1 #include "llvm/Transforms/Utils/VNCoercion.h" 2 #include "llvm/Analysis/ConstantFolding.h" 3 #include "llvm/Analysis/ValueTracking.h" 4 #include "llvm/IR/IRBuilder.h" 5 #include "llvm/IR/IntrinsicInst.h" 6 #include "llvm/Support/Debug.h" 7 8 #define DEBUG_TYPE "vncoerce" 9 10 namespace llvm { 11 namespace VNCoercion { 12 13 static bool isFirstClassAggregateOrScalableType(Type *Ty) { 14 return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty); 15 } 16 17 /// Return true if coerceAvailableValueToLoadType will succeed. 18 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, 19 const DataLayout &DL) { 20 Type *StoredTy = StoredVal->getType(); 21 22 if (StoredTy == LoadTy) 23 return true; 24 25 // If the loaded/stored value is a first class array/struct, or scalable type, 26 // don't try to transform them. We need to be able to bitcast to integer. 27 if (isFirstClassAggregateOrScalableType(LoadTy) || 28 isFirstClassAggregateOrScalableType(StoredTy)) 29 return false; 30 31 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedValue(); 32 33 // The store size must be byte-aligned to support future type casts. 34 if (llvm::alignTo(StoreSize, 8) != StoreSize) 35 return false; 36 37 // The store has to be at least as big as the load. 38 if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedValue()) 39 return false; 40 41 bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType()); 42 bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType()); 43 // Don't coerce non-integral pointers to integers or vice versa. 44 if (StoredNI != LoadNI) { 45 // As a special case, allow coercion of memset used to initialize 46 // an array w/null. Despite non-integral pointers not generally having a 47 // specific bit pattern, we do assume null is zero. 48 if (auto *CI = dyn_cast<Constant>(StoredVal)) 49 return CI->isNullValue(); 50 return false; 51 } else if (StoredNI && LoadNI && 52 StoredTy->getPointerAddressSpace() != 53 LoadTy->getPointerAddressSpace()) { 54 return false; 55 } 56 57 58 // The implementation below uses inttoptr for vectors of unequal size; we 59 // can't allow this for non integral pointers. We could teach it to extract 60 // exact subvectors if desired. 61 if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedValue()) 62 return false; 63 64 if (StoredTy->isTargetExtTy() || LoadTy->isTargetExtTy()) 65 return false; 66 67 return true; 68 } 69 70 /// If we saw a store of a value to memory, and 71 /// then a load from a must-aliased pointer of a different type, try to coerce 72 /// the stored value. LoadedTy is the type of the load we want to replace. 73 /// IRB is IRBuilder used to insert new instructions. 74 /// 75 /// If we can't do it, return null. 76 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, 77 IRBuilderBase &Helper, 78 const DataLayout &DL) { 79 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) && 80 "precondition violation - materialization can't fail"); 81 if (auto *C = dyn_cast<Constant>(StoredVal)) 82 StoredVal = ConstantFoldConstant(C, DL); 83 84 // If this is already the right type, just return it. 85 Type *StoredValTy = StoredVal->getType(); 86 87 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedValue(); 88 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedValue(); 89 90 // If the store and reload are the same size, we can always reuse it. 91 if (StoredValSize == LoadedValSize) { 92 // Pointer to Pointer -> use bitcast. 93 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) { 94 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 95 } else { 96 // Convert source pointers to integers, which can be bitcast. 97 if (StoredValTy->isPtrOrPtrVectorTy()) { 98 StoredValTy = DL.getIntPtrType(StoredValTy); 99 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 100 } 101 102 Type *TypeToCastTo = LoadedTy; 103 if (TypeToCastTo->isPtrOrPtrVectorTy()) 104 TypeToCastTo = DL.getIntPtrType(TypeToCastTo); 105 106 if (StoredValTy != TypeToCastTo) 107 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo); 108 109 // Cast to pointer if the load needs a pointer type. 110 if (LoadedTy->isPtrOrPtrVectorTy()) 111 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 112 } 113 114 if (auto *C = dyn_cast<ConstantExpr>(StoredVal)) 115 StoredVal = ConstantFoldConstant(C, DL); 116 117 return StoredVal; 118 } 119 // If the loaded value is smaller than the available value, then we can 120 // extract out a piece from it. If the available value is too small, then we 121 // can't do anything. 122 assert(StoredValSize >= LoadedValSize && 123 "canCoerceMustAliasedValueToLoad fail"); 124 125 // Convert source pointers to integers, which can be manipulated. 