xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/UnifyLoopExits.cpp (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 //===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // For each natural loop with multiple exit blocks, this pass creates a new
10 // block N such that all exiting blocks now branch to N, and then control flow
11 // is redistributed to all the original exit blocks.
12 //
13 // Limitation: This assumes that all terminators in the CFG are direct branches
14 //             (the "br" instruction). The presence of any other control flow
15 //             such as indirectbr, switch or callbr will cause an assert.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnifyLoopExits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/Analysis/DomTreeUpdater.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Transforms/Utils.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 
29 #define DEBUG_TYPE "unify-loop-exits"
30 
31 using namespace llvm;
32 
33 namespace {
34 struct UnifyLoopExitsLegacyPass : public FunctionPass {
35   static char ID;
36   UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
37     initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
38   }
39 
40   void getAnalysisUsage(AnalysisUsage &AU) const override {
41     AU.addRequiredID(LowerSwitchID);
42     AU.addRequired<LoopInfoWrapperPass>();
43     AU.addRequired<DominatorTreeWrapperPass>();
44     AU.addPreservedID(LowerSwitchID);
45     AU.addPreserved<LoopInfoWrapperPass>();
46     AU.addPreserved<DominatorTreeWrapperPass>();
47   }
48 
49   bool runOnFunction(Function &F) override;
50 };
51 } // namespace
52 
53 char UnifyLoopExitsLegacyPass::ID = 0;
54 
55 FunctionPass *llvm::createUnifyLoopExitsPass() {
56   return new UnifyLoopExitsLegacyPass();
57 }
58 
59 INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
60                       "Fixup each natural loop to have a single exit block",
61                       false /* Only looks at CFG */, false /* Analysis Pass */)
62 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
64 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
65 INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
66                     "Fixup each natural loop to have a single exit block",
67                     false /* Only looks at CFG */, false /* Analysis Pass */)
68 
69 // The current transform introduces new control flow paths which may break the
70 // SSA requirement that every def must dominate all its uses. For example,
71 // consider a value D defined inside the loop that is used by some instruction
72 // U outside the loop. It follows that D dominates U, since the original
73 // program has valid SSA form. After merging the exits, all paths from D to U
74 // now flow through the unified exit block. In addition, there may be other
75 // paths that do not pass through D, but now reach the unified exit
76 // block. Thus, D no longer dominates U.
77 //
78 // Restore the dominance by creating a phi for each such D at the new unified
79 // loop exit. But when doing this, ignore any uses U that are in the new unified
80 // loop exit, since those were introduced specially when the block was created.
81 //
82 // The use of SSAUpdater seems like overkill for this operation. The location
83 // for creating the new PHI is well-known, and also the set of incoming blocks
84 // to the new PHI.
85 static void restoreSSA(const DominatorTree &DT, const Loop *L,
86                        const SetVector<BasicBlock *> &Incoming,
87                        BasicBlock *LoopExitBlock) {
88   using InstVector = SmallVector<Instruction *, 8>;
89   using IIMap = MapVector<Instruction *, InstVector>;
90   IIMap ExternalUsers;
91   for (auto BB : L->blocks()) {
92     for (auto &I : *BB) {
93       for (auto &U : I.uses()) {
94         auto UserInst = cast<Instruction>(U.getUser());
95         auto UserBlock = UserInst->getParent();
96         if (UserBlock == LoopExitBlock)
97           continue;
98         if (L->contains(UserBlock))
99           continue;
100         LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
101                           << BB->getName() << ")"
102                           << ": " << UserInst->getName() << "("
103                           << UserBlock->getName() << ")"
104                           << "\n");
105         ExternalUsers[&I].push_back(UserInst);
106       }
107     }
108   }
109 
110   for (auto II : ExternalUsers) {
111     // For each Def used outside the loop, create NewPhi in
112     // LoopExitBlock. NewPhi receives Def only along exiting blocks that
113     // dominate it, while the remaining values are undefined since those paths
114     // didn't exist in the original CFG.
