1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/AttributeMask.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/KnownBits.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/TargetParser/Triple.h" 35 #include "llvm/Transforms/Utils/BuildLibCalls.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/SizeOpts.h" 38 39 #include <cmath> 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 // Enable conversion of operator new calls with a MemProf hot or cold hint 51 // to an operator new call that takes a hot/cold hint. Off by default since 52 // not all allocators currently support this extension. 53 static cl::opt<bool> 54 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false), 55 cl::desc("Enable hot/cold operator new library calls")); 56 static cl::opt<bool> OptimizeExistingHotColdNew( 57 "optimize-existing-hot-cold-new", cl::Hidden, cl::init(false), 58 cl::desc( 59 "Enable optimization of existing hot/cold operator new library calls")); 60 61 namespace { 62 63 // Specialized parser to ensure the hint is an 8 bit value (we can't specify 64 // uint8_t to opt<> as that is interpreted to mean that we are passing a char 65 // option with a specific set of values. 66 struct HotColdHintParser : public cl::parser<unsigned> { 67 HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {} 68 69 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 70 if (Arg.getAsInteger(0, Value)) 71 return O.error("'" + Arg + "' value invalid for uint argument!"); 72 73 if (Value > 255) 74 return O.error("'" + Arg + "' value must be in the range [0, 255]!"); 75 76 return false; 77 } 78 }; 79 80 } // end anonymous namespace 81 82 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest 83 // and 255 is the hottest. Default to 1 value away from the coldest and hottest 84 // hints, so that the compiler hinted allocations are slightly less strong than 85 // manually inserted hints at the two extremes. 86 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue( 87 "cold-new-hint-value", cl::Hidden, cl::init(1), 88 cl::desc("Value to pass to hot/cold operator new for cold allocation")); 89 static cl::opt<unsigned, false, HotColdHintParser> 90 NotColdNewHintValue("notcold-new-hint-value", cl::Hidden, cl::init(128), 91 cl::desc("Value to pass to hot/cold operator new for " 92 "notcold (warm) allocation")); 93 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue( 94 "hot-new-hint-value", cl::Hidden, cl::init(254), 95 cl::desc("Value to pass to hot/cold operator new for hot allocation")); 96 97 //===----------------------------------------------------------------------===// 98 // Helper Functions 99 //===----------------------------------------------------------------------===// 100 101 static bool ignoreCallingConv(LibFunc Func) { 102 return Func == LibFunc_abs || Func == LibFunc_labs || 103 Func == LibFunc_llabs || Func == LibFunc_strlen; 104 } 105 106 /// Return true if it is only used in equality comparisons with With. 107 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 108 for (User *U : V->users()) { 109 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 110 if (IC->isEquality() && IC->getOperand(1) == With) 111 continue; 112 // Unknown instruction. 113 return false; 114 } 115 return true; 116 } 117 118 static bool callHasFloatingPointArgument(const CallInst *CI) { 119 return any_of(CI->operands(), [](const Use &OI) { 120 return OI->getType()->isFloatingPointTy(); 121 }); 122 } 123 124 static bool callHasFP128Argument(const CallInst *CI) { 125 return any_of(CI->operands(), [](const Use &OI) { 126 return OI->getType()->isFP128Ty(); 127 }); 128 } 129 130 // Convert the entire string Str representing an integer in Base, up to 131 // the terminating nul if present, to a constant according to the rules 132 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success 133 // return the result, otherwise null. 134 // The function assumes the string is encoded in ASCII and carefully 135 // avoids converting sequences (including "") that the corresponding 136 // library call might fail and set errno for. 137 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr, 138 uint64_t Base, bool AsSigned, IRBuilderBase &B) { 139 if (Base < 2 || Base > 36) 140 if (Base != 0) 141 // Fail for an invalid base (required by POSIX). 142 return nullptr; 143 144 // Current offset into the original string to reflect in EndPtr. 145 size_t Offset = 0; 146 // Strip leading whitespace. 147 for ( ; Offset != Str.size(); ++Offset) 148 if (!isSpace((unsigned char)Str[Offset])) { 149 Str = Str.substr(Offset); 150 break; 151 } 152 153 if (Str.empty()) 154 // Fail for empty subject sequences (POSIX allows but doesn't require 155 // strtol[l]/strtoul[l] to fail with EINVAL). 156 return nullptr; 157 158 // Strip but remember the sign. 159 bool Negate = Str[0] == '-'; 160 if (Str[0] == '-' || Str[0] == '+') { 161 Str = Str.drop_front(); 162 if (Str.empty()) 163 // Fail for a sign with nothing after it. 164 return nullptr; 165 ++Offset; 166 } 167 168 // Set Max to the absolute value of the minimum (for signed), or 169 // to the maximum (for unsigned) value representable in the type. 170 Type *RetTy = CI->getType(); 171 unsigned NBits = RetTy->getPrimitiveSizeInBits(); 172 uint64_t Max = AsSigned && Negate ? 1 : 0; 173 Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits); 174 175 // Autodetect Base if it's zero and consume the "0x" prefix. 176 if (Str.size() > 1) { 177 if (Str[0] == '0') { 178 if (toUpper((unsigned char)Str[1]) == 'X') { 179 if (Str.size() == 2 || (Base && Base != 16)) 180 // Fail if Base doesn't allow the "0x" prefix or for the prefix 181 // alone that implementations like BSD set errno to EINVAL for. 182 return nullptr; 183 184 Str = Str.drop_front(2); 185 Offset += 2; 186 Base = 16; 187 } 188 else if (Base == 0) 189 Base = 8; 190 } else if (Base == 0) 191 Base = 10; 192 } 193 else if (Base == 0) 194 Base = 10; 195 196 // Convert the rest of the subject sequence, not including the sign, 197 // to its uint64_t representation (this assumes the source character 198 // set is ASCII). 199 uint64_t Result = 0; 200 for (unsigned i = 0; i != Str.size(); ++i) { 201 unsigned char DigVal = Str[i]; 202 if (isDigit(DigVal)) 203 DigVal = DigVal - '0'; 204 else { 205 DigVal = toUpper(DigVal); 206 if (isAlpha(DigVal)) 207 DigVal = DigVal - 'A' + 10; 208 else 209 return nullptr; 210 } 211 212 if (DigVal >= Base) 213 // Fail if the digit is not valid in the Base. 214 return nullptr; 215 216 // Add the digit and fail if the result is not representable in 217 // the (unsigned form of the) destination type. 218 bool VFlow; 219 Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow); 220 if (VFlow || Result > Max) 221 return nullptr; 222 } 223 224 if (EndPtr) { 225 // Store the pointer to the end. 226 Value *Off = B.getInt64(Offset + Str.size()); 227 Value *StrBeg = CI->getArgOperand(0); 228 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr"); 229 B.CreateStore(StrEnd, EndPtr); 230 } 231 232 if (Negate) 233 // Unsigned negation doesn't overflow. 234 Result = -Result; 235 236 return ConstantInt::get(RetTy, Result); 237 } 238 239 static bool isOnlyUsedInComparisonWithZero(Value *V) { 240 for (User *U : V->users()) { 241 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 242 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 243 if (C->isNullValue()) 244 continue; 245 // Unknown instruction. 246 return false; 247 } 248 return true; 249 } 250 251 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 252 const DataLayout &DL) { 253 if (!isOnlyUsedInComparisonWithZero(CI)) 254 return false; 255 256 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 257 return false; 258 259 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 260 return false; 261 262 return true; 263 } 264 265 static void annotateDereferenceableBytes(CallInst *CI, 266 ArrayRef<unsigned> ArgNos, 267 uint64_t DereferenceableBytes) { 268 const Function *F = CI->getCaller(); 269 if (!F) 270 return; 271 for (unsigned ArgNo : ArgNos) { 272 uint64_t DerefBytes = DereferenceableBytes; 273 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 274 if (!llvm::NullPointerIsDefined(F, AS) || 275 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 276 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 277 DereferenceableBytes); 278 279 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 280 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 281 if (!llvm::NullPointerIsDefined(F, AS) || 282 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 283 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 284 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 285 CI->getContext(), DerefBytes)); 286 } 287 } 288 } 289 290 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 291 ArrayRef<unsigned> ArgNos) { 292 Function *F = CI->getCaller(); 293 if (!F) 294 return; 295 296 for (unsigned ArgNo : ArgNos) { 297 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 298 CI->addParamAttr(ArgNo, Attribute::NoUndef); 299 300 if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) { 301 unsigned AS = 302 CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 303 if (llvm::NullPointerIsDefined(F, AS)) 304 continue; 305 CI->addParamAttr(ArgNo, Attribute::NonNull); 306 } 307 308 annotateDereferenceableBytes(CI, ArgNo, 1); 309 } 310 } 311 312 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 313 Value *Size, const DataLayout &DL) { 314 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 315 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 316 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 317 } else if (isKnownNonZero(Size, DL)) { 318 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 319 const APInt *X, *Y; 320 uint64_t DerefMin = 1; 321 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 322 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 323 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 324 } 325 } 326 } 327 328 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 329 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 330 // in this function when New is created to replace Old. Callers should take 331 // care to check Old.isMustTailCall() if they aren't replacing Old directly 332 // with New. 333 static Value *copyFlags(const CallInst &Old, Value *New) { 334 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 335 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 336 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 337 NewCI->setTailCallKind(Old.getTailCallKind()); 338 return New; 339 } 340 341 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) { 342 NewCI->setAttributes(AttributeList::get( 343 NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()})); 344 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 345 return copyFlags(Old, NewCI); 346 } 347 348 // Helper to avoid truncating the length if size_t is 32-bits. 349 static StringRef substr(StringRef Str, uint64_t Len) { 350 return Len >= Str.size() ? Str : Str.substr(0, Len); 351 } 352 353 //===----------------------------------------------------------------------===// 354 // String and Memory Library Call Optimizations 355 //===----------------------------------------------------------------------===// 356 357 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 358 // Extract some information from the instruction 359 Value *Dst = CI->getArgOperand(0); 360 Value *Src = CI->getArgOperand(1); 361 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 362 363 // See if we can get the length of the input string. 364 uint64_t Len = GetStringLength(Src); 365 if (Len) 366 annotateDereferenceableBytes(CI, 1, Len); 367 else 368 return nullptr; 369 --Len; // Unbias length. 370 371 // Handle the simple, do-nothing case: strcat(x, "") -> x 372 if (Len == 0) 373 return Dst; 374 375 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 376 } 377 378 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 379 IRBuilderBase &B) { 380 // We need to find the end of the destination string. That's where the 381 // memory is to be moved to. We just generate a call to strlen. 382 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 383 if (!DstLen) 384 return nullptr; 385 386 // Now that we have the destination's length, we must index into the 387 // destination's pointer to get the actual memcpy destination (end of 388 // the string .. we're concatenating). 389 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 390 391 // We have enough information to now generate the memcpy call to do the 392 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 393 B.CreateMemCpy( 394 CpyDst, Align(1), Src, Align(1), 395 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 396 return Dst; 397 } 398 399 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 400 // Extract some information from the instruction. 401 Value *Dst = CI->getArgOperand(0); 402 Value *Src = CI->getArgOperand(1); 403 Value *Size = CI->getArgOperand(2); 404 uint64_t Len; 405 annotateNonNullNoUndefBasedOnAccess(CI, 0); 406 if (isKnownNonZero(Size, DL)) 407 annotateNonNullNoUndefBasedOnAccess(CI, 1); 408 409 // We don't do anything if length is not constant. 410 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 411 if (LengthArg) { 412 Len = LengthArg->getZExtValue(); 413 // strncat(x, c, 0) -> x 414 if (!Len) 415 return Dst; 416 } else { 417 return nullptr; 418 } 419 420 // See if we can get the length of the input string. 421 uint64_t SrcLen = GetStringLength(Src); 422 if (SrcLen) { 423 annotateDereferenceableBytes(CI, 1, SrcLen); 424 --SrcLen; // Unbias length. 425 } else { 426 return nullptr; 427 } 428 429 // strncat(x, "", c) -> x 430 if (SrcLen == 0) 431 return Dst; 432 433 // We don't optimize this case. 434 if (Len < SrcLen) 435 return nullptr; 436 437 // strncat(x, s, c) -> strcat(x, s) 438 // s is constant so the strcat can be optimized further. 439 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 440 } 441 442 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when 443 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function 444 // is that either S is dereferenceable or the value of N is nonzero. 445 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes, 446 IRBuilderBase &B, const DataLayout &DL) 447 { 448 Value *Src = CI->getArgOperand(0); 449 Value *CharVal = CI->getArgOperand(1); 450 451 // Fold memchr(A, C, N) == A to N && *A == C. 452 Type *CharTy = B.getInt8Ty(); 453 Value *Char0 = B.CreateLoad(CharTy, Src); 454 CharVal = B.CreateTrunc(CharVal, CharTy); 455 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp"); 456 457 if (NBytes) { 458 Value *Zero = ConstantInt::get(NBytes->getType(), 0); 459 Value *And = B.CreateICmpNE(NBytes, Zero); 460 Cmp = B.CreateLogicalAnd(And, Cmp); 461 } 462 463 Value *NullPtr = Constant::getNullValue(CI->getType()); 464 return B.CreateSelect(Cmp, Src, NullPtr); 465 } 466 467 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 468 Value *SrcStr = CI->getArgOperand(0); 469 Value *CharVal = CI->getArgOperand(1); 470 annotateNonNullNoUndefBasedOnAccess(CI, 0); 471 472 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 473 return memChrToCharCompare(CI, nullptr, B, DL); 474 475 // If the second operand is non-constant, see if we can compute the length 476 // of the input string and turn this into memchr. 477 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 478 if (!CharC) { 479 uint64_t Len = GetStringLength(SrcStr); 480 if (Len) 481 annotateDereferenceableBytes(CI, 0, Len); 482 else 483 return nullptr; 484 485 Function *Callee = CI->getCalledFunction(); 486 FunctionType *FT = Callee->getFunctionType(); 487 unsigned IntBits = TLI->getIntSize(); 488 if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'. 489 return nullptr; 490 491 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 492 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 493 return copyFlags(*CI, 494 emitMemChr(SrcStr, CharVal, // include nul. 495 ConstantInt::get(SizeTTy, Len), B, 496 DL, TLI)); 497 } 498 499 if (CharC->isZero()) { 500 Value *NullPtr = Constant::getNullValue(CI->getType()); 501 if (isOnlyUsedInEqualityComparison(CI, NullPtr)) 502 // Pre-empt the transformation to strlen below and fold 503 // strchr(A, '\0') == null to false. 504 return B.CreateIntToPtr(B.getTrue(), CI->getType()); 505 } 506 507 // Otherwise, the character is a constant, see if the first argument is 508 // a string literal. If so, we can constant fold. 509 StringRef Str; 510 if (!getConstantStringInfo(SrcStr, Str)) { 511 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 512 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 513 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 514 return nullptr; 515 } 516 517 // Compute the offset, make sure to handle the case when we're searching for 518 // zero (a weird way to spell strlen). 519 size_t I = (0xFF & CharC->getSExtValue()) == 0 520 ? Str.size() 521 : Str.find(CharC->getSExtValue()); 522 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 523 return Constant::getNullValue(CI->getType()); 524 525 // strchr(s+n,c) -> gep(s+n+i,c) 526 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 527 } 528 529 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 530 Value *SrcStr = CI->getArgOperand(0); 531 Value *CharVal = CI->getArgOperand(1); 532 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 533 annotateNonNullNoUndefBasedOnAccess(CI, 0); 534 535 StringRef Str; 536 if (!getConstantStringInfo(SrcStr, Str)) { 537 // strrchr(s, 0) -> strchr(s, 0) 538 if (CharC && CharC->isZero()) 539 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 540 return nullptr; 541 } 542 543 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 544 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 545 546 // Try to expand strrchr to the memrchr nonstandard extension if it's 547 // available, or simply fail otherwise. 548 uint64_t NBytes = Str.size() + 1; // Include the terminating nul. 549 Value *Size = ConstantInt::get(SizeTTy, NBytes); 550 return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI)); 551 } 552 553 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 554 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 555 if (Str1P == Str2P) // strcmp(x,x) -> 0 556 return ConstantInt::get(CI->getType(), 0); 557 558 StringRef Str1, Str2; 559 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 560 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 561 562 // strcmp(x, y) -> cnst (if both x and y are constant strings) 563 if (HasStr1 && HasStr2) 564 return ConstantInt::get(CI->getType(), 565 std::clamp(Str1.compare(Str2), -1, 1)); 566 567 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 568 return B.CreateNeg(B.CreateZExt( 569 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 570 571 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 572 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 573 CI->getType()); 574 575 // strcmp(P, "x") -> memcmp(P, "x", 2) 576 uint64_t Len1 = GetStringLength(Str1P); 577 if (Len1) 578 annotateDereferenceableBytes(CI, 0, Len1); 579 uint64_t Len2 = GetStringLength(Str2P); 580 if (Len2) 581 annotateDereferenceableBytes(CI, 1, Len2); 582 583 if (Len1 && Len2) { 584 return copyFlags( 585 *CI, emitMemCmp(Str1P, Str2P, 586 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 587 std::min(Len1, Len2)), 588 B, DL, TLI)); 589 } 590 591 // strcmp to memcmp 592 if (!HasStr1 && HasStr2) { 593 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 594 return copyFlags( 595 *CI, 596 emitMemCmp(Str1P, Str2P, 597 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 598 B, DL, TLI)); 599 } else if (HasStr1 && !HasStr2) { 600 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 601 return copyFlags( 602 *CI, 603 emitMemCmp(Str1P, Str2P, 604 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 605 B, DL, TLI)); 606 } 607 608 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 609 return nullptr; 610 } 611 612 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 613 // arrays LHS and RHS and nonconstant Size. 614 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 615 Value *Size, bool StrNCmp, 616 IRBuilderBase &B, const DataLayout &DL); 617 618 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 619 Value *Str1P = CI->getArgOperand(0); 620 Value *Str2P = CI->getArgOperand(1); 621 Value *Size = CI->getArgOperand(2); 622 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 623 return ConstantInt::get(CI->getType(), 0); 624 625 if (isKnownNonZero(Size, DL)) 626 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 627 // Get the length argument if it is constant. 