126 if (StoredValTy->isPtrOrPtrVectorTy()) { 127 StoredValTy = DL.getIntPtrType(StoredValTy); 128 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 129 } 130 131 // Convert vectors and fp to integer, which can be manipulated. 132 if (!StoredValTy->isIntegerTy()) { 133 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize); 134 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy); 135 } 136 137 // If this is a big-endian system, we need to shift the value down to the low 138 // bits so that a truncate will work. 139 if (DL.isBigEndian()) { 140 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedValue() - 141 DL.getTypeStoreSizeInBits(LoadedTy).getFixedValue(); 142 StoredVal = Helper.CreateLShr( 143 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt)); 144 } 145 146 // Truncate the integer to the right size now. 147 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize); 148 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy); 149 150 if (LoadedTy != NewIntTy) { 151 // If the result is a pointer, inttoptr. 152 if (LoadedTy->isPtrOrPtrVectorTy()) 153 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 154 else 155 // Otherwise, bitcast. 156 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 157 } 158 159 if (auto *C = dyn_cast<Constant>(StoredVal)) 160 StoredVal = ConstantFoldConstant(C, DL); 161 162 return StoredVal; 163 } 164 165 /// This function is called when we have a memdep query of a load that ends up 166 /// being a clobbering memory write (store, memset, memcpy, memmove). This 167 /// means that the write *may* provide bits used by the load but we can't be 168 /// sure because the pointers don't must-alias. 169 /// 170 /// Check this case to see if there is anything more we can do before we give 171 /// up. This returns -1 if we have to give up, or a byte number in the stored 172 /// value of the piece that feeds the load. 173 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, 174 Value *WritePtr, 175 uint64_t WriteSizeInBits, 176 const DataLayout &DL) { 177 // If the loaded/stored value is a first class array/struct, or scalable type, 178 // don't try to transform them. We need to be able to bitcast to integer. 179 if (isFirstClassAggregateOrScalableType(LoadTy)) 180 return -1; 181 182 int64_t StoreOffset = 0, LoadOffset = 0; 183 Value *StoreBase = 184 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL); 185 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL); 186 if (StoreBase != LoadBase) 187 return -1; 188 189 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue(); 190 191 if ((WriteSizeInBits & 7) | (LoadSize & 7)) 192 return -1; 193 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes. 194 LoadSize /= 8; 195 196 // If the Load isn't completely contained within the stored bits, we don't 197 // have all the bits to feed it. We could do something crazy in the future 198 // (issue a smaller load then merge the bits in) but this seems unlikely to be 199 // valuable. 200 if (StoreOffset > LoadOffset || 201 StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize)) 202 return -1; 203 204 // Okay, we can do this transformation. Return the number of bytes into the 205 // store that the load is. 206 return LoadOffset - StoreOffset; 207 } 208 209 /// This function is called when we have a 210 /// memdep query of a load that ends up being a clobbering store. 211 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, 212 StoreInst *DepSI, const DataLayout &DL) { 213 auto *StoredVal = DepSI->getValueOperand(); 214 215 // Cannot handle reading from store of first-class aggregate or scalable type. 216 if (isFirstClassAggregateOrScalableType(StoredVal->getType())) 217 return -1; 218 219 if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL)) 220 return -1; 221 222 Value *StorePtr = DepSI->getPointerOperand(); 223 uint64_t StoreSize = 224 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedValue(); 225 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize, 226 DL); 227 } 228 229 /// Looks at a memory location for a load (specified by MemLocBase, Offs, and 230 /// Size) and compares it against a load. 231 /// 232 /// If the specified load could be safely widened to a larger integer load 233 /// that is 1) still efficient, 2) safe for the target, and 3) would provide 234 /// the specified memory location value, then this function returns the size 235 /// in bytes of the load width to use. If not, this returns zero. 236 static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase, 237 int64_t MemLocOffs, 238 unsigned MemLocSize, 239 const LoadInst *LI) { 240 // We can only extend simple integer loads. 