xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Transforms/Utils/BuildLibCalls.h"
39 #include "llvm/Transforms/Utils/SizeOpts.h"
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 static cl::opt<bool>
45     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
46                          cl::init(false),
47                          cl::desc("Enable unsafe double to float "
48                                   "shrinking for math lib calls"));
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
54 static bool ignoreCallingConv(LibFunc Func) {
55   return Func == LibFunc_abs || Func == LibFunc_labs ||
56          Func == LibFunc_llabs || Func == LibFunc_strlen;
57 }
58 
59 /// Return true if it is only used in equality comparisons with With.
60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
61   for (User *U : V->users()) {
62     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
63       if (IC->isEquality() && IC->getOperand(1) == With)
64         continue;
65     // Unknown instruction.
66     return false;
67   }
68   return true;
69 }
70 
71 static bool callHasFloatingPointArgument(const CallInst *CI) {
72   return any_of(CI->operands(), [](const Use &OI) {
73     return OI->getType()->isFloatingPointTy();
74   });
75 }
76 
77 static bool callHasFP128Argument(const CallInst *CI) {
78   return any_of(CI->operands(), [](const Use &OI) {
79     return OI->getType()->isFP128Ty();
80   });
81 }
82 
83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
84   if (Base < 2 || Base > 36)
85     // handle special zero base
86     if (Base != 0)
87       return nullptr;
88 
89   char *End;
90   std::string nptr = Str.str();
91   errno = 0;
92   long long int Result = strtoll(nptr.c_str(), &End, Base);
93   if (errno)
94     return nullptr;
95 
96   // if we assume all possible target locales are ASCII supersets,
97   // then if strtoll successfully parses a number on the host,
98   // it will also successfully parse the same way on the target
99   if (*End != '\0')
100     return nullptr;
101 
102   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
103     return nullptr;
104 
105   return ConstantInt::get(CI->getType(), Result);
106 }
107 
108 static bool isOnlyUsedInComparisonWithZero(Value *V) {
109   for (User *U : V->users()) {
110     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
111       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
112         if (C->isNullValue())
113           continue;
114     // Unknown instruction.
115     return false;
116   }
117   return true;
118 }
119 
120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
121                                  const DataLayout &DL) {
122   if (!isOnlyUsedInComparisonWithZero(CI))
123     return false;
124 
125   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
126     return false;
127 
128   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
129     return false;
130 
131   return true;
132 }
133 
134 static void annotateDereferenceableBytes(CallInst *CI,
135                                          ArrayRef<unsigned> ArgNos,
136                                          uint64_t DereferenceableBytes) {
137   const Function *F = CI->getCaller();
138   if (!F)
139     return;
140   for (unsigned ArgNo : ArgNos) {
141     uint64_t DerefBytes = DereferenceableBytes;
142     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
143     if (!llvm::NullPointerIsDefined(F, AS) ||
144         CI->paramHasAttr(ArgNo, Attribute::NonNull))
145       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
146                             DereferenceableBytes);
147 
148     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
149       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
150       if (!llvm::NullPointerIsDefined(F, AS) ||
151           CI->paramHasAttr(ArgNo, Attribute::NonNull))
152         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
153       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
154                                   CI->getContext(), DerefBytes));
155     }
156   }
157 }
158 
159 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
160                                          ArrayRef<unsigned> ArgNos) {
161   Function *F = CI->getCaller();
162   if (!F)
163     return;
164 
165   for (unsigned ArgNo : ArgNos) {
166     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
167       CI->addParamAttr(ArgNo, Attribute::NoUndef);
168 
169     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
170       continue;
171     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
172     if (llvm::NullPointerIsDefined(F, AS))
173       continue;
174 
175     CI->addParamAttr(ArgNo, Attribute::NonNull);
176     annotateDereferenceableBytes(CI, ArgNo, 1);
177   }
178 }
179 
180 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
181                                Value *Size, const DataLayout &DL) {
182   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
183     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
184     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
185   } else if (isKnownNonZero(Size, DL)) {
186     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
187     const APInt *X, *Y;
188     uint64_t DerefMin = 1;
189     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
190       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
191       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
192     }
193   }
194 }
195 
196 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
197 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
198 // in this function when New is created to replace Old. Callers should take
199 // care to check Old.isMustTailCall() if they aren't replacing Old directly
200 // with New.
201 static Value *copyFlags(const CallInst &Old, Value *New) {
202   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
203   assert(!Old.isNoTailCall() && "do not copy notail call flags");
204   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
205     NewCI->setTailCallKind(Old.getTailCallKind());
206   return New;
207 }
208 
209 //===----------------------------------------------------------------------===//
210 // String and Memory Library Call Optimizations
211 //===----------------------------------------------------------------------===//
212 
213 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
214   // Extract some information from the instruction
215   Value *Dst = CI->getArgOperand(0);
216   Value *Src = CI->getArgOperand(1);
217   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
218 
219   // See if we can get the length of the input string.
220   uint64_t Len = GetStringLength(Src);
221   if (Len)
222     annotateDereferenceableBytes(CI, 1, Len);
223   else
224     return nullptr;
225   --Len; // Unbias length.
226 
227   // Handle the simple, do-nothing case: strcat(x, "") -> x
228   if (Len == 0)
229     return Dst;
230 
231   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
232 }
233 
234 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
235                                            IRBuilderBase &B) {
236   // We need to find the end of the destination string.  That's where the
237   // memory is to be moved to. We just generate a call to strlen.
238   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
239   if (!DstLen)
240     return nullptr;
241 
242   // Now that we have the destination's length, we must index into the
243   // destination's pointer to get the actual memcpy destination (end of
244   // the string .. we're concatenating).
245   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
246 
247   // We have enough information to now generate the memcpy call to do the
248   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
249   B.CreateMemCpy(
250       CpyDst, Align(1), Src, Align(1),
251       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
252   return Dst;
253 }
254 
255 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
256   // Extract some information from the instruction.
257   Value *Dst = CI->getArgOperand(0);
258   Value *Src = CI->getArgOperand(1);
259   Value *Size = CI->getArgOperand(2);
260   uint64_t Len;
261   annotateNonNullNoUndefBasedOnAccess(CI, 0);
262   if (isKnownNonZero(Size, DL))
263     annotateNonNullNoUndefBasedOnAccess(CI, 1);
264 
265   // We don't do anything if length is not constant.
266   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
267   if (LengthArg) {
268     Len = LengthArg->getZExtValue();
269     // strncat(x, c, 0) -> x
270     if (!Len)
271       return Dst;
272   } else {
273     return nullptr;
274   }
275 
276   // See if we can get the length of the input string.
277   uint64_t SrcLen = GetStringLength(Src);
278   if (SrcLen) {
279     annotateDereferenceableBytes(CI, 1, SrcLen);
280     --SrcLen; // Unbias length.
281   } else {
282     return nullptr;
283   }
284 
285   // strncat(x, "", c) -> x
286   if (SrcLen == 0)
287     return Dst;
288 
289   // We don't optimize this case.
290   if (Len < SrcLen)
291     return nullptr;
292 
293   // strncat(x, s, c) -> strcat(x, s)
294   // s is constant so the strcat can be optimized further.
295   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
296 }
297 
298 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
299   Function *Callee = CI->getCalledFunction();
300   FunctionType *FT = Callee->getFunctionType();
301   Value *SrcStr = CI->getArgOperand(0);
302   annotateNonNullNoUndefBasedOnAccess(CI, 0);
303 
304   // If the second operand is non-constant, see if we can compute the length
305   // of the input string and turn this into memchr.
306   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
307   if (!CharC) {
308     uint64_t Len = GetStringLength(SrcStr);
309     if (Len)
310       annotateDereferenceableBytes(CI, 0, Len);
311     else
312       return nullptr;
313     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
314       return nullptr;
315 
316     return copyFlags(
317         *CI,
318         emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
319                    ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B,
320                    DL, TLI));
321   }
322 
323   // Otherwise, the character is a constant, see if the first argument is
324   // a string literal.  If so, we can constant fold.
325   StringRef Str;
326   if (!getConstantStringInfo(SrcStr, Str)) {
327     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
328       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
329         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
330     return nullptr;
331   }
332 
333   // Compute the offset, make sure to handle the case when we're searching for
334   // zero (a weird way to spell strlen).
335   size_t I = (0xFF & CharC->getSExtValue()) == 0
336                  ? Str.size()
337                  : Str.find(CharC->getSExtValue());
338   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
339     return Constant::getNullValue(CI->getType());
340 
341   // strchr(s+n,c)  -> gep(s+n+i,c)
342   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
343 }
344 
345 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
346   Value *SrcStr = CI->getArgOperand(0);
347   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
348   annotateNonNullNoUndefBasedOnAccess(CI, 0);
349 
350   // Cannot fold anything if we're not looking for a constant.
351   if (!CharC)
352     return nullptr;
353 
354   StringRef Str;
355   if (!getConstantStringInfo(SrcStr, Str)) {
356     // strrchr(s, 0) -> strchr(s, 0)
357     if (CharC->isZero())
358       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
359     return nullptr;
360   }
361 
362   // Compute the offset.
363   size_t I = (0xFF & CharC->getSExtValue()) == 0
364                  ? Str.size()
365                  : Str.rfind(CharC->getSExtValue());
366   if (I == StringRef::npos) // Didn't find the char. Return null.
367     return Constant::getNullValue(CI->getType());
368 
369   // strrchr(s+n,c) -> gep(s+n+i,c)
370   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
371 }
372 
373 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
374   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
375   if (Str1P == Str2P) // strcmp(x,x)  -> 0
376     return ConstantInt::get(CI->getType(), 0);
377 
378   StringRef Str1, Str2;
379   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
380   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
381 
382   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
383   if (HasStr1 && HasStr2)
384     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
385 
386   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
387     return B.CreateNeg(B.CreateZExt(
388         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
389 
390   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
391     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
392                         CI->getType());
393 
394   // strcmp(P, "x") -> memcmp(P, "x", 2)
395   uint64_t Len1 = GetStringLength(Str1P);
396   if (Len1)
397     annotateDereferenceableBytes(CI, 0, Len1);
398   uint64_t Len2 = GetStringLength(Str2P);
399   if (Len2)
400     annotateDereferenceableBytes(CI, 1, Len2);
401 
402   if (Len1 && Len2) {
403     return copyFlags(
404         *CI, emitMemCmp(Str1P, Str2P,
405                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
406                                          std::min(Len1, Len2)),
407                         B, DL, TLI));
408   }
409 
410   // strcmp to memcmp
411   if (!HasStr1 && HasStr2) {
412     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
413       return copyFlags(
414           *CI,
415           emitMemCmp(Str1P, Str2P,
416                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
417                      B, DL, TLI));
418   } else if (HasStr1 && !HasStr2) {
419     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
420       return copyFlags(
421           *CI,
422           emitMemCmp(Str1P, Str2P,
423                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
424                      B, DL, TLI));
425   }
426 
427   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
428   return nullptr;
429 }
430 
431 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
432   Value *Str1P = CI->getArgOperand(0);
433   Value *Str2P = CI->getArgOperand(1);
434   Value *Size = CI->getArgOperand(2);
435   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
436     return ConstantInt::get(CI->getType(), 0);
437 
438   if (isKnownNonZero(Size, DL))
439     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
440   // Get the length argument if it is constant.
441   uint64_t Length;
442   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
443     Length = LengthArg->getZExtValue();
444   else
445     return nullptr;
446 
447   if (Length == 0) // strncmp(x,y,0)   -> 0
448     return ConstantInt::get(CI->getType(), 0);
449 
450   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
451     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
452 
453   StringRef Str1, Str2;
454   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
455   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
456 
457   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
458   if (HasStr1 && HasStr2) {
459     StringRef SubStr1 = Str1.substr(0, Length);
460     StringRef SubStr2 = Str2.substr(0, Length);
461     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
462   }
463 
464   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
465     return B.CreateNeg(B.CreateZExt(
466         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
467 
468   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
469     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
470                         CI->getType());
471 
472   uint64_t Len1 = GetStringLength(Str1P);
473   if (Len1)
474     annotateDereferenceableBytes(CI, 0, Len1);
475   uint64_t Len2 = GetStringLength(Str2P);
476   if (Len2)
477     annotateDereferenceableBytes(CI, 1, Len2);
478 
479   // strncmp to memcmp
480   if (!HasStr1 && HasStr2) {
481     Len2 = std::min(Len2, Length);
482     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
483       return copyFlags(
484           *CI,
485           emitMemCmp(Str1P, Str2P,
486                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
487                      B, DL, TLI));
488   } else if (HasStr1 && !HasStr2) {
489     Len1 = std::min(Len1, Length);
490     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
491       return copyFlags(
492           *CI,
493           emitMemCmp(Str1P, Str2P,
494                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
495                      B, DL, TLI));
496   }
497 
498   return nullptr;
499 }
500 
501 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
502   Value *Src = CI->getArgOperand(0);
503   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
504   uint64_t SrcLen = GetStringLength(Src);
505   if (SrcLen && Size) {
506     annotateDereferenceableBytes(CI, 0, SrcLen);
507     if (SrcLen <= Size->getZExtValue() + 1)
508       return copyFlags(*CI, emitStrDup(Src, B, TLI));
509   }
510 
511   return nullptr;
512 }
513 
514 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
515   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
516   if (Dst == Src) // strcpy(x,x)  -> x
517     return Src;
518 
519   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
520   // See if we can get the length of the input string.
