xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/VNCoercion.cpp (revision afdb42987ca82869eeaecf6dc25c2b6fb7b8370e)
1 #include "llvm/Transforms/Utils/VNCoercion.h"
2 #include "llvm/Analysis/ConstantFolding.h"
3 #include "llvm/Analysis/ValueTracking.h"
4 #include "llvm/IR/IRBuilder.h"
5 #include "llvm/IR/IntrinsicInst.h"
6 #include "llvm/Support/Debug.h"
7 
8 #define DEBUG_TYPE "vncoerce"
9 
10 namespace llvm {
11 namespace VNCoercion {
12 
13 static bool isFirstClassAggregateOrScalableType(Type *Ty) {
14   return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
15 }
16 
17 /// Return true if coerceAvailableValueToLoadType will succeed.
18 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
19                                      const DataLayout &DL) {
20   Type *StoredTy = StoredVal->getType();
21 
22   if (StoredTy == LoadTy)
23     return true;
24 
25   // If the loaded/stored value is a first class array/struct, or scalable type,
26   // don't try to transform them. We need to be able to bitcast to integer.
27   if (isFirstClassAggregateOrScalableType(LoadTy) ||
28       isFirstClassAggregateOrScalableType(StoredTy))
29     return false;
30 
31   uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedSize();
32 
33   // The store size must be byte-aligned to support future type casts.
34   if (llvm::alignTo(StoreSize, 8) != StoreSize)
35     return false;
36 
37   // The store has to be at least as big as the load.
38   if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedSize())
39     return false;
40 
41   bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
42   bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
43   // Don't coerce non-integral pointers to integers or vice versa.
44   if (StoredNI != LoadNI) {
45     // As a special case, allow coercion of memset used to initialize
46     // an array w/null.  Despite non-integral pointers not generally having a
47     // specific bit pattern, we do assume null is zero.
48     if (auto *CI = dyn_cast<Constant>(StoredVal))
49       return CI->isNullValue();
50     return false;
51   } else if (StoredNI && LoadNI &&
52              StoredTy->getPointerAddressSpace() !=
53                  LoadTy->getPointerAddressSpace()) {
54     return false;
55   }
56 
57 
58   // The implementation below uses inttoptr for vectors of unequal size; we
59   // can't allow this for non integral pointers. We could teach it to extract
60   // exact subvectors if desired.
61   if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedSize())
62     return false;
63 
64   return true;
65 }
66 
67 /// If we saw a store of a value to memory, and
68 /// then a load from a must-aliased pointer of a different type, try to coerce
69 /// the stored value.  LoadedTy is the type of the load we want to replace.
70 /// IRB is IRBuilder used to insert new instructions.
71 ///
72 /// If we can't do it, return null.
73 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
74                                       IRBuilderBase &Helper,
75                                       const DataLayout &DL) {
76   assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
77          "precondition violation - materialization can't fail");
78   if (auto *C = dyn_cast<Constant>(StoredVal))
79     StoredVal = ConstantFoldConstant(C, DL);
80 
81   // If this is already the right type, just return it.
82   Type *StoredValTy = StoredVal->getType();
83 
84   uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedSize();
85   uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedSize();
86 
87   // If the store and reload are the same size, we can always reuse it.
88   if (StoredValSize == LoadedValSize) {
89     // Pointer to Pointer -> use bitcast.
90     if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
91       StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
92     } else {
93       // Convert source pointers to integers, which can be bitcast.
94       if (StoredValTy->isPtrOrPtrVectorTy()) {
95         StoredValTy = DL.getIntPtrType(StoredValTy);
96         StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
97       }
98 
99       Type *TypeToCastTo = LoadedTy;
100       if (TypeToCastTo->isPtrOrPtrVectorTy())
101         TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
102 
103       if (StoredValTy != TypeToCastTo)
104         StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
105 
106       // Cast to pointer if the load needs a pointer type.
