1 #include "llvm/Transforms/Utils/VNCoercion.h" 2 #include "llvm/Analysis/ConstantFolding.h" 3 #include "llvm/Analysis/ValueTracking.h" 4 #include "llvm/IR/IRBuilder.h" 5 #include "llvm/Support/Debug.h" 6 7 #define DEBUG_TYPE "vncoerce" 8 9 namespace llvm { 10 namespace VNCoercion { 11 12 static bool isFirstClassAggregateOrScalableType(Type *Ty) { 13 return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty); 14 } 15 16 /// Return true if coerceAvailableValueToLoadType will succeed. 17 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, 18 const DataLayout &DL) { 19 Type *StoredTy = StoredVal->getType(); 20 if (StoredTy == LoadTy) 21 return true; 22 23 // If the loaded/stored value is a first class array/struct, or scalable type, 24 // don't try to transform them. We need to be able to bitcast to integer. 25 if (isFirstClassAggregateOrScalableType(LoadTy) || 26 isFirstClassAggregateOrScalableType(StoredTy)) 27 return false; 28 29 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedSize(); 30 31 // The store size must be byte-aligned to support future type casts. 32 if (llvm::alignTo(StoreSize, 8) != StoreSize) 33 return false; 34 35 // The store has to be at least as big as the load. 36 if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedSize()) 37 return false; 38 39 // Don't coerce non-integral pointers to integers or vice versa. 40 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) != 41 DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 42 // As a special case, allow coercion of memset used to initialize 43 // an array w/null. Despite non-integral pointers not generally having a 44 // specific bit pattern, we do assume null is zero. 45 if (auto *CI = dyn_cast<Constant>(StoredVal)) 46 return CI->isNullValue(); 47 return false; 48 } 49 50 return true; 51 } 52 53 template <class T, class HelperClass> 54 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy, 55 HelperClass &Helper, 56 const DataLayout &DL) { 57 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) && 58 "precondition violation - materialization can't fail"); 59 if (auto *C = dyn_cast<Constant>(StoredVal)) 60 StoredVal = ConstantFoldConstant(C, DL); 61 62 // If this is already the right type, just return it. 63 Type *StoredValTy = StoredVal->getType(); 64 65 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedSize(); 66 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedSize(); 67 68 // If the store and reload are the same size, we can always reuse it. 69 if (StoredValSize == LoadedValSize) { 70 // Pointer to Pointer -> use bitcast. 71 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) { 72 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 73 } else { 74 // Convert source pointers to integers, which can be bitcast. 75 if (StoredValTy->isPtrOrPtrVectorTy()) { 76 StoredValTy = DL.getIntPtrType(StoredValTy); 77 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 78 } 79 80 Type *TypeToCastTo = LoadedTy; 81 if (TypeToCastTo->isPtrOrPtrVectorTy()) 82 TypeToCastTo = DL.getIntPtrType(TypeToCastTo); 83 84 if (StoredValTy != TypeToCastTo) 85 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo); 86 87 // Cast to pointer if the load needs a pointer type. 88 if (LoadedTy->isPtrOrPtrVectorTy()) 89 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 90 } 91 92 if (auto *C = dyn_cast<ConstantExpr>(StoredVal)) 93 StoredVal = ConstantFoldConstant(C, DL); 94 95 return StoredVal; 96 } 97 // If the loaded value is smaller than the available value, then we can 98 // extract out a piece from it. If the available value is too small, then we 99 // can't do anything. 100 assert(StoredValSize >= LoadedValSize && 101 "canCoerceMustAliasedValueToLoad fail"); 102 103 // Convert source pointers to integers, which can be manipulated. 104 if (StoredValTy->isPtrOrPtrVectorTy()) { 105 StoredValTy = DL.getIntPtrType(StoredValTy); 106 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 107 } 108 109 // Convert vectors and fp to integer, which can be manipulated. 110 if (!StoredValTy->isIntegerTy()) { 111 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize); 112 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy); 113 } 114 115 // If this is a big-endian system, we need to shift the value down to the low 116 // bits so that a truncate will work. 117 if (DL.isBigEndian()) { 118 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedSize() - 119 DL.getTypeStoreSizeInBits(LoadedTy).getFixedSize(); 120 StoredVal = Helper.CreateLShr( 121 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt)); 122 } 123 124 // Truncate the integer to the right size now. 125 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize); 126 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy); 127 128 if (LoadedTy != NewIntTy) { 129 // If the result is a pointer, inttoptr. 130 if (LoadedTy->isPtrOrPtrVectorTy()) 131 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 132 else 133 // Otherwise, bitcast. 