521   uint64_t Len = GetStringLength(Src);
522   if (Len)
523     annotateDereferenceableBytes(CI, 1, Len);
524   else
525     return nullptr;
526 
527   // We have enough information to now generate the memcpy call to do the
528   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
529   CallInst *NewCI =
530       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
531                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
532   NewCI->setAttributes(CI->getAttributes());
533   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
534   copyFlags(*CI, NewCI);
535   return Dst;
536 }
537 
538 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
539   Function *Callee = CI->getCalledFunction();
540   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
541 
542   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
543   if (CI->use_empty())
544     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
545 
546   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
547     Value *StrLen = emitStrLen(Src, B, DL, TLI);
548     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
549   }
550 
551   // See if we can get the length of the input string.
552   uint64_t Len = GetStringLength(Src);
553   if (Len)
554     annotateDereferenceableBytes(CI, 1, Len);
555   else
556     return nullptr;
557 
558   Type *PT = Callee->getFunctionType()->getParamType(0);
559   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
560   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
561                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
562 
563   // We have enough information to now generate the memcpy call to do the
564   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
565   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
566   NewCI->setAttributes(CI->getAttributes());
567   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
568   copyFlags(*CI, NewCI);
569   return DstEnd;
570 }
571 
572 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
573   Function *Callee = CI->getCalledFunction();
574   Value *Dst = CI->getArgOperand(0);
575   Value *Src = CI->getArgOperand(1);
576   Value *Size = CI->getArgOperand(2);
577   annotateNonNullNoUndefBasedOnAccess(CI, 0);
578   if (isKnownNonZero(Size, DL))
579     annotateNonNullNoUndefBasedOnAccess(CI, 1);
580 
581   uint64_t Len;
582   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
583     Len = LengthArg->getZExtValue();
584   else
585     return nullptr;
586 
587   // strncpy(x, y, 0) -> x
588   if (Len == 0)
589     return Dst;
590 
591   // See if we can get the length of the input string.
592   uint64_t SrcLen = GetStringLength(Src);
593   if (SrcLen) {
594     annotateDereferenceableBytes(CI, 1, SrcLen);
595     --SrcLen; // Unbias length.
596   } else {
597     return nullptr;
598   }
599 
600   if (SrcLen == 0) {
601     // strncpy(x, "", y) -> memset(x, '\0', y)
602     Align MemSetAlign =
603         CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
604     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
605     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
606     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
607         CI->getContext(), 0, ArgAttrs));
608     copyFlags(*CI, NewCI);
609     return Dst;
610   }
611 
612   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
613   if (Len > SrcLen + 1) {
614     if (Len <= 128) {
615       StringRef Str;
616       if (!getConstantStringInfo(Src, Str))
617         return nullptr;
618       std::string SrcStr = Str.str();
619       SrcStr.resize(Len, '\0');
620       Src = B.CreateGlobalString(SrcStr, "str");
621     } else {
622       return nullptr;
623     }
624   }
625 
626   Type *PT = Callee->getFunctionType()->getParamType(0);
627   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
628   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
629                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
630   NewCI->setAttributes(CI->getAttributes());
631   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
632   copyFlags(*CI, NewCI);
633   return Dst;
634 }
635 
636 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
637                                                unsigned CharSize) {
638   Value *Src = CI->getArgOperand(0);
639 
640   // Constant folding: strlen("xyz") -> 3
641   if (uint64_t Len = GetStringLength(Src, CharSize))
642     return ConstantInt::get(CI->getType(), Len - 1);
643 
644   // If s is a constant pointer pointing to a string literal, we can fold
645   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
646   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
647   // We only try to simplify strlen when the pointer s points to an array
648   // of i8. Otherwise, we would need to scale the offset x before doing the
649   // subtraction. This will make the optimization more complex, and it's not
650   // very useful because calling strlen for a pointer of other types is
651   // very uncommon.
652   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
653     if (!isGEPBasedOnPointerToString(GEP, CharSize))
654       return nullptr;
655 
656     ConstantDataArraySlice Slice;
657     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
658       uint64_t NullTermIdx;
659       if (Slice.Array == nullptr) {
660         NullTermIdx = 0;
661       } else {
662         NullTermIdx = ~((uint64_t)0);
663         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
664           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
665             NullTermIdx = I;
666             break;
667           }
668         }
669         // If the string does not have '\0', leave it to strlen to compute
670         // its length.
671         if (NullTermIdx == ~((uint64_t)0))
672           return nullptr;
673       }
674 
675       Value *Offset = GEP->getOperand(2);
676       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
677       Known.Zero.flipAllBits();
678       uint64_t ArrSize =
679              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
680 
681       // KnownZero's bits are flipped, so zeros in KnownZero now represent
682       // bits known to be zeros in Offset, and ones in KnowZero represent
683       // bits unknown in Offset. Therefore, Offset is known to be in range
684       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
685       // unsigned-less-than NullTermIdx.
686       //
687       // If Offset is not provably in the range [0, NullTermIdx], we can still
688       // optimize if we can prove that the program has undefined behavior when
689       // Offset is outside that range. That is the case when GEP->getOperand(0)
690       // is a pointer to an object whose memory extent is NullTermIdx+1.
691       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
692           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
693            NullTermIdx == ArrSize - 1)) {
694         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
695         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
696                            Offset);
697       }
698     }
699   }
700 
701   // strlen(x?"foo":"bars") --> x ? 3 : 4
702   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
703     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
704     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
705     if (LenTrue && LenFalse) {
706       ORE.emit([&]() {
707         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
708                << "folded strlen(select) to select of constants";
709       });
710       return B.CreateSelect(SI->getCondition(),
711                             ConstantInt::get(CI->getType(), LenTrue - 1),
712                             ConstantInt::get(CI->getType(), LenFalse - 1));
713     }
714   }
715 
716   // strlen(x) != 0 --> *x != 0
717   // strlen(x) == 0 --> *x == 0
718   if (isOnlyUsedInZeroEqualityComparison(CI))
719     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
720                         CI->getType());
721 
722   return nullptr;
723 }
724 
725 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
726   if (Value *V = optimizeStringLength(CI, B, 8))
727     return V;
728   annotateNonNullNoUndefBasedOnAccess(CI, 0);
729   return nullptr;
730 }
731 
732 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
733   Module &M = *CI->getModule();
734   unsigned WCharSize = TLI->getWCharSize(M) * 8;
735   // We cannot perform this optimization without wchar_size metadata.
736   if (WCharSize == 0)
737     return nullptr;
738 
739   return optimizeStringLength(CI, B, WCharSize);
740 }
741 
742 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
743   StringRef S1, S2;
744   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
745   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
746 
747   // strpbrk(s, "") -> nullptr
748   // strpbrk("", s) -> nullptr
749   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
750     return Constant::getNullValue(CI->getType());
751 
752   // Constant folding.
753   if (HasS1 && HasS2) {
754     size_t I = S1.find_first_of(S2);
755     if (I == StringRef::npos) // No match.
756       return Constant::getNullValue(CI->getType());
757 
758     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
759                        "strpbrk");
760   }
761 
762   // strpbrk(s, "a") -> strchr(s, 'a')
763   if (HasS2 && S2.size() == 1)
764     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
765 
766   return nullptr;
767 }
768 
769 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
770   Value *EndPtr = CI->getArgOperand(1);
771   if (isa<ConstantPointerNull>(EndPtr)) {
772     // With a null EndPtr, this function won't capture the main argument.
773     // It would be readonly too, except that it still may write to errno.
774     CI->addParamAttr(0, Attribute::NoCapture);
775   }
776 
777   return nullptr;
778 }
779 
780 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
781   StringRef S1, S2;
782   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
783   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
784 
785   // strspn(s, "") -> 0
786   // strspn("", s) -> 0
787   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
788     return Constant::getNullValue(CI->getType());
789 
790   // Constant folding.
791   if (HasS1 && HasS2) {
792     size_t Pos = S1.find_first_not_of(S2);
793     if (Pos == StringRef::npos)
794       Pos = S1.size();
795     return ConstantInt::get(CI->getType(), Pos);
796   }
797 
798   return nullptr;
799 }
800 
801 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
802   StringRef S1, S2;
803   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
804   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
805 
806   // strcspn("", s) -> 0
807   if (HasS1 && S1.empty())
808     return Constant::getNullValue(CI->getType());
809 
810   // Constant folding.
811   if (HasS1 && HasS2) {
812     size_t Pos = S1.find_first_of(S2);
813     if (Pos == StringRef::npos)
814       Pos = S1.size();
815     return ConstantInt::get(CI->getType(), Pos);
816   }
817 
818   // strcspn(s, "") -> strlen(s)
819   if (HasS2 && S2.empty())
820     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
821 
822   return nullptr;
823 }
824 
825 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
826   // fold strstr(x, x) -> x.
827   if (CI->getArgOperand(0) == CI->getArgOperand(1))
828     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
829 
830   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
831   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
832     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
833     if (!StrLen)
834       return nullptr;
835     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
836                                  StrLen, B, DL, TLI);
837     if (!StrNCmp)
838       return nullptr;
839     for (User *U : llvm::make_early_inc_range(CI->users())) {
840       ICmpInst *Old = cast<ICmpInst>(U);
841       Value *Cmp =
842           B.CreateICmp(Old->getPredicate(), StrNCmp,
843                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
844       replaceAllUsesWith(Old, Cmp);
845     }
846     return CI;
847   }
848 
849   // See if either input string is a constant string.
850   StringRef SearchStr, ToFindStr;
851   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
852   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
853 
854   // fold strstr(x, "") -> x.
855   if (HasStr2 && ToFindStr.empty())
856     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
857 
858   // If both strings are known, constant fold it.
859   if (HasStr1 && HasStr2) {
860     size_t Offset = SearchStr.find(ToFindStr);
861 
862     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
863       return Constant::getNullValue(CI->getType());
864 
865     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
866     Value *Result = castToCStr(CI->getArgOperand(0), B);
867     Result =
868         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
869     return B.CreateBitCast(Result, CI->getType());
870   }
871 
872   // fold strstr(x, "y") -> strchr(x, 'y').
873   if (HasStr2 && ToFindStr.size() == 1) {
874     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
875     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
876   }
877 
878   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
879   return nullptr;
880 }
881 
882 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
883   if (isKnownNonZero(CI->getOperand(2), DL))
884     annotateNonNullNoUndefBasedOnAccess(CI, 0);
885   return nullptr;
886 }
887 
888 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
889   Value *SrcStr = CI->getArgOperand(0);
890   Value *Size = CI->getArgOperand(2);
891   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
892   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
893   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
894 
895   // memchr(x, y, 0) -> null
896   if (LenC) {
897     if (LenC->isZero())
898       return Constant::getNullValue(CI->getType());
899   } else {
900     // From now on we need at least constant length and string.
901     return nullptr;
902   }
903 
904   StringRef Str;
905   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
906     return nullptr;
907 
908   // Truncate the string to LenC. If Str is smaller than LenC we will still only
909   // scan the string, as reading past the end of it is undefined and we can just
910   // return null if we don't find the char.
911   Str = Str.substr(0, LenC->getZExtValue());
912 
913   // If the char is variable but the input str and length are not we can turn
914   // this memchr call into a simple bit field test. Of course this only works
915   // when the return value is only checked against null.
916   //
917   // It would be really nice to reuse switch lowering here but we can't change
918   // the CFG at this point.
919   //
920   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
921   // != 0
922   //   after bounds check.
923   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
924     unsigned char Max =
925         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
926                           reinterpret_cast<const unsigned char *>(Str.end()));
927 
928     // Make sure the bit field we're about to create fits in a register on the
929     // target.
930     // FIXME: On a 64 bit architecture this prevents us from using the
931     // interesting range of alpha ascii chars. We could do better by emitting
932     // two bitfields or shifting the range by 64 if no lower chars are used.
933     if (!DL.fitsInLegalInteger(Max + 1))
934       return nullptr;
935 
936     // For the bit field use a power-of-2 type with at least 8 bits to avoid
937     // creating unnecessary illegal types.
938     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
939 
940     // Now build the bit field.
941     APInt Bitfield(Width, 0);
942     for (char C : Str)
943       Bitfield.setBit((unsigned char)C);
944     Value *BitfieldC = B.getInt(Bitfield);
945 
946     // Adjust width of "C" to the bitfield width, then mask off the high bits.
947     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
948     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
949 
950     // First check that the bit field access is within bounds.
951     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
952                                  "memchr.bounds");
953 
954     // Create code that checks if the given bit is set in the field.
955     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
956     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
957 
958     // Finally merge both checks and cast to pointer type. The inttoptr
959     // implicitly zexts the i1 to intptr type.
960     return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
961                             CI->getType());
962   }
963 
964   // Check if all arguments are constants.  If so, we can constant fold.
965   if (!CharC)
966     return nullptr;
967 
968   // Compute the offset.
969   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
970   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
971     return Constant::getNullValue(CI->getType());
972 
973   // memchr(s+n,c,l) -> gep(s+n+i,c)
974   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
975 }
976 
977 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
978                                          uint64_t Len, IRBuilderBase &B,
979                                          const DataLayout &DL) {
980   if (Len == 0) // memcmp(s1,s2,0) -> 0
981     return Constant::getNullValue(CI->getType());
982 
983   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
984   if (Len == 1) {
985     Value *LHSV =
986         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
987                      CI->getType(), "lhsv");
988     Value *RHSV =
989         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
990                      CI->getType(), "rhsv");
991     return B.CreateSub(LHSV, RHSV, "chardiff");
992   }
993 
994   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
995   // TODO: The case where both inputs are constants does not need to be limited
996   // to legal integers or equality comparison. See block below this.
997   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
998     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
999     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1000 
1001     // First, see if we can fold either argument to a constant.
