1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Utils/BuildLibCalls.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 //===----------------------------------------------------------------------===// 46 // Helper Functions 47 //===----------------------------------------------------------------------===// 48 49 static bool ignoreCallingConv(LibFunc Func) { 50 return Func == LibFunc_abs || Func == LibFunc_labs || 51 Func == LibFunc_llabs || Func == LibFunc_strlen; 52 } 53 54 /// Return true if it is only used in equality comparisons with With. 55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 56 for (User *U : V->users()) { 57 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 58 if (IC->isEquality() && IC->getOperand(1) == With) 59 continue; 60 // Unknown instruction. 61 return false; 62 } 63 return true; 64 } 65 66 static bool callHasFloatingPointArgument(const CallInst *CI) { 67 return any_of(CI->operands(), [](const Use &OI) { 68 return OI->getType()->isFloatingPointTy(); 69 }); 70 } 71 72 static bool callHasFP128Argument(const CallInst *CI) { 73 return any_of(CI->operands(), [](const Use &OI) { 74 return OI->getType()->isFP128Ty(); 75 }); 76 } 77 78 // Convert the entire string Str representing an integer in Base, up to 79 // the terminating nul if present, to a constant according to the rules 80 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success 81 // return the result, otherwise null. 82 // The function assumes the string is encoded in ASCII and carefully 83 // avoids converting sequences (including "") that the corresponding 84 // library call might fail and set errno for. 85 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr, 86 uint64_t Base, bool AsSigned, IRBuilderBase &B) { 87 if (Base < 2 || Base > 36) 88 if (Base != 0) 89 // Fail for an invalid base (required by POSIX). 90 return nullptr; 91 92 // Current offset into the original string to reflect in EndPtr. 93 size_t Offset = 0; 94 // Strip leading whitespace. 95 for ( ; Offset != Str.size(); ++Offset) 96 if (!isSpace((unsigned char)Str[Offset])) { 97 Str = Str.substr(Offset); 98 break; 99 } 100 101 if (Str.empty()) 102 // Fail for empty subject sequences (POSIX allows but doesn't require 103 // strtol[l]/strtoul[l] to fail with EINVAL). 104 return nullptr; 105 106 // Strip but remember the sign. 107 bool Negate = Str[0] == '-'; 108 if (Str[0] == '-' || Str[0] == '+') { 109 Str = Str.drop_front(); 110 if (Str.empty()) 111 // Fail for a sign with nothing after it. 112 return nullptr; 113 ++Offset; 114 } 115 116 // Set Max to the absolute value of the minimum (for signed), or 117 // to the maximum (for unsigned) value representable in the type. 118 Type *RetTy = CI->getType(); 119 unsigned NBits = RetTy->getPrimitiveSizeInBits(); 120 uint64_t Max = AsSigned && Negate ? 1 : 0; 121 Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits); 122 123 // Autodetect Base if it's zero and consume the "0x" prefix. 124 if (Str.size() > 1) { 125 if (Str[0] == '0') { 126 if (toUpper((unsigned char)Str[1]) == 'X') { 127 if (Str.size() == 2 || (Base && Base != 16)) 128 // Fail if Base doesn't allow the "0x" prefix or for the prefix 129 // alone that implementations like BSD set errno to EINVAL for. 130 return nullptr; 131 132 Str = Str.drop_front(2); 133 Offset += 2; 134 Base = 16; 135 } 136 else if (Base == 0) 137 Base = 8; 138 } else if (Base == 0) 139 Base = 10; 140 } 141 else if (Base == 0) 142 Base = 10; 143 144 // Convert the rest of the subject sequence, not including the sign, 145 // to its uint64_t representation (this assumes the source character 146 // set is ASCII). 147 uint64_t Result = 0; 148 for (unsigned i = 0; i != Str.size(); ++i) { 149 unsigned char DigVal = Str[i]; 150 if (isDigit(DigVal)) 151 DigVal = DigVal - '0'; 152 else { 153 DigVal = toUpper(DigVal); 154 if (isAlpha(DigVal)) 155 DigVal = DigVal - 'A' + 10; 156 else 157 return nullptr; 158 } 159 160 if (DigVal >= Base) 161 // Fail if the digit is not valid in the Base. 162 return nullptr; 163 164 // Add the digit and fail if the result is not representable in 165 // the (unsigned form of the) destination type. 166 bool VFlow; 167 Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow); 168 if (VFlow || Result > Max) 169 return nullptr; 170 } 171 172 if (EndPtr) { 173 // Store the pointer to the end. 174 Value *Off = B.getInt64(Offset + Str.size()); 175 Value *StrBeg = CI->getArgOperand(0); 176 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr"); 177 B.CreateStore(StrEnd, EndPtr); 178 } 179 180 if (Negate) 181 // Unsigned negation doesn't overflow. 182 Result = -Result; 183 184 return ConstantInt::get(RetTy, Result); 185 } 186 187 static bool isOnlyUsedInComparisonWithZero(Value *V) { 188 for (User *U : V->users()) { 189 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 190 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 191 if (C->isNullValue()) 192 continue; 193 // Unknown instruction. 194 return false; 195 } 196 return true; 197 } 198 199 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 200 const DataLayout &DL) { 201 if (!isOnlyUsedInComparisonWithZero(CI)) 202 return false; 203 204 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 205 return false; 206 207 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 208 return false; 209 210 return true; 211 } 212 213 static void annotateDereferenceableBytes(CallInst *CI, 214 ArrayRef<unsigned> ArgNos, 215 uint64_t DereferenceableBytes) { 216 const Function *F = CI->getCaller(); 217 if (!F) 218 return; 219 for (unsigned ArgNo : ArgNos) { 220 uint64_t DerefBytes = DereferenceableBytes; 221 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 222 if (!llvm::NullPointerIsDefined(F, AS) || 223 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 224 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 225 DereferenceableBytes); 226 227 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 228 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 229 if (!llvm::NullPointerIsDefined(F, AS) || 230 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 231 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 232 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 233 CI->getContext(), DerefBytes)); 234 } 235 } 236 } 237 238 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 239 ArrayRef<unsigned> ArgNos) { 240 Function *F = CI->getCaller(); 241 if (!F) 242 return; 243 244 for (unsigned ArgNo : ArgNos) { 245 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 246 CI->addParamAttr(ArgNo, Attribute::NoUndef); 247 248 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 249 continue; 250 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 251 if (llvm::NullPointerIsDefined(F, AS)) 252 continue; 253 254 CI->addParamAttr(ArgNo, Attribute::NonNull); 255 annotateDereferenceableBytes(CI, ArgNo, 1); 256 } 257 } 258 259 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 260 Value *Size, const DataLayout &DL) { 261 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 262 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 263 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 264 } else if (isKnownNonZero(Size, DL)) { 265 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 266 const APInt *X, *Y; 267 uint64_t DerefMin = 1; 268 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 269 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 270 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 271 } 272 } 273 } 274 275 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 276 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 277 // in this function when New is created to replace Old. Callers should take 278 // care to check Old.isMustTailCall() if they aren't replacing Old directly 279 // with New. 280 static Value *copyFlags(const CallInst &Old, Value *New) { 281 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 282 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 283 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 284 NewCI->setTailCallKind(Old.getTailCallKind()); 285 return New; 286 } 287 288 // Helper to avoid truncating the length if size_t is 32-bits. 289 static StringRef substr(StringRef Str, uint64_t Len) { 290 return Len >= Str.size() ? Str : Str.substr(0, Len); 291 } 292 293 //===----------------------------------------------------------------------===// 294 // String and Memory Library Call Optimizations 295 //===----------------------------------------------------------------------===// 296 297 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 298 // Extract some information from the instruction 299 Value *Dst = CI->getArgOperand(0); 300 Value *Src = CI->getArgOperand(1); 301 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 302 303 // See if we can get the length of the input string. 304 uint64_t Len = GetStringLength(Src); 305 if (Len) 306 annotateDereferenceableBytes(CI, 1, Len); 307 else 308 return nullptr; 309 --Len; // Unbias length. 310 311 // Handle the simple, do-nothing case: strcat(x, "") -> x 312 if (Len == 0) 313 return Dst; 314 315 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 316 } 317 318 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 319 IRBuilderBase &B) { 320 // We need to find the end of the destination string. That's where the 321 // memory is to be moved to. We just generate a call to strlen. 322 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 323 if (!DstLen) 324 return nullptr; 325 326 // Now that we have the destination's length, we must index into the 327 // destination's pointer to get the actual memcpy destination (end of 328 // the string .. we're concatenating). 329 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 330 331 // We have enough information to now generate the memcpy call to do the 332 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 333 B.CreateMemCpy( 334 CpyDst, Align(1), Src, Align(1), 335 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 336 return Dst; 337 } 338 339 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 340 // Extract some information from the instruction. 341 Value *Dst = CI->getArgOperand(0); 342 Value *Src = CI->getArgOperand(1); 343 Value *Size = CI->getArgOperand(2); 344 uint64_t Len; 345 annotateNonNullNoUndefBasedOnAccess(CI, 0); 346 if (isKnownNonZero(Size, DL)) 347 annotateNonNullNoUndefBasedOnAccess(CI, 1); 348 349 // We don't do anything if length is not constant. 350 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 351 if (LengthArg) { 352 Len = LengthArg->getZExtValue(); 353 // strncat(x, c, 0) -> x 354 if (!Len) 355 return Dst; 356 } else { 357 return nullptr; 358 } 359 360 // See if we can get the length of the input string. 361 uint64_t SrcLen = GetStringLength(Src); 362 if (SrcLen) { 363 annotateDereferenceableBytes(CI, 1, SrcLen); 364 --SrcLen; // Unbias length. 365 } else { 366 return nullptr; 367 } 368 369 // strncat(x, "", c) -> x 370 if (SrcLen == 0) 371 return Dst; 372 373 // We don't optimize this case. 374 if (Len < SrcLen) 375 return nullptr; 376 377 // strncat(x, s, c) -> strcat(x, s) 378 // s is constant so the strcat can be optimized further. 379 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 380 } 381 382 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when 383 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function 384 // is that either S is dereferenceable or the value of N is nonzero. 385 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes, 386 IRBuilderBase &B, const DataLayout &DL) 387 { 388 Value *Src = CI->getArgOperand(0); 389 Value *CharVal = CI->getArgOperand(1); 390 391 // Fold memchr(A, C, N) == A to N && *A == C. 392 Type *CharTy = B.getInt8Ty(); 393 Value *Char0 = B.CreateLoad(CharTy, Src); 394 CharVal = B.CreateTrunc(CharVal, CharTy); 395 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp"); 396 397 if (NBytes) { 398 Value *Zero = ConstantInt::get(NBytes->getType(), 0); 399 Value *And = B.CreateICmpNE(NBytes, Zero); 400 Cmp = B.CreateLogicalAnd(And, Cmp); 401 } 402 403 Value *NullPtr = Constant::getNullValue(CI->getType()); 404 return B.CreateSelect(Cmp, Src, NullPtr); 405 } 406 407 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 408 Value *SrcStr = CI->getArgOperand(0); 409 Value *CharVal = CI->getArgOperand(1); 410 annotateNonNullNoUndefBasedOnAccess(CI, 0); 411 412 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 413 return memChrToCharCompare(CI, nullptr, B, DL); 414 415 // If the second operand is non-constant, see if we can compute the length 416 // of the input string and turn this into memchr. 417 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 418 if (!CharC) { 419 uint64_t Len = GetStringLength(SrcStr); 420 if (Len) 421 annotateDereferenceableBytes(CI, 0, Len); 422 else 423 return nullptr; 424 425 Function *Callee = CI->getCalledFunction(); 426 FunctionType *FT = Callee->getFunctionType(); 427 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 428 return nullptr; 429 430 return copyFlags( 431 *CI, 432 emitMemChr(SrcStr, CharVal, // include nul. 433 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, 434 DL, TLI)); 435 } 436 437 if (CharC->isZero()) { 438 Value *NullPtr = Constant::getNullValue(CI->getType()); 439 if (isOnlyUsedInEqualityComparison(CI, NullPtr)) 440 // Pre-empt the transformation to strlen below and fold 441 // strchr(A, '\0') == null to false. 442 return B.CreateIntToPtr(B.getTrue(), CI->getType()); 443 } 444 445 // Otherwise, the character is a constant, see if the first argument is 446 // a string literal. If so, we can constant fold. 447 StringRef Str; 448 if (!getConstantStringInfo(SrcStr, Str)) { 449 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 450 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 451 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 452 return nullptr; 453 } 454 455 // Compute the offset, make sure to handle the case when we're searching for 456 // zero (a weird way to spell strlen). 457 size_t I = (0xFF & CharC->getSExtValue()) == 0 458 ? Str.size() 459 : Str.find(CharC->getSExtValue()); 460 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 461 return Constant::getNullValue(CI->getType()); 462 463 // strchr(s+n,c) -> gep(s+n+i,c) 464 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 465 } 466 467 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 468 Value *SrcStr = CI->getArgOperand(0); 469 Value *CharVal = CI->getArgOperand(1); 470 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 471 annotateNonNullNoUndefBasedOnAccess(CI, 0); 472 473 StringRef Str; 474 if (!getConstantStringInfo(SrcStr, Str)) { 475 // strrchr(s, 0) -> strchr(s, 0) 476 if (CharC && CharC->isZero()) 477 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 478 return nullptr; 479 } 480 481 // Try to expand strrchr to the memrchr nonstandard extension if it's 482 // available, or simply fail otherwise. 483 uint64_t NBytes = Str.size() + 1; // Include the terminating nul. 484 Type *IntPtrType = DL.getIntPtrType(CI->getContext()); 485 Value *Size = ConstantInt::get(IntPtrType, NBytes); 486 return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI)); 487 } 488 489 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 490 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 491 if (Str1P == Str2P) // strcmp(x,x) -> 0 492 return ConstantInt::get(CI->getType(), 0); 493 494 StringRef Str1, Str2; 495 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 496 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 497 498 // strcmp(x, y) -> cnst (if both x and y are constant strings) 499 if (HasStr1 && HasStr2) 500 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 501 502 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 503 return B.CreateNeg(B.CreateZExt( 504 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 505 506 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 507 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 508 CI->getType()); 509 510 // strcmp(P, "x") -> memcmp(P, "x", 2) 511 uint64_t Len1 = GetStringLength(Str1P); 512 if (Len1) 513 annotateDereferenceableBytes(CI, 0, Len1); 514 uint64_t Len2 = GetStringLength(Str2P); 515 if (Len2) 516 annotateDereferenceableBytes(CI, 1, Len2); 517 518 if (Len1 && Len2) { 519 return copyFlags( 520 *CI, emitMemCmp(Str1P, Str2P, 521 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 522 std::min(Len1, Len2)), 523 B, DL, TLI)); 524 } 525 526 // strcmp to memcmp 527 if (!HasStr1 && HasStr2) { 528 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 529 return copyFlags( 530 *CI, 531 emitMemCmp(Str1P, Str2P, 532 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 533 B, DL, TLI)); 534 } else if (HasStr1 && !HasStr2) { 535 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 536 return copyFlags( 537 *CI, 538 emitMemCmp(Str1P, Str2P, 539 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 540 B, DL, TLI)); 541 } 542 543 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 544 return nullptr; 545 } 546 547 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 548 // arrays LHS and RHS and nonconstant Size. 549 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 550 Value *Size, bool StrNCmp, 551 IRBuilderBase &B, const DataLayout &DL); 552 553 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 554 Value *Str1P = CI->getArgOperand(0); 555 Value *Str2P = CI->getArgOperand(1); 556 Value *Size = CI->getArgOperand(2); 557 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 558 return ConstantInt::get(CI->getType(), 0); 559 560 if (isKnownNonZero(Size, DL)) 561 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 562 // Get the length argument if it is constant. 