1 #include "llvm/Transforms/Utils/VNCoercion.h" 2 #include "llvm/Analysis/ConstantFolding.h" 3 #include "llvm/Analysis/ValueTracking.h" 4 #include "llvm/IR/IRBuilder.h" 5 #include "llvm/Support/Debug.h" 6 7 #define DEBUG_TYPE "vncoerce" 8 9 namespace llvm { 10 namespace VNCoercion { 11 12 static bool isFirstClassAggregateOrScalableType(Type *Ty) { 13 return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty); 14 } 15 16 /// Return true if coerceAvailableValueToLoadType will succeed. 17 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, 18 const DataLayout &DL) { 19 Type *StoredTy = StoredVal->getType(); 20 21 if (StoredTy == LoadTy) 22 return true; 23 24 // If the loaded/stored value is a first class array/struct, or scalable type, 25 // don't try to transform them. We need to be able to bitcast to integer. 26 if (isFirstClassAggregateOrScalableType(LoadTy) || 27 isFirstClassAggregateOrScalableType(StoredTy)) 28 return false; 29 30 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedSize(); 31 32 // The store size must be byte-aligned to support future type casts. 33 if (llvm::alignTo(StoreSize, 8) != StoreSize) 34 return false; 35 36 // The store has to be at least as big as the load. 37 if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedSize()) 38 return false; 39 40 bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType()); 41 bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType()); 42 // Don't coerce non-integral pointers to integers or vice versa. 43 if (StoredNI != LoadNI) { 44 // As a special case, allow coercion of memset used to initialize 45 // an array w/null. Despite non-integral pointers not generally having a 46 // specific bit pattern, we do assume null is zero. 47 if (auto *CI = dyn_cast<Constant>(StoredVal)) 48 return CI->isNullValue(); 49 return false; 50 } else if (StoredNI && LoadNI && 51 StoredTy->getPointerAddressSpace() != 52 LoadTy->getPointerAddressSpace()) { 53 return false; 54 } 55 56 57 // The implementation below uses inttoptr for vectors of unequal size; we 58 // can't allow this for non integral pointers. We could teach it to extract 59 // exact subvectors if desired. 60 if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedSize()) 61 return false; 62 63 return true; 64 } 65 66 template <class T, class HelperClass> 67 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy, 68 HelperClass &Helper, 69 const DataLayout &DL) { 70 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) && 71 "precondition violation - materialization can't fail"); 72 if (auto *C = dyn_cast<Constant>(StoredVal)) 73 StoredVal = ConstantFoldConstant(C, DL); 74 75 // If this is already the right type, just return it. 76 Type *StoredValTy = StoredVal->getType(); 77 78 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedSize(); 79 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedSize(); 80 81 // If the store and reload are the same size, we can always reuse it. 82 if (StoredValSize == LoadedValSize) { 83 // Pointer to Pointer -> use bitcast. 84 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) { 85 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 86 } else { 87 // Convert source pointers to integers, which can be bitcast. 88 if (StoredValTy->isPtrOrPtrVectorTy()) { 89 StoredValTy = DL.getIntPtrType(StoredValTy); 90 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 91 } 92 93 Type *TypeToCastTo = LoadedTy; 94 if (TypeToCastTo->isPtrOrPtrVectorTy()) 95 TypeToCastTo = DL.getIntPtrType(TypeToCastTo); 96 97 if (StoredValTy != TypeToCastTo) 98 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo); 99 100 // Cast to pointer if the load needs a pointer type. 101 if (LoadedTy->isPtrOrPtrVectorTy()) 102 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 103 } 104 105 if (auto *C = dyn_cast<ConstantExpr>(StoredVal)) 106 StoredVal = ConstantFoldConstant(C, DL); 107 108 return StoredVal; 109 } 110 // If the loaded value is smaller than the available value, then we can 111 // extract out a piece from it. If the available value is too small, then we 112 // can't do anything. 113 assert(StoredValSize >= LoadedValSize && 114 "canCoerceMustAliasedValueToLoad fail"); 115 116 // Convert source pointers to integers, which can be manipulated. 117 if (StoredValTy->isPtrOrPtrVectorTy()) { 118 StoredValTy = DL.getIntPtrType(StoredValTy); 119 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 120 } 121 122 // Convert vectors and fp to integer, which can be manipulated. 123 if (!StoredValTy->isIntegerTy()) { 124 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize); 125 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy); 126 } 127 128 // If this is a big-endian system, we need to shift the value down to the low 129 // bits so that a truncate will work. 130 if (DL.isBigEndian()) { 131 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedSize() - 132 DL.getTypeStoreSizeInBits(LoadedTy).getFixedSize(); 133 StoredVal = Helper.CreateLShr( 134 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt)); 135 } 136 137 // Truncate the integer to the right size now. 138 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize); 139 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy); 140 141 if (LoadedTy != NewIntTy) { 142 // If the result is a pointer, inttoptr. 