1002     Value *LHSV = nullptr;
1003     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1004       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1005       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1006     }
1007     Value *RHSV = nullptr;
1008     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1009       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1010       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1011     }
1012 
1013     // Don't generate unaligned loads. If either source is constant data,
1014     // alignment doesn't matter for that source because there is no load.
1015     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1016         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1017       if (!LHSV) {
1018         Type *LHSPtrTy =
1019             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1020         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1021       }
1022       if (!RHSV) {
1023         Type *RHSPtrTy =
1024             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1025         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1026       }
1027       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1028     }
1029   }
1030 
1031   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1032   // TODO: This is limited to i8 arrays.
1033   StringRef LHSStr, RHSStr;
1034   if (getConstantStringInfo(LHS, LHSStr) &&
1035       getConstantStringInfo(RHS, RHSStr)) {
1036     // Make sure we're not reading out-of-bounds memory.
1037     if (Len > LHSStr.size() || Len > RHSStr.size())
1038       return nullptr;
1039     // Fold the memcmp and normalize the result.  This way we get consistent
1040     // results across multiple platforms.
1041     uint64_t Ret = 0;
1042     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1043     if (Cmp < 0)
1044       Ret = -1;
1045     else if (Cmp > 0)
1046       Ret = 1;
1047     return ConstantInt::get(CI->getType(), Ret);
1048   }
1049 
1050   return nullptr;
1051 }
1052 
1053 // Most simplifications for memcmp also apply to bcmp.
1054 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1055                                                    IRBuilderBase &B) {
1056   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1057   Value *Size = CI->getArgOperand(2);
1058 
1059   if (LHS == RHS) // memcmp(s,s,x) -> 0
1060     return Constant::getNullValue(CI->getType());
1061 
1062   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1063   // Handle constant lengths.
1064   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1065   if (!LenC)
1066     return nullptr;
1067 
1068   // memcmp(d,s,0) -> 0
1069   if (LenC->getZExtValue() == 0)
1070     return Constant::getNullValue(CI->getType());
1071 
1072   if (Value *Res =
1073           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1074     return Res;
1075   return nullptr;
1076 }
1077 
1078 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1079   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1080     return V;
1081 
1082   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1083   // bcmp can be more efficient than memcmp because it only has to know that
1084   // there is a difference, not how different one is to the other.
1085   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1086     Value *LHS = CI->getArgOperand(0);
1087     Value *RHS = CI->getArgOperand(1);
1088     Value *Size = CI->getArgOperand(2);
1089     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1090   }
1091 
1092   return nullptr;
1093 }
1094 
1095 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1096   return optimizeMemCmpBCmpCommon(CI, B);
1097 }
1098 
1099 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1100   Value *Size = CI->getArgOperand(2);
1101   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1102   if (isa<IntrinsicInst>(CI))
1103     return nullptr;
1104 
1105   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1106   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1107                                    CI->getArgOperand(1), Align(1), Size);
1108   NewCI->setAttributes(CI->getAttributes());
1109   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1110   copyFlags(*CI, NewCI);
1111   return CI->getArgOperand(0);
1112 }
1113 
1114 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1115   Value *Dst = CI->getArgOperand(0);
1116   Value *Src = CI->getArgOperand(1);
1117   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1118   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1119   StringRef SrcStr;
1120   if (CI->use_empty() && Dst == Src)
1121     return Dst;
1122   // memccpy(d, s, c, 0) -> nullptr
1123   if (N) {
1124     if (N->isNullValue())
1125       return Constant::getNullValue(CI->getType());
1126     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1127                                /*TrimAtNul=*/false) ||
1128         !StopChar)
1129       return nullptr;
1130   } else {
1131     return nullptr;
1132   }
1133 
1134   // Wrap arg 'c' of type int to char
1135   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1136   if (Pos == StringRef::npos) {
1137     if (N->getZExtValue() <= SrcStr.size()) {
1138       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1139                                     CI->getArgOperand(3)));
1140       return Constant::getNullValue(CI->getType());
1141     }
1142     return nullptr;
1143   }
1144 
1145   Value *NewN =
1146       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1147   // memccpy -> llvm.memcpy
1148   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1149   return Pos + 1 <= N->getZExtValue()
1150              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1151              : Constant::getNullValue(CI->getType());
1152 }
1153 
1154 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1155   Value *Dst = CI->getArgOperand(0);
1156   Value *N = CI->getArgOperand(2);
1157   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1158   CallInst *NewCI =
1159       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1160   // Propagate attributes, but memcpy has no return value, so make sure that
1161   // any return attributes are compliant.
1162   // TODO: Attach return value attributes to the 1st operand to preserve them?
1163   NewCI->setAttributes(CI->getAttributes());
1164   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1165   copyFlags(*CI, NewCI);
1166   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1167 }
1168 
1169 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1170   Value *Size = CI->getArgOperand(2);
1171   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1172   if (isa<IntrinsicInst>(CI))
1173     return nullptr;
1174 
1175   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1176   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1177                                     CI->getArgOperand(1), Align(1), Size);
1178   NewCI->setAttributes(CI->getAttributes());
1179   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1180   copyFlags(*CI, NewCI);
1181   return CI->getArgOperand(0);
1182 }
1183 
1184 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1185   Value *Size = CI->getArgOperand(2);
1186   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1187   if (isa<IntrinsicInst>(CI))
1188     return nullptr;
1189 
1190   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1191   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1192   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1193   NewCI->setAttributes(CI->getAttributes());
1194   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1195   copyFlags(*CI, NewCI);
1196   return CI->getArgOperand(0);
1197 }
1198 
1199 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1200   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1201     return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1202 
1203   return nullptr;
1204 }
1205 
1206 //===----------------------------------------------------------------------===//
1207 // Math Library Optimizations
1208 //===----------------------------------------------------------------------===//
1209 
1210 // Replace a libcall \p CI with a call to intrinsic \p IID
1211 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1212                                Intrinsic::ID IID) {
1213   // Propagate fast-math flags from the existing call to the new call.
1214   IRBuilderBase::FastMathFlagGuard Guard(B);
1215   B.setFastMathFlags(CI->getFastMathFlags());
1216 
1217   Module *M = CI->getModule();
1218   Value *V = CI->getArgOperand(0);
1219   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1220   CallInst *NewCall = B.CreateCall(F, V);
1221   NewCall->takeName(CI);
1222   return copyFlags(*CI, NewCall);
1223 }
1224 
1225 /// Return a variant of Val with float type.
1226 /// Currently this works in two cases: If Val is an FPExtension of a float
1227 /// value to something bigger, simply return the operand.
1228 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1229 /// loss of precision do so.
1230 static Value *valueHasFloatPrecision(Value *Val) {
1231   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1232     Value *Op = Cast->getOperand(0);
1233     if (Op->getType()->isFloatTy())
1234       return Op;
1235   }
1236   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1237     APFloat F = Const->getValueAPF();
1238     bool losesInfo;
1239     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1240                     &losesInfo);
1241     if (!losesInfo)
1242       return ConstantFP::get(Const->getContext(), F);
1243   }
1244   return nullptr;
1245 }
1246 
1247 /// Shrink double -> float functions.
1248 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1249                                bool isBinary, bool isPrecise = false) {
1250   Function *CalleeFn = CI->getCalledFunction();
1251   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1252     return nullptr;
1253 
1254   // If not all the uses of the function are converted to float, then bail out.
1255   // This matters if the precision of the result is more important than the
1256   // precision of the arguments.
1257   if (isPrecise)
1258     for (User *U : CI->users()) {
1259       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1260       if (!Cast || !Cast->getType()->isFloatTy())
1261         return nullptr;
1262     }
1263 
1264   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1265   Value *V[2];
1266   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1267   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1268   if (!V[0] || (isBinary && !V[1]))
1269     return nullptr;
1270 
1271   // If call isn't an intrinsic, check that it isn't within a function with the
1272   // same name as the float version of this call, otherwise the result is an
1273   // infinite loop.  For example, from MinGW-w64:
1274   //
1275   // float expf(float val) { return (float) exp((double) val); }
1276   StringRef CalleeName = CalleeFn->getName();
1277   bool IsIntrinsic = CalleeFn->isIntrinsic();
1278   if (!IsIntrinsic) {
1279     StringRef CallerName = CI->getFunction()->getName();
1280     if (!CallerName.empty() && CallerName.back() == 'f' &&
1281         CallerName.size() == (CalleeName.size() + 1) &&
1282         CallerName.startswith(CalleeName))
1283       return nullptr;
1284   }
1285 
1286   // Propagate the math semantics from the current function to the new function.
1287   IRBuilderBase::FastMathFlagGuard Guard(B);
1288   B.setFastMathFlags(CI->getFastMathFlags());
1289 
1290   // g((double) float) -> (double) gf(float)
1291   Value *R;
1292   if (IsIntrinsic) {
1293     Module *M = CI->getModule();
1294     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1295     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1296     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1297   } else {
1298     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1299     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1300                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1301   }
1302   return B.CreateFPExt(R, B.getDoubleTy());
1303 }
1304 
1305 /// Shrink double -> float for unary functions.
1306 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1307                                     bool isPrecise = false) {
1308   return optimizeDoubleFP(CI, B, false, isPrecise);
1309 }
1310 
1311 /// Shrink double -> float for binary functions.
1312 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1313                                      bool isPrecise = false) {
1314   return optimizeDoubleFP(CI, B, true, isPrecise);
1315 }
1316 
1317 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1318 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1319   if (!CI->isFast())
1320     return nullptr;
1321 
1322   // Propagate fast-math flags from the existing call to new instructions.
1323   IRBuilderBase::FastMathFlagGuard Guard(B);
1324   B.setFastMathFlags(CI->getFastMathFlags());
1325 
1326   Value *Real, *Imag;
1327   if (CI->arg_size() == 1) {
1328     Value *Op = CI->getArgOperand(0);
1329     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1330     Real = B.CreateExtractValue(Op, 0, "real");
1331     Imag = B.CreateExtractValue(Op, 1, "imag");
1332   } else {
1333     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1334     Real = CI->getArgOperand(0);
1335     Imag = CI->getArgOperand(1);
1336   }
1337 
1338   Value *RealReal = B.CreateFMul(Real, Real);
1339   Value *ImagImag = B.CreateFMul(Imag, Imag);
1340 
1341   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1342                                               CI->getType());
1343   return copyFlags(
1344       *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
1345 }
1346 
1347 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1348                                       IRBuilderBase &B) {
1349   if (!isa<FPMathOperator>(Call))
1350     return nullptr;
1351 
1352   IRBuilderBase::FastMathFlagGuard Guard(B);
1353   B.setFastMathFlags(Call->getFastMathFlags());
1354 
1355   // TODO: Can this be shared to also handle LLVM intrinsics?
1356   Value *X;
1357   switch (Func) {
1358   case LibFunc_sin:
1359   case LibFunc_sinf:
1360   case LibFunc_sinl:
1361   case LibFunc_tan:
1362   case LibFunc_tanf:
1363   case LibFunc_tanl:
1364     // sin(-X) --> -sin(X)
1365     // tan(-X) --> -tan(X)
1366     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1367       return B.CreateFNeg(
1368           copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
1369     break;
1370   case LibFunc_cos:
1371   case LibFunc_cosf:
1372   case LibFunc_cosl:
1373     // cos(-X) --> cos(X)
1374     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1375       return copyFlags(*Call,
1376                        B.CreateCall(Call->getCalledFunction(), X, "cos"));
1377     break;
1378   default:
1379     break;
1380   }
1381   return nullptr;
1382 }
1383 
1384 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1385   // Multiplications calculated using Addition Chains.
1386   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1387 
1388   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1389 
1390   if (InnerChain[Exp])
1391     return InnerChain[Exp];
1392 
1393   static const unsigned AddChain[33][2] = {
1394       {0, 0}, // Unused.
1395       {0, 0}, // Unused (base case = pow1).
1396       {1, 1}, // Unused (pre-computed).
1397       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1398       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1399       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1400       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1401       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1402   };
1403 
1404   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1405                                  getPow(InnerChain, AddChain[Exp][1], B));
1406   return InnerChain[Exp];
1407 }
1408 
1409 // Return a properly extended integer (DstWidth bits wide) if the operation is
1410 // an itofp.
1411 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1412   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1413     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1414     // Make sure that the exponent fits inside an "int" of size DstWidth,
1415     // thus avoiding any range issues that FP has not.
1416     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1417     if (BitWidth < DstWidth ||
1418         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1419       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1420                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1421   }
1422 
1423   return nullptr;
1424 }
1425 
1426 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1427 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1428 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1429 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1430   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1431   AttributeList Attrs; // Attributes are only meaningful on the original call
1432   Module *Mod = Pow->getModule();
1433   Type *Ty = Pow->getType();
1434   bool Ignored;
1435 
1436   // Evaluate special cases related to a nested function as the base.
1437 
1438   // pow(exp(x), y) -> exp(x * y)
1439   // pow(exp2(x), y) -> exp2(x * y)
1440   // If exp{,2}() is used only once, it is better to fold two transcendental
1441   // math functions into one.  If used again, exp{,2}() would still have to be
1442   // called with the original argument, then keep both original transcendental
1443   // functions.  However, this transformation is only safe with fully relaxed
1444   // math semantics, since, besides rounding differences, it changes overflow
1445   // and underflow behavior quite dramatically.  For example:
1446   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1447   // Whereas:
1448   //   exp(1000 * 0.001) = exp(1)
1449   // TODO: Loosen the requirement for fully relaxed math semantics.
1450   // TODO: Handle exp10() when more targets have it available.
