1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/Loads.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 51 //===----------------------------------------------------------------------===// 52 // Helper Functions 53 //===----------------------------------------------------------------------===// 54 55 static bool ignoreCallingConv(LibFunc Func) { 56 return Func == LibFunc_abs || Func == LibFunc_labs || 57 Func == LibFunc_llabs || Func == LibFunc_strlen; 58 } 59 60 static bool isCallingConvCCompatible(CallInst *CI) { 61 switch(CI->getCallingConv()) { 62 default: 63 return false; 64 case llvm::CallingConv::C: 65 return true; 66 case llvm::CallingConv::ARM_APCS: 67 case llvm::CallingConv::ARM_AAPCS: 68 case llvm::CallingConv::ARM_AAPCS_VFP: { 69 70 // The iOS ABI diverges from the standard in some cases, so for now don't 71 // try to simplify those calls. 72 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 73 return false; 74 75 auto *FuncTy = CI->getFunctionType(); 76 77 if (!FuncTy->getReturnType()->isPointerTy() && 78 !FuncTy->getReturnType()->isIntegerTy() && 79 !FuncTy->getReturnType()->isVoidTy()) 80 return false; 81 82 for (auto Param : FuncTy->params()) { 83 if (!Param->isPointerTy() && !Param->isIntegerTy()) 84 return false; 85 } 86 return true; 87 } 88 } 89 return false; 90 } 91 92 /// Return true if it is only used in equality comparisons with With. 93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 94 for (User *U : V->users()) { 95 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 96 if (IC->isEquality() && IC->getOperand(1) == With) 97 continue; 98 // Unknown instruction. 99 return false; 100 } 101 return true; 102 } 103 104 static bool callHasFloatingPointArgument(const CallInst *CI) { 105 return any_of(CI->operands(), [](const Use &OI) { 106 return OI->getType()->isFloatingPointTy(); 107 }); 108 } 109 110 static bool callHasFP128Argument(const CallInst *CI) { 111 return any_of(CI->operands(), [](const Use &OI) { 112 return OI->getType()->isFP128Ty(); 113 }); 114 } 115 116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 117 if (Base < 2 || Base > 36) 118 // handle special zero base 119 if (Base != 0) 120 return nullptr; 121 122 char *End; 123 std::string nptr = Str.str(); 124 errno = 0; 125 long long int Result = strtoll(nptr.c_str(), &End, Base); 126 if (errno) 127 return nullptr; 128 129 // if we assume all possible target locales are ASCII supersets, 130 // then if strtoll successfully parses a number on the host, 131 // it will also successfully parse the same way on the target 132 if (*End != '\0') 133 return nullptr; 134 135 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 136 return nullptr; 137 138 return ConstantInt::get(CI->getType(), Result); 139 } 140 141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 142 const TargetLibraryInfo *TLI) { 143 CallInst *FOpen = dyn_cast<CallInst>(File); 144 if (!FOpen) 145 return false; 146 147 Function *InnerCallee = FOpen->getCalledFunction(); 148 if (!InnerCallee) 149 return false; 150 151 LibFunc Func; 152 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 153 Func != LibFunc_fopen) 154 return false; 155 156 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 157 if (PointerMayBeCaptured(File, true, true)) 158 return false; 159 160 return true; 161 } 162 163 static bool isOnlyUsedInComparisonWithZero(Value *V) { 164 for (User *U : V->users()) { 165 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 166 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 167 if (C->isNullValue()) 168 continue; 169 // Unknown instruction. 170 return false; 171 } 172 return true; 173 } 174 175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 176 const DataLayout &DL) { 177 if (!isOnlyUsedInComparisonWithZero(CI)) 178 return false; 179 180 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) 181 return false; 182 183 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 184 return false; 185 186 return true; 187 } 188 189 //===----------------------------------------------------------------------===// 190 // String and Memory Library Call Optimizations 191 //===----------------------------------------------------------------------===// 192 193 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 194 // Extract some information from the instruction 195 Value *Dst = CI->getArgOperand(0); 196 Value *Src = CI->getArgOperand(1); 197 198 // See if we can get the length of the input string. 199 uint64_t Len = GetStringLength(Src); 200 if (Len == 0) 201 return nullptr; 202 --Len; // Unbias length. 203 204 // Handle the simple, do-nothing case: strcat(x, "") -> x 205 if (Len == 0) 206 return Dst; 207 208 return emitStrLenMemCpy(Src, Dst, Len, B); 209 } 210 211 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 212 IRBuilder<> &B) { 213 // We need to find the end of the destination string. That's where the 214 // memory is to be moved to. We just generate a call to strlen. 215 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 216 if (!DstLen) 217 return nullptr; 218 219 // Now that we have the destination's length, we must index into the 220 // destination's pointer to get the actual memcpy destination (end of 221 // the string .. we're concatenating). 222 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 223 224 // We have enough information to now generate the memcpy call to do the 225 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 226 B.CreateMemCpy(CpyDst, 1, Src, 1, 227 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 228 return Dst; 229 } 230 231 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 232 // Extract some information from the instruction. 233 Value *Dst = CI->getArgOperand(0); 234 Value *Src = CI->getArgOperand(1); 235 uint64_t Len; 236 237 // We don't do anything if length is not constant. 238 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 239 Len = LengthArg->getZExtValue(); 240 else 241 return nullptr; 242 243 // See if we can get the length of the input string. 244 uint64_t SrcLen = GetStringLength(Src); 245 if (SrcLen == 0) 246 return nullptr; 247 --SrcLen; // Unbias length. 248 249 // Handle the simple, do-nothing cases: 250 // strncat(x, "", c) -> x 251 // strncat(x, c, 0) -> x 252 if (SrcLen == 0 || Len == 0) 253 return Dst; 254 255 // We don't optimize this case. 256 if (Len < SrcLen) 257 return nullptr; 258 259 // strncat(x, s, c) -> strcat(x, s) 260 // s is constant so the strcat can be optimized further. 261 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 262 } 263 264 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 265 Function *Callee = CI->getCalledFunction(); 266 FunctionType *FT = Callee->getFunctionType(); 267 Value *SrcStr = CI->getArgOperand(0); 268 269 // If the second operand is non-constant, see if we can compute the length 270 // of the input string and turn this into memchr. 271 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 272 if (!CharC) { 273 uint64_t Len = GetStringLength(SrcStr); 274 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 275 return nullptr; 276 277 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 278 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 279 B, DL, TLI); 280 } 281 282 // Otherwise, the character is a constant, see if the first argument is 283 // a string literal. If so, we can constant fold. 284 StringRef Str; 285 if (!getConstantStringInfo(SrcStr, Str)) { 286 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 287 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 288 "strchr"); 289 return nullptr; 290 } 291 292 // Compute the offset, make sure to handle the case when we're searching for 293 // zero (a weird way to spell strlen). 294 size_t I = (0xFF & CharC->getSExtValue()) == 0 295 ? Str.size() 296 : Str.find(CharC->getSExtValue()); 297 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 298 return Constant::getNullValue(CI->getType()); 299 300 // strchr(s+n,c) -> gep(s+n+i,c) 301 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 302 } 303 304 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 305 Value *SrcStr = CI->getArgOperand(0); 306 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 307 308 // Cannot fold anything if we're not looking for a constant. 309 if (!CharC) 310 return nullptr; 311 312 StringRef Str; 313 if (!getConstantStringInfo(SrcStr, Str)) { 314 // strrchr(s, 0) -> strchr(s, 0) 315 if (CharC->isZero()) 316 return emitStrChr(SrcStr, '\0', B, TLI); 317 return nullptr; 318 } 319 320 // Compute the offset. 321 size_t I = (0xFF & CharC->getSExtValue()) == 0 322 ? Str.size() 323 : Str.rfind(CharC->getSExtValue()); 324 if (I == StringRef::npos) // Didn't find the char. Return null. 325 return Constant::getNullValue(CI->getType()); 326 327 // strrchr(s+n,c) -> gep(s+n+i,c) 328 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 329 } 330 331 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 332 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 333 if (Str1P == Str2P) // strcmp(x,x) -> 0 334 return ConstantInt::get(CI->getType(), 0); 335 336 StringRef Str1, Str2; 337 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 338 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 339 340 // strcmp(x, y) -> cnst (if both x and y are constant strings) 341 if (HasStr1 && HasStr2) 342 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 343 344 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 345 return B.CreateNeg(B.CreateZExt( 346 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 347 348 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 349 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 350 CI->getType()); 351 352 // strcmp(P, "x") -> memcmp(P, "x", 2) 353 uint64_t Len1 = GetStringLength(Str1P); 354 uint64_t Len2 = GetStringLength(Str2P); 355 if (Len1 && Len2) { 356 return emitMemCmp(Str1P, Str2P, 357 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 358 std::min(Len1, Len2)), 359 B, DL, TLI); 360 } 361 362 // strcmp to memcmp 363 if (!HasStr1 && HasStr2) { 364 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 365 return emitMemCmp( 366 Str1P, Str2P, 367 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 368 TLI); 369 } else if (HasStr1 && !HasStr2) { 370 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 371 return emitMemCmp( 372 Str1P, Str2P, 373 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 374 TLI); 375 } 376 377 return nullptr; 378 } 379 380 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 381 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 382 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 383 return ConstantInt::get(CI->getType(), 0); 384 385 // Get the length argument if it is constant. 386 uint64_t Length; 387 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 388 Length = LengthArg->getZExtValue(); 389 else 390 return nullptr; 391 392 if (Length == 0) // strncmp(x,y,0) -> 0 393 return ConstantInt::get(CI->getType(), 0); 394 395 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 396 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 397 398 StringRef Str1, Str2; 399 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 400 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 401 402 // strncmp(x, y) -> cnst (if both x and y are constant strings) 403 if (HasStr1 && HasStr2) { 404 StringRef SubStr1 = Str1.substr(0, Length); 405 StringRef SubStr2 = Str2.substr(0, Length); 406 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 407 } 408 409 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 410 return B.CreateNeg(B.CreateZExt( 411 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 412 413 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 414 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 415 CI->getType()); 416 417 uint64_t Len1 = GetStringLength(Str1P); 418 uint64_t Len2 = GetStringLength(Str2P); 419 420 // strncmp to memcmp 421 if (!HasStr1 && HasStr2) { 422 Len2 = std::min(Len2, Length); 423 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 424 return emitMemCmp( 425 Str1P, Str2P, 426 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 427 TLI); 428 } else if (HasStr1 && !HasStr2) { 429 Len1 = std::min(Len1, Length); 430 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 431 return emitMemCmp( 432 Str1P, Str2P, 433 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 434 TLI); 435 } 436 437 return nullptr; 438 } 439 440 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 441 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 442 if (Dst == Src) // strcpy(x,x) -> x 443 return Src; 444 445 // See if we can get the length of the input string. 446 uint64_t Len = GetStringLength(Src); 447 if (Len == 0) 448 return nullptr; 449 450 // We have enough information to now generate the memcpy call to do the 451 // copy for us. Make a memcpy to copy the nul byte with align = 1. 452 B.CreateMemCpy(Dst, 1, Src, 1, 453 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 454 return Dst; 455 } 456 457 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 458 Function *Callee = CI->getCalledFunction(); 459 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 460 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 461 Value *StrLen = emitStrLen(Src, B, DL, TLI); 462 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 463 } 464 465 // See if we can get the length of the input string. 