1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/AttributeMask.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/TargetParser/Triple.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/SizeOpts.h" 37 38 #include <cmath> 39 40 using namespace llvm; 41 using namespace PatternMatch; 42 43 static cl::opt<bool> 44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 45 cl::init(false), 46 cl::desc("Enable unsafe double to float " 47 "shrinking for math lib calls")); 48 49 // Enable conversion of operator new calls with a MemProf hot or cold hint 50 // to an operator new call that takes a hot/cold hint. Off by default since 51 // not all allocators currently support this extension. 52 static cl::opt<bool> 53 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false), 54 cl::desc("Enable hot/cold operator new library calls")); 55 56 namespace { 57 58 // Specialized parser to ensure the hint is an 8 bit value (we can't specify 59 // uint8_t to opt<> as that is interpreted to mean that we are passing a char 60 // option with a specific set of values. 61 struct HotColdHintParser : public cl::parser<unsigned> { 62 HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {} 63 64 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 65 if (Arg.getAsInteger(0, Value)) 66 return O.error("'" + Arg + "' value invalid for uint argument!"); 67 68 if (Value > 255) 69 return O.error("'" + Arg + "' value must be in the range [0, 255]!"); 70 71 return false; 72 } 73 }; 74 75 } // end anonymous namespace 76 77 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest 78 // and 255 is the hottest. Default to 1 value away from the coldest and hottest 79 // hints, so that the compiler hinted allocations are slightly less strong than 80 // manually inserted hints at the two extremes. 81 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue( 82 "cold-new-hint-value", cl::Hidden, cl::init(1), 83 cl::desc("Value to pass to hot/cold operator new for cold allocation")); 84 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue( 85 "hot-new-hint-value", cl::Hidden, cl::init(254), 86 cl::desc("Value to pass to hot/cold operator new for hot allocation")); 87 88 //===----------------------------------------------------------------------===// 89 // Helper Functions 90 //===----------------------------------------------------------------------===// 91 92 static bool ignoreCallingConv(LibFunc Func) { 93 return Func == LibFunc_abs || Func == LibFunc_labs || 94 Func == LibFunc_llabs || Func == LibFunc_strlen; 95 } 96 97 /// Return true if it is only used in equality comparisons with With. 98 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 99 for (User *U : V->users()) { 100 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 101 if (IC->isEquality() && IC->getOperand(1) == With) 102 continue; 103 // Unknown instruction. 104 return false; 105 } 106 return true; 107 } 108 109 static bool callHasFloatingPointArgument(const CallInst *CI) { 110 return any_of(CI->operands(), [](const Use &OI) { 111 return OI->getType()->isFloatingPointTy(); 112 }); 113 } 114 115 static bool callHasFP128Argument(const CallInst *CI) { 116 return any_of(CI->operands(), [](const Use &OI) { 117 return OI->getType()->isFP128Ty(); 118 }); 119 } 120 121 // Convert the entire string Str representing an integer in Base, up to 122 // the terminating nul if present, to a constant according to the rules 123 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success 124 // return the result, otherwise null. 125 // The function assumes the string is encoded in ASCII and carefully 126 // avoids converting sequences (including "") that the corresponding 127 // library call might fail and set errno for. 128 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr, 129 uint64_t Base, bool AsSigned, IRBuilderBase &B) { 130 if (Base < 2 || Base > 36) 131 if (Base != 0) 132 // Fail for an invalid base (required by POSIX). 133 return nullptr; 134 135 // Current offset into the original string to reflect in EndPtr. 136 size_t Offset = 0; 137 // Strip leading whitespace. 138 for ( ; Offset != Str.size(); ++Offset) 139 if (!isSpace((unsigned char)Str[Offset])) { 140 Str = Str.substr(Offset); 141 break; 142 } 143 144 if (Str.empty()) 145 // Fail for empty subject sequences (POSIX allows but doesn't require 146 // strtol[l]/strtoul[l] to fail with EINVAL). 147 return nullptr; 148 149 // Strip but remember the sign. 150 bool Negate = Str[0] == '-'; 151 if (Str[0] == '-' || Str[0] == '+') { 152 Str = Str.drop_front(); 153 if (Str.empty()) 154 // Fail for a sign with nothing after it. 155 return nullptr; 156 ++Offset; 157 } 158 159 // Set Max to the absolute value of the minimum (for signed), or 160 // to the maximum (for unsigned) value representable in the type. 161 Type *RetTy = CI->getType(); 162 unsigned NBits = RetTy->getPrimitiveSizeInBits(); 163 uint64_t Max = AsSigned && Negate ? 1 : 0; 164 Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits); 165 166 // Autodetect Base if it's zero and consume the "0x" prefix. 167 if (Str.size() > 1) { 168 if (Str[0] == '0') { 169 if (toUpper((unsigned char)Str[1]) == 'X') { 170 if (Str.size() == 2 || (Base && Base != 16)) 171 // Fail if Base doesn't allow the "0x" prefix or for the prefix 172 // alone that implementations like BSD set errno to EINVAL for. 173 return nullptr; 174 175 Str = Str.drop_front(2); 176 Offset += 2; 177 Base = 16; 178 } 179 else if (Base == 0) 180 Base = 8; 181 } else if (Base == 0) 182 Base = 10; 183 } 184 else if (Base == 0) 185 Base = 10; 186 187 // Convert the rest of the subject sequence, not including the sign, 188 // to its uint64_t representation (this assumes the source character 189 // set is ASCII). 190 uint64_t Result = 0; 191 for (unsigned i = 0; i != Str.size(); ++i) { 192 unsigned char DigVal = Str[i]; 193 if (isDigit(DigVal)) 194 DigVal = DigVal - '0'; 195 else { 196 DigVal = toUpper(DigVal); 197 if (isAlpha(DigVal)) 198 DigVal = DigVal - 'A' + 10; 199 else 200 return nullptr; 201 } 202 203 if (DigVal >= Base) 204 // Fail if the digit is not valid in the Base. 205 return nullptr; 206 207 // Add the digit and fail if the result is not representable in 208 // the (unsigned form of the) destination type. 209 bool VFlow; 210 Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow); 211 if (VFlow || Result > Max) 212 return nullptr; 213 } 214 215 if (EndPtr) { 216 // Store the pointer to the end. 217 Value *Off = B.getInt64(Offset + Str.size()); 218 Value *StrBeg = CI->getArgOperand(0); 219 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr"); 220 B.CreateStore(StrEnd, EndPtr); 221 } 222 223 if (Negate) 224 // Unsigned negation doesn't overflow. 225 Result = -Result; 226 227 return ConstantInt::get(RetTy, Result); 228 } 229 230 static bool isOnlyUsedInComparisonWithZero(Value *V) { 231 for (User *U : V->users()) { 232 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 233 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 234 if (C->isNullValue()) 235 continue; 236 // Unknown instruction. 237 return false; 238 } 239 return true; 240 } 241 242 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 243 const DataLayout &DL) { 244 if (!isOnlyUsedInComparisonWithZero(CI)) 245 return false; 246 247 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 248 return false; 249 250 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 251 return false; 252 253 return true; 254 } 255 256 static void annotateDereferenceableBytes(CallInst *CI, 257 ArrayRef<unsigned> ArgNos, 258 uint64_t DereferenceableBytes) { 259 const Function *F = CI->getCaller(); 260 if (!F) 261 return; 262 for (unsigned ArgNo : ArgNos) { 263 uint64_t DerefBytes = DereferenceableBytes; 264 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 265 if (!llvm::NullPointerIsDefined(F, AS) || 266 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 267 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 268 DereferenceableBytes); 269 270 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 271 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 272 if (!llvm::NullPointerIsDefined(F, AS) || 273 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 274 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 275 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 276 CI->getContext(), DerefBytes)); 277 } 278 } 279 } 280 281 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 282 ArrayRef<unsigned> ArgNos) { 283 Function *F = CI->getCaller(); 284 if (!F) 285 return; 286 287 for (unsigned ArgNo : ArgNos) { 288 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 289 CI->addParamAttr(ArgNo, Attribute::NoUndef); 290 291 if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) { 292 unsigned AS = 293 CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 294 if (llvm::NullPointerIsDefined(F, AS)) 295 continue; 296 CI->addParamAttr(ArgNo, Attribute::NonNull); 297 } 298 299 annotateDereferenceableBytes(CI, ArgNo, 1); 300 } 301 } 302 303 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 304 Value *Size, const DataLayout &DL) { 305 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 306 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 307 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 308 } else if (isKnownNonZero(Size, DL)) { 309 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 310 const APInt *X, *Y; 311 uint64_t DerefMin = 1; 312 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 313 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 314 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 315 } 316 } 317 } 318 319 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 320 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 321 // in this function when New is created to replace Old. Callers should take 322 // care to check Old.isMustTailCall() if they aren't replacing Old directly 323 // with New. 324 static Value *copyFlags(const CallInst &Old, Value *New) { 325 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 326 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 327 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 328 NewCI->setTailCallKind(Old.getTailCallKind()); 329 return New; 330 } 331 332 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) { 333 NewCI->setAttributes(AttributeList::get( 334 NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()})); 335 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 336 return copyFlags(Old, NewCI); 337 } 338 339 // Helper to avoid truncating the length if size_t is 32-bits. 340 static StringRef substr(StringRef Str, uint64_t Len) { 341 return Len >= Str.size() ? Str : Str.substr(0, Len); 342 } 343 344 //===----------------------------------------------------------------------===// 345 // String and Memory Library Call Optimizations 346 //===----------------------------------------------------------------------===// 347 348 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 349 // Extract some information from the instruction 350 Value *Dst = CI->getArgOperand(0); 351 Value *Src = CI->getArgOperand(1); 352 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 353 354 // See if we can get the length of the input string. 355 uint64_t Len = GetStringLength(Src); 356 if (Len) 357 annotateDereferenceableBytes(CI, 1, Len); 358 else 359 return nullptr; 360 --Len; // Unbias length. 361 362 // Handle the simple, do-nothing case: strcat(x, "") -> x 363 if (Len == 0) 364 return Dst; 365 366 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 367 } 368 369 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 370 IRBuilderBase &B) { 371 // We need to find the end of the destination string. That's where the 372 // memory is to be moved to. We just generate a call to strlen. 373 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 374 if (!DstLen) 375 return nullptr; 376 377 // Now that we have the destination's length, we must index into the 378 // destination's pointer to get the actual memcpy destination (end of 379 // the string .. we're concatenating). 380 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 381 382 // We have enough information to now generate the memcpy call to do the 383 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 384 B.CreateMemCpy( 385 CpyDst, Align(1), Src, Align(1), 386 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 387 return Dst; 388 } 389 390 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 391 // Extract some information from the instruction. 392 Value *Dst = CI->getArgOperand(0); 393 Value *Src = CI->getArgOperand(1); 394 Value *Size = CI->getArgOperand(2); 395 uint64_t Len; 396 annotateNonNullNoUndefBasedOnAccess(CI, 0); 397 if (isKnownNonZero(Size, DL)) 398 annotateNonNullNoUndefBasedOnAccess(CI, 1); 399 400 // We don't do anything if length is not constant. 401 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 402 if (LengthArg) { 403 Len = LengthArg->getZExtValue(); 404 // strncat(x, c, 0) -> x 405 if (!Len) 406 return Dst; 407 } else { 408 return nullptr; 409 } 410 411 // See if we can get the length of the input string. 412 uint64_t SrcLen = GetStringLength(Src); 413 if (SrcLen) { 414 annotateDereferenceableBytes(CI, 1, SrcLen); 415 --SrcLen; // Unbias length. 416 } else { 417 return nullptr; 418 } 419 420 // strncat(x, "", c) -> x 421 if (SrcLen == 0) 422 return Dst; 423 424 // We don't optimize this case. 425 if (Len < SrcLen) 426 return nullptr; 427 428 // strncat(x, s, c) -> strcat(x, s) 429 // s is constant so the strcat can be optimized further. 430 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 431 } 432 433 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when 434 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function 435 // is that either S is dereferenceable or the value of N is nonzero. 436 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes, 437 IRBuilderBase &B, const DataLayout &DL) 438 { 439 Value *Src = CI->getArgOperand(0); 440 Value *CharVal = CI->getArgOperand(1); 441 442 // Fold memchr(A, C, N) == A to N && *A == C. 443 Type *CharTy = B.getInt8Ty(); 444 Value *Char0 = B.CreateLoad(CharTy, Src); 445 CharVal = B.CreateTrunc(CharVal, CharTy); 446 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp"); 447 448 if (NBytes) { 449 Value *Zero = ConstantInt::get(NBytes->getType(), 0); 450 Value *And = B.CreateICmpNE(NBytes, Zero); 451 Cmp = B.CreateLogicalAnd(And, Cmp); 452 } 453 454 Value *NullPtr = Constant::getNullValue(CI->getType()); 455 return B.CreateSelect(Cmp, Src, NullPtr); 456 } 457 458 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 459 Value *SrcStr = CI->getArgOperand(0); 460 Value *CharVal = CI->getArgOperand(1); 461 annotateNonNullNoUndefBasedOnAccess(CI, 0); 462 463 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 464 return memChrToCharCompare(CI, nullptr, B, DL); 465 466 // If the second operand is non-constant, see if we can compute the length 467 // of the input string and turn this into memchr. 