563 uint64_t Length; 564 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 565 Length = LengthArg->getZExtValue(); 566 else 567 return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL); 568 569 if (Length == 0) // strncmp(x,y,0) -> 0 570 return ConstantInt::get(CI->getType(), 0); 571 572 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 573 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 574 575 StringRef Str1, Str2; 576 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 577 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 578 579 // strncmp(x, y) -> cnst (if both x and y are constant strings) 580 if (HasStr1 && HasStr2) { 581 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 582 StringRef SubStr1 = substr(Str1, Length); 583 StringRef SubStr2 = substr(Str2, Length); 584 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 585 } 586 587 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 588 return B.CreateNeg(B.CreateZExt( 589 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 590 591 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 592 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 593 CI->getType()); 594 595 uint64_t Len1 = GetStringLength(Str1P); 596 if (Len1) 597 annotateDereferenceableBytes(CI, 0, Len1); 598 uint64_t Len2 = GetStringLength(Str2P); 599 if (Len2) 600 annotateDereferenceableBytes(CI, 1, Len2); 601 602 // strncmp to memcmp 603 if (!HasStr1 && HasStr2) { 604 Len2 = std::min(Len2, Length); 605 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 606 return copyFlags( 607 *CI, 608 emitMemCmp(Str1P, Str2P, 609 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 610 B, DL, TLI)); 611 } else if (HasStr1 && !HasStr2) { 612 Len1 = std::min(Len1, Length); 613 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 614 return copyFlags( 615 *CI, 616 emitMemCmp(Str1P, Str2P, 617 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 618 B, DL, TLI)); 619 } 620 621 return nullptr; 622 } 623 624 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 625 Value *Src = CI->getArgOperand(0); 626 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 627 uint64_t SrcLen = GetStringLength(Src); 628 if (SrcLen && Size) { 629 annotateDereferenceableBytes(CI, 0, SrcLen); 630 if (SrcLen <= Size->getZExtValue() + 1) 631 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 632 } 633 634 return nullptr; 635 } 636 637 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 638 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 639 if (Dst == Src) // strcpy(x,x) -> x 640 return Src; 641 642 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 643 // See if we can get the length of the input string. 644 uint64_t Len = GetStringLength(Src); 645 if (Len) 646 annotateDereferenceableBytes(CI, 1, Len); 647 else 648 return nullptr; 649 650 // We have enough information to now generate the memcpy call to do the 651 // copy for us. Make a memcpy to copy the nul byte with align = 1. 652 CallInst *NewCI = 653 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 654 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 655 NewCI->setAttributes(CI->getAttributes()); 656 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 657 copyFlags(*CI, NewCI); 658 return Dst; 659 } 660 661 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 662 Function *Callee = CI->getCalledFunction(); 663 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 664 665 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 666 if (CI->use_empty()) 667 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 668 669 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 670 Value *StrLen = emitStrLen(Src, B, DL, TLI); 671 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 672 } 673 674 // See if we can get the length of the input string. 675 uint64_t Len = GetStringLength(Src); 676 if (Len) 677 annotateDereferenceableBytes(CI, 1, Len); 678 else 679 return nullptr; 680 681 Type *PT = Callee->getFunctionType()->getParamType(0); 682 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 683 Value *DstEnd = B.CreateInBoundsGEP( 684 B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 685 686 // We have enough information to now generate the memcpy call to do the 687 // copy for us. Make a memcpy to copy the nul byte with align = 1. 688 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 689 NewCI->setAttributes(CI->getAttributes()); 690 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 691 copyFlags(*CI, NewCI); 692 return DstEnd; 693 } 694 695 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 696 Function *Callee = CI->getCalledFunction(); 697 Value *Dst = CI->getArgOperand(0); 698 Value *Src = CI->getArgOperand(1); 699 Value *Size = CI->getArgOperand(2); 700 annotateNonNullNoUndefBasedOnAccess(CI, 0); 701 if (isKnownNonZero(Size, DL)) 702 annotateNonNullNoUndefBasedOnAccess(CI, 1); 703 704 uint64_t Len; 705 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 706 Len = LengthArg->getZExtValue(); 707 else 708 return nullptr; 709 710 // strncpy(x, y, 0) -> x 711 if (Len == 0) 712 return Dst; 713 714 // See if we can get the length of the input string. 715 uint64_t SrcLen = GetStringLength(Src); 716 if (SrcLen) { 717 annotateDereferenceableBytes(CI, 1, SrcLen); 718 --SrcLen; // Unbias length. 719 } else { 720 return nullptr; 721 } 722 723 if (SrcLen == 0) { 724 // strncpy(x, "", y) -> memset(x, '\0', y) 725 Align MemSetAlign = 726 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 727 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 728 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 729 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 730 CI->getContext(), 0, ArgAttrs)); 731 copyFlags(*CI, NewCI); 732 return Dst; 733 } 734 735 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 736 if (Len > SrcLen + 1) { 737 if (Len <= 128) { 738 StringRef Str; 739 if (!getConstantStringInfo(Src, Str)) 740 return nullptr; 741 std::string SrcStr = Str.str(); 742 SrcStr.resize(Len, '\0'); 743 Src = B.CreateGlobalString(SrcStr, "str"); 744 } else { 745 return nullptr; 746 } 747 } 748 749 Type *PT = Callee->getFunctionType()->getParamType(0); 750 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 751 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 752 ConstantInt::get(DL.getIntPtrType(PT), Len)); 753 NewCI->setAttributes(CI->getAttributes()); 754 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 755 copyFlags(*CI, NewCI); 756 return Dst; 757 } 758 759 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 760 unsigned CharSize, 761 Value *Bound) { 762 Value *Src = CI->getArgOperand(0); 763 Type *CharTy = B.getIntNTy(CharSize); 764 765 if (isOnlyUsedInZeroEqualityComparison(CI) && 766 (!Bound || isKnownNonZero(Bound, DL))) { 767 // Fold strlen: 768 // strlen(x) != 0 --> *x != 0 769 // strlen(x) == 0 --> *x == 0 770 // and likewise strnlen with constant N > 0: 771 // strnlen(x, N) != 0 --> *x != 0 772 // strnlen(x, N) == 0 --> *x == 0 773 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 774 CI->getType()); 775 } 776 777 if (Bound) { 778 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 779 if (BoundCst->isZero()) 780 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 781 return ConstantInt::get(CI->getType(), 0); 782 783 if (BoundCst->isOne()) { 784 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 785 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 786 Value *ZeroChar = ConstantInt::get(CharTy, 0); 787 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 788 return B.CreateZExt(Cmp, CI->getType()); 789 } 790 } 791 } 792 793 if (uint64_t Len = GetStringLength(Src, CharSize)) { 794 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 795 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 796 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 797 if (Bound) 798 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 799 return LenC; 800 } 801 802 if (Bound) 803 // Punt for strnlen for now. 804 return nullptr; 805 806 // If s is a constant pointer pointing to a string literal, we can fold 807 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 808 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 809 // We only try to simplify strlen when the pointer s points to an array 810 // of i8. Otherwise, we would need to scale the offset x before doing the 811 // subtraction. This will make the optimization more complex, and it's not 812 // very useful because calling strlen for a pointer of other types is 813 // very uncommon. 814 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 815 // TODO: Handle subobjects. 816 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 817 return nullptr; 818 819 ConstantDataArraySlice Slice; 820 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 821 uint64_t NullTermIdx; 822 if (Slice.Array == nullptr) { 823 NullTermIdx = 0; 824 } else { 825 NullTermIdx = ~((uint64_t)0); 826 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 827 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 828 NullTermIdx = I; 829 break; 830 } 831 } 832 // If the string does not have '\0', leave it to strlen to compute 833 // its length. 834 if (NullTermIdx == ~((uint64_t)0)) 835 return nullptr; 836 } 837 838 Value *Offset = GEP->getOperand(2); 839 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 840 uint64_t ArrSize = 841 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 842 843 // If Offset is not provably in the range [0, NullTermIdx], we can still 844 // optimize if we can prove that the program has undefined behavior when 845 // Offset is outside that range. That is the case when GEP->getOperand(0) 846 // is a pointer to an object whose memory extent is NullTermIdx+1. 847 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 848 (isa<GlobalVariable>(GEP->getOperand(0)) && 849 NullTermIdx == ArrSize - 1)) { 850 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 851 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 852 Offset); 853 } 854 } 855 } 856 857 // strlen(x?"foo":"bars") --> x ? 3 : 4 858 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 859 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 860 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 861 if (LenTrue && LenFalse) { 862 ORE.emit([&]() { 863 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 864 << "folded strlen(select) to select of constants"; 865 }); 866 return B.CreateSelect(SI->getCondition(), 867 ConstantInt::get(CI->getType(), LenTrue - 1), 868 ConstantInt::get(CI->getType(), LenFalse - 1)); 869 } 870 } 871 872 return nullptr; 873 } 874 875 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 876 if (Value *V = optimizeStringLength(CI, B, 8)) 877 return V; 878 annotateNonNullNoUndefBasedOnAccess(CI, 0); 879 return nullptr; 880 } 881 882 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 883 Value *Bound = CI->getArgOperand(1); 884 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 885 return V; 886 887 if (isKnownNonZero(Bound, DL)) 888 annotateNonNullNoUndefBasedOnAccess(CI, 0); 889 return nullptr; 890 } 891 892 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 893 Module &M = *CI->getModule(); 894 unsigned WCharSize = TLI->getWCharSize(M) * 8; 895 // We cannot perform this optimization without wchar_size metadata. 896 if (WCharSize == 0) 897 return nullptr; 898 899 return optimizeStringLength(CI, B, WCharSize); 900 } 901 902 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 903 StringRef S1, S2; 904 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 905 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 906 907 // strpbrk(s, "") -> nullptr 908 // strpbrk("", s) -> nullptr 909 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 910 return Constant::getNullValue(CI->getType()); 911 912 // Constant folding. 913 if (HasS1 && HasS2) { 914 size_t I = S1.find_first_of(S2); 915 if (I == StringRef::npos) // No match. 916 return Constant::getNullValue(CI->getType()); 917 918 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0), 919 B.getInt64(I), "strpbrk"); 920 } 921 922 // strpbrk(s, "a") -> strchr(s, 'a') 923 if (HasS2 && S2.size() == 1) 924 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 925 926 return nullptr; 927 } 928 929 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 930 Value *EndPtr = CI->getArgOperand(1); 931 if (isa<ConstantPointerNull>(EndPtr)) { 932 // With a null EndPtr, this function won't capture the main argument. 933 // It would be readonly too, except that it still may write to errno. 934 CI->addParamAttr(0, Attribute::NoCapture); 935 } 936 937 return nullptr; 938 } 939 940 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 941 StringRef S1, S2; 942 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 943 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 944 945 // strspn(s, "") -> 0 946 // strspn("", s) -> 0 947 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 948 return Constant::getNullValue(CI->getType()); 949 950 // Constant folding. 951 if (HasS1 && HasS2) { 952 size_t Pos = S1.find_first_not_of(S2); 953 if (Pos == StringRef::npos) 954 Pos = S1.size(); 955 return ConstantInt::get(CI->getType(), Pos); 956 } 957 958 return nullptr; 959 } 960 961 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 962 StringRef S1, S2; 963 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 964 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 965 966 // strcspn("", s) -> 0 967 if (HasS1 && S1.empty()) 968 return Constant::getNullValue(CI->getType()); 969 970 // Constant folding. 971 if (HasS1 && HasS2) { 972 size_t Pos = S1.find_first_of(S2); 973 if (Pos == StringRef::npos) 974 Pos = S1.size(); 975 return ConstantInt::get(CI->getType(), Pos); 976 } 977 978 // strcspn(s, "") -> strlen(s) 979 if (HasS2 && S2.empty()) 980 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 981 982 return nullptr; 983 } 984 985 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 986 // fold strstr(x, x) -> x. 987 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 988 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 989 990 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 991 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 992 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 993 if (!StrLen) 994 return nullptr; 995 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 996 StrLen, B, DL, TLI); 997 if (!StrNCmp) 998 return nullptr; 999 for (User *U : llvm::make_early_inc_range(CI->users())) { 1000 ICmpInst *Old = cast<ICmpInst>(U); 1001 Value *Cmp = 1002 B.CreateICmp(Old->getPredicate(), StrNCmp, 1003 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 1004 replaceAllUsesWith(Old, Cmp); 1005 } 1006 return CI; 1007 } 1008 1009 // See if either input string is a constant string. 1010 StringRef SearchStr, ToFindStr; 1011 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 1012 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 1013 1014 // fold strstr(x, "") -> x. 1015 if (HasStr2 && ToFindStr.empty()) 1016 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 1017 1018 // If both strings are known, constant fold it. 1019 if (HasStr1 && HasStr2) { 1020 size_t Offset = SearchStr.find(ToFindStr); 1021 1022 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 1023 return Constant::getNullValue(CI->getType()); 1024 1025 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 1026 Value *Result = castToCStr(CI->getArgOperand(0), B); 1027 Result = 1028 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 1029 return B.CreateBitCast(Result, CI->getType()); 1030 } 1031 1032 // fold strstr(x, "y") -> strchr(x, 'y'). 