134 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 135 } 136 137 if (auto *C = dyn_cast<Constant>(StoredVal)) 138 StoredVal = ConstantFoldConstant(C, DL); 139 140 return StoredVal; 141 } 142 143 /// If we saw a store of a value to memory, and 144 /// then a load from a must-aliased pointer of a different type, try to coerce 145 /// the stored value. LoadedTy is the type of the load we want to replace. 146 /// IRB is IRBuilder used to insert new instructions. 147 /// 148 /// If we can't do it, return null. 149 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, 150 IRBuilderBase &IRB, 151 const DataLayout &DL) { 152 return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL); 153 } 154 155 /// This function is called when we have a memdep query of a load that ends up 156 /// being a clobbering memory write (store, memset, memcpy, memmove). This 157 /// means that the write *may* provide bits used by the load but we can't be 158 /// sure because the pointers don't must-alias. 159 /// 160 /// Check this case to see if there is anything more we can do before we give 161 /// up. This returns -1 if we have to give up, or a byte number in the stored 162 /// value of the piece that feeds the load. 163 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, 164 Value *WritePtr, 165 uint64_t WriteSizeInBits, 166 const DataLayout &DL) { 167 // If the loaded/stored value is a first class array/struct, or scalable type, 168 // don't try to transform them. We need to be able to bitcast to integer. 169 if (isFirstClassAggregateOrScalableType(LoadTy)) 170 return -1; 171 172 int64_t StoreOffset = 0, LoadOffset = 0; 173 Value *StoreBase = 174 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL); 175 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL); 176 if (StoreBase != LoadBase) 177 return -1; 178 179 // If the load and store are to the exact same address, they should have been 180 // a must alias. AA must have gotten confused. 181 // FIXME: Study to see if/when this happens. One case is forwarding a memset 182 // to a load from the base of the memset. 183 184 // If the load and store don't overlap at all, the store doesn't provide 185 // anything to the load. In this case, they really don't alias at all, AA 186 // must have gotten confused. 187 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize(); 188 189 if ((WriteSizeInBits & 7) | (LoadSize & 7)) 190 return -1; 191 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes. 192 LoadSize /= 8; 193 194 bool isAAFailure = false; 195 if (StoreOffset < LoadOffset) 196 isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset; 197 else 198 isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset; 199 200 if (isAAFailure) 201 return -1; 202 203 // If the Load isn't completely contained within the stored bits, we don't 204 // have all the bits to feed it. We could do something crazy in the future 205 // (issue a smaller load then merge the bits in) but this seems unlikely to be 206 // valuable. 207 if (StoreOffset > LoadOffset || 208 StoreOffset + StoreSize < LoadOffset + LoadSize) 209 return -1; 210 211 // Okay, we can do this transformation. Return the number of bytes into the 212 // store that the load is. 213 return LoadOffset - StoreOffset; 214 } 215 216 /// This function is called when we have a 217 /// memdep query of a load that ends up being a clobbering store. 218 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, 219 StoreInst *DepSI, const DataLayout &DL) { 220 auto *StoredVal = DepSI->getValueOperand(); 221 222 // Cannot handle reading from store of first-class aggregate or scalable type. 223 if (isFirstClassAggregateOrScalableType(StoredVal->getType())) 224 return -1; 225 226 // Don't coerce non-integral pointers to integers or vice versa. 227 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) != 228 DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 229 // Allow casts of zero values to null as a special case 230 auto *CI = dyn_cast<Constant>(StoredVal); 231 if (!CI || !CI->isNullValue()) 232 return -1; 233 } 234 235 Value *StorePtr = DepSI->getPointerOperand(); 236 uint64_t StoreSize = 237 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedSize(); 238 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize, 239 DL); 240 } 241 242 /// Looks at a memory location for a load (specified by MemLocBase, Offs, and 243 /// Size) and compares it against a load. 244 /// 245 /// If the specified load could be safely widened to a larger integer load 246 /// that is 1) still efficient, 2) safe for the target, and 3) would provide 247 /// the specified memory location value, then this function returns the size 248 /// in bytes of the load width to use. If not, this returns zero. 249 static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase, 250 int64_t MemLocOffs, 251 unsigned MemLocSize, 252 const LoadInst *LI) { 253 // We can only extend simple integer loads. 