466 uint64_t Len = GetStringLength(Src); 467 if (Len == 0) 468 return nullptr; 469 470 Type *PT = Callee->getFunctionType()->getParamType(0); 471 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 472 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 473 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 474 475 // We have enough information to now generate the memcpy call to do the 476 // copy for us. Make a memcpy to copy the nul byte with align = 1. 477 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 478 return DstEnd; 479 } 480 481 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 482 Function *Callee = CI->getCalledFunction(); 483 Value *Dst = CI->getArgOperand(0); 484 Value *Src = CI->getArgOperand(1); 485 Value *LenOp = CI->getArgOperand(2); 486 487 // See if we can get the length of the input string. 488 uint64_t SrcLen = GetStringLength(Src); 489 if (SrcLen == 0) 490 return nullptr; 491 --SrcLen; 492 493 if (SrcLen == 0) { 494 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 495 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 496 return Dst; 497 } 498 499 uint64_t Len; 500 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 501 Len = LengthArg->getZExtValue(); 502 else 503 return nullptr; 504 505 if (Len == 0) 506 return Dst; // strncpy(x, y, 0) -> x 507 508 // Let strncpy handle the zero padding 509 if (Len > SrcLen + 1) 510 return nullptr; 511 512 Type *PT = Callee->getFunctionType()->getParamType(0); 513 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 514 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 515 516 return Dst; 517 } 518 519 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 520 unsigned CharSize) { 521 Value *Src = CI->getArgOperand(0); 522 523 // Constant folding: strlen("xyz") -> 3 524 if (uint64_t Len = GetStringLength(Src, CharSize)) 525 return ConstantInt::get(CI->getType(), Len - 1); 526 527 // If s is a constant pointer pointing to a string literal, we can fold 528 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 529 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 530 // We only try to simplify strlen when the pointer s points to an array 531 // of i8. Otherwise, we would need to scale the offset x before doing the 532 // subtraction. This will make the optimization more complex, and it's not 533 // very useful because calling strlen for a pointer of other types is 534 // very uncommon. 535 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 536 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 537 return nullptr; 538 539 ConstantDataArraySlice Slice; 540 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 541 uint64_t NullTermIdx; 542 if (Slice.Array == nullptr) { 543 NullTermIdx = 0; 544 } else { 545 NullTermIdx = ~((uint64_t)0); 546 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 547 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 548 NullTermIdx = I; 549 break; 550 } 551 } 552 // If the string does not have '\0', leave it to strlen to compute 553 // its length. 554 if (NullTermIdx == ~((uint64_t)0)) 555 return nullptr; 556 } 557 558 Value *Offset = GEP->getOperand(2); 559 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 560 Known.Zero.flipAllBits(); 561 uint64_t ArrSize = 562 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 563 564 // KnownZero's bits are flipped, so zeros in KnownZero now represent 565 // bits known to be zeros in Offset, and ones in KnowZero represent 566 // bits unknown in Offset. Therefore, Offset is known to be in range 567 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 568 // unsigned-less-than NullTermIdx. 569 // 570 // If Offset is not provably in the range [0, NullTermIdx], we can still 571 // optimize if we can prove that the program has undefined behavior when 572 // Offset is outside that range. That is the case when GEP->getOperand(0) 573 // is a pointer to an object whose memory extent is NullTermIdx+1. 574 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 575 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 576 NullTermIdx == ArrSize - 1)) { 577 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 578 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 579 Offset); 580 } 581 } 582 583 return nullptr; 584 } 585 586 // strlen(x?"foo":"bars") --> x ? 3 : 4 587 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 588 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 589 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 590 if (LenTrue && LenFalse) { 591 ORE.emit([&]() { 592 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 593 << "folded strlen(select) to select of constants"; 594 }); 595 return B.CreateSelect(SI->getCondition(), 596 ConstantInt::get(CI->getType(), LenTrue - 1), 597 ConstantInt::get(CI->getType(), LenFalse - 1)); 598 } 599 } 600 601 // strlen(x) != 0 --> *x != 0 602 // strlen(x) == 0 --> *x == 0 603 if (isOnlyUsedInZeroEqualityComparison(CI)) 604 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 605 CI->getType()); 606 607 return nullptr; 608 } 609 610 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 611 return optimizeStringLength(CI, B, 8); 612 } 613 614 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 615 Module &M = *CI->getModule(); 616 unsigned WCharSize = TLI->getWCharSize(M) * 8; 617 // We cannot perform this optimization without wchar_size metadata. 618 if (WCharSize == 0) 619 return nullptr; 620 621 return optimizeStringLength(CI, B, WCharSize); 622 } 623 624 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 625 StringRef S1, S2; 626 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 627 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 628 629 // strpbrk(s, "") -> nullptr 630 // strpbrk("", s) -> nullptr 631 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 632 return Constant::getNullValue(CI->getType()); 633 634 // Constant folding. 635 if (HasS1 && HasS2) { 636 size_t I = S1.find_first_of(S2); 637 if (I == StringRef::npos) // No match. 638 return Constant::getNullValue(CI->getType()); 639 640 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 641 "strpbrk"); 642 } 643 644 // strpbrk(s, "a") -> strchr(s, 'a') 645 if (HasS2 && S2.size() == 1) 646 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 647 648 return nullptr; 649 } 650 651 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 652 Value *EndPtr = CI->getArgOperand(1); 653 if (isa<ConstantPointerNull>(EndPtr)) { 654 // With a null EndPtr, this function won't capture the main argument. 655 // It would be readonly too, except that it still may write to errno. 656 CI->addParamAttr(0, Attribute::NoCapture); 657 } 658 659 return nullptr; 660 } 661 662 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 663 StringRef S1, S2; 664 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 665 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 666 667 // strspn(s, "") -> 0 668 // strspn("", s) -> 0 669 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 670 return Constant::getNullValue(CI->getType()); 671 672 // Constant folding. 673 if (HasS1 && HasS2) { 674 size_t Pos = S1.find_first_not_of(S2); 675 if (Pos == StringRef::npos) 676 Pos = S1.size(); 677 return ConstantInt::get(CI->getType(), Pos); 678 } 679 680 return nullptr; 681 } 682 683 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 684 StringRef S1, S2; 685 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 686 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 687 688 // strcspn("", s) -> 0 689 if (HasS1 && S1.empty()) 690 return Constant::getNullValue(CI->getType()); 691 692 // Constant folding. 693 if (HasS1 && HasS2) { 694 size_t Pos = S1.find_first_of(S2); 695 if (Pos == StringRef::npos) 696 Pos = S1.size(); 697 return ConstantInt::get(CI->getType(), Pos); 698 } 699 700 // strcspn(s, "") -> strlen(s) 701 if (HasS2 && S2.empty()) 702 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 703 704 return nullptr; 705 } 706 707 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 708 // fold strstr(x, x) -> x. 709 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 710 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 711 712 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 713 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 714 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 715 if (!StrLen) 716 return nullptr; 717 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 718 StrLen, B, DL, TLI); 719 if (!StrNCmp) 720 return nullptr; 721 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 722 ICmpInst *Old = cast<ICmpInst>(*UI++); 723 Value *Cmp = 724 B.CreateICmp(Old->getPredicate(), StrNCmp, 725 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 726 replaceAllUsesWith(Old, Cmp); 727 } 728 return CI; 729 } 730 731 // See if either input string is a constant string. 732 StringRef SearchStr, ToFindStr; 733 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 734 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 735 736 // fold strstr(x, "") -> x. 737 if (HasStr2 && ToFindStr.empty()) 738 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 739 740 // If both strings are known, constant fold it. 741 if (HasStr1 && HasStr2) { 742 size_t Offset = SearchStr.find(ToFindStr); 743 744 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 745 return Constant::getNullValue(CI->getType()); 746 747 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 748 Value *Result = castToCStr(CI->getArgOperand(0), B); 749 Result = 750 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 751 return B.CreateBitCast(Result, CI->getType()); 752 } 753 754 // fold strstr(x, "y") -> strchr(x, 'y'). 755 if (HasStr2 && ToFindStr.size() == 1) { 756 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 757 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 758 } 759 return nullptr; 760 } 761 762 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 763 Value *SrcStr = CI->getArgOperand(0); 764 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 765 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 766 767 // memchr(x, y, 0) -> null 768 if (LenC && LenC->isZero()) 769 return Constant::getNullValue(CI->getType()); 770 771 // From now on we need at least constant length and string. 772 StringRef Str; 773 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 774 return nullptr; 775 776 // Truncate the string to LenC. If Str is smaller than LenC we will still only 777 // scan the string, as reading past the end of it is undefined and we can just 778 // return null if we don't find the char. 779 Str = Str.substr(0, LenC->getZExtValue()); 780 781 // If the char is variable but the input str and length are not we can turn 782 // this memchr call into a simple bit field test. Of course this only works 783 // when the return value is only checked against null. 784 // 785 // It would be really nice to reuse switch lowering here but we can't change 786 // the CFG at this point. 787 // 788 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 789 // != 0 790 // after bounds check. 791 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 792 unsigned char Max = 793 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 794 reinterpret_cast<const unsigned char *>(Str.end())); 795 796 // Make sure the bit field we're about to create fits in a register on the 797 // target. 798 // FIXME: On a 64 bit architecture this prevents us from using the 799 // interesting range of alpha ascii chars. We could do better by emitting 800 // two bitfields or shifting the range by 64 if no lower chars are used. 801 if (!DL.fitsInLegalInteger(Max + 1)) 802 return nullptr; 803 804 // For the bit field use a power-of-2 type with at least 8 bits to avoid 805 // creating unnecessary illegal types. 806 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 807 808 // Now build the bit field. 809 APInt Bitfield(Width, 0); 810 for (char C : Str) 811 Bitfield.setBit((unsigned char)C); 812 Value *BitfieldC = B.getInt(Bitfield); 813 814 // Adjust width of "C" to the bitfield width, then mask off the high bits. 815 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 816 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 817 818 // First check that the bit field access is within bounds. 819 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 820 "memchr.bounds"); 821 822 // Create code that checks if the given bit is set in the field. 823 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 824 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 825 826 // Finally merge both checks and cast to pointer type. The inttoptr 827 // implicitly zexts the i1 to intptr type. 828 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 829 } 830 831 // Check if all arguments are constants. If so, we can constant fold. 832 if (!CharC) 833 return nullptr; 834 835 // Compute the offset. 