingInits.resize(PrefixSize);
847       break;
848     }
849     case WorklistEntry::MapGlobalAliasee:
850       E.Data.GlobalAliasee.GA->setAliasee(
851           mapConstant(E.Data.GlobalAliasee.Aliasee));
852       break;
853     case WorklistEntry::RemapFunction:
854       remapFunction(*E.Data.RemapF);
855       break;
856     }
857   }
858   CurrentMCID = 0;
859 
860   // Finish logic for block addresses now that all global values have been
861   // handled.
862   while (!DelayedBBs.empty()) {
863     DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
864     BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
865     DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
866   }
867 }
868 
869 void Mapper::remapInstruction(Instruction *I) {
870   // Remap operands.
871   for (Use &Op : I->operands()) {
872     Value *V = mapValue(Op);
873     // If we aren't ignoring missing entries, assert that something happened.
874     if (V)
875       Op = V;
876     else
877       assert((Flags & RF_IgnoreMissingLocals) &&
878              "Referenced value not in value map!");
879   }
880 
881   // Remap phi nodes' incoming blocks.
882   if (PHINode *PN = dyn_cast<PHINode>(I)) {
883     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
884       Value *V = mapValue(PN->getIncomingBlock(i));
885       // If we aren't ignoring missing entries, assert that something happened.
886       if (V)
887         PN->setIncomingBlock(i, cast<BasicBlock>(V));
888       else
889         assert((Flags & RF_IgnoreMissingLocals) &&
890                "Referenced block not in value map!");
891     }
892   }
893 
894   // Remap attached metadata.
895   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
896   I->getAllMetadata(MDs);
897   for (const auto &MI : MDs) {
898     MDNode *Old = MI.second;
899     MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
900     if (New != Old)
901       I->setMetadata(MI.first, New);
902   }
903 
904   if (!TypeMapper)
905     return;
906 
907   // If the instruction's type is being remapped, do so now.
908   if (auto CS = CallSite(I)) {
909     SmallVector<Type *, 3> Tys;
910     FunctionType *FTy = CS.getFunctionType();
911     Tys.reserve(FTy->getNumParams());
912     for (Type *Ty : FTy->params())
913       Tys.push_back(TypeMapper->remapType(Ty));
914     CS.mutateFunctionType(FunctionType::get(
915         TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
916 
917     LLVMContext &C = CS->getContext();
918     AttributeList Attrs = CS.getAttributes();
919     for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
920       if (Attrs.hasAttribute(i, Attribute::ByVal)) {
921         Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType();
922         if (!Ty)
923           continue;
924 
925         Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal);
926         Attrs = Attrs.addAttribute(
927             C, i, Attribute::getWithByValType(C, TypeMapper->remapType(Ty)));
928       }
929     }
930     CS.setAttributes(Attrs);
931     return;
932   }
933   if (auto *AI = dyn_cast<AllocaInst>(I))
934     AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
935   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
936     GEP->setSourceElementType(
937         TypeMapper->remapType(GEP->getSourceElementType()));
938     GEP->setResultElementType(
939         TypeMapper->remapType(GEP->getResultElementType()));
940   }
941   I->mutateType(TypeMapper->remapType(I->getType()));
942 }
943 
944 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
945   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
946   GO.getAllMetadata(MDs);
947   GO.clearMetadata();
948   for (const auto &I : MDs)
949     GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
950 }
951 
952 void Mapper::remapFunction(Function &F) {
953   // Remap the operands.
954   for (Use &Op : F.operands())
955     if (Op)
956       Op = mapValue(Op);
957 
958   // Remap the metadata attachments.
959   remapGlobalObjectMetadata(F);
960 
961   // Remap the argument types.
962   if (TypeMapper)
963     for (Argument &A : F.args())
964       A.mutateType(TypeMapper->remapType(A.getType()));
965 
966   // Remap the instructions.
