1 #include "llvm/Transforms/Utils/VNCoercion.h" 2 #include "llvm/Analysis/AliasAnalysis.h" 3 #include "llvm/Analysis/ConstantFolding.h" 4 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 5 #include "llvm/Analysis/ValueTracking.h" 6 #include "llvm/IR/IRBuilder.h" 7 #include "llvm/IR/IntrinsicInst.h" 8 #include "llvm/Support/Debug.h" 9 10 #define DEBUG_TYPE "vncoerce" 11 namespace llvm { 12 namespace VNCoercion { 13 14 /// Return true if coerceAvailableValueToLoadType will succeed. 15 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, 16 const DataLayout &DL) { 17 Type *StoredTy = StoredVal->getType(); 18 if (StoredTy == LoadTy) 19 return true; 20 21 // If the loaded or stored value is an first class array or struct, don't try 22 // to transform them. We need to be able to bitcast to integer. 23 if (LoadTy->isStructTy() || LoadTy->isArrayTy() || StoredTy->isStructTy() || 24 StoredTy->isArrayTy()) 25 return false; 26 27 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy); 28 29 // The store size must be byte-aligned to support future type casts. 30 if (llvm::alignTo(StoreSize, 8) != StoreSize) 31 return false; 32 33 // The store has to be at least as big as the load. 34 if (StoreSize < DL.getTypeSizeInBits(LoadTy)) 35 return false; 36 37 // Don't coerce non-integral pointers to integers or vice versa. 38 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) != 39 DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 40 // As a special case, allow coercion of memset used to initialize 41 // an array w/null. Despite non-integral pointers not generally having a 42 // specific bit pattern, we do assume null is zero. 43 if (auto *CI = dyn_cast<Constant>(StoredVal)) 44 return CI->isNullValue(); 45 return false; 46 } 47 48 return true; 49 } 50 51 template <class T, class HelperClass> 52 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy, 53 HelperClass &Helper, 54 const DataLayout &DL) { 55 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) && 56 "precondition violation - materialization can't fail"); 57 if (auto *C = dyn_cast<Constant>(StoredVal)) 58 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) 59 StoredVal = FoldedStoredVal; 60 61 // If this is already the right type, just return it. 62 Type *StoredValTy = StoredVal->getType(); 63 64 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy); 65 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy); 66 67 // If the store and reload are the same size, we can always reuse it. 68 if (StoredValSize == LoadedValSize) { 69 // Pointer to Pointer -> use bitcast. 70 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) { 71 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 72 } else { 73 // Convert source pointers to integers, which can be bitcast. 74 if (StoredValTy->isPtrOrPtrVectorTy()) { 75 StoredValTy = DL.getIntPtrType(StoredValTy); 76 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 77 } 78 79 Type *TypeToCastTo = LoadedTy; 80 if (TypeToCastTo->isPtrOrPtrVectorTy()) 81 TypeToCastTo = DL.getIntPtrType(TypeToCastTo); 82 83 if (StoredValTy != TypeToCastTo) 84 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo); 85 86 // Cast to pointer if the load needs a pointer type. 87 if (LoadedTy->isPtrOrPtrVectorTy()) 88 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 89 } 90 91 if (auto *C = dyn_cast<ConstantExpr>(StoredVal)) 92 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) 93 StoredVal = FoldedStoredVal; 94 95 return StoredVal; 96 } 97 // If the loaded value is smaller than the available value, then we can 98 // extract out a piece from it. If the available value is too small, then we 99 // can't do anything. 100 assert(StoredValSize >= LoadedValSize && 101 "canCoerceMustAliasedValueToLoad fail"); 102 103 // Convert source pointers to integers, which can be manipulated. 104 if (StoredValTy->isPtrOrPtrVectorTy()) { 105 StoredValTy = DL.getIntPtrType(StoredValTy); 106 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 107 } 108 109 // Convert vectors and fp to integer, which can be manipulated. 110 if (!StoredValTy->isIntegerTy()) { 111 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize); 112 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy); 113 } 114 115 // If this is a big-endian system, we need to shift the value down to the low 116 // bits so that a truncate will work. 117 if (DL.isBigEndian()) { 118 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) - 119 DL.getTypeStoreSizeInBits(LoadedTy); 120 StoredVal = Helper.CreateLShr( 121 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt)); 122 } 123 124 // Truncate the integer to the right size now. 125 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize); 126 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy); 127 128 if (LoadedTy != NewIntTy) { 129 // If the result is a pointer, inttoptr. 130 if (LoadedTy->isPtrOrPtrVectorTy()) 131 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 132 else 133 // Otherwise, bitcast. 134 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 135 } 136 137 if (auto *C = dyn_cast<Constant>(StoredVal)) 138 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) 139 StoredVal = FoldedStoredVal; 140 141 return StoredVal; 142 } 143 144 /// If we saw a store of a value to memory, and 145 /// then a load from a must-aliased pointer of a different type, try to coerce 146 /// the stored value. LoadedTy is the type of the load we want to replace. 