1451   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1452   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1453     LibFunc LibFn;
1454 
1455     Function *CalleeFn = BaseFn->getCalledFunction();
1456     if (CalleeFn &&
1457         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1458       StringRef ExpName;
1459       Intrinsic::ID ID;
1460       Value *ExpFn;
1461       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1462 
1463       switch (LibFn) {
1464       default:
1465         return nullptr;
1466       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1467         ExpName = TLI->getName(LibFunc_exp);
1468         ID = Intrinsic::exp;
1469         LibFnFloat = LibFunc_expf;
1470         LibFnDouble = LibFunc_exp;
1471         LibFnLongDouble = LibFunc_expl;
1472         break;
1473       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1474         ExpName = TLI->getName(LibFunc_exp2);
1475         ID = Intrinsic::exp2;
1476         LibFnFloat = LibFunc_exp2f;
1477         LibFnDouble = LibFunc_exp2;
1478         LibFnLongDouble = LibFunc_exp2l;
1479         break;
1480       }
1481 
1482       // Create new exp{,2}() with the product as its argument.
1483       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1484       ExpFn = BaseFn->doesNotAccessMemory()
1485               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1486                              FMul, ExpName)
1487               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1488                                      LibFnLongDouble, B,
1489                                      BaseFn->getAttributes());
1490 
1491       // Since the new exp{,2}() is different from the original one, dead code
1492       // elimination cannot be trusted to remove it, since it may have side
1493       // effects (e.g., errno).  When the only consumer for the original
1494       // exp{,2}() is pow(), then it has to be explicitly erased.
1495       substituteInParent(BaseFn, ExpFn);
1496       return ExpFn;
1497     }
1498   }
1499 
1500   // Evaluate special cases related to a constant base.
1501 
1502   const APFloat *BaseF;
1503   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1504     return nullptr;
1505 
1506   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1507   if (match(Base, m_SpecificFP(2.0)) &&
1508       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1509       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1510     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1511       return copyFlags(*Pow,
1512                        emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
1513                                              TLI, LibFunc_ldexp, LibFunc_ldexpf,
1514                                              LibFunc_ldexpl, B, Attrs));
1515   }
1516 
1517   // pow(2.0 ** n, x) -> exp2(n * x)
1518   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1519     APFloat BaseR = APFloat(1.0);
1520     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1521     BaseR = BaseR / *BaseF;
1522     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1523     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1524     APSInt NI(64, false);
1525     if ((IsInteger || IsReciprocal) &&
1526         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1527             APFloat::opOK &&
1528         NI > 1 && NI.isPowerOf2()) {
1529       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1530       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1531       if (Pow->doesNotAccessMemory())
1532         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1533                                                 Mod, Intrinsic::exp2, Ty),
1534                                             FMul, "exp2"));
1535       else
1536         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1537                                                     LibFunc_exp2f,
1538                                                     LibFunc_exp2l, B, Attrs));
1539     }
1540   }
1541 
1542   // pow(10.0, x) -> exp10(x)
1543   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1544   if (match(Base, m_SpecificFP(10.0)) &&
1545       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1546     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
1547                                                 LibFunc_exp10f, LibFunc_exp10l,
1548                                                 B, Attrs));
1549 
1550   // pow(x, y) -> exp2(log2(x) * y)
1551   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1552       !BaseF->isNegative()) {
1553     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1554     // Luckily optimizePow has already handled the x == 1 case.
1555     assert(!match(Base, m_FPOne()) &&
1556            "pow(1.0, y) should have been simplified earlier!");
1557 
1558     Value *Log = nullptr;
1559     if (Ty->isFloatTy())
1560       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1561     else if (Ty->isDoubleTy())
1562       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1563 
1564     if (Log) {
1565       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1566       if (Pow->doesNotAccessMemory())
1567         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1568                                                 Mod, Intrinsic::exp2, Ty),
1569                                             FMul, "exp2"));
1570       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1571         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1572                                                     LibFunc_exp2f,
1573                                                     LibFunc_exp2l, B, Attrs));
1574     }
1575   }
1576 
1577   return nullptr;
1578 }
1579 
1580 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1581                           Module *M, IRBuilderBase &B,
1582                           const TargetLibraryInfo *TLI) {
1583   // If errno is never set, then use the intrinsic for sqrt().
1584   if (NoErrno) {
1585     Function *SqrtFn =
1586         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1587     return B.CreateCall(SqrtFn, V, "sqrt");
1588   }
1589 
1590   // Otherwise, use the libcall for sqrt().
1591   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1592     // TODO: We also should check that the target can in fact lower the sqrt()
1593     // libcall. We currently have no way to ask this question, so we ask if
1594     // the target has a sqrt() libcall, which is not exactly the same.
1595     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1596                                 LibFunc_sqrtl, B, Attrs);
1597 
1598   return nullptr;
1599 }
1600 
1601 /// Use square root in place of pow(x, +/-0.5).
1602 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1603   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1604   AttributeList Attrs; // Attributes are only meaningful on the original call
1605   Module *Mod = Pow->getModule();
1606   Type *Ty = Pow->getType();
1607 
1608   const APFloat *ExpoF;
1609   if (!match(Expo, m_APFloat(ExpoF)) ||
1610       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1611     return nullptr;
1612 
1613   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1614   // so that requires fast-math-flags (afn or reassoc).
1615   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1616     return nullptr;
1617 
1618   // If we have a pow() library call (accesses memory) and we can't guarantee
1619   // that the base is not an infinity, give up:
1620   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1621   // errno), but sqrt(-Inf) is required by various standards to set errno.
1622   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1623       !isKnownNeverInfinity(Base, TLI))
1624     return nullptr;
1625 
1626   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1627   if (!Sqrt)
1628     return nullptr;
1629 
1630   // Handle signed zero base by expanding to fabs(sqrt(x)).
1631   if (!Pow->hasNoSignedZeros()) {
1632     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1633     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1634   }
1635 
1636   Sqrt = copyFlags(*Pow, Sqrt);
1637 
1638   // Handle non finite base by expanding to
1639   // (x == -infinity ? +infinity : sqrt(x)).
1640   if (!Pow->hasNoInfs()) {
1641     Value *PosInf = ConstantFP::getInfinity(Ty),
1642           *NegInf = ConstantFP::getInfinity(Ty, true);
1643     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1644     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1645   }
1646 
1647   // If the exponent is negative, then get the reciprocal.
1648   if (ExpoF->isNegative())
1649     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1650 
1651   return Sqrt;
1652 }
1653 
1654 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1655                                            IRBuilderBase &B) {
1656   Value *Args[] = {Base, Expo};
1657   Type *Types[] = {Base->getType(), Expo->getType()};
1658   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
1659   return B.CreateCall(F, Args);
1660 }
1661 
1662 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1663   Value *Base = Pow->getArgOperand(0);
1664   Value *Expo = Pow->getArgOperand(1);
1665   Function *Callee = Pow->getCalledFunction();
1666   StringRef Name = Callee->getName();
1667   Type *Ty = Pow->getType();
1668   Module *M = Pow->getModule();
1669   bool AllowApprox = Pow->hasApproxFunc();
1670   bool Ignored;
1671 
1672   // Propagate the math semantics from the call to any created instructions.
1673   IRBuilderBase::FastMathFlagGuard Guard(B);
1674   B.setFastMathFlags(Pow->getFastMathFlags());
1675   // Evaluate special cases related to the base.
1676 
1677   // pow(1.0, x) -> 1.0
1678   if (match(Base, m_FPOne()))
1679     return Base;
1680 
1681   if (Value *Exp = replacePowWithExp(Pow, B))
1682     return Exp;
1683 
1684   // Evaluate special cases related to the exponent.
1685 
1686   // pow(x, -1.0) -> 1.0 / x
1687   if (match(Expo, m_SpecificFP(-1.0)))
1688     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1689 
1690   // pow(x, +/-0.0) -> 1.0
1691   if (match(Expo, m_AnyZeroFP()))
1692     return ConstantFP::get(Ty, 1.0);
1693 
1694   // pow(x, 1.0) -> x
1695   if (match(Expo, m_FPOne()))
1696     return Base;
1697 
1698   // pow(x, 2.0) -> x * x
1699   if (match(Expo, m_SpecificFP(2.0)))
1700     return B.CreateFMul(Base, Base, "square");
1701 
1702   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1703     return Sqrt;
1704 
1705   // pow(x, n) -> x * x * x * ...
1706   const APFloat *ExpoF;
1707   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1708       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1709     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1710     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1711     // additional fmul.
1712     // TODO: This whole transformation should be backend specific (e.g. some
1713     //       backends might prefer libcalls or the limit for the exponent might
1714     //       be different) and it should also consider optimizing for size.
1715     APFloat LimF(ExpoF->getSemantics(), 33),
1716             ExpoA(abs(*ExpoF));
1717     if (ExpoA < LimF) {
1718       // This transformation applies to integer or integer+0.5 exponents only.
1719       // For integer+0.5, we create a sqrt(Base) call.
1720       Value *Sqrt = nullptr;
1721       if (!ExpoA.isInteger()) {
1722         APFloat Expo2 = ExpoA;
1723         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1724         // is no floating point exception and the result is an integer, then
1725         // ExpoA == integer + 0.5
1726         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1727           return nullptr;
1728 
1729         if (!Expo2.isInteger())
1730           return nullptr;
1731 
1732         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1733                            Pow->doesNotAccessMemory(), M, B, TLI);
1734         if (!Sqrt)
1735           return nullptr;
1736       }
1737 
1738       // We will memoize intermediate products of the Addition Chain.
1739       Value *InnerChain[33] = {nullptr};
1740       InnerChain[1] = Base;
1741       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1742 
1743       // We cannot readily convert a non-double type (like float) to a double.
1744       // So we first convert it to something which could be converted to double.
1745       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1746       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1747 
1748       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1749       if (Sqrt)
1750         FMul = B.CreateFMul(FMul, Sqrt);
1751 
1752       // If the exponent is negative, then get the reciprocal.
1753       if (ExpoF->isNegative())
1754         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1755 
1756       return FMul;
1757     }
1758 
1759     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
1760     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1761     if (ExpoF->isInteger() &&
1762         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1763             APFloat::opOK) {
1764       return copyFlags(
1765           *Pow,
1766           createPowWithIntegerExponent(
1767               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
1768               M, B));
1769     }
1770   }
1771 
1772   // powf(x, itofp(y)) -> powi(x, y)
1773   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1774     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1775       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
1776   }
1777 
1778   // Shrink pow() to powf() if the arguments are single precision,
1779   // unless the result is expected to be double precision.
1780   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1781       hasFloatVersion(Name)) {
1782     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true))
1783       return Shrunk;
1784   }
1785 
1786   return nullptr;
1787 }
1788 
1789 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1790   Function *Callee = CI->getCalledFunction();
1791   AttributeList Attrs; // Attributes are only meaningful on the original call
1792   StringRef Name = Callee->getName();
1793   Value *Ret = nullptr;
1794   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1795       hasFloatVersion(Name))
1796     Ret = optimizeUnaryDoubleFP(CI, B, true);
1797 
1798   Type *Ty = CI->getType();
1799   Value *Op = CI->getArgOperand(0);
1800 
1801   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
1802   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
1803   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1804       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1805     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
1806       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1807                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1808                                    B, Attrs);
1809   }
1810 
1811   return Ret;
1812 }
1813 
1814 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1815   // If we can shrink the call to a float function rather than a double
1816   // function, do that first.
1817   Function *Callee = CI->getCalledFunction();
1818   StringRef Name = Callee->getName();
1819   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1820     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1821       return Ret;
1822 
1823   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1824   // the intrinsics for improved optimization (for example, vectorization).
1825   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1826   // From the C standard draft WG14/N1256:
1827   // "Ideally, fmax would be sensitive to the sign of zero, for example
1828   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1829   // might be impractical."
1830   IRBuilderBase::FastMathFlagGuard Guard(B);
1831   FastMathFlags FMF = CI->getFastMathFlags();
1832   FMF.setNoSignedZeros();
1833   B.setFastMathFlags(FMF);
1834 
1835   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1836                                                            : Intrinsic::maxnum;
1837   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1838   return copyFlags(
1839       *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
1840 }
1841 
1842 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1843   Function *LogFn = Log->getCalledFunction();
1844   AttributeList Attrs; // Attributes are only meaningful on the original call
1845   StringRef LogNm = LogFn->getName();
1846   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1847   Module *Mod = Log->getModule();
1848   Type *Ty = Log->getType();
1849   Value *Ret = nullptr;
1850 
1851   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1852     Ret = optimizeUnaryDoubleFP(Log, B, true);
1853 
1854   // The earlier call must also be 'fast' in order to do these transforms.
1855   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1856   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1857     return Ret;
1858 
1859   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1860 
1861   // This is only applicable to log(), log2(), log10().