468 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 469 if (!CharC) { 470 uint64_t Len = GetStringLength(SrcStr); 471 if (Len) 472 annotateDereferenceableBytes(CI, 0, Len); 473 else 474 return nullptr; 475 476 Function *Callee = CI->getCalledFunction(); 477 FunctionType *FT = Callee->getFunctionType(); 478 unsigned IntBits = TLI->getIntSize(); 479 if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'. 480 return nullptr; 481 482 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 483 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 484 return copyFlags(*CI, 485 emitMemChr(SrcStr, CharVal, // include nul. 486 ConstantInt::get(SizeTTy, Len), B, 487 DL, TLI)); 488 } 489 490 if (CharC->isZero()) { 491 Value *NullPtr = Constant::getNullValue(CI->getType()); 492 if (isOnlyUsedInEqualityComparison(CI, NullPtr)) 493 // Pre-empt the transformation to strlen below and fold 494 // strchr(A, '\0') == null to false. 495 return B.CreateIntToPtr(B.getTrue(), CI->getType()); 496 } 497 498 // Otherwise, the character is a constant, see if the first argument is 499 // a string literal. If so, we can constant fold. 500 StringRef Str; 501 if (!getConstantStringInfo(SrcStr, Str)) { 502 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 503 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 504 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 505 return nullptr; 506 } 507 508 // Compute the offset, make sure to handle the case when we're searching for 509 // zero (a weird way to spell strlen). 510 size_t I = (0xFF & CharC->getSExtValue()) == 0 511 ? Str.size() 512 : Str.find(CharC->getSExtValue()); 513 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 514 return Constant::getNullValue(CI->getType()); 515 516 // strchr(s+n,c) -> gep(s+n+i,c) 517 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 518 } 519 520 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 521 Value *SrcStr = CI->getArgOperand(0); 522 Value *CharVal = CI->getArgOperand(1); 523 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 524 annotateNonNullNoUndefBasedOnAccess(CI, 0); 525 526 StringRef Str; 527 if (!getConstantStringInfo(SrcStr, Str)) { 528 // strrchr(s, 0) -> strchr(s, 0) 529 if (CharC && CharC->isZero()) 530 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 531 return nullptr; 532 } 533 534 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 535 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 536 537 // Try to expand strrchr to the memrchr nonstandard extension if it's 538 // available, or simply fail otherwise. 539 uint64_t NBytes = Str.size() + 1; // Include the terminating nul. 540 Value *Size = ConstantInt::get(SizeTTy, NBytes); 541 return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI)); 542 } 543 544 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 545 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 546 if (Str1P == Str2P) // strcmp(x,x) -> 0 547 return ConstantInt::get(CI->getType(), 0); 548 549 StringRef Str1, Str2; 550 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 551 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 552 553 // strcmp(x, y) -> cnst (if both x and y are constant strings) 554 if (HasStr1 && HasStr2) 555 return ConstantInt::get(CI->getType(), 556 std::clamp(Str1.compare(Str2), -1, 1)); 557 558 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 559 return B.CreateNeg(B.CreateZExt( 560 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 561 562 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 563 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 564 CI->getType()); 565 566 // strcmp(P, "x") -> memcmp(P, "x", 2) 567 uint64_t Len1 = GetStringLength(Str1P); 568 if (Len1) 569 annotateDereferenceableBytes(CI, 0, Len1); 570 uint64_t Len2 = GetStringLength(Str2P); 571 if (Len2) 572 annotateDereferenceableBytes(CI, 1, Len2); 573 574 if (Len1 && Len2) { 575 return copyFlags( 576 *CI, emitMemCmp(Str1P, Str2P, 577 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 578 std::min(Len1, Len2)), 579 B, DL, TLI)); 580 } 581 582 // strcmp to memcmp 583 if (!HasStr1 && HasStr2) { 584 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 585 return copyFlags( 586 *CI, 587 emitMemCmp(Str1P, Str2P, 588 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 589 B, DL, TLI)); 590 } else if (HasStr1 && !HasStr2) { 591 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 592 return copyFlags( 593 *CI, 594 emitMemCmp(Str1P, Str2P, 595 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 596 B, DL, TLI)); 597 } 598 599 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 600 return nullptr; 601 } 602 603 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 604 // arrays LHS and RHS and nonconstant Size. 605 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 606 Value *Size, bool StrNCmp, 607 IRBuilderBase &B, const DataLayout &DL); 608 609 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 610 Value *Str1P = CI->getArgOperand(0); 611 Value *Str2P = CI->getArgOperand(1); 612 Value *Size = CI->getArgOperand(2); 613 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 614 return ConstantInt::get(CI->getType(), 0); 615 616 if (isKnownNonZero(Size, DL)) 617 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 618 // Get the length argument if it is constant. 619 uint64_t Length; 620 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 621 Length = LengthArg->getZExtValue(); 622 else 623 return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL); 624 625 if (Length == 0) // strncmp(x,y,0) -> 0 626 return ConstantInt::get(CI->getType(), 0); 627 628 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 629 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 630 631 StringRef Str1, Str2; 632 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 633 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 634 635 // strncmp(x, y) -> cnst (if both x and y are constant strings) 636 if (HasStr1 && HasStr2) { 637 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 638 StringRef SubStr1 = substr(Str1, Length); 639 StringRef SubStr2 = substr(Str2, Length); 640 return ConstantInt::get(CI->getType(), 641 std::clamp(SubStr1.compare(SubStr2), -1, 1)); 642 } 643 644 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 645 return B.CreateNeg(B.CreateZExt( 646 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 647 648 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 649 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 650 CI->getType()); 651 652 uint64_t Len1 = GetStringLength(Str1P); 653 if (Len1) 654 annotateDereferenceableBytes(CI, 0, Len1); 655 uint64_t Len2 = GetStringLength(Str2P); 656 if (Len2) 657 annotateDereferenceableBytes(CI, 1, Len2); 658 659 // strncmp to memcmp 660 if (!HasStr1 && HasStr2) { 661 Len2 = std::min(Len2, Length); 662 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 663 return copyFlags( 664 *CI, 665 emitMemCmp(Str1P, Str2P, 666 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 667 B, DL, TLI)); 668 } else if (HasStr1 && !HasStr2) { 669 Len1 = std::min(Len1, Length); 670 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 671 return copyFlags( 672 *CI, 673 emitMemCmp(Str1P, Str2P, 674 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 675 B, DL, TLI)); 676 } 677 678 return nullptr; 679 } 680 681 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 682 Value *Src = CI->getArgOperand(0); 683 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 684 uint64_t SrcLen = GetStringLength(Src); 685 if (SrcLen && Size) { 686 annotateDereferenceableBytes(CI, 0, SrcLen); 687 if (SrcLen <= Size->getZExtValue() + 1) 688 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 689 } 690 691 return nullptr; 692 } 693 694 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 695 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 696 if (Dst == Src) // strcpy(x,x) -> x 697 return Src; 698 699 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 700 // See if we can get the length of the input string. 701 uint64_t Len = GetStringLength(Src); 702 if (Len) 703 annotateDereferenceableBytes(CI, 1, Len); 704 else 705 return nullptr; 706 707 // We have enough information to now generate the memcpy call to do the 708 // copy for us. Make a memcpy to copy the nul byte with align = 1. 709 CallInst *NewCI = 710 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 711 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 712 mergeAttributesAndFlags(NewCI, *CI); 713 return Dst; 714 } 715 716 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 717 Function *Callee = CI->getCalledFunction(); 718 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 719 720 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 721 if (CI->use_empty()) 722 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 723 724 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 725 Value *StrLen = emitStrLen(Src, B, DL, TLI); 726 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 727 } 728 729 // See if we can get the length of the input string. 730 uint64_t Len = GetStringLength(Src); 731 if (Len) 732 annotateDereferenceableBytes(CI, 1, Len); 733 else 734 return nullptr; 735 736 Type *PT = Callee->getFunctionType()->getParamType(0); 737 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 738 Value *DstEnd = B.CreateInBoundsGEP( 739 B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 740 741 // We have enough information to now generate the memcpy call to do the 742 // copy for us. Make a memcpy to copy the nul byte with align = 1. 743 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 744 mergeAttributesAndFlags(NewCI, *CI); 745 return DstEnd; 746 } 747 748 // Optimize a call to size_t strlcpy(char*, const char*, size_t). 749 750 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) { 751 Value *Size = CI->getArgOperand(2); 752 if (isKnownNonZero(Size, DL)) 753 // Like snprintf, the function stores into the destination only when 754 // the size argument is nonzero. 755 annotateNonNullNoUndefBasedOnAccess(CI, 0); 756 // The function reads the source argument regardless of Size (it returns 757 // its length). 758 annotateNonNullNoUndefBasedOnAccess(CI, 1); 759 760 uint64_t NBytes; 761 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 762 NBytes = SizeC->getZExtValue(); 763 else 764 return nullptr; 765 766 Value *Dst = CI->getArgOperand(0); 767 Value *Src = CI->getArgOperand(1); 768 if (NBytes <= 1) { 769 if (NBytes == 1) 770 // For a call to strlcpy(D, S, 1) first store a nul in *D. 771 B.CreateStore(B.getInt8(0), Dst); 772 773 // Transform strlcpy(D, S, 0) to a call to strlen(S). 774 return copyFlags(*CI, emitStrLen(Src, B, DL, TLI)); 775 } 776 777 // Try to determine the length of the source, substituting its size 778 // when it's not nul-terminated (as it's required to be) to avoid 779 // reading past its end. 780 StringRef Str; 781 if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false)) 782 return nullptr; 783 784 uint64_t SrcLen = Str.find('\0'); 785 // Set if the terminating nul should be copied by the call to memcpy 786 // below. 787 bool NulTerm = SrcLen < NBytes; 788 789 if (NulTerm) 790 // Overwrite NBytes with the number of bytes to copy, including 791 // the terminating nul. 792 NBytes = SrcLen + 1; 793 else { 794 // Set the length of the source for the function to return to its 795 // size, and cap NBytes at the same. 796 SrcLen = std::min(SrcLen, uint64_t(Str.size())); 797 NBytes = std::min(NBytes - 1, SrcLen); 798 } 799 800 if (SrcLen == 0) { 801 // Transform strlcpy(D, "", N) to (*D = '\0, 0). 802 B.CreateStore(B.getInt8(0), Dst); 803 return ConstantInt::get(CI->getType(), 0); 804 } 805 806 Function *Callee = CI->getCalledFunction(); 807 Type *PT = Callee->getFunctionType()->getParamType(0); 808 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower 809 // bound on strlen(S) + 1 and N, optionally followed by a nul store to 810 // D[N' - 1] if necessary. 811 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 812 ConstantInt::get(DL.getIntPtrType(PT), NBytes)); 813 mergeAttributesAndFlags(NewCI, *CI); 814 815 if (!NulTerm) { 816 Value *EndOff = ConstantInt::get(CI->getType(), NBytes); 817 Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff); 818 B.CreateStore(B.getInt8(0), EndPtr); 819 } 820 821 // Like snprintf, strlcpy returns the number of nonzero bytes that would 822 // have been copied if the bound had been sufficiently big (which in this 823 // case is strlen(Src)). 824 return ConstantInt::get(CI->getType(), SrcLen); 825 } 826 827 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy 828 // otherwise. 829 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd, 830 IRBuilderBase &B) { 831 Function *Callee = CI->getCalledFunction(); 832 Value *Dst = CI->getArgOperand(0); 833 Value *Src = CI->getArgOperand(1); 834 Value *Size = CI->getArgOperand(2); 835 836 if (isKnownNonZero(Size, DL)) { 837 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays 838 // only when N is nonzero. 839 annotateNonNullNoUndefBasedOnAccess(CI, 0); 840 annotateNonNullNoUndefBasedOnAccess(CI, 1); 841 } 842 843 // If the "bound" argument is known set N to it. Otherwise set it to 844 // UINT64_MAX and handle it later. 845 uint64_t N = UINT64_MAX; 846 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 847 N = SizeC->getZExtValue(); 848 849 if (N == 0) 850 // Fold st{p,r}ncpy(D, S, 0) to D. 851 return Dst; 852 853 if (N == 1) { 854 Type *CharTy = B.getInt8Ty(); 855 Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0"); 856 B.CreateStore(CharVal, Dst); 857 if (!RetEnd) 858 // Transform strncpy(D, S, 1) to return (*D = *S), D. 859 return Dst; 860 861 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D. 862 Value *ZeroChar = ConstantInt::get(CharTy, 0); 863 Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp"); 864 865 Value *Off1 = B.getInt32(1); 866 Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end"); 867 return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel"); 868 } 869 870 // If the length of the input string is known set SrcLen to it. 871 uint64_t SrcLen = GetStringLength(Src); 872 if (SrcLen) 873 annotateDereferenceableBytes(CI, 1, SrcLen); 874 else 875 return nullptr; 876 877 --SrcLen; // Unbias length. 878 879 if (SrcLen == 0) { 880 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N. 881 Align MemSetAlign = 882 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 883 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 884 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 885 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 886 CI->getContext(), 0, ArgAttrs)); 887 copyFlags(*CI, NewCI); 888 return Dst; 889 } 890 891 if (N > SrcLen + 1) { 892 if (N > 128) 893 // Bail if N is large or unknown. 894 return nullptr; 895 896 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128. 897 StringRef Str; 898 if (!getConstantStringInfo(Src, Str)) 899 return nullptr; 900 std::string SrcStr = Str.str(); 901 // Create a bigger, nul-padded array with the same length, SrcLen, 902 // as the original string. 