1033 if (HasStr2 && ToFindStr.size() == 1) { 1034 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 1035 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 1036 } 1037 1038 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 1039 return nullptr; 1040 } 1041 1042 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 1043 Value *SrcStr = CI->getArgOperand(0); 1044 Value *Size = CI->getArgOperand(2); 1045 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1046 Value *CharVal = CI->getArgOperand(1); 1047 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1048 Value *NullPtr = Constant::getNullValue(CI->getType()); 1049 1050 if (LenC) { 1051 if (LenC->isZero()) 1052 // Fold memrchr(x, y, 0) --> null. 1053 return NullPtr; 1054 1055 if (LenC->isOne()) { 1056 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 1057 // constant or otherwise. 1058 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 1059 // Slice off the character's high end bits. 1060 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1061 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 1062 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 1063 } 1064 } 1065 1066 StringRef Str; 1067 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 1068 return nullptr; 1069 1070 if (Str.size() == 0) 1071 // If the array is empty fold memrchr(A, C, N) to null for any value 1072 // of C and N on the basis that the only valid value of N is zero 1073 // (otherwise the call is undefined). 1074 return NullPtr; 1075 1076 uint64_t EndOff = UINT64_MAX; 1077 if (LenC) { 1078 EndOff = LenC->getZExtValue(); 1079 if (Str.size() < EndOff) 1080 // Punt out-of-bounds accesses to sanitizers and/or libc. 1081 return nullptr; 1082 } 1083 1084 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 1085 // Fold memrchr(S, C, N) for a constant C. 1086 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 1087 if (Pos == StringRef::npos) 1088 // When the character is not in the source array fold the result 1089 // to null regardless of Size. 1090 return NullPtr; 1091 1092 if (LenC) 1093 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 1094 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 1095 1096 if (Str.find(Str[Pos]) == Pos) { 1097 // When there is just a single occurrence of C in S, i.e., the one 1098 // in Str[Pos], fold 1099 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 1100 // for nonconstant N. 1101 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1102 "memrchr.cmp"); 1103 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, 1104 B.getInt64(Pos), "memrchr.ptr_plus"); 1105 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 1106 } 1107 } 1108 1109 // Truncate the string to search at most EndOff characters. 1110 Str = Str.substr(0, EndOff); 1111 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 1112 return nullptr; 1113 1114 // If the source array consists of all equal characters, then for any 1115 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 1116 // N != 0 && *S == C ? S + N - 1 : null 1117 Type *SizeTy = Size->getType(); 1118 Type *Int8Ty = B.getInt8Ty(); 1119 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1120 // Slice off the sought character's high end bits. 1121 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1122 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 1123 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 1124 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 1125 Value *SrcPlus = 1126 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 1127 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 1128 } 1129 1130 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 1131 Value *SrcStr = CI->getArgOperand(0); 1132 Value *Size = CI->getArgOperand(2); 1133 1134 if (isKnownNonZero(Size, DL)) { 1135 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1136 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1137 return memChrToCharCompare(CI, Size, B, DL); 1138 } 1139 1140 Value *CharVal = CI->getArgOperand(1); 1141 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1142 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1143 Value *NullPtr = Constant::getNullValue(CI->getType()); 1144 1145 // memchr(x, y, 0) -> null 1146 if (LenC) { 1147 if (LenC->isZero()) 1148 return NullPtr; 1149 1150 if (LenC->isOne()) { 1151 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1152 // constant or otherwise. 1153 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1154 // Slice off the character's high end bits. 1155 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1156 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1157 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1158 } 1159 } 1160 1161 StringRef Str; 1162 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 1163 return nullptr; 1164 1165 if (CharC) { 1166 size_t Pos = Str.find(CharC->getZExtValue()); 1167 if (Pos == StringRef::npos) 1168 // When the character is not in the source array fold the result 1169 // to null regardless of Size. 1170 return NullPtr; 1171 1172 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1173 // When the constant Size is less than or equal to the character 1174 // position also fold the result to null. 1175 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1176 "memchr.cmp"); 1177 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 1178 "memchr.ptr"); 1179 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1180 } 1181 1182 if (Str.size() == 0) 1183 // If the array is empty fold memchr(A, C, N) to null for any value 1184 // of C and N on the basis that the only valid value of N is zero 1185 // (otherwise the call is undefined). 1186 return NullPtr; 1187 1188 if (LenC) 1189 Str = substr(Str, LenC->getZExtValue()); 1190 1191 size_t Pos = Str.find_first_not_of(Str[0]); 1192 if (Pos == StringRef::npos 1193 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) { 1194 // If the source array consists of at most two consecutive sequences 1195 // of the same characters, then for any C and N (whether in bounds or 1196 // not), fold memchr(S, C, N) to 1197 // N != 0 && *S == C ? S : null 1198 // or for the two sequences to: 1199 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null) 1200 // ^Sel2 ^Sel1 are denoted above. 1201 // The latter makes it also possible to fold strchr() calls with strings 1202 // of the same characters. 1203 Type *SizeTy = Size->getType(); 1204 Type *Int8Ty = B.getInt8Ty(); 1205 1206 // Slice off the sought character's high end bits. 1207 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1208 1209 Value *Sel1 = NullPtr; 1210 if (Pos != StringRef::npos) { 1211 // Handle two consecutive sequences of the same characters. 1212 Value *PosVal = ConstantInt::get(SizeTy, Pos); 1213 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]); 1214 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos); 1215 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal); 1216 Value *And = B.CreateAnd(CEqSPos, NGtPos); 1217 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal); 1218 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1"); 1219 } 1220 1221 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]); 1222 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal); 1223 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1224 Value *And = B.CreateAnd(NNeZ, CEqS0); 1225 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2"); 1226 } 1227 1228 if (!LenC) { 1229 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1230 // S is dereferenceable so it's safe to load from it and fold 1231 // memchr(S, C, N) == S to N && *S == C for any C and N. 1232 // TODO: This is safe even even for nonconstant S. 1233 return memChrToCharCompare(CI, Size, B, DL); 1234 1235 // From now on we need a constant length and constant array. 1236 return nullptr; 1237 } 1238 1239 // If the char is variable but the input str and length are not we can turn 1240 // this memchr call into a simple bit field test. Of course this only works 1241 // when the return value is only checked against null. 1242 // 1243 // It would be really nice to reuse switch lowering here but we can't change 1244 // the CFG at this point. 1245 // 1246 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1247 // != 0 1248 // after bounds check. 1249 if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1250 return nullptr; 1251 1252 unsigned char Max = 1253 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1254 reinterpret_cast<const unsigned char *>(Str.end())); 1255 1256 // Make sure the bit field we're about to create fits in a register on the 1257 // target. 1258 // FIXME: On a 64 bit architecture this prevents us from using the 1259 // interesting range of alpha ascii chars. We could do better by emitting 1260 // two bitfields or shifting the range by 64 if no lower chars are used. 1261 if (!DL.fitsInLegalInteger(Max + 1)) 1262 return nullptr; 1263 1264 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1265 // creating unnecessary illegal types. 1266 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1267 1268 // Now build the bit field. 1269 APInt Bitfield(Width, 0); 1270 for (char C : Str) 1271 Bitfield.setBit((unsigned char)C); 1272 Value *BitfieldC = B.getInt(Bitfield); 1273 1274 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1275 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1276 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1277 1278 // First check that the bit field access is within bounds. 1279 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1280 "memchr.bounds"); 1281 1282 // Create code that checks if the given bit is set in the field. 1283 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1284 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1285 1286 // Finally merge both checks and cast to pointer type. The inttoptr 1287 // implicitly zexts the i1 to intptr type. 1288 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1289 CI->getType()); 1290 } 1291 1292 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 1293 // arrays LHS and RHS and nonconstant Size. 1294 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 1295 Value *Size, bool StrNCmp, 1296 IRBuilderBase &B, const DataLayout &DL) { 1297 if (LHS == RHS) // memcmp(s,s,x) -> 0 1298 return Constant::getNullValue(CI->getType()); 1299 1300 StringRef LStr, RStr; 1301 if (!getConstantStringInfo(LHS, LStr, 0, /*TrimAtNul=*/false) || 1302 !getConstantStringInfo(RHS, RStr, 0, /*TrimAtNul=*/false)) 1303 return nullptr; 1304 1305 // If the contents of both constant arrays are known, fold a call to 1306 // memcmp(A, B, N) to 1307 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0) 1308 // where Pos is the first mismatch between A and B, determined below. 1309 1310 uint64_t Pos = 0; 1311 Value *Zero = ConstantInt::get(CI->getType(), 0); 1312 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) { 1313 if (Pos == MinSize || 1314 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) { 1315 // One array is a leading part of the other of equal or greater 1316 // size, or for strncmp, the arrays are equal strings. 1317 // Fold the result to zero. Size is assumed to be in bounds, since 1318 // otherwise the call would be undefined. 1319 return Zero; 1320 } 1321 1322 if (LStr[Pos] != RStr[Pos]) 1323 break; 1324 } 1325 1326 // Normalize the result. 1327 typedef unsigned char UChar; 1328 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1; 1329 Value *MaxSize = ConstantInt::get(Size->getType(), Pos); 1330 Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize); 1331 Value *Res = ConstantInt::get(CI->getType(), IRes); 1332 return B.CreateSelect(Cmp, Zero, Res); 1333 } 1334 1335 // Optimize a memcmp call CI with constant size Len. 1336 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1337 uint64_t Len, IRBuilderBase &B, 1338 const DataLayout &DL) { 1339 if (Len == 0) // memcmp(s1,s2,0) -> 0 1340 return Constant::getNullValue(CI->getType()); 1341 1342 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1343 if (Len == 1) { 1344 Value *LHSV = 1345 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 1346 CI->getType(), "lhsv"); 1347 Value *RHSV = 1348 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 1349 CI->getType(), "rhsv"); 1350 return B.CreateSub(LHSV, RHSV, "chardiff"); 1351 } 1352 1353 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1354 // TODO: The case where both inputs are constants does not need to be limited 1355 // to legal integers or equality comparison. See block below this. 1356 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1357 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1358 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1359 1360 // First, see if we can fold either argument to a constant. 1361 Value *LHSV = nullptr; 1362 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1363 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1364 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1365 } 1366 Value *RHSV = nullptr; 1367 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1368 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1369 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1370 } 1371 1372 // Don't generate unaligned loads. If either source is constant data, 1373 // alignment doesn't matter for that source because there is no load. 1374 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1375 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1376 if (!LHSV) { 1377 Type *LHSPtrTy = 1378 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1379 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1380 } 1381 if (!RHSV) { 1382 Type *RHSPtrTy = 1383 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1384 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1385 } 1386 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1387 } 1388 } 1389 1390 return nullptr; 1391 } 1392 1393 // Most simplifications for memcmp also apply to bcmp. 1394 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1395 IRBuilderBase &B) { 1396 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1397 Value *Size = CI->getArgOperand(2); 1398 1399 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1400 1401 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL)) 1402 return Res; 1403 1404 // Handle constant Size. 1405 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1406 if (!LenC) 1407 return nullptr; 1408 1409 return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL); 1410 } 1411 1412 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1413 Module *M = CI->getModule(); 1414 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1415 return V; 1416 1417 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1418 // bcmp can be more efficient than memcmp because it only has to know that 1419 // there is a difference, not how different one is to the other. 1420 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1421 isOnlyUsedInZeroEqualityComparison(CI)) { 1422 Value *LHS = CI->getArgOperand(0); 1423 Value *RHS = CI->getArgOperand(1); 1424 Value *Size = CI->getArgOperand(2); 1425 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1426 } 1427 1428 return nullptr; 1429 } 1430 1431 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1432 return optimizeMemCmpBCmpCommon(CI, B); 1433 } 1434 1435 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1436 Value *Size = CI->getArgOperand(2); 1437 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1438 if (isa<IntrinsicInst>(CI)) 1439 return nullptr; 1440 1441 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1442 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1443 CI->getArgOperand(1), Align(1), Size); 1444 NewCI->setAttributes(CI->getAttributes()); 1445 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1446 copyFlags(*CI, NewCI); 1447 return CI->getArgOperand(0); 1448 } 1449 1450 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1451 Value *Dst = CI->getArgOperand(0); 1452 Value *Src = CI->getArgOperand(1); 1453 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1454 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1455 StringRef SrcStr; 1456 if (CI->use_empty() && Dst == Src) 1457 return Dst; 1458 // memccpy(d, s, c, 0) -> nullptr 1459 if (N) { 1460 if (N->isNullValue()) 1461 return Constant::getNullValue(CI->getType()); 1462 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1463 /*TrimAtNul=*/false) || 1464 // TODO: Handle zeroinitializer. 1465 !StopChar) 1466 return nullptr; 1467 } else { 1468 return nullptr; 1469 } 1470 1471 // Wrap arg 'c' of type int to char 1472 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1473 if (Pos == StringRef::npos) { 1474 if (N->getZExtValue() <= SrcStr.size()) { 1475 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1476 CI->getArgOperand(3))); 1477 return Constant::getNullValue(CI->getType()); 1478 } 1479 return nullptr; 1480 } 1481 1482 Value *NewN = 1483 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1484 // memccpy -> llvm.memcpy 1485 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1486 return Pos + 1 <= N->getZExtValue() 1487 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1488 : Constant::getNullValue(CI->getType()); 1489 } 1490 1491 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1492 Value *Dst = CI->getArgOperand(0); 1493 Value *N = CI->getArgOperand(2); 1494 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1495 CallInst *NewCI = 1496 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1497 // Propagate attributes, but memcpy has no return value, so make sure that 1498 // any return attributes are compliant. 