1 //===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // For each natural loop with multiple exit blocks, this pass creates a new 10 // block N such that all exiting blocks now branch to N, and then control flow 11 // is redistributed to all the original exit blocks. 12 // 13 // Limitation: This assumes that all terminators in the CFG are direct branches 14 // (the "br" instruction). The presence of any other control flow 15 // such as indirectbr, switch or callbr will cause an assert. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnifyLoopExits.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/InitializePasses.h" 24 #include "llvm/Transforms/Utils.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 27 #define DEBUG_TYPE "unify-loop-exits" 28 29 using namespace llvm; 30 31 namespace { 32 struct UnifyLoopExitsLegacyPass : public FunctionPass { 33 static char ID; 34 UnifyLoopExitsLegacyPass() : FunctionPass(ID) { 35 initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry()); 36 } 37 38 void getAnalysisUsage(AnalysisUsage &AU) const override { 39 AU.addRequiredID(LowerSwitchID); 40 AU.addRequired<LoopInfoWrapperPass>(); 41 AU.addRequired<DominatorTreeWrapperPass>(); 42 AU.addPreservedID(LowerSwitchID); 43 AU.addPreserved<LoopInfoWrapperPass>(); 44 AU.addPreserved<DominatorTreeWrapperPass>(); 45 } 46 47 bool runOnFunction(Function &F) override; 48 }; 49 } // namespace 50 51 char UnifyLoopExitsLegacyPass::ID = 0; 52 53 FunctionPass *llvm::createUnifyLoopExitsPass() { 54 return new UnifyLoopExitsLegacyPass(); 55 } 56 57 INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits", 58 "Fixup each natural loop to have a single exit block", 59 false /* Only looks at CFG */, false /* Analysis Pass */) 60 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass) 61 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 62 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 63 INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits", 64 "Fixup each natural loop to have a single exit block", 65 false /* Only looks at CFG */, false /* Analysis Pass */) 66 67 // The current transform introduces new control flow paths which may break the 68 // SSA requirement that every def must dominate all its uses. For example, 69 // consider a value D defined inside the loop that is used by some instruction 70 // U outside the loop. It follows that D dominates U, since the original 71 // program has valid SSA form. After merging the exits, all paths from D to U 72 // now flow through the unified exit block. In addition, there may be other 73 // paths that do not pass through D, but now reach the unified exit 74 // block. Thus, D no longer dominates U. 75 // 76 // Restore the dominance by creating a phi for each such D at the new unified 77 // loop exit. But when doing this, ignore any uses U that are in the new unified 78 // loop exit, since those were introduced specially when the block was created. 79 // 80 // The use of SSAUpdater seems like overkill for this operation. The location 81 // for creating the new PHI is well-known, and also the set of incoming blocks 82 // to the new PHI. 83 static void restoreSSA(const DominatorTree &DT, const Loop *L, 84 const SetVector<BasicBlock *> &Incoming, 85 BasicBlock *LoopExitBlock) { 86 using InstVector = SmallVector<Instruction *, 8>; 87 using IIMap = MapVector<Instruction *, InstVector>; 88 IIMap ExternalUsers; 89 for (auto BB : L->blocks()) { 90 for (auto &I : *BB) { 91 for (auto &U : I.uses()) { 92 auto UserInst = cast<Instruction>(U.getUser()); 93 auto UserBlock = UserInst->getParent(); 94 if (UserBlock == LoopExitBlock) 95 continue; 96 if (L->contains(UserBlock)) 97 continue; 98 LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "(" 99 << BB->getName() << ")" 100 << ": " << UserInst->getName() << "(" 101 << UserBlock->getName() << ")" 102 << "\n"); 103 ExternalUsers[&I].push_back(UserInst); 104 } 105 } 106 } 107 108 for (auto II : ExternalUsers) { 109 // For each Def used outside the loop, create NewPhi in 110 // LoopExitBlock. NewPhi receives Def only along exiting blocks that 111 // dominate it, while the remaining values are undefined since