107       if (LoadedTy->isPtrOrPtrVectorTy())
108         StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
109     }
110 
111     if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
112       StoredVal = ConstantFoldConstant(C, DL);
113 
114     return StoredVal;
115   }
116   // If the loaded value is smaller than the available value, then we can
117   // extract out a piece from it.  If the available value is too small, then we
118   // can't do anything.
119   assert(StoredValSize >= LoadedValSize &&
120          "canCoerceMustAliasedValueToLoad fail");
121 
122   // Convert source pointers to integers, which can be manipulated.
123   if (StoredValTy->isPtrOrPtrVectorTy()) {
124     StoredValTy = DL.getIntPtrType(StoredValTy);
125     StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
126   }
127 
128   // Convert vectors and fp to integer, which can be manipulated.
129   if (!StoredValTy->isIntegerTy()) {
130     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
131     StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
132   }
133 
134   // If this is a big-endian system, we need to shift the value down to the low
135   // bits so that a truncate will work.
136   if (DL.isBigEndian()) {
137     uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedSize() -
138                         DL.getTypeStoreSizeInBits(LoadedTy).getFixedSize();
139     StoredVal = Helper.CreateLShr(
140         StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
141   }
142 
143   // Truncate the integer to the right size now.
144   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
145   StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
146 
147   if (LoadedTy != NewIntTy) {
148     // If the result is a pointer, inttoptr.
149     if (LoadedTy->isPtrOrPtrVectorTy())
150       StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
151     else
152       // Otherwise, bitcast.
153       StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
154   }
155 
156   if (auto *C = dyn_cast<Constant>(StoredVal))
157     StoredVal = ConstantFoldConstant(C, DL);
158 
159   return StoredVal;
160 }
161 
162 /// This function is called when we have a memdep query of a load that ends up
163 /// being a clobbering memory write (store, memset, memcpy, memmove).  This
164 /// means that the write *may* provide bits used by the load but we can't be
165 /// sure because the pointers don't must-alias.
166 ///
167 /// Check this case to see if there is anything more we can do before we give
168 /// up.  This returns -1 if we have to give up, or a byte number in the stored
169 /// value of the piece that feeds the load.
170 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
171                                           Value *WritePtr,
172                                           uint64_t WriteSizeInBits,
173                                           const DataLayout &DL) {
174   // If the loaded/stored value is a first class array/struct, or scalable type,
175   // don't try to transform them. We need to be able to bitcast to integer.
176   if (isFirstClassAggregateOrScalableType(LoadTy))
177     return -1;
178 
179   int64_t StoreOffset = 0, LoadOffset = 0;
180   Value *StoreBase =
181       GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
182   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
183   if (StoreBase != LoadBase)
184     return -1;
185 
186   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize();
187 
188   if ((WriteSizeInBits & 7) | (LoadSize & 7))
189     return -1;
190   uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
191   LoadSize /= 8;
192 
193   // If the Load isn't completely contained within the stored bits, we don't
194   // have all the bits to feed it.  We could do something crazy in the future
195   // (issue a smaller load then merge the bits in) but this seems unlikely to be
196   // valuable.
197   if (StoreOffset > LoadOffset ||
198       StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize))
199     return -1;
200 
201   // Okay, we can do this transformation.  Return the number of bytes into the
202   // store that the load is.
203   return LoadOffset - StoreOffset;
204 }
205 
206 /// This function is called when we have a
207 /// memdep query of a load that ends up being a clobbering store.
208 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
209                                    StoreInst *DepSI, const DataLayout &DL) {
210   auto *StoredVal = DepSI->getValueOperand();
211 
212   // Cannot handle reading from store of first-class aggregate or scalable type.
213   if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
214     return -1;
215 
216   if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
217     return -1;
218 
219   Value *StorePtr = DepSI->getPointerOperand();
220   uint64_t StoreSize =
221       DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedSize();
222   return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
223                                         DL);
224 }
225 
226 /// Looks at a memory location for a load (specified by MemLocBase, Offs, and
227 /// Size) and compares it against a load.