1862   if (TLI->getLibFunc(LogNm, LogLb))
1863     switch (LogLb) {
1864     case LibFunc_logf:
1865       LogID = Intrinsic::log;
1866       ExpLb = LibFunc_expf;
1867       Exp2Lb = LibFunc_exp2f;
1868       Exp10Lb = LibFunc_exp10f;
1869       PowLb = LibFunc_powf;
1870       break;
1871     case LibFunc_log:
1872       LogID = Intrinsic::log;
1873       ExpLb = LibFunc_exp;
1874       Exp2Lb = LibFunc_exp2;
1875       Exp10Lb = LibFunc_exp10;
1876       PowLb = LibFunc_pow;
1877       break;
1878     case LibFunc_logl:
1879       LogID = Intrinsic::log;
1880       ExpLb = LibFunc_expl;
1881       Exp2Lb = LibFunc_exp2l;
1882       Exp10Lb = LibFunc_exp10l;
1883       PowLb = LibFunc_powl;
1884       break;
1885     case LibFunc_log2f:
1886       LogID = Intrinsic::log2;
1887       ExpLb = LibFunc_expf;
1888       Exp2Lb = LibFunc_exp2f;
1889       Exp10Lb = LibFunc_exp10f;
1890       PowLb = LibFunc_powf;
1891       break;
1892     case LibFunc_log2:
1893       LogID = Intrinsic::log2;
1894       ExpLb = LibFunc_exp;
1895       Exp2Lb = LibFunc_exp2;
1896       Exp10Lb = LibFunc_exp10;
1897       PowLb = LibFunc_pow;
1898       break;
1899     case LibFunc_log2l:
1900       LogID = Intrinsic::log2;
1901       ExpLb = LibFunc_expl;
1902       Exp2Lb = LibFunc_exp2l;
1903       Exp10Lb = LibFunc_exp10l;
1904       PowLb = LibFunc_powl;
1905       break;
1906     case LibFunc_log10f:
1907       LogID = Intrinsic::log10;
1908       ExpLb = LibFunc_expf;
1909       Exp2Lb = LibFunc_exp2f;
1910       Exp10Lb = LibFunc_exp10f;
1911       PowLb = LibFunc_powf;
1912       break;
1913     case LibFunc_log10:
1914       LogID = Intrinsic::log10;
1915       ExpLb = LibFunc_exp;
1916       Exp2Lb = LibFunc_exp2;
1917       Exp10Lb = LibFunc_exp10;
1918       PowLb = LibFunc_pow;
1919       break;
1920     case LibFunc_log10l:
1921       LogID = Intrinsic::log10;
1922       ExpLb = LibFunc_expl;
1923       Exp2Lb = LibFunc_exp2l;
1924       Exp10Lb = LibFunc_exp10l;
1925       PowLb = LibFunc_powl;
1926       break;
1927     default:
1928       return Ret;
1929     }
1930   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1931            LogID == Intrinsic::log10) {
1932     if (Ty->getScalarType()->isFloatTy()) {
1933       ExpLb = LibFunc_expf;
1934       Exp2Lb = LibFunc_exp2f;
1935       Exp10Lb = LibFunc_exp10f;
1936       PowLb = LibFunc_powf;
1937     } else if (Ty->getScalarType()->isDoubleTy()) {
1938       ExpLb = LibFunc_exp;
1939       Exp2Lb = LibFunc_exp2;
1940       Exp10Lb = LibFunc_exp10;
1941       PowLb = LibFunc_pow;
1942     } else
1943       return Ret;
1944   } else
1945     return Ret;
1946 
1947   IRBuilderBase::FastMathFlagGuard Guard(B);
1948   B.setFastMathFlags(FastMathFlags::getFast());
1949 
1950   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1951   LibFunc ArgLb = NotLibFunc;
1952   TLI->getLibFunc(*Arg, ArgLb);
1953 
1954   // log(pow(x,y)) -> y*log(x)
1955   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1956     Value *LogX =
1957         Log->doesNotAccessMemory()
1958             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1959                            Arg->getOperand(0), "log")
1960             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1961     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1962     // Since pow() may have side effects, e.g. errno,
1963     // dead code elimination may not be trusted to remove it.
1964     substituteInParent(Arg, MulY);
1965     return MulY;
1966   }
1967 
1968   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1969   // TODO: There is no exp10() intrinsic yet.
1970   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1971            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1972     Constant *Eul;
1973     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1974       // FIXME: Add more precise value of e for long double.
1975       Eul = ConstantFP::get(Log->getType(), numbers::e);
1976     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1977       Eul = ConstantFP::get(Log->getType(), 2.0);
1978     else
1979       Eul = ConstantFP::get(Log->getType(), 10.0);
1980     Value *LogE = Log->doesNotAccessMemory()
1981                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1982                                      Eul, "log")
1983                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1984     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1985     // Since exp() may have side effects, e.g. errno,
1986     // dead code elimination may not be trusted to remove it.
1987     substituteInParent(Arg, MulY);
1988     return MulY;
1989   }
1990 
1991   return Ret;
1992 }
1993 
1994 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
1995   Function *Callee = CI->getCalledFunction();
1996   Value *Ret = nullptr;
1997   // TODO: Once we have a way (other than checking for the existince of the
1998   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1999   // condition below.
2000   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2001                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
2002     Ret = optimizeUnaryDoubleFP(CI, B, true);
2003 
2004   if (!CI->isFast())
2005     return Ret;
2006 
2007   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2008   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2009     return Ret;
2010 
2011   // We're looking for a repeated factor in a multiplication tree,
2012   // so we can do this fold: sqrt(x * x) -> fabs(x);
2013   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2014   Value *Op0 = I->getOperand(0);
2015   Value *Op1 = I->getOperand(1);
2016   Value *RepeatOp = nullptr;
2017   Value *OtherOp = nullptr;
2018   if (Op0 == Op1) {
2019     // Simple match: the operands of the multiply are identical.
2020     RepeatOp = Op0;
2021   } else {
2022     // Look for a more complicated pattern: one of the operands is itself
2023     // a multiply, so search for a common factor in that multiply.
2024     // Note: We don't bother looking any deeper than this first level or for
2025     // variations of this pattern because instcombine's visitFMUL and/or the
2026     // reassociation pass should give us this form.
2027     Value *OtherMul0, *OtherMul1;
2028     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2029       // Pattern: sqrt((x * y) * z)
2030       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2031         // Matched: sqrt((x * x) * z)
2032         RepeatOp = OtherMul0;
2033         OtherOp = Op1;
2034       }
2035     }
2036   }
2037   if (!RepeatOp)
2038     return Ret;
2039 
2040   // Fast math flags for any created instructions should match the sqrt
2041   // and multiply.
2042   IRBuilderBase::FastMathFlagGuard Guard(B);
2043   B.setFastMathFlags(I->getFastMathFlags());
2044 
2045   // If we found a repeated factor, hoist it out of the square root and
2046   // replace it with the fabs of that factor.
2047   Module *M = Callee->getParent();
2048   Type *ArgType = I->getType();
2049   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2050   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2051   if (OtherOp) {
2052     // If we found a non-repeated factor, we still need to get its square
2053     // root. We then multiply that by the value that was simplified out
2054     // of the square root calculation.
2055     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2056     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2057     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2058   }
2059   return copyFlags(*CI, FabsCall);
2060 }
2061 
2062 // TODO: Generalize to handle any trig function and its inverse.
2063 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2064   Function *Callee = CI->getCalledFunction();
2065   Value *Ret = nullptr;
2066   StringRef Name = Callee->getName();
2067   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2068     Ret = optimizeUnaryDoubleFP(CI, B, true);
2069 
2070   Value *Op1 = CI->getArgOperand(0);
2071   auto *OpC = dyn_cast<CallInst>(Op1);
2072   if (!OpC)
2073     return Ret;
2074 
2075   // Both calls must be 'fast' in order to remove them.
2076   if (!CI->isFast() || !OpC->isFast())
2077     return Ret;
2078 
2079   // tan(atan(x)) -> x
2080   // tanf(atanf(x)) -> x
2081   // tanl(atanl(x)) -> x
2082   LibFunc Func;
2083   Function *F = OpC->getCalledFunction();
2084   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2085       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2086        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2087        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2088     Ret = OpC->getArgOperand(0);
2089   return Ret;
2090 }
2091 
2092 static bool isTrigLibCall(CallInst *CI) {
2093   // We can only hope to do anything useful if we can ignore things like errno
2094   // and floating-point exceptions.
2095   // We already checked the prototype.
2096   return CI->hasFnAttr(Attribute::NoUnwind) &&
2097          CI->hasFnAttr(Attribute::ReadNone);
2098 }
2099 
2100 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2101                              bool UseFloat, Value *&Sin, Value *&Cos,
2102                              Value *&SinCos) {
2103   Type *ArgTy = Arg->getType();
2104   Type *ResTy;
2105   StringRef Name;
2106 
2107   Triple T(OrigCallee->getParent()->getTargetTriple());
2108   if (UseFloat) {
2109     Name = "__sincospif_stret";
2110 
2111     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2112     // x86_64 can't use {float, float} since that would be returned in both
2113     // xmm0 and xmm1, which isn't what a real struct would do.
2114     ResTy = T.getArch() == Triple::x86_64
2115                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2116                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2117   } else {
2118     Name = "__sincospi_stret";
2119     ResTy = StructType::get(ArgTy, ArgTy);
2120   }
2121 
2122   Module *M = OrigCallee->getParent();
2123   FunctionCallee Callee =
2124       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2125 
2126   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2127     // If the argument is an instruction, it must dominate all uses so put our
2128     // sincos call there.
2129     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2130   } else {
2131     // Otherwise (e.g. for a constant) the beginning of the function is as
2132     // good a place as any.
2133     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2134     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2135   }
2136 
2137   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2138 
2139   if (SinCos->getType()->isStructTy()) {
2140     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2141     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2142   } else {
2143     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2144                                  "sinpi");
2145     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2146                                  "cospi");
2147   }
2148 }
2149 
2150 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2151   // Make sure the prototype is as expected, otherwise the rest of the
2152   // function is probably invalid and likely to abort.
2153   if (!isTrigLibCall(CI))
2154     return nullptr;
2155 
2156   Value *Arg = CI->getArgOperand(0);
2157   SmallVector<CallInst *, 1> SinCalls;
2158   SmallVector<CallInst *, 1> CosCalls;
2159   SmallVector<CallInst *, 1> SinCosCalls;
2160 
2161   bool IsFloat = Arg->getType()->isFloatTy();
2162 
2163   // Look for all compatible sinpi, cospi and sincospi calls with the same
2164   // argument. If there are enough (in some sense) we can make the
2165   // substitution.
2166   Function *F = CI->getFunction();
2167   for (User *U : Arg->users())
2168     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2169 
2170   // It's only worthwhile if both sinpi and cospi are actually used.
2171   if (SinCalls.empty() || CosCalls.empty())
2172     return nullptr;
2173 
2174   Value *Sin, *Cos, *SinCos;
2175   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2176 
2177   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2178                                  Value *Res) {
2179     for (CallInst *C : Calls)
2180       replaceAllUsesWith(C, Res);
2181   };
2182 
2183   replaceTrigInsts(SinCalls, Sin);
2184   replaceTrigInsts(CosCalls, Cos);
2185   replaceTrigInsts(SinCosCalls, SinCos);
2186 
2187   return nullptr;
2188 }
2189 
2190 void LibCallSimplifier::classifyArgUse(
2191     Value *Val, Function *F, bool IsFloat,
2192     SmallVectorImpl<CallInst *> &SinCalls,
2193     SmallVectorImpl<CallInst *> &CosCalls,
2194     SmallVectorImpl<CallInst *> &SinCosCalls) {
2195   CallInst *CI = dyn_cast<CallInst>(Val);
2196 
2197   if (!CI || CI->use_empty())
2198     return;
2199 
2200   // Don't consider calls in other functions.
2201   if (CI->getFunction() != F)
2202     return;
2203 
2204   Function *Callee = CI->getCalledFunction();
2205   LibFunc Func;
2206   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2207       !isTrigLibCall(CI))
2208     return;
2209 
2210   if (IsFloat) {
2211     if (Func == LibFunc_sinpif)
2212       SinCalls.push_back(CI);
2213     else if (Func == LibFunc_cospif)
2214       CosCalls.push_back(CI);
2215     else if (Func == LibFunc_sincospif_stret)
2216       SinCosCalls.push_back(CI);
2217   } else {
2218     if (Func == LibFunc_sinpi)
2219       SinCalls.push_back(CI);
2220     else if (Func == LibFunc_cospi)
2221       CosCalls.push_back(CI);
2222     else if (Func == LibFunc_sincospi_stret)
2223       SinCosCalls.push_back(CI);
2224   }
2225 }
2226 
2227 //===----------------------------------------------------------------------===//
2228 // Integer Library Call Optimizations
2229 //===----------------------------------------------------------------------===//
2230 
2231 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2232   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2233   Value *Op = CI->getArgOperand(0);
2234   Type *ArgType = Op->getType();
2235   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2236                                           Intrinsic::cttz, ArgType);
2237   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2238   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2239   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2240 
2241   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2242   return B.CreateSelect(Cond, V, B.getInt32(0));
2243 }
2244 
2245 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2246   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2247   Value *Op = CI->getArgOperand(0);
2248   Type *ArgType = Op->getType();
2249   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2250                                           Intrinsic::ctlz, ArgType);
2251   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2252   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2253                   V);
2254   return B.CreateIntCast(V, CI->getType(), false);
2255 }
2256 
2257 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2258   // abs(x) -> x <s 0 ? -x : x
2259   // The negation has 'nsw' because abs of INT_MIN is undefined.