those paths 112 // didn't exist in the original CFG. 113 auto Def = II.first; 114 LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n"); 115 auto NewPhi = PHINode::Create(Def->getType(), Incoming.size(), 116 Def->getName() + ".moved", 117 LoopExitBlock->getTerminator()); 118 for (auto In : Incoming) { 119 LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": "); 120 if (Def->getParent() == In || DT.dominates(Def, In)) { 121 LLVM_DEBUG(dbgs() << "dominated\n"); 122 NewPhi->addIncoming(Def, In); 123 } else { 124 LLVM_DEBUG(dbgs() << "not dominated\n"); 125 NewPhi->addIncoming(UndefValue::get(Def->getType()), In); 126 } 127 } 128 129 LLVM_DEBUG(dbgs() << "external users:"); 130 for (auto U : II.second) { 131 LLVM_DEBUG(dbgs() << " " << U->getName()); 132 U->replaceUsesOfWith(Def, NewPhi); 133 } 134 LLVM_DEBUG(dbgs() << "\n"); 135 } 136 } 137 138 static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) { 139 // To unify the loop exits, we need a list of the exiting blocks as 140 // well as exit blocks. The functions for locating these lists both 141 // traverse the entire loop body. It is more efficient to first 142 // locate the exiting blocks and then examine their successors to 143 // locate the exit blocks. 144 SetVector<BasicBlock *> ExitingBlocks; 145 SetVector<BasicBlock *> Exits; 146 147 // We need SetVectors, but the Loop API takes a vector, so we use a temporary. 148 SmallVector<BasicBlock *, 8> Temp; 149 L->getExitingBlocks(Temp); 150 for (auto BB : Temp) { 151 ExitingBlocks.insert(BB); 152 for (auto S : successors(BB)) { 153 auto SL = LI.getLoopFor(S); 154 // A successor is not an exit if it is directly or indirectly in the 155 // current loop. 156 if (SL == L || L->contains(SL)) 157 continue; 158 Exits.insert(S); 159 } 160 } 161 162 LLVM_DEBUG( 163 dbgs() << "Found exit blocks:"; 164 for (auto Exit : Exits) { 165 dbgs() << " " << Exit->getName(); 166 } 167 dbgs() << "\n"; 168 169 dbgs() << "Found exiting blocks:"; 170 for (auto EB : ExitingBlocks) { 171 dbgs() << " " << EB->getName(); 172 } 173 dbgs() << "\n";); 174 175 if (Exits.size() <= 1) { 176 LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n"); 177 return false; 178 } 179 180 SmallVector<BasicBlock *, 8> GuardBlocks; 181 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 182 auto LoopExitBlock = CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks, 183 Exits, "loop.exit"); 184 185 restoreSSA(DT, L, ExitingBlocks, LoopExitBlock); 186 187 #if defined(EXPENSIVE_CHECKS) 188 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 189 #else 190 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 191 #endif // EXPENSIVE_CHECKS 192 L->verifyLoop(); 193 194 // The guard blocks were created outside the loop, so they need to become 195 // members of the parent loop. 196 if (auto ParentLoop = L->getParentLoop()) { 197 for (auto G : GuardBlocks) { 198 ParentLoop->addBasicBlockToLoop(G, LI); 199 } 200 ParentLoop->verifyLoop(); 201 } 202 203 #if defined(EXPENSIVE_CHECKS) 204 LI.verify(DT); 205 #endif // EXPENSIVE_CHECKS 206 207 return true; 208 } 209 210 static bool runImpl(LoopInfo &LI, DominatorTree &DT) { 211 212 bool Changed = false; 213 auto Loops = LI.getLoopsInPreorder(); 214 for (auto L : Loops) { 215 LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: " 216 << LI.getLoopDepth(L->getHeader()) << ")\n"); 217 Changed |= unifyLoopExits(DT, LI, L); 218 } 219 return Changed; 220 } 221 222 bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) { 223 LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName() 224 << "\n"); 225 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 226 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 227 228 return runImpl(LI, DT); 229 } 230 231 namespace llvm { 232 233 PreservedAnalyses UnifyLoopExitsPass::run(Function &F, 234 FunctionAnalysisManager &AM) { 235 auto &LI = AM.getResult<LoopAnalysis>(F); 236 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 237 238 if (!runImpl(LI, DT)) 239 return PreservedAnalyses::all(); 240 PreservedAnalyses PA; 241 PA.preserve<LoopAnalysis>(); 242 PA.preserve<DominatorTreeAnalysis>(); 243 return PA; 244 } 245 } // namespace llvm 246