1499 // TODO: Attach return value attributes to the 1st operand to preserve them? 1500 NewCI->setAttributes(CI->getAttributes()); 1501 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1502 copyFlags(*CI, NewCI); 1503 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1504 } 1505 1506 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1507 Value *Size = CI->getArgOperand(2); 1508 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1509 if (isa<IntrinsicInst>(CI)) 1510 return nullptr; 1511 1512 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1513 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1514 CI->getArgOperand(1), Align(1), Size); 1515 NewCI->setAttributes(CI->getAttributes()); 1516 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1517 copyFlags(*CI, NewCI); 1518 return CI->getArgOperand(0); 1519 } 1520 1521 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1522 Value *Size = CI->getArgOperand(2); 1523 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1524 if (isa<IntrinsicInst>(CI)) 1525 return nullptr; 1526 1527 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1528 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1529 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1530 NewCI->setAttributes(CI->getAttributes()); 1531 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1532 copyFlags(*CI, NewCI); 1533 return CI->getArgOperand(0); 1534 } 1535 1536 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1537 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1538 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1539 1540 return nullptr; 1541 } 1542 1543 //===----------------------------------------------------------------------===// 1544 // Math Library Optimizations 1545 //===----------------------------------------------------------------------===// 1546 1547 // Replace a libcall \p CI with a call to intrinsic \p IID 1548 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1549 Intrinsic::ID IID) { 1550 // Propagate fast-math flags from the existing call to the new call. 1551 IRBuilderBase::FastMathFlagGuard Guard(B); 1552 B.setFastMathFlags(CI->getFastMathFlags()); 1553 1554 Module *M = CI->getModule(); 1555 Value *V = CI->getArgOperand(0); 1556 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1557 CallInst *NewCall = B.CreateCall(F, V); 1558 NewCall->takeName(CI); 1559 return copyFlags(*CI, NewCall); 1560 } 1561 1562 /// Return a variant of Val with float type. 1563 /// Currently this works in two cases: If Val is an FPExtension of a float 1564 /// value to something bigger, simply return the operand. 1565 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1566 /// loss of precision do so. 1567 static Value *valueHasFloatPrecision(Value *Val) { 1568 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1569 Value *Op = Cast->getOperand(0); 1570 if (Op->getType()->isFloatTy()) 1571 return Op; 1572 } 1573 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1574 APFloat F = Const->getValueAPF(); 1575 bool losesInfo; 1576 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1577 &losesInfo); 1578 if (!losesInfo) 1579 return ConstantFP::get(Const->getContext(), F); 1580 } 1581 return nullptr; 1582 } 1583 1584 /// Shrink double -> float functions. 1585 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1586 bool isBinary, const TargetLibraryInfo *TLI, 1587 bool isPrecise = false) { 1588 Function *CalleeFn = CI->getCalledFunction(); 1589 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1590 return nullptr; 1591 1592 // If not all the uses of the function are converted to float, then bail out. 1593 // This matters if the precision of the result is more important than the 1594 // precision of the arguments. 1595 if (isPrecise) 1596 for (User *U : CI->users()) { 1597 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1598 if (!Cast || !Cast->getType()->isFloatTy()) 1599 return nullptr; 1600 } 1601 1602 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1603 Value *V[2]; 1604 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1605 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1606 if (!V[0] || (isBinary && !V[1])) 1607 return nullptr; 1608 1609 // If call isn't an intrinsic, check that it isn't within a function with the 1610 // same name as the float version of this call, otherwise the result is an 1611 // infinite loop. For example, from MinGW-w64: 1612 // 1613 // float expf(float val) { return (float) exp((double) val); } 1614 StringRef CalleeName = CalleeFn->getName(); 1615 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1616 if (!IsIntrinsic) { 1617 StringRef CallerName = CI->getFunction()->getName(); 1618 if (!CallerName.empty() && CallerName.back() == 'f' && 1619 CallerName.size() == (CalleeName.size() + 1) && 1620 CallerName.startswith(CalleeName)) 1621 return nullptr; 1622 } 1623 1624 // Propagate the math semantics from the current function to the new function. 1625 IRBuilderBase::FastMathFlagGuard Guard(B); 1626 B.setFastMathFlags(CI->getFastMathFlags()); 1627 1628 // g((double) float) -> (double) gf(float) 1629 Value *R; 1630 if (IsIntrinsic) { 1631 Module *M = CI->getModule(); 1632 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1633 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1634 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1635 } else { 1636 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1637 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1638 CalleeAttrs) 1639 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1640 } 1641 return B.CreateFPExt(R, B.getDoubleTy()); 1642 } 1643 1644 /// Shrink double -> float for unary functions. 1645 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1646 const TargetLibraryInfo *TLI, 1647 bool isPrecise = false) { 1648 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1649 } 1650 1651 /// Shrink double -> float for binary functions. 1652 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1653 const TargetLibraryInfo *TLI, 1654 bool isPrecise = false) { 1655 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1656 } 1657 1658 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1659 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1660 if (!CI->isFast()) 1661 return nullptr; 1662 1663 // Propagate fast-math flags from the existing call to new instructions. 1664 IRBuilderBase::FastMathFlagGuard Guard(B); 1665 B.setFastMathFlags(CI->getFastMathFlags()); 1666 1667 Value *Real, *Imag; 1668 if (CI->arg_size() == 1) { 1669 Value *Op = CI->getArgOperand(0); 1670 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1671 Real = B.CreateExtractValue(Op, 0, "real"); 1672 Imag = B.CreateExtractValue(Op, 1, "imag"); 1673 } else { 1674 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1675 Real = CI->getArgOperand(0); 1676 Imag = CI->getArgOperand(1); 1677 } 1678 1679 Value *RealReal = B.CreateFMul(Real, Real); 1680 Value *ImagImag = B.CreateFMul(Imag, Imag); 1681 1682 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1683 CI->getType()); 1684 return copyFlags( 1685 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1686 } 1687 1688 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1689 IRBuilderBase &B) { 1690 if (!isa<FPMathOperator>(Call)) 1691 return nullptr; 1692 1693 IRBuilderBase::FastMathFlagGuard Guard(B); 1694 B.setFastMathFlags(Call->getFastMathFlags()); 1695 1696 // TODO: Can this be shared to also handle LLVM intrinsics? 1697 Value *X; 1698 switch (Func) { 1699 case LibFunc_sin: 1700 case LibFunc_sinf: 1701 case LibFunc_sinl: 1702 case LibFunc_tan: 1703 case LibFunc_tanf: 1704 case LibFunc_tanl: 1705 // sin(-X) --> -sin(X) 1706 // tan(-X) --> -tan(X) 1707 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1708 return B.CreateFNeg( 1709 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1710 break; 1711 case LibFunc_cos: 1712 case LibFunc_cosf: 1713 case LibFunc_cosl: 1714 // cos(-X) --> cos(X) 1715 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1716 return copyFlags(*Call, 1717 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1718 break; 1719 default: 1720 break; 1721 } 1722 return nullptr; 1723 } 1724 1725 // Return a properly extended integer (DstWidth bits wide) if the operation is 1726 // an itofp. 1727 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1728 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1729 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1730 // Make sure that the exponent fits inside an "int" of size DstWidth, 1731 // thus avoiding any range issues that FP has not. 1732 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1733 if (BitWidth < DstWidth || 1734 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1735 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1736 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1737 } 1738 1739 return nullptr; 1740 } 1741 1742 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1743 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1744 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1745 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1746 Module *M = Pow->getModule(); 1747 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1748 AttributeList Attrs; // Attributes are only meaningful on the original call 1749 Module *Mod = Pow->getModule(); 1750 Type *Ty = Pow->getType(); 1751 bool Ignored; 1752 1753 // Evaluate special cases related to a nested function as the base. 1754 1755 // pow(exp(x), y) -> exp(x * y) 1756 // pow(exp2(x), y) -> exp2(x * y) 1757 // If exp{,2}() is used only once, it is better to fold two transcendental 1758 // math functions into one. If used again, exp{,2}() would still have to be 1759 // called with the original argument, then keep both original transcendental 1760 // functions. However, this transformation is only safe with fully relaxed 1761 // math semantics, since, besides rounding differences, it changes overflow 1762 // and underflow behavior quite dramatically. For example: 1763 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1764 // Whereas: 1765 // exp(1000 * 0.001) = exp(1) 1766 // TODO: Loosen the requirement for fully relaxed math semantics. 1767 // TODO: Handle exp10() when more targets have it available. 1768 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1769 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1770 LibFunc LibFn; 1771 1772 Function *CalleeFn = BaseFn->getCalledFunction(); 1773 if (CalleeFn && 1774 TLI->getLibFunc(CalleeFn->getName(), LibFn) && 1775 isLibFuncEmittable(M, TLI, LibFn)) { 1776 StringRef ExpName; 1777 Intrinsic::ID ID; 1778 Value *ExpFn; 1779 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1780 1781 switch (LibFn) { 1782 default: 1783 return nullptr; 1784 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1785 ExpName = TLI->getName(LibFunc_exp); 1786 ID = Intrinsic::exp; 1787 LibFnFloat = LibFunc_expf; 1788 LibFnDouble = LibFunc_exp; 1789 LibFnLongDouble = LibFunc_expl; 1790 break; 1791 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1792 ExpName = TLI->getName(LibFunc_exp2); 1793 ID = Intrinsic::exp2; 1794 LibFnFloat = LibFunc_exp2f; 1795 LibFnDouble = LibFunc_exp2; 1796 LibFnLongDouble = LibFunc_exp2l; 1797 break; 1798 } 1799 1800 // Create new exp{,2}() with the product as its argument. 1801 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1802 ExpFn = BaseFn->doesNotAccessMemory() 1803 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1804 FMul, ExpName) 1805 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1806 LibFnLongDouble, B, 1807 BaseFn->getAttributes()); 1808 1809 // Since the new exp{,2}() is different from the original one, dead code 1810 // elimination cannot be trusted to remove it, since it may have side 1811 // effects (e.g., errno). When the only consumer for the original 1812 // exp{,2}() is pow(), then it has to be explicitly erased. 1813 substituteInParent(BaseFn, ExpFn); 1814 return ExpFn; 1815 } 1816 } 1817 1818 // Evaluate special cases related to a constant base. 1819 1820 const APFloat *BaseF; 1821 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1822 return nullptr; 1823 1824 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1825 if (match(Base, m_SpecificFP(2.0)) && 1826 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1827 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1828 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1829 return copyFlags(*Pow, 1830 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 1831 TLI, LibFunc_ldexp, LibFunc_ldexpf, 1832 LibFunc_ldexpl, B, Attrs)); 1833 } 1834 1835 // pow(2.0 ** n, x) -> exp2(n * x) 1836 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1837 APFloat BaseR = APFloat(1.0); 1838 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1839 BaseR = BaseR / *BaseF; 1840 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1841 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1842 APSInt NI(64, false); 1843 if ((IsInteger || IsReciprocal) && 1844 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1845 APFloat::opOK && 1846 NI > 1 && NI.isPowerOf2()) { 1847 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1848 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1849 if (Pow->doesNotAccessMemory()) 1850 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1851 Mod, Intrinsic::exp2, Ty), 1852 FMul, "exp2")); 1853 else 1854 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1855 LibFunc_exp2f, 1856 LibFunc_exp2l, B, Attrs)); 1857 } 1858 } 1859 1860 // pow(10.0, x) -> exp10(x) 1861 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1862 if (match(Base, m_SpecificFP(10.0)) && 1863 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1864 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 1865 LibFunc_exp10f, LibFunc_exp10l, 1866 B, Attrs)); 1867 1868 // pow(x, y) -> exp2(log2(x) * y) 1869 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1870 !BaseF->isNegative()) { 1871 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1872 // Luckily optimizePow has already handled the x == 1 case. 1873 assert(!match(Base, m_FPOne()) && 1874 "pow(1.0, y) should have been simplified earlier!"); 1875 1876 Value *Log = nullptr; 1877 if (Ty->isFloatTy()) 1878 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1879 else if (Ty->isDoubleTy()) 1880 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1881 1882 if (Log) { 1883 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1884 if (Pow->doesNotAccessMemory()) 1885 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1886 Mod, Intrinsic::exp2, Ty), 1887 FMul, "exp2")); 1888 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 1889 LibFunc_exp2l)) 1890 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1891 LibFunc_exp2f, 1892 LibFunc_exp2l, B, Attrs)); 1893 } 1894 } 1895 1896 return nullptr; 1897 } 1898 1899 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1900 Module *M, IRBuilderBase &B, 1901 const TargetLibraryInfo *TLI) { 1902 // If errno is never set, then use the intrinsic for sqrt(). 1903 if (NoErrno) { 1904 Function *SqrtFn = 1905 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1906 return B.CreateCall(SqrtFn, V, "sqrt"); 1907 } 1908 1909 // Otherwise, use the libcall for sqrt(). 1910 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1911 LibFunc_sqrtl)) 1912 // TODO: We also should check that the target can in fact lower the sqrt() 1913 // libcall. We currently have no way to ask this question, so we ask if 1914 // the target has a sqrt() libcall, which is not exactly the same. 1915 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1916 LibFunc_sqrtl, B, Attrs); 1917 1918 return nullptr; 1919 } 1920 1921 /// Use square root in place of pow(x, +/-0.5). 1922 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1923 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1924 AttributeList Attrs; // Attributes are only meaningful on the original call 1925 Module *Mod = Pow->getModule(); 1926 Type *Ty = Pow->getType(); 1927 1928 const APFloat *ExpoF; 1929 if (!match(Expo, m_APFloat(ExpoF)) || 1930 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1931 return nullptr; 1932 1933 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1934 // so that requires fast-math-flags (afn or reassoc). 