2260   Value *X = CI->getArgOperand(0);
2261   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2262   Value *NegX = B.CreateNSWNeg(X, "neg");
2263   return B.CreateSelect(IsNeg, NegX, X);
2264 }
2265 
2266 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2267   // isdigit(c) -> (c-'0') <u 10
2268   Value *Op = CI->getArgOperand(0);
2269   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2270   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2271   return B.CreateZExt(Op, CI->getType());
2272 }
2273 
2274 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2275   // isascii(c) -> c <u 128
2276   Value *Op = CI->getArgOperand(0);
2277   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2278   return B.CreateZExt(Op, CI->getType());
2279 }
2280 
2281 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2282   // toascii(c) -> c & 0x7f
2283   return B.CreateAnd(CI->getArgOperand(0),
2284                      ConstantInt::get(CI->getType(), 0x7F));
2285 }
2286 
2287 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2288   StringRef Str;
2289   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2290     return nullptr;
2291 
2292   return convertStrToNumber(CI, Str, 10);
2293 }
2294 
2295 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2296   StringRef Str;
2297   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2298     return nullptr;
2299 
2300   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2301     return nullptr;
2302 
2303   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2304     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2305   }
2306 
2307   return nullptr;
2308 }
2309 
2310 //===----------------------------------------------------------------------===//
2311 // Formatting and IO Library Call Optimizations
2312 //===----------------------------------------------------------------------===//
2313 
2314 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2315 
2316 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2317                                                  int StreamArg) {
2318   Function *Callee = CI->getCalledFunction();
2319   // Error reporting calls should be cold, mark them as such.
2320   // This applies even to non-builtin calls: it is only a hint and applies to
2321   // functions that the frontend might not understand as builtins.
2322 
2323   // This heuristic was suggested in:
2324   // Improving Static Branch Prediction in a Compiler
2325   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2326   // Proceedings of PACT'98, Oct. 1998, IEEE
2327   if (!CI->hasFnAttr(Attribute::Cold) &&
2328       isReportingError(Callee, CI, StreamArg)) {
2329     CI->addFnAttr(Attribute::Cold);
2330   }
2331 
2332   return nullptr;
2333 }
2334 
2335 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2336   if (!Callee || !Callee->isDeclaration())
2337     return false;
2338 
2339   if (StreamArg < 0)
2340     return true;
2341 
2342   // These functions might be considered cold, but only if their stream
2343   // argument is stderr.
2344 
2345   if (StreamArg >= (int)CI->arg_size())
2346     return false;
2347   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2348   if (!LI)
2349     return false;
2350   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2351   if (!GV || !GV->isDeclaration())
2352     return false;
2353   return GV->getName() == "stderr";
2354 }
2355 
2356 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2357   // Check for a fixed format string.
2358   StringRef FormatStr;
2359   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2360     return nullptr;
2361 
2362   // Empty format string -> noop.
2363   if (FormatStr.empty()) // Tolerate printf's declared void.
2364     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2365 
2366   // Do not do any of the following transformations if the printf return value
2367   // is used, in general the printf return value is not compatible with either
2368   // putchar() or puts().
2369   if (!CI->use_empty())
2370     return nullptr;
2371 
2372   // printf("x") -> putchar('x'), even for "%" and "%%".
2373   if (FormatStr.size() == 1 || FormatStr == "%%")
2374     return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI));
2375 
2376   // Try to remove call or emit putchar/puts.
2377   if (FormatStr == "%s" && CI->arg_size() > 1) {
2378     StringRef OperandStr;
2379     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2380       return nullptr;
2381     // printf("%s", "") --> NOP
2382     if (OperandStr.empty())
2383       return (Value *)CI;
2384     // printf("%s", "a") --> putchar('a')
2385     if (OperandStr.size() == 1)
2386       return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI));
2387     // printf("%s", str"\n") --> puts(str)
2388     if (OperandStr.back() == '\n') {
2389       OperandStr = OperandStr.drop_back();
2390       Value *GV = B.CreateGlobalString(OperandStr, "str");
2391       return copyFlags(*CI, emitPutS(GV, B, TLI));
2392     }
2393     return nullptr;
2394   }
2395 
2396   // printf("foo\n") --> puts("foo")
2397   if (FormatStr.back() == '\n' &&
2398       !FormatStr.contains('%')) { // No format characters.
2399     // Create a string literal with no \n on it.  We expect the constant merge
2400     // pass to be run after this pass, to merge duplicate strings.
2401     FormatStr = FormatStr.drop_back();
2402     Value *GV = B.CreateGlobalString(FormatStr, "str");
2403     return copyFlags(*CI, emitPutS(GV, B, TLI));
2404   }
2405 
2406   // Optimize specific format strings.
2407   // printf("%c", chr) --> putchar(chr)
2408   if (FormatStr == "%c" && CI->arg_size() > 1 &&
2409       CI->getArgOperand(1)->getType()->isIntegerTy())
2410     return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI));
2411 
2412   // printf("%s\n", str) --> puts(str)
2413   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
2414       CI->getArgOperand(1)->getType()->isPointerTy())
2415     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
2416   return nullptr;
2417 }
2418 
2419 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2420 
2421   Function *Callee = CI->getCalledFunction();
2422   FunctionType *FT = Callee->getFunctionType();
2423   if (Value *V = optimizePrintFString(CI, B)) {
2424     return V;
2425   }
2426 
2427   // printf(format, ...) -> iprintf(format, ...) if no floating point
2428   // arguments.
2429   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2430     Module *M = B.GetInsertBlock()->getParent()->getParent();
2431     FunctionCallee IPrintFFn =
2432         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2433     CallInst *New = cast<CallInst>(CI->clone());
2434     New->setCalledFunction(IPrintFFn);
2435     B.Insert(New);
2436     return New;
2437   }
2438 
2439   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2440   // arguments.
2441   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2442     Module *M = B.GetInsertBlock()->getParent()->getParent();
2443     auto SmallPrintFFn =
2444         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2445                                FT, Callee->getAttributes());
2446     CallInst *New = cast<CallInst>(CI->clone());
2447     New->setCalledFunction(SmallPrintFFn);
2448     B.Insert(New);
2449     return New;
2450   }
2451 
2452   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2453   return nullptr;
2454 }
2455 
2456 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2457                                                 IRBuilderBase &B) {
2458   // Check for a fixed format string.
2459   StringRef FormatStr;
2460   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2461     return nullptr;
2462 
2463   // If we just have a format string (nothing else crazy) transform it.
2464   Value *Dest = CI->getArgOperand(0);
2465   if (CI->arg_size() == 2) {
2466     // Make sure there's no % in the constant array.  We could try to handle
2467     // %% -> % in the future if we cared.
2468     if (FormatStr.contains('%'))
2469       return nullptr; // we found a format specifier, bail out.
2470 
2471     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2472     B.CreateMemCpy(
2473         Dest, Align(1), CI->getArgOperand(1), Align(1),
2474         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2475                          FormatStr.size() + 1)); // Copy the null byte.
2476     return ConstantInt::get(CI->getType(), FormatStr.size());
2477   }
2478 
2479   // The remaining optimizations require the format string to be "%s" or "%c"
2480   // and have an extra operand.
2481   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2482     return nullptr;
2483 
2484   // Decode the second character of the format string.
2485   if (FormatStr[1] == 'c') {
2486     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2487     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2488       return nullptr;
2489     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2490     Value *Ptr = castToCStr(Dest, B);
2491     B.CreateStore(V, Ptr);
2492     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2493     B.CreateStore(B.getInt8(0), Ptr);
2494 
2495     return ConstantInt::get(CI->getType(), 1);
2496   }
2497 
2498   if (FormatStr[1] == 's') {
2499     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2500     // strlen(str)+1)
2501     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2502       return nullptr;
2503 
2504     if (CI->use_empty())
2505       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2506       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
2507 
2508     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2509     if (SrcLen) {
2510       B.CreateMemCpy(
2511           Dest, Align(1), CI->getArgOperand(2), Align(1),
2512           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2513       // Returns total number of characters written without null-character.
2514       return ConstantInt::get(CI->getType(), SrcLen - 1);
2515     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2516       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2517       // Handle mismatched pointer types (goes away with typeless pointers?).
2518       V = B.CreatePointerCast(V, B.getInt8PtrTy());
2519       Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
2520       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
2521       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2522     }
2523 
2524     bool OptForSize = CI->getFunction()->hasOptSize() ||
2525                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2526                                                   PGSOQueryType::IRPass);
2527     if (OptForSize)
2528       return nullptr;
2529 
2530     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2531     if (!Len)
2532       return nullptr;
2533     Value *IncLen =
2534         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2535     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
2536 
2537     // The sprintf result is the unincremented number of bytes in the string.
2538     return B.CreateIntCast(Len, CI->getType(), false);
2539   }
2540   return nullptr;
2541 }
2542 
2543 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2544   Function *Callee = CI->getCalledFunction();
2545   FunctionType *FT = Callee->getFunctionType();
2546   if (Value *V = optimizeSPrintFString(CI, B)) {
2547     return V;
2548   }
2549 
2550   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2551   // point arguments.
2552   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2553     Module *M = B.GetInsertBlock()->getParent()->getParent();
2554     FunctionCallee SIPrintFFn =
2555         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2556     CallInst *New = cast<CallInst>(CI->clone());
2557     New->setCalledFunction(SIPrintFFn);
2558     B.Insert(New);
2559     return New;
2560   }
2561 
2562   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2563   // floating point arguments.
2564   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2565     Module *M = B.GetInsertBlock()->getParent()->getParent();
2566     auto SmallSPrintFFn =
2567         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2568                                FT, Callee->getAttributes());
2569     CallInst *New = cast<CallInst>(CI->clone());
2570     New->setCalledFunction(SmallSPrintFFn);
2571     B.Insert(New);
2572     return New;
2573   }
2574 
2575   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2576   return nullptr;
2577 }
2578 
2579 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2580                                                  IRBuilderBase &B) {
2581   // Check for size
2582   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2583   if (!Size)
2584     return nullptr;
2585 
2586   uint64_t N = Size->getZExtValue();
2587   // Check for a fixed format string.
2588   StringRef FormatStr;
2589   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2590     return nullptr;
2591 
2592   // If we just have a format string (nothing else crazy) transform it.
2593   if (CI->arg_size() == 3) {
2594     // Make sure there's no % in the constant array.  We could try to handle
2595     // %% -> % in the future if we cared.
2596     if (FormatStr.contains('%'))
2597       return nullptr; // we found a format specifier, bail out.
2598 
2599     if (N == 0)
2600       return ConstantInt::get(CI->getType(), FormatStr.size());
2601     else if (N < FormatStr.size() + 1)
2602       return nullptr;
2603 
2604     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2605     // strlen(fmt)+1)
2606     copyFlags(
2607         *CI,
2608         B.CreateMemCpy(
2609             CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2610             ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2611                              FormatStr.size() + 1))); // Copy the null byte.
2612     return ConstantInt::get(CI->getType(), FormatStr.size());
2613   }
2614 
2615   // The remaining optimizations require the format string to be "%s" or "%c"
2616   // and have an extra operand.
2617   if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) {
2618 
2619     // Decode the second character of the format string.
2620     if (FormatStr[1] == 'c') {
2621       if (N == 0)
2622         return ConstantInt::get(CI->getType(), 1);
2623       else if (N == 1)
2624         return nullptr;
2625 
2626       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2627       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2628         return nullptr;
2629       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2630       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2631       B.CreateStore(V, Ptr);
2632       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2633       B.CreateStore(B.getInt8(0), Ptr);
2634 
2635       return ConstantInt::get(CI->getType(), 1);
2636     }
2637 
2638     if (FormatStr[1] == 's') {
2639       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2640       StringRef Str;
2641       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2642         return nullptr;
2643 
2644       if (N == 0)
2645         return ConstantInt::get(CI->getType(), Str.size());
2646       else if (N < Str.size() + 1)
2647         return nullptr;
2648 
2649       copyFlags(
2650           *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1),
2651                               CI->getArgOperand(3), Align(1),
2652                               ConstantInt::get(CI->getType(), Str.size() + 1)));
2653 
2654       // The snprintf result is the unincremented number of bytes in the string.
2655       return ConstantInt::get(CI->getType(), Str.size());
2656     }
2657   }
2658   return nullptr;
2659 }
2660 
2661 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2662   if (Value *V = optimizeSnPrintFString(CI, B)) {
2663     return V;
2664   }
2665 
2666   if (isKnownNonZero(CI->getOperand(1), DL))
2667     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2668   return nullptr;
2669 }
2670 
2671 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2672                                                 IRBuilderBase &B) {
2673   optimizeErrorReporting(CI, B, 0);
2674 
2675   // All the optimizations depend on the format string.
2676   StringRef FormatStr;
2677   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2678     return nullptr;
2679 
2680   // Do not do any of the following transformations if the fprintf return
2681   // value is used, in general the fprintf return value is not compatible
2682   // with fwrite(), fputc() or fputs().
2683   if (!CI->use_empty())
2684     return nullptr;
2685 
2686   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2687   if (CI->arg_size() == 2) {
2688     // Could handle %% -> % if we cared.
2689     if (FormatStr.contains('%'))
2690       return nullptr; // We found a format specifier.
2691 
2692     return copyFlags(
2693         *CI, emitFWrite(CI->getArgOperand(1),
2694                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2695                                          FormatStr.size()),
2696                         CI->getArgOperand(0), B, DL, TLI));
2697   }
2698 
2699   // The remaining optimizations require the format string to be "%s" or "%c"
2700   // and have an extra operand.
2701   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2702     return nullptr;
2703 
2704   // Decode the second character of the format string.
2705   if (FormatStr[1] == 'c') {
2706     // fprintf(F, "%c", chr) --> fputc(chr, F)
2707     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2708       return nullptr;
2709     return copyFlags(
2710         *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2711   }
2712 
2713   if (FormatStr[1] == 's') {
2714     // fprintf(F, "%s", str) --> fputs(str, F)
2715     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2716       return nullptr;
2717     return copyFlags(
2718         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2719   }
2720   return nullptr;
2721 }
2722 
2723 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2724   Function *Callee = CI->getCalledFunction();
2725   FunctionType *FT = Callee->getFunctionType();
2726   if (Value *V = optimizeFPrintFString(CI, B)) {
2727     return V;
2728   }
2729 
2730   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2731   // floating point arguments.