143 if (LoadedTy->isPtrOrPtrVectorTy()) 144 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 145 else 146 // Otherwise, bitcast. 147 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 148 } 149 150 if (auto *C = dyn_cast<Constant>(StoredVal)) 151 StoredVal = ConstantFoldConstant(C, DL); 152 153 return StoredVal; 154 } 155 156 /// If we saw a store of a value to memory, and 157 /// then a load from a must-aliased pointer of a different type, try to coerce 158 /// the stored value. LoadedTy is the type of the load we want to replace. 159 /// IRB is IRBuilder used to insert new instructions. 160 /// 161 /// If we can't do it, return null. 162 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, 163 IRBuilderBase &IRB, 164 const DataLayout &DL) { 165 return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL); 166 } 167 168 /// This function is called when we have a memdep query of a load that ends up 169 /// being a clobbering memory write (store, memset, memcpy, memmove). This 170 /// means that the write *may* provide bits used by the load but we can't be 171 /// sure because the pointers don't must-alias. 172 /// 173 /// Check this case to see if there is anything more we can do before we give 174 /// up. This returns -1 if we have to give up, or a byte number in the stored 175 /// value of the piece that feeds the load. 176 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, 177 Value *WritePtr, 178 uint64_t WriteSizeInBits, 179 const DataLayout &DL) { 180 // If the loaded/stored value is a first class array/struct, or scalable type, 181 // don't try to transform them. We need to be able to bitcast to integer. 182 if (isFirstClassAggregateOrScalableType(LoadTy)) 183 return -1; 184 185 int64_t StoreOffset = 0, LoadOffset = 0; 186 Value *StoreBase = 187 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL); 188 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL); 189 if (StoreBase != LoadBase) 190 return -1; 191 192 // If the load and store are to the exact same address, they should have been 193 // a must alias. AA must have gotten confused. 194 // FIXME: Study to see if/when this happens. One case is forwarding a memset 195 // to a load from the base of the memset. 196 197 // If the load and store don't overlap at all, the store doesn't provide 198 // anything to the load. In this case, they really don't alias at all, AA 199 // must have gotten confused. 200 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize(); 201 202 if ((WriteSizeInBits & 7) | (LoadSize & 7)) 203 return -1; 204 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes. 205 LoadSize /= 8; 206 207 bool isAAFailure = false; 208 if (StoreOffset < LoadOffset) 209 isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset; 210 else 211 isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset; 212 213 if (isAAFailure) 214 return -1; 215 216 // If the Load isn't completely contained within the stored bits, we don't 217 // have all the bits to feed it. We could do something crazy in the future 218 // (issue a smaller load then merge the bits in) but this seems unlikely to be 219 // valuable. 220 if (StoreOffset > LoadOffset || 221 StoreOffset + StoreSize < LoadOffset + LoadSize) 222 return -1; 223 224 // Okay, we can do this transformation. Return the number of bytes into the 225 // store that the load is. 226 return LoadOffset - StoreOffset; 227 } 228 229 /// This function is called when we have a 230 /// memdep query of a load that ends up being a clobbering store. 231 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, 232 StoreInst *DepSI, const DataLayout &DL) { 233 auto *StoredVal = DepSI->getValueOperand(); 234 235 // Cannot handle reading from store of first-class aggregate or scalable type. 236 if (isFirstClassAggregateOrScalableType(StoredVal->getType())) 237 return -1; 238 239 if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL)) 240 return -1; 241 242 Value *StorePtr = DepSI->getPointerOperand(); 243 uint64_t StoreSize = 244 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedSize(); 245 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize, 246 DL); 247 } 248 249 /// Looks at a memory location for a load (specified by MemLocBase, Offs, and 250 /// Size) and compares it against a load. 251 /// 252 /// If the specified load could be safely widened to a larger integer load 253 /// that is 1) still efficient, 2) safe for the target, and 3) would provide 254 /// the specified memory location value, then this function returns the size 255 /// in bytes of the load width to use. If not, this returns zero. 256 static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase, 257 int64_t MemLocOffs, 258 unsigned MemLocSize, 259 const LoadInst *LI) { 260 // We can only extend simple integer loads. 