903 SrcStr.resize(N, '\0'); 904 Src = B.CreateGlobalString(SrcStr, "str"); 905 } 906 907 Type *PT = Callee->getFunctionType()->getParamType(0); 908 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both 909 // S and N are constant. 910 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 911 ConstantInt::get(DL.getIntPtrType(PT), N)); 912 mergeAttributesAndFlags(NewCI, *CI); 913 if (!RetEnd) 914 return Dst; 915 916 // stpncpy(D, S, N) returns the address of the first null in D if it writes 917 // one, otherwise D + N. 918 Value *Off = B.getInt64(std::min(SrcLen, N)); 919 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr"); 920 } 921 922 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 923 unsigned CharSize, 924 Value *Bound) { 925 Value *Src = CI->getArgOperand(0); 926 Type *CharTy = B.getIntNTy(CharSize); 927 928 if (isOnlyUsedInZeroEqualityComparison(CI) && 929 (!Bound || isKnownNonZero(Bound, DL))) { 930 // Fold strlen: 931 // strlen(x) != 0 --> *x != 0 932 // strlen(x) == 0 --> *x == 0 933 // and likewise strnlen with constant N > 0: 934 // strnlen(x, N) != 0 --> *x != 0 935 // strnlen(x, N) == 0 --> *x == 0 936 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 937 CI->getType()); 938 } 939 940 if (Bound) { 941 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 942 if (BoundCst->isZero()) 943 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 944 return ConstantInt::get(CI->getType(), 0); 945 946 if (BoundCst->isOne()) { 947 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 948 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 949 Value *ZeroChar = ConstantInt::get(CharTy, 0); 950 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 951 return B.CreateZExt(Cmp, CI->getType()); 952 } 953 } 954 } 955 956 if (uint64_t Len = GetStringLength(Src, CharSize)) { 957 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 958 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 959 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 960 if (Bound) 961 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 962 return LenC; 963 } 964 965 if (Bound) 966 // Punt for strnlen for now. 967 return nullptr; 968 969 // If s is a constant pointer pointing to a string literal, we can fold 970 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 971 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 972 // We only try to simplify strlen when the pointer s points to an array 973 // of CharSize elements. Otherwise, we would need to scale the offset x before 974 // doing the subtraction. This will make the optimization more complex, and 975 // it's not very useful because calling strlen for a pointer of other types is 976 // very uncommon. 977 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 978 // TODO: Handle subobjects. 979 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 980 return nullptr; 981 982 ConstantDataArraySlice Slice; 983 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 984 uint64_t NullTermIdx; 985 if (Slice.Array == nullptr) { 986 NullTermIdx = 0; 987 } else { 988 NullTermIdx = ~((uint64_t)0); 989 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 990 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 991 NullTermIdx = I; 992 break; 993 } 994 } 995 // If the string does not have '\0', leave it to strlen to compute 996 // its length. 997 if (NullTermIdx == ~((uint64_t)0)) 998 return nullptr; 999 } 1000 1001 Value *Offset = GEP->getOperand(2); 1002 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 1003 uint64_t ArrSize = 1004 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 1005 1006 // If Offset is not provably in the range [0, NullTermIdx], we can still 1007 // optimize if we can prove that the program has undefined behavior when 1008 // Offset is outside that range. That is the case when GEP->getOperand(0) 1009 // is a pointer to an object whose memory extent is NullTermIdx+1. 1010 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 1011 (isa<GlobalVariable>(GEP->getOperand(0)) && 1012 NullTermIdx == ArrSize - 1)) { 1013 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 1014 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 1015 Offset); 1016 } 1017 } 1018 } 1019 1020 // strlen(x?"foo":"bars") --> x ? 3 : 4 1021 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 1022 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 1023 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 1024 if (LenTrue && LenFalse) { 1025 ORE.emit([&]() { 1026 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 1027 << "folded strlen(select) to select of constants"; 1028 }); 1029 return B.CreateSelect(SI->getCondition(), 1030 ConstantInt::get(CI->getType(), LenTrue - 1), 1031 ConstantInt::get(CI->getType(), LenFalse - 1)); 1032 } 1033 } 1034 1035 return nullptr; 1036 } 1037 1038 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 1039 if (Value *V = optimizeStringLength(CI, B, 8)) 1040 return V; 1041 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1042 return nullptr; 1043 } 1044 1045 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 1046 Value *Bound = CI->getArgOperand(1); 1047 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 1048 return V; 1049 1050 if (isKnownNonZero(Bound, DL)) 1051 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1052 return nullptr; 1053 } 1054 1055 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 1056 Module &M = *CI->getModule(); 1057 unsigned WCharSize = TLI->getWCharSize(M) * 8; 1058 // We cannot perform this optimization without wchar_size metadata. 1059 if (WCharSize == 0) 1060 return nullptr; 1061 1062 return optimizeStringLength(CI, B, WCharSize); 1063 } 1064 1065 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 1066 StringRef S1, S2; 1067 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1068 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1069 1070 // strpbrk(s, "") -> nullptr 1071 // strpbrk("", s) -> nullptr 1072 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1073 return Constant::getNullValue(CI->getType()); 1074 1075 // Constant folding. 1076 if (HasS1 && HasS2) { 1077 size_t I = S1.find_first_of(S2); 1078 if (I == StringRef::npos) // No match. 1079 return Constant::getNullValue(CI->getType()); 1080 1081 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0), 1082 B.getInt64(I), "strpbrk"); 1083 } 1084 1085 // strpbrk(s, "a") -> strchr(s, 'a') 1086 if (HasS2 && S2.size() == 1) 1087 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 1088 1089 return nullptr; 1090 } 1091 1092 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 1093 Value *EndPtr = CI->getArgOperand(1); 1094 if (isa<ConstantPointerNull>(EndPtr)) { 1095 // With a null EndPtr, this function won't capture the main argument. 1096 // It would be readonly too, except that it still may write to errno. 1097 CI->addParamAttr(0, Attribute::NoCapture); 1098 } 1099 1100 return nullptr; 1101 } 1102 1103 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 1104 StringRef S1, S2; 1105 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1106 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1107 1108 // strspn(s, "") -> 0 1109 // strspn("", s) -> 0 1110 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1111 return Constant::getNullValue(CI->getType()); 1112 1113 // Constant folding. 1114 if (HasS1 && HasS2) { 1115 size_t Pos = S1.find_first_not_of(S2); 1116 if (Pos == StringRef::npos) 1117 Pos = S1.size(); 1118 return ConstantInt::get(CI->getType(), Pos); 1119 } 1120 1121 return nullptr; 1122 } 1123 1124 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 1125 StringRef S1, S2; 1126 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1127 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1128 1129 // strcspn("", s) -> 0 1130 if (HasS1 && S1.empty()) 1131 return Constant::getNullValue(CI->getType()); 1132 1133 // Constant folding. 1134 if (HasS1 && HasS2) { 1135 size_t Pos = S1.find_first_of(S2); 1136 if (Pos == StringRef::npos) 1137 Pos = S1.size(); 1138 return ConstantInt::get(CI->getType(), Pos); 1139 } 1140 1141 // strcspn(s, "") -> strlen(s) 1142 if (HasS2 && S2.empty()) 1143 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 1144 1145 return nullptr; 1146 } 1147 1148 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 1149 // fold strstr(x, x) -> x. 1150 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 1151 return CI->getArgOperand(0); 1152 1153 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 1154 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 1155 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 1156 if (!StrLen) 1157 return nullptr; 1158 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 1159 StrLen, B, DL, TLI); 1160 if (!StrNCmp) 1161 return nullptr; 1162 for (User *U : llvm::make_early_inc_range(CI->users())) { 1163 ICmpInst *Old = cast<ICmpInst>(U); 1164 Value *Cmp = 1165 B.CreateICmp(Old->getPredicate(), StrNCmp, 1166 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 1167 replaceAllUsesWith(Old, Cmp); 1168 } 1169 return CI; 1170 } 1171 1172 // See if either input string is a constant string. 1173 StringRef SearchStr, ToFindStr; 1174 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 1175 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 1176 1177 // fold strstr(x, "") -> x. 1178 if (HasStr2 && ToFindStr.empty()) 1179 return CI->getArgOperand(0); 1180 1181 // If both strings are known, constant fold it. 1182 if (HasStr1 && HasStr2) { 1183 size_t Offset = SearchStr.find(ToFindStr); 1184 1185 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 1186 return Constant::getNullValue(CI->getType()); 1187 1188 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 1189 return B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), CI->getArgOperand(0), 1190 Offset, "strstr"); 1191 } 1192 1193 // fold strstr(x, "y") -> strchr(x, 'y'). 1194 if (HasStr2 && ToFindStr.size() == 1) { 1195 return emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 1196 } 1197 1198 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 1199 return nullptr; 1200 } 1201 1202 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 1203 Value *SrcStr = CI->getArgOperand(0); 1204 Value *Size = CI->getArgOperand(2); 1205 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1206 Value *CharVal = CI->getArgOperand(1); 1207 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1208 Value *NullPtr = Constant::getNullValue(CI->getType()); 1209 1210 if (LenC) { 1211 if (LenC->isZero()) 1212 // Fold memrchr(x, y, 0) --> null. 1213 return NullPtr; 1214 1215 if (LenC->isOne()) { 1216 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 1217 // constant or otherwise. 1218 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 1219 // Slice off the character's high end bits. 1220 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1221 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 1222 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 1223 } 1224 } 1225 1226 StringRef Str; 1227 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1228 return nullptr; 1229 1230 if (Str.size() == 0) 1231 // If the array is empty fold memrchr(A, C, N) to null for any value 1232 // of C and N on the basis that the only valid value of N is zero 1233 // (otherwise the call is undefined). 1234 return NullPtr; 1235 1236 uint64_t EndOff = UINT64_MAX; 1237 if (LenC) { 1238 EndOff = LenC->getZExtValue(); 1239 if (Str.size() < EndOff) 1240 // Punt out-of-bounds accesses to sanitizers and/or libc. 1241 return nullptr; 1242 } 1243 1244 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 1245 // Fold memrchr(S, C, N) for a constant C. 1246 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 1247 if (Pos == StringRef::npos) 1248 // When the character is not in the source array fold the result 1249 // to null regardless of Size. 1250 return NullPtr; 1251 1252 if (LenC) 1253 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 1254 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 1255 1256 if (Str.find(Str[Pos]) == Pos) { 1257 // When there is just a single occurrence of C in S, i.e., the one 1258 // in Str[Pos], fold 1259 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 1260 // for nonconstant N. 1261 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1262 "memrchr.cmp"); 1263 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, 1264 B.getInt64(Pos), "memrchr.ptr_plus"); 1265 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 1266 } 1267 } 1268 1269 // Truncate the string to search at most EndOff characters. 1270 Str = Str.substr(0, EndOff); 1271 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 1272 return nullptr; 1273 1274 // If the source array consists of all equal characters, then for any 1275 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 1276 // N != 0 && *S == C ? S + N - 1 : null 1277 Type *SizeTy = Size->getType(); 1278 Type *Int8Ty = B.getInt8Ty(); 1279 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1280 // Slice off the sought character's high end bits. 1281 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1282 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 1283 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 1284 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 1285 Value *SrcPlus = 1286 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 1287 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 1288 } 1289 1290 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 1291 Value *SrcStr = CI->getArgOperand(0); 1292 Value *Size = CI->getArgOperand(2); 1293 1294 if (isKnownNonZero(Size, DL)) { 1295 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1296 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1297 return memChrToCharCompare(CI, Size, B, DL); 1298 } 1299 1300 Value *CharVal = CI->getArgOperand(1); 1301 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1302 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1303 Value *NullPtr = Constant::getNullValue(CI->getType()); 1304 1305 // memchr(x, y, 0) -> null 1306 if (LenC) { 1307 if (LenC->isZero()) 1308 return NullPtr; 1309 1310 if (LenC->isOne()) { 1311 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1312 // constant or otherwise. 1313 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1314 // Slice off the character's high end bits. 1315 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1316 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1317 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1318 } 1319 } 1320 1321 StringRef Str; 1322 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1323 return nullptr; 1324 1325 if (CharC) { 1326 size_t Pos = Str.find(CharC->getZExtValue()); 1327 if (Pos == StringRef::npos) 1328 // When the character is not in the source array fold the result 1329 // to null regardless of Size. 1330 return NullPtr; 1331 1332 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1333 // When the constant Size is less than or equal to the character 1334 // position also fold the result to null. 1335 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1336 "memchr.cmp"); 1337 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 1338 "memchr.ptr"); 1339 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1340 } 1341 1342 if (Str.size() == 0) 1343 // If the array is empty fold memchr(A, C, N) to null for any value 1344 // of C and N on the basis that the only valid value of N is zero 1345 // (otherwise the call is undefined). 