254 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 255 return 0; 256 257 // Load widening is hostile to ThreadSanitizer: it may cause false positives 258 // or make the reports more cryptic (access sizes are wrong). 259 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 260 return 0; 261 262 const DataLayout &DL = LI->getModule()->getDataLayout(); 263 264 // Get the base of this load. 265 int64_t LIOffs = 0; 266 const Value *LIBase = 267 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 268 269 // If the two pointers are not based on the same pointer, we can't tell that 270 // they are related. 271 if (LIBase != MemLocBase) 272 return 0; 273 274 // Okay, the two values are based on the same pointer, but returned as 275 // no-alias. This happens when we have things like two byte loads at "P+1" 276 // and "P+3". Check to see if increasing the size of the "LI" load up to its 277 // alignment (or the largest native integer type) will allow us to load all 278 // the bits required by MemLoc. 279 280 // If MemLoc is before LI, then no widening of LI will help us out. 281 if (MemLocOffs < LIOffs) 282 return 0; 283 284 // Get the alignment of the load in bytes. We assume that it is safe to load 285 // any legal integer up to this size without a problem. For example, if we're 286 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 287 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 288 // to i16. 289 unsigned LoadAlign = LI->getAlignment(); 290 291 int64_t MemLocEnd = MemLocOffs + MemLocSize; 292 293 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 294 if (LIOffs + LoadAlign < MemLocEnd) 295 return 0; 296 297 // This is the size of the load to try. Start with the next larger power of 298 // two. 299 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 300 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 301 302 while (true) { 303 // If this load size is bigger than our known alignment or would not fit 304 // into a native integer register, then we fail. 305 if (NewLoadByteSize > LoadAlign || 306 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 307 return 0; 308 309 if (LIOffs + NewLoadByteSize > MemLocEnd && 310 (LI->getParent()->getParent()->hasFnAttribute( 311 Attribute::SanitizeAddress) || 312 LI->getParent()->getParent()->hasFnAttribute( 313 Attribute::SanitizeHWAddress))) 314 // We will be reading past the location accessed by the original program. 315 // While this is safe in a regular build, Address Safety analysis tools 316 // may start reporting false warnings. So, don't do widening. 317 return 0; 318 319 // If a load of this width would include all of MemLoc, then we succeed. 320 if (LIOffs + NewLoadByteSize >= MemLocEnd) 321 return NewLoadByteSize; 322 323 NewLoadByteSize <<= 1; 324 } 325 } 326 327 /// This function is called when we have a 328 /// memdep query of a load that ends up being clobbered by another load. See if 329 /// the other load can feed into the second load. 330 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, 331 const DataLayout &DL) { 332 // Cannot handle reading from store of first-class aggregate yet. 333 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) 334 return -1; 335 336 // Don't coerce non-integral pointers to integers or vice versa. 337 if (DL.isNonIntegralPointerType(DepLI->getType()->getScalarType()) != 338 DL.isNonIntegralPointerType(LoadTy->getScalarType())) 339 return -1; 340 341 Value *DepPtr = DepLI->getPointerOperand(); 342 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedSize(); 343 int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL); 344 if (R != -1) 345 return R; 346 347 // If we have a load/load clobber an DepLI can be widened to cover this load, 348 // then we should widen it! 349 int64_t LoadOffs = 0; 350 const Value *LoadBase = 351 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL); 352 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 353 354 unsigned Size = 355 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI); 356 if (Size == 0) 357 return -1; 358 359 // Check non-obvious conditions enforced by MDA which we rely on for being 360 // able to materialize this potentially available value 361 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!"); 362 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load"); 363 364 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL); 365 } 366 367 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, 368 MemIntrinsic *MI, const DataLayout &DL) { 369 // If the mem operation is a non-constant size, we can't handle it. 370 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); 371 if (!SizeCst) 372 return -1; 373 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8; 374 375 // If this is memset, we just need to see if the offset is valid in the size 376 // of the memset.. 