1935 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1936 return nullptr; 1937 1938 // If we have a pow() library call (accesses memory) and we can't guarantee 1939 // that the base is not an infinity, give up: 1940 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1941 // errno), but sqrt(-Inf) is required by various standards to set errno. 1942 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1943 !isKnownNeverInfinity(Base, TLI)) 1944 return nullptr; 1945 1946 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1947 if (!Sqrt) 1948 return nullptr; 1949 1950 // Handle signed zero base by expanding to fabs(sqrt(x)). 1951 if (!Pow->hasNoSignedZeros()) { 1952 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1953 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1954 } 1955 1956 Sqrt = copyFlags(*Pow, Sqrt); 1957 1958 // Handle non finite base by expanding to 1959 // (x == -infinity ? +infinity : sqrt(x)). 1960 if (!Pow->hasNoInfs()) { 1961 Value *PosInf = ConstantFP::getInfinity(Ty), 1962 *NegInf = ConstantFP::getInfinity(Ty, true); 1963 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1964 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1965 } 1966 1967 // If the exponent is negative, then get the reciprocal. 1968 if (ExpoF->isNegative()) 1969 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1970 1971 return Sqrt; 1972 } 1973 1974 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1975 IRBuilderBase &B) { 1976 Value *Args[] = {Base, Expo}; 1977 Type *Types[] = {Base->getType(), Expo->getType()}; 1978 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1979 return B.CreateCall(F, Args); 1980 } 1981 1982 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1983 Value *Base = Pow->getArgOperand(0); 1984 Value *Expo = Pow->getArgOperand(1); 1985 Function *Callee = Pow->getCalledFunction(); 1986 StringRef Name = Callee->getName(); 1987 Type *Ty = Pow->getType(); 1988 Module *M = Pow->getModule(); 1989 bool AllowApprox = Pow->hasApproxFunc(); 1990 bool Ignored; 1991 1992 // Propagate the math semantics from the call to any created instructions. 1993 IRBuilderBase::FastMathFlagGuard Guard(B); 1994 B.setFastMathFlags(Pow->getFastMathFlags()); 1995 // Evaluate special cases related to the base. 1996 1997 // pow(1.0, x) -> 1.0 1998 if (match(Base, m_FPOne())) 1999 return Base; 2000 2001 if (Value *Exp = replacePowWithExp(Pow, B)) 2002 return Exp; 2003 2004 // Evaluate special cases related to the exponent. 2005 2006 // pow(x, -1.0) -> 1.0 / x 2007 if (match(Expo, m_SpecificFP(-1.0))) 2008 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 2009 2010 // pow(x, +/-0.0) -> 1.0 2011 if (match(Expo, m_AnyZeroFP())) 2012 return ConstantFP::get(Ty, 1.0); 2013 2014 // pow(x, 1.0) -> x 2015 if (match(Expo, m_FPOne())) 2016 return Base; 2017 2018 // pow(x, 2.0) -> x * x 2019 if (match(Expo, m_SpecificFP(2.0))) 2020 return B.CreateFMul(Base, Base, "square"); 2021 2022 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 2023 return Sqrt; 2024 2025 // If we can approximate pow: 2026 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction 2027 // pow(x, n) -> powi(x, n) if n is a constant signed integer value 2028 const APFloat *ExpoF; 2029 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 2030 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 2031 APFloat ExpoA(abs(*ExpoF)); 2032 APFloat ExpoI(*ExpoF); 2033 Value *Sqrt = nullptr; 2034 if (!ExpoA.isInteger()) { 2035 APFloat Expo2 = ExpoA; 2036 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 2037 // is no floating point exception and the result is an integer, then 2038 // ExpoA == integer + 0.5 2039 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 2040 return nullptr; 2041 2042 if (!Expo2.isInteger()) 2043 return nullptr; 2044 2045 if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) != 2046 APFloat::opInexact) 2047 return nullptr; 2048 if (!ExpoI.isInteger()) 2049 return nullptr; 2050 ExpoF = &ExpoI; 2051 2052 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 2053 Pow->doesNotAccessMemory(), M, B, TLI); 2054 if (!Sqrt) 2055 return nullptr; 2056 } 2057 2058 // 0.5 fraction is now optionally handled. 2059 // Do pow -> powi for remaining integer exponent 2060 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 2061 if (ExpoF->isInteger() && 2062 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 2063 APFloat::opOK) { 2064 Value *PowI = copyFlags( 2065 *Pow, 2066 createPowWithIntegerExponent( 2067 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 2068 M, B)); 2069 2070 if (PowI && Sqrt) 2071 return B.CreateFMul(PowI, Sqrt); 2072 2073 return PowI; 2074 } 2075 } 2076 2077 // powf(x, itofp(y)) -> powi(x, y) 2078 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 2079 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2080 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 2081 } 2082 2083 // Shrink pow() to powf() if the arguments are single precision, 2084 // unless the result is expected to be double precision. 2085 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 2086 hasFloatVersion(M, Name)) { 2087 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 2088 return Shrunk; 2089 } 2090 2091 return nullptr; 2092 } 2093 2094 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 2095 Module *M = CI->getModule(); 2096 Function *Callee = CI->getCalledFunction(); 2097 AttributeList Attrs; // Attributes are only meaningful on the original call 2098 StringRef Name = Callee->getName(); 2099 Value *Ret = nullptr; 2100 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 2101 hasFloatVersion(M, Name)) 2102 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2103 2104 Type *Ty = CI->getType(); 2105 Value *Op = CI->getArgOperand(0); 2106 2107 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 2108 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 2109 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 2110 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 2111 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 2112 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 2113 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 2114 B, Attrs); 2115 } 2116 2117 return Ret; 2118 } 2119 2120 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 2121 Module *M = CI->getModule(); 2122 2123 // If we can shrink the call to a float function rather than a double 2124 // function, do that first. 2125 Function *Callee = CI->getCalledFunction(); 2126 StringRef Name = Callee->getName(); 2127 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 2128 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 2129 return Ret; 2130 2131 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 2132 // the intrinsics for improved optimization (for example, vectorization). 2133 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 2134 // From the C standard draft WG14/N1256: 2135 // "Ideally, fmax would be sensitive to the sign of zero, for example 2136 // fmax(-0.0, +0.0) would return +0; however, implementation in software 2137 // might be impractical." 2138 IRBuilderBase::FastMathFlagGuard Guard(B); 2139 FastMathFlags FMF = CI->getFastMathFlags(); 2140 FMF.setNoSignedZeros(); 2141 B.setFastMathFlags(FMF); 2142 2143 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 2144 : Intrinsic::maxnum; 2145 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 2146 return copyFlags( 2147 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 2148 } 2149 2150 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 2151 Function *LogFn = Log->getCalledFunction(); 2152 AttributeList Attrs; // Attributes are only meaningful on the original call 2153 StringRef LogNm = LogFn->getName(); 2154 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 2155 Module *Mod = Log->getModule(); 2156 Type *Ty = Log->getType(); 2157 Value *Ret = nullptr; 2158 2159 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 2160 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true); 2161 2162 // The earlier call must also be 'fast' in order to do these transforms. 2163 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2164 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2165 return Ret; 2166 2167 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2168 2169 // This is only applicable to log(), log2(), log10(). 2170 if (TLI->getLibFunc(LogNm, LogLb)) 2171 switch (LogLb) { 2172 case LibFunc_logf: 2173 LogID = Intrinsic::log; 2174 ExpLb = LibFunc_expf; 2175 Exp2Lb = LibFunc_exp2f; 2176 Exp10Lb = LibFunc_exp10f; 2177 PowLb = LibFunc_powf; 2178 break; 2179 case LibFunc_log: 2180 LogID = Intrinsic::log; 2181 ExpLb = LibFunc_exp; 2182 Exp2Lb = LibFunc_exp2; 2183 Exp10Lb = LibFunc_exp10; 2184 PowLb = LibFunc_pow; 2185 break; 2186 case LibFunc_logl: 2187 LogID = Intrinsic::log; 2188 ExpLb = LibFunc_expl; 2189 Exp2Lb = LibFunc_exp2l; 2190 Exp10Lb = LibFunc_exp10l; 2191 PowLb = LibFunc_powl; 2192 break; 2193 case LibFunc_log2f: 2194 LogID = Intrinsic::log2; 2195 ExpLb = LibFunc_expf; 2196 Exp2Lb = LibFunc_exp2f; 2197 Exp10Lb = LibFunc_exp10f; 2198 PowLb = LibFunc_powf; 2199 break; 2200 case LibFunc_log2: 2201 LogID = Intrinsic::log2; 2202 ExpLb = LibFunc_exp; 2203 Exp2Lb = LibFunc_exp2; 2204 Exp10Lb = LibFunc_exp10; 2205 PowLb = LibFunc_pow; 2206 break; 2207 case LibFunc_log2l: 2208 LogID = Intrinsic::log2; 2209 ExpLb = LibFunc_expl; 2210 Exp2Lb = LibFunc_exp2l; 2211 Exp10Lb = LibFunc_exp10l; 2212 PowLb = LibFunc_powl; 2213 break; 2214 case LibFunc_log10f: 2215 LogID = Intrinsic::log10; 2216 ExpLb = LibFunc_expf; 2217 Exp2Lb = LibFunc_exp2f; 2218 Exp10Lb = LibFunc_exp10f; 2219 PowLb = LibFunc_powf; 2220 break; 2221 case LibFunc_log10: 2222 LogID = Intrinsic::log10; 2223 ExpLb = LibFunc_exp; 2224 Exp2Lb = LibFunc_exp2; 2225 Exp10Lb = LibFunc_exp10; 2226 PowLb = LibFunc_pow; 2227 break; 2228 case LibFunc_log10l: 2229 LogID = Intrinsic::log10; 2230 ExpLb = LibFunc_expl; 2231 Exp2Lb = LibFunc_exp2l; 2232 Exp10Lb = LibFunc_exp10l; 2233 PowLb = LibFunc_powl; 2234 break; 2235 default: 2236 return Ret; 2237 } 2238 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2239 LogID == Intrinsic::log10) { 2240 if (Ty->getScalarType()->isFloatTy()) { 2241 ExpLb = LibFunc_expf; 2242 Exp2Lb = LibFunc_exp2f; 2243 Exp10Lb = LibFunc_exp10f; 2244 PowLb = LibFunc_powf; 2245 } else if (Ty->getScalarType()->isDoubleTy()) { 2246 ExpLb = LibFunc_exp; 2247 Exp2Lb = LibFunc_exp2; 2248 Exp10Lb = LibFunc_exp10; 2249 PowLb = LibFunc_pow; 2250 } else 2251 return Ret; 2252 } else 2253 return Ret; 2254 2255 IRBuilderBase::FastMathFlagGuard Guard(B); 2256 B.setFastMathFlags(FastMathFlags::getFast()); 2257 2258 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2259 LibFunc ArgLb = NotLibFunc; 2260 TLI->getLibFunc(*Arg, ArgLb); 2261 2262 // log(pow(x,y)) -> y*log(x) 2263 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 2264 Value *LogX = 2265 Log->doesNotAccessMemory() 2266 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2267 Arg->getOperand(0), "log") 2268 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs); 2269 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 2270 // Since pow() may have side effects, e.g. errno, 2271 // dead code elimination may not be trusted to remove it. 2272 substituteInParent(Arg, MulY); 2273 return MulY; 2274 } 2275 2276 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2277 // TODO: There is no exp10() intrinsic yet. 2278 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2279 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2280 Constant *Eul; 2281 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2282 // FIXME: Add more precise value of e for long double. 2283 Eul = ConstantFP::get(Log->getType(), numbers::e); 2284 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2285 Eul = ConstantFP::get(Log->getType(), 2.0); 2286 else 2287 Eul = ConstantFP::get(Log->getType(), 10.0); 2288 Value *LogE = Log->doesNotAccessMemory() 2289 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2290 Eul, "log") 2291 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs); 2292 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2293 // Since exp() may have side effects, e.g. errno, 2294 // dead code elimination may not be trusted to remove it. 2295 substituteInParent(Arg, MulY); 2296 return MulY; 2297 } 2298 2299 return Ret; 2300 } 2301 2302 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2303 Module *M = CI->getModule(); 2304 Function *Callee = CI->getCalledFunction(); 2305 Value *Ret = nullptr; 2306 // TODO: Once we have a way (other than checking for the existince of the 2307 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2308 // condition below. 2309 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2310 (Callee->getName() == "sqrt" || 2311 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2312 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2313 2314 if (!CI->isFast()) 2315 return Ret; 2316 2317 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2318 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2319 return Ret; 2320 2321 // We're looking for a repeated factor in a multiplication tree, 2322 // so we can do this fold: sqrt(x * x) -> fabs(x); 2323 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2324 Value *Op0 = I->getOperand(0); 2325 Value *Op1 = I->getOperand(1); 2326 Value *RepeatOp = nullptr; 2327 Value *OtherOp = nullptr; 2328 if (Op0 == Op1) { 2329 // Simple match: the operands of the multiply are identical. 2330 RepeatOp = Op0; 2331 } else { 2332 // Look for a more complicated pattern: one of the operands is itself 2333 // a multiply, so search for a common factor in that multiply. 2334 // Note: We don't bother looking any deeper than this first level or for 2335 // variations of this pattern because instcombine's visitFMUL and/or the 2336 // reassociation pass should give us this form. 2337 Value *OtherMul0, *OtherMul1; 2338 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2339 // Pattern: sqrt((x * y) * z) 2340 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2341 // Matched: sqrt((x * x) * z) 2342 RepeatOp = OtherMul0; 2343 OtherOp = Op1; 2344 } 2345 } 2346 } 2347 if (!RepeatOp) 2348 return Ret; 2349 2350 // Fast math flags for any created instructions should match the sqrt 2351 // and multiply. 2352 IRBuilderBase::FastMathFlagGuard Guard(B); 2353 B.setFastMathFlags(I->getFastMathFlags()); 2354 2355 // If we found a repeated factor, hoist it out of the square root and 2356 // replace it with the fabs of that factor. 2357 Type *ArgType = I->getType(); 2358 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2359 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2360 if (OtherOp) { 2361 // If we found a non-repeated factor, we still need to get its square 2362 // root. We then multiply that by the value that was simplified out 2363 // of the square root calculation. 2364 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2365 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2366 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2367 } 2368 return copyFlags(*CI, FabsCall); 2369 } 2370 2371 // TODO: Generalize to handle any trig function and its inverse. 2372 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2373 Module *M = CI->getModule(); 2374 Function *Callee = CI->getCalledFunction(); 2375 Value *Ret = nullptr; 2376 StringRef Name = Callee->getName(); 2377 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name)) 2378 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2379 2380 Value *Op1 = CI->getArgOperand(0); 2381 auto *OpC = dyn_cast<CallInst>(Op1); 2382 if (!OpC) 2383 return Ret; 2384 2385 // Both calls must be 'fast' in order to remove them. 2386 if (!CI->isFast() || !OpC->isFast()) 2387 return Ret; 2388 2389 // tan(atan(x)) -> x 2390 // tanf(atanf(x)) -> x 2391 // tanl(atanl(x)) -> x 2392 LibFunc Func; 2393 Function *F = OpC->getCalledFunction(); 2394 if (F && TLI->getLibFunc(F->getName(), Func) && 2395 isLibFuncEmittable(M, TLI, Func) && 2396 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2397 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2398 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2399 Ret = OpC->getArgOperand(0); 2400 return Ret; 2401 } 2402 2403 static bool isTrigLibCall(CallInst *CI) { 2404 // We can only hope to do anything useful if we can ignore things like errno 2405 // and floating-point exceptions. 2406 // We already checked the prototype. 