228 ///
229 /// If the specified load could be safely widened to a larger integer load
230 /// that is 1) still efficient, 2) safe for the target, and 3) would provide
231 /// the specified memory location value, then this function returns the size
232 /// in bytes of the load width to use.  If not, this returns zero.
233 static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase,
234                                                 int64_t MemLocOffs,
235                                                 unsigned MemLocSize,
236                                                 const LoadInst *LI) {
237   // We can only extend simple integer loads.
238   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
239     return 0;
240 
241   // Load widening is hostile to ThreadSanitizer: it may cause false positives
242   // or make the reports more cryptic (access sizes are wrong).
243   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
244     return 0;
245 
246   const DataLayout &DL = LI->getModule()->getDataLayout();
247 
248   // Get the base of this load.
249   int64_t LIOffs = 0;
250   const Value *LIBase =
251       GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
252 
253   // If the two pointers are not based on the same pointer, we can't tell that
254   // they are related.
255   if (LIBase != MemLocBase)
256     return 0;
257 
258   // Okay, the two values are based on the same pointer, but returned as
259   // no-alias.  This happens when we have things like two byte loads at "P+1"
260   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
261   // alignment (or the largest native integer type) will allow us to load all
262   // the bits required by MemLoc.
263 
264   // If MemLoc is before LI, then no widening of LI will help us out.
265   if (MemLocOffs < LIOffs)
266     return 0;
267 
268   // Get the alignment of the load in bytes.  We assume that it is safe to load
269   // any legal integer up to this size without a problem.  For example, if we're
270   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
271   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
272   // to i16.
273   unsigned LoadAlign = LI->getAlign().value();
274 
275   int64_t MemLocEnd = MemLocOffs + MemLocSize;
276 
277   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
278   if (LIOffs + LoadAlign < MemLocEnd)
279     return 0;
280 
281   // This is the size of the load to try.  Start with the next larger power of
282   // two.
283   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
284   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
285 
286   while (true) {
287     // If this load size is bigger than our known alignment or would not fit
288     // into a native integer register, then we fail.
289     if (NewLoadByteSize > LoadAlign ||
290         !DL.fitsInLegalInteger(NewLoadByteSize * 8))
291       return 0;
292 
293     if (LIOffs + NewLoadByteSize > MemLocEnd &&
294         (LI->getParent()->getParent()->hasFnAttribute(
295              Attribute::SanitizeAddress) ||
296          LI->getParent()->getParent()->hasFnAttribute(
297              Attribute::SanitizeHWAddress)))
298       // We will be reading past the location accessed by the original program.
299       // While this is safe in a regular build, Address Safety analysis tools
300       // may start reporting false warnings. So, don't do widening.
301       return 0;
302 
303     // If a load of this width would include all of MemLoc, then we succeed.
304     if (LIOffs + NewLoadByteSize >= MemLocEnd)
305       return NewLoadByteSize;
306 
307     NewLoadByteSize <<= 1;
308   }
309 }
310 
311 /// This function is called when we have a
312 /// memdep query of a load that ends up being clobbered by another load.  See if
313 /// the other load can feed into the second load.
314 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
315                                   const DataLayout &DL) {
316   // Cannot handle reading from store of first-class aggregate yet.
317   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
318     return -1;
319 
320   if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
321     return -1;
322 
323   Value *DepPtr = DepLI->getPointerOperand();
324   uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedSize();
325   int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
326   if (R != -1)
327     return R;
328 
329   // If we have a load/load clobber an DepLI can be widened to cover this load,
330   // then we should widen it!
331   int64_t LoadOffs = 0;
332   const Value *LoadBase =
333       GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
334   unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
335 
336   unsigned Size =
337       getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI);
338   if (Size == 0)
339     return -1;
340 
341   // Check non-obvious conditions enforced by MDA which we rely on for being
342   // able to materialize this potentially available value
343   assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
344   assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
345 
346   return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
347 }
348 
349 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
350                                      MemIntrinsic *MI, const DataLayout &DL) {
351   // If the mem operation is a non-constant size, we can't handle it.