377 if (MI->getIntrinsicID() == Intrinsic::memset) { 378 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 379 auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue()); 380 if (!CI || !CI->isZero()) 381 return -1; 382 } 383 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 384 MemSizeInBits, DL); 385 } 386 387 // If we have a memcpy/memmove, the only case we can handle is if this is a 388 // copy from constant memory. In that case, we can read directly from the 389 // constant memory. 390 MemTransferInst *MTI = cast<MemTransferInst>(MI); 391 392 Constant *Src = dyn_cast<Constant>(MTI->getSource()); 393 if (!Src) 394 return -1; 395 396 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL)); 397 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 398 return -1; 399 400 // See if the access is within the bounds of the transfer. 401 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 402 MemSizeInBits, DL); 403 if (Offset == -1) 404 return Offset; 405 406 unsigned AS = Src->getType()->getPointerAddressSpace(); 407 // Otherwise, see if we can constant fold a load from the constant with the 408 // offset applied as appropriate. 409 if (Offset) { 410 Src = ConstantExpr::getBitCast(Src, 411 Type::getInt8PtrTy(Src->getContext(), AS)); 412 Constant *OffsetCst = 413 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 414 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), 415 Src, OffsetCst); 416 } 417 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 418 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL)) 419 return Offset; 420 return -1; 421 } 422 423 template <class T, class HelperClass> 424 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy, 425 HelperClass &Helper, 426 const DataLayout &DL) { 427 LLVMContext &Ctx = SrcVal->getType()->getContext(); 428 429 // If two pointers are in the same address space, they have the same size, 430 // so we don't need to do any truncation, etc. This avoids introducing 431 // ptrtoint instructions for pointers that may be non-integral. 432 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() && 433 cast<PointerType>(SrcVal->getType())->getAddressSpace() == 434 cast<PointerType>(LoadTy)->getAddressSpace()) { 435 return SrcVal; 436 } 437 438 uint64_t StoreSize = 439 (DL.getTypeSizeInBits(SrcVal->getType()).getFixedSize() + 7) / 8; 440 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedSize() + 7) / 8; 441 // Compute which bits of the stored value are being used by the load. Convert 442 // to an integer type to start with. 443 if (SrcVal->getType()->isPtrOrPtrVectorTy()) 444 SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType())); 445 if (!SrcVal->getType()->isIntegerTy()) 446 SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8)); 447 448 // Shift the bits to the least significant depending on endianness. 449 unsigned ShiftAmt; 450 if (DL.isLittleEndian()) 451 ShiftAmt = Offset * 8; 452 else 453 ShiftAmt = (StoreSize - LoadSize - Offset) * 8; 454 if (ShiftAmt) 455 SrcVal = Helper.CreateLShr(SrcVal, 456 ConstantInt::get(SrcVal->getType(), ShiftAmt)); 457 458 if (LoadSize != StoreSize) 459 SrcVal = Helper.CreateTruncOrBitCast(SrcVal, 460 IntegerType::get(Ctx, LoadSize * 8)); 461 return SrcVal; 462 } 463 464 /// This function is called when we have a memdep query of a load that ends up 465 /// being a clobbering store. This means that the store provides bits used by 466 /// the load but the pointers don't must-alias. Check this case to see if 467 /// there is anything more we can do before we give up. 468 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, 469 Instruction *InsertPt, const DataLayout &DL) { 470 471 IRBuilder<> Builder(InsertPt); 472 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL); 473 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL); 474 } 475 476 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset, 477 Type *LoadTy, const DataLayout &DL) { 478 ConstantFolder F; 479 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL); 480 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL); 481 } 482 483 /// This function is called when we have a memdep query of a load that ends up 484 /// being a clobbering load. This means that the load *may* provide bits used 485 /// by the load but we can't be sure because the pointers don't must-alias. 486 /// Check this case to see if there is anything more we can do before we give 487 /// up. 488 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy, 489 Instruction *InsertPt, const DataLayout &DL) { 490 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to 491 // widen SrcVal out to a larger load. 492 unsigned SrcValStoreSize = 493 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize(); 494 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 495 if (Offset + LoadSize > SrcValStoreSize) { 496 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); 497 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); 498 // If we have a load/load clobber an DepLI can be widened to cover this 499 // load, then we should widen it to the next power of 2 size big enough! 