2732   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2733     Module *M = B.GetInsertBlock()->getParent()->getParent();
2734     FunctionCallee FIPrintFFn =
2735         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2736     CallInst *New = cast<CallInst>(CI->clone());
2737     New->setCalledFunction(FIPrintFFn);
2738     B.Insert(New);
2739     return New;
2740   }
2741 
2742   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2743   // 128-bit floating point arguments.
2744   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2745     Module *M = B.GetInsertBlock()->getParent()->getParent();
2746     auto SmallFPrintFFn =
2747         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2748                                FT, Callee->getAttributes());
2749     CallInst *New = cast<CallInst>(CI->clone());
2750     New->setCalledFunction(SmallFPrintFFn);
2751     B.Insert(New);
2752     return New;
2753   }
2754 
2755   return nullptr;
2756 }
2757 
2758 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2759   optimizeErrorReporting(CI, B, 3);
2760 
2761   // Get the element size and count.
2762   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2763   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2764   if (SizeC && CountC) {
2765     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2766 
2767     // If this is writing zero records, remove the call (it's a noop).
2768     if (Bytes == 0)
2769       return ConstantInt::get(CI->getType(), 0);
2770 
2771     // If this is writing one byte, turn it into fputc.
2772     // This optimisation is only valid, if the return value is unused.
2773     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2774       Value *Char = B.CreateLoad(B.getInt8Ty(),
2775                                  castToCStr(CI->getArgOperand(0), B), "char");
2776       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2777       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2778     }
2779   }
2780 
2781   return nullptr;
2782 }
2783 
2784 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2785   optimizeErrorReporting(CI, B, 1);
2786 
2787   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2788   // requires more arguments and thus extra MOVs are required.
2789   bool OptForSize = CI->getFunction()->hasOptSize() ||
2790                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2791                                                 PGSOQueryType::IRPass);
2792   if (OptForSize)
2793     return nullptr;
2794 
2795   // We can't optimize if return value is used.
2796   if (!CI->use_empty())
2797     return nullptr;
2798 
2799   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2800   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2801   if (!Len)
2802     return nullptr;
2803 
2804   // Known to have no uses (see above).
2805   return copyFlags(
2806       *CI,
2807       emitFWrite(CI->getArgOperand(0),
2808                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2809                  CI->getArgOperand(1), B, DL, TLI));
2810 }
2811 
2812 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2813   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2814   if (!CI->use_empty())
2815     return nullptr;
2816 
2817   // Check for a constant string.
2818   // puts("") -> putchar('\n')
2819   StringRef Str;
2820   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2821     return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI));
2822 
2823   return nullptr;
2824 }
2825 
2826 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2827   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2828   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
2829                                         CI->getArgOperand(0), Align(1),
2830                                         CI->getArgOperand(2)));
2831 }
2832 
2833 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2834   LibFunc Func;
2835   SmallString<20> FloatFuncName = FuncName;
2836   FloatFuncName += 'f';
2837   if (TLI->getLibFunc(FloatFuncName, Func))
2838     return TLI->has(Func);
2839   return false;
2840 }
2841 
2842 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2843                                                       IRBuilderBase &Builder) {
2844   LibFunc Func;
2845   Function *Callee = CI->getCalledFunction();
2846   // Check for string/memory library functions.
2847   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2848     // Make sure we never change the calling convention.
2849     assert(
2850         (ignoreCallingConv(Func) ||
2851          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
2852         "Optimizing string/memory libcall would change the calling convention");
2853     switch (Func) {
2854     case LibFunc_strcat:
2855       return optimizeStrCat(CI, Builder);
2856     case LibFunc_strncat:
2857       return optimizeStrNCat(CI, Builder);
2858     case LibFunc_strchr:
2859       return optimizeStrChr(CI, Builder);
2860     case LibFunc_strrchr:
2861       return optimizeStrRChr(CI, Builder);
2862     case LibFunc_strcmp:
2863       return optimizeStrCmp(CI, Builder);
2864     case LibFunc_strncmp:
2865       return optimizeStrNCmp(CI, Builder);
2866     case LibFunc_strcpy:
2867       return optimizeStrCpy(CI, Builder);
2868     case LibFunc_stpcpy:
2869       return optimizeStpCpy(CI, Builder);
2870     case LibFunc_strncpy:
2871       return optimizeStrNCpy(CI, Builder);
2872     case LibFunc_strlen:
2873       return optimizeStrLen(CI, Builder);
2874     case LibFunc_strpbrk:
2875       return optimizeStrPBrk(CI, Builder);
2876     case LibFunc_strndup:
2877       return optimizeStrNDup(CI, Builder);
2878     case LibFunc_strtol:
2879     case LibFunc_strtod:
2880     case LibFunc_strtof:
2881     case LibFunc_strtoul:
2882     case LibFunc_strtoll:
2883     case LibFunc_strtold:
2884     case LibFunc_strtoull:
2885       return optimizeStrTo(CI, Builder);
2886     case LibFunc_strspn:
2887       return optimizeStrSpn(CI, Builder);
2888     case LibFunc_strcspn:
2889       return optimizeStrCSpn(CI, Builder);
2890     case LibFunc_strstr:
2891       return optimizeStrStr(CI, Builder);
2892     case LibFunc_memchr:
2893       return optimizeMemChr(CI, Builder);
2894     case LibFunc_memrchr:
2895       return optimizeMemRChr(CI, Builder);
2896     case LibFunc_bcmp:
2897       return optimizeBCmp(CI, Builder);
2898     case LibFunc_memcmp:
2899       return optimizeMemCmp(CI, Builder);
2900     case LibFunc_memcpy:
2901       return optimizeMemCpy(CI, Builder);
2902     case LibFunc_memccpy:
2903       return optimizeMemCCpy(CI, Builder);
2904     case LibFunc_mempcpy:
2905       return optimizeMemPCpy(CI, Builder);
2906     case LibFunc_memmove:
2907       return optimizeMemMove(CI, Builder);
2908     case LibFunc_memset:
2909       return optimizeMemSet(CI, Builder);
2910     case LibFunc_realloc:
2911       return optimizeRealloc(CI, Builder);
2912     case LibFunc_wcslen:
2913       return optimizeWcslen(CI, Builder);
2914     case LibFunc_bcopy:
2915       return optimizeBCopy(CI, Builder);
2916     default:
2917       break;
2918     }
2919   }
2920   return nullptr;
2921 }
2922 
2923 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2924                                                        LibFunc Func,
2925                                                        IRBuilderBase &Builder) {
2926   // Don't optimize calls that require strict floating point semantics.
2927   if (CI->isStrictFP())
2928     return nullptr;
2929 
2930   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2931     return V;
2932 
2933   switch (Func) {
2934   case LibFunc_sinpif:
2935   case LibFunc_sinpi:
2936   case LibFunc_cospif:
2937   case LibFunc_cospi:
2938     return optimizeSinCosPi(CI, Builder);
2939   case LibFunc_powf:
2940   case LibFunc_pow:
2941   case LibFunc_powl:
2942     return optimizePow(CI, Builder);
2943   case LibFunc_exp2l:
2944   case LibFunc_exp2:
2945   case LibFunc_exp2f:
2946     return optimizeExp2(CI, Builder);
2947   case LibFunc_fabsf:
2948   case LibFunc_fabs:
2949   case LibFunc_fabsl:
2950     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2951   case LibFunc_sqrtf:
2952   case LibFunc_sqrt:
2953   case LibFunc_sqrtl:
2954     return optimizeSqrt(CI, Builder);
2955   case LibFunc_logf:
2956   case LibFunc_log:
2957   case LibFunc_logl:
2958   case LibFunc_log10f:
2959   case LibFunc_log10:
2960   case LibFunc_log10l:
2961   case LibFunc_log1pf:
2962   case LibFunc_log1p:
2963   case LibFunc_log1pl:
2964   case LibFunc_log2f:
2965   case LibFunc_log2:
2966   case LibFunc_log2l:
2967   case LibFunc_logbf:
2968   case LibFunc_logb:
2969   case LibFunc_logbl:
2970     return optimizeLog(CI, Builder);
2971   case LibFunc_tan:
2972   case LibFunc_tanf:
2973   case LibFunc_tanl:
2974     return optimizeTan(CI, Builder);
2975   case LibFunc_ceil:
2976     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2977   case LibFunc_floor:
2978     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2979   case LibFunc_round:
2980     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2981   case LibFunc_roundeven:
2982     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
2983   case LibFunc_nearbyint:
2984     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2985   case LibFunc_rint:
2986     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2987   case LibFunc_trunc:
2988     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2989   case LibFunc_acos:
2990   case LibFunc_acosh:
2991   case LibFunc_asin:
2992   case LibFunc_asinh:
2993   case LibFunc_atan:
2994   case LibFunc_atanh:
2995   case LibFunc_cbrt:
2996   case LibFunc_cosh:
2997   case LibFunc_exp:
2998   case LibFunc_exp10:
2999   case LibFunc_expm1:
3000   case LibFunc_cos:
3001   case LibFunc_sin:
3002   case LibFunc_sinh:
3003   case LibFunc_tanh:
3004     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3005       return optimizeUnaryDoubleFP(CI, Builder, true);
3006     return nullptr;
3007   case LibFunc_copysign:
3008     if (hasFloatVersion(CI->getCalledFunction()->getName()))
3009       return optimizeBinaryDoubleFP(CI, Builder);
3010     return nullptr;
3011   case LibFunc_fminf:
3012   case LibFunc_fmin:
3013   case LibFunc_fminl:
3014   case LibFunc_fmaxf:
3015   case LibFunc_fmax:
3016   case LibFunc_fmaxl:
3017     return optimizeFMinFMax(CI, Builder);
3018   case LibFunc_cabs:
3019   case LibFunc_cabsf:
3020   case LibFunc_cabsl:
3021     return optimizeCAbs(CI, Builder);
3022   default:
3023     return nullptr;
3024   }
3025 }
3026 
3027 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3028   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3029 
3030   // TODO: Split out the code below that operates on FP calls so that
3031   //       we can all non-FP calls with the StrictFP attribute to be
3032   //       optimized.
3033   if (CI->isNoBuiltin())
3034     return nullptr;
3035 
3036   LibFunc Func;
3037   Function *Callee = CI->getCalledFunction();
3038   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3039 
3040   SmallVector<OperandBundleDef, 2> OpBundles;
3041   CI->getOperandBundlesAsDefs(OpBundles);
3042 
3043   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3044   Builder.setDefaultOperandBundles(OpBundles);
3045 
3046   // Command-line parameter overrides instruction attribute.
3047   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3048   // used by the intrinsic optimizations.
3049   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3050     UnsafeFPShrink = EnableUnsafeFPShrink;
3051   else if (isa<FPMathOperator>(CI) && CI->isFast())
3052     UnsafeFPShrink = true;
3053 
3054   // First, check for intrinsics.
3055   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3056     if (!IsCallingConvC)
3057       return nullptr;
3058     // The FP intrinsics have corresponding constrained versions so we don't
3059     // need to check for the StrictFP attribute here.
3060     switch (II->getIntrinsicID()) {
3061     case Intrinsic::pow:
3062       return optimizePow(CI, Builder);
3063     case Intrinsic::exp2:
3064       return optimizeExp2(CI, Builder);
3065     case Intrinsic::log:
3066     case Intrinsic::log2:
3067     case Intrinsic::log10:
3068       return optimizeLog(CI, Builder);
3069     case Intrinsic::sqrt:
3070       return optimizeSqrt(CI, Builder);
3071     case Intrinsic::memset:
3072       return optimizeMemSet(CI, Builder);
3073     case Intrinsic::memcpy:
3074       return optimizeMemCpy(CI, Builder);
3075     case Intrinsic::memmove:
3076       return optimizeMemMove(CI, Builder);
3077     default:
3078       return nullptr;
3079     }
3080   }
3081 
3082   // Also try to simplify calls to fortified library functions.
3083   if (Value *SimplifiedFortifiedCI =
3084           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3085     // Try to further simplify the result.
3086     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3087     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3088       // Ensure that SimplifiedCI's uses are complete, since some calls have
3089       // their uses analyzed.
3090       replaceAllUsesWith(CI, SimplifiedCI);
3091 
3092       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3093       // we might replace later on.
3094       IRBuilderBase::InsertPointGuard Guard(Builder);
3095       Builder.SetInsertPoint(SimplifiedCI);
3096       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3097         // If we were able to further simplify, remove the now redundant call.
3098         substituteInParent(SimplifiedCI, V);
3099         return V;
3100       }
3101     }
3102     return SimplifiedFortifiedCI;
3103   }
3104 
3105   // Then check for known library functions.
3106   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3107     // We never change the calling convention.