1346 return NullPtr; 1347 1348 if (LenC) 1349 Str = substr(Str, LenC->getZExtValue()); 1350 1351 size_t Pos = Str.find_first_not_of(Str[0]); 1352 if (Pos == StringRef::npos 1353 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) { 1354 // If the source array consists of at most two consecutive sequences 1355 // of the same characters, then for any C and N (whether in bounds or 1356 // not), fold memchr(S, C, N) to 1357 // N != 0 && *S == C ? S : null 1358 // or for the two sequences to: 1359 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null) 1360 // ^Sel2 ^Sel1 are denoted above. 1361 // The latter makes it also possible to fold strchr() calls with strings 1362 // of the same characters. 1363 Type *SizeTy = Size->getType(); 1364 Type *Int8Ty = B.getInt8Ty(); 1365 1366 // Slice off the sought character's high end bits. 1367 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1368 1369 Value *Sel1 = NullPtr; 1370 if (Pos != StringRef::npos) { 1371 // Handle two consecutive sequences of the same characters. 1372 Value *PosVal = ConstantInt::get(SizeTy, Pos); 1373 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]); 1374 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos); 1375 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal); 1376 Value *And = B.CreateAnd(CEqSPos, NGtPos); 1377 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal); 1378 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1"); 1379 } 1380 1381 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]); 1382 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal); 1383 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1384 Value *And = B.CreateAnd(NNeZ, CEqS0); 1385 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2"); 1386 } 1387 1388 if (!LenC) { 1389 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1390 // S is dereferenceable so it's safe to load from it and fold 1391 // memchr(S, C, N) == S to N && *S == C for any C and N. 1392 // TODO: This is safe even for nonconstant S. 1393 return memChrToCharCompare(CI, Size, B, DL); 1394 1395 // From now on we need a constant length and constant array. 1396 return nullptr; 1397 } 1398 1399 bool OptForSize = CI->getFunction()->hasOptSize() || 1400 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 1401 PGSOQueryType::IRPass); 1402 1403 // If the char is variable but the input str and length are not we can turn 1404 // this memchr call into a simple bit field test. Of course this only works 1405 // when the return value is only checked against null. 1406 // 1407 // It would be really nice to reuse switch lowering here but we can't change 1408 // the CFG at this point. 1409 // 1410 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1411 // != 0 1412 // after bounds check. 1413 if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1414 return nullptr; 1415 1416 unsigned char Max = 1417 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1418 reinterpret_cast<const unsigned char *>(Str.end())); 1419 1420 // Make sure the bit field we're about to create fits in a register on the 1421 // target. 1422 // FIXME: On a 64 bit architecture this prevents us from using the 1423 // interesting range of alpha ascii chars. We could do better by emitting 1424 // two bitfields or shifting the range by 64 if no lower chars are used. 1425 if (!DL.fitsInLegalInteger(Max + 1)) { 1426 // Build chain of ORs 1427 // Transform: 1428 // memchr("abcd", C, 4) != nullptr 1429 // to: 1430 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0 1431 std::string SortedStr = Str.str(); 1432 llvm::sort(SortedStr); 1433 // Compute the number of of non-contiguous ranges. 1434 unsigned NonContRanges = 1; 1435 for (size_t i = 1; i < SortedStr.size(); ++i) { 1436 if (SortedStr[i] > SortedStr[i - 1] + 1) { 1437 NonContRanges++; 1438 } 1439 } 1440 1441 // Restrict this optimization to profitable cases with one or two range 1442 // checks. 1443 if (NonContRanges > 2) 1444 return nullptr; 1445 1446 SmallVector<Value *> CharCompares; 1447 for (unsigned char C : SortedStr) 1448 CharCompares.push_back( 1449 B.CreateICmpEQ(CharVal, ConstantInt::get(CharVal->getType(), C))); 1450 1451 return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType()); 1452 } 1453 1454 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1455 // creating unnecessary illegal types. 1456 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1457 1458 // Now build the bit field. 1459 APInt Bitfield(Width, 0); 1460 for (char C : Str) 1461 Bitfield.setBit((unsigned char)C); 1462 Value *BitfieldC = B.getInt(Bitfield); 1463 1464 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1465 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1466 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1467 1468 // First check that the bit field access is within bounds. 1469 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1470 "memchr.bounds"); 1471 1472 // Create code that checks if the given bit is set in the field. 1473 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1474 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1475 1476 // Finally merge both checks and cast to pointer type. The inttoptr 1477 // implicitly zexts the i1 to intptr type. 1478 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1479 CI->getType()); 1480 } 1481 1482 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 1483 // arrays LHS and RHS and nonconstant Size. 1484 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 1485 Value *Size, bool StrNCmp, 1486 IRBuilderBase &B, const DataLayout &DL) { 1487 if (LHS == RHS) // memcmp(s,s,x) -> 0 1488 return Constant::getNullValue(CI->getType()); 1489 1490 StringRef LStr, RStr; 1491 if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) || 1492 !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false)) 1493 return nullptr; 1494 1495 // If the contents of both constant arrays are known, fold a call to 1496 // memcmp(A, B, N) to 1497 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0) 1498 // where Pos is the first mismatch between A and B, determined below. 1499 1500 uint64_t Pos = 0; 1501 Value *Zero = ConstantInt::get(CI->getType(), 0); 1502 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) { 1503 if (Pos == MinSize || 1504 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) { 1505 // One array is a leading part of the other of equal or greater 1506 // size, or for strncmp, the arrays are equal strings. 1507 // Fold the result to zero. Size is assumed to be in bounds, since 1508 // otherwise the call would be undefined. 1509 return Zero; 1510 } 1511 1512 if (LStr[Pos] != RStr[Pos]) 1513 break; 1514 } 1515 1516 // Normalize the result. 1517 typedef unsigned char UChar; 1518 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1; 1519 Value *MaxSize = ConstantInt::get(Size->getType(), Pos); 1520 Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize); 1521 Value *Res = ConstantInt::get(CI->getType(), IRes); 1522 return B.CreateSelect(Cmp, Zero, Res); 1523 } 1524 1525 // Optimize a memcmp call CI with constant size Len. 1526 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1527 uint64_t Len, IRBuilderBase &B, 1528 const DataLayout &DL) { 1529 if (Len == 0) // memcmp(s1,s2,0) -> 0 1530 return Constant::getNullValue(CI->getType()); 1531 1532 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1533 if (Len == 1) { 1534 Value *LHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), LHS, "lhsc"), 1535 CI->getType(), "lhsv"); 1536 Value *RHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), RHS, "rhsc"), 1537 CI->getType(), "rhsv"); 1538 return B.CreateSub(LHSV, RHSV, "chardiff"); 1539 } 1540 1541 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1542 // TODO: The case where both inputs are constants does not need to be limited 1543 // to legal integers or equality comparison. See block below this. 1544 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1545 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1546 Align PrefAlignment = DL.getPrefTypeAlign(IntType); 1547 1548 // First, see if we can fold either argument to a constant. 1549 Value *LHSV = nullptr; 1550 if (auto *LHSC = dyn_cast<Constant>(LHS)) 1551 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1552 1553 Value *RHSV = nullptr; 1554 if (auto *RHSC = dyn_cast<Constant>(RHS)) 1555 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1556 1557 // Don't generate unaligned loads. If either source is constant data, 1558 // alignment doesn't matter for that source because there is no load. 1559 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1560 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1561 if (!LHSV) 1562 LHSV = B.CreateLoad(IntType, LHS, "lhsv"); 1563 if (!RHSV) 1564 RHSV = B.CreateLoad(IntType, RHS, "rhsv"); 1565 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1566 } 1567 } 1568 1569 return nullptr; 1570 } 1571 1572 // Most simplifications for memcmp also apply to bcmp. 1573 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1574 IRBuilderBase &B) { 1575 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1576 Value *Size = CI->getArgOperand(2); 1577 1578 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1579 1580 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL)) 1581 return Res; 1582 1583 // Handle constant Size. 1584 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1585 if (!LenC) 1586 return nullptr; 1587 1588 return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL); 1589 } 1590 1591 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1592 Module *M = CI->getModule(); 1593 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1594 return V; 1595 1596 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1597 // bcmp can be more efficient than memcmp because it only has to know that 1598 // there is a difference, not how different one is to the other. 1599 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1600 isOnlyUsedInZeroEqualityComparison(CI)) { 1601 Value *LHS = CI->getArgOperand(0); 1602 Value *RHS = CI->getArgOperand(1); 1603 Value *Size = CI->getArgOperand(2); 1604 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1605 } 1606 1607 return nullptr; 1608 } 1609 1610 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1611 return optimizeMemCmpBCmpCommon(CI, B); 1612 } 1613 1614 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1615 Value *Size = CI->getArgOperand(2); 1616 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1617 if (isa<IntrinsicInst>(CI)) 1618 return nullptr; 1619 1620 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1621 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1622 CI->getArgOperand(1), Align(1), Size); 1623 mergeAttributesAndFlags(NewCI, *CI); 1624 return CI->getArgOperand(0); 1625 } 1626 1627 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1628 Value *Dst = CI->getArgOperand(0); 1629 Value *Src = CI->getArgOperand(1); 1630 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1631 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1632 StringRef SrcStr; 1633 if (CI->use_empty() && Dst == Src) 1634 return Dst; 1635 // memccpy(d, s, c, 0) -> nullptr 1636 if (N) { 1637 if (N->isNullValue()) 1638 return Constant::getNullValue(CI->getType()); 1639 if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) || 1640 // TODO: Handle zeroinitializer. 1641 !StopChar) 1642 return nullptr; 1643 } else { 1644 return nullptr; 1645 } 1646 1647 // Wrap arg 'c' of type int to char 1648 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1649 if (Pos == StringRef::npos) { 1650 if (N->getZExtValue() <= SrcStr.size()) { 1651 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1652 CI->getArgOperand(3))); 1653 return Constant::getNullValue(CI->getType()); 1654 } 1655 return nullptr; 1656 } 1657 1658 Value *NewN = 1659 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1660 // memccpy -> llvm.memcpy 1661 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1662 return Pos + 1 <= N->getZExtValue() 1663 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1664 : Constant::getNullValue(CI->getType()); 1665 } 1666 1667 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1668 Value *Dst = CI->getArgOperand(0); 1669 Value *N = CI->getArgOperand(2); 1670 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1671 CallInst *NewCI = 1672 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1673 // Propagate attributes, but memcpy has no return value, so make sure that 1674 // any return attributes are compliant. 1675 // TODO: Attach return value attributes to the 1st operand to preserve them? 1676 mergeAttributesAndFlags(NewCI, *CI); 1677 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1678 } 1679 1680 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1681 Value *Size = CI->getArgOperand(2); 1682 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1683 if (isa<IntrinsicInst>(CI)) 1684 return nullptr; 1685 1686 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1687 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1688 CI->getArgOperand(1), Align(1), Size); 1689 mergeAttributesAndFlags(NewCI, *CI); 1690 return CI->getArgOperand(0); 1691 } 1692 1693 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1694 Value *Size = CI->getArgOperand(2); 1695 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1696 if (isa<IntrinsicInst>(CI)) 1697 return nullptr; 1698 1699 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1700 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1701 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1702 mergeAttributesAndFlags(NewCI, *CI); 1703 return CI->getArgOperand(0); 1704 } 1705 1706 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1707 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1708 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1709 1710 return nullptr; 1711 } 1712 1713 // When enabled, replace operator new() calls marked with a hot or cold memprof 1714 // attribute with an operator new() call that takes a __hot_cold_t parameter. 