500 unsigned NewLoadSize = Offset + LoadSize; 501 if (!isPowerOf2_32(NewLoadSize)) 502 NewLoadSize = NextPowerOf2(NewLoadSize); 503 504 Value *PtrVal = SrcVal->getPointerOperand(); 505 // Insert the new load after the old load. This ensures that subsequent 506 // memdep queries will find the new load. We can't easily remove the old 507 // load completely because it is already in the value numbering table. 508 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); 509 Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8); 510 Type *DestPTy = 511 PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace()); 512 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); 513 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); 514 LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal); 515 NewLoad->takeName(SrcVal); 516 NewLoad->setAlignment(SrcVal->getAlign()); 517 518 LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); 519 LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); 520 521 // Replace uses of the original load with the wider load. On a big endian 522 // system, we need to shift down to get the relevant bits. 523 Value *RV = NewLoad; 524 if (DL.isBigEndian()) 525 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8); 526 RV = Builder.CreateTrunc(RV, SrcVal->getType()); 527 SrcVal->replaceAllUsesWith(RV); 528 529 SrcVal = NewLoad; 530 } 531 532 return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL); 533 } 534 535 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset, 536 Type *LoadTy, const DataLayout &DL) { 537 unsigned SrcValStoreSize = 538 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize(); 539 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 540 if (Offset + LoadSize > SrcValStoreSize) 541 return nullptr; 542 return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL); 543 } 544 545 template <class T, class HelperClass> 546 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset, 547 Type *LoadTy, HelperClass &Helper, 548 const DataLayout &DL) { 549 LLVMContext &Ctx = LoadTy->getContext(); 550 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8; 551 552 // We know that this method is only called when the mem transfer fully 553 // provides the bits for the load. 554 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 555 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and 556 // independently of what the offset is. 557 T *Val = cast<T>(MSI->getValue()); 558 if (LoadSize != 1) 559 Val = 560 Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8)); 561 T *OneElt = Val; 562 563 // Splat the value out to the right number of bits. 564 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) { 565 // If we can double the number of bytes set, do it. 566 if (NumBytesSet * 2 <= LoadSize) { 567 T *ShVal = Helper.CreateShl( 568 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8)); 569 Val = Helper.CreateOr(Val, ShVal); 570 NumBytesSet <<= 1; 571 continue; 572 } 573 574 // Otherwise insert one byte at a time. 575 T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8)); 576 Val = Helper.CreateOr(OneElt, ShVal); 577 ++NumBytesSet; 578 } 579 580 return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL); 581 } 582 583 // Otherwise, this is a memcpy/memmove from a constant global. 584 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 585 Constant *Src = cast<Constant>(MTI->getSource()); 586 587 unsigned AS = Src->getType()->getPointerAddressSpace(); 588 // Otherwise, see if we can constant fold a load from the constant with the 589 // offset applied as appropriate. 590 if (Offset) { 591 Src = ConstantExpr::getBitCast(Src, 592 Type::getInt8PtrTy(Src->getContext(), AS)); 593 Constant *OffsetCst = 594 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 595 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), 596 Src, OffsetCst); 597 } 598 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 599 return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL); 600 } 601 602 /// This function is called when we have a 603 /// memdep query of a load that ends up being a clobbering mem intrinsic. 604 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 605 Type *LoadTy, Instruction *InsertPt, 606 const DataLayout &DL) { 607 IRBuilder<> Builder(InsertPt); 608 return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset, 609 LoadTy, Builder, DL); 610 } 611 612 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 613 Type *LoadTy, const DataLayout &DL) { 614 // The only case analyzeLoadFromClobberingMemInst cannot be converted to a 615 // constant is when it's a memset of a non-constant. 616 if (auto *MSI = dyn_cast<MemSetInst>(SrcInst)) 617 if (!isa<Constant>(MSI->getValue())) 618 return nullptr; 619 ConstantFolder F; 620 return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset, 621 LoadTy, F, DL); 622 } 623 } // namespace VNCoercion 624 } // namespace llvm 625