352   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
353   if (!SizeCst)
354     return -1;
355   uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
356 
357   // If this is memset, we just need to see if the offset is valid in the size
358   // of the memset..
359   if (const auto *memset_inst = dyn_cast<MemSetInst>(MI)) {
360     if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
361       auto *CI = dyn_cast<ConstantInt>(memset_inst->getValue());
362       if (!CI || !CI->isZero())
363         return -1;
364     }
365     return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
366                                           MemSizeInBits, DL);
367   }
368 
369   // If we have a memcpy/memmove, the only case we can handle is if this is a
370   // copy from constant memory.  In that case, we can read directly from the
371   // constant memory.
372   MemTransferInst *MTI = cast<MemTransferInst>(MI);
373 
374   Constant *Src = dyn_cast<Constant>(MTI->getSource());
375   if (!Src)
376     return -1;
377 
378   GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
379   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
380     return -1;
381 
382   // See if the access is within the bounds of the transfer.
383   int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
384                                               MemSizeInBits, DL);
385   if (Offset == -1)
386     return Offset;
387 
388   // Otherwise, see if we can constant fold a load from the constant with the
389   // offset applied as appropriate.
390   unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
391   if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL))
392     return Offset;
393   return -1;
394 }
395 
396 static Value *getStoreValueForLoadHelper(Value *SrcVal, unsigned Offset,
397                                          Type *LoadTy, IRBuilderBase &Builder,
398                                          const DataLayout &DL) {
399   LLVMContext &Ctx = SrcVal->getType()->getContext();
400 
401   // If two pointers are in the same address space, they have the same size,
402   // so we don't need to do any truncation, etc. This avoids introducing
403   // ptrtoint instructions for pointers that may be non-integral.
404   if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
405       cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
406           cast<PointerType>(LoadTy)->getAddressSpace()) {
407     return SrcVal;
408   }
409 
410   uint64_t StoreSize =
411       (DL.getTypeSizeInBits(SrcVal->getType()).getFixedSize() + 7) / 8;
412   uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedSize() + 7) / 8;
413   // Compute which bits of the stored value are being used by the load.  Convert
414   // to an integer type to start with.
415   if (SrcVal->getType()->isPtrOrPtrVectorTy())
416     SrcVal =
417         Builder.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
418   if (!SrcVal->getType()->isIntegerTy())
419     SrcVal =
420         Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
421 
422   // Shift the bits to the least significant depending on endianness.
423   unsigned ShiftAmt;
424   if (DL.isLittleEndian())
425     ShiftAmt = Offset * 8;
426   else
427     ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
428   if (ShiftAmt)
429     SrcVal = Builder.CreateLShr(SrcVal,
430                                 ConstantInt::get(SrcVal->getType(), ShiftAmt));
431 
432   if (LoadSize != StoreSize)
433     SrcVal = Builder.CreateTruncOrBitCast(SrcVal,
434                                           IntegerType::get(Ctx, LoadSize * 8));
435   return SrcVal;
436 }
437 
438 /// This function is called when we have a memdep query of a load that ends up
439 /// being a clobbering store.  This means that the store provides bits used by
440 /// the load but the pointers don't must-alias.  Check this case to see if
441 /// there is anything more we can do before we give up.
442 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
443                             Instruction *InsertPt, const DataLayout &DL) {
444 
445   IRBuilder<> Builder(InsertPt);
446   SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
447   return coerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
448 }
449 
450 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
451                                        Type *LoadTy, const DataLayout &DL) {
452   return ConstantFoldLoadFromConst(SrcVal, LoadTy, APInt(32, Offset), DL);
453 }
454 
455 /// This function is called when we have a memdep query of a load that ends up
456 /// being a clobbering load.  This means that the load *may* provide bits used
457 /// by the load but we can't be sure because the pointers don't must-alias.
458 /// Check this case to see if there is anything more we can do before we give
459 /// up.
460 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
461                            Instruction *InsertPt, const DataLayout &DL) {
462   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
463   // widen SrcVal out to a larger load.