628 uint64_t Length; 629 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 630 Length = LengthArg->getZExtValue(); 631 else 632 return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL); 633 634 if (Length == 0) // strncmp(x,y,0) -> 0 635 return ConstantInt::get(CI->getType(), 0); 636 637 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 638 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 639 640 StringRef Str1, Str2; 641 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 642 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 643 644 // strncmp(x, y) -> cnst (if both x and y are constant strings) 645 if (HasStr1 && HasStr2) { 646 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 647 StringRef SubStr1 = substr(Str1, Length); 648 StringRef SubStr2 = substr(Str2, Length); 649 return ConstantInt::get(CI->getType(), 650 std::clamp(SubStr1.compare(SubStr2), -1, 1)); 651 } 652 653 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 654 return B.CreateNeg(B.CreateZExt( 655 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 656 657 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 658 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 659 CI->getType()); 660 661 uint64_t Len1 = GetStringLength(Str1P); 662 if (Len1) 663 annotateDereferenceableBytes(CI, 0, Len1); 664 uint64_t Len2 = GetStringLength(Str2P); 665 if (Len2) 666 annotateDereferenceableBytes(CI, 1, Len2); 667 668 // strncmp to memcmp 669 if (!HasStr1 && HasStr2) { 670 Len2 = std::min(Len2, Length); 671 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 672 return copyFlags( 673 *CI, 674 emitMemCmp(Str1P, Str2P, 675 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 676 B, DL, TLI)); 677 } else if (HasStr1 && !HasStr2) { 678 Len1 = std::min(Len1, Length); 679 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 680 return copyFlags( 681 *CI, 682 emitMemCmp(Str1P, Str2P, 683 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 684 B, DL, TLI)); 685 } 686 687 return nullptr; 688 } 689 690 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 691 Value *Src = CI->getArgOperand(0); 692 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 693 uint64_t SrcLen = GetStringLength(Src); 694 if (SrcLen && Size) { 695 annotateDereferenceableBytes(CI, 0, SrcLen); 696 if (SrcLen <= Size->getZExtValue() + 1) 697 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 698 } 699 700 return nullptr; 701 } 702 703 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 704 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 705 if (Dst == Src) // strcpy(x,x) -> x 706 return Src; 707 708 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 709 // See if we can get the length of the input string. 710 uint64_t Len = GetStringLength(Src); 711 if (Len) 712 annotateDereferenceableBytes(CI, 1, Len); 713 else 714 return nullptr; 715 716 // We have enough information to now generate the memcpy call to do the 717 // copy for us. Make a memcpy to copy the nul byte with align = 1. 718 CallInst *NewCI = 719 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 720 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 721 mergeAttributesAndFlags(NewCI, *CI); 722 return Dst; 723 } 724 725 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 726 Function *Callee = CI->getCalledFunction(); 727 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 728 729 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 730 if (CI->use_empty()) 731 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 732 733 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 734 Value *StrLen = emitStrLen(Src, B, DL, TLI); 735 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 736 } 737 738 // See if we can get the length of the input string. 739 uint64_t Len = GetStringLength(Src); 740 if (Len) 741 annotateDereferenceableBytes(CI, 1, Len); 742 else 743 return nullptr; 744 745 Type *PT = Callee->getFunctionType()->getParamType(0); 746 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 747 Value *DstEnd = B.CreateInBoundsGEP( 748 B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 749 750 // We have enough information to now generate the memcpy call to do the 751 // copy for us. Make a memcpy to copy the nul byte with align = 1. 752 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 753 mergeAttributesAndFlags(NewCI, *CI); 754 return DstEnd; 755 } 756 757 // Optimize a call to size_t strlcpy(char*, const char*, size_t). 758 759 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) { 760 Value *Size = CI->getArgOperand(2); 761 if (isKnownNonZero(Size, DL)) 762 // Like snprintf, the function stores into the destination only when 763 // the size argument is nonzero. 764 annotateNonNullNoUndefBasedOnAccess(CI, 0); 765 // The function reads the source argument regardless of Size (it returns 766 // its length). 767 annotateNonNullNoUndefBasedOnAccess(CI, 1); 768 769 uint64_t NBytes; 770 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 771 NBytes = SizeC->getZExtValue(); 772 else 773 return nullptr; 774 775 Value *Dst = CI->getArgOperand(0); 776 Value *Src = CI->getArgOperand(1); 777 if (NBytes <= 1) { 778 if (NBytes == 1) 779 // For a call to strlcpy(D, S, 1) first store a nul in *D. 780 B.CreateStore(B.getInt8(0), Dst); 781 782 // Transform strlcpy(D, S, 0) to a call to strlen(S). 783 return copyFlags(*CI, emitStrLen(Src, B, DL, TLI)); 784 } 785 786 // Try to determine the length of the source, substituting its size 787 // when it's not nul-terminated (as it's required to be) to avoid 788 // reading past its end. 789 StringRef Str; 790 if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false)) 791 return nullptr; 792 793 uint64_t SrcLen = Str.find('\0'); 794 // Set if the terminating nul should be copied by the call to memcpy 795 // below. 796 bool NulTerm = SrcLen < NBytes; 797 798 if (NulTerm) 799 // Overwrite NBytes with the number of bytes to copy, including 800 // the terminating nul. 801 NBytes = SrcLen + 1; 802 else { 803 // Set the length of the source for the function to return to its 804 // size, and cap NBytes at the same. 805 SrcLen = std::min(SrcLen, uint64_t(Str.size())); 806 NBytes = std::min(NBytes - 1, SrcLen); 807 } 808 809 if (SrcLen == 0) { 810 // Transform strlcpy(D, "", N) to (*D = '\0, 0). 811 B.CreateStore(B.getInt8(0), Dst); 812 return ConstantInt::get(CI->getType(), 0); 813 } 814 815 Function *Callee = CI->getCalledFunction(); 816 Type *PT = Callee->getFunctionType()->getParamType(0); 817 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower 818 // bound on strlen(S) + 1 and N, optionally followed by a nul store to 819 // D[N' - 1] if necessary. 820 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 821 ConstantInt::get(DL.getIntPtrType(PT), NBytes)); 822 mergeAttributesAndFlags(NewCI, *CI); 823 824 if (!NulTerm) { 825 Value *EndOff = ConstantInt::get(CI->getType(), NBytes); 826 Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff); 827 B.CreateStore(B.getInt8(0), EndPtr); 828 } 829 830 // Like snprintf, strlcpy returns the number of nonzero bytes that would 831 // have been copied if the bound had been sufficiently big (which in this 832 // case is strlen(Src)). 833 return ConstantInt::get(CI->getType(), SrcLen); 834 } 835 836 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy 837 // otherwise. 838 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd, 839 IRBuilderBase &B) { 840 Function *Callee = CI->getCalledFunction(); 841 Value *Dst = CI->getArgOperand(0); 842 Value *Src = CI->getArgOperand(1); 843 Value *Size = CI->getArgOperand(2); 844 845 if (isKnownNonZero(Size, DL)) { 846 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays 847 // only when N is nonzero. 848 annotateNonNullNoUndefBasedOnAccess(CI, 0); 849 annotateNonNullNoUndefBasedOnAccess(CI, 1); 850 } 851 852 // If the "bound" argument is known set N to it. Otherwise set it to 853 // UINT64_MAX and handle it later. 854 uint64_t N = UINT64_MAX; 855 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 856 N = SizeC->getZExtValue(); 857 858 if (N == 0) 859 // Fold st{p,r}ncpy(D, S, 0) to D. 860 return Dst; 861 862 if (N == 1) { 863 Type *CharTy = B.getInt8Ty(); 864 Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0"); 865 B.CreateStore(CharVal, Dst); 866 if (!RetEnd) 867 // Transform strncpy(D, S, 1) to return (*D = *S), D. 868 return Dst; 869 870 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D. 871 Value *ZeroChar = ConstantInt::get(CharTy, 0); 872 Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp"); 873 874 Value *Off1 = B.getInt32(1); 875 Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end"); 876 return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel"); 877 } 878 879 // If the length of the input string is known set SrcLen to it. 880 uint64_t SrcLen = GetStringLength(Src); 881 if (SrcLen) 882 annotateDereferenceableBytes(CI, 1, SrcLen); 883 else 884 return nullptr; 885 886 --SrcLen; // Unbias length. 887 888 if (SrcLen == 0) { 889 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N. 890 Align MemSetAlign = 891 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 892 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 893 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 894 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 895 CI->getContext(), 0, ArgAttrs)); 896 copyFlags(*CI, NewCI); 897 return Dst; 898 } 899 900 if (N > SrcLen + 1) { 901 if (N > 128) 902 // Bail if N is large or unknown. 903 return nullptr; 904 905 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128. 906 StringRef Str; 907 if (!getConstantStringInfo(Src, Str)) 908 return nullptr; 909 std::string SrcStr = Str.str(); 910 // Create a bigger, nul-padded array with the same length, SrcLen, 911 // as the original string. 912 SrcStr.resize(N, '\0'); 913 Src = B.CreateGlobalString(SrcStr, "str"); 914 } 915 916 Type *PT = Callee->getFunctionType()->getParamType(0); 917 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both 918 // S and N are constant. 919 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 920 ConstantInt::get(DL.getIntPtrType(PT), N)); 921 mergeAttributesAndFlags(NewCI, *CI); 922 if (!RetEnd) 923 return Dst; 924 925 // stpncpy(D, S, N) returns the address of the first null in D if it writes 926 // one, otherwise D + N. 927 Value *Off = B.getInt64(std::min(SrcLen, N)); 928 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr"); 929 } 930 931 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 932 unsigned CharSize, 933 Value *Bound) { 934 Value *Src = CI->getArgOperand(0); 935 Type *CharTy = B.getIntNTy(CharSize); 936 937 if (isOnlyUsedInZeroEqualityComparison(CI) && 938 (!Bound || isKnownNonZero(Bound, DL))) { 939 // Fold strlen: 940 // strlen(x) != 0 --> *x != 0 941 // strlen(x) == 0 --> *x == 0 942 // and likewise strnlen with constant N > 0: 943 // strnlen(x, N) != 0 --> *x != 0 944 // strnlen(x, N) == 0 --> *x == 0 945 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 946 CI->getType()); 947 } 948 949 if (Bound) { 950 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 951 if (BoundCst->isZero()) 952 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 953 return ConstantInt::get(CI->getType(), 0); 954 955 if (BoundCst->isOne()) { 956 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 957 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 958 Value *ZeroChar = ConstantInt::get(CharTy, 0); 959 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 960 return B.CreateZExt(Cmp, CI->getType()); 961 } 962 } 963 } 964 965 if (uint64_t Len = GetStringLength(Src, CharSize)) { 966 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 967 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 968 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 969 if (Bound) 970 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 971 return LenC; 972 } 973 974 if (Bound) 975 // Punt for strnlen for now. 976 return nullptr; 977 978 // If s is a constant pointer pointing to a string literal, we can fold 979 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 980 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 981 // We only try to simplify strlen when the pointer s points to an array 982 // of CharSize elements. Otherwise, we would need to scale the offset x before 983 // doing the subtraction. This will make the optimization more complex, and 984 // it's not very useful because calling strlen for a pointer of other types is 985 // very uncommon. 986 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 987 // TODO: Handle subobjects. 988 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 989 return nullptr; 990 991 ConstantDataArraySlice Slice; 992 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 993 uint64_t NullTermIdx; 994 if (Slice.Array == nullptr) { 995 NullTermIdx = 0; 996 } else { 997 NullTermIdx = ~((uint64_t)0); 998 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 999 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 1000 NullTermIdx = I; 1001 break; 1002 } 1003 } 1004 // If the string does not have '\0', leave it to strlen to compute 1005 // its length. 1006 if (NullTermIdx == ~((uint64_t)0)) 1007 return nullptr; 1008 } 1009 1010 Value *Offset = GEP->getOperand(2); 1011 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 1012 uint64_t ArrSize = 1013 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 1014 1015 // If Offset is not provably in the range [0, NullTermIdx], we can still 1016 // optimize if we can prove that the program has undefined behavior when 1017 // Offset is outside that range. That is the case when GEP->getOperand(0) 1018 // is a pointer to an object whose memory extent is NullTermIdx+1. 1019 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 1020 (isa<GlobalVariable>(GEP->getOperand(0)) && 1021 NullTermIdx == ArrSize - 1)) { 1022 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 1023 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 1024 Offset); 1025 } 1026 } 1027 } 1028 1029 // strlen(x?"foo":"bars") --> x ? 3 : 4 1030 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 1031 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 1032 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 1033 if (LenTrue && LenFalse) { 1034 ORE.emit([&]() { 1035 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 1036 << "folded strlen(select) to select of constants"; 1037 }); 1038 return B.CreateSelect(SI->getCondition(), 1039 ConstantInt::get(CI->getType(), LenTrue - 1), 1040 ConstantInt::get(CI->getType(), LenFalse - 1)); 1041 } 1042 } 1043 1044 return nullptr; 1045 } 1046 1047 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 1048 if (Value *V = optimizeStringLength(CI, B, 8)) 1049 return V; 1050 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1051 return nullptr; 1052 } 1053 1054 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 1055 Value *Bound = CI->getArgOperand(1); 1056 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 1057 return V; 1058 1059 if (isKnownNonZero(Bound, DL)) 1060 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1061 return nullptr; 1062 } 1063 1064 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 1065 Module &M = *CI->getModule(); 1066 unsigned WCharSize = TLI->getWCharSize(M) * 8; 1067 // We cannot perform this optimization without wchar_size metadata. 1068 if (WCharSize == 0) 1069 return nullptr; 1070 1071 return optimizeStringLength(CI, B, WCharSize); 1072 } 1073 1074 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 1075 StringRef S1, S2; 1076 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1077 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1078 1079 // strpbrk(s, "") -> nullptr 1080 // strpbrk("", s) -> nullptr 1081 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1082 return Constant::getNullValue(CI->getType()); 1083 1084 // Constant folding. 1085 if (HasS1 && HasS2) { 1086 size_t I = S1.find_first_of(S2); 1087 if (I == StringRef::npos) // No match. 1088 return Constant::getNullValue(CI->getType()); 1089 1090 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0), 1091 B.getInt64(I), "strpbrk"); 1092 } 1093 1094 // strpbrk(s, "a") -> strchr(s, 'a') 1095 if (HasS2 && S2.size() == 1) 1096 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 1097 1098 return nullptr; 1099 } 1100 1101 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 1102 Value *EndPtr = CI->getArgOperand(1); 1103 if (isa<ConstantPointerNull>(EndPtr)) { 1104 // With a null EndPtr, this function won't capture the main argument. 1105 // It would be readonly too, except that it still may write to errno. 1106 CI->addParamAttr(0, Attribute::NoCapture); 1107 } 1108 1109 return nullptr; 1110 } 1111 1112 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 1113 StringRef S1, S2; 1114 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1115 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1116 1117 // strspn(s, "") -> 0 1118 // strspn("", s) -> 0 1119 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1120 return Constant::getNullValue(CI->getType()); 1121 1122 // Constant folding. 1123 if (HasS1 && HasS2) { 1124 size_t Pos = S1.find_first_not_of(S2); 1125 if (Pos == StringRef::npos) 1126 Pos = S1.size(); 1127 return ConstantInt::get(CI->getType(), Pos); 1128 } 1129 1130 return nullptr; 1131 } 1132 1133 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 1134 StringRef S1, S2; 1135 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1136 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1137 1138 // strcspn("", s) -> 0 1139 if (HasS1 && S1.empty()) 1140 return Constant::getNullValue(CI->getType()); 1141 1142 // Constant folding. 