1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MapValue function, which is shared by various parts of 10 // the lib/Transforms/Utils library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/ValueMapper.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include <cassert> 42 #include <limits> 43 #include <memory> 44 #include <utility> 45 46 using namespace llvm; 47 48 // Out of line method to get vtable etc for class. 49 void ValueMapTypeRemapper::anchor() {} 50 void ValueMaterializer::anchor() {} 51 52 namespace { 53 54 /// A basic block used in a BlockAddress whose function body is not yet 55 /// materialized. 56 struct DelayedBasicBlock { 57 BasicBlock *OldBB; 58 std::unique_ptr<BasicBlock> TempBB; 59 60 DelayedBasicBlock(const BlockAddress &Old) 61 : OldBB(Old.getBasicBlock()), 62 TempBB(BasicBlock::Create(Old.getContext())) {} 63 }; 64 65 struct WorklistEntry { 66 enum EntryKind { 67 MapGlobalInit, 68 MapAppendingVar, 69 MapGlobalAliasee, 70 RemapFunction 71 }; 72 struct GVInitTy { 73 GlobalVariable *GV; 74 Constant *Init; 75 }; 76 struct AppendingGVTy { 77 GlobalVariable *GV; 78 Constant *InitPrefix; 79 }; 80 struct GlobalAliaseeTy { 81 GlobalAlias *GA; 82 Constant *Aliasee; 83 }; 84 85 unsigned Kind : 2; 86 unsigned MCID : 29; 87 unsigned AppendingGVIsOldCtorDtor : 1; 88 unsigned AppendingGVNumNewMembers; 89 union { 90 GVInitTy GVInit; 91 AppendingGVTy AppendingGV; 92 GlobalAliaseeTy GlobalAliasee; 93 Function *RemapF; 94 } Data; 95 }; 96 97 struct MappingContext { 98 ValueToValueMapTy *VM; 99 ValueMaterializer *Materializer = nullptr; 100 101 /// Construct a MappingContext with a value map and materializer. 102 explicit MappingContext(ValueToValueMapTy &VM, 103 ValueMaterializer *Materializer = nullptr) 104 : VM(&VM), Materializer(Materializer) {} 105 }; 106 107 class Mapper { 108 friend class MDNodeMapper; 109 110 #ifndef NDEBUG 111 DenseSet<GlobalValue *> AlreadyScheduled; 112 #endif 113 114 RemapFlags Flags; 115 ValueMapTypeRemapper *TypeMapper; 116 unsigned CurrentMCID = 0; 117 SmallVector<MappingContext, 2> MCs; 118 SmallVector<WorklistEntry, 4> Worklist; 119 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 120 SmallVector<Constant *, 16> AppendingInits; 121 122 public: 123 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 124 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 125 : Flags(Flags), TypeMapper(TypeMapper), 126 MCs(1, MappingContext(VM, Materializer)) {} 127 128 /// ValueMapper should explicitly call \a flush() before destruction. 129 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 130 131 bool hasWorkToDo() const { return !Worklist.empty(); } 132 133 unsigned 134 registerAlternateMappingContext(ValueToValueMapTy &VM, 135 ValueMaterializer *Materializer = nullptr) { 136 MCs.push_back(MappingContext(VM, Materializer)); 137 return MCs.size() - 1; 138 } 139 140 void addFlags(RemapFlags Flags); 141 142 void remapGlobalObjectMetadata(GlobalObject &GO); 143 144 Value *mapValue(const Value *V); 145 void remapInstruction(Instruction *I); 146 void remapFunction(Function &F); 147 148 Constant *mapConstant(const Constant *C) { 149 return cast_or_null<Constant>(mapValue(C)); 150 } 151 152 /// Map metadata. 153 /// 154 /// Find the mapping for MD. Guarantees that the return will be resolved 155 /// (not an MDNode, or MDNode::isResolved() returns true). 156 Metadata *mapMetadata(const Metadata *MD); 157 158 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 159 unsigned MCID); 160 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 161 bool IsOldCtorDtor, 162 ArrayRef<Constant *> NewMembers, 163 unsigned MCID); 164 void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 165 unsigned MCID); 166 void scheduleRemapFunction(Function &F, unsigned MCID); 167 168 void flush(); 169 170 private: 171 void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); 172 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 173 bool IsOldCtorDtor, 174 ArrayRef<Constant *> NewMembers); 175 void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee); 176 void remapFunction(Function &F, ValueToValueMapTy &VM); 177 178 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 179 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 180 181 Value *mapBlockAddress(const BlockAddress &BA); 182 183 /// Map metadata that doesn't require visiting operands. 184 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 185 186 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 187 Metadata *mapToSelf(const Metadata *MD); 188 }; 189 190 class MDNodeMapper { 191 Mapper &M; 192 193 /// Data about a node in \a UniquedGraph. 