xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/UnifyLoopExits.cpp (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1 //===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // For each natural loop with multiple exit blocks, this pass creates a new
10 // block N such that all exiting blocks now branch to N, and then control flow
11 // is redistributed to all the original exit blocks.
12 //
13 // Limitation: This assumes that all terminators in the CFG are direct branches
14 //             (the "br" instruction). The presence of any other control flow
15 //             such as indirectbr, switch or callbr will cause an assert.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnifyLoopExits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/InitializePasses.h"
24 #include "llvm/Transforms/Utils.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 
27 #define DEBUG_TYPE "unify-loop-exits"
28 
29 using namespace llvm;
30 
31 namespace {
32 struct UnifyLoopExitsLegacyPass : public FunctionPass {
33   static char ID;
34   UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
35     initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
36   }
37 
38   void getAnalysisUsage(AnalysisUsage &AU) const override {
39     AU.addRequiredID(LowerSwitchID);
40     AU.addRequired<LoopInfoWrapperPass>();
41     AU.addRequired<DominatorTreeWrapperPass>();
42     AU.addPreservedID(LowerSwitchID);
43     AU.addPreserved<LoopInfoWrapperPass>();
44     AU.addPreserved<DominatorTreeWrapperPass>();
45   }
46 
47   bool runOnFunction(Function &F) override;
48 };
49 } // namespace
50 
51 char UnifyLoopExitsLegacyPass::ID = 0;
52 
53 FunctionPass *llvm::createUnifyLoopExitsPass() {
54   return new UnifyLoopExitsLegacyPass();
55 }
56 
57 INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
58                       "Fixup each natural loop to have a single exit block",
59                       false /* Only looks at CFG */, false /* Analysis Pass */)
60 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
61 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
62 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
63 INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
64                     "Fixup each natural loop to have a single exit block",
65                     false /* Only looks at CFG */, false /* Analysis Pass */)
66 
67 // The current transform introduces new control flow paths which may break the
68 // SSA requirement that every def must dominate all its uses. For example,
69 // consider a value D defined inside the loop that is used by some instruction
70 // U outside the loop. It follows that D dominates U, since the original
71 // program has valid SSA form. After merging the exits, all paths from D to U
72 // now flow through the unified exit block. In addition, there may be other
73 // paths that do not pass through D, but now reach the unified exit
74 // block. Thus, D no longer dominates U.
75 //
76 // Restore the dominance by creating a phi for each such D at the new unified
77 // loop exit. But when doing this, ignore any uses U that are in the new unified
78 // loop exit, since those were introduced specially when the block was created.
79 //
80 // The use of SSAUpdater seems like overkill for this operation. The location
81 // for creating the new PHI is well-known, and also the set of incoming blocks
82 // to the new PHI.
83 static void restoreSSA(const DominatorTree &DT, const Loop *L,
84                        const SetVector<BasicBlock *> &Incoming,
85                        BasicBlock *LoopExitBlock) {
86   using InstVector = SmallVector<Instruction *, 8>;
87   using IIMap = MapVector<Instruction *, InstVector>;
88   IIMap ExternalUsers;
89   for (auto BB : L->blocks()) {
90     for (auto &I : *BB) {
91       for (auto &U : I.uses()) {
92         auto UserInst = cast<Instruction>(U.getUser());
93         auto UserBlock = UserInst->getParent();
94         if (UserBlock == LoopExitBlock)
95           continue;
96         if (L->contains(UserBlock))
97           continue;
98         LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
99                           << BB->getName() << ")"
100                           << ": " << UserInst->getName() << "("
101                           << UserBlock->getName() << ")"
102                           << "\n");
103         ExternalUsers[&I].push_back(UserInst);
104       }
105     }
106   }
107 
108   for (auto II : ExternalUsers) {
109     // For each Def used outside the loop, create NewPhi in
110     // LoopExitBlock. NewPhi receives Def only along exiting blocks that
111     // dominate it, while the remaining values are undefined since those paths
112     // didn't exist in the original CFG.