836 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 837 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 838 return Constant::getNullValue(CI->getType()); 839 840 // memchr(s+n,c,l) -> gep(s+n+i,c) 841 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 842 } 843 844 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 845 uint64_t Len, IRBuilder<> &B, 846 const DataLayout &DL) { 847 if (Len == 0) // memcmp(s1,s2,0) -> 0 848 return Constant::getNullValue(CI->getType()); 849 850 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 851 if (Len == 1) { 852 Value *LHSV = 853 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 854 CI->getType(), "lhsv"); 855 Value *RHSV = 856 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 857 CI->getType(), "rhsv"); 858 return B.CreateSub(LHSV, RHSV, "chardiff"); 859 } 860 861 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 862 // TODO: The case where both inputs are constants does not need to be limited 863 // to legal integers or equality comparison. See block below this. 864 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 865 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 866 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 867 868 // First, see if we can fold either argument to a constant. 869 Value *LHSV = nullptr; 870 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 871 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 872 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 873 } 874 Value *RHSV = nullptr; 875 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 876 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 877 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 878 } 879 880 // Don't generate unaligned loads. If either source is constant data, 881 // alignment doesn't matter for that source because there is no load. 882 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 883 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 884 if (!LHSV) { 885 Type *LHSPtrTy = 886 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 887 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 888 } 889 if (!RHSV) { 890 Type *RHSPtrTy = 891 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 892 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 893 } 894 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 895 } 896 } 897 898 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 899 // TODO: This is limited to i8 arrays. 900 StringRef LHSStr, RHSStr; 901 if (getConstantStringInfo(LHS, LHSStr) && 902 getConstantStringInfo(RHS, RHSStr)) { 903 // Make sure we're not reading out-of-bounds memory. 904 if (Len > LHSStr.size() || Len > RHSStr.size()) 905 return nullptr; 906 // Fold the memcmp and normalize the result. This way we get consistent 907 // results across multiple platforms. 908 uint64_t Ret = 0; 909 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 910 if (Cmp < 0) 911 Ret = -1; 912 else if (Cmp > 0) 913 Ret = 1; 914 return ConstantInt::get(CI->getType(), Ret); 915 } 916 return nullptr; 917 } 918 919 // Most simplifications for memcmp also apply to bcmp. 920 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 921 IRBuilder<> &B) { 922 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 923 Value *Size = CI->getArgOperand(2); 924 925 if (LHS == RHS) // memcmp(s,s,x) -> 0 926 return Constant::getNullValue(CI->getType()); 927 928 // Handle constant lengths. 929 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 930 if (Value *Res = optimizeMemCmpConstantSize(CI, LHS, RHS, 931 LenC->getZExtValue(), B, DL)) 932 return Res; 933 934 return nullptr; 935 } 936 937 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 938 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 939 return V; 940 941 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 942 // `bcmp` can be more efficient than memcmp because it only has to know that 943 // there is a difference, not where it is. 944 if (isOnlyUsedInZeroEqualityComparison(CI) && TLI->has(LibFunc_bcmp)) { 945 Value *LHS = CI->getArgOperand(0); 946 Value *RHS = CI->getArgOperand(1); 947 Value *Size = CI->getArgOperand(2); 948 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 949 } 950 951 return nullptr; 952 } 953 954 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) { 955 return optimizeMemCmpBCmpCommon(CI, B); 956 } 957 958 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 959 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 960 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 961 CI->getArgOperand(2)); 962 return CI->getArgOperand(0); 963 } 964 965 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 966 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 967 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 968 CI->getArgOperand(2)); 969 return CI->getArgOperand(0); 970 } 971 972 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 973 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { 974 // This has to be a memset of zeros (bzero). 975 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 976 if (!FillValue || FillValue->getZExtValue() != 0) 977 return nullptr; 978 979 // TODO: We should handle the case where the malloc has more than one use. 980 // This is necessary to optimize common patterns such as when the result of 981 // the malloc is checked against null or when a memset intrinsic is used in 982 // place of a memset library call. 983 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 984 if (!Malloc || !Malloc->hasOneUse()) 985 return nullptr; 986 987 // Is the inner call really malloc()? 988 Function *InnerCallee = Malloc->getCalledFunction(); 989 if (!InnerCallee) 990 return nullptr; 991 992 LibFunc Func; 993 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 994 Func != LibFunc_malloc) 995 return nullptr; 996 997 // The memset must cover the same number of bytes that are malloc'd. 998 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 999 return nullptr; 1000 1001 // Replace the malloc with a calloc. We need the data layout to know what the 1002 // actual size of a 'size_t' parameter is. 1003 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1004 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1005 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1006 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1007 Malloc->getArgOperand(0), Malloc->getAttributes(), 1008 B, *TLI); 1009 if (!Calloc) 1010 return nullptr; 1011 1012 Malloc->replaceAllUsesWith(Calloc); 1013 eraseFromParent(Malloc); 1014 1015 return Calloc; 1016 } 1017 1018 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 1019 if (auto *Calloc = foldMallocMemset(CI, B)) 1020 return Calloc; 1021 1022 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1023 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1024 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 1025 return CI->getArgOperand(0); 1026 } 1027 1028 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 1029 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1030 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1031 1032 return nullptr; 1033 } 1034 1035 //===----------------------------------------------------------------------===// 1036 // Math Library Optimizations 1037 //===----------------------------------------------------------------------===// 1038 1039 // Replace a libcall \p CI with a call to intrinsic \p IID 1040 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 1041 // Propagate fast-math flags from the existing call to the new call. 1042 IRBuilder<>::FastMathFlagGuard Guard(B); 1043 B.setFastMathFlags(CI->getFastMathFlags()); 1044 1045 Module *M = CI->getModule(); 1046 Value *V = CI->getArgOperand(0); 1047 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1048 CallInst *NewCall = B.CreateCall(F, V); 1049 NewCall->takeName(CI); 1050 return NewCall; 1051 } 1052 1053 /// Return a variant of Val with float type. 1054 /// Currently this works in two cases: If Val is an FPExtension of a float 1055 /// value to something bigger, simply return the operand. 1056 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1057 /// loss of precision do so. 1058 static Value *valueHasFloatPrecision(Value *Val) { 1059 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1060 Value *Op = Cast->getOperand(0); 1061 if (Op->getType()->isFloatTy()) 1062 return Op; 1063 } 1064 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1065 APFloat F = Const->getValueAPF(); 1066 bool losesInfo; 1067 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1068 &losesInfo); 1069 if (!losesInfo) 1070 return ConstantFP::get(Const->getContext(), F); 1071 } 1072 return nullptr; 1073 } 1074 1075 /// Shrink double -> float functions. 1076 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 1077 bool isBinary, bool isPrecise = false) { 1078 Function *CalleeFn = CI->getCalledFunction(); 1079 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1080 return nullptr; 1081 1082 // If not all the uses of the function are converted to float, then bail out. 1083 // This matters if the precision of the result is more important than the 1084 // precision of the arguments. 1085 if (isPrecise) 1086 for (User *U : CI->users()) { 1087 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1088 if (!Cast || !Cast->getType()->isFloatTy()) 1089 return nullptr; 1090 } 1091 1092 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1093 Value *V[2]; 1094 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1095 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1096 if (!V[0] || (isBinary && !V[1])) 1097 return nullptr; 1098 1099 StringRef CalleeNm = CalleeFn->getName(); 1100 AttributeList CalleeAt = CalleeFn->getAttributes(); 1101 bool CalleeIn = CalleeFn->isIntrinsic(); 1102 1103 // If call isn't an intrinsic, check that it isn't within a function with the 1104 // same name as the float version of this call, otherwise the result is an 1105 // infinite loop. For example, from MinGW-w64: 1106 // 1107 // float expf(float val) { return (float) exp((double) val); } 1108 if (!CalleeIn) { 1109 const Function *Fn = CI->getFunction(); 1110 StringRef FnName = Fn->getName(); 1111 if (FnName.back() == 'f' && 1112 FnName.size() == (CalleeNm.size() + 1) && 1113 FnName.startswith(CalleeNm)) 1114 return nullptr; 1115 } 1116 1117 // Propagate the math semantics from the current function to the new function. 1118 IRBuilder<>::FastMathFlagGuard Guard(B); 1119 B.setFastMathFlags(CI->getFastMathFlags()); 1120 1121 // g((double) float) -> (double) gf(float) 1122 Value *R; 1123 if (CalleeIn) { 1124 Module *M = CI->getModule(); 1125 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1126 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1127 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1128 } 1129 else 1130 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1131 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1132 1133 return B.CreateFPExt(R, B.getDoubleTy()); 1134 } 1135 1136 /// Shrink double -> float for unary functions. 1137 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1138 bool isPrecise = false) { 1139 return optimizeDoubleFP(CI, B, false, isPrecise); 1140 } 1141 1142 /// Shrink double -> float for binary functions. 1143 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1144 bool isPrecise = false) { 1145 return optimizeDoubleFP(CI, B, true, isPrecise); 1146 } 1147 1148 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1149 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1150 if (!CI->isFast()) 1151 return nullptr; 1152 1153 // Propagate fast-math flags from the existing call to new instructions. 1154 IRBuilder<>::FastMathFlagGuard Guard(B); 1155 B.setFastMathFlags(CI->getFastMathFlags()); 1156 1157 Value *Real, *Imag; 1158 if (CI->getNumArgOperands() == 1) { 1159 Value *Op = CI->getArgOperand(0); 1160 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1161 Real = B.CreateExtractValue(Op, 0, "real"); 1162 Imag = B.CreateExtractValue(Op, 1, "imag"); 1163 } else { 1164 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1165 Real = CI->getArgOperand(0); 1166 Imag = CI->getArgOperand(1); 1167 } 1168 1169 Value *RealReal = B.CreateFMul(Real, Real); 1170 Value *ImagImag = B.CreateFMul(Imag, Imag); 1171 1172 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1173 CI->getType()); 1174 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1175 } 1176 1177 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1178 IRBuilder<> &B) { 1179 if (!isa<FPMathOperator>(Call)) 1180 return nullptr; 1181 1182 IRBuilder<>::FastMathFlagGuard Guard(B); 1183 B.setFastMathFlags(Call->getFastMathFlags()); 1184 1185 // TODO: Can this be shared to also handle LLVM intrinsics? 1186 Value *X; 1187 switch (Func) { 1188 case LibFunc_sin: 1189 case LibFunc_sinf: 1190 case LibFunc_sinl: 1191 case LibFunc_tan: 1192 case LibFunc_tanf: 1193 case LibFunc_tanl: 1194 // sin(-X) --> -sin(X) 1195 // tan(-X) --> -tan(X) 1196 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1197 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1198 break; 1199 case LibFunc_cos: 1200 case LibFunc_cosf: 1201 case LibFunc_cosl: 1202 // cos(-X) --> cos(X) 1203 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1204 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1205 break; 1206 default: 1207 break; 1208 } 1209 return nullptr; 1210 } 1211 1212 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1213 // Multiplications calculated using Addition Chains. 1214 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1215 1216 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1217 1218 if (InnerChain[Exp]) 1219 return InnerChain[Exp]; 1220 1221 static const unsigned AddChain[33][2] = { 1222 {0, 0}, // Unused. 1223 {0, 0}, // Unused (base case = pow1). 1224 {1, 1}, // Unused (pre-computed). 