1143 if (HasS1 && HasS2) { 1144 size_t Pos = S1.find_first_of(S2); 1145 if (Pos == StringRef::npos) 1146 Pos = S1.size(); 1147 return ConstantInt::get(CI->getType(), Pos); 1148 } 1149 1150 // strcspn(s, "") -> strlen(s) 1151 if (HasS2 && S2.empty()) 1152 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 1153 1154 return nullptr; 1155 } 1156 1157 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 1158 // fold strstr(x, x) -> x. 1159 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 1160 return CI->getArgOperand(0); 1161 1162 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 1163 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 1164 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 1165 if (!StrLen) 1166 return nullptr; 1167 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 1168 StrLen, B, DL, TLI); 1169 if (!StrNCmp) 1170 return nullptr; 1171 for (User *U : llvm::make_early_inc_range(CI->users())) { 1172 ICmpInst *Old = cast<ICmpInst>(U); 1173 Value *Cmp = 1174 B.CreateICmp(Old->getPredicate(), StrNCmp, 1175 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 1176 replaceAllUsesWith(Old, Cmp); 1177 } 1178 return CI; 1179 } 1180 1181 // See if either input string is a constant string. 1182 StringRef SearchStr, ToFindStr; 1183 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 1184 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 1185 1186 // fold strstr(x, "") -> x. 1187 if (HasStr2 && ToFindStr.empty()) 1188 return CI->getArgOperand(0); 1189 1190 // If both strings are known, constant fold it. 1191 if (HasStr1 && HasStr2) { 1192 size_t Offset = SearchStr.find(ToFindStr); 1193 1194 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 1195 return Constant::getNullValue(CI->getType()); 1196 1197 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 1198 return B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), CI->getArgOperand(0), 1199 Offset, "strstr"); 1200 } 1201 1202 // fold strstr(x, "y") -> strchr(x, 'y'). 1203 if (HasStr2 && ToFindStr.size() == 1) { 1204 return emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 1205 } 1206 1207 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 1208 return nullptr; 1209 } 1210 1211 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 1212 Value *SrcStr = CI->getArgOperand(0); 1213 Value *Size = CI->getArgOperand(2); 1214 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1215 Value *CharVal = CI->getArgOperand(1); 1216 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1217 Value *NullPtr = Constant::getNullValue(CI->getType()); 1218 1219 if (LenC) { 1220 if (LenC->isZero()) 1221 // Fold memrchr(x, y, 0) --> null. 1222 return NullPtr; 1223 1224 if (LenC->isOne()) { 1225 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 1226 // constant or otherwise. 1227 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 1228 // Slice off the character's high end bits. 1229 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1230 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 1231 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 1232 } 1233 } 1234 1235 StringRef Str; 1236 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1237 return nullptr; 1238 1239 if (Str.size() == 0) 1240 // If the array is empty fold memrchr(A, C, N) to null for any value 1241 // of C and N on the basis that the only valid value of N is zero 1242 // (otherwise the call is undefined). 1243 return NullPtr; 1244 1245 uint64_t EndOff = UINT64_MAX; 1246 if (LenC) { 1247 EndOff = LenC->getZExtValue(); 1248 if (Str.size() < EndOff) 1249 // Punt out-of-bounds accesses to sanitizers and/or libc. 1250 return nullptr; 1251 } 1252 1253 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 1254 // Fold memrchr(S, C, N) for a constant C. 1255 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 1256 if (Pos == StringRef::npos) 1257 // When the character is not in the source array fold the result 1258 // to null regardless of Size. 1259 return NullPtr; 1260 1261 if (LenC) 1262 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 1263 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 1264 1265 if (Str.find(Str[Pos]) == Pos) { 1266 // When there is just a single occurrence of C in S, i.e., the one 1267 // in Str[Pos], fold 1268 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 1269 // for nonconstant N. 1270 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1271 "memrchr.cmp"); 1272 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, 1273 B.getInt64(Pos), "memrchr.ptr_plus"); 1274 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 1275 } 1276 } 1277 1278 // Truncate the string to search at most EndOff characters. 1279 Str = Str.substr(0, EndOff); 1280 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 1281 return nullptr; 1282 1283 // If the source array consists of all equal characters, then for any 1284 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 1285 // N != 0 && *S == C ? S + N - 1 : null 1286 Type *SizeTy = Size->getType(); 1287 Type *Int8Ty = B.getInt8Ty(); 1288 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1289 // Slice off the sought character's high end bits. 1290 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1291 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 1292 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 1293 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 1294 Value *SrcPlus = 1295 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 1296 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 1297 } 1298 1299 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 1300 Value *SrcStr = CI->getArgOperand(0); 1301 Value *Size = CI->getArgOperand(2); 1302 1303 if (isKnownNonZero(Size, DL)) { 1304 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1305 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1306 return memChrToCharCompare(CI, Size, B, DL); 1307 } 1308 1309 Value *CharVal = CI->getArgOperand(1); 1310 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1311 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1312 Value *NullPtr = Constant::getNullValue(CI->getType()); 1313 1314 // memchr(x, y, 0) -> null 1315 if (LenC) { 1316 if (LenC->isZero()) 1317 return NullPtr; 1318 1319 if (LenC->isOne()) { 1320 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1321 // constant or otherwise. 1322 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1323 // Slice off the character's high end bits. 1324 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1325 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1326 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1327 } 1328 } 1329 1330 StringRef Str; 1331 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1332 return nullptr; 1333 1334 if (CharC) { 1335 size_t Pos = Str.find(CharC->getZExtValue()); 1336 if (Pos == StringRef::npos) 1337 // When the character is not in the source array fold the result 1338 // to null regardless of Size. 1339 return NullPtr; 1340 1341 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1342 // When the constant Size is less than or equal to the character 1343 // position also fold the result to null. 1344 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1345 "memchr.cmp"); 1346 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 1347 "memchr.ptr"); 1348 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1349 } 1350 1351 if (Str.size() == 0) 1352 // If the array is empty fold memchr(A, C, N) to null for any value 1353 // of C and N on the basis that the only valid value of N is zero 1354 // (otherwise the call is undefined). 1355 return NullPtr; 1356 1357 if (LenC) 1358 Str = substr(Str, LenC->getZExtValue()); 1359 1360 size_t Pos = Str.find_first_not_of(Str[0]); 1361 if (Pos == StringRef::npos 1362 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) { 1363 // If the source array consists of at most two consecutive sequences 1364 // of the same characters, then for any C and N (whether in bounds or 1365 // not), fold memchr(S, C, N) to 1366 // N != 0 && *S == C ? S : null 1367 // or for the two sequences to: 1368 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null) 1369 // ^Sel2 ^Sel1 are denoted above. 1370 // The latter makes it also possible to fold strchr() calls with strings 1371 // of the same characters. 1372 Type *SizeTy = Size->getType(); 1373 Type *Int8Ty = B.getInt8Ty(); 1374 1375 // Slice off the sought character's high end bits. 1376 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1377 1378 Value *Sel1 = NullPtr; 1379 if (Pos != StringRef::npos) { 1380 // Handle two consecutive sequences of the same characters. 1381 Value *PosVal = ConstantInt::get(SizeTy, Pos); 1382 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]); 1383 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos); 1384 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal); 1385 Value *And = B.CreateAnd(CEqSPos, NGtPos); 1386 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal); 1387 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1"); 1388 } 1389 1390 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]); 1391 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal); 1392 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1393 Value *And = B.CreateAnd(NNeZ, CEqS0); 1394 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2"); 1395 } 1396 1397 if (!LenC) { 1398 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1399 // S is dereferenceable so it's safe to load from it and fold 1400 // memchr(S, C, N) == S to N && *S == C for any C and N. 1401 // TODO: This is safe even for nonconstant S. 1402 return memChrToCharCompare(CI, Size, B, DL); 1403 1404 // From now on we need a constant length and constant array. 1405 return nullptr; 1406 } 1407 1408 bool OptForSize = CI->getFunction()->hasOptSize() || 1409 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 1410 PGSOQueryType::IRPass); 1411 1412 // If the char is variable but the input str and length are not we can turn 1413 // this memchr call into a simple bit field test. Of course this only works 1414 // when the return value is only checked against null. 1415 // 1416 // It would be really nice to reuse switch lowering here but we can't change 1417 // the CFG at this point. 1418 // 1419 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1420 // != 0 1421 // after bounds check. 1422 if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1423 return nullptr; 1424 1425 unsigned char Max = 1426 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1427 reinterpret_cast<const unsigned char *>(Str.end())); 1428 1429 // Make sure the bit field we're about to create fits in a register on the 1430 // target. 1431 // FIXME: On a 64 bit architecture this prevents us from using the 1432 // interesting range of alpha ascii chars. We could do better by emitting 1433 // two bitfields or shifting the range by 64 if no lower chars are used. 1434 if (!DL.fitsInLegalInteger(Max + 1)) { 1435 // Build chain of ORs 1436 // Transform: 1437 // memchr("abcd", C, 4) != nullptr 1438 // to: 1439 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0 1440 std::string SortedStr = Str.str(); 1441 llvm::sort(SortedStr); 1442 // Compute the number of of non-contiguous ranges. 1443 unsigned NonContRanges = 1; 1444 for (size_t i = 1; i < SortedStr.size(); ++i) { 1445 if (SortedStr[i] > SortedStr[i - 1] + 1) { 1446 NonContRanges++; 1447 } 1448 } 1449 1450 // Restrict this optimization to profitable cases with one or two range 1451 // checks. 1452 if (NonContRanges > 2) 1453 return nullptr; 1454 1455 SmallVector<Value *> CharCompares; 1456 for (unsigned char C : SortedStr) 1457 CharCompares.push_back( 1458 B.CreateICmpEQ(CharVal, ConstantInt::get(CharVal->getType(), C))); 1459 1460 return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType()); 1461 } 1462 1463 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1464 // creating unnecessary illegal types. 1465 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1466 1467 // Now build the bit field. 1468 APInt Bitfield(Width, 0); 1469 for (char C : Str) 1470 Bitfield.setBit((unsigned char)C); 1471 Value *BitfieldC = B.getInt(Bitfield); 1472 1473 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1474 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1475 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1476 1477 // First check that the bit field access is within bounds. 1478 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1479 "memchr.bounds"); 1480 1481 // Create code that checks if the given bit is set in the field. 1482 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1483 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1484 1485 // Finally merge both checks and cast to pointer type. The inttoptr 1486 // implicitly zexts the i1 to intptr type. 1487 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1488 CI->getType()); 1489 } 1490 1491 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 1492 // arrays LHS and RHS and nonconstant Size. 1493 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 1494 Value *Size, bool StrNCmp, 1495 IRBuilderBase &B, const DataLayout &DL) { 1496 if (LHS == RHS) // memcmp(s,s,x) -> 0 1497 return Constant::getNullValue(CI->getType()); 1498 1499 StringRef LStr, RStr; 1500 if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) || 1501 !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false)) 1502 return nullptr; 1503 1504 // If the contents of both constant arrays are known, fold a call to 1505 // memcmp(A, B, N) to 1506 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0) 1507 // where Pos is the first mismatch between A and B, determined below. 1508 1509 uint64_t Pos = 0; 1510 Value *Zero = ConstantInt::get(CI->getType(), 0); 1511 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) { 1512 if (Pos == MinSize || 1513 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) { 1514 // One array is a leading part of the other of equal or greater 1515 // size, or for strncmp, the arrays are equal strings. 1516 // Fold the result to zero. Size is assumed to be in bounds, since 1517 // otherwise the call would be undefined. 1518 return Zero; 1519 } 1520 1521 if (LStr[Pos] != RStr[Pos]) 1522 break; 1523 } 1524 1525 // Normalize the result. 1526 typedef unsigned char UChar; 1527 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1; 1528 Value *MaxSize = ConstantInt::get(Size->getType(), Pos); 1529 Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize); 1530 Value *Res = ConstantInt::get(CI->getType(), IRes); 1531 return B.CreateSelect(Cmp, Zero, Res); 1532 } 1533 1534 // Optimize a memcmp call CI with constant size Len. 1535 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1536 uint64_t Len, IRBuilderBase &B, 1537 const DataLayout &DL) { 1538 if (Len == 0) // memcmp(s1,s2,0) -> 0 1539 return Constant::getNullValue(CI->getType()); 1540 1541 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1542 if (Len == 1) { 1543 Value *LHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), LHS, "lhsc"), 1544 CI->getType(), "lhsv"); 1545 Value *RHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), RHS, "rhsc"), 1546 CI->getType(), "rhsv"); 1547 return B.CreateSub(LHSV, RHSV, "chardiff"); 1548 } 1549 1550 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1551 // TODO: The case where both inputs are constants does not need to be limited 1552 // to legal integers or equality comparison. See block below this. 1553 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1554 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1555 Align PrefAlignment = DL.getPrefTypeAlign(IntType); 1556 1557 // First, see if we can fold either argument to a constant. 1558 Value *LHSV = nullptr; 1559 if (auto *LHSC = dyn_cast<Constant>(LHS)) 1560 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1561 1562 Value *RHSV = nullptr; 1563 if (auto *RHSC = dyn_cast<Constant>(RHS)) 1564 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1565 1566 // Don't generate unaligned loads. If either source is constant data, 1567 // alignment doesn't matter for that source because there is no load. 1568 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1569 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1570 if (!LHSV) 1571 LHSV = B.CreateLoad(IntType, LHS, "lhsv"); 1572 if (!RHSV) 1573 RHSV = B.CreateLoad(IntType, RHS, "rhsv"); 1574 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1575 } 1576 } 1577 1578 return nullptr; 1579 } 1580 1581 // Most simplifications for memcmp also apply to bcmp. 1582 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1583 IRBuilderBase &B) { 1584 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1585 Value *Size = CI->getArgOperand(2); 1586 1587 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1588 1589 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL)) 1590 return Res; 1591 1592 // Handle constant Size. 1593 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1594 if (!LenC) 1595 return nullptr; 1596 1597 return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL); 1598 } 1599 1600 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1601 Module *M = CI->getModule(); 1602 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1603 return V; 1604 1605 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1606 // bcmp can be more efficient than memcmp because it only has to know that 1607 // there is a difference, not how different one is to the other. 1608 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1609 isOnlyUsedInZeroEqualityComparison(CI)) { 1610 Value *LHS = CI->getArgOperand(0); 1611 Value *RHS = CI->getArgOperand(1); 1612 Value *Size = CI->getArgOperand(2); 1613 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1614 } 1615 1616 return nullptr; 1617 } 1618 1619 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1620 return optimizeMemCmpBCmpCommon(CI, B); 1621 } 1622 1623 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1624 Value *Size = CI->getArgOperand(2); 1625 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1626 if (isa<IntrinsicInst>(CI)) 1627 return nullptr; 1628 1629 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1630 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1631 CI->getArgOperand(1), Align(1), Size); 1632 mergeAttributesAndFlags(NewCI, *CI); 1633 return CI->getArgOperand(0); 1634 } 1635 1636 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1637 Value *Dst = CI->getArgOperand(0); 1638 Value *Src = CI->getArgOperand(1); 1639 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1640 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1641 StringRef SrcStr; 1642 if (CI->use_empty() && Dst == Src) 1643 return Dst; 1644 // memccpy(d, s, c, 0) -> nullptr 1645 if (N) { 1646 if (N->isNullValue()) 1647 return Constant::getNullValue(CI->getType()); 1648 if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) || 1649 // TODO: Handle zeroinitializer. 1650 !StopChar) 1651 return nullptr; 1652 } else { 1653 return nullptr; 1654 } 1655 1656 // Wrap arg 'c' of type int to char 1657 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1658 if (Pos == StringRef::npos) { 1659 if (N->getZExtValue() <= SrcStr.size()) { 1660 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1661 CI->getArgOperand(3))); 1662 return Constant::getNullValue(CI->getType()); 1663 } 1664 return nullptr; 1665 } 1666 1667 Value *NewN = 1668 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1669 // memccpy -> llvm.memcpy 1670 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1671 return Pos + 1 <= N->getZExtValue() 1672 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1673 : Constant::getNullValue(CI->getType()); 1674 } 1675 1676 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1677 Value *Dst = CI->getArgOperand(0); 1678 Value *N = CI->getArgOperand(2); 1679 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1680 CallInst *NewCI = 1681 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1682 // Propagate attributes, but memcpy has no return value, so make sure that 1683 // any return attributes are compliant. 