115     auto Def = II.first;
116     LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
117     auto NewPhi = PHINode::Create(Def->getType(), Incoming.size(),
118                                   Def->getName() + ".moved",
119                                   LoopExitBlock->getTerminator());
120     for (auto In : Incoming) {
121       LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
122       if (Def->getParent() == In || DT.dominates(Def, In)) {
123         LLVM_DEBUG(dbgs() << "dominated\n");
124         NewPhi->addIncoming(Def, In);
125       } else {
126         LLVM_DEBUG(dbgs() << "not dominated\n");
127         NewPhi->addIncoming(UndefValue::get(Def->getType()), In);
128       }
129     }
130 
131     LLVM_DEBUG(dbgs() << "external users:");
132     for (auto U : II.second) {
133       LLVM_DEBUG(dbgs() << " " << U->getName());
134       U->replaceUsesOfWith(Def, NewPhi);
135     }
136     LLVM_DEBUG(dbgs() << "\n");
137   }
138 }
139 
140 static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
141   // To unify the loop exits, we need a list of the exiting blocks as
142   // well as exit blocks. The functions for locating these lists both
143   // traverse the entire loop body. It is more efficient to first
144   // locate the exiting blocks and then examine their successors to
145   // locate the exit blocks.
146   SetVector<BasicBlock *> ExitingBlocks;
147   SetVector<BasicBlock *> Exits;
148 
149   // We need SetVectors, but the Loop API takes a vector, so we use a temporary.
150   SmallVector<BasicBlock *, 8> Temp;
151   L->getExitingBlocks(Temp);
152   for (auto BB : Temp) {
153     ExitingBlocks.insert(BB);
154     for (auto S : successors(BB)) {
155       auto SL = LI.getLoopFor(S);
156       // A successor is not an exit if it is directly or indirectly in the
157       // current loop.
158       if (SL == L || L->contains(SL))
159         continue;
160       Exits.insert(S);
161     }
162   }
163 
164   LLVM_DEBUG(
165       dbgs() << "Found exit blocks:";
166       for (auto Exit : Exits) {
167         dbgs() << " " << Exit->getName();
168       }
169       dbgs() << "\n";
170 
171       dbgs() << "Found exiting blocks:";
172       for (auto EB : ExitingBlocks) {
173         dbgs() << " " << EB->getName();
174       }
175       dbgs() << "\n";);
176 
177   if (Exits.size() <= 1) {
178     LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n");
179     return false;
180   }
181 
182   SmallVector<BasicBlock *, 8> GuardBlocks;
183   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
184   auto LoopExitBlock = CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks,
185                                             Exits, "loop.exit");
186 
187   restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
188 
189 #if defined(EXPENSIVE_CHECKS)
190   assert(DT.verify(DominatorTree::VerificationLevel::Full));
191 #else
192   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
193 #endif // EXPENSIVE_CHECKS
194   L->verifyLoop();
195 
196   // The guard blocks were created outside the loop, so they need to become
197   // members of the parent loop.
198   if (auto ParentLoop = L->getParentLoop()) {
199     for (auto G : GuardBlocks) {
200       ParentLoop->addBasicBlockToLoop(G, LI);
201     }
202     ParentLoop->verifyLoop();
203   }
204 
205 #if defined(EXPENSIVE_CHECKS)
206   LI.verify(DT);
207 #endif // EXPENSIVE_CHECKS
208 
209   return true;
210 }
211 
212 static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
213 
214   bool Changed = false;
215   auto Loops = LI.getLoopsInPreorder();
216   for (auto L : Loops) {
217     LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: "
218                       << LI.getLoopDepth(L->getHeader()) << ")\n");
219     Changed |= unifyLoopExits(DT, LI, L);
220   }
221   return Changed;
222 }
223 
224 bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
225   LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
226                     << "\n");
227   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
228   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
229 
230   return runImpl(LI, DT);
231 }
232 
233 namespace llvm {
234 
235 PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
236                                           FunctionAnalysisManager &AM) {
237   auto &LI = AM.getResult<LoopAnalysis>(F);
238   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
239 
240   if (!runImpl(LI, DT))
241     return PreservedAnalyses::all();
242   PreservedAnalyses PA;
243   PA.preserve<LoopAnalysis>();
244   PA.preserve<DominatorTreeAnalysis>();
245   return PA;
246 }
247 } // namespace llvm
248