1225 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1226 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1227 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1228 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1229 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1230 }; 1231 1232 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1233 getPow(InnerChain, AddChain[Exp][1], B)); 1234 return InnerChain[Exp]; 1235 } 1236 1237 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1238 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x); 1239 /// exp2(log2(n) * x) for pow(n, x). 1240 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { 1241 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1242 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1243 Module *Mod = Pow->getModule(); 1244 Type *Ty = Pow->getType(); 1245 bool Ignored; 1246 1247 // Evaluate special cases related to a nested function as the base. 1248 1249 // pow(exp(x), y) -> exp(x * y) 1250 // pow(exp2(x), y) -> exp2(x * y) 1251 // If exp{,2}() is used only once, it is better to fold two transcendental 1252 // math functions into one. If used again, exp{,2}() would still have to be 1253 // called with the original argument, then keep both original transcendental 1254 // functions. However, this transformation is only safe with fully relaxed 1255 // math semantics, since, besides rounding differences, it changes overflow 1256 // and underflow behavior quite dramatically. For example: 1257 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1258 // Whereas: 1259 // exp(1000 * 0.001) = exp(1) 1260 // TODO: Loosen the requirement for fully relaxed math semantics. 1261 // TODO: Handle exp10() when more targets have it available. 1262 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1263 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1264 LibFunc LibFn; 1265 1266 Function *CalleeFn = BaseFn->getCalledFunction(); 1267 if (CalleeFn && 1268 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1269 StringRef ExpName; 1270 Intrinsic::ID ID; 1271 Value *ExpFn; 1272 LibFunc LibFnFloat; 1273 LibFunc LibFnDouble; 1274 LibFunc LibFnLongDouble; 1275 1276 switch (LibFn) { 1277 default: 1278 return nullptr; 1279 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1280 ExpName = TLI->getName(LibFunc_exp); 1281 ID = Intrinsic::exp; 1282 LibFnFloat = LibFunc_expf; 1283 LibFnDouble = LibFunc_exp; 1284 LibFnLongDouble = LibFunc_expl; 1285 break; 1286 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1287 ExpName = TLI->getName(LibFunc_exp2); 1288 ID = Intrinsic::exp2; 1289 LibFnFloat = LibFunc_exp2f; 1290 LibFnDouble = LibFunc_exp2; 1291 LibFnLongDouble = LibFunc_exp2l; 1292 break; 1293 } 1294 1295 // Create new exp{,2}() with the product as its argument. 1296 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1297 ExpFn = BaseFn->doesNotAccessMemory() 1298 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1299 FMul, ExpName) 1300 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1301 LibFnLongDouble, B, 1302 BaseFn->getAttributes()); 1303 1304 // Since the new exp{,2}() is different from the original one, dead code 1305 // elimination cannot be trusted to remove it, since it may have side 1306 // effects (e.g., errno). When the only consumer for the original 1307 // exp{,2}() is pow(), then it has to be explicitly erased. 1308 BaseFn->replaceAllUsesWith(ExpFn); 1309 eraseFromParent(BaseFn); 1310 1311 return ExpFn; 1312 } 1313 } 1314 1315 // Evaluate special cases related to a constant base. 1316 1317 const APFloat *BaseF; 1318 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1319 return nullptr; 1320 1321 // pow(2.0 ** n, x) -> exp2(n * x) 1322 if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1323 APFloat BaseR = APFloat(1.0); 1324 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1325 BaseR = BaseR / *BaseF; 1326 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1327 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1328 APSInt NI(64, false); 1329 if ((IsInteger || IsReciprocal) && 1330 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1331 APFloat::opOK && 1332 NI > 1 && NI.isPowerOf2()) { 1333 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1334 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1335 if (Pow->doesNotAccessMemory()) 1336 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1337 FMul, "exp2"); 1338 else 1339 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1340 LibFunc_exp2l, B, Attrs); 1341 } 1342 } 1343 1344 // pow(10.0, x) -> exp10(x) 1345 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1346 if (match(Base, m_SpecificFP(10.0)) && 1347 hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1348 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1349 LibFunc_exp10l, B, Attrs); 1350 1351 // pow(n, x) -> exp2(log2(n) * x) 1352 if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() && 1353 Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) { 1354 Value *Log = nullptr; 1355 if (Ty->isFloatTy()) 1356 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1357 else if (Ty->isDoubleTy()) 1358 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1359 1360 if (Log) { 1361 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1362 if (Pow->doesNotAccessMemory()) { 1363 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1364 FMul, "exp2"); 1365 } else { 1366 if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 1367 LibFunc_exp2l)) 1368 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1369 LibFunc_exp2l, B, Attrs); 1370 } 1371 } 1372 } 1373 return nullptr; 1374 } 1375 1376 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1377 Module *M, IRBuilder<> &B, 1378 const TargetLibraryInfo *TLI) { 1379 // If errno is never set, then use the intrinsic for sqrt(). 1380 if (NoErrno) { 1381 Function *SqrtFn = 1382 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1383 return B.CreateCall(SqrtFn, V, "sqrt"); 1384 } 1385 1386 // Otherwise, use the libcall for sqrt(). 1387 if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1388 LibFunc_sqrtl)) 1389 // TODO: We also should check that the target can in fact lower the sqrt() 1390 // libcall. We currently have no way to ask this question, so we ask if 1391 // the target has a sqrt() libcall, which is not exactly the same. 1392 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1393 LibFunc_sqrtl, B, Attrs); 1394 1395 return nullptr; 1396 } 1397 1398 /// Use square root in place of pow(x, +/-0.5). 1399 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1400 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1401 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1402 Module *Mod = Pow->getModule(); 1403 Type *Ty = Pow->getType(); 1404 1405 const APFloat *ExpoF; 1406 if (!match(Expo, m_APFloat(ExpoF)) || 1407 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1408 return nullptr; 1409 1410 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1411 if (!Sqrt) 1412 return nullptr; 1413 1414 // Handle signed zero base by expanding to fabs(sqrt(x)). 1415 if (!Pow->hasNoSignedZeros()) { 1416 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1417 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1418 } 1419 1420 // Handle non finite base by expanding to 1421 // (x == -infinity ? +infinity : sqrt(x)). 1422 if (!Pow->hasNoInfs()) { 1423 Value *PosInf = ConstantFP::getInfinity(Ty), 1424 *NegInf = ConstantFP::getInfinity(Ty, true); 1425 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1426 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1427 } 1428 1429 // If the exponent is negative, then get the reciprocal. 1430 if (ExpoF->isNegative()) 1431 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1432 1433 return Sqrt; 1434 } 1435 1436 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1437 IRBuilder<> &B) { 1438 Value *Args[] = {Base, Expo}; 1439 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); 1440 return B.CreateCall(F, Args); 1441 } 1442 1443 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1444 Value *Base = Pow->getArgOperand(0); 1445 Value *Expo = Pow->getArgOperand(1); 1446 Function *Callee = Pow->getCalledFunction(); 1447 StringRef Name = Callee->getName(); 1448 Type *Ty = Pow->getType(); 1449 Module *M = Pow->getModule(); 1450 Value *Shrunk = nullptr; 1451 bool AllowApprox = Pow->hasApproxFunc(); 1452 bool Ignored; 1453 1454 // Bail out if simplifying libcalls to pow() is disabled. 1455 if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) 1456 return nullptr; 1457 1458 // Propagate the math semantics from the call to any created instructions. 1459 IRBuilder<>::FastMathFlagGuard Guard(B); 1460 B.setFastMathFlags(Pow->getFastMathFlags()); 1461 1462 // Shrink pow() to powf() if the arguments are single precision, 1463 // unless the result is expected to be double precision. 1464 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1465 hasFloatVersion(Name)) 1466 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1467 1468 // Evaluate special cases related to the base. 1469 1470 // pow(1.0, x) -> 1.0 1471 if (match(Base, m_FPOne())) 1472 return Base; 1473 1474 if (Value *Exp = replacePowWithExp(Pow, B)) 1475 return Exp; 1476 1477 // Evaluate special cases related to the exponent. 1478 1479 // pow(x, -1.0) -> 1.0 / x 1480 if (match(Expo, m_SpecificFP(-1.0))) 1481 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1482 1483 // pow(x, +/-0.0) -> 1.0 1484 if (match(Expo, m_AnyZeroFP())) 1485 return ConstantFP::get(Ty, 1.0); 1486 1487 // pow(x, 1.0) -> x 1488 if (match(Expo, m_FPOne())) 1489 return Base; 1490 1491 // pow(x, 2.0) -> x * x 1492 if (match(Expo, m_SpecificFP(2.0))) 1493 return B.CreateFMul(Base, Base, "square"); 1494 1495 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1496 return Sqrt; 1497 1498 // pow(x, n) -> x * x * x * ... 1499 const APFloat *ExpoF; 1500 if (AllowApprox && match(Expo, m_APFloat(ExpoF))) { 1501 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1502 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1503 // additional fmul. 1504 // TODO: This whole transformation should be backend specific (e.g. some 1505 // backends might prefer libcalls or the limit for the exponent might 1506 // be different) and it should also consider optimizing for size. 1507 APFloat LimF(ExpoF->getSemantics(), 33.0), 1508 ExpoA(abs(*ExpoF)); 1509 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { 1510 // This transformation applies to integer or integer+0.5 exponents only. 1511 // For integer+0.5, we create a sqrt(Base) call. 1512 Value *Sqrt = nullptr; 1513 if (!ExpoA.isInteger()) { 1514 APFloat Expo2 = ExpoA; 1515 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1516 // is no floating point exception and the result is an integer, then 1517 // ExpoA == integer + 0.5 1518 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1519 return nullptr; 1520 1521 if (!Expo2.isInteger()) 1522 return nullptr; 1523 1524 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1525 Pow->doesNotAccessMemory(), M, B, TLI); 1526 } 1527 1528 // We will memoize intermediate products of the Addition Chain. 1529 Value *InnerChain[33] = {nullptr}; 1530 InnerChain[1] = Base; 1531 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1532 1533 // We cannot readily convert a non-double type (like float) to a double. 1534 // So we first convert it to something which could be converted to double. 1535 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1536 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1537 1538 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1539 if (Sqrt) 1540 FMul = B.CreateFMul(FMul, Sqrt); 1541 1542 // If the exponent is negative, then get the reciprocal. 1543 if (ExpoF->isNegative()) 1544 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1545 1546 return FMul; 1547 } 1548 1549 APSInt IntExpo(32, /*isUnsigned=*/false); 1550 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1551 if (ExpoF->isInteger() && 1552 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1553 APFloat::opOK) { 1554 return createPowWithIntegerExponent( 1555 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); 1556 } 1557 } 1558 1559 // powf(x, itofp(y)) -> powi(x, y) 1560 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1561 Value *IntExpo = cast<Instruction>(Expo)->getOperand(0); 1562 Value *NewExpo = nullptr; 1563 unsigned BitWidth = IntExpo->getType()->getPrimitiveSizeInBits(); 1564 if (isa<SIToFPInst>(Expo) && BitWidth == 32) 1565 NewExpo = IntExpo; 1566 else if (BitWidth < 32) 1567 NewExpo = isa<SIToFPInst>(Expo) ? B.CreateSExt(IntExpo, B.getInt32Ty()) 1568 : B.CreateZExt(IntExpo, B.getInt32Ty()); 1569 if (NewExpo) 1570 return createPowWithIntegerExponent(Base, NewExpo, M, B); 1571 } 1572 1573 return Shrunk; 1574 } 1575 1576 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1577 Function *Callee = CI->getCalledFunction(); 1578 Value *Ret = nullptr; 1579 StringRef Name = Callee->getName(); 1580 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1581 Ret = optimizeUnaryDoubleFP(CI, B, true); 1582 1583 Value *Op = CI->getArgOperand(0); 1584 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1585 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1586 LibFunc LdExp = LibFunc_ldexpl; 1587 if (Op->getType()->isFloatTy()) 1588 LdExp = LibFunc_ldexpf; 1589 else if (Op->getType()->isDoubleTy()) 1590 LdExp = LibFunc_ldexp; 1591 1592 if (TLI->has(LdExp)) { 1593 Value *LdExpArg = nullptr; 1594 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1595 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1596 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1597 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1598 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1599 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1600 } 1601 1602 if (LdExpArg) { 1603 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1604 if (!Op->getType()->isFloatTy()) 1605 One = ConstantExpr::getFPExtend(One, Op->getType()); 1606 1607 Module *M = CI->getModule(); 1608 FunctionCallee NewCallee = M->getOrInsertFunction( 1609 TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty()); 1610 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1611 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1612 CI->setCallingConv(F->getCallingConv()); 1613 1614 return CI; 1615 } 1616 } 1617 return Ret; 1618 } 1619 1620 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1621 // If we can shrink the call to a float function rather than a double 1622 // function, do that first. 