113     auto Def = II.first;
114     LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
115     auto NewPhi = PHINode::Create(Def->getType(), Incoming.size(),
116                                   Def->getName() + ".moved",
117                                   LoopExitBlock->getTerminator());
118     for (auto In : Incoming) {
119       LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
120       if (Def->getParent() == In || DT.dominates(Def, In)) {
121         LLVM_DEBUG(dbgs() << "dominated\n");
122         NewPhi->addIncoming(Def, In);
123       } else {
124         LLVM_DEBUG(dbgs() << "not dominated\n");
125         NewPhi->addIncoming(UndefValue::get(Def->getType()), In);
126       }
127     }
128 
129     LLVM_DEBUG(dbgs() << "external users:");
130     for (auto U : II.second) {
131       LLVM_DEBUG(dbgs() << " " << U->getName());
132       U->replaceUsesOfWith(Def, NewPhi);
133     }
134     LLVM_DEBUG(dbgs() << "\n");
135   }
136 }
137 
138 static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
139   // To unify the loop exits, we need a list of the exiting blocks as
140   // well as exit blocks. The functions for locating these lists both
141   // traverse the entire loop body. It is more efficient to first
142   // locate the exiting blocks and then examine their successors to
143   // locate the exit blocks.
144   SetVector<BasicBlock *> ExitingBlocks;
145   SetVector<BasicBlock *> Exits;
146 
147   // We need SetVectors, but the Loop API takes a vector, so we use a temporary.
148   SmallVector<BasicBlock *, 8> Temp;
149   L->getExitingBlocks(Temp);
150   for (auto BB : Temp) {
151     ExitingBlocks.insert(BB);
152     for (auto S : successors(BB)) {
153       auto SL = LI.getLoopFor(S);
154       // A successor is not an exit if it is directly or indirectly in the
155       // current loop.
156       if (SL == L || L->contains(SL))
157         continue;
158       Exits.insert(S);
159     }
160   }
161 
162   LLVM_DEBUG(
163       dbgs() << "Found exit blocks:";
164       for (auto Exit : Exits) {
165         dbgs() << " " << Exit->getName();
166       }
167       dbgs() << "\n";
168 
169       dbgs() << "Found exiting blocks:";
170       for (auto EB : ExitingBlocks) {
171         dbgs() << " " << EB->getName();
172       }
173       dbgs() << "\n";);
174 
175   if (Exits.size() <= 1) {
176     LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n");
177     return false;
178   }
179 
180   SmallVector<BasicBlock *, 8> GuardBlocks;
181   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
182   auto LoopExitBlock = CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks,
183                                             Exits, "loop.exit");
184 
185   restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
186 
187 #if defined(EXPENSIVE_CHECKS)
188   assert(DT.verify(DominatorTree::VerificationLevel::Full));
189 #else
190   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
191 #endif // EXPENSIVE_CHECKS
192   L->verifyLoop();
193 
194   // The guard blocks were created outside the loop, so they need to become
195   // members of the parent loop.
196   if (auto ParentLoop = L->getParentLoop()) {
197     for (auto G : GuardBlocks) {
198       ParentLoop->addBasicBlockToLoop(G, LI);
199     }
200     ParentLoop->verifyLoop();
201   }
202 
203 #if defined(EXPENSIVE_CHECKS)
204   LI.verify(DT);
205 #endif // EXPENSIVE_CHECKS
206 
207   return true;
208 }
209 
210 static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
211 
212   bool Changed = false;
213   auto Loops = LI.getLoopsInPreorder();
214   for (auto L : Loops) {
215     LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: "
216                       << LI.getLoopDepth(L->getHeader()) << ")\n");
217     Changed |= unifyLoopExits(DT, LI, L);
218   }
219   return Changed;
220 }
221 
222 bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
223   LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
224                     << "\n");
225   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
226   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
227 
228   return runImpl(LI, DT);
229 }
230 
231 namespace llvm {
232 
233 PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
234                                           FunctionAnalysisManager &AM) {
235   auto &LI = AM.getResult<LoopAnalysis>(F);
236   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
237 
238   if (!runImpl(LI, DT))
239     return PreservedAnalyses::all();
240   PreservedAnalyses PA;
241   PA.preserve<LoopAnalysis>();
242   PA.preserve<DominatorTreeAnalysis>();
243   return PA;
244 }
245 } // namespace llvm
246