2407 return CI->hasFnAttr(Attribute::NoUnwind) && 2408 CI->hasFnAttr(Attribute::ReadNone); 2409 } 2410 2411 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2412 bool UseFloat, Value *&Sin, Value *&Cos, 2413 Value *&SinCos, const TargetLibraryInfo *TLI) { 2414 Module *M = OrigCallee->getParent(); 2415 Type *ArgTy = Arg->getType(); 2416 Type *ResTy; 2417 StringRef Name; 2418 2419 Triple T(OrigCallee->getParent()->getTargetTriple()); 2420 if (UseFloat) { 2421 Name = "__sincospif_stret"; 2422 2423 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2424 // x86_64 can't use {float, float} since that would be returned in both 2425 // xmm0 and xmm1, which isn't what a real struct would do. 2426 ResTy = T.getArch() == Triple::x86_64 2427 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2428 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2429 } else { 2430 Name = "__sincospi_stret"; 2431 ResTy = StructType::get(ArgTy, ArgTy); 2432 } 2433 2434 if (!isLibFuncEmittable(M, TLI, Name)) 2435 return false; 2436 LibFunc TheLibFunc; 2437 TLI->getLibFunc(Name, TheLibFunc); 2438 FunctionCallee Callee = getOrInsertLibFunc( 2439 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2440 2441 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2442 // If the argument is an instruction, it must dominate all uses so put our 2443 // sincos call there. 2444 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2445 } else { 2446 // Otherwise (e.g. for a constant) the beginning of the function is as 2447 // good a place as any. 2448 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2449 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2450 } 2451 2452 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2453 2454 if (SinCos->getType()->isStructTy()) { 2455 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2456 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2457 } else { 2458 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2459 "sinpi"); 2460 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2461 "cospi"); 2462 } 2463 2464 return true; 2465 } 2466 2467 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2468 // Make sure the prototype is as expected, otherwise the rest of the 2469 // function is probably invalid and likely to abort. 2470 if (!isTrigLibCall(CI)) 2471 return nullptr; 2472 2473 Value *Arg = CI->getArgOperand(0); 2474 SmallVector<CallInst *, 1> SinCalls; 2475 SmallVector<CallInst *, 1> CosCalls; 2476 SmallVector<CallInst *, 1> SinCosCalls; 2477 2478 bool IsFloat = Arg->getType()->isFloatTy(); 2479 2480 // Look for all compatible sinpi, cospi and sincospi calls with the same 2481 // argument. If there are enough (in some sense) we can make the 2482 // substitution. 2483 Function *F = CI->getFunction(); 2484 for (User *U : Arg->users()) 2485 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2486 2487 // It's only worthwhile if both sinpi and cospi are actually used. 2488 if (SinCalls.empty() || CosCalls.empty()) 2489 return nullptr; 2490 2491 Value *Sin, *Cos, *SinCos; 2492 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 2493 SinCos, TLI)) 2494 return nullptr; 2495 2496 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2497 Value *Res) { 2498 for (CallInst *C : Calls) 2499 replaceAllUsesWith(C, Res); 2500 }; 2501 2502 replaceTrigInsts(SinCalls, Sin); 2503 replaceTrigInsts(CosCalls, Cos); 2504 replaceTrigInsts(SinCosCalls, SinCos); 2505 2506 return nullptr; 2507 } 2508 2509 void LibCallSimplifier::classifyArgUse( 2510 Value *Val, Function *F, bool IsFloat, 2511 SmallVectorImpl<CallInst *> &SinCalls, 2512 SmallVectorImpl<CallInst *> &CosCalls, 2513 SmallVectorImpl<CallInst *> &SinCosCalls) { 2514 CallInst *CI = dyn_cast<CallInst>(Val); 2515 Module *M = CI->getModule(); 2516 2517 if (!CI || CI->use_empty()) 2518 return; 2519 2520 // Don't consider calls in other functions. 2521 if (CI->getFunction() != F) 2522 return; 2523 2524 Function *Callee = CI->getCalledFunction(); 2525 LibFunc Func; 2526 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 2527 !isLibFuncEmittable(M, TLI, Func) || 2528 !isTrigLibCall(CI)) 2529 return; 2530 2531 if (IsFloat) { 2532 if (Func == LibFunc_sinpif) 2533 SinCalls.push_back(CI); 2534 else if (Func == LibFunc_cospif) 2535 CosCalls.push_back(CI); 2536 else if (Func == LibFunc_sincospif_stret) 2537 SinCosCalls.push_back(CI); 2538 } else { 2539 if (Func == LibFunc_sinpi) 2540 SinCalls.push_back(CI); 2541 else if (Func == LibFunc_cospi) 2542 CosCalls.push_back(CI); 2543 else if (Func == LibFunc_sincospi_stret) 2544 SinCosCalls.push_back(CI); 2545 } 2546 } 2547 2548 //===----------------------------------------------------------------------===// 2549 // Integer Library Call Optimizations 2550 //===----------------------------------------------------------------------===// 2551 2552 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2553 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2554 Value *Op = CI->getArgOperand(0); 2555 Type *ArgType = Op->getType(); 2556 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2557 Intrinsic::cttz, ArgType); 2558 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2559 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2560 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2561 2562 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2563 return B.CreateSelect(Cond, V, B.getInt32(0)); 2564 } 2565 2566 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2567 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2568 Value *Op = CI->getArgOperand(0); 2569 Type *ArgType = Op->getType(); 2570 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2571 Intrinsic::ctlz, ArgType); 2572 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2573 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2574 V); 2575 return B.CreateIntCast(V, CI->getType(), false); 2576 } 2577 2578 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2579 // abs(x) -> x <s 0 ? -x : x 2580 // The negation has 'nsw' because abs of INT_MIN is undefined. 2581 Value *X = CI->getArgOperand(0); 2582 Value *IsNeg = B.CreateIsNeg(X); 2583 Value *NegX = B.CreateNSWNeg(X, "neg"); 2584 return B.CreateSelect(IsNeg, NegX, X); 2585 } 2586 2587 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2588 // isdigit(c) -> (c-'0') <u 10 2589 Value *Op = CI->getArgOperand(0); 2590 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2591 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2592 return B.CreateZExt(Op, CI->getType()); 2593 } 2594 2595 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2596 // isascii(c) -> c <u 128 2597 Value *Op = CI->getArgOperand(0); 2598 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2599 return B.CreateZExt(Op, CI->getType()); 2600 } 2601 2602 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2603 // toascii(c) -> c & 0x7f 2604 return B.CreateAnd(CI->getArgOperand(0), 2605 ConstantInt::get(CI->getType(), 0x7F)); 2606 } 2607 2608 // Fold calls to atoi, atol, and atoll. 2609 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2610 CI->addParamAttr(0, Attribute::NoCapture); 2611 2612 StringRef Str; 2613 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2614 return nullptr; 2615 2616 return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B); 2617 } 2618 2619 // Fold calls to strtol, strtoll, strtoul, and strtoull. 2620 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B, 2621 bool AsSigned) { 2622 Value *EndPtr = CI->getArgOperand(1); 2623 if (isa<ConstantPointerNull>(EndPtr)) { 2624 // With a null EndPtr, this function won't capture the main argument. 2625 // It would be readonly too, except that it still may write to errno. 2626 CI->addParamAttr(0, Attribute::NoCapture); 2627 EndPtr = nullptr; 2628 } else if (!isKnownNonZero(EndPtr, DL)) 2629 return nullptr; 2630 2631 StringRef Str; 2632 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2633 return nullptr; 2634 2635 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2636 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B); 2637 } 2638 2639 return nullptr; 2640 } 2641 2642 //===----------------------------------------------------------------------===// 2643 // Formatting and IO Library Call Optimizations 2644 //===----------------------------------------------------------------------===// 2645 2646 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2647 2648 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2649 int StreamArg) { 2650 Function *Callee = CI->getCalledFunction(); 2651 // Error reporting calls should be cold, mark them as such. 2652 // This applies even to non-builtin calls: it is only a hint and applies to 2653 // functions that the frontend might not understand as builtins. 2654 2655 // This heuristic was suggested in: 2656 // Improving Static Branch Prediction in a Compiler 2657 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2658 // Proceedings of PACT'98, Oct. 1998, IEEE 2659 if (!CI->hasFnAttr(Attribute::Cold) && 2660 isReportingError(Callee, CI, StreamArg)) { 2661 CI->addFnAttr(Attribute::Cold); 2662 } 2663 2664 return nullptr; 2665 } 2666 2667 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2668 if (!Callee || !Callee->isDeclaration()) 2669 return false; 2670 2671 if (StreamArg < 0) 2672 return true; 2673 2674 // These functions might be considered cold, but only if their stream 2675 // argument is stderr. 2676 2677 if (StreamArg >= (int)CI->arg_size()) 2678 return false; 2679 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2680 if (!LI) 2681 return false; 2682 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2683 if (!GV || !GV->isDeclaration()) 2684 return false; 2685 return GV->getName() == "stderr"; 2686 } 2687 2688 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2689 // Check for a fixed format string. 2690 StringRef FormatStr; 2691 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2692 return nullptr; 2693 2694 // Empty format string -> noop. 2695 if (FormatStr.empty()) // Tolerate printf's declared void. 2696 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2697 2698 // Do not do any of the following transformations if the printf return value 2699 // is used, in general the printf return value is not compatible with either 2700 // putchar() or puts(). 2701 if (!CI->use_empty()) 2702 return nullptr; 2703 2704 // printf("x") -> putchar('x'), even for "%" and "%%". 2705 if (FormatStr.size() == 1 || FormatStr == "%%") 2706 return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI)); 2707 2708 // Try to remove call or emit putchar/puts. 2709 if (FormatStr == "%s" && CI->arg_size() > 1) { 2710 StringRef OperandStr; 2711 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2712 return nullptr; 2713 // printf("%s", "") --> NOP 2714 if (OperandStr.empty()) 2715 return (Value *)CI; 2716 // printf("%s", "a") --> putchar('a') 2717 if (OperandStr.size() == 1) 2718 return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI)); 2719 // printf("%s", str"\n") --> puts(str) 2720 if (OperandStr.back() == '\n') { 2721 OperandStr = OperandStr.drop_back(); 2722 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2723 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2724 } 2725 return nullptr; 2726 } 2727 2728 // printf("foo\n") --> puts("foo") 2729 if (FormatStr.back() == '\n' && 2730 !FormatStr.contains('%')) { // No format characters. 2731 // Create a string literal with no \n on it. We expect the constant merge 2732 // pass to be run after this pass, to merge duplicate strings. 2733 FormatStr = FormatStr.drop_back(); 2734 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2735 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2736 } 2737 2738 // Optimize specific format strings. 2739 // printf("%c", chr) --> putchar(chr) 2740 if (FormatStr == "%c" && CI->arg_size() > 1 && 2741 CI->getArgOperand(1)->getType()->isIntegerTy()) 2742 return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI)); 2743 2744 // printf("%s\n", str) --> puts(str) 2745 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2746 CI->getArgOperand(1)->getType()->isPointerTy()) 2747 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2748 return nullptr; 2749 } 2750 2751 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2752 2753 Module *M = CI->getModule(); 2754 Function *Callee = CI->getCalledFunction(); 2755 FunctionType *FT = Callee->getFunctionType(); 2756 if (Value *V = optimizePrintFString(CI, B)) { 2757 return V; 2758 } 2759 2760 // printf(format, ...) -> iprintf(format, ...) if no floating point 2761 // arguments. 2762 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 2763 !callHasFloatingPointArgument(CI)) { 2764 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 2765 Callee->getAttributes()); 2766 CallInst *New = cast<CallInst>(CI->clone()); 2767 New->setCalledFunction(IPrintFFn); 2768 B.Insert(New); 2769 return New; 2770 } 2771 2772 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2773 // arguments. 2774 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 2775 !callHasFP128Argument(CI)) { 2776 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 2777 Callee->getAttributes()); 2778 CallInst *New = cast<CallInst>(CI->clone()); 2779 New->setCalledFunction(SmallPrintFFn); 2780 B.Insert(New); 2781 return New; 2782 } 2783 2784 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2785 return nullptr; 2786 } 2787 2788 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2789 IRBuilderBase &B) { 2790 // Check for a fixed format string. 2791 StringRef FormatStr; 2792 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2793 return nullptr; 2794 2795 // If we just have a format string (nothing else crazy) transform it. 2796 Value *Dest = CI->getArgOperand(0); 2797 if (CI->arg_size() == 2) { 2798 // Make sure there's no % in the constant array. We could try to handle 2799 // %% -> % in the future if we cared. 2800 if (FormatStr.contains('%')) 2801 return nullptr; // we found a format specifier, bail out. 2802 2803 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2804 B.CreateMemCpy( 2805 Dest, Align(1), CI->getArgOperand(1), Align(1), 2806 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2807 FormatStr.size() + 1)); // Copy the null byte. 2808 return ConstantInt::get(CI->getType(), FormatStr.size()); 2809 } 2810 2811 // The remaining optimizations require the format string to be "%s" or "%c" 2812 // and have an extra operand. 2813 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2814 return nullptr; 2815 2816 // Decode the second character of the format string. 2817 if (FormatStr[1] == 'c') { 2818 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2819 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2820 return nullptr; 2821 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2822 Value *Ptr = castToCStr(Dest, B); 2823 B.CreateStore(V, Ptr); 2824 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2825 B.CreateStore(B.getInt8(0), Ptr); 2826 2827 return ConstantInt::get(CI->getType(), 1); 2828 } 2829 2830 if (FormatStr[1] == 's') { 2831 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2832 // strlen(str)+1) 2833 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2834 return nullptr; 2835 2836 if (CI->use_empty()) 2837 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2838 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 2839 2840 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2841 if (SrcLen) { 2842 B.CreateMemCpy( 2843 Dest, Align(1), CI->getArgOperand(2), Align(1), 2844 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2845 // Returns total number of characters written without null-character. 2846 return ConstantInt::get(CI->getType(), SrcLen - 1); 2847 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2848 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2849 // Handle mismatched pointer types (goes away with typeless pointers?). 2850 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 2851 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 2852 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 2853 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2854 } 2855 2856 bool OptForSize = CI->getFunction()->hasOptSize() || 2857 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2858 PGSOQueryType::IRPass); 2859 if (OptForSize) 2860 return nullptr; 2861 2862 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2863 if (!Len) 2864 return nullptr; 2865 Value *IncLen = 2866 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2867 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2868 2869 // The sprintf result is the unincremented number of bytes in the string. 2870 return B.CreateIntCast(Len, CI->getType(), false); 2871 } 2872 return nullptr; 2873 } 2874 2875 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2876 Module *M = CI->getModule(); 2877 Function *Callee = CI->getCalledFunction(); 2878 FunctionType *FT = Callee->getFunctionType(); 2879 if (Value *V = optimizeSPrintFString(CI, B)) { 2880 return V; 2881 } 2882 2883 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2884 // point arguments. 2885 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 2886 !callHasFloatingPointArgument(CI)) { 2887 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 2888 FT, Callee->getAttributes()); 2889 CallInst *New = cast<CallInst>(CI->clone()); 2890 New->setCalledFunction(SIPrintFFn); 2891 B.Insert(New); 2892 return New; 2893 } 2894 2895 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2896 // floating point arguments. 