194 struct Data { 195 bool HasChanged = false; 196 unsigned ID = std::numeric_limits<unsigned>::max(); 197 TempMDNode Placeholder; 198 }; 199 200 /// A graph of uniqued nodes. 201 struct UniquedGraph { 202 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 203 SmallVector<MDNode *, 16> POT; // Post-order traversal. 204 205 /// Propagate changed operands through the post-order traversal. 206 /// 207 /// Iteratively update \a Data::HasChanged for each node based on \a 208 /// Data::HasChanged of its operands, until fixed point. 209 void propagateChanges(); 210 211 /// Get a forward reference to a node to use as an operand. 212 Metadata &getFwdReference(MDNode &Op); 213 }; 214 215 /// Worklist of distinct nodes whose operands need to be remapped. 216 SmallVector<MDNode *, 16> DistinctWorklist; 217 218 // Storage for a UniquedGraph. 219 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 220 SmallVector<MDNode *, 16> POTStorage; 221 222 public: 223 MDNodeMapper(Mapper &M) : M(M) {} 224 225 /// Map a metadata node (and its transitive operands). 226 /// 227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 228 /// algorithm handles distinct nodes and uniqued node subgraphs using 229 /// different strategies. 230 /// 231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 232 /// using \a mapDistinctNode(). Their mapping can always be computed 233 /// immediately without visiting operands, even if their operands change. 234 /// 235 /// The mapping for uniqued nodes depends on whether their operands change. 236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 238 /// added to \a DistinctWorklist with \a mapDistinctNode(). 239 /// 240 /// After mapping \c N itself, this function remaps the operands of the 241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 242 /// N has been mapped. 243 Metadata *map(const MDNode &N); 244 245 private: 246 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 247 /// 248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 251 /// operands uses the identity mapping. 252 /// 253 /// The algorithm works as follows: 254 /// 255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 256 /// save the post-order traversal in the given \a UniquedGraph, tracking 257 /// nodes' operands change. 258 /// 259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 260 /// through the \a UniquedGraph until fixed point, following the rule 261 /// that if a node changes, any node that references must also change. 262 /// 263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 264 /// (referencing new operands) where necessary. 265 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 266 267 /// Try to map the operand of an \a MDNode. 268 /// 269 /// If \c Op is already mapped, return the mapping. If it's not an \a 270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 271 /// return the result of \a mapDistinctNode(). 272 /// 273 /// \return None if \c Op is an unmapped uniqued \a MDNode. 274 /// \post getMappedOp(Op) only returns None if this returns None. 275 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 276 277 /// Map a distinct node. 278 /// 279 /// Return the mapping for the distinct node \c N, saving the result in \a 280 /// DistinctWorklist for later remapping. 281 /// 282 /// \pre \c N is not yet mapped. 283 /// \pre \c N.isDistinct(). 284 MDNode *mapDistinctNode(const MDNode &N); 285 286 /// Get a previously mapped node. 287 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 288 289 /// Create a post-order traversal of an unmapped uniqued node subgraph. 290 /// 291 /// This traverses the metadata graph deeply enough to map \c FirstN. It 292 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 293 /// metadata that has already been mapped will not be part of the POT. 294 /// 295 /// Each node that has a changed operand from outside the graph (e.g., a 296 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 297 /// is marked with \a Data::HasChanged. 298 /// 299 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 300 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 301 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 302 /// to change because of operands outside the graph. 303 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 304 305 /// Visit the operands of a uniqued node in the POT. 306 /// 307 /// Visit the operands in the range from \c I to \c E, returning the first 308 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 309 /// where to continue the loop through the operands. 