967   for (BasicBlock &BB : F)
968     for (Instruction &I : BB)
969       remapInstruction(&I);
970 }
971 
972 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
973                                   bool IsOldCtorDtor,
974                                   ArrayRef<Constant *> NewMembers) {
975   SmallVector<Constant *, 16> Elements;
976   if (InitPrefix) {
977     unsigned NumElements =
978         cast<ArrayType>(InitPrefix->getType())->getNumElements();
979     for (unsigned I = 0; I != NumElements; ++I)
980       Elements.push_back(InitPrefix->getAggregateElement(I));
981   }
982 
983   PointerType *VoidPtrTy;
984   Type *EltTy;
985   if (IsOldCtorDtor) {
986     // FIXME: This upgrade is done during linking to support the C API.  See
987     // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
988     VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
989     auto &ST = *cast<StructType>(NewMembers.front()->getType());
990     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
991     EltTy = StructType::get(GV.getContext(), Tys, false);
992   }
993 
994   for (auto *V : NewMembers) {
995     Constant *NewV;
996     if (IsOldCtorDtor) {
997       auto *S = cast<ConstantStruct>(V);
998       auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
999       auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
1000       Constant *Null = Constant::getNullValue(VoidPtrTy);
1001       NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
1002     } else {
1003       NewV = cast_or_null<Constant>(mapValue(V));
1004     }
1005     Elements.push_back(NewV);
1006   }
1007 
1008   GV.setInitializer(ConstantArray::get(
1009       cast<ArrayType>(GV.getType()->getElementType()), Elements));
1010 }
1011 
1012 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
1013                                           unsigned MCID) {
1014   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1015   assert(MCID < MCs.size() && "Invalid mapping context");
1016 
1017   WorklistEntry WE;
1018   WE.Kind = WorklistEntry::MapGlobalInit;
1019   WE.MCID = MCID;
1020   WE.Data.GVInit.GV = &GV;
1021   WE.Data.GVInit.Init = &Init;
1022   Worklist.push_back(WE);
1023 }
1024 
1025 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1026                                           Constant *InitPrefix,
1027                                           bool IsOldCtorDtor,
1028                                           ArrayRef<Constant *> NewMembers,
1029                                           unsigned MCID) {
1030   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1031   assert(MCID < MCs.size() && "Invalid mapping context");
1032 
1033   WorklistEntry WE;
1034   WE.Kind = WorklistEntry::MapAppendingVar;
1035   WE.MCID = MCID;
1036   WE.Data.AppendingGV.GV = &GV;
1037   WE.Data.AppendingGV.InitPrefix = InitPrefix;
1038   WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1039   WE.AppendingGVNumNewMembers = NewMembers.size();
1040   Worklist.push_back(WE);
1041   AppendingInits.append(NewMembers.begin(), NewMembers.end());
1042 }
1043 
1044 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
1045                                       unsigned MCID) {
1046   assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
1047   assert(MCID < MCs.size() && "Invalid mapping context");
1048 
1049   WorklistEntry WE;
1050   WE.Kind = WorklistEntry::MapGlobalAliasee;
1051   WE.MCID = MCID;
1052   WE.Data.GlobalAliasee.GA = &GA;
1053   WE.Data.GlobalAliasee.Aliasee = &Aliasee;
1054   Worklist.push_back(WE);
1055 }
1056 
1057 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1058   assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1059   assert(MCID < MCs.size() && "Invalid mapping context");
1060 
1061   WorklistEntry WE;
1062   WE.Kind = WorklistEntry::RemapFunction;
1063   WE.MCID = MCID;
1064   WE.Data.RemapF = &F;
1065   Worklist.push_back(WE);
1066 }
1067 
1068 void Mapper::addFlags(RemapFlags Flags) {
1069   assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1070   this->Flags = this->Flags | Flags;
1071 }
1072 
1073 static Mapper *getAsMapper(void *pImpl) {
1074   return reinterpret_cast<Mapper *>(pImpl);
1075 }
1076 
1077 namespace {
1078 
1079 class FlushingMapper {
1080   Mapper &M;
1081 
1082 public:
1083   explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1084     assert(!M.hasWorkToDo() && "Expected to be flushed");
1085   }
1086 
1087   ~FlushingMapper() { M.flush(); }
1088 
1089   Mapper *operator->() const { return &M; }
1090 };
1091 
1092 } // end anonymous namespace
1093 
1094 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1095                          ValueMapTypeRemapper *TypeMapper,
1096                          ValueMaterializer *Materializer)
1097     : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1098 
1099 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1100 
1101 unsigned
1102 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1103                                              ValueMaterializer *Materializer) {
1104   return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1105 }
1106 
1107 void ValueMapper::addFlags(RemapFlags Flags) {
1108   FlushingMapper(pImpl)->addFlags(Flags);
1109 }
1110 
1111 Value *ValueMapper::mapValue(const Value &V) {
1112   return FlushingMapper(pImpl)->mapValue(&V);
1113 }
1114 
1115 Constant *ValueMapper::mapConstant(const Constant &C) {
1116   return cast_or_null<Constant>(mapValue(C));
1117 }
1118 
1119 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1120   return FlushingMapper(pImpl)->mapMetadata(&MD);
1121 }
1122 
1123 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1124   return cast_or_null<MDNode>(mapMetadata(N));
1125 }
1126 
1127 void ValueMapper::remapInstruction(Instruction &I) {
1128   FlushingMapper(pImpl)->remapInstruction(&I);
1129 }
1130 
1131 void ValueMapper::remapFunction(Function &F) {
1132   FlushingMapper(pImpl)->remapFunction(F);
1133 }
1134 
1135 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1136                                                Constant &Init,
1137                                                unsigned MCID) {
1138   getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1139 }
1140 
1141 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1142                                                Constant *InitPrefix,
1143                                                bool IsOldCtorDtor,
1144                                                ArrayRef<Constant *> NewMembers,
1145                                                unsigned MCID) {
1146   getAsMapper(pImpl)->scheduleMapAppendingVariable(
1147       GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1148 }
1149 
1150 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
1151                                            unsigned MCID) {
1152   getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
1153 }
1154 
1155 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1156   getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1157 }
1158