1623 Function *Callee = CI->getCalledFunction(); 1624 StringRef Name = Callee->getName(); 1625 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1626 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1627 return Ret; 1628 1629 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1630 // the intrinsics for improved optimization (for example, vectorization). 1631 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1632 // From the C standard draft WG14/N1256: 1633 // "Ideally, fmax would be sensitive to the sign of zero, for example 1634 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1635 // might be impractical." 1636 IRBuilder<>::FastMathFlagGuard Guard(B); 1637 FastMathFlags FMF = CI->getFastMathFlags(); 1638 FMF.setNoSignedZeros(); 1639 B.setFastMathFlags(FMF); 1640 1641 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1642 : Intrinsic::maxnum; 1643 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1644 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1645 } 1646 1647 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1648 Function *Callee = CI->getCalledFunction(); 1649 Value *Ret = nullptr; 1650 StringRef Name = Callee->getName(); 1651 if (UnsafeFPShrink && hasFloatVersion(Name)) 1652 Ret = optimizeUnaryDoubleFP(CI, B, true); 1653 1654 if (!CI->isFast()) 1655 return Ret; 1656 Value *Op1 = CI->getArgOperand(0); 1657 auto *OpC = dyn_cast<CallInst>(Op1); 1658 1659 // The earlier call must also be 'fast' in order to do these transforms. 1660 if (!OpC || !OpC->isFast()) 1661 return Ret; 1662 1663 // log(pow(x,y)) -> y*log(x) 1664 // This is only applicable to log, log2, log10. 1665 if (Name != "log" && Name != "log2" && Name != "log10") 1666 return Ret; 1667 1668 IRBuilder<>::FastMathFlagGuard Guard(B); 1669 FastMathFlags FMF; 1670 FMF.setFast(); 1671 B.setFastMathFlags(FMF); 1672 1673 LibFunc Func; 1674 Function *F = OpC->getCalledFunction(); 1675 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1676 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1677 return B.CreateFMul(OpC->getArgOperand(1), 1678 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1679 Callee->getAttributes()), "mul"); 1680 1681 // log(exp2(y)) -> y*log(2) 1682 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1683 TLI->has(Func) && Func == LibFunc_exp2) 1684 return B.CreateFMul( 1685 OpC->getArgOperand(0), 1686 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1687 Callee->getName(), B, Callee->getAttributes()), 1688 "logmul"); 1689 return Ret; 1690 } 1691 1692 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1693 Function *Callee = CI->getCalledFunction(); 1694 Value *Ret = nullptr; 1695 // TODO: Once we have a way (other than checking for the existince of the 1696 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1697 // condition below. 1698 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1699 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1700 Ret = optimizeUnaryDoubleFP(CI, B, true); 1701 1702 if (!CI->isFast()) 1703 return Ret; 1704 1705 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1706 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1707 return Ret; 1708 1709 // We're looking for a repeated factor in a multiplication tree, 1710 // so we can do this fold: sqrt(x * x) -> fabs(x); 1711 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1712 Value *Op0 = I->getOperand(0); 1713 Value *Op1 = I->getOperand(1); 1714 Value *RepeatOp = nullptr; 1715 Value *OtherOp = nullptr; 1716 if (Op0 == Op1) { 1717 // Simple match: the operands of the multiply are identical. 1718 RepeatOp = Op0; 1719 } else { 1720 // Look for a more complicated pattern: one of the operands is itself 1721 // a multiply, so search for a common factor in that multiply. 1722 // Note: We don't bother looking any deeper than this first level or for 1723 // variations of this pattern because instcombine's visitFMUL and/or the 1724 // reassociation pass should give us this form. 1725 Value *OtherMul0, *OtherMul1; 1726 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1727 // Pattern: sqrt((x * y) * z) 1728 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1729 // Matched: sqrt((x * x) * z) 1730 RepeatOp = OtherMul0; 1731 OtherOp = Op1; 1732 } 1733 } 1734 } 1735 if (!RepeatOp) 1736 return Ret; 1737 1738 // Fast math flags for any created instructions should match the sqrt 1739 // and multiply. 1740 IRBuilder<>::FastMathFlagGuard Guard(B); 1741 B.setFastMathFlags(I->getFastMathFlags()); 1742 1743 // If we found a repeated factor, hoist it out of the square root and 1744 // replace it with the fabs of that factor. 1745 Module *M = Callee->getParent(); 1746 Type *ArgType = I->getType(); 1747 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1748 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1749 if (OtherOp) { 1750 // If we found a non-repeated factor, we still need to get its square 1751 // root. We then multiply that by the value that was simplified out 1752 // of the square root calculation. 1753 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1754 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1755 return B.CreateFMul(FabsCall, SqrtCall); 1756 } 1757 return FabsCall; 1758 } 1759 1760 // TODO: Generalize to handle any trig function and its inverse. 1761 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1762 Function *Callee = CI->getCalledFunction(); 1763 Value *Ret = nullptr; 1764 StringRef Name = Callee->getName(); 1765 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1766 Ret = optimizeUnaryDoubleFP(CI, B, true); 1767 1768 Value *Op1 = CI->getArgOperand(0); 1769 auto *OpC = dyn_cast<CallInst>(Op1); 1770 if (!OpC) 1771 return Ret; 1772 1773 // Both calls must be 'fast' in order to remove them. 1774 if (!CI->isFast() || !OpC->isFast()) 1775 return Ret; 1776 1777 // tan(atan(x)) -> x 1778 // tanf(atanf(x)) -> x 1779 // tanl(atanl(x)) -> x 1780 LibFunc Func; 1781 Function *F = OpC->getCalledFunction(); 1782 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1783 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1784 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1785 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1786 Ret = OpC->getArgOperand(0); 1787 return Ret; 1788 } 1789 1790 static bool isTrigLibCall(CallInst *CI) { 1791 // We can only hope to do anything useful if we can ignore things like errno 1792 // and floating-point exceptions. 1793 // We already checked the prototype. 1794 return CI->hasFnAttr(Attribute::NoUnwind) && 1795 CI->hasFnAttr(Attribute::ReadNone); 1796 } 1797 1798 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1799 bool UseFloat, Value *&Sin, Value *&Cos, 1800 Value *&SinCos) { 1801 Type *ArgTy = Arg->getType(); 1802 Type *ResTy; 1803 StringRef Name; 1804 1805 Triple T(OrigCallee->getParent()->getTargetTriple()); 1806 if (UseFloat) { 1807 Name = "__sincospif_stret"; 1808 1809 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1810 // x86_64 can't use {float, float} since that would be returned in both 1811 // xmm0 and xmm1, which isn't what a real struct would do. 1812 ResTy = T.getArch() == Triple::x86_64 1813 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1814 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1815 } else { 1816 Name = "__sincospi_stret"; 1817 ResTy = StructType::get(ArgTy, ArgTy); 1818 } 1819 1820 Module *M = OrigCallee->getParent(); 1821 FunctionCallee Callee = 1822 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 1823 1824 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1825 // If the argument is an instruction, it must dominate all uses so put our 1826 // sincos call there. 1827 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1828 } else { 1829 // Otherwise (e.g. for a constant) the beginning of the function is as 1830 // good a place as any. 1831 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1832 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1833 } 1834 1835 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1836 1837 if (SinCos->getType()->isStructTy()) { 1838 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1839 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1840 } else { 1841 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1842 "sinpi"); 1843 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1844 "cospi"); 1845 } 1846 } 1847 1848 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1849 // Make sure the prototype is as expected, otherwise the rest of the 1850 // function is probably invalid and likely to abort. 1851 if (!isTrigLibCall(CI)) 1852 return nullptr; 1853 1854 Value *Arg = CI->getArgOperand(0); 1855 SmallVector<CallInst *, 1> SinCalls; 1856 SmallVector<CallInst *, 1> CosCalls; 1857 SmallVector<CallInst *, 1> SinCosCalls; 1858 1859 bool IsFloat = Arg->getType()->isFloatTy(); 1860 1861 // Look for all compatible sinpi, cospi and sincospi calls with the same 1862 // argument. If there are enough (in some sense) we can make the 1863 // substitution. 1864 Function *F = CI->getFunction(); 1865 for (User *U : Arg->users()) 1866 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1867 1868 // It's only worthwhile if both sinpi and cospi are actually used. 1869 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1870 return nullptr; 1871 1872 Value *Sin, *Cos, *SinCos; 1873 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1874 1875 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1876 Value *Res) { 1877 for (CallInst *C : Calls) 1878 replaceAllUsesWith(C, Res); 1879 }; 1880 1881 replaceTrigInsts(SinCalls, Sin); 1882 replaceTrigInsts(CosCalls, Cos); 1883 replaceTrigInsts(SinCosCalls, SinCos); 1884 1885 return nullptr; 1886 } 1887 1888 void LibCallSimplifier::classifyArgUse( 1889 Value *Val, Function *F, bool IsFloat, 1890 SmallVectorImpl<CallInst *> &SinCalls, 1891 SmallVectorImpl<CallInst *> &CosCalls, 1892 SmallVectorImpl<CallInst *> &SinCosCalls) { 1893 CallInst *CI = dyn_cast<CallInst>(Val); 1894 1895 if (!CI) 1896 return; 1897 1898 // Don't consider calls in other functions. 1899 if (CI->getFunction() != F) 1900 return; 1901 1902 Function *Callee = CI->getCalledFunction(); 1903 LibFunc Func; 1904 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1905 !isTrigLibCall(CI)) 1906 return; 1907 1908 if (IsFloat) { 1909 if (Func == LibFunc_sinpif) 1910 SinCalls.push_back(CI); 1911 else if (Func == LibFunc_cospif) 1912 CosCalls.push_back(CI); 1913 else if (Func == LibFunc_sincospif_stret) 1914 SinCosCalls.push_back(CI); 1915 } else { 1916 if (Func == LibFunc_sinpi) 1917 SinCalls.push_back(CI); 1918 else if (Func == LibFunc_cospi) 1919 CosCalls.push_back(CI); 1920 else if (Func == LibFunc_sincospi_stret) 1921 SinCosCalls.push_back(CI); 1922 } 1923 } 1924 1925 //===----------------------------------------------------------------------===// 1926 // Integer Library Call Optimizations 1927 //===----------------------------------------------------------------------===// 1928 1929 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1930 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1931 Value *Op = CI->getArgOperand(0); 1932 Type *ArgType = Op->getType(); 1933 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1934 Intrinsic::cttz, ArgType); 1935 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1936 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1937 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1938 1939 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1940 return B.CreateSelect(Cond, V, B.getInt32(0)); 1941 } 1942 1943 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1944 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1945 Value *Op = CI->getArgOperand(0); 1946 Type *ArgType = Op->getType(); 1947 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1948 Intrinsic::ctlz, ArgType); 1949 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1950 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1951 V); 1952 return B.CreateIntCast(V, CI->getType(), false); 1953 } 1954 1955 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1956 // abs(x) -> x <s 0 ? -x : x 1957 // The negation has 'nsw' because abs of INT_MIN is undefined. 