2897 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 2898 !callHasFP128Argument(CI)) { 2899 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 2900 Callee->getAttributes()); 2901 CallInst *New = cast<CallInst>(CI->clone()); 2902 New->setCalledFunction(SmallSPrintFFn); 2903 B.Insert(New); 2904 return New; 2905 } 2906 2907 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2908 return nullptr; 2909 } 2910 2911 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2912 IRBuilderBase &B) { 2913 // Check for size 2914 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2915 if (!Size) 2916 return nullptr; 2917 2918 uint64_t N = Size->getZExtValue(); 2919 // Check for a fixed format string. 2920 StringRef FormatStr; 2921 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2922 return nullptr; 2923 2924 // If we just have a format string (nothing else crazy) transform it. 2925 if (CI->arg_size() == 3) { 2926 // Make sure there's no % in the constant array. We could try to handle 2927 // %% -> % in the future if we cared. 2928 if (FormatStr.contains('%')) 2929 return nullptr; // we found a format specifier, bail out. 2930 2931 if (N == 0) 2932 return ConstantInt::get(CI->getType(), FormatStr.size()); 2933 else if (N < FormatStr.size() + 1) 2934 return nullptr; 2935 2936 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2937 // strlen(fmt)+1) 2938 copyFlags( 2939 *CI, 2940 B.CreateMemCpy( 2941 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2942 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2943 FormatStr.size() + 1))); // Copy the null byte. 2944 return ConstantInt::get(CI->getType(), FormatStr.size()); 2945 } 2946 2947 // The remaining optimizations require the format string to be "%s" or "%c" 2948 // and have an extra operand. 2949 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2950 2951 // Decode the second character of the format string. 2952 if (FormatStr[1] == 'c') { 2953 if (N == 0) 2954 return ConstantInt::get(CI->getType(), 1); 2955 else if (N == 1) 2956 return nullptr; 2957 2958 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2959 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2960 return nullptr; 2961 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2962 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2963 B.CreateStore(V, Ptr); 2964 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2965 B.CreateStore(B.getInt8(0), Ptr); 2966 2967 return ConstantInt::get(CI->getType(), 1); 2968 } 2969 2970 if (FormatStr[1] == 's') { 2971 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2972 StringRef Str; 2973 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2974 return nullptr; 2975 2976 if (N == 0) 2977 return ConstantInt::get(CI->getType(), Str.size()); 2978 else if (N < Str.size() + 1) 2979 return nullptr; 2980 2981 copyFlags( 2982 *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1), 2983 CI->getArgOperand(3), Align(1), 2984 ConstantInt::get(CI->getType(), Str.size() + 1))); 2985 2986 // The snprintf result is the unincremented number of bytes in the string. 2987 return ConstantInt::get(CI->getType(), Str.size()); 2988 } 2989 } 2990 return nullptr; 2991 } 2992 2993 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2994 if (Value *V = optimizeSnPrintFString(CI, B)) { 2995 return V; 2996 } 2997 2998 if (isKnownNonZero(CI->getOperand(1), DL)) 2999 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3000 return nullptr; 3001 } 3002 3003 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 3004 IRBuilderBase &B) { 3005 optimizeErrorReporting(CI, B, 0); 3006 3007 // All the optimizations depend on the format string. 3008 StringRef FormatStr; 3009 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3010 return nullptr; 3011 3012 // Do not do any of the following transformations if the fprintf return 3013 // value is used, in general the fprintf return value is not compatible 3014 // with fwrite(), fputc() or fputs(). 3015 if (!CI->use_empty()) 3016 return nullptr; 3017 3018 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 3019 if (CI->arg_size() == 2) { 3020 // Could handle %% -> % if we cared. 3021 if (FormatStr.contains('%')) 3022 return nullptr; // We found a format specifier. 3023 3024 return copyFlags( 3025 *CI, emitFWrite(CI->getArgOperand(1), 3026 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 3027 FormatStr.size()), 3028 CI->getArgOperand(0), B, DL, TLI)); 3029 } 3030 3031 // The remaining optimizations require the format string to be "%s" or "%c" 3032 // and have an extra operand. 3033 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3034 return nullptr; 3035 3036 // Decode the second character of the format string. 3037 if (FormatStr[1] == 'c') { 3038 // fprintf(F, "%c", chr) --> fputc(chr, F) 3039 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3040 return nullptr; 3041 return copyFlags( 3042 *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 3043 } 3044 3045 if (FormatStr[1] == 's') { 3046 // fprintf(F, "%s", str) --> fputs(str, F) 3047 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3048 return nullptr; 3049 return copyFlags( 3050 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 3051 } 3052 return nullptr; 3053 } 3054 3055 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 3056 Module *M = CI->getModule(); 3057 Function *Callee = CI->getCalledFunction(); 3058 FunctionType *FT = Callee->getFunctionType(); 3059 if (Value *V = optimizeFPrintFString(CI, B)) { 3060 return V; 3061 } 3062 3063 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 3064 // floating point arguments. 3065 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 3066 !callHasFloatingPointArgument(CI)) { 3067 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 3068 FT, Callee->getAttributes()); 3069 CallInst *New = cast<CallInst>(CI->clone()); 3070 New->setCalledFunction(FIPrintFFn); 3071 B.Insert(New); 3072 return New; 3073 } 3074 3075 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 3076 // 128-bit floating point arguments. 3077 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 3078 !callHasFP128Argument(CI)) { 3079 auto SmallFPrintFFn = 3080 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 3081 Callee->getAttributes()); 3082 CallInst *New = cast<CallInst>(CI->clone()); 3083 New->setCalledFunction(SmallFPrintFFn); 3084 B.Insert(New); 3085 return New; 3086 } 3087 3088 return nullptr; 3089 } 3090 3091 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 3092 optimizeErrorReporting(CI, B, 3); 3093 3094 // Get the element size and count. 3095 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3096 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 3097 if (SizeC && CountC) { 3098 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 3099 3100 // If this is writing zero records, remove the call (it's a noop). 3101 if (Bytes == 0) 3102 return ConstantInt::get(CI->getType(), 0); 3103 3104 // If this is writing one byte, turn it into fputc. 3105 // This optimisation is only valid, if the return value is unused. 3106 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 3107 Value *Char = B.CreateLoad(B.getInt8Ty(), 3108 castToCStr(CI->getArgOperand(0), B), "char"); 3109 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 3110 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 3111 } 3112 } 3113 3114 return nullptr; 3115 } 3116 3117 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 3118 optimizeErrorReporting(CI, B, 1); 3119 3120 // Don't rewrite fputs to fwrite when optimising for size because fwrite 3121 // requires more arguments and thus extra MOVs are required. 3122 bool OptForSize = CI->getFunction()->hasOptSize() || 3123 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3124 PGSOQueryType::IRPass); 3125 if (OptForSize) 3126 return nullptr; 3127 3128 // We can't optimize if return value is used. 3129 if (!CI->use_empty()) 3130 return nullptr; 3131 3132 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 3133 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 3134 if (!Len) 3135 return nullptr; 3136 3137 // Known to have no uses (see above). 3138 return copyFlags( 3139 *CI, 3140 emitFWrite(CI->getArgOperand(0), 3141 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 3142 CI->getArgOperand(1), B, DL, TLI)); 3143 } 3144 3145 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 3146 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3147 if (!CI->use_empty()) 3148 return nullptr; 3149 3150 // Check for a constant string. 3151 // puts("") -> putchar('\n') 3152 StringRef Str; 3153 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 3154 return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI)); 3155 3156 return nullptr; 3157 } 3158 3159 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 3160 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 3161 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 3162 CI->getArgOperand(0), Align(1), 3163 CI->getArgOperand(2))); 3164 } 3165 3166 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 3167 SmallString<20> FloatFuncName = FuncName; 3168 FloatFuncName += 'f'; 3169 return isLibFuncEmittable(M, TLI, FloatFuncName); 3170 } 3171 3172 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 3173 IRBuilderBase &Builder) { 3174 Module *M = CI->getModule(); 3175 LibFunc Func; 3176 Function *Callee = CI->getCalledFunction(); 3177 // Check for string/memory library functions. 3178 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3179 // Make sure we never change the calling convention. 3180 assert( 3181 (ignoreCallingConv(Func) || 3182 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3183 "Optimizing string/memory libcall would change the calling convention"); 3184 switch (Func) { 3185 case LibFunc_strcat: 3186 return optimizeStrCat(CI, Builder); 3187 case LibFunc_strncat: 3188 return optimizeStrNCat(CI, Builder); 3189 case LibFunc_strchr: 3190 return optimizeStrChr(CI, Builder); 3191 case LibFunc_strrchr: 3192 return optimizeStrRChr(CI, Builder); 3193 case LibFunc_strcmp: 3194 return optimizeStrCmp(CI, Builder); 3195 case LibFunc_strncmp: 3196 return optimizeStrNCmp(CI, Builder); 3197 case LibFunc_strcpy: 3198 return optimizeStrCpy(CI, Builder); 3199 case LibFunc_stpcpy: 3200 return optimizeStpCpy(CI, Builder); 3201 case LibFunc_strncpy: 3202 return optimizeStrNCpy(CI, Builder); 3203 case LibFunc_strlen: 3204 return optimizeStrLen(CI, Builder); 3205 case LibFunc_strnlen: 3206 return optimizeStrNLen(CI, Builder); 3207 case LibFunc_strpbrk: 3208 return optimizeStrPBrk(CI, Builder); 3209 case LibFunc_strndup: 3210 return optimizeStrNDup(CI, Builder); 3211 case LibFunc_strtol: 3212 case LibFunc_strtod: 3213 case LibFunc_strtof: 3214 case LibFunc_strtoul: 3215 case LibFunc_strtoll: 3216 case LibFunc_strtold: 3217 case LibFunc_strtoull: 3218 return optimizeStrTo(CI, Builder); 3219 case LibFunc_strspn: 3220 return optimizeStrSpn(CI, Builder); 3221 case LibFunc_strcspn: 3222 return optimizeStrCSpn(CI, Builder); 3223 case LibFunc_strstr: 3224 return optimizeStrStr(CI, Builder); 3225 case LibFunc_memchr: 3226 return optimizeMemChr(CI, Builder); 3227 case LibFunc_memrchr: 3228 return optimizeMemRChr(CI, Builder); 3229 case LibFunc_bcmp: 3230 return optimizeBCmp(CI, Builder); 3231 case LibFunc_memcmp: 3232 return optimizeMemCmp(CI, Builder); 3233 case LibFunc_memcpy: 3234 return optimizeMemCpy(CI, Builder); 3235 case LibFunc_memccpy: 3236 return optimizeMemCCpy(CI, Builder); 3237 case LibFunc_mempcpy: 3238 return optimizeMemPCpy(CI, Builder); 3239 case LibFunc_memmove: 3240 return optimizeMemMove(CI, Builder); 3241 case LibFunc_memset: 3242 return optimizeMemSet(CI, Builder); 3243 case LibFunc_realloc: 3244 return optimizeRealloc(CI, Builder); 3245 case LibFunc_wcslen: 3246 return optimizeWcslen(CI, Builder); 3247 case LibFunc_bcopy: 3248 return optimizeBCopy(CI, Builder); 3249 default: 3250 break; 3251 } 3252 } 3253 return nullptr; 3254 } 3255 3256 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3257 LibFunc Func, 3258 IRBuilderBase &Builder) { 3259 const Module *M = CI->getModule(); 3260 3261 // Don't optimize calls that require strict floating point semantics. 3262 if (CI->isStrictFP()) 3263 return nullptr; 3264 3265 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 3266 return V; 3267 3268 switch (Func) { 3269 case LibFunc_sinpif: 3270 case LibFunc_sinpi: 3271 case LibFunc_cospif: 3272 case LibFunc_cospi: 3273 return optimizeSinCosPi(CI, Builder); 3274 case LibFunc_powf: 3275 case LibFunc_pow: 3276 case LibFunc_powl: 3277 return optimizePow(CI, Builder); 3278 case LibFunc_exp2l: 3279 case LibFunc_exp2: 3280 case LibFunc_exp2f: 3281 return optimizeExp2(CI, Builder); 3282 case LibFunc_fabsf: 3283 case LibFunc_fabs: 3284 case LibFunc_fabsl: 3285 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3286 case LibFunc_sqrtf: 3287 case LibFunc_sqrt: 3288 case LibFunc_sqrtl: 3289 return optimizeSqrt(CI, Builder); 3290 case LibFunc_logf: 3291 case LibFunc_log: 3292 case LibFunc_logl: 3293 case LibFunc_log10f: 3294 case LibFunc_log10: 3295 case LibFunc_log10l: 3296 case LibFunc_log1pf: 3297 case LibFunc_log1p: 3298 case LibFunc_log1pl: 3299 case LibFunc_log2f: 3300 case LibFunc_log2: 3301 case LibFunc_log2l: 3302 case LibFunc_logbf: 3303 case LibFunc_logb: 3304 case LibFunc_logbl: 3305 return optimizeLog(CI, Builder); 3306 case LibFunc_tan: 3307 case LibFunc_tanf: 3308 case LibFunc_tanl: 3309 return optimizeTan(CI, Builder); 3310 case LibFunc_ceil: 3311 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3312 case LibFunc_floor: 3313 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3314 case LibFunc_round: 3315 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3316 case LibFunc_roundeven: 3317 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3318 case LibFunc_nearbyint: 3319 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3320 case LibFunc_rint: 3321 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3322 case LibFunc_trunc: 3323 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3324 case LibFunc_acos: 3325 case LibFunc_acosh: 3326 case LibFunc_asin: 3327 case LibFunc_asinh: 3328 case LibFunc_atan: 3329 case LibFunc_atanh: 3330 case LibFunc_cbrt: 3331 case LibFunc_cosh: 3332 case LibFunc_exp: 3333 case LibFunc_exp10: 3334 case LibFunc_expm1: 3335 case LibFunc_cos: 3336 case LibFunc_sin: 3337 case LibFunc_sinh: 3338 case LibFunc_tanh: 3339 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 3340 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 3341 return nullptr; 3342 case LibFunc_copysign: 3343 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 3344 return optimizeBinaryDoubleFP(CI, Builder, TLI); 3345 return nullptr; 3346 case LibFunc_fminf: 3347 case LibFunc_fmin: 3348 case LibFunc_fminl: 3349 case LibFunc_fmaxf: 3350 case LibFunc_fmax: 3351 case LibFunc_fmaxl: 3352 return optimizeFMinFMax(CI, Builder); 3353 case LibFunc_cabs: 3354 case LibFunc_cabsf: 3355 case LibFunc_cabsl: 3356 return optimizeCAbs(CI, Builder); 3357 default: 3358 return nullptr; 3359 } 3360 } 3361 3362 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3363 Module *M = CI->getModule(); 3364 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3365 3366 // TODO: Split out the code below that operates on FP calls so that 3367 // we can all non-FP calls with the StrictFP attribute to be 3368 // optimized. 3369 if (CI->isNoBuiltin()) 3370 return nullptr; 3371 3372 LibFunc Func; 3373 Function *Callee = CI->getCalledFunction(); 3374 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3375 3376 SmallVector<OperandBundleDef, 2> OpBundles; 3377 CI->getOperandBundlesAsDefs(OpBundles); 3378 3379 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3380 Builder.setDefaultOperandBundles(OpBundles); 3381 3382 // Command-line parameter overrides instruction attribute. 3383 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3384 // used by the intrinsic optimizations. 3385 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3386 UnsafeFPShrink = EnableUnsafeFPShrink; 3387 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3388 UnsafeFPShrink = true; 3389 3390 // First, check for intrinsics. 3391 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3392 if (!IsCallingConvC) 3393 return nullptr; 3394 // The FP intrinsics have corresponding constrained versions so we don't 3395 // need to check for the StrictFP attribute here. 3396 switch (II->getIntrinsicID()) { 3397 case Intrinsic::pow: 3398 return optimizePow(CI, Builder); 3399 case Intrinsic::exp2: 3400 return optimizeExp2(CI, Builder); 3401 case Intrinsic::log: 3402 case Intrinsic::log2: 3403 case Intrinsic::log10: 3404 return optimizeLog(CI, Builder); 3405 case Intrinsic::sqrt: 3406 return optimizeSqrt(CI, Builder); 3407 case Intrinsic::memset: 3408 return optimizeMemSet(CI, Builder); 3409 case Intrinsic::memcpy: 3410 return optimizeMemCpy(CI, Builder); 3411 case Intrinsic::memmove: 3412 return optimizeMemMove(CI, Builder); 3413 default: 3414 return nullptr; 3415 } 3416 } 3417 3418 // Also try to simplify calls to fortified library functions. 