1 //===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // For each natural loop with multiple exit blocks, this pass creates a new 10 // block N such that all exiting blocks now branch to N, and then control flow 11 // is redistributed to all the original exit blocks. 12 // 13 // Limitation: This assumes that all terminators in the CFG are direct branches 14 // (the "br" instruction). The presence of any other control flow 15 // such as indirectbr, switch or callbr will cause an assert. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnifyLoopExits.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/Analysis/DomTreeUpdater.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/InitializePasses.h" 26 #include "llvm/Transforms/Utils.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 29 #define DEBUG_TYPE "unify-loop-exits" 30 31 using namespace llvm; 32 33 namespace { 34 struct UnifyLoopExitsLegacyPass : public FunctionPass { 35 static char ID; 36 UnifyLoopExitsLegacyPass() : FunctionPass(ID) { 37 initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry()); 38 } 39 40 void getAnalysisUsage(AnalysisUsage &AU) const override { 41 AU.addRequiredID(LowerSwitchID); 42 AU.addRequired<LoopInfoWrapperPass>(); 43 AU.addRequired<DominatorTreeWrapperPass>(); 44 AU.addPreservedID(LowerSwitchID); 45 AU.addPreserved<LoopInfoWrapperPass>(); 46 AU.addPreserved<DominatorTreeWrapperPass>(); 47 } 48 49 bool runOnFunction(Function &F) override; 50 }; 51 } // namespace 52 53 char UnifyLoopExitsLegacyPass::ID = 0; 54 55 FunctionPass *llvm::createUnifyLoopExitsPass() { 56 return new UnifyLoopExitsLegacyPass(); 57 } 58 59 INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits", 60 "Fixup each natural loop to have a single exit block", 61 false /* Only looks at CFG */, false /* Analysis Pass */) 62 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass) 63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 64 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 65 INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits", 66 "Fixup each natural loop to have a single exit block", 67 false /* Only looks at CFG */, false /* Analysis Pass */) 68 69 // The current transform introduces new control flow paths which may break the 70 // SSA requirement that every def must dominate all its uses. For example, 71 // consider a value D defined inside the loop that is used by some instruction 72 // U outside the loop. It follows that D dominates U, since the original 73 // program has valid SSA form. After merging the exits, all paths from D to U 74 // now flow through the unified exit block. In addition, there may be other 75 // paths that do not pass through D, but now reach the unified exit 76 // block. Thus, D no longer dominates U. 77 // 78 // Restore the dominance by creating a phi for each such D at the new unified 79 // loop exit. But when doing this, ignore any uses U that are in the new unified 80 // loop exit, since those were introduced specially when the block was created. 81 // 82 // The use of SSAUpdater seems like overkill for this operation. The location 83 // for creating the new PHI is well-known, and also the set of incoming blocks 84 // to the new PHI. 85 static void restoreSSA(const DominatorTree &DT, const Loop *L, 86 const SetVector<BasicBlock *> &Incoming, 87 BasicBlock *LoopExitBlock) { 88 using InstVector = SmallVector<Instruction *, 8>; 89 using IIMap = MapVector<Instruction *, InstVector>; 90 IIMap ExternalUsers; 91 for (auto BB : L->blocks()) { 92 for (auto &I : *BB) { 93 for (auto &U : I.uses()) { 94 auto UserInst = cast<Instruction>(U.getUser()); 95 auto UserBlock = UserInst->getParent(); 96 if (UserBlock == LoopExitBlock) 97 continue; 98 if (L->contains(UserBlock)) 99 continue; 100 LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "(" 101 << BB->getName() << ")" 102 << ": " << UserInst->getName() << "(" 103 << UserBlock->getName() << ")" 104 << "\n"); 105 ExternalUsers[&I].push_back(UserInst); 106 } 107 } 108 } 109 110 for (auto II : ExternalUsers) { 111 // For each Def used outside the loop, create NewPhi in 112 // LoopExitBlock. NewPhi receives Def only along exiting blocks that 113 // dominate it, while