1958 Value *X = CI->getArgOperand(0); 1959 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 1960 Value *NegX = B.CreateNSWNeg(X, "neg"); 1961 return B.CreateSelect(IsNeg, NegX, X); 1962 } 1963 1964 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1965 // isdigit(c) -> (c-'0') <u 10 1966 Value *Op = CI->getArgOperand(0); 1967 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1968 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1969 return B.CreateZExt(Op, CI->getType()); 1970 } 1971 1972 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1973 // isascii(c) -> c <u 128 1974 Value *Op = CI->getArgOperand(0); 1975 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1976 return B.CreateZExt(Op, CI->getType()); 1977 } 1978 1979 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1980 // toascii(c) -> c & 0x7f 1981 return B.CreateAnd(CI->getArgOperand(0), 1982 ConstantInt::get(CI->getType(), 0x7F)); 1983 } 1984 1985 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 1986 StringRef Str; 1987 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1988 return nullptr; 1989 1990 return convertStrToNumber(CI, Str, 10); 1991 } 1992 1993 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 1994 StringRef Str; 1995 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1996 return nullptr; 1997 1998 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 1999 return nullptr; 2000 2001 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2002 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2003 } 2004 2005 return nullptr; 2006 } 2007 2008 //===----------------------------------------------------------------------===// 2009 // Formatting and IO Library Call Optimizations 2010 //===----------------------------------------------------------------------===// 2011 2012 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2013 2014 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 2015 int StreamArg) { 2016 Function *Callee = CI->getCalledFunction(); 2017 // Error reporting calls should be cold, mark them as such. 2018 // This applies even to non-builtin calls: it is only a hint and applies to 2019 // functions that the frontend might not understand as builtins. 2020 2021 // This heuristic was suggested in: 2022 // Improving Static Branch Prediction in a Compiler 2023 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2024 // Proceedings of PACT'98, Oct. 1998, IEEE 2025 if (!CI->hasFnAttr(Attribute::Cold) && 2026 isReportingError(Callee, CI, StreamArg)) { 2027 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2028 } 2029 2030 return nullptr; 2031 } 2032 2033 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2034 if (!Callee || !Callee->isDeclaration()) 2035 return false; 2036 2037 if (StreamArg < 0) 2038 return true; 2039 2040 // These functions might be considered cold, but only if their stream 2041 // argument is stderr. 2042 2043 if (StreamArg >= (int)CI->getNumArgOperands()) 2044 return false; 2045 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2046 if (!LI) 2047 return false; 2048 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2049 if (!GV || !GV->isDeclaration()) 2050 return false; 2051 return GV->getName() == "stderr"; 2052 } 2053 2054 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 2055 // Check for a fixed format string. 2056 StringRef FormatStr; 2057 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2058 return nullptr; 2059 2060 // Empty format string -> noop. 2061 if (FormatStr.empty()) // Tolerate printf's declared void. 2062 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2063 2064 // Do not do any of the following transformations if the printf return value 2065 // is used, in general the printf return value is not compatible with either 2066 // putchar() or puts(). 2067 if (!CI->use_empty()) 2068 return nullptr; 2069 2070 // printf("x") -> putchar('x'), even for "%" and "%%". 2071 if (FormatStr.size() == 1 || FormatStr == "%%") 2072 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2073 2074 // printf("%s", "a") --> putchar('a') 2075 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2076 StringRef ChrStr; 2077 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2078 return nullptr; 2079 if (ChrStr.size() != 1) 2080 return nullptr; 2081 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2082 } 2083 2084 // printf("foo\n") --> puts("foo") 2085 if (FormatStr[FormatStr.size() - 1] == '\n' && 2086 FormatStr.find('%') == StringRef::npos) { // No format characters. 2087 // Create a string literal with no \n on it. We expect the constant merge 2088 // pass to be run after this pass, to merge duplicate strings. 2089 FormatStr = FormatStr.drop_back(); 2090 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2091 return emitPutS(GV, B, TLI); 2092 } 2093 2094 // Optimize specific format strings. 2095 // printf("%c", chr) --> putchar(chr) 2096 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2097 CI->getArgOperand(1)->getType()->isIntegerTy()) 2098 return emitPutChar(CI->getArgOperand(1), B, TLI); 2099 2100 // printf("%s\n", str) --> puts(str) 2101 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2102 CI->getArgOperand(1)->getType()->isPointerTy()) 2103 return emitPutS(CI->getArgOperand(1), B, TLI); 2104 return nullptr; 2105 } 2106 2107 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 2108 2109 Function *Callee = CI->getCalledFunction(); 2110 FunctionType *FT = Callee->getFunctionType(); 2111 if (Value *V = optimizePrintFString(CI, B)) { 2112 return V; 2113 } 2114 2115 // printf(format, ...) -> iprintf(format, ...) if no floating point 2116 // arguments. 2117 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2118 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2119 FunctionCallee IPrintFFn = 2120 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2121 CallInst *New = cast<CallInst>(CI->clone()); 2122 New->setCalledFunction(IPrintFFn); 2123 B.Insert(New); 2124 return New; 2125 } 2126 2127 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2128 // arguments. 2129 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2130 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2131 auto SmallPrintFFn = 2132 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2133 FT, Callee->getAttributes()); 2134 CallInst *New = cast<CallInst>(CI->clone()); 2135 New->setCalledFunction(SmallPrintFFn); 2136 B.Insert(New); 2137 return New; 2138 } 2139 2140 return nullptr; 2141 } 2142 2143 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 2144 // Check for a fixed format string. 2145 StringRef FormatStr; 2146 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2147 return nullptr; 2148 2149 // If we just have a format string (nothing else crazy) transform it. 2150 if (CI->getNumArgOperands() == 2) { 2151 // Make sure there's no % in the constant array. We could try to handle 2152 // %% -> % in the future if we cared. 2153 if (FormatStr.find('%') != StringRef::npos) 2154 return nullptr; // we found a format specifier, bail out. 2155 2156 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2157 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2158 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2159 FormatStr.size() + 1)); // Copy the null byte. 2160 return ConstantInt::get(CI->getType(), FormatStr.size()); 2161 } 2162 2163 // The remaining optimizations require the format string to be "%s" or "%c" 2164 // and have an extra operand. 2165 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2166 CI->getNumArgOperands() < 3) 2167 return nullptr; 2168 2169 // Decode the second character of the format string. 2170 if (FormatStr[1] == 'c') { 2171 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2172 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2173 return nullptr; 2174 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2175 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2176 B.CreateStore(V, Ptr); 2177 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2178 B.CreateStore(B.getInt8(0), Ptr); 2179 2180 return ConstantInt::get(CI->getType(), 1); 2181 } 2182 2183 if (FormatStr[1] == 's') { 2184 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2185 // strlen(str)+1) 2186 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2187 return nullptr; 2188 2189 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2190 if (!Len) 2191 return nullptr; 2192 Value *IncLen = 2193 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2194 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 2195 2196 // The sprintf result is the unincremented number of bytes in the string. 2197 return B.CreateIntCast(Len, CI->getType(), false); 2198 } 2199 return nullptr; 2200 } 2201 2202 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2203 Function *Callee = CI->getCalledFunction(); 2204 FunctionType *FT = Callee->getFunctionType(); 2205 if (Value *V = optimizeSPrintFString(CI, B)) { 2206 return V; 2207 } 2208 2209 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2210 // point arguments. 2211 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2212 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2213 FunctionCallee SIPrintFFn = 2214 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2215 CallInst *New = cast<CallInst>(CI->clone()); 2216 New->setCalledFunction(SIPrintFFn); 2217 B.Insert(New); 2218 return New; 2219 } 2220 2221 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2222 // floating point arguments. 2223 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2224 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2225 auto SmallSPrintFFn = 2226 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2227 FT, Callee->getAttributes()); 2228 CallInst *New = cast<CallInst>(CI->clone()); 2229 New->setCalledFunction(SmallSPrintFFn); 2230 B.Insert(New); 2231 return New; 2232 } 2233 2234 return nullptr; 2235 } 2236 2237 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 2238 // Check for a fixed format string. 2239 StringRef FormatStr; 2240 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2241 return nullptr; 2242 2243 // Check for size 2244 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2245 if (!Size) 2246 return nullptr; 2247 2248 uint64_t N = Size->getZExtValue(); 2249 2250 // If we just have a format string (nothing else crazy) transform it. 2251 if (CI->getNumArgOperands() == 3) { 2252 // Make sure there's no % in the constant array. We could try to handle 2253 // %% -> % in the future if we cared. 2254 if (FormatStr.find('%') != StringRef::npos) 2255 return nullptr; // we found a format specifier, bail out. 2256 2257 if (N == 0) 2258 return ConstantInt::get(CI->getType(), FormatStr.size()); 2259 else if (N < FormatStr.size() + 1) 2260 return nullptr; 2261 2262 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2263 // strlen(fmt)+1) 2264 B.CreateMemCpy( 2265 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 2266 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2267 FormatStr.size() + 1)); // Copy the null byte. 2268 return ConstantInt::get(CI->getType(), FormatStr.size()); 2269 } 2270 2271 // The remaining optimizations require the format string to be "%s" or "%c" 2272 // and have an extra operand. 2273 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2274 CI->getNumArgOperands() == 4) { 2275 2276 // Decode the second character of the format string. 2277 if (FormatStr[1] == 'c') { 2278 if (N == 0) 2279 return ConstantInt::get(CI->getType(), 1); 2280 else if (N == 1) 2281 return nullptr; 2282 2283 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2284 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2285 return nullptr; 2286 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2287 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2288 B.CreateStore(V, Ptr); 2289 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2290 B.CreateStore(B.getInt8(0), Ptr); 2291 2292 return ConstantInt::get(CI->getType(), 1); 2293 } 2294 2295 if (FormatStr[1] == 's') { 2296 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2297 StringRef Str; 2298 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2299 return nullptr; 2300 2301 if (N == 0) 2302 return ConstantInt::get(CI->getType(), Str.size()); 2303 else if (N < Str.size() + 1) 2304 return nullptr; 2305 2306 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 2307 ConstantInt::get(CI->getType(), Str.size() + 1)); 2308 2309 // The snprintf result is the unincremented number of bytes in the string. 2310 return ConstantInt::get(CI->getType(), Str.size()); 2311 } 2312 } 2313 return nullptr; 2314 } 2315 2316 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 2317 if (Value *V = optimizeSnPrintFString(CI, B)) { 2318 return V; 2319 } 2320 2321 return nullptr; 2322 } 2323 2324 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2325 optimizeErrorReporting(CI, B, 0); 2326 2327 // All the optimizations depend on the format string. 2328 StringRef FormatStr; 2329 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2330 return nullptr; 2331 2332 // Do not do any of the following transformations if the fprintf return 2333 // value is used, in general the fprintf return value is not compatible 2334 // with fwrite(), fputc() or fputs(). 2335 if (!CI->use_empty()) 2336 return nullptr; 2337 2338 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2339 if (CI->getNumArgOperands() == 2) { 2340 // Could handle %% -> % if we cared. 2341 if (FormatStr.find('%') != StringRef::npos) 2342 return nullptr; // We found a format specifier. 