1684 // TODO: Attach return value attributes to the 1st operand to preserve them? 1685 mergeAttributesAndFlags(NewCI, *CI); 1686 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1687 } 1688 1689 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1690 Value *Size = CI->getArgOperand(2); 1691 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1692 if (isa<IntrinsicInst>(CI)) 1693 return nullptr; 1694 1695 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1696 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1697 CI->getArgOperand(1), Align(1), Size); 1698 mergeAttributesAndFlags(NewCI, *CI); 1699 return CI->getArgOperand(0); 1700 } 1701 1702 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1703 Value *Size = CI->getArgOperand(2); 1704 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1705 if (isa<IntrinsicInst>(CI)) 1706 return nullptr; 1707 1708 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1709 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1710 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1711 mergeAttributesAndFlags(NewCI, *CI); 1712 return CI->getArgOperand(0); 1713 } 1714 1715 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1716 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1717 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1718 1719 return nullptr; 1720 } 1721 1722 // When enabled, replace operator new() calls marked with a hot or cold memprof 1723 // attribute with an operator new() call that takes a __hot_cold_t parameter. 1724 // Currently this is supported by the open source version of tcmalloc, see: 1725 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h 1726 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B, 1727 LibFunc &Func) { 1728 if (!OptimizeHotColdNew) 1729 return nullptr; 1730 1731 uint8_t HotCold; 1732 if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold") 1733 HotCold = ColdNewHintValue; 1734 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == 1735 "notcold") 1736 HotCold = NotColdNewHintValue; 1737 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot") 1738 HotCold = HotNewHintValue; 1739 else 1740 return nullptr; 1741 1742 // For calls that already pass a hot/cold hint, only update the hint if 1743 // directed by OptimizeExistingHotColdNew. For other calls to new, add a hint 1744 // if cold or hot, and leave as-is for default handling if "notcold" aka warm. 1745 // Note that in cases where we decide it is "notcold", it might be slightly 1746 // better to replace the hinted call with a non hinted call, to avoid the 1747 // extra paramter and the if condition check of the hint value in the 1748 // allocator. This can be considered in the future. 1749 switch (Func) { 1750 case LibFunc_Znwm12__hot_cold_t: 1751 if (OptimizeExistingHotColdNew) 1752 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1753 LibFunc_Znwm12__hot_cold_t, HotCold); 1754 break; 1755 case LibFunc_Znwm: 1756 if (HotCold != NotColdNewHintValue) 1757 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1758 LibFunc_Znwm12__hot_cold_t, HotCold); 1759 break; 1760 case LibFunc_Znam12__hot_cold_t: 1761 if (OptimizeExistingHotColdNew) 1762 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1763 LibFunc_Znam12__hot_cold_t, HotCold); 1764 break; 1765 case LibFunc_Znam: 1766 if (HotCold != NotColdNewHintValue) 1767 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1768 LibFunc_Znam12__hot_cold_t, HotCold); 1769 break; 1770 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: 1771 if (OptimizeExistingHotColdNew) 1772 return emitHotColdNewNoThrow( 1773 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1774 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold); 1775 break; 1776 case LibFunc_ZnwmRKSt9nothrow_t: 1777 if (HotCold != NotColdNewHintValue) 1778 return emitHotColdNewNoThrow( 1779 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1780 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold); 1781 break; 1782 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: 1783 if (OptimizeExistingHotColdNew) 1784 return emitHotColdNewNoThrow( 1785 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1786 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold); 1787 break; 1788 case LibFunc_ZnamRKSt9nothrow_t: 1789 if (HotCold != NotColdNewHintValue) 1790 return emitHotColdNewNoThrow( 1791 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1792 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold); 1793 break; 1794 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: 1795 if (OptimizeExistingHotColdNew) 1796 return emitHotColdNewAligned( 1797 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1798 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold); 1799 break; 1800 case LibFunc_ZnwmSt11align_val_t: 1801 if (HotCold != NotColdNewHintValue) 1802 return emitHotColdNewAligned( 1803 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1804 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold); 1805 break; 1806 case LibFunc_ZnamSt11align_val_t12__hot_cold_t: 1807 if (OptimizeExistingHotColdNew) 1808 return emitHotColdNewAligned( 1809 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1810 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold); 1811 break; 1812 case LibFunc_ZnamSt11align_val_t: 1813 if (HotCold != NotColdNewHintValue) 1814 return emitHotColdNewAligned( 1815 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1816 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold); 1817 break; 1818 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 1819 if (OptimizeExistingHotColdNew) 1820 return emitHotColdNewAlignedNoThrow( 1821 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1822 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1823 HotCold); 1824 break; 1825 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 1826 if (HotCold != NotColdNewHintValue) 1827 return emitHotColdNewAlignedNoThrow( 1828 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1829 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1830 HotCold); 1831 break; 1832 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 1833 if (OptimizeExistingHotColdNew) 1834 return emitHotColdNewAlignedNoThrow( 1835 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1836 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1837 HotCold); 1838 break; 1839 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 1840 if (HotCold != NotColdNewHintValue) 1841 return emitHotColdNewAlignedNoThrow( 1842 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1843 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1844 HotCold); 1845 break; 1846 default: 1847 return nullptr; 1848 } 1849 return nullptr; 1850 } 1851 1852 //===----------------------------------------------------------------------===// 1853 // Math Library Optimizations 1854 //===----------------------------------------------------------------------===// 1855 1856 // Replace a libcall \p CI with a call to intrinsic \p IID 1857 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1858 Intrinsic::ID IID) { 1859 CallInst *NewCall = B.CreateUnaryIntrinsic(IID, CI->getArgOperand(0), CI); 1860 NewCall->takeName(CI); 1861 return copyFlags(*CI, NewCall); 1862 } 1863 1864 /// Return a variant of Val with float type. 1865 /// Currently this works in two cases: If Val is an FPExtension of a float 1866 /// value to something bigger, simply return the operand. 1867 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1868 /// loss of precision do so. 1869 static Value *valueHasFloatPrecision(Value *Val) { 1870 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1871 Value *Op = Cast->getOperand(0); 1872 if (Op->getType()->isFloatTy()) 1873 return Op; 1874 } 1875 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1876 APFloat F = Const->getValueAPF(); 1877 bool losesInfo; 1878 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1879 &losesInfo); 1880 if (!losesInfo) 1881 return ConstantFP::get(Const->getContext(), F); 1882 } 1883 return nullptr; 1884 } 1885 1886 /// Shrink double -> float functions. 1887 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1888 bool isBinary, const TargetLibraryInfo *TLI, 1889 bool isPrecise = false) { 1890 Function *CalleeFn = CI->getCalledFunction(); 1891 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1892 return nullptr; 1893 1894 // If not all the uses of the function are converted to float, then bail out. 1895 // This matters if the precision of the result is more important than the 1896 // precision of the arguments. 1897 if (isPrecise) 1898 for (User *U : CI->users()) { 1899 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1900 if (!Cast || !Cast->getType()->isFloatTy()) 1901 return nullptr; 1902 } 1903 1904 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1905 Value *V[2]; 1906 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1907 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1908 if (!V[0] || (isBinary && !V[1])) 1909 return nullptr; 1910 1911 // If call isn't an intrinsic, check that it isn't within a function with the 1912 // same name as the float version of this call, otherwise the result is an 1913 // infinite loop. For example, from MinGW-w64: 1914 // 1915 // float expf(float val) { return (float) exp((double) val); } 1916 StringRef CalleeName = CalleeFn->getName(); 1917 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1918 if (!IsIntrinsic) { 1919 StringRef CallerName = CI->getFunction()->getName(); 1920 if (!CallerName.empty() && CallerName.back() == 'f' && 1921 CallerName.size() == (CalleeName.size() + 1) && 1922 CallerName.starts_with(CalleeName)) 1923 return nullptr; 1924 } 1925 1926 // Propagate the math semantics from the current function to the new function. 1927 IRBuilderBase::FastMathFlagGuard Guard(B); 1928 B.setFastMathFlags(CI->getFastMathFlags()); 1929 1930 // g((double) float) -> (double) gf(float) 1931 Value *R; 1932 if (IsIntrinsic) { 1933 Module *M = CI->getModule(); 1934 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1935 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1936 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1937 } else { 1938 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1939 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1940 CalleeAttrs) 1941 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1942 } 1943 return B.CreateFPExt(R, B.getDoubleTy()); 1944 } 1945 1946 /// Shrink double -> float for unary functions. 1947 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1948 const TargetLibraryInfo *TLI, 1949 bool isPrecise = false) { 1950 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1951 } 1952 1953 /// Shrink double -> float for binary functions. 1954 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1955 const TargetLibraryInfo *TLI, 1956 bool isPrecise = false) { 1957 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1958 } 1959 1960 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1961 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1962 Value *Real, *Imag; 1963 1964 if (CI->arg_size() == 1) { 1965 1966 if (!CI->isFast()) 1967 return nullptr; 1968 1969 Value *Op = CI->getArgOperand(0); 1970 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1971 1972 Real = B.CreateExtractValue(Op, 0, "real"); 1973 Imag = B.CreateExtractValue(Op, 1, "imag"); 1974 1975 } else { 1976 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1977 1978 Real = CI->getArgOperand(0); 1979 Imag = CI->getArgOperand(1); 1980 1981 // if real or imaginary part is zero, simplify to abs(cimag(z)) 1982 // or abs(creal(z)) 1983 Value *AbsOp = nullptr; 1984 if (ConstantFP *ConstReal = dyn_cast<ConstantFP>(Real)) { 1985 if (ConstReal->isZero()) 1986 AbsOp = Imag; 1987 1988 } else if (ConstantFP *ConstImag = dyn_cast<ConstantFP>(Imag)) { 1989 if (ConstImag->isZero()) 1990 AbsOp = Real; 1991 } 1992 1993 if (AbsOp) { 1994 IRBuilderBase::FastMathFlagGuard Guard(B); 1995 B.setFastMathFlags(CI->getFastMathFlags()); 1996 1997 return copyFlags( 1998 *CI, B.CreateUnaryIntrinsic(Intrinsic::fabs, AbsOp, nullptr, "cabs")); 1999 } 2000 2001 if (!CI->isFast()) 2002 return nullptr; 2003 } 2004 2005 // Propagate fast-math flags from the existing call to new instructions. 2006 IRBuilderBase::FastMathFlagGuard Guard(B); 2007 B.setFastMathFlags(CI->getFastMathFlags()); 2008 2009 Value *RealReal = B.CreateFMul(Real, Real); 2010 Value *ImagImag = B.CreateFMul(Imag, Imag); 2011 2012 return copyFlags(*CI, B.CreateUnaryIntrinsic(Intrinsic::sqrt, 2013 B.CreateFAdd(RealReal, ImagImag), 2014 nullptr, "cabs")); 2015 } 2016 2017 // Return a properly extended integer (DstWidth bits wide) if the operation is 2018 // an itofp. 2019 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 2020 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 2021 Value *Op = cast<Instruction>(I2F)->getOperand(0); 2022 // Make sure that the exponent fits inside an "int" of size DstWidth, 2023 // thus avoiding any range issues that FP has not. 2024 unsigned BitWidth = Op->getType()->getScalarSizeInBits(); 2025 if (BitWidth < DstWidth || (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) { 2026 Type *IntTy = Op->getType()->getWithNewBitWidth(DstWidth); 2027 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, IntTy) 2028 : B.CreateZExt(Op, IntTy); 2029 } 2030 } 2031 2032 return nullptr; 2033 } 2034 2035 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 2036 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 2037 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 2038 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 2039 Module *M = Pow->getModule(); 2040 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2041 Type *Ty = Pow->getType(); 2042 bool Ignored; 2043 2044 // Evaluate special cases related to a nested function as the base. 2045 2046 // pow(exp(x), y) -> exp(x * y) 2047 // pow(exp2(x), y) -> exp2(x * y) 2048 // If exp{,2}() is used only once, it is better to fold two transcendental 2049 // math functions into one. If used again, exp{,2}() would still have to be 2050 // called with the original argument, then keep both original transcendental 2051 // functions. However, this transformation is only safe with fully relaxed 2052 // math semantics, since, besides rounding differences, it changes overflow 2053 // and underflow behavior quite dramatically. For example: 2054 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 2055 // Whereas: 2056 // exp(1000 * 0.001) = exp(1) 2057 // TODO: Loosen the requirement for fully relaxed math semantics. 2058 // TODO: Handle exp10() when more targets have it available. 2059 CallInst *BaseFn = dyn_cast<CallInst>(Base); 2060 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 2061 LibFunc LibFn; 2062 2063 Function *CalleeFn = BaseFn->getCalledFunction(); 2064 if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) && 2065 isLibFuncEmittable(M, TLI, LibFn)) { 2066 StringRef ExpName; 2067 Intrinsic::ID ID; 2068 Value *ExpFn; 2069 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 2070 2071 switch (LibFn) { 2072 default: 2073 return nullptr; 2074 case LibFunc_expf: 2075 case LibFunc_exp: 2076 case LibFunc_expl: 2077 ExpName = TLI->getName(LibFunc_exp); 2078 ID = Intrinsic::exp; 2079 LibFnFloat = LibFunc_expf; 2080 LibFnDouble = LibFunc_exp; 2081 LibFnLongDouble = LibFunc_expl; 2082 break; 2083 case LibFunc_exp2f: 2084 case LibFunc_exp2: 2085 case LibFunc_exp2l: 2086 ExpName = TLI->getName(LibFunc_exp2); 2087 ID = Intrinsic::exp2; 2088 LibFnFloat = LibFunc_exp2f; 2089 LibFnDouble = LibFunc_exp2; 2090 LibFnLongDouble = LibFunc_exp2l; 2091 break; 2092 } 2093 2094 // Create new exp{,2}() with the product as its argument. 2095 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 2096 ExpFn = BaseFn->doesNotAccessMemory() 2097 ? B.CreateUnaryIntrinsic(ID, FMul, nullptr, ExpName) 2098 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 2099 LibFnLongDouble, B, 2100 BaseFn->getAttributes()); 2101 2102 // Since the new exp{,2}() is different from the original one, dead code 2103 // elimination cannot be trusted to remove it, since it may have side 2104 // effects (e.g., errno). When the only consumer for the original 2105 // exp{,2}() is pow(), then it has to be explicitly erased. 2106 substituteInParent(BaseFn, ExpFn); 2107 return ExpFn; 2108 } 2109 } 2110 2111 // Evaluate special cases related to a constant base. 2112 2113 const APFloat *BaseF; 2114 if (!match(Base, m_APFloat(BaseF))) 2115 return nullptr; 2116 2117 AttributeList NoAttrs; // Attributes are only meaningful on the original call 2118 2119 const bool UseIntrinsic = Pow->doesNotAccessMemory(); 2120 2121 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 2122 if ((UseIntrinsic || !Ty->isVectorTy()) && BaseF->isExactlyValue(2.0) && 2123 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 2124 (UseIntrinsic || 2125 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) { 2126 2127 // TODO: Shouldn't really need to depend on getIntToFPVal for intrinsic. Can 2128 // just directly use the original integer type. 2129 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) { 2130 Constant *One = ConstantFP::get(Ty, 1.0); 2131 2132 if (UseIntrinsic) { 2133 return copyFlags(*Pow, B.CreateIntrinsic(Intrinsic::ldexp, 2134 {Ty, ExpoI->getType()}, 2135 {One, ExpoI}, Pow, "exp2")); 2136 } 2137 2138 return copyFlags(*Pow, emitBinaryFloatFnCall( 2139 One, ExpoI, TLI, LibFunc_ldexp, LibFunc_ldexpf, 2140 LibFunc_ldexpl, B, NoAttrs)); 2141 } 2142 } 2143 2144 // pow(2.0 ** n, x) -> exp2(n * x) 2145 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 2146 APFloat BaseR = APFloat(1.0); 2147 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 2148 BaseR = BaseR / *BaseF; 2149 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 2150 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 2151 APSInt NI(64, false); 2152 if ((IsInteger || IsReciprocal) && 2153 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 2154 APFloat::opOK && 2155 NI > 1 && NI.isPowerOf2()) { 2156 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 2157 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 2158 if (Pow->doesNotAccessMemory()) 2159 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul, 2160 nullptr, "exp2")); 2161 else 2162 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2163 LibFunc_exp2f, 2164 LibFunc_exp2l, B, NoAttrs)); 2165 } 2166 } 2167 2168 // pow(10.0, x) -> exp10(x) 2169 if (BaseF->isExactlyValue(10.0) && 2170 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) { 2171 2172 if (Pow->doesNotAccessMemory()) { 2173 CallInst *NewExp10 = 2174 B.CreateIntrinsic(Intrinsic::exp10, {Ty}, {Expo}, Pow, "exp10"); 2175 return copyFlags(*Pow, NewExp10); 2176 } 2177 2178 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 2179 LibFunc_exp10f, LibFunc_exp10l, 2180 B, NoAttrs)); 2181 } 2182 2183 // pow(x, y) -> exp2(log2(x) * y) 2184 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 2185 !BaseF->isNegative()) { 2186 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 2187 // Luckily optimizePow has already handled the x == 1 case. 2188 assert(!match(Base, m_FPOne()) && 2189 "pow(1.0, y) should have been simplified earlier!"); 2190 2191 Value *Log = nullptr; 2192 if (Ty->isFloatTy()) 2193 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 2194 else if (Ty->isDoubleTy()) 2195 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 2196 2197 if (Log) { 2198 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 2199 if (Pow->doesNotAccessMemory()) 2200 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul, 2201 nullptr, "exp2")); 2202 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 2203 LibFunc_exp2l)) 2204 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2205 LibFunc_exp2f, 2206 LibFunc_exp2l, B, NoAttrs)); 2207 } 2208 } 2209 2210 return nullptr; 2211 } 2212 2213 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 2214 Module *M, IRBuilderBase &B, 2215 const TargetLibraryInfo *TLI) { 2216 // If errno is never set, then use the intrinsic for sqrt(). 