147 /// IRB is IRBuilder used to insert new instructions. 148 /// 149 /// If we can't do it, return null. 150 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, 151 IRBuilder<> &IRB, const DataLayout &DL) { 152 return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL); 153 } 154 155 /// This function is called when we have a memdep query of a load that ends up 156 /// being a clobbering memory write (store, memset, memcpy, memmove). This 157 /// means that the write *may* provide bits used by the load but we can't be 158 /// sure because the pointers don't must-alias. 159 /// 160 /// Check this case to see if there is anything more we can do before we give 161 /// up. This returns -1 if we have to give up, or a byte number in the stored 162 /// value of the piece that feeds the load. 163 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, 164 Value *WritePtr, 165 uint64_t WriteSizeInBits, 166 const DataLayout &DL) { 167 // If the loaded or stored value is a first class array or struct, don't try 168 // to transform them. We need to be able to bitcast to integer. 169 if (LoadTy->isStructTy() || LoadTy->isArrayTy()) 170 return -1; 171 172 int64_t StoreOffset = 0, LoadOffset = 0; 173 Value *StoreBase = 174 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL); 175 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL); 176 if (StoreBase != LoadBase) 177 return -1; 178 179 // If the load and store are to the exact same address, they should have been 180 // a must alias. AA must have gotten confused. 181 // FIXME: Study to see if/when this happens. One case is forwarding a memset 182 // to a load from the base of the memset. 183 184 // If the load and store don't overlap at all, the store doesn't provide 185 // anything to the load. In this case, they really don't alias at all, AA 186 // must have gotten confused. 187 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy); 188 189 if ((WriteSizeInBits & 7) | (LoadSize & 7)) 190 return -1; 191 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes. 192 LoadSize /= 8; 193 194 bool isAAFailure = false; 195 if (StoreOffset < LoadOffset) 196 isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset; 197 else 198 isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset; 199 200 if (isAAFailure) 201 return -1; 202 203 // If the Load isn't completely contained within the stored bits, we don't 204 // have all the bits to feed it. We could do something crazy in the future 205 // (issue a smaller load then merge the bits in) but this seems unlikely to be 206 // valuable. 207 if (StoreOffset > LoadOffset || 208 StoreOffset + StoreSize < LoadOffset + LoadSize) 209 return -1; 210 211 // Okay, we can do this transformation. Return the number of bytes into the 212 // store that the load is. 213 return LoadOffset - StoreOffset; 214 } 215 216 /// This function is called when we have a 217 /// memdep query of a load that ends up being a clobbering store. 218 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, 219 StoreInst *DepSI, const DataLayout &DL) { 220 auto *StoredVal = DepSI->getValueOperand(); 221 222 // Cannot handle reading from store of first-class aggregate yet. 223 if (StoredVal->getType()->isStructTy() || 224 StoredVal->getType()->isArrayTy()) 225 return -1; 226 227 // Don't coerce non-integral pointers to integers or vice versa. 228 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) != 229 DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 230 // Allow casts of zero values to null as a special case 231 auto *CI = dyn_cast<Constant>(StoredVal); 232 if (!CI || !CI->isNullValue()) 233 return -1; 234 } 235 236 Value *StorePtr = DepSI->getPointerOperand(); 237 uint64_t StoreSize = 238 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()); 239 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize, 240 DL); 241 } 242 243 /// This function is called when we have a 244 /// memdep query of a load that ends up being clobbered by another load. See if 245 /// the other load can feed into the second load. 246 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, 247 const DataLayout &DL) { 248 // Cannot handle reading from store of first-class aggregate yet. 249 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) 250 return -1; 251 252 // Don't coerce non-integral pointers to integers or vice versa. 253 if (DL.isNonIntegralPointerType(DepLI->getType()->getScalarType()) != 254 DL.isNonIntegralPointerType(LoadTy->getScalarType())) 255 return -1; 256 257 Value *DepPtr = DepLI->getPointerOperand(); 258 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()); 259 int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL); 260 if (R != -1) 261 return R; 262 263 // If we have a load/load clobber an DepLI can be widened to cover this load, 264 // then we should widen it! 265 int64_t LoadOffs = 0; 266 const Value *LoadBase = 267 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL); 268 unsigned LoadSize = DL.getTypeStoreSize(LoadTy); 269 270 unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 271 LoadBase, LoadOffs, LoadSize, DepLI); 272 if (Size == 0) 273 return -1; 274 275 // Check non-obvious conditions enforced by MDA which we rely on for being 276 // able to materialize this potentially available value 277 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!"); 278 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load"); 279 280 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL); 281 } 282 283 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, 284 MemIntrinsic *MI, const DataLayout &DL) { 285 // If the mem operation is a non-constant size, we can't handle it. 286 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); 287 if (!SizeCst) 288 return -1; 289 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8; 290 291 // If this is memset, we just need to see if the offset is valid in the size 292 // of the memset.. 