2343 2344 return emitFWrite( 2345 CI->getArgOperand(1), 2346 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2347 CI->getArgOperand(0), B, DL, TLI); 2348 } 2349 2350 // The remaining optimizations require the format string to be "%s" or "%c" 2351 // and have an extra operand. 2352 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2353 CI->getNumArgOperands() < 3) 2354 return nullptr; 2355 2356 // Decode the second character of the format string. 2357 if (FormatStr[1] == 'c') { 2358 // fprintf(F, "%c", chr) --> fputc(chr, F) 2359 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2360 return nullptr; 2361 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2362 } 2363 2364 if (FormatStr[1] == 's') { 2365 // fprintf(F, "%s", str) --> fputs(str, F) 2366 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2367 return nullptr; 2368 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2369 } 2370 return nullptr; 2371 } 2372 2373 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2374 Function *Callee = CI->getCalledFunction(); 2375 FunctionType *FT = Callee->getFunctionType(); 2376 if (Value *V = optimizeFPrintFString(CI, B)) { 2377 return V; 2378 } 2379 2380 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2381 // floating point arguments. 2382 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2383 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2384 FunctionCallee FIPrintFFn = 2385 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2386 CallInst *New = cast<CallInst>(CI->clone()); 2387 New->setCalledFunction(FIPrintFFn); 2388 B.Insert(New); 2389 return New; 2390 } 2391 2392 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2393 // 128-bit floating point arguments. 2394 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2395 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2396 auto SmallFPrintFFn = 2397 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2398 FT, Callee->getAttributes()); 2399 CallInst *New = cast<CallInst>(CI->clone()); 2400 New->setCalledFunction(SmallFPrintFFn); 2401 B.Insert(New); 2402 return New; 2403 } 2404 2405 return nullptr; 2406 } 2407 2408 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2409 optimizeErrorReporting(CI, B, 3); 2410 2411 // Get the element size and count. 2412 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2413 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2414 if (SizeC && CountC) { 2415 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2416 2417 // If this is writing zero records, remove the call (it's a noop). 2418 if (Bytes == 0) 2419 return ConstantInt::get(CI->getType(), 0); 2420 2421 // If this is writing one byte, turn it into fputc. 2422 // This optimisation is only valid, if the return value is unused. 2423 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2424 Value *Char = B.CreateLoad(B.getInt8Ty(), 2425 castToCStr(CI->getArgOperand(0), B), "char"); 2426 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2427 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2428 } 2429 } 2430 2431 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2432 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2433 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2434 TLI); 2435 2436 return nullptr; 2437 } 2438 2439 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2440 optimizeErrorReporting(CI, B, 1); 2441 2442 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2443 // requires more arguments and thus extra MOVs are required. 2444 bool OptForSize = CI->getFunction()->hasOptSize() || 2445 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 2446 if (OptForSize) 2447 return nullptr; 2448 2449 // Check if has any use 2450 if (!CI->use_empty()) { 2451 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2452 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2453 TLI); 2454 else 2455 // We can't optimize if return value is used. 2456 return nullptr; 2457 } 2458 2459 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2460 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2461 if (!Len) 2462 return nullptr; 2463 2464 // Known to have no uses (see above). 2465 return emitFWrite( 2466 CI->getArgOperand(0), 2467 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2468 CI->getArgOperand(1), B, DL, TLI); 2469 } 2470 2471 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2472 optimizeErrorReporting(CI, B, 1); 2473 2474 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2475 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2476 TLI); 2477 2478 return nullptr; 2479 } 2480 2481 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2482 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2483 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2484 2485 return nullptr; 2486 } 2487 2488 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2489 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2490 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2491 CI->getArgOperand(2), B, TLI); 2492 2493 return nullptr; 2494 } 2495 2496 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2497 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2498 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2499 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2500 TLI); 2501 2502 return nullptr; 2503 } 2504 2505 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2506 if (!CI->use_empty()) 2507 return nullptr; 2508 2509 // Check for a constant string. 2510 // puts("") -> putchar('\n') 2511 StringRef Str; 2512 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2513 return emitPutChar(B.getInt32('\n'), B, TLI); 2514 2515 return nullptr; 2516 } 2517 2518 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2519 LibFunc Func; 2520 SmallString<20> FloatFuncName = FuncName; 2521 FloatFuncName += 'f'; 2522 if (TLI->getLibFunc(FloatFuncName, Func)) 2523 return TLI->has(Func); 2524 return false; 2525 } 2526 2527 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2528 IRBuilder<> &Builder) { 2529 LibFunc Func; 2530 Function *Callee = CI->getCalledFunction(); 2531 // Check for string/memory library functions. 2532 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2533 // Make sure we never change the calling convention. 2534 assert((ignoreCallingConv(Func) || 2535 isCallingConvCCompatible(CI)) && 2536 "Optimizing string/memory libcall would change the calling convention"); 2537 switch (Func) { 2538 case LibFunc_strcat: 2539 return optimizeStrCat(CI, Builder); 2540 case LibFunc_strncat: 2541 return optimizeStrNCat(CI, Builder); 2542 case LibFunc_strchr: 2543 return optimizeStrChr(CI, Builder); 2544 case LibFunc_strrchr: 2545 return optimizeStrRChr(CI, Builder); 2546 case LibFunc_strcmp: 2547 return optimizeStrCmp(CI, Builder); 2548 case LibFunc_strncmp: 2549 return optimizeStrNCmp(CI, Builder); 2550 case LibFunc_strcpy: 2551 return optimizeStrCpy(CI, Builder); 2552 case LibFunc_stpcpy: 2553 return optimizeStpCpy(CI, Builder); 2554 case LibFunc_strncpy: 2555 return optimizeStrNCpy(CI, Builder); 2556 case LibFunc_strlen: 2557 return optimizeStrLen(CI, Builder); 2558 case LibFunc_strpbrk: 2559 return optimizeStrPBrk(CI, Builder); 2560 case LibFunc_strtol: 2561 case LibFunc_strtod: 2562 case LibFunc_strtof: 2563 case LibFunc_strtoul: 2564 case LibFunc_strtoll: 2565 case LibFunc_strtold: 2566 case LibFunc_strtoull: 2567 return optimizeStrTo(CI, Builder); 2568 case LibFunc_strspn: 2569 return optimizeStrSpn(CI, Builder); 2570 case LibFunc_strcspn: 2571 return optimizeStrCSpn(CI, Builder); 2572 case LibFunc_strstr: 2573 return optimizeStrStr(CI, Builder); 2574 case LibFunc_memchr: 2575 return optimizeMemChr(CI, Builder); 2576 case LibFunc_bcmp: 2577 return optimizeBCmp(CI, Builder); 2578 case LibFunc_memcmp: 2579 return optimizeMemCmp(CI, Builder); 2580 case LibFunc_memcpy: 2581 return optimizeMemCpy(CI, Builder); 2582 case LibFunc_memmove: 2583 return optimizeMemMove(CI, Builder); 2584 case LibFunc_memset: 2585 return optimizeMemSet(CI, Builder); 2586 case LibFunc_realloc: 2587 return optimizeRealloc(CI, Builder); 2588 case LibFunc_wcslen: 2589 return optimizeWcslen(CI, Builder); 2590 default: 2591 break; 2592 } 2593 } 2594 return nullptr; 2595 } 2596 2597 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2598 LibFunc Func, 2599 IRBuilder<> &Builder) { 2600 // Don't optimize calls that require strict floating point semantics. 2601 if (CI->isStrictFP()) 2602 return nullptr; 2603 2604 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2605 return V; 2606 2607 switch (Func) { 2608 case LibFunc_sinpif: 2609 case LibFunc_sinpi: 2610 case LibFunc_cospif: 2611 case LibFunc_cospi: 2612 return optimizeSinCosPi(CI, Builder); 2613 case LibFunc_powf: 2614 case LibFunc_pow: 2615 case LibFunc_powl: 2616 return optimizePow(CI, Builder); 2617 case LibFunc_exp2l: 2618 case LibFunc_exp2: 2619 case LibFunc_exp2f: 2620 return optimizeExp2(CI, Builder); 2621 case LibFunc_fabsf: 2622 case LibFunc_fabs: 2623 case LibFunc_fabsl: 2624 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2625 case LibFunc_sqrtf: 2626 case LibFunc_sqrt: 2627 case LibFunc_sqrtl: 2628 return optimizeSqrt(CI, Builder); 2629 case LibFunc_log: 2630 case LibFunc_log10: 2631 case LibFunc_log1p: 2632 case LibFunc_log2: 2633 case LibFunc_logb: 2634 return optimizeLog(CI, Builder); 2635 case LibFunc_tan: 2636 case LibFunc_tanf: 2637 case LibFunc_tanl: 2638 return optimizeTan(CI, Builder); 2639 case LibFunc_ceil: 2640 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2641 case LibFunc_floor: 2642 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2643 case LibFunc_round: 2644 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2645 case LibFunc_nearbyint: 2646 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2647 case LibFunc_rint: 2648 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2649 case LibFunc_trunc: 2650 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2651 case LibFunc_acos: 2652 case LibFunc_acosh: 2653 case LibFunc_asin: 2654 case LibFunc_asinh: 2655 case LibFunc_atan: 2656 case LibFunc_atanh: 2657 case LibFunc_cbrt: 2658 case LibFunc_cosh: 2659 case LibFunc_exp: 2660 case LibFunc_exp10: 2661 case LibFunc_expm1: 2662 case LibFunc_cos: 2663 case LibFunc_sin: 2664 case LibFunc_sinh: 2665 case LibFunc_tanh: 2666 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2667 return optimizeUnaryDoubleFP(CI, Builder, true); 2668 return nullptr; 2669 case LibFunc_copysign: 2670 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2671 return optimizeBinaryDoubleFP(CI, Builder); 2672 return nullptr; 2673 case LibFunc_fminf: 2674 case LibFunc_fmin: 2675 case LibFunc_fminl: 2676 case LibFunc_fmaxf: 2677 case LibFunc_fmax: 2678 case LibFunc_fmaxl: 2679 return optimizeFMinFMax(CI, Builder); 2680 case LibFunc_cabs: 2681 case LibFunc_cabsf: 2682 case LibFunc_cabsl: 2683 return optimizeCAbs(CI, Builder); 2684 default: 2685 return nullptr; 2686 } 2687 } 2688 2689 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2690 // TODO: Split out the code below that operates on FP calls so that 2691 // we can all non-FP calls with the StrictFP attribute to be 2692 // optimized. 2693 if (CI->isNoBuiltin()) 2694 return nullptr; 2695 2696 LibFunc Func; 2697 Function *Callee = CI->getCalledFunction(); 2698 2699 SmallVector<OperandBundleDef, 2> OpBundles; 2700 CI->getOperandBundlesAsDefs(OpBundles); 2701 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2702 bool isCallingConvC = isCallingConvCCompatible(CI); 2703 2704 // Command-line parameter overrides instruction attribute. 2705 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2706 // used by the intrinsic optimizations. 2707 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2708 UnsafeFPShrink = EnableUnsafeFPShrink; 2709 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2710 UnsafeFPShrink = true; 2711 2712 // First, check for intrinsics. 2713 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2714 if (!isCallingConvC) 2715 return nullptr; 2716 // The FP intrinsics have corresponding constrained versions so we don't 2717 // need to check for the StrictFP attribute here. 2718 switch (II->getIntrinsicID()) { 2719 case Intrinsic::pow: 2720 return optimizePow(CI, Builder); 2721 case Intrinsic::exp2: 2722 return optimizeExp2(CI, Builder); 2723 case Intrinsic::log: 2724 return optimizeLog(CI, Builder); 2725 case Intrinsic::sqrt: 2726 return optimizeSqrt(CI, Builder); 2727 // TODO: Use foldMallocMemset() with memset intrinsic. 2728 default: 2729 return nullptr; 2730 } 2731 } 2732 2733 // Also try to simplify calls to fortified library functions. 2734 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2735 // Try to further simplify the result. 2736 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2737 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2738 // Use an IR Builder from SimplifiedCI if available instead of CI 2739 // to guarantee we reach all uses we might replace later on. 2740 IRBuilder<> TmpBuilder(SimplifiedCI); 2741 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2742 // If we were able to further simplify, remove the now redundant call. 2743 SimplifiedCI->replaceAllUsesWith(V); 2744 eraseFromParent(SimplifiedCI); 2745 return V; 2746 } 2747 } 2748 return SimplifiedFortifiedCI; 2749 } 2750 2751 // Then check for known library functions. 