261 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 262 return 0; 263 264 // Load widening is hostile to ThreadSanitizer: it may cause false positives 265 // or make the reports more cryptic (access sizes are wrong). 266 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 267 return 0; 268 269 const DataLayout &DL = LI->getModule()->getDataLayout(); 270 271 // Get the base of this load. 272 int64_t LIOffs = 0; 273 const Value *LIBase = 274 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 275 276 // If the two pointers are not based on the same pointer, we can't tell that 277 // they are related. 278 if (LIBase != MemLocBase) 279 return 0; 280 281 // Okay, the two values are based on the same pointer, but returned as 282 // no-alias. This happens when we have things like two byte loads at "P+1" 283 // and "P+3". Check to see if increasing the size of the "LI" load up to its 284 // alignment (or the largest native integer type) will allow us to load all 285 // the bits required by MemLoc. 286 287 // If MemLoc is before LI, then no widening of LI will help us out. 288 if (MemLocOffs < LIOffs) 289 return 0; 290 291 // Get the alignment of the load in bytes. We assume that it is safe to load 292 // any legal integer up to this size without a problem. For example, if we're 293 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 294 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 295 // to i16. 296 unsigned LoadAlign = LI->getAlignment(); 297 298 int64_t MemLocEnd = MemLocOffs + MemLocSize; 299 300 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 301 if (LIOffs + LoadAlign < MemLocEnd) 302 return 0; 303 304 // This is the size of the load to try. Start with the next larger power of 305 // two. 306 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 307 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 308 309 while (true) { 310 // If this load size is bigger than our known alignment or would not fit 311 // into a native integer register, then we fail. 312 if (NewLoadByteSize > LoadAlign || 313 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 314 return 0; 315 316 if (LIOffs + NewLoadByteSize > MemLocEnd && 317 (LI->getParent()->getParent()->hasFnAttribute( 318 Attribute::SanitizeAddress) || 319 LI->getParent()->getParent()->hasFnAttribute( 320 Attribute::SanitizeHWAddress))) 321 // We will be reading past the location accessed by the original program. 322 // While this is safe in a regular build, Address Safety analysis tools 323 // may start reporting false warnings. So, don't do widening. 324 return 0; 325 326 // If a load of this width would include all of MemLoc, then we succeed. 327 if (LIOffs + NewLoadByteSize >= MemLocEnd) 328 return NewLoadByteSize; 329 330 NewLoadByteSize <<= 1; 331 } 332 } 333 334 /// This function is called when we have a 335 /// memdep query of a load that ends up being clobbered by another load. See if 336 /// the other load can feed into the second load. 337 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, 338 const DataLayout &DL) { 339 // Cannot handle reading from store of first-class aggregate yet. 340 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) 341 return -1; 342 343 if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL)) 344 return -1; 345 346 Value *DepPtr = DepLI->getPointerOperand(); 347 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedSize(); 348 int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL); 349 if (R != -1) 350 return R; 351 352 // If we have a load/load clobber an DepLI can be widened to cover this load, 353 // then we should widen it! 354 int64_t LoadOffs = 0; 355 const Value *LoadBase = 356 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL); 357 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 358 359 unsigned Size = 360 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI); 361 if (Size == 0) 362 return -1; 363 364 // Check non-obvious conditions enforced by MDA which we rely on for being 365 // able to materialize this potentially available value 366 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!"); 367 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load"); 368 369 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL); 370 } 371 372 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, 373 MemIntrinsic *MI, const DataLayout &DL) { 374 // If the mem operation is a non-constant size, we can't handle it. 375 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); 376 if (!SizeCst) 377 return -1; 378 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8; 379 380 // If this is memset, we just need to see if the offset is valid in the size 381 // of the memset.. 