310 /// 311 /// This sets \c HasChanged if any of the visited operands change. 312 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 313 MDNode::op_iterator E, bool &HasChanged); 314 315 /// Map all the nodes in the given uniqued graph. 316 /// 317 /// This visits all the nodes in \c G in post-order, using the identity 318 /// mapping or creating a new node depending on \a Data::HasChanged. 319 /// 320 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 321 /// their operands outside of \c G. 322 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 323 /// operands have changed. 324 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 325 void mapNodesInPOT(UniquedGraph &G); 326 327 /// Remap a node's operands using the given functor. 328 /// 329 /// Iterate through the operands of \c N and update them in place using \c 330 /// mapOperand. 331 /// 332 /// \pre N.isDistinct() or N.isTemporary(). 333 template <class OperandMapper> 334 void remapOperands(MDNode &N, OperandMapper mapOperand); 335 }; 336 337 } // end anonymous namespace 338 339 Value *Mapper::mapValue(const Value *V) { 340 ValueToValueMapTy::iterator I = getVM().find(V); 341 342 // If the value already exists in the map, use it. 343 if (I != getVM().end()) { 344 assert(I->second && "Unexpected null mapping"); 345 return I->second; 346 } 347 348 // If we have a materializer and it can materialize a value, use that. 349 if (auto *Materializer = getMaterializer()) { 350 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 351 getVM()[V] = NewV; 352 return NewV; 353 } 354 } 355 356 // Global values do not need to be seeded into the VM if they 357 // are using the identity mapping. 358 if (isa<GlobalValue>(V)) { 359 if (Flags & RF_NullMapMissingGlobalValues) 360 return nullptr; 361 return getVM()[V] = const_cast<Value *>(V); 362 } 363 364 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 365 // Inline asm may need *type* remapping. 366 FunctionType *NewTy = IA->getFunctionType(); 367 if (TypeMapper) { 368 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 369 370 if (NewTy != IA->getFunctionType()) 371 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 372 IA->hasSideEffects(), IA->isAlignStack()); 373 } 374 375 return getVM()[V] = const_cast<Value *>(V); 376 } 377 378 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 379 const Metadata *MD = MDV->getMetadata(); 380 381 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 382 // Look through to grab the local value. 383 if (Value *LV = mapValue(LAM->getValue())) { 384 if (V == LAM->getValue()) 385 return const_cast<Value *>(V); 386 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 387 } 388 389 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 390 // ensures metadata operands only reference defined SSA values. 391 return (Flags & RF_IgnoreMissingLocals) 392 ? nullptr 393 : MetadataAsValue::get(V->getContext(), 394 MDTuple::get(V->getContext(), None)); 395 } 396 397 // If this is a module-level metadata and we know that nothing at the module 398 // level is changing, then use an identity mapping. 399 if (Flags & RF_NoModuleLevelChanges) 400 return getVM()[V] = const_cast<Value *>(V); 401 402 // Map the metadata and turn it into a value. 403 auto *MappedMD = mapMetadata(MD); 404 if (MD == MappedMD) 405 return getVM()[V] = const_cast<Value *>(V); 406 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 407 } 408 409 // Okay, this either must be a constant (which may or may not be mappable) or 410 // is something that is not in the mapping table. 411 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 412 if (!C) 413 return nullptr; 414 415 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 416 return mapBlockAddress(*BA); 417 418 auto mapValueOrNull = [this](Value *V) { 419 auto Mapped = mapValue(V); 420 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 421 "Unexpected null mapping for constant operand without " 422 "NullMapMissingGlobalValues flag"); 423 return Mapped; 424 }; 425 426 // Otherwise, we have some other constant to remap. Start by checking to see 427 // if all operands have an identity remapping. 428 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 429 Value *Mapped = nullptr; 430 for (; OpNo != NumOperands; ++OpNo) { 431 Value *Op = C->getOperand(OpNo); 432 Mapped = mapValueOrNull(Op); 433 if (!Mapped) 434 return nullptr; 435 if (Mapped != Op) 436 break; 437 } 438 439 // See if the type mapper wants to remap the type as well. 440 Type *NewTy = C->getType(); 441 if (TypeMapper) 442 NewTy = TypeMapper->remapType(NewTy); 443 444 // If the result type and all operands match up, then just insert an identity 445 // mapping. 