1 //===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // For each natural loop with multiple exit blocks, this pass creates a new 10 // block N such that all exiting blocks now branch to N, and then control flow 11 // is redistributed to all the original exit blocks. 12 // 13 // Limitation: This assumes that all terminators in the CFG are direct branches 14 // (the "br" instruction). The presence of any other control flow 15 // such as indirectbr, switch or callbr will cause an assert. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnifyLoopExits.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/Analysis/DomTreeUpdater.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/InitializePasses.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Transforms/Utils.h" 28 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 29 30 #define DEBUG_TYPE "unify-loop-exits" 31 32 using namespace llvm; 33 34 static cl::opt<unsigned> MaxBooleansInControlFlowHub( 35 "max-booleans-in-control-flow-hub", cl::init(32), cl::Hidden, 36 cl::desc("Set the maximum number of outgoing blocks for using a boolean " 37 "value to record the exiting block in CreateControlFlowHub.")); 38 39 namespace { 40 struct UnifyLoopExitsLegacyPass : public FunctionPass { 41 static char ID; 42 UnifyLoopExitsLegacyPass() : FunctionPass(ID) { 43 initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry()); 44 } 45 46 void getAnalysisUsage(AnalysisUsage &AU) const override { 47 AU.addRequiredID(LowerSwitchID); 48 AU.addRequired<LoopInfoWrapperPass>(); 49 AU.addRequired<DominatorTreeWrapperPass>(); 50 AU.addPreservedID(LowerSwitchID); 51 AU.addPreserved<LoopInfoWrapperPass>(); 52 AU.addPreserved<DominatorTreeWrapperPass>(); 53 } 54 55 bool runOnFunction(Function &F) override; 56 }; 57 } // namespace 58 59 char UnifyLoopExitsLegacyPass::ID = 0; 60 61 FunctionPass *llvm::createUnifyLoopExitsPass() { 62 return new UnifyLoopExitsLegacyPass(); 63 } 64 65 INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits", 66 "Fixup each natural loop to have a single exit block", 67 false /* Only looks at CFG */, false /* Analysis Pass */) 68 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass) 69 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 70 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 71 INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits", 72 "Fixup each natural loop to have a single exit block", 73 false /* Only looks at CFG */, false /* Analysis Pass */) 74 75 // The current transform introduces new control flow paths which may break the 76 // SSA requirement that every def must dominate all its uses. For example, 77 // consider a value D defined inside the loop that is used by some instruction 78 // U outside the loop. It follows that D dominates U, since the original 79 // program has valid SSA form. After merging the exits, all paths from D to U 80 // now flow through the unified exit block. In addition, there may be other 81 // paths that do not pass through D, but now reach the unified exit 82 // block. Thus, D no longer dominates U. 83 // 84 // Restore the dominance by creating a phi for each such D at the new unified 85 // loop exit. But when doing this, ignore any uses U that are in the new unified 86 // loop exit, since those were introduced specially when the block was created. 87 // 88 // The use of SSAUpdater seems like overkill for this operation. The location 89 // for creating the new PHI is well-known, and also the set of incoming blocks 90 // to the new PHI. 91 static void restoreSSA(const DominatorTree &DT, const Loop *L, 92 const SetVector<BasicBlock *> &Incoming, 93 BasicBlock *LoopExitBlock) { 94 using InstVector = SmallVector<Instruction *, 8>; 95 using IIMap = MapVector<Instruction *, InstVector>; 96 IIMap ExternalUsers; 97 for (auto *BB : L->blocks()) { 98 for (auto &I : *BB) { 99 for (auto &U : I.uses()) { 100 auto UserInst = cast<Instruction>(U.getUser()); 101 auto UserBlock = UserInst->getParent(); 102 if (UserBlock == LoopExitBlock) 103 continue; 104 if (L->contains(UserBlock)) 105 continue; 106 LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "(" 107 << BB->getName() << ")" 108 << ": " << UserInst->getName() << "(" 109 << UserBlock->getName() << ")" 110 << "\n"); 111 ExternalUsers[&I].push_back(UserInst); 112 } 113 } 114 } 115 116 for (const auto &II : ExternalUsers) { 117 // For each Def