3108     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3109       return nullptr;
3110     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3111       return V;
3112     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3113       return V;
3114     switch (Func) {
3115     case LibFunc_ffs:
3116     case LibFunc_ffsl:
3117     case LibFunc_ffsll:
3118       return optimizeFFS(CI, Builder);
3119     case LibFunc_fls:
3120     case LibFunc_flsl:
3121     case LibFunc_flsll:
3122       return optimizeFls(CI, Builder);
3123     case LibFunc_abs:
3124     case LibFunc_labs:
3125     case LibFunc_llabs:
3126       return optimizeAbs(CI, Builder);
3127     case LibFunc_isdigit:
3128       return optimizeIsDigit(CI, Builder);
3129     case LibFunc_isascii:
3130       return optimizeIsAscii(CI, Builder);
3131     case LibFunc_toascii:
3132       return optimizeToAscii(CI, Builder);
3133     case LibFunc_atoi:
3134     case LibFunc_atol:
3135     case LibFunc_atoll:
3136       return optimizeAtoi(CI, Builder);
3137     case LibFunc_strtol:
3138     case LibFunc_strtoll:
3139       return optimizeStrtol(CI, Builder);
3140     case LibFunc_printf:
3141       return optimizePrintF(CI, Builder);
3142     case LibFunc_sprintf:
3143       return optimizeSPrintF(CI, Builder);
3144     case LibFunc_snprintf:
3145       return optimizeSnPrintF(CI, Builder);
3146     case LibFunc_fprintf:
3147       return optimizeFPrintF(CI, Builder);
3148     case LibFunc_fwrite:
3149       return optimizeFWrite(CI, Builder);
3150     case LibFunc_fputs:
3151       return optimizeFPuts(CI, Builder);
3152     case LibFunc_puts:
3153       return optimizePuts(CI, Builder);
3154     case LibFunc_perror:
3155       return optimizeErrorReporting(CI, Builder);
3156     case LibFunc_vfprintf:
3157     case LibFunc_fiprintf:
3158       return optimizeErrorReporting(CI, Builder, 0);
3159     default:
3160       return nullptr;
3161     }
3162   }
3163   return nullptr;
3164 }
3165 
3166 LibCallSimplifier::LibCallSimplifier(
3167     const DataLayout &DL, const TargetLibraryInfo *TLI,
3168     OptimizationRemarkEmitter &ORE,
3169     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3170     function_ref<void(Instruction *, Value *)> Replacer,
3171     function_ref<void(Instruction *)> Eraser)
3172     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3173       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3174 
3175 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3176   // Indirect through the replacer used in this instance.
3177   Replacer(I, With);
3178 }
3179 
3180 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3181   Eraser(I);
3182 }
3183 
3184 // TODO:
3185 //   Additional cases that we need to add to this file:
3186 //
3187 // cbrt:
3188 //   * cbrt(expN(X))  -> expN(x/3)
3189 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3190 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3191 //
3192 // exp, expf, expl:
3193 //   * exp(log(x))  -> x
3194 //
3195 // log, logf, logl:
3196 //   * log(exp(x))   -> x
3197 //   * log(exp(y))   -> y*log(e)
3198 //   * log(exp10(y)) -> y*log(10)
3199 //   * log(sqrt(x))  -> 0.5*log(x)
3200 //
3201 // pow, powf, powl:
3202 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3203 //   * pow(pow(x,y),z)-> pow(x,y*z)
3204 //
3205 // signbit:
3206 //   * signbit(cnst) -> cnst'
3207 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3208 //
3209 // sqrt, sqrtf, sqrtl:
3210 //   * sqrt(expN(x))  -> expN(x*0.5)
3211 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3212 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3213 //
3214 
3215 //===----------------------------------------------------------------------===//
3216 // Fortified Library Call Optimizations
3217 //===----------------------------------------------------------------------===//
3218 
3219 bool
3220 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3221                                                     unsigned ObjSizeOp,
3222                                                     Optional<unsigned> SizeOp,
3223                                                     Optional<unsigned> StrOp,
3224                                                     Optional<unsigned> FlagOp) {
3225   // If this function takes a flag argument, the implementation may use it to
3226   // perform extra checks. Don't fold into the non-checking variant.
3227   if (FlagOp) {
3228     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3229     if (!Flag || !Flag->isZero())
3230       return false;
3231   }
3232 
3233   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3234     return true;
3235 
3236   if (ConstantInt *ObjSizeCI =
3237           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3238     if (ObjSizeCI->isMinusOne())
3239       return true;
3240     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3241     if (OnlyLowerUnknownSize)
3242       return false;
3243     if (StrOp) {
3244       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3245       // If the length is 0 we don't know how long it is and so we can't
3246       // remove the check.
3247       if (Len)
3248         annotateDereferenceableBytes(CI, *StrOp, Len);
3249       else
3250         return false;
3251       return ObjSizeCI->getZExtValue() >= Len;
3252     }
3253 
3254     if (SizeOp) {
3255       if (ConstantInt *SizeCI =
3256               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3257         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3258     }
3259   }
3260   return false;
3261 }
3262 
3263 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3264                                                      IRBuilderBase &B) {
3265   if (isFortifiedCallFoldable(CI, 3, 2)) {
3266     CallInst *NewCI =
3267         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3268                        Align(1), CI->getArgOperand(2));
3269     NewCI->setAttributes(CI->getAttributes());
3270     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3271     copyFlags(*CI, NewCI);
3272     return CI->getArgOperand(0);
3273   }
3274   return nullptr;
3275 }
3276 
3277 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3278                                                       IRBuilderBase &B) {
3279   if (isFortifiedCallFoldable(CI, 3, 2)) {
3280     CallInst *NewCI =
3281         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3282                         Align(1), CI->getArgOperand(2));
3283     NewCI->setAttributes(CI->getAttributes());
3284     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3285     copyFlags(*CI, NewCI);
3286     return CI->getArgOperand(0);
3287   }
3288   return nullptr;
3289 }
3290 
3291 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3292                                                      IRBuilderBase &B) {
3293   if (isFortifiedCallFoldable(CI, 3, 2)) {
3294     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3295     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3296                                      CI->getArgOperand(2), Align(1));
3297     NewCI->setAttributes(CI->getAttributes());
3298     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3299     copyFlags(*CI, NewCI);
3300     return CI->getArgOperand(0);
3301   }
3302   return nullptr;
3303 }
3304 
3305 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3306                                                       IRBuilderBase &B) {
3307   const DataLayout &DL = CI->getModule()->getDataLayout();
3308   if (isFortifiedCallFoldable(CI, 3, 2))
3309     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3310                                   CI->getArgOperand(2), B, DL, TLI)) {
3311       CallInst *NewCI = cast<CallInst>(Call);
3312       NewCI->setAttributes(CI->getAttributes());
3313       NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3314       return copyFlags(*CI, NewCI);
3315     }
3316   return nullptr;
3317 }
3318 
3319 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3320                                                       IRBuilderBase &B,
3321                                                       LibFunc Func) {
3322   const DataLayout &DL = CI->getModule()->getDataLayout();
3323   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3324         *ObjSize = CI->getArgOperand(2);
3325 
3326   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3327   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3328     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3329     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3330   }
3331 
3332   // If a) we don't have any length information, or b) we know this will
3333   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3334   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3335   // TODO: It might be nice to get a maximum length out of the possible
3336   // string lengths for varying.
3337   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3338     if (Func == LibFunc_strcpy_chk)
3339       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
3340     else
3341       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
3342   }
3343 
3344   if (OnlyLowerUnknownSize)
3345     return nullptr;
3346 
3347   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3348   uint64_t Len = GetStringLength(Src);
3349   if (Len)
3350     annotateDereferenceableBytes(CI, 1, Len);
3351   else
3352     return nullptr;
3353 
3354   // FIXME: There is really no guarantee that sizeof(size_t) is equal to
3355   // sizeof(int*) for every target. So the assumption used here to derive the
3356   // SizeTBits based on the size of an integer pointer in address space zero
3357   // isn't always valid.
3358   Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0);
3359   Value *LenV = ConstantInt::get(SizeTTy, Len);
3360   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3361   // If the function was an __stpcpy_chk, and we were able to fold it into
3362   // a __memcpy_chk, we still need to return the correct end pointer.
3363   if (Ret && Func == LibFunc_stpcpy_chk)
3364     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3365   return copyFlags(*CI, cast<CallInst>(Ret));
3366 }
3367 
3368 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3369                                                      IRBuilderBase &B) {
3370   if (isFortifiedCallFoldable(CI, 1, None, 0))
3371     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
3372                                      CI->getModule()->getDataLayout(), TLI));
3373   return nullptr;
3374 }
3375 
3376 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3377                                                        IRBuilderBase &B,
3378                                                        LibFunc Func) {
3379   if (isFortifiedCallFoldable(CI, 3, 2)) {
3380     if (Func == LibFunc_strncpy_chk)
3381       return copyFlags(*CI,
3382                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3383                                    CI->getArgOperand(2), B, TLI));
3384     else
3385       return copyFlags(*CI,
3386                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3387                                    CI->getArgOperand(2), B, TLI));
3388   }
3389 
3390   return nullptr;
3391 }
3392 
3393 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3394                                                       IRBuilderBase &B) {
3395   if (isFortifiedCallFoldable(CI, 4, 3))
3396     return copyFlags(
3397         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3398                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
3399 
3400   return nullptr;
3401 }
3402 
3403 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3404                                                        IRBuilderBase &B) {
3405   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3406     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3407     return copyFlags(*CI,
3408                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3409                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
3410   }
3411 
3412   return nullptr;
3413 }
3414 
3415 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3416                                                       IRBuilderBase &B) {
3417   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3418     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3419     return copyFlags(*CI,
3420                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3421                                  VariadicArgs, B, TLI));
3422   }
3423 
3424   return nullptr;
3425 }
3426 
3427 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3428                                                      IRBuilderBase &B) {
3429   if (isFortifiedCallFoldable(CI, 2))
3430     return copyFlags(
3431         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
3432 
3433   return nullptr;
3434 }
3435 
3436 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3437                                                    IRBuilderBase &B) {
3438   if (isFortifiedCallFoldable(CI, 3))
3439     return copyFlags(*CI,
3440                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3441                                  CI->getArgOperand(2), B, TLI));
3442 
3443   return nullptr;
3444 }
3445 
3446 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3447                                                       IRBuilderBase &B) {
3448   if (isFortifiedCallFoldable(CI, 3))
3449     return copyFlags(*CI,
3450                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3451                                  CI->getArgOperand(2), B, TLI));
3452 
3453   return nullptr;
3454 }
3455 
3456 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3457                                                       IRBuilderBase &B) {
3458   if (isFortifiedCallFoldable(CI, 3))
3459     return copyFlags(*CI,
3460                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3461                                  CI->getArgOperand(2), B, TLI));
3462 
3463   return nullptr;
3464 }
3465 
3466 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3467                                                         IRBuilderBase &B) {
3468   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3469     return copyFlags(
3470         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3471                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
3472 
3473   return nullptr;
3474 }
3475 
3476 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3477                                                        IRBuilderBase &B) {
3478   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3479     return copyFlags(*CI,
3480                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3481                                   CI->getArgOperand(4), B, TLI));
3482 
3483   return nullptr;
3484 }
3485 
3486 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3487                                                 IRBuilderBase &Builder) {
3488   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3489   // Some clang users checked for _chk libcall availability using:
3490   //   __has_builtin(__builtin___memcpy_chk)
3491   // When compiling with -fno-builtin, this is always true.
3492   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3493   // end up with fortified libcalls, which isn't acceptable in a freestanding
3494   // environment which only provides their non-fortified counterparts.
3495   //
3496   // Until we change clang and/or teach external users to check for availability
3497   // differently, disregard the "nobuiltin" attribute and TLI::has.
3498   //
3499   // PR23093.
3500 
3501   LibFunc Func;
3502   Function *Callee = CI->getCalledFunction();
3503   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3504 
3505   SmallVector<OperandBundleDef, 2> OpBundles;
3506   CI->getOperandBundlesAsDefs(OpBundles);
3507 
3508   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3509   Builder.setDefaultOperandBundles(OpBundles);
3510 
3511   // First, check that this is a known library functions and that the prototype
3512   // is correct.
3513   if (!TLI->getLibFunc(*Callee, Func))
3514     return nullptr;
3515 
3516   // We never change the calling convention.
3517   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3518     return nullptr;
3519 
3520   switch (Func) {
3521   case LibFunc_memcpy_chk:
3522     return optimizeMemCpyChk(CI, Builder);
3523   case LibFunc_mempcpy_chk:
3524     return optimizeMemPCpyChk(CI, Builder);
3525   case LibFunc_memmove_chk:
3526     return optimizeMemMoveChk(CI, Builder);
3527   case LibFunc_memset_chk:
3528     return optimizeMemSetChk(CI, Builder);
3529   case LibFunc_stpcpy_chk:
3530   case LibFunc_strcpy_chk:
3531     return optimizeStrpCpyChk(CI, Builder, Func);
3532   case LibFunc_strlen_chk:
3533     return optimizeStrLenChk(CI, Builder);
3534   case LibFunc_stpncpy_chk:
3535   case LibFunc_strncpy_chk:
3536     return optimizeStrpNCpyChk(CI, Builder, Func);
3537   case LibFunc_memccpy_chk:
3538     return optimizeMemCCpyChk(CI, Builder);
3539   case LibFunc_snprintf_chk:
3540     return optimizeSNPrintfChk(CI, Builder);
3541   case LibFunc_sprintf_chk:
3542     return optimizeSPrintfChk(CI, Builder);
3543   case LibFunc_strcat_chk:
3544     return optimizeStrCatChk(CI, Builder);
3545   case LibFunc_strlcat_chk:
3546     return optimizeStrLCat(CI, Builder);
3547   case LibFunc_strncat_chk:
3548     return optimizeStrNCatChk(CI, Builder);
3549   case LibFunc_strlcpy_chk:
3550     return optimizeStrLCpyChk(CI, Builder);
3551   case LibFunc_vsnprintf_chk:
3552     return optimizeVSNPrintfChk(CI, Builder);
3553   case LibFunc_vsprintf_chk:
3554     return optimizeVSPrintfChk(CI, Builder);
3555   default:
3556     break;
3557   }
3558   return nullptr;
3559 }
3560 
3561 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3562     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3563     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3564