446 if (OpNo == NumOperands && NewTy == C->getType()) 447 return getVM()[V] = C; 448 449 // Okay, we need to create a new constant. We've already processed some or 450 // all of the operands, set them all up now. 451 SmallVector<Constant*, 8> Ops; 452 Ops.reserve(NumOperands); 453 for (unsigned j = 0; j != OpNo; ++j) 454 Ops.push_back(cast<Constant>(C->getOperand(j))); 455 456 // If one of the operands mismatch, push it and the other mapped operands. 457 if (OpNo != NumOperands) { 458 Ops.push_back(cast<Constant>(Mapped)); 459 460 // Map the rest of the operands that aren't processed yet. 461 for (++OpNo; OpNo != NumOperands; ++OpNo) { 462 Mapped = mapValueOrNull(C->getOperand(OpNo)); 463 if (!Mapped) 464 return nullptr; 465 Ops.push_back(cast<Constant>(Mapped)); 466 } 467 } 468 Type *NewSrcTy = nullptr; 469 if (TypeMapper) 470 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 471 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 472 473 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 474 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 475 if (isa<ConstantArray>(C)) 476 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 477 if (isa<ConstantStruct>(C)) 478 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 479 if (isa<ConstantVector>(C)) 480 return getVM()[V] = ConstantVector::get(Ops); 481 // If this is a no-operand constant, it must be because the type was remapped. 482 if (isa<UndefValue>(C)) 483 return getVM()[V] = UndefValue::get(NewTy); 484 if (isa<ConstantAggregateZero>(C)) 485 return getVM()[V] = ConstantAggregateZero::get(NewTy); 486 assert(isa<ConstantPointerNull>(C)); 487 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 488 } 489 490 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 491 Function *F = cast<Function>(mapValue(BA.getFunction())); 492 493 // F may not have materialized its initializer. In that case, create a 494 // dummy basic block for now, and replace it once we've materialized all 495 // the initializers. 496 BasicBlock *BB; 497 if (F->empty()) { 498 DelayedBBs.push_back(DelayedBasicBlock(BA)); 499 BB = DelayedBBs.back().TempBB.get(); 500 } else { 501 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 502 } 503 504 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 505 } 506 507 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 508 getVM().MD()[Key].reset(Val); 509 return Val; 510 } 511 512 Metadata *Mapper::mapToSelf(const Metadata *MD) { 513 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 514 } 515 516 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 517 if (!Op) 518 return nullptr; 519 520 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 521 #ifndef NDEBUG 522 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 523 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 524 M.getVM().getMappedMD(Op)) && 525 "Expected Value to be memoized"); 526 else 527 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 528 "Expected result to be memoized"); 529 #endif 530 return *MappedOp; 531 } 532 533 const MDNode &N = *cast<MDNode>(Op); 534 if (N.isDistinct()) 535 return mapDistinctNode(N); 536 return None; 537 } 538 539 static Metadata *cloneOrBuildODR(const MDNode &N) { 540 auto *CT = dyn_cast<DICompositeType>(&N); 541 // If ODR type uniquing is enabled, we would have uniqued composite types 542 // with identifiers during bitcode reading, so we can just use CT. 543 if (CT && CT->getContext().isODRUniquingDebugTypes() && 544 CT->getIdentifier() != "") 545 return const_cast<DICompositeType *>(CT); 546 return MDNode::replaceWithDistinct(N.clone()); 547 } 548 549 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 550 assert(N.isDistinct() && "Expected a distinct node"); 551 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 552 DistinctWorklist.push_back( 553 cast<MDNode>((M.Flags & RF_MoveDistinctMDs) 554 ? M.mapToSelf(&N) 555 : M.mapToMetadata(&N, cloneOrBuildODR(N)))); 556 return DistinctWorklist.back(); 557 } 558 559 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 560 Value *MappedV) { 561 if (CMD.getValue() == MappedV) 562 return const_cast<ConstantAsMetadata *>(&CMD); 563 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 564 } 565 566 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 567 if (!Op) 568 return nullptr; 569 570 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 571 return *MappedOp; 