241 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 242 return 0; 243 244 // Load widening is hostile to ThreadSanitizer: it may cause false positives 245 // or make the reports more cryptic (access sizes are wrong). 246 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 247 return 0; 248 249 const DataLayout &DL = LI->getModule()->getDataLayout(); 250 251 // Get the base of this load. 252 int64_t LIOffs = 0; 253 const Value *LIBase = 254 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 255 256 // If the two pointers are not based on the same pointer, we can't tell that 257 // they are related. 258 if (LIBase != MemLocBase) 259 return 0; 260 261 // Okay, the two values are based on the same pointer, but returned as 262 // no-alias. This happens when we have things like two byte loads at "P+1" 263 // and "P+3". Check to see if increasing the size of the "LI" load up to its 264 // alignment (or the largest native integer type) will allow us to load all 265 // the bits required by MemLoc. 266 267 // If MemLoc is before LI, then no widening of LI will help us out. 268 if (MemLocOffs < LIOffs) 269 return 0; 270 271 // Get the alignment of the load in bytes. We assume that it is safe to load 272 // any legal integer up to this size without a problem. For example, if we're 273 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 274 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 275 // to i16. 276 unsigned LoadAlign = LI->getAlign().value(); 277 278 int64_t MemLocEnd = MemLocOffs + MemLocSize; 279 280 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 281 if (LIOffs + LoadAlign < MemLocEnd) 282 return 0; 283 284 // This is the size of the load to try. Start with the next larger power of 285 // two. 286 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 287 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 288 289 while (true) { 290 // If this load size is bigger than our known alignment or would not fit 291 // into a native integer register, then we fail. 292 if (NewLoadByteSize > LoadAlign || 293 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 294 return 0; 295 296 if (LIOffs + NewLoadByteSize > MemLocEnd && 297 (LI->getParent()->getParent()->hasFnAttribute( 298 Attribute::SanitizeAddress) || 299 LI->getParent()->getParent()->hasFnAttribute( 300 Attribute::SanitizeHWAddress))) 301 // We will be reading past the location accessed by the original program. 302 // While this is safe in a regular build, Address Safety analysis tools 303 // may start reporting false warnings. So, don't do widening. 304 return 0; 305 306 // If a load of this width would include all of MemLoc, then we succeed. 307 if (LIOffs + NewLoadByteSize >= MemLocEnd) 308 return NewLoadByteSize; 309 310 NewLoadByteSize <<= 1; 311 } 312 } 313 314 /// This function is called when we have a 315 /// memdep query of a load that ends up being clobbered by another load. See if 316 /// the other load can feed into the second load. 317 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, 318 const DataLayout &DL) { 319 // Cannot handle reading from store of first-class aggregate yet. 320 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) 321 return -1; 322 323 if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL)) 324 return -1; 325 326 Value *DepPtr = DepLI->getPointerOperand(); 327 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedValue(); 328 int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL); 329 if (R != -1) 330 return R; 331 332 // If we have a load/load clobber an DepLI can be widened to cover this load, 333 // then we should widen it! 334 int64_t LoadOffs = 0; 335 const Value *LoadBase = 336 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL); 337 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue(); 338 339 unsigned Size = 340 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI); 341 if (Size == 0) 342 return -1; 343 344 // Check non-obvious conditions enforced by MDA which we rely on for being 345 // able to materialize this potentially available value 346 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!"); 347 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load"); 348 349 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL); 350 } 351 352 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, 353 MemIntrinsic *MI, const DataLayout &DL) { 354 // If the mem operation is a non-constant size, we can't handle it. 355 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); 356 if (!SizeCst) 357 return -1; 358 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8; 359 360 // If this is memset, we just need to see if the offset is valid in the size 361 // of the memset.. 