2752 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2753 // We never change the calling convention. 2754 if (!ignoreCallingConv(Func) && !isCallingConvC) 2755 return nullptr; 2756 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2757 return V; 2758 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2759 return V; 2760 switch (Func) { 2761 case LibFunc_ffs: 2762 case LibFunc_ffsl: 2763 case LibFunc_ffsll: 2764 return optimizeFFS(CI, Builder); 2765 case LibFunc_fls: 2766 case LibFunc_flsl: 2767 case LibFunc_flsll: 2768 return optimizeFls(CI, Builder); 2769 case LibFunc_abs: 2770 case LibFunc_labs: 2771 case LibFunc_llabs: 2772 return optimizeAbs(CI, Builder); 2773 case LibFunc_isdigit: 2774 return optimizeIsDigit(CI, Builder); 2775 case LibFunc_isascii: 2776 return optimizeIsAscii(CI, Builder); 2777 case LibFunc_toascii: 2778 return optimizeToAscii(CI, Builder); 2779 case LibFunc_atoi: 2780 case LibFunc_atol: 2781 case LibFunc_atoll: 2782 return optimizeAtoi(CI, Builder); 2783 case LibFunc_strtol: 2784 case LibFunc_strtoll: 2785 return optimizeStrtol(CI, Builder); 2786 case LibFunc_printf: 2787 return optimizePrintF(CI, Builder); 2788 case LibFunc_sprintf: 2789 return optimizeSPrintF(CI, Builder); 2790 case LibFunc_snprintf: 2791 return optimizeSnPrintF(CI, Builder); 2792 case LibFunc_fprintf: 2793 return optimizeFPrintF(CI, Builder); 2794 case LibFunc_fwrite: 2795 return optimizeFWrite(CI, Builder); 2796 case LibFunc_fread: 2797 return optimizeFRead(CI, Builder); 2798 case LibFunc_fputs: 2799 return optimizeFPuts(CI, Builder); 2800 case LibFunc_fgets: 2801 return optimizeFGets(CI, Builder); 2802 case LibFunc_fputc: 2803 return optimizeFPutc(CI, Builder); 2804 case LibFunc_fgetc: 2805 return optimizeFGetc(CI, Builder); 2806 case LibFunc_puts: 2807 return optimizePuts(CI, Builder); 2808 case LibFunc_perror: 2809 return optimizeErrorReporting(CI, Builder); 2810 case LibFunc_vfprintf: 2811 case LibFunc_fiprintf: 2812 return optimizeErrorReporting(CI, Builder, 0); 2813 default: 2814 return nullptr; 2815 } 2816 } 2817 return nullptr; 2818 } 2819 2820 LibCallSimplifier::LibCallSimplifier( 2821 const DataLayout &DL, const TargetLibraryInfo *TLI, 2822 OptimizationRemarkEmitter &ORE, 2823 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 2824 function_ref<void(Instruction *, Value *)> Replacer, 2825 function_ref<void(Instruction *)> Eraser) 2826 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 2827 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 2828 2829 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2830 // Indirect through the replacer used in this instance. 2831 Replacer(I, With); 2832 } 2833 2834 void LibCallSimplifier::eraseFromParent(Instruction *I) { 2835 Eraser(I); 2836 } 2837 2838 // TODO: 2839 // Additional cases that we need to add to this file: 2840 // 2841 // cbrt: 2842 // * cbrt(expN(X)) -> expN(x/3) 2843 // * cbrt(sqrt(x)) -> pow(x,1/6) 2844 // * cbrt(cbrt(x)) -> pow(x,1/9) 2845 // 2846 // exp, expf, expl: 2847 // * exp(log(x)) -> x 2848 // 2849 // log, logf, logl: 2850 // * log(exp(x)) -> x 2851 // * log(exp(y)) -> y*log(e) 2852 // * log(exp10(y)) -> y*log(10) 2853 // * log(sqrt(x)) -> 0.5*log(x) 2854 // 2855 // pow, powf, powl: 2856 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2857 // * pow(pow(x,y),z)-> pow(x,y*z) 2858 // 2859 // signbit: 2860 // * signbit(cnst) -> cnst' 2861 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2862 // 2863 // sqrt, sqrtf, sqrtl: 2864 // * sqrt(expN(x)) -> expN(x*0.5) 2865 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2866 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2867 // 2868 2869 //===----------------------------------------------------------------------===// 2870 // Fortified Library Call Optimizations 2871 //===----------------------------------------------------------------------===// 2872 2873 bool 2874 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2875 unsigned ObjSizeOp, 2876 Optional<unsigned> SizeOp, 2877 Optional<unsigned> StrOp, 2878 Optional<unsigned> FlagOp) { 2879 // If this function takes a flag argument, the implementation may use it to 2880 // perform extra checks. Don't fold into the non-checking variant. 2881 if (FlagOp) { 2882 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 2883 if (!Flag || !Flag->isZero()) 2884 return false; 2885 } 2886 2887 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 2888 return true; 2889 2890 if (ConstantInt *ObjSizeCI = 2891 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2892 if (ObjSizeCI->isMinusOne()) 2893 return true; 2894 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2895 if (OnlyLowerUnknownSize) 2896 return false; 2897 if (StrOp) { 2898 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 2899 // If the length is 0 we don't know how long it is and so we can't 2900 // remove the check. 2901 if (Len == 0) 2902 return false; 2903 return ObjSizeCI->getZExtValue() >= Len; 2904 } 2905 2906 if (SizeOp) { 2907 if (ConstantInt *SizeCI = 2908 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 2909 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2910 } 2911 } 2912 return false; 2913 } 2914 2915 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2916 IRBuilder<> &B) { 2917 if (isFortifiedCallFoldable(CI, 3, 2)) { 2918 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2919 CI->getArgOperand(2)); 2920 return CI->getArgOperand(0); 2921 } 2922 return nullptr; 2923 } 2924 2925 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2926 IRBuilder<> &B) { 2927 if (isFortifiedCallFoldable(CI, 3, 2)) { 2928 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2929 CI->getArgOperand(2)); 2930 return CI->getArgOperand(0); 2931 } 2932 return nullptr; 2933 } 2934 2935 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2936 IRBuilder<> &B) { 2937 // TODO: Try foldMallocMemset() here. 2938 2939 if (isFortifiedCallFoldable(CI, 3, 2)) { 2940 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2941 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2942 return CI->getArgOperand(0); 2943 } 2944 return nullptr; 2945 } 2946 2947 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2948 IRBuilder<> &B, 2949 LibFunc Func) { 2950 const DataLayout &DL = CI->getModule()->getDataLayout(); 2951 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2952 *ObjSize = CI->getArgOperand(2); 2953 2954 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2955 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2956 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2957 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2958 } 2959 2960 // If a) we don't have any length information, or b) we know this will 2961 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2962 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2963 // TODO: It might be nice to get a maximum length out of the possible 2964 // string lengths for varying. 2965 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 2966 if (Func == LibFunc_strcpy_chk) 2967 return emitStrCpy(Dst, Src, B, TLI); 2968 else 2969 return emitStpCpy(Dst, Src, B, TLI); 2970 } 2971 2972 if (OnlyLowerUnknownSize) 2973 return nullptr; 2974 2975 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2976 uint64_t Len = GetStringLength(Src); 2977 if (Len == 0) 2978 return nullptr; 2979 2980 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2981 Value *LenV = ConstantInt::get(SizeTTy, Len); 2982 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2983 // If the function was an __stpcpy_chk, and we were able to fold it into 2984 // a __memcpy_chk, we still need to return the correct end pointer. 2985 if (Ret && Func == LibFunc_stpcpy_chk) 2986 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2987 return Ret; 2988 } 2989 2990 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2991 IRBuilder<> &B, 2992 LibFunc Func) { 2993 if (isFortifiedCallFoldable(CI, 3, 2)) { 2994 if (Func == LibFunc_strncpy_chk) 2995 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2996 CI->getArgOperand(2), B, TLI); 2997 else 2998 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2999 CI->getArgOperand(2), B, TLI); 3000 } 3001 3002 return nullptr; 3003 } 3004 3005 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3006 IRBuilder<> &B) { 3007 if (isFortifiedCallFoldable(CI, 4, 3)) 3008 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3009 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3010 3011 return nullptr; 3012 } 3013 3014 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3015 IRBuilder<> &B) { 3016 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3017 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end()); 3018 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3019 CI->getArgOperand(4), VariadicArgs, B, TLI); 3020 } 3021 3022 return nullptr; 3023 } 3024 3025 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3026 IRBuilder<> &B) { 3027 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3028 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end()); 3029 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3030 B, TLI); 3031 } 3032 3033 return nullptr; 3034 } 3035 3036 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3037 IRBuilder<> &B) { 3038 if (isFortifiedCallFoldable(CI, 2)) 3039 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3040 3041 return nullptr; 3042 } 3043 3044 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3045 IRBuilder<> &B) { 3046 if (isFortifiedCallFoldable(CI, 3)) 3047 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3048 CI->getArgOperand(2), B, TLI); 3049 3050 return nullptr; 3051 } 3052 3053 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3054 IRBuilder<> &B) { 3055 if (isFortifiedCallFoldable(CI, 3)) 3056 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3057 CI->getArgOperand(2), B, TLI); 3058 3059 return nullptr; 3060 } 3061 3062 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3063 IRBuilder<> &B) { 3064 if (isFortifiedCallFoldable(CI, 3)) 3065 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3066 CI->getArgOperand(2), B, TLI); 3067 3068 return nullptr; 3069 } 3070 3071 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3072 IRBuilder<> &B) { 3073 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3074 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3075 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3076 3077 return nullptr; 3078 } 3079 3080 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3081 IRBuilder<> &B) { 3082 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3083 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3084 CI->getArgOperand(4), B, TLI); 3085 3086 return nullptr; 3087 } 3088 3089 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 3090 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3091 // Some clang users checked for _chk libcall availability using: 3092 // __has_builtin(__builtin___memcpy_chk) 3093 // When compiling with -fno-builtin, this is always true. 3094 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3095 // end up with fortified libcalls, which isn't acceptable in a freestanding 3096 // environment which only provides their non-fortified counterparts. 3097 // 3098 // Until we change clang and/or teach external users to check for availability 3099 // differently, disregard the "nobuiltin" attribute and TLI::has. 3100 // 3101 // PR23093. 3102 3103 LibFunc Func; 3104 Function *Callee = CI->getCalledFunction(); 3105 3106 SmallVector<OperandBundleDef, 2> OpBundles; 3107 CI->getOperandBundlesAsDefs(OpBundles); 3108 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 3109 bool isCallingConvC = isCallingConvCCompatible(CI); 3110 3111 // First, check that this is a known library functions and that the prototype 3112 // is correct. 3113 if (!TLI->getLibFunc(*Callee, Func)) 3114 return nullptr; 3115 3116 // We never change the calling convention. 3117 if (!ignoreCallingConv(Func) && !isCallingConvC) 3118 return nullptr; 3119 3120 switch (Func) { 3121 case LibFunc_memcpy_chk: 3122 return optimizeMemCpyChk(CI, Builder); 3123 case LibFunc_memmove_chk: 3124 return optimizeMemMoveChk(CI, Builder); 3125 case LibFunc_memset_chk: 3126 return optimizeMemSetChk(CI, Builder); 3127 case LibFunc_stpcpy_chk: 3128 case LibFunc_strcpy_chk: 3129 return optimizeStrpCpyChk(CI, Builder, Func); 3130 case LibFunc_stpncpy_chk: 3131 case LibFunc_strncpy_chk: 3132 return optimizeStrpNCpyChk(CI, Builder, Func); 3133 case LibFunc_memccpy_chk: 3134 return optimizeMemCCpyChk(CI, Builder); 3135 case LibFunc_snprintf_chk: 3136 return optimizeSNPrintfChk(CI, Builder); 3137 case LibFunc_sprintf_chk: 3138 return optimizeSPrintfChk(CI, Builder); 3139 case LibFunc_strcat_chk: 3140 return optimizeStrCatChk(CI, Builder); 3141 case LibFunc_strlcat_chk: 3142 return optimizeStrLCat(CI, Builder); 3143 case LibFunc_strncat_chk: 3144 return optimizeStrNCatChk(CI, Builder); 3145 case LibFunc_strlcpy_chk: 3146 return optimizeStrLCpyChk(CI, Builder); 3147 case LibFunc_vsnprintf_chk: 3148 return optimizeVSNPrintfChk(CI, Builder); 3149 case LibFunc_vsprintf_chk: 3150 return optimizeVSPrintfChk(CI, Builder); 3151 default: 3152 break; 3153 } 3154 return nullptr; 3155 } 3156 3157 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3158 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3159 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3160