2217 if (NoErrno) 2218 return B.CreateUnaryIntrinsic(Intrinsic::sqrt, V, nullptr, "sqrt"); 2219 2220 // Otherwise, use the libcall for sqrt(). 2221 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 2222 LibFunc_sqrtl)) 2223 // TODO: We also should check that the target can in fact lower the sqrt() 2224 // libcall. We currently have no way to ask this question, so we ask if 2225 // the target has a sqrt() libcall, which is not exactly the same. 2226 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 2227 LibFunc_sqrtl, B, Attrs); 2228 2229 return nullptr; 2230 } 2231 2232 /// Use square root in place of pow(x, +/-0.5). 2233 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 2234 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2235 Module *Mod = Pow->getModule(); 2236 Type *Ty = Pow->getType(); 2237 2238 const APFloat *ExpoF; 2239 if (!match(Expo, m_APFloat(ExpoF)) || 2240 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 2241 return nullptr; 2242 2243 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 2244 // so that requires fast-math-flags (afn or reassoc). 2245 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 2246 return nullptr; 2247 2248 // If we have a pow() library call (accesses memory) and we can't guarantee 2249 // that the base is not an infinity, give up: 2250 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 2251 // errno), but sqrt(-Inf) is required by various standards to set errno. 2252 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 2253 !isKnownNeverInfinity(Base, 0, 2254 SimplifyQuery(DL, TLI, /*DT=*/nullptr, AC, Pow))) 2255 return nullptr; 2256 2257 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B, 2258 TLI); 2259 if (!Sqrt) 2260 return nullptr; 2261 2262 // Handle signed zero base by expanding to fabs(sqrt(x)). 2263 if (!Pow->hasNoSignedZeros()) 2264 Sqrt = B.CreateUnaryIntrinsic(Intrinsic::fabs, Sqrt, nullptr, "abs"); 2265 2266 Sqrt = copyFlags(*Pow, Sqrt); 2267 2268 // Handle non finite base by expanding to 2269 // (x == -infinity ? +infinity : sqrt(x)). 2270 if (!Pow->hasNoInfs()) { 2271 Value *PosInf = ConstantFP::getInfinity(Ty), 2272 *NegInf = ConstantFP::getInfinity(Ty, true); 2273 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 2274 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 2275 } 2276 2277 // If the exponent is negative, then get the reciprocal. 2278 if (ExpoF->isNegative()) 2279 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 2280 2281 return Sqrt; 2282 } 2283 2284 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 2285 IRBuilderBase &B) { 2286 Value *Args[] = {Base, Expo}; 2287 Type *Types[] = {Base->getType(), Expo->getType()}; 2288 return B.CreateIntrinsic(Intrinsic::powi, Types, Args); 2289 } 2290 2291 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 2292 Value *Base = Pow->getArgOperand(0); 2293 Value *Expo = Pow->getArgOperand(1); 2294 Function *Callee = Pow->getCalledFunction(); 2295 StringRef Name = Callee->getName(); 2296 Type *Ty = Pow->getType(); 2297 Module *M = Pow->getModule(); 2298 bool AllowApprox = Pow->hasApproxFunc(); 2299 bool Ignored; 2300 2301 // Propagate the math semantics from the call to any created instructions. 2302 IRBuilderBase::FastMathFlagGuard Guard(B); 2303 B.setFastMathFlags(Pow->getFastMathFlags()); 2304 // Evaluate special cases related to the base. 2305 2306 // pow(1.0, x) -> 1.0 2307 if (match(Base, m_FPOne())) 2308 return Base; 2309 2310 if (Value *Exp = replacePowWithExp(Pow, B)) 2311 return Exp; 2312 2313 // Evaluate special cases related to the exponent. 2314 2315 // pow(x, -1.0) -> 1.0 / x 2316 if (match(Expo, m_SpecificFP(-1.0))) 2317 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 2318 2319 // pow(x, +/-0.0) -> 1.0 2320 if (match(Expo, m_AnyZeroFP())) 2321 return ConstantFP::get(Ty, 1.0); 2322 2323 // pow(x, 1.0) -> x 2324 if (match(Expo, m_FPOne())) 2325 return Base; 2326 2327 // pow(x, 2.0) -> x * x 2328 if (match(Expo, m_SpecificFP(2.0))) 2329 return B.CreateFMul(Base, Base, "square"); 2330 2331 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 2332 return Sqrt; 2333 2334 // If we can approximate pow: 2335 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction 2336 // pow(x, n) -> powi(x, n) if n is a constant signed integer value 2337 const APFloat *ExpoF; 2338 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 2339 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 2340 APFloat ExpoA(abs(*ExpoF)); 2341 APFloat ExpoI(*ExpoF); 2342 Value *Sqrt = nullptr; 2343 if (!ExpoA.isInteger()) { 2344 APFloat Expo2 = ExpoA; 2345 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 2346 // is no floating point exception and the result is an integer, then 2347 // ExpoA == integer + 0.5 2348 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 2349 return nullptr; 2350 2351 if (!Expo2.isInteger()) 2352 return nullptr; 2353 2354 if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) != 2355 APFloat::opInexact) 2356 return nullptr; 2357 if (!ExpoI.isInteger()) 2358 return nullptr; 2359 ExpoF = &ExpoI; 2360 2361 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M, 2362 B, TLI); 2363 if (!Sqrt) 2364 return nullptr; 2365 } 2366 2367 // 0.5 fraction is now optionally handled. 2368 // Do pow -> powi for remaining integer exponent 2369 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 2370 if (ExpoF->isInteger() && 2371 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 2372 APFloat::opOK) { 2373 Value *PowI = copyFlags( 2374 *Pow, 2375 createPowWithIntegerExponent( 2376 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 2377 M, B)); 2378 2379 if (PowI && Sqrt) 2380 return B.CreateFMul(PowI, Sqrt); 2381 2382 return PowI; 2383 } 2384 } 2385 2386 // powf(x, itofp(y)) -> powi(x, y) 2387 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 2388 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2389 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 2390 } 2391 2392 // Shrink pow() to powf() if the arguments are single precision, 2393 // unless the result is expected to be double precision. 2394 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 2395 hasFloatVersion(M, Name)) { 2396 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 2397 return Shrunk; 2398 } 2399 2400 return nullptr; 2401 } 2402 2403 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 2404 Module *M = CI->getModule(); 2405 Function *Callee = CI->getCalledFunction(); 2406 StringRef Name = Callee->getName(); 2407 Value *Ret = nullptr; 2408 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 2409 hasFloatVersion(M, Name)) 2410 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2411 2412 // If we have an llvm.exp2 intrinsic, emit the llvm.ldexp intrinsic. If we 2413 // have the libcall, emit the libcall. 2414 // 2415 // TODO: In principle we should be able to just always use the intrinsic for 2416 // any doesNotAccessMemory callsite. 2417 2418 const bool UseIntrinsic = Callee->isIntrinsic(); 2419 // Bail out for vectors because the code below only expects scalars. 2420 Type *Ty = CI->getType(); 2421 if (!UseIntrinsic && Ty->isVectorTy()) 2422 return Ret; 2423 2424 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 2425 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 2426 Value *Op = CI->getArgOperand(0); 2427 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 2428 (UseIntrinsic || 2429 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) { 2430 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) { 2431 Constant *One = ConstantFP::get(Ty, 1.0); 2432 2433 if (UseIntrinsic) { 2434 return copyFlags(*CI, B.CreateIntrinsic(Intrinsic::ldexp, 2435 {Ty, Exp->getType()}, 2436 {One, Exp}, CI)); 2437 } 2438 2439 IRBuilderBase::FastMathFlagGuard Guard(B); 2440 B.setFastMathFlags(CI->getFastMathFlags()); 2441 return copyFlags(*CI, emitBinaryFloatFnCall( 2442 One, Exp, TLI, LibFunc_ldexp, LibFunc_ldexpf, 2443 LibFunc_ldexpl, B, AttributeList())); 2444 } 2445 } 2446 2447 return Ret; 2448 } 2449 2450 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 2451 Module *M = CI->getModule(); 2452 2453 // If we can shrink the call to a float function rather than a double 2454 // function, do that first. 2455 Function *Callee = CI->getCalledFunction(); 2456 StringRef Name = Callee->getName(); 2457 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 2458 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 2459 return Ret; 2460 2461 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 2462 // the intrinsics for improved optimization (for example, vectorization). 2463 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 2464 // From the C standard draft WG14/N1256: 2465 // "Ideally, fmax would be sensitive to the sign of zero, for example 2466 // fmax(-0.0, +0.0) would return +0; however, implementation in software 2467 // might be impractical." 2468 IRBuilderBase::FastMathFlagGuard Guard(B); 2469 FastMathFlags FMF = CI->getFastMathFlags(); 2470 FMF.setNoSignedZeros(); 2471 B.setFastMathFlags(FMF); 2472 2473 Intrinsic::ID IID = Callee->getName().starts_with("fmin") ? Intrinsic::minnum 2474 : Intrinsic::maxnum; 2475 return copyFlags(*CI, B.CreateBinaryIntrinsic(IID, CI->getArgOperand(0), 2476 CI->getArgOperand(1))); 2477 } 2478 2479 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 2480 Function *LogFn = Log->getCalledFunction(); 2481 StringRef LogNm = LogFn->getName(); 2482 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 2483 Module *Mod = Log->getModule(); 2484 Type *Ty = Log->getType(); 2485 Value *Ret = nullptr; 2486 2487 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 2488 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true); 2489 2490 // The earlier call must also be 'fast' in order to do these transforms. 2491 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2492 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2493 return Ret; 2494 2495 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2496 2497 // This is only applicable to log(), log2(), log10(). 2498 if (TLI->getLibFunc(LogNm, LogLb)) 2499 switch (LogLb) { 2500 case LibFunc_logf: 2501 LogID = Intrinsic::log; 2502 ExpLb = LibFunc_expf; 2503 Exp2Lb = LibFunc_exp2f; 2504 Exp10Lb = LibFunc_exp10f; 2505 PowLb = LibFunc_powf; 2506 break; 2507 case LibFunc_log: 2508 LogID = Intrinsic::log; 2509 ExpLb = LibFunc_exp; 2510 Exp2Lb = LibFunc_exp2; 2511 Exp10Lb = LibFunc_exp10; 2512 PowLb = LibFunc_pow; 2513 break; 2514 case LibFunc_logl: 2515 LogID = Intrinsic::log; 2516 ExpLb = LibFunc_expl; 2517 Exp2Lb = LibFunc_exp2l; 2518 Exp10Lb = LibFunc_exp10l; 2519 PowLb = LibFunc_powl; 2520 break; 2521 case LibFunc_log2f: 2522 LogID = Intrinsic::log2; 2523 ExpLb = LibFunc_expf; 2524 Exp2Lb = LibFunc_exp2f; 2525 Exp10Lb = LibFunc_exp10f; 2526 PowLb = LibFunc_powf; 2527 break; 2528 case LibFunc_log2: 2529 LogID = Intrinsic::log2; 2530 ExpLb = LibFunc_exp; 2531 Exp2Lb = LibFunc_exp2; 2532 Exp10Lb = LibFunc_exp10; 2533 PowLb = LibFunc_pow; 2534 break; 2535 case LibFunc_log2l: 2536 LogID = Intrinsic::log2; 2537 ExpLb = LibFunc_expl; 2538 Exp2Lb = LibFunc_exp2l; 2539 Exp10Lb = LibFunc_exp10l; 2540 PowLb = LibFunc_powl; 2541 break; 2542 case LibFunc_log10f: 2543 LogID = Intrinsic::log10; 2544 ExpLb = LibFunc_expf; 2545 Exp2Lb = LibFunc_exp2f; 2546 Exp10Lb = LibFunc_exp10f; 2547 PowLb = LibFunc_powf; 2548 break; 2549 case LibFunc_log10: 2550 LogID = Intrinsic::log10; 2551 ExpLb = LibFunc_exp; 2552 Exp2Lb = LibFunc_exp2; 2553 Exp10Lb = LibFunc_exp10; 2554 PowLb = LibFunc_pow; 2555 break; 2556 case LibFunc_log10l: 2557 LogID = Intrinsic::log10; 2558 ExpLb = LibFunc_expl; 2559 Exp2Lb = LibFunc_exp2l; 2560 Exp10Lb = LibFunc_exp10l; 2561 PowLb = LibFunc_powl; 2562 break; 2563 default: 2564 return Ret; 2565 } 2566 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2567 LogID == Intrinsic::log10) { 2568 if (Ty->getScalarType()->isFloatTy()) { 2569 ExpLb = LibFunc_expf; 2570 Exp2Lb = LibFunc_exp2f; 2571 Exp10Lb = LibFunc_exp10f; 2572 PowLb = LibFunc_powf; 2573 } else if (Ty->getScalarType()->isDoubleTy()) { 2574 ExpLb = LibFunc_exp; 2575 Exp2Lb = LibFunc_exp2; 2576 Exp10Lb = LibFunc_exp10; 2577 PowLb = LibFunc_pow; 2578 } else 2579 return Ret; 2580 } else 2581 return Ret; 2582 2583 IRBuilderBase::FastMathFlagGuard Guard(B); 2584 B.setFastMathFlags(FastMathFlags::getFast()); 2585 2586 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2587 LibFunc ArgLb = NotLibFunc; 2588 TLI->getLibFunc(*Arg, ArgLb); 2589 2590 // log(pow(x,y)) -> y*log(x) 2591 AttributeList NoAttrs; 2592 if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) { 2593 Value *LogX = 2594 Log->doesNotAccessMemory() 2595 ? B.CreateUnaryIntrinsic(LogID, Arg->getOperand(0), nullptr, "log") 2596 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs); 2597 Value *Y = Arg->getArgOperand(1); 2598 // Cast exponent to FP if integer. 2599 if (ArgID == Intrinsic::powi) 2600 Y = B.CreateSIToFP(Y, Ty, "cast"); 2601 Value *MulY = B.CreateFMul(Y, LogX, "mul"); 2602 // Since pow() may have side effects, e.g. errno, 2603 // dead code elimination may not be trusted to remove it. 2604 substituteInParent(Arg, MulY); 2605 return MulY; 2606 } 2607 2608 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2609 // TODO: There is no exp10() intrinsic yet. 2610 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2611 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2612 Constant *Eul; 2613 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2614 // FIXME: Add more precise value of e for long double. 2615 Eul = ConstantFP::get(Log->getType(), numbers::e); 2616 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2617 Eul = ConstantFP::get(Log->getType(), 2.0); 2618 else 2619 Eul = ConstantFP::get(Log->getType(), 10.0); 2620 Value *LogE = Log->doesNotAccessMemory() 2621 ? B.CreateUnaryIntrinsic(LogID, Eul, nullptr, "log") 2622 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs); 2623 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2624 // Since exp() may have side effects, e.g. errno, 2625 // dead code elimination may not be trusted to remove it. 2626 substituteInParent(Arg, MulY); 2627 return MulY; 2628 } 2629 2630 return Ret; 2631 } 2632 2633 // sqrt(exp(X)) -> exp(X * 0.5) 2634 Value *LibCallSimplifier::mergeSqrtToExp(CallInst *CI, IRBuilderBase &B) { 2635 if (!CI->hasAllowReassoc()) 2636 return nullptr; 2637 2638 Function *SqrtFn = CI->getCalledFunction(); 2639 CallInst *Arg = dyn_cast<CallInst>(CI->getArgOperand(0)); 2640 if (!Arg || !Arg->hasAllowReassoc() || !Arg->hasOneUse()) 2641 return nullptr; 2642 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2643 LibFunc ArgLb = NotLibFunc; 2644 TLI->getLibFunc(*Arg, ArgLb); 2645 2646 LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb; 2647 2648 if (TLI->getLibFunc(SqrtFn->getName(), SqrtLb)) 2649 switch (SqrtLb) { 2650 case LibFunc_sqrtf: 2651 ExpLb = LibFunc_expf; 2652 Exp2Lb = LibFunc_exp2f; 2653 Exp10Lb = LibFunc_exp10f; 2654 break; 2655 case LibFunc_sqrt: 2656 ExpLb = LibFunc_exp; 2657 Exp2Lb = LibFunc_exp2; 2658 Exp10Lb = LibFunc_exp10; 2659 break; 2660 case LibFunc_sqrtl: 2661 ExpLb = LibFunc_expl; 2662 Exp2Lb = LibFunc_exp2l; 2663 Exp10Lb = LibFunc_exp10l; 2664 break; 2665 default: 2666 return nullptr; 2667 } 2668 else if (SqrtFn->getIntrinsicID() == Intrinsic::sqrt) { 2669 if (CI->getType()->getScalarType()->isFloatTy()) { 2670 ExpLb = LibFunc_expf; 2671 Exp2Lb = LibFunc_exp2f; 2672 Exp10Lb = LibFunc_exp10f; 2673 } else if (CI->getType()->getScalarType()->isDoubleTy()) { 2674 ExpLb = LibFunc_exp; 2675 Exp2Lb = LibFunc_exp2; 2676 Exp10Lb = LibFunc_exp10; 2677 } else 2678 return nullptr; 2679 } else 2680 return nullptr; 2681 2682 if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb && 2683 ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2) 2684 return nullptr; 2685 2686 IRBuilderBase::InsertPointGuard Guard(B); 2687 B.SetInsertPoint(Arg); 2688 auto *ExpOperand = Arg->getOperand(0); 2689 auto *FMul = 2690 B.CreateFMulFMF(ExpOperand, ConstantFP::get(ExpOperand->getType(), 0.5), 2691 CI, "merged.sqrt"); 2692 2693 Arg->setOperand(0, FMul); 2694 return Arg; 2695 } 2696 2697 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2698 Module *M = CI->getModule(); 2699 Function *Callee = CI->getCalledFunction(); 2700 Value *Ret = nullptr; 2701 // TODO: Once we have a way (other than checking for the existince of the 2702 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2703 // condition below. 2704 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2705 (Callee->getName() == "sqrt" || 2706 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2707 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2708 2709 if (Value *Opt = mergeSqrtToExp(CI, B)) 2710 return Opt; 2711 2712 if (!CI->isFast()) 2713 return Ret; 2714 2715 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2716 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2717 return Ret; 2718 2719 // We're looking for a repeated factor in a multiplication tree, 2720 // so we can do this fold: sqrt(x * x) -> fabs(x); 2721 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2722 Value *Op0 = I->getOperand(0); 2723 Value *Op1 = I->getOperand(1); 2724 Value *RepeatOp = nullptr; 2725 Value *OtherOp = nullptr; 2726 if (Op0 == Op1) { 2727 // Simple match: the operands of the multiply are identical. 2728 RepeatOp = Op0; 2729 } else { 2730 // Look for a more complicated pattern: one of the operands is itself 2731 // a multiply, so search for a common factor in that multiply. 2732 // Note: We don't bother looking any deeper than this first level or for 2733 // variations of this pattern because instcombine's visitFMUL and/or the 2734 // reassociation pass should give us this form. 2735 Value *OtherMul0, *OtherMul1; 2736 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2737 // Pattern: sqrt((x * y) * z) 2738 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2739 // Matched: sqrt((x * x) * z) 2740 RepeatOp = OtherMul0; 2741 OtherOp = Op1; 2742 } 2743 } 2744 } 2745 if (!RepeatOp) 2746 return Ret; 2747 2748 // Fast math flags for any created instructions should match the sqrt 2749 // and multiply. 2750 IRBuilderBase::FastMathFlagGuard Guard(B); 2751 B.setFastMathFlags(I->getFastMathFlags()); 2752 2753 // If we found a repeated factor, hoist it out of the square root and 2754 // replace it with the fabs of that factor. 