1715 // Currently this is supported by the open source version of tcmalloc, see: 1716 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h 1717 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B, 1718 LibFunc &Func) { 1719 if (!OptimizeHotColdNew) 1720 return nullptr; 1721 1722 uint8_t HotCold; 1723 if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold") 1724 HotCold = ColdNewHintValue; 1725 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot") 1726 HotCold = HotNewHintValue; 1727 else 1728 return nullptr; 1729 1730 switch (Func) { 1731 case LibFunc_Znwm: 1732 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1733 LibFunc_Znwm12__hot_cold_t, HotCold); 1734 case LibFunc_Znam: 1735 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1736 LibFunc_Znam12__hot_cold_t, HotCold); 1737 case LibFunc_ZnwmRKSt9nothrow_t: 1738 return emitHotColdNewNoThrow(CI->getArgOperand(0), CI->getArgOperand(1), B, 1739 TLI, LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, 1740 HotCold); 1741 case LibFunc_ZnamRKSt9nothrow_t: 1742 return emitHotColdNewNoThrow(CI->getArgOperand(0), CI->getArgOperand(1), B, 1743 TLI, LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, 1744 HotCold); 1745 case LibFunc_ZnwmSt11align_val_t: 1746 return emitHotColdNewAligned(CI->getArgOperand(0), CI->getArgOperand(1), B, 1747 TLI, LibFunc_ZnwmSt11align_val_t12__hot_cold_t, 1748 HotCold); 1749 case LibFunc_ZnamSt11align_val_t: 1750 return emitHotColdNewAligned(CI->getArgOperand(0), CI->getArgOperand(1), B, 1751 TLI, LibFunc_ZnamSt11align_val_t12__hot_cold_t, 1752 HotCold); 1753 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 1754 return emitHotColdNewAlignedNoThrow( 1755 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1756 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold); 1757 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 1758 return emitHotColdNewAlignedNoThrow( 1759 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1760 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold); 1761 default: 1762 return nullptr; 1763 } 1764 } 1765 1766 //===----------------------------------------------------------------------===// 1767 // Math Library Optimizations 1768 //===----------------------------------------------------------------------===// 1769 1770 // Replace a libcall \p CI with a call to intrinsic \p IID 1771 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1772 Intrinsic::ID IID) { 1773 // Propagate fast-math flags from the existing call to the new call. 1774 IRBuilderBase::FastMathFlagGuard Guard(B); 1775 B.setFastMathFlags(CI->getFastMathFlags()); 1776 1777 Module *M = CI->getModule(); 1778 Value *V = CI->getArgOperand(0); 1779 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1780 CallInst *NewCall = B.CreateCall(F, V); 1781 NewCall->takeName(CI); 1782 return copyFlags(*CI, NewCall); 1783 } 1784 1785 /// Return a variant of Val with float type. 1786 /// Currently this works in two cases: If Val is an FPExtension of a float 1787 /// value to something bigger, simply return the operand. 1788 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1789 /// loss of precision do so. 1790 static Value *valueHasFloatPrecision(Value *Val) { 1791 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1792 Value *Op = Cast->getOperand(0); 1793 if (Op->getType()->isFloatTy()) 1794 return Op; 1795 } 1796 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1797 APFloat F = Const->getValueAPF(); 1798 bool losesInfo; 1799 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1800 &losesInfo); 1801 if (!losesInfo) 1802 return ConstantFP::get(Const->getContext(), F); 1803 } 1804 return nullptr; 1805 } 1806 1807 /// Shrink double -> float functions. 1808 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1809 bool isBinary, const TargetLibraryInfo *TLI, 1810 bool isPrecise = false) { 1811 Function *CalleeFn = CI->getCalledFunction(); 1812 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1813 return nullptr; 1814 1815 // If not all the uses of the function are converted to float, then bail out. 1816 // This matters if the precision of the result is more important than the 1817 // precision of the arguments. 1818 if (isPrecise) 1819 for (User *U : CI->users()) { 1820 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1821 if (!Cast || !Cast->getType()->isFloatTy()) 1822 return nullptr; 1823 } 1824 1825 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1826 Value *V[2]; 1827 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1828 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1829 if (!V[0] || (isBinary && !V[1])) 1830 return nullptr; 1831 1832 // If call isn't an intrinsic, check that it isn't within a function with the 1833 // same name as the float version of this call, otherwise the result is an 1834 // infinite loop. For example, from MinGW-w64: 1835 // 1836 // float expf(float val) { return (float) exp((double) val); } 1837 StringRef CalleeName = CalleeFn->getName(); 1838 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1839 if (!IsIntrinsic) { 1840 StringRef CallerName = CI->getFunction()->getName(); 1841 if (!CallerName.empty() && CallerName.back() == 'f' && 1842 CallerName.size() == (CalleeName.size() + 1) && 1843 CallerName.starts_with(CalleeName)) 1844 return nullptr; 1845 } 1846 1847 // Propagate the math semantics from the current function to the new function. 1848 IRBuilderBase::FastMathFlagGuard Guard(B); 1849 B.setFastMathFlags(CI->getFastMathFlags()); 1850 1851 // g((double) float) -> (double) gf(float) 1852 Value *R; 1853 if (IsIntrinsic) { 1854 Module *M = CI->getModule(); 1855 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1856 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1857 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1858 } else { 1859 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1860 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1861 CalleeAttrs) 1862 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1863 } 1864 return B.CreateFPExt(R, B.getDoubleTy()); 1865 } 1866 1867 /// Shrink double -> float for unary functions. 1868 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1869 const TargetLibraryInfo *TLI, 1870 bool isPrecise = false) { 1871 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1872 } 1873 1874 /// Shrink double -> float for binary functions. 1875 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1876 const TargetLibraryInfo *TLI, 1877 bool isPrecise = false) { 1878 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1879 } 1880 1881 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1882 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1883 if (!CI->isFast()) 1884 return nullptr; 1885 1886 // Propagate fast-math flags from the existing call to new instructions. 1887 IRBuilderBase::FastMathFlagGuard Guard(B); 1888 B.setFastMathFlags(CI->getFastMathFlags()); 1889 1890 Value *Real, *Imag; 1891 if (CI->arg_size() == 1) { 1892 Value *Op = CI->getArgOperand(0); 1893 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1894 Real = B.CreateExtractValue(Op, 0, "real"); 1895 Imag = B.CreateExtractValue(Op, 1, "imag"); 1896 } else { 1897 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1898 Real = CI->getArgOperand(0); 1899 Imag = CI->getArgOperand(1); 1900 } 1901 1902 Value *RealReal = B.CreateFMul(Real, Real); 1903 Value *ImagImag = B.CreateFMul(Imag, Imag); 1904 1905 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1906 CI->getType()); 1907 return copyFlags( 1908 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1909 } 1910 1911 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1912 IRBuilderBase &B) { 1913 if (!isa<FPMathOperator>(Call)) 1914 return nullptr; 1915 1916 IRBuilderBase::FastMathFlagGuard Guard(B); 1917 B.setFastMathFlags(Call->getFastMathFlags()); 1918 1919 // TODO: Can this be shared to also handle LLVM intrinsics? 1920 Value *X; 1921 switch (Func) { 1922 case LibFunc_sin: 1923 case LibFunc_sinf: 1924 case LibFunc_sinl: 1925 case LibFunc_tan: 1926 case LibFunc_tanf: 1927 case LibFunc_tanl: 1928 // sin(-X) --> -sin(X) 1929 // tan(-X) --> -tan(X) 1930 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1931 return B.CreateFNeg( 1932 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1933 break; 1934 case LibFunc_cos: 1935 case LibFunc_cosf: 1936 case LibFunc_cosl: 1937 // cos(-X) --> cos(X) 1938 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1939 return copyFlags(*Call, 1940 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1941 break; 1942 default: 1943 break; 1944 } 1945 return nullptr; 1946 } 1947 1948 // Return a properly extended integer (DstWidth bits wide) if the operation is 1949 // an itofp. 1950 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1951 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1952 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1953 // Make sure that the exponent fits inside an "int" of size DstWidth, 1954 // thus avoiding any range issues that FP has not. 1955 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1956 if (BitWidth < DstWidth || 1957 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1958 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1959 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1960 } 1961 1962 return nullptr; 1963 } 1964 1965 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1966 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1967 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1968 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1969 Module *M = Pow->getModule(); 1970 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1971 Module *Mod = Pow->getModule(); 1972 Type *Ty = Pow->getType(); 1973 bool Ignored; 1974 1975 // Evaluate special cases related to a nested function as the base. 1976 1977 // pow(exp(x), y) -> exp(x * y) 1978 // pow(exp2(x), y) -> exp2(x * y) 1979 // If exp{,2}() is used only once, it is better to fold two transcendental 1980 // math functions into one. If used again, exp{,2}() would still have to be 1981 // called with the original argument, then keep both original transcendental 1982 // functions. However, this transformation is only safe with fully relaxed 1983 // math semantics, since, besides rounding differences, it changes overflow 1984 // and underflow behavior quite dramatically. For example: 1985 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1986 // Whereas: 1987 // exp(1000 * 0.001) = exp(1) 1988 // TODO: Loosen the requirement for fully relaxed math semantics. 1989 // TODO: Handle exp10() when more targets have it available. 1990 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1991 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1992 LibFunc LibFn; 1993 1994 Function *CalleeFn = BaseFn->getCalledFunction(); 1995 if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) && 1996 isLibFuncEmittable(M, TLI, LibFn)) { 1997 StringRef ExpName; 1998 Intrinsic::ID ID; 1999 Value *ExpFn; 2000 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 2001 2002 switch (LibFn) { 2003 default: 2004 return nullptr; 2005 case LibFunc_expf: 2006 case LibFunc_exp: 2007 case LibFunc_expl: 2008 ExpName = TLI->getName(LibFunc_exp); 2009 ID = Intrinsic::exp; 2010 LibFnFloat = LibFunc_expf; 2011 LibFnDouble = LibFunc_exp; 2012 LibFnLongDouble = LibFunc_expl; 2013 break; 2014 case LibFunc_exp2f: 2015 case LibFunc_exp2: 2016 case LibFunc_exp2l: 2017 ExpName = TLI->getName(LibFunc_exp2); 2018 ID = Intrinsic::exp2; 2019 LibFnFloat = LibFunc_exp2f; 2020 LibFnDouble = LibFunc_exp2; 2021 LibFnLongDouble = LibFunc_exp2l; 2022 break; 2023 } 2024 2025 // Create new exp{,2}() with the product as its argument. 2026 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 2027 ExpFn = BaseFn->doesNotAccessMemory() 2028 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 2029 FMul, ExpName) 2030 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 2031 LibFnLongDouble, B, 2032 BaseFn->getAttributes()); 2033 2034 // Since the new exp{,2}() is different from the original one, dead code 2035 // elimination cannot be trusted to remove it, since it may have side 2036 // effects (e.g., errno). When the only consumer for the original 2037 // exp{,2}() is pow(), then it has to be explicitly erased. 2038 substituteInParent(BaseFn, ExpFn); 2039 return ExpFn; 2040 } 2041 } 2042 2043 // Evaluate special cases related to a constant base. 2044 2045 const APFloat *BaseF; 2046 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 2047 return nullptr; 2048 2049 AttributeList NoAttrs; // Attributes are only meaningful on the original call 2050 2051 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 2052 // TODO: This does not work for vectors because there is no ldexp intrinsic. 2053 if (!Ty->isVectorTy() && match(Base, m_SpecificFP(2.0)) && 2054 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 2055 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 2056 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2057 return copyFlags(*Pow, 2058 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 2059 TLI, LibFunc_ldexp, LibFunc_ldexpf, 2060 LibFunc_ldexpl, B, NoAttrs)); 2061 } 2062 2063 // pow(2.0 ** n, x) -> exp2(n * x) 2064 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 2065 APFloat BaseR = APFloat(1.0); 2066 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 2067 BaseR = BaseR / *BaseF; 2068 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 2069 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 2070 APSInt NI(64, false); 2071 if ((IsInteger || IsReciprocal) && 2072 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 2073 APFloat::opOK && 2074 NI > 1 && NI.isPowerOf2()) { 2075 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 2076 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 2077 if (Pow->doesNotAccessMemory()) 2078 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 2079 Mod, Intrinsic::exp2, Ty), 2080 FMul, "exp2")); 2081 else 2082 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2083 LibFunc_exp2f, 2084 LibFunc_exp2l, B, NoAttrs)); 2085 } 2086 } 2087 2088 // pow(10.0, x) -> exp10(x) 2089 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 2090 if (match(Base, m_SpecificFP(10.0)) && 2091 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 2092 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 2093 LibFunc_exp10f, LibFunc_exp10l, 2094 B, NoAttrs)); 2095 2096 // pow(x, y) -> exp2(log2(x) * y) 2097 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 2098 !BaseF->isNegative()) { 2099 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 2100 // Luckily optimizePow has already handled the x == 1 case. 2101 assert(!match(Base, m_FPOne()) && 2102 "pow(1.0, y) should have been simplified earlier!"); 2103 2104 Value *Log = nullptr; 2105 if (Ty->isFloatTy()) 2106 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 2107 else if (Ty->isDoubleTy()) 2108 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 2109 2110 if (Log) { 2111 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 2112 if (Pow->doesNotAccessMemory()) 2113 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 2114 Mod, Intrinsic::exp2, Ty), 2115 FMul, "exp2")); 2116 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 2117 LibFunc_exp2l)) 2118 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2119 LibFunc_exp2f, 2120 LibFunc_exp2l, B, NoAttrs)); 2121 } 2122 } 2123 2124 return nullptr; 2125 } 2126 2127 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 2128 Module *M, IRBuilderBase &B, 2129 const TargetLibraryInfo *TLI) { 2130 // If errno is never set, then use the intrinsic for sqrt(). 2131 if (NoErrno) { 2132 Function *SqrtFn = 2133 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 2134 return B.CreateCall(SqrtFn, V, "sqrt"); 2135 } 2136 2137 // Otherwise, use the libcall for sqrt(). 