572 573 if (isa<MDString>(Op)) 574 return const_cast<Metadata *>(Op); 575 576 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 577 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 578 579 return None; 580 } 581 582 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 583 auto Where = Info.find(&Op); 584 assert(Where != Info.end() && "Expected a valid reference"); 585 586 auto &OpD = Where->second; 587 if (!OpD.HasChanged) 588 return Op; 589 590 // Lazily construct a temporary node. 591 if (!OpD.Placeholder) 592 OpD.Placeholder = Op.clone(); 593 594 return *OpD.Placeholder; 595 } 596 597 template <class OperandMapper> 598 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 599 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 600 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 601 Metadata *Old = N.getOperand(I); 602 Metadata *New = mapOperand(Old); 603 604 if (Old != New) 605 N.replaceOperandWith(I, New); 606 } 607 } 608 609 namespace { 610 611 /// An entry in the worklist for the post-order traversal. 612 struct POTWorklistEntry { 613 MDNode *N; ///< Current node. 614 MDNode::op_iterator Op; ///< Current operand of \c N. 615 616 /// Keep a flag of whether operands have changed in the worklist to avoid 617 /// hitting the map in \a UniquedGraph. 618 bool HasChanged = false; 619 620 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 621 }; 622 623 } // end anonymous namespace 624 625 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 626 assert(G.Info.empty() && "Expected a fresh traversal"); 627 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 628 629 // Construct a post-order traversal of the uniqued subgraph under FirstN. 630 bool AnyChanges = false; 631 SmallVector<POTWorklistEntry, 16> Worklist; 632 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 633 (void)G.Info[&FirstN]; 634 while (!Worklist.empty()) { 635 // Start or continue the traversal through the this node's operands. 636 auto &WE = Worklist.back(); 637 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 638 // Push a new node to traverse first. 639 Worklist.push_back(POTWorklistEntry(*N)); 640 continue; 641 } 642 643 // Push the node onto the POT. 644 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 645 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 646 auto &D = G.Info[WE.N]; 647 AnyChanges |= D.HasChanged = WE.HasChanged; 648 D.ID = G.POT.size(); 649 G.POT.push_back(WE.N); 650 651 // Pop the node off the worklist. 652 Worklist.pop_back(); 653 } 654 return AnyChanges; 655 } 656 657 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 658 MDNode::op_iterator E, bool &HasChanged) { 659 while (I != E) { 660 Metadata *Op = *I++; // Increment even on early return. 661 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 662 // Check if the operand changes. 663 HasChanged |= Op != *MappedOp; 664 continue; 665 } 666 667 // A uniqued metadata node. 668 MDNode &OpN = *cast<MDNode>(Op); 669 assert(OpN.isUniqued() && 670 "Only uniqued operands cannot be mapped immediately"); 671 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 672 return &OpN; // This is a new one. Return it. 673 } 674 return nullptr; 675 } 676 677 void MDNodeMapper::UniquedGraph::propagateChanges() { 678 bool AnyChanges; 679 do { 680 AnyChanges = false; 681 for (MDNode *N : POT) { 682 auto &D = Info[N]; 683 if (D.HasChanged) 684 continue; 685 686 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 687 auto Where = Info.find(Op); 688 return Where != Info.end() && Where->second.HasChanged; 689 })) 690 continue; 691 692 AnyChanges = D.HasChanged = true; 693 } 694 } while (AnyChanges); 695 } 696 697 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 698 // Construct uniqued nodes, building forward references as necessary. 699 SmallVector<MDNode *, 16> CyclicNodes; 700 for (auto *N : G.POT) { 701 auto &D = G.Info[N]; 702 if (!D.HasChanged) { 703 // The node hasn't changed. 704 M.mapToSelf(N); 705 continue; 706 } 707 708 // Remember whether this node had a placeholder. 709 bool HadPlaceholder(D.Placeholder); 710 711 // Clone the uniqued node and remap the operands. 712 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 713 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 714 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 715 return *MappedOp; 716 (void)D; 717 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 718 return &G.getFwdReference(*cast<MDNode>(Old)); 719 }); 720 721 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 722 M.mapToMetadata(N, NewN); 723 724 // Nodes that were referenced out of order in the POT are involved in a 725 // uniquing cycle. 