2755 Value *FabsCall = 2756 B.CreateUnaryIntrinsic(Intrinsic::fabs, RepeatOp, nullptr, "fabs"); 2757 if (OtherOp) { 2758 // If we found a non-repeated factor, we still need to get its square 2759 // root. We then multiply that by the value that was simplified out 2760 // of the square root calculation. 2761 Value *SqrtCall = 2762 B.CreateUnaryIntrinsic(Intrinsic::sqrt, OtherOp, nullptr, "sqrt"); 2763 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2764 } 2765 return copyFlags(*CI, FabsCall); 2766 } 2767 2768 Value *LibCallSimplifier::optimizeTrigInversionPairs(CallInst *CI, 2769 IRBuilderBase &B) { 2770 Module *M = CI->getModule(); 2771 Function *Callee = CI->getCalledFunction(); 2772 Value *Ret = nullptr; 2773 StringRef Name = Callee->getName(); 2774 if (UnsafeFPShrink && 2775 (Name == "tan" || Name == "atanh" || Name == "sinh" || Name == "cosh" || 2776 Name == "asinh") && 2777 hasFloatVersion(M, Name)) 2778 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2779 2780 Value *Op1 = CI->getArgOperand(0); 2781 auto *OpC = dyn_cast<CallInst>(Op1); 2782 if (!OpC) 2783 return Ret; 2784 2785 // Both calls must be 'fast' in order to remove them. 2786 if (!CI->isFast() || !OpC->isFast()) 2787 return Ret; 2788 2789 // tan(atan(x)) -> x 2790 // atanh(tanh(x)) -> x 2791 // sinh(asinh(x)) -> x 2792 // asinh(sinh(x)) -> x 2793 // cosh(acosh(x)) -> x 2794 LibFunc Func; 2795 Function *F = OpC->getCalledFunction(); 2796 if (F && TLI->getLibFunc(F->getName(), Func) && 2797 isLibFuncEmittable(M, TLI, Func)) { 2798 LibFunc inverseFunc = llvm::StringSwitch<LibFunc>(Callee->getName()) 2799 .Case("tan", LibFunc_atan) 2800 .Case("atanh", LibFunc_tanh) 2801 .Case("sinh", LibFunc_asinh) 2802 .Case("cosh", LibFunc_acosh) 2803 .Case("tanf", LibFunc_atanf) 2804 .Case("atanhf", LibFunc_tanhf) 2805 .Case("sinhf", LibFunc_asinhf) 2806 .Case("coshf", LibFunc_acoshf) 2807 .Case("tanl", LibFunc_atanl) 2808 .Case("atanhl", LibFunc_tanhl) 2809 .Case("sinhl", LibFunc_asinhl) 2810 .Case("coshl", LibFunc_acoshl) 2811 .Case("asinh", LibFunc_sinh) 2812 .Case("asinhf", LibFunc_sinhf) 2813 .Case("asinhl", LibFunc_sinhl) 2814 .Default(NumLibFuncs); // Used as error value 2815 if (Func == inverseFunc) 2816 Ret = OpC->getArgOperand(0); 2817 } 2818 return Ret; 2819 } 2820 2821 static bool isTrigLibCall(CallInst *CI) { 2822 // We can only hope to do anything useful if we can ignore things like errno 2823 // and floating-point exceptions. 2824 // We already checked the prototype. 2825 return CI->doesNotThrow() && CI->doesNotAccessMemory(); 2826 } 2827 2828 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2829 bool UseFloat, Value *&Sin, Value *&Cos, 2830 Value *&SinCos, const TargetLibraryInfo *TLI) { 2831 Module *M = OrigCallee->getParent(); 2832 Type *ArgTy = Arg->getType(); 2833 Type *ResTy; 2834 StringRef Name; 2835 2836 Triple T(OrigCallee->getParent()->getTargetTriple()); 2837 if (UseFloat) { 2838 Name = "__sincospif_stret"; 2839 2840 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2841 // x86_64 can't use {float, float} since that would be returned in both 2842 // xmm0 and xmm1, which isn't what a real struct would do. 2843 ResTy = T.getArch() == Triple::x86_64 2844 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2845 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2846 } else { 2847 Name = "__sincospi_stret"; 2848 ResTy = StructType::get(ArgTy, ArgTy); 2849 } 2850 2851 if (!isLibFuncEmittable(M, TLI, Name)) 2852 return false; 2853 LibFunc TheLibFunc; 2854 TLI->getLibFunc(Name, TheLibFunc); 2855 FunctionCallee Callee = getOrInsertLibFunc( 2856 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2857 2858 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2859 // If the argument is an instruction, it must dominate all uses so put our 2860 // sincos call there. 2861 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2862 } else { 2863 // Otherwise (e.g. for a constant) the beginning of the function is as 2864 // good a place as any. 2865 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2866 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2867 } 2868 2869 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2870 2871 if (SinCos->getType()->isStructTy()) { 2872 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2873 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2874 } else { 2875 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2876 "sinpi"); 2877 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2878 "cospi"); 2879 } 2880 2881 return true; 2882 } 2883 2884 static Value *optimizeSymmetricCall(CallInst *CI, bool IsEven, 2885 IRBuilderBase &B) { 2886 Value *X; 2887 Value *Src = CI->getArgOperand(0); 2888 2889 if (match(Src, m_OneUse(m_FNeg(m_Value(X))))) { 2890 IRBuilderBase::FastMathFlagGuard Guard(B); 2891 B.setFastMathFlags(CI->getFastMathFlags()); 2892 2893 auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X})); 2894 if (IsEven) { 2895 // Even function: f(-x) = f(x) 2896 return CallInst; 2897 } 2898 // Odd function: f(-x) = -f(x) 2899 return B.CreateFNeg(CallInst); 2900 } 2901 2902 // Even function: f(abs(x)) = f(x), f(copysign(x, y)) = f(x) 2903 if (IsEven && (match(Src, m_FAbs(m_Value(X))) || 2904 match(Src, m_CopySign(m_Value(X), m_Value())))) { 2905 IRBuilderBase::FastMathFlagGuard Guard(B); 2906 B.setFastMathFlags(CI->getFastMathFlags()); 2907 2908 auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X})); 2909 return CallInst; 2910 } 2911 2912 return nullptr; 2913 } 2914 2915 Value *LibCallSimplifier::optimizeSymmetric(CallInst *CI, LibFunc Func, 2916 IRBuilderBase &B) { 2917 switch (Func) { 2918 case LibFunc_cos: 2919 case LibFunc_cosf: 2920 case LibFunc_cosl: 2921 return optimizeSymmetricCall(CI, /*IsEven*/ true, B); 2922 2923 case LibFunc_sin: 2924 case LibFunc_sinf: 2925 case LibFunc_sinl: 2926 2927 case LibFunc_tan: 2928 case LibFunc_tanf: 2929 case LibFunc_tanl: 2930 2931 case LibFunc_erf: 2932 case LibFunc_erff: 2933 case LibFunc_erfl: 2934 return optimizeSymmetricCall(CI, /*IsEven*/ false, B); 2935 2936 default: 2937 return nullptr; 2938 } 2939 } 2940 2941 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) { 2942 // Make sure the prototype is as expected, otherwise the rest of the 2943 // function is probably invalid and likely to abort. 2944 if (!isTrigLibCall(CI)) 2945 return nullptr; 2946 2947 Value *Arg = CI->getArgOperand(0); 2948 SmallVector<CallInst *, 1> SinCalls; 2949 SmallVector<CallInst *, 1> CosCalls; 2950 SmallVector<CallInst *, 1> SinCosCalls; 2951 2952 bool IsFloat = Arg->getType()->isFloatTy(); 2953 2954 // Look for all compatible sinpi, cospi and sincospi calls with the same 2955 // argument. If there are enough (in some sense) we can make the 2956 // substitution. 2957 Function *F = CI->getFunction(); 2958 for (User *U : Arg->users()) 2959 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2960 2961 // It's only worthwhile if both sinpi and cospi are actually used. 2962 if (SinCalls.empty() || CosCalls.empty()) 2963 return nullptr; 2964 2965 Value *Sin, *Cos, *SinCos; 2966 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 2967 SinCos, TLI)) 2968 return nullptr; 2969 2970 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2971 Value *Res) { 2972 for (CallInst *C : Calls) 2973 replaceAllUsesWith(C, Res); 2974 }; 2975 2976 replaceTrigInsts(SinCalls, Sin); 2977 replaceTrigInsts(CosCalls, Cos); 2978 replaceTrigInsts(SinCosCalls, SinCos); 2979 2980 return IsSin ? Sin : Cos; 2981 } 2982 2983 void LibCallSimplifier::classifyArgUse( 2984 Value *Val, Function *F, bool IsFloat, 2985 SmallVectorImpl<CallInst *> &SinCalls, 2986 SmallVectorImpl<CallInst *> &CosCalls, 2987 SmallVectorImpl<CallInst *> &SinCosCalls) { 2988 auto *CI = dyn_cast<CallInst>(Val); 2989 if (!CI || CI->use_empty()) 2990 return; 2991 2992 // Don't consider calls in other functions. 2993 if (CI->getFunction() != F) 2994 return; 2995 2996 Module *M = CI->getModule(); 2997 Function *Callee = CI->getCalledFunction(); 2998 LibFunc Func; 2999 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 3000 !isLibFuncEmittable(M, TLI, Func) || 3001 !isTrigLibCall(CI)) 3002 return; 3003 3004 if (IsFloat) { 3005 if (Func == LibFunc_sinpif) 3006 SinCalls.push_back(CI); 3007 else if (Func == LibFunc_cospif) 3008 CosCalls.push_back(CI); 3009 else if (Func == LibFunc_sincospif_stret) 3010 SinCosCalls.push_back(CI); 3011 } else { 3012 if (Func == LibFunc_sinpi) 3013 SinCalls.push_back(CI); 3014 else if (Func == LibFunc_cospi) 3015 CosCalls.push_back(CI); 3016 else if (Func == LibFunc_sincospi_stret) 3017 SinCosCalls.push_back(CI); 3018 } 3019 } 3020 3021 //===----------------------------------------------------------------------===// 3022 // Integer Library Call Optimizations 3023 //===----------------------------------------------------------------------===// 3024 3025 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 3026 // All variants of ffs return int which need not be 32 bits wide. 3027 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0 3028 Type *RetType = CI->getType(); 3029 Value *Op = CI->getArgOperand(0); 3030 Type *ArgType = Op->getType(); 3031 Value *V = B.CreateIntrinsic(Intrinsic::cttz, {ArgType}, {Op, B.getTrue()}, 3032 nullptr, "cttz"); 3033 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 3034 V = B.CreateIntCast(V, RetType, false); 3035 3036 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 3037 return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0)); 3038 } 3039 3040 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 3041 // All variants of fls return int which need not be 32 bits wide. 3042 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false)) 3043 Value *Op = CI->getArgOperand(0); 3044 Type *ArgType = Op->getType(); 3045 Value *V = B.CreateIntrinsic(Intrinsic::ctlz, {ArgType}, {Op, B.getFalse()}, 3046 nullptr, "ctlz"); 3047 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 3048 V); 3049 return B.CreateIntCast(V, CI->getType(), false); 3050 } 3051 3052 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 3053 // abs(x) -> x <s 0 ? -x : x 3054 // The negation has 'nsw' because abs of INT_MIN is undefined. 3055 Value *X = CI->getArgOperand(0); 3056 Value *IsNeg = B.CreateIsNeg(X); 3057 Value *NegX = B.CreateNSWNeg(X, "neg"); 3058 return B.CreateSelect(IsNeg, NegX, X); 3059 } 3060 3061 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 3062 // isdigit(c) -> (c-'0') <u 10 3063 Value *Op = CI->getArgOperand(0); 3064 Type *ArgType = Op->getType(); 3065 Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp"); 3066 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit"); 3067 return B.CreateZExt(Op, CI->getType()); 3068 } 3069 3070 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 3071 // isascii(c) -> c <u 128 3072 Value *Op = CI->getArgOperand(0); 3073 Type *ArgType = Op->getType(); 3074 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii"); 3075 return B.CreateZExt(Op, CI->getType()); 3076 } 3077 3078 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 3079 // toascii(c) -> c & 0x7f 3080 return B.CreateAnd(CI->getArgOperand(0), 3081 ConstantInt::get(CI->getType(), 0x7F)); 3082 } 3083 3084 // Fold calls to atoi, atol, and atoll. 3085 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 3086 CI->addParamAttr(0, Attribute::NoCapture); 3087 3088 StringRef Str; 3089 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 3090 return nullptr; 3091 3092 return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B); 3093 } 3094 3095 // Fold calls to strtol, strtoll, strtoul, and strtoull. 3096 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B, 3097 bool AsSigned) { 3098 Value *EndPtr = CI->getArgOperand(1); 3099 if (isa<ConstantPointerNull>(EndPtr)) { 3100 // With a null EndPtr, this function won't capture the main argument. 3101 // It would be readonly too, except that it still may write to errno. 3102 CI->addParamAttr(0, Attribute::NoCapture); 3103 EndPtr = nullptr; 3104 } else if (!isKnownNonZero(EndPtr, DL)) 3105 return nullptr; 3106 3107 StringRef Str; 3108 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 3109 return nullptr; 3110 3111 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 3112 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B); 3113 } 3114 3115 return nullptr; 3116 } 3117 3118 //===----------------------------------------------------------------------===// 3119 // Formatting and IO Library Call Optimizations 3120 //===----------------------------------------------------------------------===// 3121 3122 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 3123 3124 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 3125 int StreamArg) { 3126 Function *Callee = CI->getCalledFunction(); 3127 // Error reporting calls should be cold, mark them as such. 3128 // This applies even to non-builtin calls: it is only a hint and applies to 3129 // functions that the frontend might not understand as builtins. 3130 3131 // This heuristic was suggested in: 3132 // Improving Static Branch Prediction in a Compiler 3133 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 3134 // Proceedings of PACT'98, Oct. 1998, IEEE 3135 if (!CI->hasFnAttr(Attribute::Cold) && 3136 isReportingError(Callee, CI, StreamArg)) { 3137 CI->addFnAttr(Attribute::Cold); 3138 } 3139 3140 return nullptr; 3141 } 3142 3143 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 3144 if (!Callee || !Callee->isDeclaration()) 3145 return false; 3146 3147 if (StreamArg < 0) 3148 return true; 3149 3150 // These functions might be considered cold, but only if their stream 3151 // argument is stderr. 3152 3153 if (StreamArg >= (int)CI->arg_size()) 3154 return false; 3155 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 3156 if (!LI) 3157 return false; 3158 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 3159 if (!GV || !GV->isDeclaration()) 3160 return false; 3161 return GV->getName() == "stderr"; 3162 } 3163 3164 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 3165 // Check for a fixed format string. 3166 StringRef FormatStr; 3167 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 3168 return nullptr; 3169 3170 // Empty format string -> noop. 3171 if (FormatStr.empty()) // Tolerate printf's declared void. 3172 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 3173 3174 // Do not do any of the following transformations if the printf return value 3175 // is used, in general the printf return value is not compatible with either 3176 // putchar() or puts(). 3177 if (!CI->use_empty()) 3178 return nullptr; 3179 3180 Type *IntTy = CI->getType(); 3181 // printf("x") -> putchar('x'), even for "%" and "%%". 3182 if (FormatStr.size() == 1 || FormatStr == "%%") { 3183 // Convert the character to unsigned char before passing it to putchar 3184 // to avoid host-specific sign extension in the IR. Putchar converts 3185 // it to unsigned char regardless. 3186 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]); 3187 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3188 } 3189 3190 // Try to remove call or emit putchar/puts. 3191 if (FormatStr == "%s" && CI->arg_size() > 1) { 3192 StringRef OperandStr; 3193 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 3194 return nullptr; 3195 // printf("%s", "") --> NOP 3196 if (OperandStr.empty()) 3197 return (Value *)CI; 3198 // printf("%s", "a") --> putchar('a') 3199 if (OperandStr.size() == 1) { 3200 // Convert the character to unsigned char before passing it to putchar 3201 // to avoid host-specific sign extension in the IR. Putchar converts 3202 // it to unsigned char regardless. 3203 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]); 3204 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3205 } 3206 // printf("%s", str"\n") --> puts(str) 3207 if (OperandStr.back() == '\n') { 3208 OperandStr = OperandStr.drop_back(); 3209 Value *GV = B.CreateGlobalString(OperandStr, "str"); 3210 return copyFlags(*CI, emitPutS(GV, B, TLI)); 3211 } 3212 return nullptr; 3213 } 3214 3215 // printf("foo\n") --> puts("foo") 3216 if (FormatStr.back() == '\n' && 3217 !FormatStr.contains('%')) { // No format characters. 3218 // Create a string literal with no \n on it. We expect the constant merge 3219 // pass to be run after this pass, to merge duplicate strings. 3220 FormatStr = FormatStr.drop_back(); 3221 Value *GV = B.CreateGlobalString(FormatStr, "str"); 3222 return copyFlags(*CI, emitPutS(GV, B, TLI)); 3223 } 3224 3225 // Optimize specific format strings. 3226 // printf("%c", chr) --> putchar(chr) 3227 if (FormatStr == "%c" && CI->arg_size() > 1 && 3228 CI->getArgOperand(1)->getType()->isIntegerTy()) { 3229 // Convert the argument to the type expected by putchar, i.e., int, which 3230 // need not be 32 bits wide but which is the same as printf's return type. 3231 Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false); 3232 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3233 } 3234 3235 // printf("%s\n", str) --> puts(str) 3236 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 3237 CI->getArgOperand(1)->getType()->isPointerTy()) 3238 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 3239 return nullptr; 3240 } 3241 3242 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 3243 3244 Module *M = CI->getModule(); 3245 Function *Callee = CI->getCalledFunction(); 3246 FunctionType *FT = Callee->getFunctionType(); 3247 if (Value *V = optimizePrintFString(CI, B)) { 3248 return V; 3249 } 3250 3251 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3252 3253 // printf(format, ...) -> iprintf(format, ...) if no floating point 3254 // arguments. 3255 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 3256 !callHasFloatingPointArgument(CI)) { 3257 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 3258 Callee->getAttributes()); 3259 CallInst *New = cast<CallInst>(CI->clone()); 3260 New->setCalledFunction(IPrintFFn); 3261 B.Insert(New); 3262 return New; 3263 } 3264 3265 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 3266 // arguments. 3267 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 3268 !callHasFP128Argument(CI)) { 3269 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 3270 Callee->getAttributes()); 3271 CallInst *New = cast<CallInst>(CI->clone()); 3272 New->setCalledFunction(SmallPrintFFn); 3273 B.Insert(New); 3274 return New; 3275 } 3276 3277 return nullptr; 3278 } 3279 3280 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 3281 IRBuilderBase &B) { 3282 // Check for a fixed format string. 3283 StringRef FormatStr; 3284 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3285 return nullptr; 3286 3287 // If we just have a format string (nothing else crazy) transform it. 3288 Value *Dest = CI->getArgOperand(0); 3289 if (CI->arg_size() == 2) { 3290 // Make sure there's no % in the constant array. We could try to handle 3291 // %% -> % in the future if we cared. 3292 if (FormatStr.contains('%')) 3293 return nullptr; // we found a format specifier, bail out. 3294 3295 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 3296 B.CreateMemCpy( 3297 Dest, Align(1), CI->getArgOperand(1), Align(1), 3298 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 3299 FormatStr.size() + 1)); // Copy the null byte. 3300 return ConstantInt::get(CI->getType(), FormatStr.size()); 3301 } 3302 3303 // The remaining optimizations require the format string to be "%s" or "%c" 3304 // and have an extra operand. 