2138 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 2139 LibFunc_sqrtl)) 2140 // TODO: We also should check that the target can in fact lower the sqrt() 2141 // libcall. We currently have no way to ask this question, so we ask if 2142 // the target has a sqrt() libcall, which is not exactly the same. 2143 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 2144 LibFunc_sqrtl, B, Attrs); 2145 2146 return nullptr; 2147 } 2148 2149 /// Use square root in place of pow(x, +/-0.5). 2150 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 2151 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2152 Module *Mod = Pow->getModule(); 2153 Type *Ty = Pow->getType(); 2154 2155 const APFloat *ExpoF; 2156 if (!match(Expo, m_APFloat(ExpoF)) || 2157 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 2158 return nullptr; 2159 2160 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 2161 // so that requires fast-math-flags (afn or reassoc). 2162 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 2163 return nullptr; 2164 2165 // If we have a pow() library call (accesses memory) and we can't guarantee 2166 // that the base is not an infinity, give up: 2167 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 2168 // errno), but sqrt(-Inf) is required by various standards to set errno. 2169 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 2170 !isKnownNeverInfinity(Base, DL, TLI, 0, AC, Pow)) 2171 return nullptr; 2172 2173 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B, 2174 TLI); 2175 if (!Sqrt) 2176 return nullptr; 2177 2178 // Handle signed zero base by expanding to fabs(sqrt(x)). 2179 if (!Pow->hasNoSignedZeros()) { 2180 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 2181 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 2182 } 2183 2184 Sqrt = copyFlags(*Pow, Sqrt); 2185 2186 // Handle non finite base by expanding to 2187 // (x == -infinity ? +infinity : sqrt(x)). 2188 if (!Pow->hasNoInfs()) { 2189 Value *PosInf = ConstantFP::getInfinity(Ty), 2190 *NegInf = ConstantFP::getInfinity(Ty, true); 2191 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 2192 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 2193 } 2194 2195 // If the exponent is negative, then get the reciprocal. 2196 if (ExpoF->isNegative()) 2197 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 2198 2199 return Sqrt; 2200 } 2201 2202 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 2203 IRBuilderBase &B) { 2204 Value *Args[] = {Base, Expo}; 2205 Type *Types[] = {Base->getType(), Expo->getType()}; 2206 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 2207 return B.CreateCall(F, Args); 2208 } 2209 2210 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 2211 Value *Base = Pow->getArgOperand(0); 2212 Value *Expo = Pow->getArgOperand(1); 2213 Function *Callee = Pow->getCalledFunction(); 2214 StringRef Name = Callee->getName(); 2215 Type *Ty = Pow->getType(); 2216 Module *M = Pow->getModule(); 2217 bool AllowApprox = Pow->hasApproxFunc(); 2218 bool Ignored; 2219 2220 // Propagate the math semantics from the call to any created instructions. 2221 IRBuilderBase::FastMathFlagGuard Guard(B); 2222 B.setFastMathFlags(Pow->getFastMathFlags()); 2223 // Evaluate special cases related to the base. 2224 2225 // pow(1.0, x) -> 1.0 2226 if (match(Base, m_FPOne())) 2227 return Base; 2228 2229 if (Value *Exp = replacePowWithExp(Pow, B)) 2230 return Exp; 2231 2232 // Evaluate special cases related to the exponent. 2233 2234 // pow(x, -1.0) -> 1.0 / x 2235 if (match(Expo, m_SpecificFP(-1.0))) 2236 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 2237 2238 // pow(x, +/-0.0) -> 1.0 2239 if (match(Expo, m_AnyZeroFP())) 2240 return ConstantFP::get(Ty, 1.0); 2241 2242 // pow(x, 1.0) -> x 2243 if (match(Expo, m_FPOne())) 2244 return Base; 2245 2246 // pow(x, 2.0) -> x * x 2247 if (match(Expo, m_SpecificFP(2.0))) 2248 return B.CreateFMul(Base, Base, "square"); 2249 2250 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 2251 return Sqrt; 2252 2253 // If we can approximate pow: 2254 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction 2255 // pow(x, n) -> powi(x, n) if n is a constant signed integer value 2256 const APFloat *ExpoF; 2257 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 2258 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 2259 APFloat ExpoA(abs(*ExpoF)); 2260 APFloat ExpoI(*ExpoF); 2261 Value *Sqrt = nullptr; 2262 if (!ExpoA.isInteger()) { 2263 APFloat Expo2 = ExpoA; 2264 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 2265 // is no floating point exception and the result is an integer, then 2266 // ExpoA == integer + 0.5 2267 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 2268 return nullptr; 2269 2270 if (!Expo2.isInteger()) 2271 return nullptr; 2272 2273 if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) != 2274 APFloat::opInexact) 2275 return nullptr; 2276 if (!ExpoI.isInteger()) 2277 return nullptr; 2278 ExpoF = &ExpoI; 2279 2280 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M, 2281 B, TLI); 2282 if (!Sqrt) 2283 return nullptr; 2284 } 2285 2286 // 0.5 fraction is now optionally handled. 2287 // Do pow -> powi for remaining integer exponent 2288 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 2289 if (ExpoF->isInteger() && 2290 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 2291 APFloat::opOK) { 2292 Value *PowI = copyFlags( 2293 *Pow, 2294 createPowWithIntegerExponent( 2295 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 2296 M, B)); 2297 2298 if (PowI && Sqrt) 2299 return B.CreateFMul(PowI, Sqrt); 2300 2301 return PowI; 2302 } 2303 } 2304 2305 // powf(x, itofp(y)) -> powi(x, y) 2306 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 2307 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2308 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 2309 } 2310 2311 // Shrink pow() to powf() if the arguments are single precision, 2312 // unless the result is expected to be double precision. 2313 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 2314 hasFloatVersion(M, Name)) { 2315 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 2316 return Shrunk; 2317 } 2318 2319 return nullptr; 2320 } 2321 2322 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 2323 Module *M = CI->getModule(); 2324 Function *Callee = CI->getCalledFunction(); 2325 StringRef Name = Callee->getName(); 2326 Value *Ret = nullptr; 2327 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 2328 hasFloatVersion(M, Name)) 2329 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2330 2331 // Bail out for vectors because the code below only expects scalars. 2332 // TODO: This could be allowed if we had a ldexp intrinsic (D14327). 2333 Type *Ty = CI->getType(); 2334 if (Ty->isVectorTy()) 2335 return Ret; 2336 2337 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 2338 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 2339 Value *Op = CI->getArgOperand(0); 2340 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 2341 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 2342 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) { 2343 IRBuilderBase::FastMathFlagGuard Guard(B); 2344 B.setFastMathFlags(CI->getFastMathFlags()); 2345 return copyFlags( 2346 *CI, emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 2347 LibFunc_ldexp, LibFunc_ldexpf, 2348 LibFunc_ldexpl, B, AttributeList())); 2349 } 2350 } 2351 2352 return Ret; 2353 } 2354 2355 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 2356 Module *M = CI->getModule(); 2357 2358 // If we can shrink the call to a float function rather than a double 2359 // function, do that first. 2360 Function *Callee = CI->getCalledFunction(); 2361 StringRef Name = Callee->getName(); 2362 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 2363 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 2364 return Ret; 2365 2366 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 2367 // the intrinsics for improved optimization (for example, vectorization). 2368 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 2369 // From the C standard draft WG14/N1256: 2370 // "Ideally, fmax would be sensitive to the sign of zero, for example 2371 // fmax(-0.0, +0.0) would return +0; however, implementation in software 2372 // might be impractical." 2373 IRBuilderBase::FastMathFlagGuard Guard(B); 2374 FastMathFlags FMF = CI->getFastMathFlags(); 2375 FMF.setNoSignedZeros(); 2376 B.setFastMathFlags(FMF); 2377 2378 Intrinsic::ID IID = Callee->getName().starts_with("fmin") ? Intrinsic::minnum 2379 : Intrinsic::maxnum; 2380 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 2381 return copyFlags( 2382 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 2383 } 2384 2385 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 2386 Function *LogFn = Log->getCalledFunction(); 2387 StringRef LogNm = LogFn->getName(); 2388 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 2389 Module *Mod = Log->getModule(); 2390 Type *Ty = Log->getType(); 2391 Value *Ret = nullptr; 2392 2393 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 2394 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true); 2395 2396 // The earlier call must also be 'fast' in order to do these transforms. 2397 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2398 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2399 return Ret; 2400 2401 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2402 2403 // This is only applicable to log(), log2(), log10(). 2404 if (TLI->getLibFunc(LogNm, LogLb)) 2405 switch (LogLb) { 2406 case LibFunc_logf: 2407 LogID = Intrinsic::log; 2408 ExpLb = LibFunc_expf; 2409 Exp2Lb = LibFunc_exp2f; 2410 Exp10Lb = LibFunc_exp10f; 2411 PowLb = LibFunc_powf; 2412 break; 2413 case LibFunc_log: 2414 LogID = Intrinsic::log; 2415 ExpLb = LibFunc_exp; 2416 Exp2Lb = LibFunc_exp2; 2417 Exp10Lb = LibFunc_exp10; 2418 PowLb = LibFunc_pow; 2419 break; 2420 case LibFunc_logl: 2421 LogID = Intrinsic::log; 2422 ExpLb = LibFunc_expl; 2423 Exp2Lb = LibFunc_exp2l; 2424 Exp10Lb = LibFunc_exp10l; 2425 PowLb = LibFunc_powl; 2426 break; 2427 case LibFunc_log2f: 2428 LogID = Intrinsic::log2; 2429 ExpLb = LibFunc_expf; 2430 Exp2Lb = LibFunc_exp2f; 2431 Exp10Lb = LibFunc_exp10f; 2432 PowLb = LibFunc_powf; 2433 break; 2434 case LibFunc_log2: 2435 LogID = Intrinsic::log2; 2436 ExpLb = LibFunc_exp; 2437 Exp2Lb = LibFunc_exp2; 2438 Exp10Lb = LibFunc_exp10; 2439 PowLb = LibFunc_pow; 2440 break; 2441 case LibFunc_log2l: 2442 LogID = Intrinsic::log2; 2443 ExpLb = LibFunc_expl; 2444 Exp2Lb = LibFunc_exp2l; 2445 Exp10Lb = LibFunc_exp10l; 2446 PowLb = LibFunc_powl; 2447 break; 2448 case LibFunc_log10f: 2449 LogID = Intrinsic::log10; 2450 ExpLb = LibFunc_expf; 2451 Exp2Lb = LibFunc_exp2f; 2452 Exp10Lb = LibFunc_exp10f; 2453 PowLb = LibFunc_powf; 2454 break; 2455 case LibFunc_log10: 2456 LogID = Intrinsic::log10; 2457 ExpLb = LibFunc_exp; 2458 Exp2Lb = LibFunc_exp2; 2459 Exp10Lb = LibFunc_exp10; 2460 PowLb = LibFunc_pow; 2461 break; 2462 case LibFunc_log10l: 2463 LogID = Intrinsic::log10; 2464 ExpLb = LibFunc_expl; 2465 Exp2Lb = LibFunc_exp2l; 2466 Exp10Lb = LibFunc_exp10l; 2467 PowLb = LibFunc_powl; 2468 break; 2469 default: 2470 return Ret; 2471 } 2472 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2473 LogID == Intrinsic::log10) { 2474 if (Ty->getScalarType()->isFloatTy()) { 2475 ExpLb = LibFunc_expf; 2476 Exp2Lb = LibFunc_exp2f; 2477 Exp10Lb = LibFunc_exp10f; 2478 PowLb = LibFunc_powf; 2479 } else if (Ty->getScalarType()->isDoubleTy()) { 2480 ExpLb = LibFunc_exp; 2481 Exp2Lb = LibFunc_exp2; 2482 Exp10Lb = LibFunc_exp10; 2483 PowLb = LibFunc_pow; 2484 } else 2485 return Ret; 2486 } else 2487 return Ret; 2488 2489 IRBuilderBase::FastMathFlagGuard Guard(B); 2490 B.setFastMathFlags(FastMathFlags::getFast()); 2491 2492 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2493 LibFunc ArgLb = NotLibFunc; 2494 TLI->getLibFunc(*Arg, ArgLb); 2495 2496 // log(pow(x,y)) -> y*log(x) 2497 AttributeList NoAttrs; 2498 if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) { 2499 Value *LogX = 2500 Log->doesNotAccessMemory() 2501 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2502 Arg->getOperand(0), "log") 2503 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs); 2504 Value *Y = Arg->getArgOperand(1); 2505 // Cast exponent to FP if integer. 2506 if (ArgID == Intrinsic::powi) 2507 Y = B.CreateSIToFP(Y, Ty, "cast"); 2508 Value *MulY = B.CreateFMul(Y, LogX, "mul"); 2509 // Since pow() may have side effects, e.g. errno, 2510 // dead code elimination may not be trusted to remove it. 2511 substituteInParent(Arg, MulY); 2512 return MulY; 2513 } 2514 2515 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2516 // TODO: There is no exp10() intrinsic yet. 2517 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2518 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2519 Constant *Eul; 2520 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2521 // FIXME: Add more precise value of e for long double. 2522 Eul = ConstantFP::get(Log->getType(), numbers::e); 2523 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2524 Eul = ConstantFP::get(Log->getType(), 2.0); 2525 else 2526 Eul = ConstantFP::get(Log->getType(), 10.0); 2527 Value *LogE = Log->doesNotAccessMemory() 2528 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2529 Eul, "log") 2530 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs); 2531 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2532 // Since exp() may have side effects, e.g. errno, 2533 // dead code elimination may not be trusted to remove it. 2534 substituteInParent(Arg, MulY); 2535 return MulY; 2536 } 2537 2538 return Ret; 2539 } 2540 2541 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2542 Module *M = CI->getModule(); 2543 Function *Callee = CI->getCalledFunction(); 2544 Value *Ret = nullptr; 2545 // TODO: Once we have a way (other than checking for the existince of the 2546 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2547 // condition below. 2548 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2549 (Callee->getName() == "sqrt" || 2550 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2551 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2552 2553 if (!CI->isFast()) 2554 return Ret; 2555 2556 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2557 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2558 return Ret; 2559 2560 // We're looking for a repeated factor in a multiplication tree, 2561 // so we can do this fold: sqrt(x * x) -> fabs(x); 2562 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2563 Value *Op0 = I->getOperand(0); 2564 Value *Op1 = I->getOperand(1); 2565 Value *RepeatOp = nullptr; 2566 Value *OtherOp = nullptr; 2567 if (Op0 == Op1) { 2568 // Simple match: the operands of the multiply are identical. 2569 RepeatOp = Op0; 2570 } else { 2571 // Look for a more complicated pattern: one of the operands is itself 2572 // a multiply, so search for a common factor in that multiply. 