293 if (MI->getIntrinsicID() == Intrinsic::memset) { 294 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 295 auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue()); 296 if (!CI || !CI->isZero()) 297 return -1; 298 } 299 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 300 MemSizeInBits, DL); 301 } 302 303 // If we have a memcpy/memmove, the only case we can handle is if this is a 304 // copy from constant memory. In that case, we can read directly from the 305 // constant memory. 306 MemTransferInst *MTI = cast<MemTransferInst>(MI); 307 308 Constant *Src = dyn_cast<Constant>(MTI->getSource()); 309 if (!Src) 310 return -1; 311 312 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL)); 313 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 314 return -1; 315 316 // See if the access is within the bounds of the transfer. 317 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 318 MemSizeInBits, DL); 319 if (Offset == -1) 320 return Offset; 321 322 // Don't coerce non-integral pointers to integers or vice versa, and the 323 // memtransfer is implicitly a raw byte code 324 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 325 // TODO: Can allow nullptrs from constant zeros 326 return -1; 327 328 unsigned AS = Src->getType()->getPointerAddressSpace(); 329 // Otherwise, see if we can constant fold a load from the constant with the 330 // offset applied as appropriate. 331 Src = 332 ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS)); 333 Constant *OffsetCst = 334 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 335 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, 336 OffsetCst); 337 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 338 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL)) 339 return Offset; 340 return -1; 341 } 342 343 template <class T, class HelperClass> 344 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy, 345 HelperClass &Helper, 346 const DataLayout &DL) { 347 LLVMContext &Ctx = SrcVal->getType()->getContext(); 348 349 // If two pointers are in the same address space, they have the same size, 350 // so we don't need to do any truncation, etc. This avoids introducing 351 // ptrtoint instructions for pointers that may be non-integral. 352 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() && 353 cast<PointerType>(SrcVal->getType())->getAddressSpace() == 354 cast<PointerType>(LoadTy)->getAddressSpace()) { 355 return SrcVal; 356 } 357 358 uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8; 359 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8; 360 // Compute which bits of the stored value are being used by the load. Convert 361 // to an integer type to start with. 362 if (SrcVal->getType()->isPtrOrPtrVectorTy()) 363 SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType())); 364 if (!SrcVal->getType()->isIntegerTy()) 365 SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8)); 366 367 // Shift the bits to the least significant depending on endianness. 368 unsigned ShiftAmt; 369 if (DL.isLittleEndian()) 370 ShiftAmt = Offset * 8; 371 else 372 ShiftAmt = (StoreSize - LoadSize - Offset) * 8; 373 if (ShiftAmt) 374 SrcVal = Helper.CreateLShr(SrcVal, 375 ConstantInt::get(SrcVal->getType(), ShiftAmt)); 376 377 if (LoadSize != StoreSize) 378 SrcVal = Helper.CreateTruncOrBitCast(SrcVal, 379 IntegerType::get(Ctx, LoadSize * 8)); 380 return SrcVal; 381 } 382 383 /// This function is called when we have a memdep query of a load that ends up 384 /// being a clobbering store. This means that the store provides bits used by 385 /// the load but the pointers don't must-alias. Check this case to see if 386 /// there is anything more we can do before we give up. 387 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, 388 Instruction *InsertPt, const DataLayout &DL) { 389 390 IRBuilder<> Builder(InsertPt); 391 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL); 392 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL); 393 } 394 395 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset, 396 Type *LoadTy, const DataLayout &DL) { 397 ConstantFolder F; 398 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL); 399 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL); 400 } 401 402 /// This function is called when we have a memdep query of a load that ends up 403 /// being a clobbering load. This means that the load *may* provide bits used 404 /// by the load but we can't be sure because the pointers don't must-alias. 