726 if (HadPlaceholder) 727 CyclicNodes.push_back(NewN); 728 } 729 730 // Resolve cycles. 731 for (auto *N : CyclicNodes) 732 if (!N->isResolved()) 733 N->resolveCycles(); 734 } 735 736 Metadata *MDNodeMapper::map(const MDNode &N) { 737 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 738 assert(!(M.Flags & RF_NoModuleLevelChanges) && 739 "MDNodeMapper::map assumes module-level changes"); 740 741 // Require resolved nodes whenever metadata might be remapped. 742 assert(N.isResolved() && "Unexpected unresolved node"); 743 744 Metadata *MappedN = 745 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 746 while (!DistinctWorklist.empty()) 747 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 748 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 749 return *MappedOp; 750 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 751 }); 752 return MappedN; 753 } 754 755 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 756 assert(FirstN.isUniqued() && "Expected uniqued node"); 757 758 // Create a post-order traversal of uniqued nodes under FirstN. 759 UniquedGraph G; 760 if (!createPOT(G, FirstN)) { 761 // Return early if no nodes have changed. 762 for (const MDNode *N : G.POT) 763 M.mapToSelf(N); 764 return &const_cast<MDNode &>(FirstN); 765 } 766 767 // Update graph with all nodes that have changed. 768 G.propagateChanges(); 769 770 // Map all the nodes in the graph. 771 mapNodesInPOT(G); 772 773 // Return the original node, remapped. 774 return *getMappedOp(&FirstN); 775 } 776 777 namespace { 778 779 struct MapMetadataDisabler { 780 ValueToValueMapTy &VM; 781 782 MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) { 783 VM.disableMapMetadata(); 784 } 785 786 ~MapMetadataDisabler() { VM.enableMapMetadata(); } 787 }; 788 789 } // end anonymous namespace 790 791 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 792 // If the value already exists in the map, use it. 793 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 794 return *NewMD; 795 796 if (isa<MDString>(MD)) 797 return const_cast<Metadata *>(MD); 798 799 // This is a module-level metadata. If nothing at the module level is 800 // changing, use an identity mapping. 801 if ((Flags & RF_NoModuleLevelChanges)) 802 return const_cast<Metadata *>(MD); 803 804 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 805 // Disallow recursion into metadata mapping through mapValue. 806 MapMetadataDisabler MMD(getVM()); 807 808 // Don't memoize ConstantAsMetadata. Instead of lasting until the 809 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 810 // reference is destructed. These aren't super common, so the extra 811 // indirection isn't that expensive. 812 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 813 } 814 815 assert(isa<MDNode>(MD) && "Expected a metadata node"); 816 817 return None; 818 } 819 820 Metadata *Mapper::mapMetadata(const Metadata *MD) { 821 assert(MD && "Expected valid metadata"); 822 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 823 824 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 825 return *NewMD; 826 827 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 828 } 829 830 void Mapper::flush() { 831 // Flush out the worklist of global values. 832 while (!Worklist.empty()) { 833 WorklistEntry E = Worklist.pop_back_val(); 834 CurrentMCID = E.MCID; 835 switch (E.Kind) { 836 case WorklistEntry::MapGlobalInit: 837 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 838 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 839 break; 840 case WorklistEntry::MapAppendingVar: { 841 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 842 mapAppendingVariable(*E.Data.AppendingGV.GV, 843 E.Data.AppendingGV.InitPrefix, 844 E.AppendingGVIsOldCtorDtor, 845 makeArrayRef(AppendingInits).slice(PrefixSize)); 846 AppendingInits.resize(PrefixSize); 847 break; 848 } 849 case WorklistEntry::MapGlobalAliasee: 850 E.Data.GlobalAliasee.GA->setAliasee( 851 mapConstant(E.Data.GlobalAliasee.Aliasee)); 852 break; 853 case WorklistEntry::RemapFunction: 854 remapFunction(*E.Data.RemapF); 855 break; 856 } 857 } 858 CurrentMCID = 0; 859 860 // Finish logic for block addresses now that all global values have been 861 // handled. 862 while (!DelayedBBs.empty()) { 863 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 864 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 865 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 866 } 867 } 868 869 void Mapper::remapInstruction(Instruction *I) { 870 // Remap operands. 