382 if (MI->getIntrinsicID() == Intrinsic::memset) { 383 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 384 auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue()); 385 if (!CI || !CI->isZero()) 386 return -1; 387 } 388 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 389 MemSizeInBits, DL); 390 } 391 392 // If we have a memcpy/memmove, the only case we can handle is if this is a 393 // copy from constant memory. In that case, we can read directly from the 394 // constant memory. 395 MemTransferInst *MTI = cast<MemTransferInst>(MI); 396 397 Constant *Src = dyn_cast<Constant>(MTI->getSource()); 398 if (!Src) 399 return -1; 400 401 GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src)); 402 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 403 return -1; 404 405 // See if the access is within the bounds of the transfer. 406 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 407 MemSizeInBits, DL); 408 if (Offset == -1) 409 return Offset; 410 411 unsigned AS = Src->getType()->getPointerAddressSpace(); 412 // Otherwise, see if we can constant fold a load from the constant with the 413 // offset applied as appropriate. 414 if (Offset) { 415 Src = ConstantExpr::getBitCast(Src, 416 Type::getInt8PtrTy(Src->getContext(), AS)); 417 Constant *OffsetCst = 418 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 419 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), 420 Src, OffsetCst); 421 } 422 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 423 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL)) 424 return Offset; 425 return -1; 426 } 427 428 template <class T, class HelperClass> 429 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy, 430 HelperClass &Helper, 431 const DataLayout &DL) { 432 LLVMContext &Ctx = SrcVal->getType()->getContext(); 433 434 // If two pointers are in the same address space, they have the same size, 435 // so we don't need to do any truncation, etc. This avoids introducing 436 // ptrtoint instructions for pointers that may be non-integral. 437 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() && 438 cast<PointerType>(SrcVal->getType())->getAddressSpace() == 439 cast<PointerType>(LoadTy)->getAddressSpace()) { 440 return SrcVal; 441 } 442 443 uint64_t StoreSize = 444 (DL.getTypeSizeInBits(SrcVal->getType()).getFixedSize() + 7) / 8; 445 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedSize() + 7) / 8; 446 // Compute which bits of the stored value are being used by the load. Convert 447 // to an integer type to start with. 448 if (SrcVal->getType()->isPtrOrPtrVectorTy()) 449 SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType())); 450 if (!SrcVal->getType()->isIntegerTy()) 451 SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8)); 452 453 // Shift the bits to the least significant depending on endianness. 454 unsigned ShiftAmt; 455 if (DL.isLittleEndian()) 456 ShiftAmt = Offset * 8; 457 else 458 ShiftAmt = (StoreSize - LoadSize - Offset) * 8; 459 if (ShiftAmt) 460 SrcVal = Helper.CreateLShr(SrcVal, 461 ConstantInt::get(SrcVal->getType(), ShiftAmt)); 462 463 if (LoadSize != StoreSize) 464 SrcVal = Helper.CreateTruncOrBitCast(SrcVal, 465 IntegerType::get(Ctx, LoadSize * 8)); 466 return SrcVal; 467 } 468 469 /// This function is called when we have a memdep query of a load that ends up 470 /// being a clobbering store. This means that the store provides bits used by 471 /// the load but the pointers don't must-alias. Check this case to see if 472 /// there is anything more we can do before we give up. 473 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, 474 Instruction *InsertPt, const DataLayout &DL) { 475 476 IRBuilder<> Builder(InsertPt); 477 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL); 478 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL); 479 } 480 481 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset, 482 Type *LoadTy, const DataLayout &DL) { 483 ConstantFolder F; 484 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL); 485 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL); 486 } 487 488 /// This function is called when we have a memdep query of a load that ends up 489 /// being a clobbering load. This means that the load *may* provide bits used 490 /// by the load but we can't be sure because the pointers don't must-alias. 491 /// Check this case to see if there is anything more we can do before we give 492 /// up. 493 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy, 494 Instruction *InsertPt, const DataLayout &DL) { 495 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to 496 // widen SrcVal out to a larger load. 497 unsigned SrcValStoreSize = 498 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize(); 499 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 500 if (Offset + LoadSize > SrcValStoreSize) { 501 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); 502 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); 503 // If we have a load/load clobber an DepLI can be widened to cover this 504 // load, then we should widen it to the next power of 2 size big enough! 