3305 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3306 return nullptr; 3307 3308 // Decode the second character of the format string. 3309 if (FormatStr[1] == 'c') { 3310 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3311 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3312 return nullptr; 3313 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 3314 Value *Ptr = Dest; 3315 B.CreateStore(V, Ptr); 3316 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3317 B.CreateStore(B.getInt8(0), Ptr); 3318 3319 return ConstantInt::get(CI->getType(), 1); 3320 } 3321 3322 if (FormatStr[1] == 's') { 3323 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 3324 // strlen(str)+1) 3325 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3326 return nullptr; 3327 3328 if (CI->use_empty()) 3329 // sprintf(dest, "%s", str) -> strcpy(dest, str) 3330 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 3331 3332 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 3333 if (SrcLen) { 3334 B.CreateMemCpy( 3335 Dest, Align(1), CI->getArgOperand(2), Align(1), 3336 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 3337 // Returns total number of characters written without null-character. 3338 return ConstantInt::get(CI->getType(), SrcLen - 1); 3339 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 3340 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 3341 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 3342 return B.CreateIntCast(PtrDiff, CI->getType(), false); 3343 } 3344 3345 bool OptForSize = CI->getFunction()->hasOptSize() || 3346 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3347 PGSOQueryType::IRPass); 3348 if (OptForSize) 3349 return nullptr; 3350 3351 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 3352 if (!Len) 3353 return nullptr; 3354 Value *IncLen = 3355 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 3356 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 3357 3358 // The sprintf result is the unincremented number of bytes in the string. 3359 return B.CreateIntCast(Len, CI->getType(), false); 3360 } 3361 return nullptr; 3362 } 3363 3364 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 3365 Module *M = CI->getModule(); 3366 Function *Callee = CI->getCalledFunction(); 3367 FunctionType *FT = Callee->getFunctionType(); 3368 if (Value *V = optimizeSPrintFString(CI, B)) { 3369 return V; 3370 } 3371 3372 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 3373 3374 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 3375 // point arguments. 3376 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 3377 !callHasFloatingPointArgument(CI)) { 3378 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 3379 FT, Callee->getAttributes()); 3380 CallInst *New = cast<CallInst>(CI->clone()); 3381 New->setCalledFunction(SIPrintFFn); 3382 B.Insert(New); 3383 return New; 3384 } 3385 3386 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 3387 // floating point arguments. 3388 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 3389 !callHasFP128Argument(CI)) { 3390 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 3391 Callee->getAttributes()); 3392 CallInst *New = cast<CallInst>(CI->clone()); 3393 New->setCalledFunction(SmallSPrintFFn); 3394 B.Insert(New); 3395 return New; 3396 } 3397 3398 return nullptr; 3399 } 3400 3401 // Transform an snprintf call CI with the bound N to format the string Str 3402 // either to a call to memcpy, or to single character a store, or to nothing, 3403 // and fold the result to a constant. A nonnull StrArg refers to the string 3404 // argument being formatted. Otherwise the call is one with N < 2 and 3405 // the "%c" directive to format a single character. 3406 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg, 3407 StringRef Str, uint64_t N, 3408 IRBuilderBase &B) { 3409 assert(StrArg || (N < 2 && Str.size() == 1)); 3410 3411 unsigned IntBits = TLI->getIntSize(); 3412 uint64_t IntMax = maxIntN(IntBits); 3413 if (Str.size() > IntMax) 3414 // Bail if the string is longer than INT_MAX. POSIX requires 3415 // implementations to set errno to EOVERFLOW in this case, in 3416 // addition to when N is larger than that (checked by the caller). 3417 return nullptr; 3418 3419 Value *StrLen = ConstantInt::get(CI->getType(), Str.size()); 3420 if (N == 0) 3421 return StrLen; 3422 3423 // Set to the number of bytes to copy fron StrArg which is also 3424 // the offset of the terinating nul. 3425 uint64_t NCopy; 3426 if (N > Str.size()) 3427 // Copy the full string, including the terminating nul (which must 3428 // be present regardless of the bound). 3429 NCopy = Str.size() + 1; 3430 else 3431 NCopy = N - 1; 3432 3433 Value *DstArg = CI->getArgOperand(0); 3434 if (NCopy && StrArg) 3435 // Transform the call to lvm.memcpy(dst, fmt, N). 3436 copyFlags( 3437 *CI, 3438 B.CreateMemCpy( 3439 DstArg, Align(1), StrArg, Align(1), 3440 ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy))); 3441 3442 if (N > Str.size()) 3443 // Return early when the whole format string, including the final nul, 3444 // has been copied. 3445 return StrLen; 3446 3447 // Otherwise, when truncating the string append a terminating nul. 3448 Type *Int8Ty = B.getInt8Ty(); 3449 Value *NulOff = B.getIntN(IntBits, NCopy); 3450 Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr"); 3451 B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd); 3452 return StrLen; 3453 } 3454 3455 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 3456 IRBuilderBase &B) { 3457 // Check for size 3458 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3459 if (!Size) 3460 return nullptr; 3461 3462 uint64_t N = Size->getZExtValue(); 3463 uint64_t IntMax = maxIntN(TLI->getIntSize()); 3464 if (N > IntMax) 3465 // Bail if the bound exceeds INT_MAX. POSIX requires implementations 3466 // to set errno to EOVERFLOW in this case. 3467 return nullptr; 3468 3469 Value *DstArg = CI->getArgOperand(0); 3470 Value *FmtArg = CI->getArgOperand(2); 3471 3472 // Check for a fixed format string. 3473 StringRef FormatStr; 3474 if (!getConstantStringInfo(FmtArg, FormatStr)) 3475 return nullptr; 3476 3477 // If we just have a format string (nothing else crazy) transform it. 3478 if (CI->arg_size() == 3) { 3479 if (FormatStr.contains('%')) 3480 // Bail if the format string contains a directive and there are 3481 // no arguments. We could handle "%%" in the future. 3482 return nullptr; 3483 3484 return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B); 3485 } 3486 3487 // The remaining optimizations require the format string to be "%s" or "%c" 3488 // and have an extra operand. 3489 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4) 3490 return nullptr; 3491 3492 // Decode the second character of the format string. 3493 if (FormatStr[1] == 'c') { 3494 if (N <= 1) { 3495 // Use an arbitary string of length 1 to transform the call into 3496 // either a nul store (N == 1) or a no-op (N == 0) and fold it 3497 // to one. 3498 StringRef CharStr("*"); 3499 return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B); 3500 } 3501 3502 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3503 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 3504 return nullptr; 3505 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 3506 Value *Ptr = DstArg; 3507 B.CreateStore(V, Ptr); 3508 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3509 B.CreateStore(B.getInt8(0), Ptr); 3510 return ConstantInt::get(CI->getType(), 1); 3511 } 3512 3513 if (FormatStr[1] != 's') 3514 return nullptr; 3515 3516 Value *StrArg = CI->getArgOperand(3); 3517 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 3518 StringRef Str; 3519 if (!getConstantStringInfo(StrArg, Str)) 3520 return nullptr; 3521 3522 return emitSnPrintfMemCpy(CI, StrArg, Str, N, B); 3523 } 3524 3525 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 3526 if (Value *V = optimizeSnPrintFString(CI, B)) { 3527 return V; 3528 } 3529 3530 if (isKnownNonZero(CI->getOperand(1), DL)) 3531 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3532 return nullptr; 3533 } 3534 3535 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 3536 IRBuilderBase &B) { 3537 optimizeErrorReporting(CI, B, 0); 3538 3539 // All the optimizations depend on the format string. 3540 StringRef FormatStr; 3541 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3542 return nullptr; 3543 3544 // Do not do any of the following transformations if the fprintf return 3545 // value is used, in general the fprintf return value is not compatible 3546 // with fwrite(), fputc() or fputs(). 3547 if (!CI->use_empty()) 3548 return nullptr; 3549 3550 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 3551 if (CI->arg_size() == 2) { 3552 // Could handle %% -> % if we cared. 3553 if (FormatStr.contains('%')) 3554 return nullptr; // We found a format specifier. 3555 3556 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3557 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3558 return copyFlags( 3559 *CI, emitFWrite(CI->getArgOperand(1), 3560 ConstantInt::get(SizeTTy, FormatStr.size()), 3561 CI->getArgOperand(0), B, DL, TLI)); 3562 } 3563 3564 // The remaining optimizations require the format string to be "%s" or "%c" 3565 // and have an extra operand. 3566 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3567 return nullptr; 3568 3569 // Decode the second character of the format string. 3570 if (FormatStr[1] == 'c') { 3571 // fprintf(F, "%c", chr) --> fputc((int)chr, F) 3572 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3573 return nullptr; 3574 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3575 Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true, 3576 "chari"); 3577 return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI)); 3578 } 3579 3580 if (FormatStr[1] == 's') { 3581 // fprintf(F, "%s", str) --> fputs(str, F) 3582 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3583 return nullptr; 3584 return copyFlags( 3585 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 3586 } 3587 return nullptr; 3588 } 3589 3590 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 3591 Module *M = CI->getModule(); 3592 Function *Callee = CI->getCalledFunction(); 3593 FunctionType *FT = Callee->getFunctionType(); 3594 if (Value *V = optimizeFPrintFString(CI, B)) { 3595 return V; 3596 } 3597 3598 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 3599 // floating point arguments. 3600 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 3601 !callHasFloatingPointArgument(CI)) { 3602 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 3603 FT, Callee->getAttributes()); 3604 CallInst *New = cast<CallInst>(CI->clone()); 3605 New->setCalledFunction(FIPrintFFn); 3606 B.Insert(New); 3607 return New; 3608 } 3609 3610 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 3611 // 128-bit floating point arguments. 3612 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 3613 !callHasFP128Argument(CI)) { 3614 auto SmallFPrintFFn = 3615 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 3616 Callee->getAttributes()); 3617 CallInst *New = cast<CallInst>(CI->clone()); 3618 New->setCalledFunction(SmallFPrintFFn); 3619 B.Insert(New); 3620 return New; 3621 } 3622 3623 return nullptr; 3624 } 3625 3626 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 3627 optimizeErrorReporting(CI, B, 3); 3628 3629 // Get the element size and count. 3630 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3631 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 3632 if (SizeC && CountC) { 3633 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 3634 3635 // If this is writing zero records, remove the call (it's a noop). 3636 if (Bytes == 0) 3637 return ConstantInt::get(CI->getType(), 0); 3638 3639 // If this is writing one byte, turn it into fputc. 3640 // This optimisation is only valid, if the return value is unused. 3641 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 3642 Value *Char = B.CreateLoad(B.getInt8Ty(), CI->getArgOperand(0), "char"); 3643 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3644 Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari"); 3645 Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI); 3646 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 3647 } 3648 } 3649 3650 return nullptr; 3651 } 3652 3653 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 3654 optimizeErrorReporting(CI, B, 1); 3655 3656 // Don't rewrite fputs to fwrite when optimising for size because fwrite 3657 // requires more arguments and thus extra MOVs are required. 3658 bool OptForSize = CI->getFunction()->hasOptSize() || 3659 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3660 PGSOQueryType::IRPass); 3661 if (OptForSize) 3662 return nullptr; 3663 3664 // We can't optimize if return value is used. 3665 if (!CI->use_empty()) 3666 return nullptr; 3667 3668 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 3669 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 3670 if (!Len) 3671 return nullptr; 3672 3673 // Known to have no uses (see above). 3674 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3675 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3676 return copyFlags( 3677 *CI, 3678 emitFWrite(CI->getArgOperand(0), 3679 ConstantInt::get(SizeTTy, Len - 1), 3680 CI->getArgOperand(1), B, DL, TLI)); 3681 } 3682 3683 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 3684 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3685 if (!CI->use_empty()) 3686 return nullptr; 3687 3688 // Check for a constant string. 3689 // puts("") -> putchar('\n') 3690 StringRef Str; 3691 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) { 3692 // putchar takes an argument of the same type as puts returns, i.e., 3693 // int, which need not be 32 bits wide. 3694 Type *IntTy = CI->getType(); 3695 return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI)); 3696 } 3697 3698 return nullptr; 3699 } 3700 3701 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 3702 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 3703 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 3704 CI->getArgOperand(0), Align(1), 3705 CI->getArgOperand(2))); 3706 } 3707 3708 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 3709 SmallString<20> FloatFuncName = FuncName; 3710 FloatFuncName += 'f'; 3711 return isLibFuncEmittable(M, TLI, FloatFuncName); 3712 } 3713 3714 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 3715 IRBuilderBase &Builder) { 3716 Module *M = CI->getModule(); 3717 LibFunc Func; 3718 Function *Callee = CI->getCalledFunction(); 3719 // Check for string/memory library functions. 3720 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3721 // Make sure we never change the calling convention. 3722 assert( 3723 (ignoreCallingConv(Func) || 3724 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3725 "Optimizing string/memory libcall would change the calling convention"); 3726 switch (Func) { 3727 case LibFunc_strcat: 3728 return optimizeStrCat(CI, Builder); 3729 case LibFunc_strncat: 3730 return optimizeStrNCat(CI, Builder); 3731 case LibFunc_strchr: 3732 return optimizeStrChr(CI, Builder); 3733 case LibFunc_strrchr: 3734 return optimizeStrRChr(CI, Builder); 3735 case LibFunc_strcmp: 3736 return optimizeStrCmp(CI, Builder); 3737 case LibFunc_strncmp: 3738 return optimizeStrNCmp(CI, Builder); 3739 case LibFunc_strcpy: 3740 return optimizeStrCpy(CI, Builder); 3741 case LibFunc_stpcpy: 3742 return optimizeStpCpy(CI, Builder); 3743 case LibFunc_strlcpy: 3744 return optimizeStrLCpy(CI, Builder); 3745 case LibFunc_stpncpy: 3746 return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder); 3747 case LibFunc_strncpy: 3748 return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder); 3749 case LibFunc_strlen: 3750 return optimizeStrLen(CI, Builder); 3751 case LibFunc_strnlen: 3752 return optimizeStrNLen(CI, Builder); 3753 case LibFunc_strpbrk: 3754 return optimizeStrPBrk(CI, Builder); 3755 case LibFunc_strndup: 3756 return optimizeStrNDup(CI, Builder); 3757 case LibFunc_strtol: 3758 case LibFunc_strtod: 3759 case LibFunc_strtof: 3760 case LibFunc_strtoul: 3761 case LibFunc_strtoll: 3762 case LibFunc_strtold: 3763 case LibFunc_strtoull: 3764 return optimizeStrTo(CI, Builder); 3765 case LibFunc_strspn: 3766 return optimizeStrSpn(CI, Builder); 3767 case LibFunc_strcspn: 3768 return optimizeStrCSpn(CI, Builder); 3769 case LibFunc_strstr: 3770 return optimizeStrStr(CI, Builder); 3771 case LibFunc_memchr: 3772 return optimizeMemChr(CI, Builder); 3773 case LibFunc_memrchr: 3774 return optimizeMemRChr(CI, Builder); 3775 case LibFunc_bcmp: 3776 return optimizeBCmp(CI, Builder); 3777 case LibFunc_memcmp: 3778 return optimizeMemCmp(CI, Builder); 3779 case LibFunc_memcpy: 3780 return optimizeMemCpy(CI, Builder); 3781 case LibFunc_memccpy: 3782 return optimizeMemCCpy(CI, Builder); 3783 case LibFunc_mempcpy: 3784 return optimizeMemPCpy(CI, Builder); 3785 case LibFunc_memmove: 3786 return optimizeMemMove(CI, Builder); 3787 case LibFunc_memset: 3788 return optimizeMemSet(CI, Builder); 3789 case LibFunc_realloc: 3790 return optimizeRealloc(CI, Builder); 3791 case LibFunc_wcslen: 3792 return optimizeWcslen(CI, Builder); 3793 case LibFunc_bcopy: 3794 return optimizeBCopy(CI, Builder); 3795 case LibFunc_Znwm: 3796 case LibFunc_ZnwmRKSt9nothrow_t: 3797 case LibFunc_ZnwmSt11align_val_t: 3798 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 3799 case LibFunc_Znam: 3800 case LibFunc_ZnamRKSt9nothrow_t: 3801 case LibFunc_ZnamSt11align_val_t: 3802 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 3803 case LibFunc_Znwm12__hot_cold_t: 3804 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: 3805 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: 3806 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 3807 case LibFunc_Znam12__hot_cold_t: 3808 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: 3809 case LibFunc_ZnamSt11align_val_t12__hot_cold_t: 3810 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 3811 return optimizeNew(CI, Builder, Func); 3812 default: 3813 break; 3814 } 3815 } 3816 return nullptr; 3817 } 3818 3819 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3820 LibFunc Func, 3821 IRBuilderBase &Builder) { 3822 const Module *M = CI->getModule(); 3823 3824 // Don't optimize calls that require strict floating point semantics. 