871 for (Use &Op : I->operands()) { 872 Value *V = mapValue(Op); 873 // If we aren't ignoring missing entries, assert that something happened. 874 if (V) 875 Op = V; 876 else 877 assert((Flags & RF_IgnoreMissingLocals) && 878 "Referenced value not in value map!"); 879 } 880 881 // Remap phi nodes' incoming blocks. 882 if (PHINode *PN = dyn_cast<PHINode>(I)) { 883 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 884 Value *V = mapValue(PN->getIncomingBlock(i)); 885 // If we aren't ignoring missing entries, assert that something happened. 886 if (V) 887 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 888 else 889 assert((Flags & RF_IgnoreMissingLocals) && 890 "Referenced block not in value map!"); 891 } 892 } 893 894 // Remap attached metadata. 895 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 896 I->getAllMetadata(MDs); 897 for (const auto &MI : MDs) { 898 MDNode *Old = MI.second; 899 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 900 if (New != Old) 901 I->setMetadata(MI.first, New); 902 } 903 904 if (!TypeMapper) 905 return; 906 907 // If the instruction's type is being remapped, do so now. 908 if (auto CS = CallSite(I)) { 909 SmallVector<Type *, 3> Tys; 910 FunctionType *FTy = CS.getFunctionType(); 911 Tys.reserve(FTy->getNumParams()); 912 for (Type *Ty : FTy->params()) 913 Tys.push_back(TypeMapper->remapType(Ty)); 914 CS.mutateFunctionType(FunctionType::get( 915 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 916 917 LLVMContext &C = CS->getContext(); 918 AttributeList Attrs = CS.getAttributes(); 919 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 920 if (Attrs.hasAttribute(i, Attribute::ByVal)) { 921 Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType(); 922 if (!Ty) 923 continue; 924 925 Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal); 926 Attrs = Attrs.addAttribute( 927 C, i, Attribute::getWithByValType(C, TypeMapper->remapType(Ty))); 928 } 929 } 930 CS.setAttributes(Attrs); 931 return; 932 } 933 if (auto *AI = dyn_cast<AllocaInst>(I)) 934 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 935 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 936 GEP->setSourceElementType( 937 TypeMapper->remapType(GEP->getSourceElementType())); 938 GEP->setResultElementType( 939 TypeMapper->remapType(GEP->getResultElementType())); 940 } 941 I->mutateType(TypeMapper->remapType(I->getType())); 942 } 943 944 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 945 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 946 GO.getAllMetadata(MDs); 947 GO.clearMetadata(); 948 for (const auto &I : MDs) 949 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 950 } 951 952 void Mapper::remapFunction(Function &F) { 953 // Remap the operands. 954 for (Use &Op : F.operands()) 955 if (Op) 956 Op = mapValue(Op); 957 958 // Remap the metadata attachments. 959 remapGlobalObjectMetadata(F); 960 961 // Remap the argument types. 962 if (TypeMapper) 963 for (Argument &A : F.args()) 964 A.mutateType(TypeMapper->remapType(A.getType())); 965 966 // Remap the instructions. 967 for (BasicBlock &BB : F) 968 for (Instruction &I : BB) 969 remapInstruction(&I); 970 } 971 972 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 973 bool IsOldCtorDtor, 974 ArrayRef<Constant *> NewMembers) { 975 SmallVector<Constant *, 16> Elements; 976 if (InitPrefix) { 977 unsigned NumElements = 978 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 979 for (unsigned I = 0; I != NumElements; ++I) 980 Elements.push_back(InitPrefix->getAggregateElement(I)); 981 } 982 983 PointerType *VoidPtrTy; 984 Type *EltTy; 985 if (IsOldCtorDtor) { 986 // FIXME: This upgrade is done during linking to support the C API. See 987 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 988 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 989 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 990 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 991 EltTy = StructType::get(GV.getContext(), Tys, false); 992 } 993 994 for (auto *V : NewMembers) { 995 Constant *NewV; 996 if (IsOldCtorDtor) { 997 auto *S = cast<ConstantStruct>(V); 998 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 999 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 1000 Constant *Null = Constant::getNullValue(VoidPtrTy); 1001 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 1002 } else { 1003 NewV = cast_or_null<Constant>(mapValue(V)); 1004 } 1005 Elements.push_back(NewV); 1006 } 1007 1008 GV.setInitializer(ConstantArray::get( 1009 