505 unsigned NewLoadSize = Offset + LoadSize; 506 if (!isPowerOf2_32(NewLoadSize)) 507 NewLoadSize = NextPowerOf2(NewLoadSize); 508 509 Value *PtrVal = SrcVal->getPointerOperand(); 510 // Insert the new load after the old load. This ensures that subsequent 511 // memdep queries will find the new load. We can't easily remove the old 512 // load completely because it is already in the value numbering table. 513 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); 514 Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8); 515 Type *DestPTy = 516 PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace()); 517 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); 518 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); 519 LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal); 520 NewLoad->takeName(SrcVal); 521 NewLoad->setAlignment(SrcVal->getAlign()); 522 523 LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); 524 LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); 525 526 // Replace uses of the original load with the wider load. On a big endian 527 // system, we need to shift down to get the relevant bits. 528 Value *RV = NewLoad; 529 if (DL.isBigEndian()) 530 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8); 531 RV = Builder.CreateTrunc(RV, SrcVal->getType()); 532 SrcVal->replaceAllUsesWith(RV); 533 534 SrcVal = NewLoad; 535 } 536 537 return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL); 538 } 539 540 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset, 541 Type *LoadTy, const DataLayout &DL) { 542 unsigned SrcValStoreSize = 543 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize(); 544 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 545 if (Offset + LoadSize > SrcValStoreSize) 546 return nullptr; 547 return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL); 548 } 549 550 template <class T, class HelperClass> 551 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset, 552 Type *LoadTy, HelperClass &Helper, 553 const DataLayout &DL) { 554 LLVMContext &Ctx = LoadTy->getContext(); 555 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8; 556 557 // We know that this method is only called when the mem transfer fully 558 // provides the bits for the load. 559 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 560 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and 561 // independently of what the offset is. 562 T *Val = cast<T>(MSI->getValue()); 563 if (LoadSize != 1) 564 Val = 565 Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8)); 566 T *OneElt = Val; 567 568 // Splat the value out to the right number of bits. 569 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) { 570 // If we can double the number of bytes set, do it. 571 if (NumBytesSet * 2 <= LoadSize) { 572 T *ShVal = Helper.CreateShl( 573 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8)); 574 Val = Helper.CreateOr(Val, ShVal); 575 NumBytesSet <<= 1; 576 continue; 577 } 578 579 // Otherwise insert one byte at a time. 580 T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8)); 581 Val = Helper.CreateOr(OneElt, ShVal); 582 ++NumBytesSet; 583 } 584 585 return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL); 586 } 587 588 // Otherwise, this is a memcpy/memmove from a constant global. 589 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 590 Constant *Src = cast<Constant>(MTI->getSource()); 591 592 unsigned AS = Src->getType()->getPointerAddressSpace(); 593 // Otherwise, see if we can constant fold a load from the constant with the 594 // offset applied as appropriate. 595 if (Offset) { 596 Src = ConstantExpr::getBitCast(Src, 597 Type::getInt8PtrTy(Src->getContext(), AS)); 598 Constant *OffsetCst = 599 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 600 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), 601 Src, OffsetCst); 602 } 603 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 604 return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL); 605 } 606 607 /// This function is called when we have a 608 /// memdep query of a load that ends up being a clobbering mem intrinsic. 609 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 610 Type *LoadTy, Instruction *InsertPt, 611 const DataLayout &DL) { 612 IRBuilder<> Builder(InsertPt); 613 return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset, 614 LoadTy, Builder, DL); 615 } 616 617 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 618 Type *LoadTy, const DataLayout &DL) { 619 // The only case analyzeLoadFromClobberingMemInst cannot be converted to a 620 // constant is when it's a memset of a non-constant. 621 if (auto *MSI = dyn_cast<MemSetInst>(SrcInst)) 622 if (!isa<Constant>(MSI->getValue())) 623 return nullptr; 624 ConstantFolder F; 625 return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset, 626 LoadTy, F, DL); 627 } 628 } // namespace VNCoercion 629 } // namespace llvm 630