362 if (const auto *memset_inst = dyn_cast<MemSetInst>(MI)) { 363 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 364 auto *CI = dyn_cast<ConstantInt>(memset_inst->getValue()); 365 if (!CI || !CI->isZero()) 366 return -1; 367 } 368 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 369 MemSizeInBits, DL); 370 } 371 372 // If we have a memcpy/memmove, the only case we can handle is if this is a 373 // copy from constant memory. In that case, we can read directly from the 374 // constant memory. 375 MemTransferInst *MTI = cast<MemTransferInst>(MI); 376 377 Constant *Src = dyn_cast<Constant>(MTI->getSource()); 378 if (!Src) 379 return -1; 380 381 GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src)); 382 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 383 return -1; 384 385 // See if the access is within the bounds of the transfer. 386 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 387 MemSizeInBits, DL); 388 if (Offset == -1) 389 return Offset; 390 391 // Otherwise, see if we can constant fold a load from the constant with the 392 // offset applied as appropriate. 393 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType()); 394 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL)) 395 return Offset; 396 return -1; 397 } 398 399 static Value *getStoreValueForLoadHelper(Value *SrcVal, unsigned Offset, 400 Type *LoadTy, IRBuilderBase &Builder, 401 const DataLayout &DL) { 402 LLVMContext &Ctx = SrcVal->getType()->getContext(); 403 404 // If two pointers are in the same address space, they have the same size, 405 // so we don't need to do any truncation, etc. This avoids introducing 406 // ptrtoint instructions for pointers that may be non-integral. 407 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() && 408 cast<PointerType>(SrcVal->getType())->getAddressSpace() == 409 cast<PointerType>(LoadTy)->getAddressSpace()) { 410 return SrcVal; 411 } 412 413 uint64_t StoreSize = 414 (DL.getTypeSizeInBits(SrcVal->getType()).getFixedValue() + 7) / 8; 415 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedValue() + 7) / 8; 416 // Compute which bits of the stored value are being used by the load. Convert 417 // to an integer type to start with. 418 if (SrcVal->getType()->isPtrOrPtrVectorTy()) 419 SrcVal = 420 Builder.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType())); 421 if (!SrcVal->getType()->isIntegerTy()) 422 SrcVal = 423 Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8)); 424 425 // Shift the bits to the least significant depending on endianness. 426 unsigned ShiftAmt; 427 if (DL.isLittleEndian()) 428 ShiftAmt = Offset * 8; 429 else 430 ShiftAmt = (StoreSize - LoadSize - Offset) * 8; 431 if (ShiftAmt) 432 SrcVal = Builder.CreateLShr(SrcVal, 433 ConstantInt::get(SrcVal->getType(), ShiftAmt)); 434 435 if (LoadSize != StoreSize) 436 SrcVal = Builder.CreateTruncOrBitCast(SrcVal, 437 IntegerType::get(Ctx, LoadSize * 8)); 438 return SrcVal; 439 } 440 441 /// This function is called when we have a memdep query of a load that ends up 442 /// being a clobbering store. This means that the store provides bits used by 443 /// the load but the pointers don't must-alias. Check this case to see if 444 /// there is anything more we can do before we give up. 445 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, 446 Instruction *InsertPt, const DataLayout &DL) { 447 448 IRBuilder<> Builder(InsertPt); 449 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL); 450 return coerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL); 451 } 452 453 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset, 454 Type *LoadTy, const DataLayout &DL) { 455 return ConstantFoldLoadFromConst(SrcVal, LoadTy, APInt(32, Offset), DL); 456 } 457 458 /// This function is called when we have a memdep query of a load that ends up 459 /// being a clobbering load. This means that the load *may* provide bits used 460 /// by the load but we can't be sure because the pointers don't must-alias. 461 /// Check this case to see if there is anything more we can do before we give 462 /// up. 463 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy, 464 Instruction *InsertPt, const DataLayout &DL) { 465 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to 466 // widen SrcVal out to a larger load. 467 unsigned SrcValStoreSize = 468 DL.getTypeStoreSize(SrcVal->getType()).getFixedValue(); 469 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue(); 470 if (Offset + LoadSize > SrcValStoreSize) { 471 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); 472 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); 473 // If we have a load/load clobber an DepLI can be widened to cover this 474 // load, then we should widen it to the next power of 2 size big enough! 