used outside the loop, create NewPhi in 118 // LoopExitBlock. NewPhi receives Def only along exiting blocks that 119 // dominate it, while the remaining values are undefined since those paths 120 // didn't exist in the original CFG. 121 auto Def = II.first; 122 LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n"); 123 auto NewPhi = 124 PHINode::Create(Def->getType(), Incoming.size(), 125 Def->getName() + ".moved", &LoopExitBlock->front()); 126 for (auto *In : Incoming) { 127 LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": "); 128 if (Def->getParent() == In || DT.dominates(Def, In)) { 129 LLVM_DEBUG(dbgs() << "dominated\n"); 130 NewPhi->addIncoming(Def, In); 131 } else { 132 LLVM_DEBUG(dbgs() << "not dominated\n"); 133 NewPhi->addIncoming(PoisonValue::get(Def->getType()), In); 134 } 135 } 136 137 LLVM_DEBUG(dbgs() << "external users:"); 138 for (auto *U : II.second) { 139 LLVM_DEBUG(dbgs() << " " << U->getName()); 140 U->replaceUsesOfWith(Def, NewPhi); 141 } 142 LLVM_DEBUG(dbgs() << "\n"); 143 } 144 } 145 146 static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) { 147 // To unify the loop exits, we need a list of the exiting blocks as 148 // well as exit blocks. The functions for locating these lists both 149 // traverse the entire loop body. It is more efficient to first 150 // locate the exiting blocks and then examine their successors to 151 // locate the exit blocks. 152 SetVector<BasicBlock *> ExitingBlocks; 153 SetVector<BasicBlock *> Exits; 154 155 // We need SetVectors, but the Loop API takes a vector, so we use a temporary. 156 SmallVector<BasicBlock *, 8> Temp; 157 L->getExitingBlocks(Temp); 158 for (auto *BB : Temp) { 159 ExitingBlocks.insert(BB); 160 for (auto *S : successors(BB)) { 161 auto SL = LI.getLoopFor(S); 162 // A successor is not an exit if it is directly or indirectly in the 163 // current loop. 164 if (SL == L || L->contains(SL)) 165 continue; 166 Exits.insert(S); 167 } 168 } 169 170 LLVM_DEBUG( 171 dbgs() << "Found exit blocks:"; 172 for (auto Exit : Exits) { 173 dbgs() << " " << Exit->getName(); 174 } 175 dbgs() << "\n"; 176 177 dbgs() << "Found exiting blocks:"; 178 for (auto EB : ExitingBlocks) { 179 dbgs() << " " << EB->getName(); 180 } 181 dbgs() << "\n";); 182 183 if (Exits.size() <= 1) { 184 LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n"); 185 return false; 186 } 187 188 SmallVector<BasicBlock *, 8> GuardBlocks; 189 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 190 auto LoopExitBlock = 191 CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks, Exits, "loop.exit", 192 MaxBooleansInControlFlowHub.getValue()); 193 194 restoreSSA(DT, L, ExitingBlocks, LoopExitBlock); 195 196 #if defined(EXPENSIVE_CHECKS) 197 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 198 #else 199 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 200 #endif // EXPENSIVE_CHECKS 201 L->verifyLoop(); 202 203 // The guard blocks were created outside the loop, so they need to become 204 // members of the parent loop. 205 if (auto ParentLoop = L->getParentLoop()) { 206 for (auto *G : GuardBlocks) { 207 ParentLoop->addBasicBlockToLoop(G, LI); 208 } 209 ParentLoop->verifyLoop(); 210 } 211 212 #if defined(EXPENSIVE_CHECKS) 213 LI.verify(DT); 214 #endif // EXPENSIVE_CHECKS 215 216 return true; 217 } 218 219 static bool runImpl(LoopInfo &LI, DominatorTree &DT) { 220 221 bool Changed = false; 222 auto Loops = LI.getLoopsInPreorder(); 223 for (auto *L : Loops) { 224 LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: " 225 << LI.getLoopDepth(L->getHeader()) << ")\n"); 226 Changed |= unifyLoopExits(DT, LI, L); 227 } 228 return Changed; 229 } 230 231 bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) { 232 LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName() 233 << "\n"); 234 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 235 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 236 237 return runImpl(LI, DT); 238 } 239 240 namespace llvm { 241 242 PreservedAnalyses UnifyLoopExitsPass::run(Function &F, 243 FunctionAnalysisManager &AM) { 244 auto &LI = AM.getResult<LoopAnalysis>(F); 245 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 246 247 if (!runImpl(LI, DT)) 248 return PreservedAnalyses::all(); 249 PreservedAnalyses PA; 250 PA.preserve<LoopAnalysis>(); 251 PA.preserve<DominatorTreeAnalysis>(); 252 return PA; 253 } 254 } // namespace llvm 255