464   unsigned SrcValStoreSize =
465       DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
466   unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
467   if (Offset + LoadSize > SrcValStoreSize) {
468     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
469     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
470     // If we have a load/load clobber an DepLI can be widened to cover this
471     // load, then we should widen it to the next power of 2 size big enough!
472     unsigned NewLoadSize = Offset + LoadSize;
473     if (!isPowerOf2_32(NewLoadSize))
474       NewLoadSize = NextPowerOf2(NewLoadSize);
475 
476     Value *PtrVal = SrcVal->getPointerOperand();
477     // Insert the new load after the old load.  This ensures that subsequent
478     // memdep queries will find the new load.  We can't easily remove the old
479     // load completely because it is already in the value numbering table.
480     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
481     Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
482     Type *DestPTy =
483         PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace());
484     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
485     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
486     LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal);
487     NewLoad->takeName(SrcVal);
488     NewLoad->setAlignment(SrcVal->getAlign());
489 
490     LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
491     LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
492 
493     // Replace uses of the original load with the wider load.  On a big endian
494     // system, we need to shift down to get the relevant bits.
495     Value *RV = NewLoad;
496     if (DL.isBigEndian())
497       RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
498     RV = Builder.CreateTrunc(RV, SrcVal->getType());
499     SrcVal->replaceAllUsesWith(RV);
500 
501     SrcVal = NewLoad;
502   }
503 
504   return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
505 }
506 
507 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
508                                       Type *LoadTy, const DataLayout &DL) {
509   unsigned SrcValStoreSize =
510       DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
511   unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
512   if (Offset + LoadSize > SrcValStoreSize)
513     return nullptr;
514   return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
515 }
516 
517 /// This function is called when we have a
518 /// memdep query of a load that ends up being a clobbering mem intrinsic.
519 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
520                               Type *LoadTy, Instruction *InsertPt,
521                               const DataLayout &DL) {
522   LLVMContext &Ctx = LoadTy->getContext();
523   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8;
524   IRBuilder<> Builder(InsertPt);
525 
526   // We know that this method is only called when the mem transfer fully
527   // provides the bits for the load.
528   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
529     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
530     // independently of what the offset is.
531     Value *Val = MSI->getValue();
532     if (LoadSize != 1)
533       Val =
534           Builder.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
535     Value *OneElt = Val;
536 
537     // Splat the value out to the right number of bits.
538     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
539       // If we can double the number of bytes set, do it.
540       if (NumBytesSet * 2 <= LoadSize) {
541         Value *ShVal = Builder.CreateShl(
542             Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
543         Val = Builder.CreateOr(Val, ShVal);
544         NumBytesSet <<= 1;
545         continue;
546       }
547 
548       // Otherwise insert one byte at a time.
549       Value *ShVal =
550           Builder.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
551       Val = Builder.CreateOr(OneElt, ShVal);
552       ++NumBytesSet;
553     }
554 
555     return coerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
556   }
557 
558   // Otherwise, this is a memcpy/memmove from a constant global.
559   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
560   Constant *Src = cast<Constant>(MTI->getSource());
561   unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
562   return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
563                                       DL);
564 }
565 
566 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
567                                          Type *LoadTy, const DataLayout &DL) {
568   LLVMContext &Ctx = LoadTy->getContext();
569   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8;
570 
571   // We know that this method is only called when the mem transfer fully
572   // provides the bits for the load.
573   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
574     auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
575     if (!Val)
576       return nullptr;
577 
578     Val = ConstantInt::get(Ctx, APInt::getSplat(LoadSize * 8, Val->getValue()));
579     return ConstantFoldLoadFromConst(Val, LoadTy, DL);
580   }
581 
582   // Otherwise, this is a memcpy/memmove from a constant global.
583   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
584   Constant *Src = cast<Constant>(MTI->getSource());
585   unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
586   return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
587                                       DL);
588 }
589 } // namespace VNCoercion
590 } // namespace llvm
591