405 /// Check this case to see if there is anything more we can do before we give 406 /// up. 407 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy, 408 Instruction *InsertPt, const DataLayout &DL) { 409 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to 410 // widen SrcVal out to a larger load. 411 unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType()); 412 unsigned LoadSize = DL.getTypeStoreSize(LoadTy); 413 if (Offset + LoadSize > SrcValStoreSize) { 414 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); 415 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); 416 // If we have a load/load clobber an DepLI can be widened to cover this 417 // load, then we should widen it to the next power of 2 size big enough! 418 unsigned NewLoadSize = Offset + LoadSize; 419 if (!isPowerOf2_32(NewLoadSize)) 420 NewLoadSize = NextPowerOf2(NewLoadSize); 421 422 Value *PtrVal = SrcVal->getPointerOperand(); 423 // Insert the new load after the old load. This ensures that subsequent 424 // memdep queries will find the new load. We can't easily remove the old 425 // load completely because it is already in the value numbering table. 426 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); 427 Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8); 428 Type *DestPTy = 429 PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace()); 430 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); 431 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); 432 LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal); 433 NewLoad->takeName(SrcVal); 434 NewLoad->setAlignment(MaybeAlign(SrcVal->getAlignment())); 435 436 LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); 437 LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); 438 439 // Replace uses of the original load with the wider load. On a big endian 440 // system, we need to shift down to get the relevant bits. 441 Value *RV = NewLoad; 442 if (DL.isBigEndian()) 443 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8); 444 RV = Builder.CreateTrunc(RV, SrcVal->getType()); 445 SrcVal->replaceAllUsesWith(RV); 446 447 SrcVal = NewLoad; 448 } 449 450 return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL); 451 } 452 453 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset, 454 Type *LoadTy, const DataLayout &DL) { 455 unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType()); 456 unsigned LoadSize = DL.getTypeStoreSize(LoadTy); 457 if (Offset + LoadSize > SrcValStoreSize) 458 return nullptr; 459 return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL); 460 } 461 462 template <class T, class HelperClass> 463 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset, 464 Type *LoadTy, HelperClass &Helper, 465 const DataLayout &DL) { 466 LLVMContext &Ctx = LoadTy->getContext(); 467 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy) / 8; 468 469 // We know that this method is only called when the mem transfer fully 470 // provides the bits for the load. 471 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 472 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and 473 // independently of what the offset is. 474 T *Val = cast<T>(MSI->getValue()); 475 if (LoadSize != 1) 476 Val = 477 Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8)); 478 T *OneElt = Val; 479 480 // Splat the value out to the right number of bits. 481 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) { 482 // If we can double the number of bytes set, do it. 483 if (NumBytesSet * 2 <= LoadSize) { 484 T *ShVal = Helper.CreateShl( 485 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8)); 486 Val = Helper.CreateOr(Val, ShVal); 487 NumBytesSet <<= 1; 488 continue; 489 } 490 491 // Otherwise insert one byte at a time. 492 T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8)); 493 Val = Helper.CreateOr(OneElt, ShVal); 494 ++NumBytesSet; 495 } 496 497 return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL); 498 } 499 500 // Otherwise, this is a memcpy/memmove from a constant global. 501 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 502 Constant *Src = cast<Constant>(MTI->getSource()); 503 unsigned AS = Src->getType()->getPointerAddressSpace(); 504 505 // Otherwise, see if we can constant fold a load from the constant with the 506 // offset applied as appropriate. 507 Src = 508 ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS)); 509 Constant *OffsetCst = 510 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 511 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, 512 OffsetCst); 513 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 514 return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL); 515 } 516 517 /// This function is called when we have a 518 /// memdep query of a load that ends up being a clobbering mem intrinsic. 519 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 520 Type *LoadTy, Instruction *InsertPt, 521 const DataLayout &DL) { 522 IRBuilder<> Builder(InsertPt); 523 return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset, 524 LoadTy, Builder, DL); 525 } 526 527 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 528 Type *LoadTy, const DataLayout &DL) { 529 // The only case analyzeLoadFromClobberingMemInst cannot be converted to a 530 // constant is when it's a memset of a non-constant. 531 if (auto *MSI = dyn_cast<MemSetInst>(SrcInst)) 532 if (!isa<Constant>(MSI->getValue())) 533 return nullptr; 534 ConstantFolder F; 535 return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset, 536 LoadTy, F, DL); 537 } 538 } // namespace VNCoercion 539 } // namespace llvm 540