3825 if (CI->isStrictFP()) 3826 return nullptr; 3827 3828 if (Value *V = optimizeSymmetric(CI, Func, Builder)) 3829 return V; 3830 3831 switch (Func) { 3832 case LibFunc_sinpif: 3833 case LibFunc_sinpi: 3834 return optimizeSinCosPi(CI, /*IsSin*/true, Builder); 3835 case LibFunc_cospif: 3836 case LibFunc_cospi: 3837 return optimizeSinCosPi(CI, /*IsSin*/false, Builder); 3838 case LibFunc_powf: 3839 case LibFunc_pow: 3840 case LibFunc_powl: 3841 return optimizePow(CI, Builder); 3842 case LibFunc_exp2l: 3843 case LibFunc_exp2: 3844 case LibFunc_exp2f: 3845 return optimizeExp2(CI, Builder); 3846 case LibFunc_fabsf: 3847 case LibFunc_fabs: 3848 case LibFunc_fabsl: 3849 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3850 case LibFunc_sqrtf: 3851 case LibFunc_sqrt: 3852 case LibFunc_sqrtl: 3853 return optimizeSqrt(CI, Builder); 3854 case LibFunc_logf: 3855 case LibFunc_log: 3856 case LibFunc_logl: 3857 case LibFunc_log10f: 3858 case LibFunc_log10: 3859 case LibFunc_log10l: 3860 case LibFunc_log1pf: 3861 case LibFunc_log1p: 3862 case LibFunc_log1pl: 3863 case LibFunc_log2f: 3864 case LibFunc_log2: 3865 case LibFunc_log2l: 3866 case LibFunc_logbf: 3867 case LibFunc_logb: 3868 case LibFunc_logbl: 3869 return optimizeLog(CI, Builder); 3870 case LibFunc_tan: 3871 case LibFunc_tanf: 3872 case LibFunc_tanl: 3873 case LibFunc_sinh: 3874 case LibFunc_sinhf: 3875 case LibFunc_sinhl: 3876 case LibFunc_asinh: 3877 case LibFunc_asinhf: 3878 case LibFunc_asinhl: 3879 case LibFunc_cosh: 3880 case LibFunc_coshf: 3881 case LibFunc_coshl: 3882 case LibFunc_atanh: 3883 case LibFunc_atanhf: 3884 case LibFunc_atanhl: 3885 return optimizeTrigInversionPairs(CI, Builder); 3886 case LibFunc_ceil: 3887 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3888 case LibFunc_floor: 3889 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3890 case LibFunc_round: 3891 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3892 case LibFunc_roundeven: 3893 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3894 case LibFunc_nearbyint: 3895 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3896 case LibFunc_rint: 3897 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3898 case LibFunc_trunc: 3899 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3900 case LibFunc_acos: 3901 case LibFunc_acosh: 3902 case LibFunc_asin: 3903 case LibFunc_atan: 3904 case LibFunc_cbrt: 3905 case LibFunc_exp: 3906 case LibFunc_exp10: 3907 case LibFunc_expm1: 3908 case LibFunc_cos: 3909 case LibFunc_sin: 3910 case LibFunc_tanh: 3911 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 3912 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 3913 return nullptr; 3914 case LibFunc_copysign: 3915 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 3916 return optimizeBinaryDoubleFP(CI, Builder, TLI); 3917 return nullptr; 3918 case LibFunc_fminf: 3919 case LibFunc_fmin: 3920 case LibFunc_fminl: 3921 case LibFunc_fmaxf: 3922 case LibFunc_fmax: 3923 case LibFunc_fmaxl: 3924 return optimizeFMinFMax(CI, Builder); 3925 case LibFunc_cabs: 3926 case LibFunc_cabsf: 3927 case LibFunc_cabsl: 3928 return optimizeCAbs(CI, Builder); 3929 default: 3930 return nullptr; 3931 } 3932 } 3933 3934 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3935 Module *M = CI->getModule(); 3936 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3937 3938 // TODO: Split out the code below that operates on FP calls so that 3939 // we can all non-FP calls with the StrictFP attribute to be 3940 // optimized. 3941 if (CI->isNoBuiltin()) 3942 return nullptr; 3943 3944 LibFunc Func; 3945 Function *Callee = CI->getCalledFunction(); 3946 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3947 3948 SmallVector<OperandBundleDef, 2> OpBundles; 3949 CI->getOperandBundlesAsDefs(OpBundles); 3950 3951 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3952 Builder.setDefaultOperandBundles(OpBundles); 3953 3954 // Command-line parameter overrides instruction attribute. 3955 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3956 // used by the intrinsic optimizations. 3957 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3958 UnsafeFPShrink = EnableUnsafeFPShrink; 3959 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3960 UnsafeFPShrink = true; 3961 3962 // First, check for intrinsics. 3963 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3964 if (!IsCallingConvC) 3965 return nullptr; 3966 // The FP intrinsics have corresponding constrained versions so we don't 3967 // need to check for the StrictFP attribute here. 3968 switch (II->getIntrinsicID()) { 3969 case Intrinsic::pow: 3970 return optimizePow(CI, Builder); 3971 case Intrinsic::exp2: 3972 return optimizeExp2(CI, Builder); 3973 case Intrinsic::log: 3974 case Intrinsic::log2: 3975 case Intrinsic::log10: 3976 return optimizeLog(CI, Builder); 3977 case Intrinsic::sqrt: 3978 return optimizeSqrt(CI, Builder); 3979 case Intrinsic::memset: 3980 return optimizeMemSet(CI, Builder); 3981 case Intrinsic::memcpy: 3982 return optimizeMemCpy(CI, Builder); 3983 case Intrinsic::memmove: 3984 return optimizeMemMove(CI, Builder); 3985 default: 3986 return nullptr; 3987 } 3988 } 3989 3990 // Also try to simplify calls to fortified library functions. 3991 if (Value *SimplifiedFortifiedCI = 3992 FortifiedSimplifier.optimizeCall(CI, Builder)) 3993 return SimplifiedFortifiedCI; 3994 3995 // Then check for known library functions. 3996 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3997 // We never change the calling convention. 3998 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3999 return nullptr; 4000 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 4001 return V; 4002 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 4003 return V; 4004 switch (Func) { 4005 case LibFunc_ffs: 4006 case LibFunc_ffsl: 4007 case LibFunc_ffsll: 4008 return optimizeFFS(CI, Builder); 4009 case LibFunc_fls: 4010 case LibFunc_flsl: 4011 case LibFunc_flsll: 4012 return optimizeFls(CI, Builder); 4013 case LibFunc_abs: 4014 case LibFunc_labs: 4015 case LibFunc_llabs: 4016 return optimizeAbs(CI, Builder); 4017 case LibFunc_isdigit: 4018 return optimizeIsDigit(CI, Builder); 4019 case LibFunc_isascii: 4020 return optimizeIsAscii(CI, Builder); 4021 case LibFunc_toascii: 4022 return optimizeToAscii(CI, Builder); 4023 case LibFunc_atoi: 4024 case LibFunc_atol: 4025 case LibFunc_atoll: 4026 return optimizeAtoi(CI, Builder); 4027 case LibFunc_strtol: 4028 case LibFunc_strtoll: 4029 return optimizeStrToInt(CI, Builder, /*AsSigned=*/true); 4030 case LibFunc_strtoul: 4031 case LibFunc_strtoull: 4032 return optimizeStrToInt(CI, Builder, /*AsSigned=*/false); 4033 case LibFunc_printf: 4034 return optimizePrintF(CI, Builder); 4035 case LibFunc_sprintf: 4036 return optimizeSPrintF(CI, Builder); 4037 case LibFunc_snprintf: 4038 return optimizeSnPrintF(CI, Builder); 4039 case LibFunc_fprintf: 4040 return optimizeFPrintF(CI, Builder); 4041 case LibFunc_fwrite: 4042 return optimizeFWrite(CI, Builder); 4043 case LibFunc_fputs: 4044 return optimizeFPuts(CI, Builder); 4045 case LibFunc_puts: 4046 return optimizePuts(CI, Builder); 4047 case LibFunc_perror: 4048 return optimizeErrorReporting(CI, Builder); 4049 case LibFunc_vfprintf: 4050 case LibFunc_fiprintf: 4051 return optimizeErrorReporting(CI, Builder, 0); 4052 default: 4053 return nullptr; 4054 } 4055 } 4056 return nullptr; 4057 } 4058 4059 LibCallSimplifier::LibCallSimplifier( 4060 const DataLayout &DL, const TargetLibraryInfo *TLI, AssumptionCache *AC, 4061 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4062 ProfileSummaryInfo *PSI, 4063 function_ref<void(Instruction *, Value *)> Replacer, 4064 function_ref<void(Instruction *)> Eraser) 4065 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), AC(AC), ORE(ORE), BFI(BFI), 4066 PSI(PSI), Replacer(Replacer), Eraser(Eraser) {} 4067 4068 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 4069 // Indirect through the replacer used in this instance. 4070 Replacer(I, With); 4071 } 4072 4073 void LibCallSimplifier::eraseFromParent(Instruction *I) { 4074 Eraser(I); 4075 } 4076 4077 // TODO: 4078 // Additional cases that we need to add to this file: 4079 // 4080 // cbrt: 4081 // * cbrt(expN(X)) -> expN(x/3) 4082 // * cbrt(sqrt(x)) -> pow(x,1/6) 4083 // * cbrt(cbrt(x)) -> pow(x,1/9) 4084 // 4085 // exp, expf, expl: 4086 // * exp(log(x)) -> x 4087 // 4088 // log, logf, logl: 4089 // * log(exp(x)) -> x 4090 // * log(exp(y)) -> y*log(e) 4091 // * log(exp10(y)) -> y*log(10) 4092 // * log(sqrt(x)) -> 0.5*log(x) 4093 // 4094 // pow, powf, powl: 4095 // * pow(sqrt(x),y) -> pow(x,y*0.5) 4096 // * pow(pow(x,y),z)-> pow(x,y*z) 4097 // 4098 // signbit: 4099 // * signbit(cnst) -> cnst' 4100 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 4101 // 4102 // sqrt, sqrtf, sqrtl: 4103 // * sqrt(expN(x)) -> expN(x*0.5) 4104 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 4105 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 4106 // 4107 4108 //===----------------------------------------------------------------------===// 4109 // Fortified Library Call Optimizations 4110 //===----------------------------------------------------------------------===// 4111 4112 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable( 4113 CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp, 4114 std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) { 4115 // If this function takes a flag argument, the implementation may use it to 4116 // perform extra checks. Don't fold into the non-checking variant. 4117 if (FlagOp) { 4118 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 4119 if (!Flag || !Flag->isZero()) 4120 return false; 4121 } 4122 4123 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 4124 return true; 4125 4126 if (ConstantInt *ObjSizeCI = 4127 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 4128 if (ObjSizeCI->isMinusOne()) 4129 return true; 4130 // If the object size wasn't -1 (unknown), bail out if we were asked to. 4131 if (OnlyLowerUnknownSize) 4132 return false; 4133 if (StrOp) { 4134 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 4135 // If the length is 0 we don't know how long it is and so we can't 4136 // remove the check. 4137 if (Len) 4138 annotateDereferenceableBytes(CI, *StrOp, Len); 4139 else 4140 return false; 4141 return ObjSizeCI->getZExtValue() >= Len; 4142 } 4143 4144 if (SizeOp) { 4145 if (ConstantInt *SizeCI = 4146 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 4147 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 4148 } 4149 } 4150 return false; 4151 } 4152 4153 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 4154 IRBuilderBase &B) { 4155 if (isFortifiedCallFoldable(CI, 3, 2)) { 4156 CallInst *NewCI = 4157 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 4158 Align(1), CI->getArgOperand(2)); 4159 mergeAttributesAndFlags(NewCI, *CI); 4160 return CI->getArgOperand(0); 4161 } 4162 return nullptr; 4163 } 4164 4165 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 4166 IRBuilderBase &B) { 4167 if (isFortifiedCallFoldable(CI, 3, 2)) { 4168 CallInst *NewCI = 4169 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 4170 Align(1), CI->getArgOperand(2)); 4171 mergeAttributesAndFlags(NewCI, *CI); 4172 return CI->getArgOperand(0); 4173 } 4174 return nullptr; 4175 } 4176 4177 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 4178 IRBuilderBase &B) { 4179 if (isFortifiedCallFoldable(CI, 3, 2)) { 4180 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 4181 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 4182 CI->getArgOperand(2), Align(1)); 4183 mergeAttributesAndFlags(NewCI, *CI); 4184 return CI->getArgOperand(0); 4185 } 4186 return nullptr; 4187 } 4188 4189 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 4190 IRBuilderBase &B) { 4191 const DataLayout &DL = CI->getDataLayout(); 4192 if (isFortifiedCallFoldable(CI, 3, 2)) 4193 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4194 CI->getArgOperand(2), B, DL, TLI)) { 4195 return mergeAttributesAndFlags(cast<CallInst>(Call), *CI); 4196 } 4197 return nullptr; 4198 } 4199 4200 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 4201 IRBuilderBase &B, 4202 LibFunc Func) { 4203 const DataLayout &DL = CI->getDataLayout(); 4204 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 4205 *ObjSize = CI->getArgOperand(2); 4206 4207 // __stpcpy_chk(x,x,...) -> x+strlen(x) 4208 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 4209 Value *StrLen = emitStrLen(Src, B, DL, TLI); 4210 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 4211 } 4212 4213 // If a) we don't have any length information, or b) we know this will 4214 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 4215 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 4216 // TODO: It might be nice to get a maximum length out of the possible 4217 // string lengths for varying. 4218 if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) { 4219 if (Func == LibFunc_strcpy_chk) 4220 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 4221 else 4222 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 4223 } 4224 4225 if (OnlyLowerUnknownSize) 4226 return nullptr; 4227 4228 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 4229 uint64_t Len = GetStringLength(Src); 4230 if (Len) 4231 annotateDereferenceableBytes(CI, 1, Len); 4232 else 4233 return nullptr; 4234 4235 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 4236 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 4237 Value *LenV = ConstantInt::get(SizeTTy, Len); 4238 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 4239 // If the function was an __stpcpy_chk, and we were able to fold it into 4240 // a __memcpy_chk, we still need to return the correct end pointer. 4241 if (Ret && Func == LibFunc_stpcpy_chk) 4242 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, 4243 ConstantInt::get(SizeTTy, Len - 1)); 4244 return copyFlags(*CI, cast<CallInst>(Ret)); 4245 } 4246 4247 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 4248 IRBuilderBase &B) { 4249 if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0)) 4250 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 4251 CI->getDataLayout(), TLI)); 4252 return nullptr; 4253 } 4254 4255 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 4256 IRBuilderBase &B, 4257 LibFunc Func) { 4258 if (isFortifiedCallFoldable(CI, 3, 2)) { 4259 if (Func == LibFunc_strncpy_chk) 4260 return copyFlags(*CI, 4261 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4262 CI->getArgOperand(2), B, TLI)); 4263 else 4264 return copyFlags(*CI, 4265 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4266 CI->getArgOperand(2), B, TLI)); 4267 } 4268 4269 return nullptr; 4270 } 4271 4272 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 4273 IRBuilderBase &B) { 4274 if (isFortifiedCallFoldable(CI, 4, 3)) 4275 return copyFlags( 4276 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4277 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 4278 4279 return nullptr; 4280 } 4281 4282 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 4283 IRBuilderBase &B) { 4284 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) { 4285 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 4286 return copyFlags(*CI, 4287 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4288 CI->getArgOperand(4), VariadicArgs, B, TLI)); 4289 } 4290 4291 return nullptr; 4292 } 4293 4294 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 4295 IRBuilderBase &B) { 4296 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) { 4297 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 4298 return copyFlags(*CI, 4299 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4300 VariadicArgs, B, TLI)); 4301 } 4302 4303 return nullptr; 4304 } 4305 4306 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 4307 IRBuilderBase &B) { 4308 if (isFortifiedCallFoldable(CI, 2)) 4309 return copyFlags( 4310 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 4311 4312 return nullptr; 4313 } 4314 4315 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 4316 IRBuilderBase &B) { 4317 if (isFortifiedCallFoldable(CI, 3)) 4318 return copyFlags(*CI, 4319 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 4320 CI->getArgOperand(2), B, TLI)); 4321 4322 return nullptr; 4323 } 4324 4325 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 4326 IRBuilderBase &B) { 4327 if (isFortifiedCallFoldable(CI, 3)) 4328 return copyFlags(*CI, 4329 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 4330 CI->getArgOperand(2), B, TLI)); 4331 4332 return nullptr; 4333 } 4334 4335 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 4336 IRBuilderBase &B) { 4337 if (isFortifiedCallFoldable(CI, 3)) 4338 return copyFlags(*CI, 4339 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4340 CI->getArgOperand(2), B, TLI)); 4341 4342 return nullptr; 4343 } 4344 4345 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 4346 IRBuilderBase &B) { 4347 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) 4348 return copyFlags( 4349 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4350 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 4351 4352 return nullptr; 4353 } 4354 4355 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 4356 IRBuilderBase &B) { 4357 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) 4358 return copyFlags(*CI, 4359 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4360 CI->getArgOperand(4), B, TLI)); 4361 4362 return nullptr; 4363 } 4364 4365 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 4366 IRBuilderBase &Builder) { 4367 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 4368 // Some clang users checked for _chk libcall availability using: 4369 // __has_builtin(__builtin___memcpy_chk) 4370 // When compiling with -fno-builtin, this is always true. 4371 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 4372 // end up with fortified libcalls, which isn't acceptable in a freestanding 4373 // environment which only provides their non-fortified counterparts. 4374 // 4375 // Until we change clang and/or teach external users to check for availability 4376 // differently, disregard the "nobuiltin" attribute and TLI::has. 4377 // 4378 // PR23093. 4379 4380 LibFunc Func; 4381 Function *Callee = CI->getCalledFunction(); 4382 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 4383 4384 SmallVector<OperandBundleDef, 2> OpBundles; 4385 CI->getOperandBundlesAsDefs(OpBundles); 4386 4387 IRBuilderBase::OperandBundlesGuard Guard(Builder); 4388 Builder.setDefaultOperandBundles(OpBundles); 4389 4390 // First, check that this is a known library functions and that the prototype 4391 // is correct. 4392 if (!TLI->getLibFunc(*Callee, Func)) 4393 return nullptr; 4394 4395 // We never change the calling convention. 4396 if (!ignoreCallingConv(Func) && !IsCallingConvC) 4397 return nullptr; 4398 4399 switch (Func) { 4400 case LibFunc_memcpy_chk: 4401 return optimizeMemCpyChk(CI, Builder); 4402 case LibFunc_mempcpy_chk: 4403 return optimizeMemPCpyChk(CI, Builder); 4404 case LibFunc_memmove_chk: 4405 return optimizeMemMoveChk(CI, Builder); 4406 case LibFunc_memset_chk: 4407 return optimizeMemSetChk(CI, Builder); 4408 case LibFunc_stpcpy_chk: 4409 case LibFunc_strcpy_chk: 4410 return optimizeStrpCpyChk(CI, Builder, Func); 4411 case LibFunc_strlen_chk: 4412 return optimizeStrLenChk(CI, Builder); 4413 case LibFunc_stpncpy_chk: 4414 case LibFunc_strncpy_chk: 4415 return optimizeStrpNCpyChk(CI, Builder, Func); 4416 case LibFunc_memccpy_chk: 4417 return optimizeMemCCpyChk(CI, Builder); 4418 case LibFunc_snprintf_chk: 4419 return optimizeSNPrintfChk(CI, Builder); 4420 case LibFunc_sprintf_chk: 4421 return optimizeSPrintfChk(CI, Builder); 4422 case LibFunc_strcat_chk: 4423 return optimizeStrCatChk(CI, Builder); 4424 case LibFunc_strlcat_chk: 4425 return optimizeStrLCat(CI, Builder); 4426 case LibFunc_strncat_chk: 4427 return optimizeStrNCatChk(CI, Builder); 4428 case LibFunc_strlcpy_chk: 4429 return optimizeStrLCpyChk(CI, Builder); 4430 case LibFunc_vsnprintf_chk: 4431 return optimizeVSNPrintfChk(CI, Builder); 4432 case LibFunc_vsprintf_chk: 4433 return optimizeVSPrintfChk(CI, Builder); 4434 default: 4435 break; 4436 } 4437 return nullptr; 4438 } 4439 4440 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 4441 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 4442 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 4443