cast<ArrayType>(GV.getType()->getElementType()), Elements)); 1010 } 1011 1012 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 1013 unsigned MCID) { 1014 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1015 assert(MCID < MCs.size() && "Invalid mapping context"); 1016 1017 WorklistEntry WE; 1018 WE.Kind = WorklistEntry::MapGlobalInit; 1019 WE.MCID = MCID; 1020 WE.Data.GVInit.GV = &GV; 1021 WE.Data.GVInit.Init = &Init; 1022 Worklist.push_back(WE); 1023 } 1024 1025 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1026 Constant *InitPrefix, 1027 bool IsOldCtorDtor, 1028 ArrayRef<Constant *> NewMembers, 1029 unsigned MCID) { 1030 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1031 assert(MCID < MCs.size() && "Invalid mapping context"); 1032 1033 WorklistEntry WE; 1034 WE.Kind = WorklistEntry::MapAppendingVar; 1035 WE.MCID = MCID; 1036 WE.Data.AppendingGV.GV = &GV; 1037 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1038 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1039 WE.AppendingGVNumNewMembers = NewMembers.size(); 1040 Worklist.push_back(WE); 1041 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1042 } 1043 1044 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1045 unsigned MCID) { 1046 assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule"); 1047 assert(MCID < MCs.size() && "Invalid mapping context"); 1048 1049 WorklistEntry WE; 1050 WE.Kind = WorklistEntry::MapGlobalAliasee; 1051 WE.MCID = MCID; 1052 WE.Data.GlobalAliasee.GA = &GA; 1053 WE.Data.GlobalAliasee.Aliasee = &Aliasee; 1054 Worklist.push_back(WE); 1055 } 1056 1057 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1058 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1059 assert(MCID < MCs.size() && "Invalid mapping context"); 1060 1061 WorklistEntry WE; 1062 WE.Kind = WorklistEntry::RemapFunction; 1063 WE.MCID = MCID; 1064 WE.Data.RemapF = &F; 1065 Worklist.push_back(WE); 1066 } 1067 1068 void Mapper::addFlags(RemapFlags Flags) { 1069 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1070 this->Flags = this->Flags | Flags; 1071 } 1072 1073 static Mapper *getAsMapper(void *pImpl) { 1074 return reinterpret_cast<Mapper *>(pImpl); 1075 } 1076 1077 namespace { 1078 1079 class FlushingMapper { 1080 Mapper &M; 1081 1082 public: 1083 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1084 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1085 } 1086 1087 ~FlushingMapper() { M.flush(); } 1088 1089 Mapper *operator->() const { return &M; } 1090 }; 1091 1092 } // end anonymous namespace 1093 1094 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1095 ValueMapTypeRemapper *TypeMapper, 1096 ValueMaterializer *Materializer) 1097 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1098 1099 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1100 1101 unsigned 1102 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1103 ValueMaterializer *Materializer) { 1104 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1105 } 1106 1107 void ValueMapper::addFlags(RemapFlags Flags) { 1108 FlushingMapper(pImpl)->addFlags(Flags); 1109 } 1110 1111 Value *ValueMapper::mapValue(const Value &V) { 1112 return FlushingMapper(pImpl)->mapValue(&V); 1113 } 1114 1115 Constant *ValueMapper::mapConstant(const Constant &C) { 1116 return cast_or_null<Constant>(mapValue(C)); 1117 } 1118 1119 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1120 return FlushingMapper(pImpl)->mapMetadata(&MD); 1121 } 1122 1123 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1124 return cast_or_null<MDNode>(mapMetadata(N)); 1125 } 1126 1127 void ValueMapper::remapInstruction(Instruction &I) { 1128 FlushingMapper(pImpl)->remapInstruction(&I); 1129 } 1130 1131 void ValueMapper::remapFunction(Function &F) { 1132 FlushingMapper(pImpl)->remapFunction(F); 1133 } 1134 1135 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1136 Constant &Init, 1137 unsigned MCID) { 1138 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1139 } 1140 1141 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1142 Constant *InitPrefix, 1143 bool IsOldCtorDtor, 1144 ArrayRef<Constant *> NewMembers, 1145 unsigned MCID) { 1146 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1147 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1148 } 1149 1150 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, 1151 unsigned MCID) { 1152 getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID); 1153 } 1154 1155 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1156 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1157 } 1158