3419 if (Value *SimplifiedFortifiedCI = 3420 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3421 // Try to further simplify the result. 3422 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3423 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3424 // Ensure that SimplifiedCI's uses are complete, since some calls have 3425 // their uses analyzed. 3426 replaceAllUsesWith(CI, SimplifiedCI); 3427 3428 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3429 // we might replace later on. 3430 IRBuilderBase::InsertPointGuard Guard(Builder); 3431 Builder.SetInsertPoint(SimplifiedCI); 3432 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3433 // If we were able to further simplify, remove the now redundant call. 3434 substituteInParent(SimplifiedCI, V); 3435 return V; 3436 } 3437 } 3438 return SimplifiedFortifiedCI; 3439 } 3440 3441 // Then check for known library functions. 3442 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3443 // We never change the calling convention. 3444 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3445 return nullptr; 3446 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3447 return V; 3448 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3449 return V; 3450 switch (Func) { 3451 case LibFunc_ffs: 3452 case LibFunc_ffsl: 3453 case LibFunc_ffsll: 3454 return optimizeFFS(CI, Builder); 3455 case LibFunc_fls: 3456 case LibFunc_flsl: 3457 case LibFunc_flsll: 3458 return optimizeFls(CI, Builder); 3459 case LibFunc_abs: 3460 case LibFunc_labs: 3461 case LibFunc_llabs: 3462 return optimizeAbs(CI, Builder); 3463 case LibFunc_isdigit: 3464 return optimizeIsDigit(CI, Builder); 3465 case LibFunc_isascii: 3466 return optimizeIsAscii(CI, Builder); 3467 case LibFunc_toascii: 3468 return optimizeToAscii(CI, Builder); 3469 case LibFunc_atoi: 3470 case LibFunc_atol: 3471 case LibFunc_atoll: 3472 return optimizeAtoi(CI, Builder); 3473 case LibFunc_strtol: 3474 case LibFunc_strtoll: 3475 return optimizeStrToInt(CI, Builder, /*AsSigned=*/true); 3476 case LibFunc_strtoul: 3477 case LibFunc_strtoull: 3478 return optimizeStrToInt(CI, Builder, /*AsSigned=*/false); 3479 case LibFunc_printf: 3480 return optimizePrintF(CI, Builder); 3481 case LibFunc_sprintf: 3482 return optimizeSPrintF(CI, Builder); 3483 case LibFunc_snprintf: 3484 return optimizeSnPrintF(CI, Builder); 3485 case LibFunc_fprintf: 3486 return optimizeFPrintF(CI, Builder); 3487 case LibFunc_fwrite: 3488 return optimizeFWrite(CI, Builder); 3489 case LibFunc_fputs: 3490 return optimizeFPuts(CI, Builder); 3491 case LibFunc_puts: 3492 return optimizePuts(CI, Builder); 3493 case LibFunc_perror: 3494 return optimizeErrorReporting(CI, Builder); 3495 case LibFunc_vfprintf: 3496 case LibFunc_fiprintf: 3497 return optimizeErrorReporting(CI, Builder, 0); 3498 default: 3499 return nullptr; 3500 } 3501 } 3502 return nullptr; 3503 } 3504 3505 LibCallSimplifier::LibCallSimplifier( 3506 const DataLayout &DL, const TargetLibraryInfo *TLI, 3507 OptimizationRemarkEmitter &ORE, 3508 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3509 function_ref<void(Instruction *, Value *)> Replacer, 3510 function_ref<void(Instruction *)> Eraser) 3511 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3512 Replacer(Replacer), Eraser(Eraser) {} 3513 3514 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3515 // Indirect through the replacer used in this instance. 3516 Replacer(I, With); 3517 } 3518 3519 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3520 Eraser(I); 3521 } 3522 3523 // TODO: 3524 // Additional cases that we need to add to this file: 3525 // 3526 // cbrt: 3527 // * cbrt(expN(X)) -> expN(x/3) 3528 // * cbrt(sqrt(x)) -> pow(x,1/6) 3529 // * cbrt(cbrt(x)) -> pow(x,1/9) 3530 // 3531 // exp, expf, expl: 3532 // * exp(log(x)) -> x 3533 // 3534 // log, logf, logl: 3535 // * log(exp(x)) -> x 3536 // * log(exp(y)) -> y*log(e) 3537 // * log(exp10(y)) -> y*log(10) 3538 // * log(sqrt(x)) -> 0.5*log(x) 3539 // 3540 // pow, powf, powl: 3541 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3542 // * pow(pow(x,y),z)-> pow(x,y*z) 3543 // 3544 // signbit: 3545 // * signbit(cnst) -> cnst' 3546 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3547 // 3548 // sqrt, sqrtf, sqrtl: 3549 // * sqrt(expN(x)) -> expN(x*0.5) 3550 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3551 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3552 // 3553 3554 //===----------------------------------------------------------------------===// 3555 // Fortified Library Call Optimizations 3556 //===----------------------------------------------------------------------===// 3557 3558 bool 3559 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3560 unsigned ObjSizeOp, 3561 Optional<unsigned> SizeOp, 3562 Optional<unsigned> StrOp, 3563 Optional<unsigned> FlagOp) { 3564 // If this function takes a flag argument, the implementation may use it to 3565 // perform extra checks. Don't fold into the non-checking variant. 3566 if (FlagOp) { 3567 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3568 if (!Flag || !Flag->isZero()) 3569 return false; 3570 } 3571 3572 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3573 return true; 3574 3575 if (ConstantInt *ObjSizeCI = 3576 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3577 if (ObjSizeCI->isMinusOne()) 3578 return true; 3579 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3580 if (OnlyLowerUnknownSize) 3581 return false; 3582 if (StrOp) { 3583 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3584 // If the length is 0 we don't know how long it is and so we can't 3585 // remove the check. 3586 if (Len) 3587 annotateDereferenceableBytes(CI, *StrOp, Len); 3588 else 3589 return false; 3590 return ObjSizeCI->getZExtValue() >= Len; 3591 } 3592 3593 if (SizeOp) { 3594 if (ConstantInt *SizeCI = 3595 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3596 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3597 } 3598 } 3599 return false; 3600 } 3601 3602 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3603 IRBuilderBase &B) { 3604 if (isFortifiedCallFoldable(CI, 3, 2)) { 3605 CallInst *NewCI = 3606 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3607 Align(1), CI->getArgOperand(2)); 3608 NewCI->setAttributes(CI->getAttributes()); 3609 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3610 copyFlags(*CI, NewCI); 3611 return CI->getArgOperand(0); 3612 } 3613 return nullptr; 3614 } 3615 3616 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3617 IRBuilderBase &B) { 3618 if (isFortifiedCallFoldable(CI, 3, 2)) { 3619 CallInst *NewCI = 3620 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3621 Align(1), CI->getArgOperand(2)); 3622 NewCI->setAttributes(CI->getAttributes()); 3623 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3624 copyFlags(*CI, NewCI); 3625 return CI->getArgOperand(0); 3626 } 3627 return nullptr; 3628 } 3629 3630 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3631 IRBuilderBase &B) { 3632 if (isFortifiedCallFoldable(CI, 3, 2)) { 3633 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3634 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3635 CI->getArgOperand(2), Align(1)); 3636 NewCI->setAttributes(CI->getAttributes()); 3637 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3638 copyFlags(*CI, NewCI); 3639 return CI->getArgOperand(0); 3640 } 3641 return nullptr; 3642 } 3643 3644 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3645 IRBuilderBase &B) { 3646 const DataLayout &DL = CI->getModule()->getDataLayout(); 3647 if (isFortifiedCallFoldable(CI, 3, 2)) 3648 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3649 CI->getArgOperand(2), B, DL, TLI)) { 3650 CallInst *NewCI = cast<CallInst>(Call); 3651 NewCI->setAttributes(CI->getAttributes()); 3652 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3653 return copyFlags(*CI, NewCI); 3654 } 3655 return nullptr; 3656 } 3657 3658 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3659 IRBuilderBase &B, 3660 LibFunc Func) { 3661 const DataLayout &DL = CI->getModule()->getDataLayout(); 3662 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3663 *ObjSize = CI->getArgOperand(2); 3664 3665 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3666 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3667 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3668 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3669 } 3670 3671 // If a) we don't have any length information, or b) we know this will 3672 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3673 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3674 // TODO: It might be nice to get a maximum length out of the possible 3675 // string lengths for varying. 3676 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3677 if (Func == LibFunc_strcpy_chk) 3678 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3679 else 3680 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3681 } 3682 3683 if (OnlyLowerUnknownSize) 3684 return nullptr; 3685 3686 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3687 uint64_t Len = GetStringLength(Src); 3688 if (Len) 3689 annotateDereferenceableBytes(CI, 1, Len); 3690 else 3691 return nullptr; 3692 3693 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3694 // sizeof(int*) for every target. So the assumption used here to derive the 3695 // SizeTBits based on the size of an integer pointer in address space zero 3696 // isn't always valid. 3697 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3698 Value *LenV = ConstantInt::get(SizeTTy, Len); 3699 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3700 // If the function was an __stpcpy_chk, and we were able to fold it into 3701 // a __memcpy_chk, we still need to return the correct end pointer. 3702 if (Ret && Func == LibFunc_stpcpy_chk) 3703 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, 3704 ConstantInt::get(SizeTTy, Len - 1)); 3705 return copyFlags(*CI, cast<CallInst>(Ret)); 3706 } 3707 3708 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3709 IRBuilderBase &B) { 3710 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3711 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 3712 CI->getModule()->getDataLayout(), TLI)); 3713 return nullptr; 3714 } 3715 3716 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3717 IRBuilderBase &B, 3718 LibFunc Func) { 3719 if (isFortifiedCallFoldable(CI, 3, 2)) { 3720 if (Func == LibFunc_strncpy_chk) 3721 return copyFlags(*CI, 3722 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3723 CI->getArgOperand(2), B, TLI)); 3724 else 3725 return copyFlags(*CI, 3726 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3727 CI->getArgOperand(2), B, TLI)); 3728 } 3729 3730 return nullptr; 3731 } 3732 3733 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3734 IRBuilderBase &B) { 3735 if (isFortifiedCallFoldable(CI, 4, 3)) 3736 return copyFlags( 3737 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3738 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 3739 3740 return nullptr; 3741 } 3742 3743 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3744 IRBuilderBase &B) { 3745 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3746 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3747 return copyFlags(*CI, 3748 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3749 CI->getArgOperand(4), VariadicArgs, B, TLI)); 3750 } 3751 3752 return nullptr; 3753 } 3754 3755 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3756 IRBuilderBase &B) { 3757 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3758 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3759 return copyFlags(*CI, 3760 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3761 VariadicArgs, B, TLI)); 3762 } 3763 3764 return nullptr; 3765 } 3766 3767 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3768 IRBuilderBase &B) { 3769 if (isFortifiedCallFoldable(CI, 2)) 3770 return copyFlags( 3771 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 3772 3773 return nullptr; 3774 } 3775 3776 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3777 IRBuilderBase &B) { 3778 if (isFortifiedCallFoldable(CI, 3)) 3779 return copyFlags(*CI, 3780 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3781 CI->getArgOperand(2), B, TLI)); 3782 3783 return nullptr; 3784 } 3785 3786 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3787 IRBuilderBase &B) { 3788 if (isFortifiedCallFoldable(CI, 3)) 3789 return copyFlags(*CI, 3790 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3791 CI->getArgOperand(2), B, TLI)); 3792 3793 return nullptr; 3794 } 3795 3796 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3797 IRBuilderBase &B) { 3798 if (isFortifiedCallFoldable(CI, 3)) 3799 return copyFlags(*CI, 3800 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3801 CI->getArgOperand(2), B, TLI)); 3802 3803 return nullptr; 3804 } 3805 3806 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3807 IRBuilderBase &B) { 3808 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3809 return copyFlags( 3810 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3811 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 3812 3813 return nullptr; 3814 } 3815 3816 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3817 IRBuilderBase &B) { 3818 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3819 return copyFlags(*CI, 3820 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3821 CI->getArgOperand(4), B, TLI)); 3822 3823 return nullptr; 3824 } 3825 3826 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3827 IRBuilderBase &Builder) { 3828 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3829 // Some clang users checked for _chk libcall availability using: 3830 // __has_builtin(__builtin___memcpy_chk) 3831 // When compiling with -fno-builtin, this is always true. 3832 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3833 // end up with fortified libcalls, which isn't acceptable in a freestanding 3834 // environment which only provides their non-fortified counterparts. 3835 // 3836 // Until we change clang and/or teach external users to check for availability 3837 // differently, disregard the "nobuiltin" attribute and TLI::has. 3838 // 3839 // PR23093. 3840 3841 LibFunc Func; 3842 Function *Callee = CI->getCalledFunction(); 3843 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3844 3845 SmallVector<OperandBundleDef, 2> OpBundles; 3846 CI->getOperandBundlesAsDefs(OpBundles); 3847 3848 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3849 Builder.setDefaultOperandBundles(OpBundles); 3850 3851 // First, check that this is a known library functions and that the prototype 3852 // is correct. 3853 if (!TLI->getLibFunc(*Callee, Func)) 3854 return nullptr; 3855 3856 // We never change the calling convention. 3857 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3858 return nullptr; 3859 3860 switch (Func) { 3861 case LibFunc_memcpy_chk: 3862 return optimizeMemCpyChk(CI, Builder); 3863 case LibFunc_mempcpy_chk: 3864 return optimizeMemPCpyChk(CI, Builder); 3865 case LibFunc_memmove_chk: 3866 return optimizeMemMoveChk(CI, Builder); 3867 case LibFunc_memset_chk: 3868 return optimizeMemSetChk(CI, Builder); 3869 case LibFunc_stpcpy_chk: 3870 case LibFunc_strcpy_chk: 3871 return optimizeStrpCpyChk(CI, Builder, Func); 3872 case LibFunc_strlen_chk: 3873 return optimizeStrLenChk(CI, Builder); 3874 case LibFunc_stpncpy_chk: 3875 case LibFunc_strncpy_chk: 3876 return optimizeStrpNCpyChk(CI, Builder, Func); 3877 case LibFunc_memccpy_chk: 3878 return optimizeMemCCpyChk(CI, Builder); 3879 case LibFunc_snprintf_chk: 3880 return optimizeSNPrintfChk(CI, Builder); 3881 case LibFunc_sprintf_chk: 3882 return optimizeSPrintfChk(CI, Builder); 3883 case LibFunc_strcat_chk: 3884 return optimizeStrCatChk(CI, Builder); 3885 case LibFunc_strlcat_chk: 3886 return optimizeStrLCat(CI, Builder); 3887 case LibFunc_strncat_chk: 3888 return optimizeStrNCatChk(CI, Builder); 3889 case LibFunc_strlcpy_chk: 3890 return optimizeStrLCpyChk(CI, Builder); 3891 case LibFunc_vsnprintf_chk: 3892 return optimizeVSNPrintfChk(CI, Builder); 3893 case LibFunc_vsprintf_chk: 3894 return optimizeVSPrintfChk(CI, Builder); 3895 default: 3896 break; 3897 } 3898 return nullptr; 3899 } 3900 3901 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3902 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3903 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3904