the remaining values are undefined since those paths 114 // didn't exist in the original CFG. 115 auto Def = II.first; 116 LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n"); 117 auto NewPhi = PHINode::Create(Def->getType(), Incoming.size(), 118 Def->getName() + ".moved", 119 LoopExitBlock->getTerminator()); 120 for (auto In : Incoming) { 121 LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": "); 122 if (Def->getParent() == In || DT.dominates(Def, In)) { 123 LLVM_DEBUG(dbgs() << "dominated\n"); 124 NewPhi->addIncoming(Def, In); 125 } else { 126 LLVM_DEBUG(dbgs() << "not dominated\n"); 127 NewPhi->addIncoming(UndefValue::get(Def->getType()), In); 128 } 129 } 130 131 LLVM_DEBUG(dbgs() << "external users:"); 132 for (auto U : II.second) { 133 LLVM_DEBUG(dbgs() << " " << U->getName()); 134 U->replaceUsesOfWith(Def, NewPhi); 135 } 136 LLVM_DEBUG(dbgs() << "\n"); 137 } 138 } 139 140 static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) { 141 // To unify the loop exits, we need a list of the exiting blocks as 142 // well as exit blocks. The functions for locating these lists both 143 // traverse the entire loop body. It is more efficient to first 144 // locate the exiting blocks and then examine their successors to 145 // locate the exit blocks. 146 SetVector<BasicBlock *> ExitingBlocks; 147 SetVector<BasicBlock *> Exits; 148 149 // We need SetVectors, but the Loop API takes a vector, so we use a temporary. 150 SmallVector<BasicBlock *, 8> Temp; 151 L->getExitingBlocks(Temp); 152 for (auto BB : Temp) { 153 ExitingBlocks.insert(BB); 154 for (auto S : successors(BB)) { 155 auto SL = LI.getLoopFor(S); 156 // A successor is not an exit if it is directly or indirectly in the 157 // current loop. 158 if (SL == L || L->contains(SL)) 159 continue; 160 Exits.insert(S); 161 } 162 } 163 164 LLVM_DEBUG( 165 dbgs() << "Found exit blocks:"; 166 for (auto Exit : Exits) { 167 dbgs() << " " << Exit->getName(); 168 } 169 dbgs() << "\n"; 170 171 dbgs() << "Found exiting blocks:"; 172 for (auto EB : ExitingBlocks) { 173 dbgs() << " " << EB->getName(); 174 } 175 dbgs() << "\n";); 176 177 if (Exits.size() <= 1) { 178 LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n"); 179 return false; 180 } 181 182 SmallVector<BasicBlock *, 8> GuardBlocks; 183 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 184 auto LoopExitBlock = CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks, 185 Exits, "loop.exit"); 186 187 restoreSSA(DT, L, ExitingBlocks, LoopExitBlock); 188 189 #if defined(EXPENSIVE_CHECKS) 190 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 191 #else 192 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 193 #endif // EXPENSIVE_CHECKS 194 L->verifyLoop(); 195 196 // The guard blocks were created outside the loop, so they need to become 197 // members of the parent loop. 198 if (auto ParentLoop = L->getParentLoop()) { 199 for (auto G : GuardBlocks) { 200 ParentLoop->addBasicBlockToLoop(G, LI); 201 } 202 ParentLoop->verifyLoop(); 203 } 204 205 #if defined(EXPENSIVE_CHECKS) 206 LI.verify(DT); 207 #endif // EXPENSIVE_CHECKS 208 209 return true; 210 } 211 212 static bool runImpl(LoopInfo &LI, DominatorTree &DT) { 213 214 bool Changed = false; 215 auto Loops = LI.getLoopsInPreorder(); 216 for (auto L : Loops) { 217 LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: " 218 << LI.getLoopDepth(L->getHeader()) << ")\n"); 219 Changed |= unifyLoopExits(DT, LI, L); 220 } 221 return Changed; 222 } 223 224 bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) { 225 LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName() 226 << "\n"); 227 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 228 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 229 230 return runImpl(LI, DT); 231 } 232 233 namespace llvm { 234 235 PreservedAnalyses UnifyLoopExitsPass::run(Function &F, 236 FunctionAnalysisManager &AM) { 237 auto &LI = AM.getResult<LoopAnalysis>(F); 238 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 239 240 if (!runImpl(LI, DT)) 241 return PreservedAnalyses::all(); 242 PreservedAnalyses PA; 243 PA.preserve<LoopAnalysis>(); 244 PA.preserve<DominatorTreeAnalysis>(); 245 return PA; 246 } 247 } // namespace llvm 248