2573 // Note: We don't bother looking any deeper than this first level or for 2574 // variations of this pattern because instcombine's visitFMUL and/or the 2575 // reassociation pass should give us this form. 2576 Value *OtherMul0, *OtherMul1; 2577 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2578 // Pattern: sqrt((x * y) * z) 2579 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2580 // Matched: sqrt((x * x) * z) 2581 RepeatOp = OtherMul0; 2582 OtherOp = Op1; 2583 } 2584 } 2585 } 2586 if (!RepeatOp) 2587 return Ret; 2588 2589 // Fast math flags for any created instructions should match the sqrt 2590 // and multiply. 2591 IRBuilderBase::FastMathFlagGuard Guard(B); 2592 B.setFastMathFlags(I->getFastMathFlags()); 2593 2594 // If we found a repeated factor, hoist it out of the square root and 2595 // replace it with the fabs of that factor. 2596 Type *ArgType = I->getType(); 2597 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2598 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2599 if (OtherOp) { 2600 // If we found a non-repeated factor, we still need to get its square 2601 // root. We then multiply that by the value that was simplified out 2602 // of the square root calculation. 2603 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2604 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2605 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2606 } 2607 return copyFlags(*CI, FabsCall); 2608 } 2609 2610 // TODO: Generalize to handle any trig function and its inverse. 2611 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2612 Module *M = CI->getModule(); 2613 Function *Callee = CI->getCalledFunction(); 2614 Value *Ret = nullptr; 2615 StringRef Name = Callee->getName(); 2616 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name)) 2617 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2618 2619 Value *Op1 = CI->getArgOperand(0); 2620 auto *OpC = dyn_cast<CallInst>(Op1); 2621 if (!OpC) 2622 return Ret; 2623 2624 // Both calls must be 'fast' in order to remove them. 2625 if (!CI->isFast() || !OpC->isFast()) 2626 return Ret; 2627 2628 // tan(atan(x)) -> x 2629 // tanf(atanf(x)) -> x 2630 // tanl(atanl(x)) -> x 2631 LibFunc Func; 2632 Function *F = OpC->getCalledFunction(); 2633 if (F && TLI->getLibFunc(F->getName(), Func) && 2634 isLibFuncEmittable(M, TLI, Func) && 2635 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2636 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2637 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2638 Ret = OpC->getArgOperand(0); 2639 return Ret; 2640 } 2641 2642 static bool isTrigLibCall(CallInst *CI) { 2643 // We can only hope to do anything useful if we can ignore things like errno 2644 // and floating-point exceptions. 2645 // We already checked the prototype. 2646 return CI->doesNotThrow() && CI->doesNotAccessMemory(); 2647 } 2648 2649 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2650 bool UseFloat, Value *&Sin, Value *&Cos, 2651 Value *&SinCos, const TargetLibraryInfo *TLI) { 2652 Module *M = OrigCallee->getParent(); 2653 Type *ArgTy = Arg->getType(); 2654 Type *ResTy; 2655 StringRef Name; 2656 2657 Triple T(OrigCallee->getParent()->getTargetTriple()); 2658 if (UseFloat) { 2659 Name = "__sincospif_stret"; 2660 2661 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2662 // x86_64 can't use {float, float} since that would be returned in both 2663 // xmm0 and xmm1, which isn't what a real struct would do. 2664 ResTy = T.getArch() == Triple::x86_64 2665 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2666 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2667 } else { 2668 Name = "__sincospi_stret"; 2669 ResTy = StructType::get(ArgTy, ArgTy); 2670 } 2671 2672 if (!isLibFuncEmittable(M, TLI, Name)) 2673 return false; 2674 LibFunc TheLibFunc; 2675 TLI->getLibFunc(Name, TheLibFunc); 2676 FunctionCallee Callee = getOrInsertLibFunc( 2677 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2678 2679 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2680 // If the argument is an instruction, it must dominate all uses so put our 2681 // sincos call there. 2682 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2683 } else { 2684 // Otherwise (e.g. for a constant) the beginning of the function is as 2685 // good a place as any. 2686 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2687 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2688 } 2689 2690 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2691 2692 if (SinCos->getType()->isStructTy()) { 2693 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2694 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2695 } else { 2696 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2697 "sinpi"); 2698 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2699 "cospi"); 2700 } 2701 2702 return true; 2703 } 2704 2705 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) { 2706 // Make sure the prototype is as expected, otherwise the rest of the 2707 // function is probably invalid and likely to abort. 2708 if (!isTrigLibCall(CI)) 2709 return nullptr; 2710 2711 Value *Arg = CI->getArgOperand(0); 2712 SmallVector<CallInst *, 1> SinCalls; 2713 SmallVector<CallInst *, 1> CosCalls; 2714 SmallVector<CallInst *, 1> SinCosCalls; 2715 2716 bool IsFloat = Arg->getType()->isFloatTy(); 2717 2718 // Look for all compatible sinpi, cospi and sincospi calls with the same 2719 // argument. If there are enough (in some sense) we can make the 2720 // substitution. 2721 Function *F = CI->getFunction(); 2722 for (User *U : Arg->users()) 2723 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2724 2725 // It's only worthwhile if both sinpi and cospi are actually used. 2726 if (SinCalls.empty() || CosCalls.empty()) 2727 return nullptr; 2728 2729 Value *Sin, *Cos, *SinCos; 2730 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 2731 SinCos, TLI)) 2732 return nullptr; 2733 2734 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2735 Value *Res) { 2736 for (CallInst *C : Calls) 2737 replaceAllUsesWith(C, Res); 2738 }; 2739 2740 replaceTrigInsts(SinCalls, Sin); 2741 replaceTrigInsts(CosCalls, Cos); 2742 replaceTrigInsts(SinCosCalls, SinCos); 2743 2744 return IsSin ? Sin : Cos; 2745 } 2746 2747 void LibCallSimplifier::classifyArgUse( 2748 Value *Val, Function *F, bool IsFloat, 2749 SmallVectorImpl<CallInst *> &SinCalls, 2750 SmallVectorImpl<CallInst *> &CosCalls, 2751 SmallVectorImpl<CallInst *> &SinCosCalls) { 2752 auto *CI = dyn_cast<CallInst>(Val); 2753 if (!CI || CI->use_empty()) 2754 return; 2755 2756 // Don't consider calls in other functions. 2757 if (CI->getFunction() != F) 2758 return; 2759 2760 Module *M = CI->getModule(); 2761 Function *Callee = CI->getCalledFunction(); 2762 LibFunc Func; 2763 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 2764 !isLibFuncEmittable(M, TLI, Func) || 2765 !isTrigLibCall(CI)) 2766 return; 2767 2768 if (IsFloat) { 2769 if (Func == LibFunc_sinpif) 2770 SinCalls.push_back(CI); 2771 else if (Func == LibFunc_cospif) 2772 CosCalls.push_back(CI); 2773 else if (Func == LibFunc_sincospif_stret) 2774 SinCosCalls.push_back(CI); 2775 } else { 2776 if (Func == LibFunc_sinpi) 2777 SinCalls.push_back(CI); 2778 else if (Func == LibFunc_cospi) 2779 CosCalls.push_back(CI); 2780 else if (Func == LibFunc_sincospi_stret) 2781 SinCosCalls.push_back(CI); 2782 } 2783 } 2784 2785 //===----------------------------------------------------------------------===// 2786 // Integer Library Call Optimizations 2787 //===----------------------------------------------------------------------===// 2788 2789 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2790 // All variants of ffs return int which need not be 32 bits wide. 2791 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0 2792 Type *RetType = CI->getType(); 2793 Value *Op = CI->getArgOperand(0); 2794 Type *ArgType = Op->getType(); 2795 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2796 Intrinsic::cttz, ArgType); 2797 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2798 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2799 V = B.CreateIntCast(V, RetType, false); 2800 2801 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2802 return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0)); 2803 } 2804 2805 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2806 // All variants of fls return int which need not be 32 bits wide. 2807 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false)) 2808 Value *Op = CI->getArgOperand(0); 2809 Type *ArgType = Op->getType(); 2810 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2811 Intrinsic::ctlz, ArgType); 2812 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2813 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2814 V); 2815 return B.CreateIntCast(V, CI->getType(), false); 2816 } 2817 2818 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2819 // abs(x) -> x <s 0 ? -x : x 2820 // The negation has 'nsw' because abs of INT_MIN is undefined. 2821 Value *X = CI->getArgOperand(0); 2822 Value *IsNeg = B.CreateIsNeg(X); 2823 Value *NegX = B.CreateNSWNeg(X, "neg"); 2824 return B.CreateSelect(IsNeg, NegX, X); 2825 } 2826 2827 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2828 // isdigit(c) -> (c-'0') <u 10 2829 Value *Op = CI->getArgOperand(0); 2830 Type *ArgType = Op->getType(); 2831 Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp"); 2832 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit"); 2833 return B.CreateZExt(Op, CI->getType()); 2834 } 2835 2836 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2837 // isascii(c) -> c <u 128 2838 Value *Op = CI->getArgOperand(0); 2839 Type *ArgType = Op->getType(); 2840 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii"); 2841 return B.CreateZExt(Op, CI->getType()); 2842 } 2843 2844 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2845 // toascii(c) -> c & 0x7f 2846 return B.CreateAnd(CI->getArgOperand(0), 2847 ConstantInt::get(CI->getType(), 0x7F)); 2848 } 2849 2850 // Fold calls to atoi, atol, and atoll. 2851 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2852 CI->addParamAttr(0, Attribute::NoCapture); 2853 2854 StringRef Str; 2855 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2856 return nullptr; 2857 2858 return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B); 2859 } 2860 2861 // Fold calls to strtol, strtoll, strtoul, and strtoull. 2862 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B, 2863 bool AsSigned) { 2864 Value *EndPtr = CI->getArgOperand(1); 2865 if (isa<ConstantPointerNull>(EndPtr)) { 2866 // With a null EndPtr, this function won't capture the main argument. 2867 // It would be readonly too, except that it still may write to errno. 2868 CI->addParamAttr(0, Attribute::NoCapture); 2869 EndPtr = nullptr; 2870 } else if (!isKnownNonZero(EndPtr, DL)) 2871 return nullptr; 2872 2873 StringRef Str; 2874 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2875 return nullptr; 2876 2877 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2878 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B); 2879 } 2880 2881 return nullptr; 2882 } 2883 2884 //===----------------------------------------------------------------------===// 2885 // Formatting and IO Library Call Optimizations 2886 //===----------------------------------------------------------------------===// 2887 2888 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2889 2890 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2891 int StreamArg) { 2892 Function *Callee = CI->getCalledFunction(); 2893 // Error reporting calls should be cold, mark them as such. 2894 // This applies even to non-builtin calls: it is only a hint and applies to 2895 // functions that the frontend might not understand as builtins. 2896 2897 // This heuristic was suggested in: 2898 // Improving Static Branch Prediction in a Compiler 2899 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2900 // Proceedings of PACT'98, Oct. 1998, IEEE 2901 if (!CI->hasFnAttr(Attribute::Cold) && 2902 isReportingError(Callee, CI, StreamArg)) { 2903 CI->addFnAttr(Attribute::Cold); 2904 } 2905 2906 return nullptr; 2907 } 2908 2909 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2910 if (!Callee || !Callee->isDeclaration()) 2911 return false; 2912 2913 if (StreamArg < 0) 2914 return true; 2915 2916 // These functions might be considered cold, but only if their stream 2917 // argument is stderr. 2918 2919 if (StreamArg >= (int)CI->arg_size()) 2920 return false; 2921 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2922 if (!LI) 2923 return false; 2924 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2925 if (!GV || !GV->isDeclaration()) 2926 return false; 2927 return GV->getName() == "stderr"; 2928 } 2929 2930 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2931 // Check for a fixed format string. 2932 StringRef FormatStr; 2933 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2934 return nullptr; 2935 2936 // Empty format string -> noop. 2937 if (FormatStr.empty()) // Tolerate printf's declared void. 2938 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2939 2940 // Do not do any of the following transformations if the printf return value 2941 // is used, in general the printf return value is not compatible with either 2942 // putchar() or puts(). 2943 if (!CI->use_empty()) 2944 return nullptr; 2945 2946 Type *IntTy = CI->getType(); 2947 // printf("x") -> putchar('x'), even for "%" and "%%". 2948 if (FormatStr.size() == 1 || FormatStr == "%%") { 2949 // Convert the character to unsigned char before passing it to putchar 2950 // to avoid host-specific sign extension in the IR. Putchar converts 2951 // it to unsigned char regardless. 2952 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]); 2953 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 2954 } 2955 2956 // Try to remove call or emit putchar/puts. 2957 if (FormatStr == "%s" && CI->arg_size() > 1) { 2958 StringRef OperandStr; 2959 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2960 return nullptr; 2961 // printf("%s", "") --> NOP 2962 if (OperandStr.empty()) 2963 return (Value *)CI; 2964 // printf("%s", "a") --> putchar('a') 2965 if (OperandStr.size() == 1) { 2966 // Convert the character to unsigned char before passing it to putchar 2967 // to avoid host-specific sign extension in the IR. Putchar converts 2968 // it to unsigned char regardless. 2969 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]); 2970 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 2971 } 2972 // printf("%s", str"\n") --> puts(str) 2973 if (OperandStr.back() == '\n') { 2974 OperandStr = OperandStr.drop_back(); 2975 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2976 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2977 } 2978 return nullptr; 2979 } 2980 2981 // printf("foo\n") --> puts("foo") 2982 if (FormatStr.back() == '\n' && 2983 !FormatStr.contains('%')) { // No format characters. 2984 // Create a string literal with no \n on it. We expect the constant merge 2985 // pass to be run after this pass, to merge duplicate strings. 