475 unsigned NewLoadSize = Offset + LoadSize; 476 if (!isPowerOf2_32(NewLoadSize)) 477 NewLoadSize = NextPowerOf2(NewLoadSize); 478 479 Value *PtrVal = SrcVal->getPointerOperand(); 480 // Insert the new load after the old load. This ensures that subsequent 481 // memdep queries will find the new load. We can't easily remove the old 482 // load completely because it is already in the value numbering table. 483 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); 484 Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8); 485 Type *DestPTy = 486 PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace()); 487 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); 488 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); 489 LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal); 490 NewLoad->takeName(SrcVal); 491 NewLoad->setAlignment(SrcVal->getAlign()); 492 493 LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); 494 LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); 495 496 // Replace uses of the original load with the wider load. On a big endian 497 // system, we need to shift down to get the relevant bits. 498 Value *RV = NewLoad; 499 if (DL.isBigEndian()) 500 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8); 501 RV = Builder.CreateTrunc(RV, SrcVal->getType()); 502 SrcVal->replaceAllUsesWith(RV); 503 504 SrcVal = NewLoad; 505 } 506 507 return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL); 508 } 509 510 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset, 511 Type *LoadTy, const DataLayout &DL) { 512 unsigned SrcValStoreSize = 513 DL.getTypeStoreSize(SrcVal->getType()).getFixedValue(); 514 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue(); 515 if (Offset + LoadSize > SrcValStoreSize) 516 return nullptr; 517 return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL); 518 } 519 520 /// This function is called when we have a 521 /// memdep query of a load that ends up being a clobbering mem intrinsic. 522 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 523 Type *LoadTy, Instruction *InsertPt, 524 const DataLayout &DL) { 525 LLVMContext &Ctx = LoadTy->getContext(); 526 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8; 527 IRBuilder<> Builder(InsertPt); 528 529 // We know that this method is only called when the mem transfer fully 530 // provides the bits for the load. 531 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 532 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and 533 // independently of what the offset is. 534 Value *Val = MSI->getValue(); 535 if (LoadSize != 1) 536 Val = 537 Builder.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8)); 538 Value *OneElt = Val; 539 540 // Splat the value out to the right number of bits. 541 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) { 542 // If we can double the number of bytes set, do it. 543 if (NumBytesSet * 2 <= LoadSize) { 544 Value *ShVal = Builder.CreateShl( 545 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8)); 546 Val = Builder.CreateOr(Val, ShVal); 547 NumBytesSet <<= 1; 548 continue; 549 } 550 551 // Otherwise insert one byte at a time. 552 Value *ShVal = 553 Builder.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8)); 554 Val = Builder.CreateOr(OneElt, ShVal); 555 ++NumBytesSet; 556 } 557 558 return coerceAvailableValueToLoadType(Val, LoadTy, Builder, DL); 559 } 560 561 // Otherwise, this is a memcpy/memmove from a constant global. 562 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 563 Constant *Src = cast<Constant>(MTI->getSource()); 564 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType()); 565 return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), 566 DL); 567 } 568 569 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 570 Type *LoadTy, const DataLayout &DL) { 571 LLVMContext &Ctx = LoadTy->getContext(); 572 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8; 573 574 // We know that this method is only called when the mem transfer fully 575 // provides the bits for the load. 576 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 577 auto *Val = dyn_cast<ConstantInt>(MSI->getValue()); 578 if (!Val) 579 return nullptr; 580 581 Val = ConstantInt::get(Ctx, APInt::getSplat(LoadSize * 8, Val->getValue())); 582 return ConstantFoldLoadFromConst(Val, LoadTy, DL); 583 } 584 585 // Otherwise, this is a memcpy/memmove from a constant global. 586 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 587 Constant *Src = cast<Constant>(MTI->getSource()); 588 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType()); 589 return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), 590 DL); 591 } 592 } // namespace VNCoercion 593 } // namespace llvm 594