2986 FormatStr = FormatStr.drop_back(); 2987 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2988 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2989 } 2990 2991 // Optimize specific format strings. 2992 // printf("%c", chr) --> putchar(chr) 2993 if (FormatStr == "%c" && CI->arg_size() > 1 && 2994 CI->getArgOperand(1)->getType()->isIntegerTy()) { 2995 // Convert the argument to the type expected by putchar, i.e., int, which 2996 // need not be 32 bits wide but which is the same as printf's return type. 2997 Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false); 2998 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 2999 } 3000 3001 // printf("%s\n", str) --> puts(str) 3002 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 3003 CI->getArgOperand(1)->getType()->isPointerTy()) 3004 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 3005 return nullptr; 3006 } 3007 3008 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 3009 3010 Module *M = CI->getModule(); 3011 Function *Callee = CI->getCalledFunction(); 3012 FunctionType *FT = Callee->getFunctionType(); 3013 if (Value *V = optimizePrintFString(CI, B)) { 3014 return V; 3015 } 3016 3017 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3018 3019 // printf(format, ...) -> iprintf(format, ...) if no floating point 3020 // arguments. 3021 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 3022 !callHasFloatingPointArgument(CI)) { 3023 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 3024 Callee->getAttributes()); 3025 CallInst *New = cast<CallInst>(CI->clone()); 3026 New->setCalledFunction(IPrintFFn); 3027 B.Insert(New); 3028 return New; 3029 } 3030 3031 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 3032 // arguments. 3033 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 3034 !callHasFP128Argument(CI)) { 3035 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 3036 Callee->getAttributes()); 3037 CallInst *New = cast<CallInst>(CI->clone()); 3038 New->setCalledFunction(SmallPrintFFn); 3039 B.Insert(New); 3040 return New; 3041 } 3042 3043 return nullptr; 3044 } 3045 3046 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 3047 IRBuilderBase &B) { 3048 // Check for a fixed format string. 3049 StringRef FormatStr; 3050 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3051 return nullptr; 3052 3053 // If we just have a format string (nothing else crazy) transform it. 3054 Value *Dest = CI->getArgOperand(0); 3055 if (CI->arg_size() == 2) { 3056 // Make sure there's no % in the constant array. We could try to handle 3057 // %% -> % in the future if we cared. 3058 if (FormatStr.contains('%')) 3059 return nullptr; // we found a format specifier, bail out. 3060 3061 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 3062 B.CreateMemCpy( 3063 Dest, Align(1), CI->getArgOperand(1), Align(1), 3064 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 3065 FormatStr.size() + 1)); // Copy the null byte. 3066 return ConstantInt::get(CI->getType(), FormatStr.size()); 3067 } 3068 3069 // The remaining optimizations require the format string to be "%s" or "%c" 3070 // and have an extra operand. 3071 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3072 return nullptr; 3073 3074 // Decode the second character of the format string. 3075 if (FormatStr[1] == 'c') { 3076 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3077 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3078 return nullptr; 3079 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 3080 Value *Ptr = Dest; 3081 B.CreateStore(V, Ptr); 3082 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3083 B.CreateStore(B.getInt8(0), Ptr); 3084 3085 return ConstantInt::get(CI->getType(), 1); 3086 } 3087 3088 if (FormatStr[1] == 's') { 3089 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 3090 // strlen(str)+1) 3091 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3092 return nullptr; 3093 3094 if (CI->use_empty()) 3095 // sprintf(dest, "%s", str) -> strcpy(dest, str) 3096 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 3097 3098 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 3099 if (SrcLen) { 3100 B.CreateMemCpy( 3101 Dest, Align(1), CI->getArgOperand(2), Align(1), 3102 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 3103 // Returns total number of characters written without null-character. 3104 return ConstantInt::get(CI->getType(), SrcLen - 1); 3105 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 3106 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 3107 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 3108 return B.CreateIntCast(PtrDiff, CI->getType(), false); 3109 } 3110 3111 bool OptForSize = CI->getFunction()->hasOptSize() || 3112 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3113 PGSOQueryType::IRPass); 3114 if (OptForSize) 3115 return nullptr; 3116 3117 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 3118 if (!Len) 3119 return nullptr; 3120 Value *IncLen = 3121 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 3122 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 3123 3124 // The sprintf result is the unincremented number of bytes in the string. 3125 return B.CreateIntCast(Len, CI->getType(), false); 3126 } 3127 return nullptr; 3128 } 3129 3130 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 3131 Module *M = CI->getModule(); 3132 Function *Callee = CI->getCalledFunction(); 3133 FunctionType *FT = Callee->getFunctionType(); 3134 if (Value *V = optimizeSPrintFString(CI, B)) { 3135 return V; 3136 } 3137 3138 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 3139 3140 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 3141 // point arguments. 3142 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 3143 !callHasFloatingPointArgument(CI)) { 3144 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 3145 FT, Callee->getAttributes()); 3146 CallInst *New = cast<CallInst>(CI->clone()); 3147 New->setCalledFunction(SIPrintFFn); 3148 B.Insert(New); 3149 return New; 3150 } 3151 3152 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 3153 // floating point arguments. 3154 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 3155 !callHasFP128Argument(CI)) { 3156 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 3157 Callee->getAttributes()); 3158 CallInst *New = cast<CallInst>(CI->clone()); 3159 New->setCalledFunction(SmallSPrintFFn); 3160 B.Insert(New); 3161 return New; 3162 } 3163 3164 return nullptr; 3165 } 3166 3167 // Transform an snprintf call CI with the bound N to format the string Str 3168 // either to a call to memcpy, or to single character a store, or to nothing, 3169 // and fold the result to a constant. A nonnull StrArg refers to the string 3170 // argument being formatted. Otherwise the call is one with N < 2 and 3171 // the "%c" directive to format a single character. 3172 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg, 3173 StringRef Str, uint64_t N, 3174 IRBuilderBase &B) { 3175 assert(StrArg || (N < 2 && Str.size() == 1)); 3176 3177 unsigned IntBits = TLI->getIntSize(); 3178 uint64_t IntMax = maxIntN(IntBits); 3179 if (Str.size() > IntMax) 3180 // Bail if the string is longer than INT_MAX. POSIX requires 3181 // implementations to set errno to EOVERFLOW in this case, in 3182 // addition to when N is larger than that (checked by the caller). 3183 return nullptr; 3184 3185 Value *StrLen = ConstantInt::get(CI->getType(), Str.size()); 3186 if (N == 0) 3187 return StrLen; 3188 3189 // Set to the number of bytes to copy fron StrArg which is also 3190 // the offset of the terinating nul. 3191 uint64_t NCopy; 3192 if (N > Str.size()) 3193 // Copy the full string, including the terminating nul (which must 3194 // be present regardless of the bound). 3195 NCopy = Str.size() + 1; 3196 else 3197 NCopy = N - 1; 3198 3199 Value *DstArg = CI->getArgOperand(0); 3200 if (NCopy && StrArg) 3201 // Transform the call to lvm.memcpy(dst, fmt, N). 3202 copyFlags( 3203 *CI, 3204 B.CreateMemCpy( 3205 DstArg, Align(1), StrArg, Align(1), 3206 ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy))); 3207 3208 if (N > Str.size()) 3209 // Return early when the whole format string, including the final nul, 3210 // has been copied. 3211 return StrLen; 3212 3213 // Otherwise, when truncating the string append a terminating nul. 3214 Type *Int8Ty = B.getInt8Ty(); 3215 Value *NulOff = B.getIntN(IntBits, NCopy); 3216 Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr"); 3217 B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd); 3218 return StrLen; 3219 } 3220 3221 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 3222 IRBuilderBase &B) { 3223 // Check for size 3224 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3225 if (!Size) 3226 return nullptr; 3227 3228 uint64_t N = Size->getZExtValue(); 3229 uint64_t IntMax = maxIntN(TLI->getIntSize()); 3230 if (N > IntMax) 3231 // Bail if the bound exceeds INT_MAX. POSIX requires implementations 3232 // to set errno to EOVERFLOW in this case. 3233 return nullptr; 3234 3235 Value *DstArg = CI->getArgOperand(0); 3236 Value *FmtArg = CI->getArgOperand(2); 3237 3238 // Check for a fixed format string. 3239 StringRef FormatStr; 3240 if (!getConstantStringInfo(FmtArg, FormatStr)) 3241 return nullptr; 3242 3243 // If we just have a format string (nothing else crazy) transform it. 3244 if (CI->arg_size() == 3) { 3245 if (FormatStr.contains('%')) 3246 // Bail if the format string contains a directive and there are 3247 // no arguments. We could handle "%%" in the future. 3248 return nullptr; 3249 3250 return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B); 3251 } 3252 3253 // The remaining optimizations require the format string to be "%s" or "%c" 3254 // and have an extra operand. 3255 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4) 3256 return nullptr; 3257 3258 // Decode the second character of the format string. 3259 if (FormatStr[1] == 'c') { 3260 if (N <= 1) { 3261 // Use an arbitary string of length 1 to transform the call into 3262 // either a nul store (N == 1) or a no-op (N == 0) and fold it 3263 // to one. 3264 StringRef CharStr("*"); 3265 return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B); 3266 } 3267 3268 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3269 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 3270 return nullptr; 3271 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 3272 Value *Ptr = DstArg; 3273 B.CreateStore(V, Ptr); 3274 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3275 B.CreateStore(B.getInt8(0), Ptr); 3276 return ConstantInt::get(CI->getType(), 1); 3277 } 3278 3279 if (FormatStr[1] != 's') 3280 return nullptr; 3281 3282 Value *StrArg = CI->getArgOperand(3); 3283 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 3284 StringRef Str; 3285 if (!getConstantStringInfo(StrArg, Str)) 3286 return nullptr; 3287 3288 return emitSnPrintfMemCpy(CI, StrArg, Str, N, B); 3289 } 3290 3291 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 3292 if (Value *V = optimizeSnPrintFString(CI, B)) { 3293 return V; 3294 } 3295 3296 if (isKnownNonZero(CI->getOperand(1), DL)) 3297 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3298 return nullptr; 3299 } 3300 3301 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 3302 IRBuilderBase &B) { 3303 optimizeErrorReporting(CI, B, 0); 3304 3305 // All the optimizations depend on the format string. 3306 StringRef FormatStr; 3307 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3308 return nullptr; 3309 3310 // Do not do any of the following transformations if the fprintf return 3311 // value is used, in general the fprintf return value is not compatible 3312 // with fwrite(), fputc() or fputs(). 3313 if (!CI->use_empty()) 3314 return nullptr; 3315 3316 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 3317 if (CI->arg_size() == 2) { 3318 // Could handle %% -> % if we cared. 3319 if (FormatStr.contains('%')) 3320 return nullptr; // We found a format specifier. 3321 3322 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3323 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3324 return copyFlags( 3325 *CI, emitFWrite(CI->getArgOperand(1), 3326 ConstantInt::get(SizeTTy, FormatStr.size()), 3327 CI->getArgOperand(0), B, DL, TLI)); 3328 } 3329 3330 // The remaining optimizations require the format string to be "%s" or "%c" 3331 // and have an extra operand. 3332 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3333 return nullptr; 3334 3335 // Decode the second character of the format string. 3336 if (FormatStr[1] == 'c') { 3337 // fprintf(F, "%c", chr) --> fputc((int)chr, F) 3338 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3339 return nullptr; 3340 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3341 Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true, 3342 "chari"); 3343 return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI)); 3344 } 3345 3346 if (FormatStr[1] == 's') { 3347 // fprintf(F, "%s", str) --> fputs(str, F) 3348 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3349 return nullptr; 3350 return copyFlags( 3351 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 3352 } 3353 return nullptr; 3354 } 3355 3356 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 3357 Module *M = CI->getModule(); 3358 Function *Callee = CI->getCalledFunction(); 3359 FunctionType *FT = Callee->getFunctionType(); 3360 if (Value *V = optimizeFPrintFString(CI, B)) { 3361 return V; 3362 } 3363 3364 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 3365 // floating point arguments. 3366 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 3367 !callHasFloatingPointArgument(CI)) { 3368 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 3369 FT, Callee->getAttributes()); 3370 CallInst *New = cast<CallInst>(CI->clone()); 3371 New->setCalledFunction(FIPrintFFn); 3372 B.Insert(New); 3373 return New; 3374 } 3375 3376 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 3377 // 128-bit floating point arguments. 3378 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 3379 !callHasFP128Argument(CI)) { 3380 auto SmallFPrintFFn = 3381 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 3382 Callee->getAttributes()); 3383 CallInst *New = cast<CallInst>(CI->clone()); 3384 New->setCalledFunction(SmallFPrintFFn); 3385 B.Insert(New); 3386 return New; 3387 } 3388 3389 return nullptr; 3390 } 3391 3392 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 3393 optimizeErrorReporting(CI, B, 3); 3394 3395 // Get the element size and count. 3396 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3397 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 3398 if (SizeC && CountC) { 3399 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 3400 3401 // If this is writing zero records, remove the call (it's a noop). 3402 if (Bytes == 0) 3403 return ConstantInt::get(CI->getType(), 0); 3404 3405 // If this is writing one byte, turn it into fputc. 3406 // This optimisation is only valid, if the return value is unused. 3407 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 3408 Value *Char = B.CreateLoad(B.getInt8Ty(), CI->getArgOperand(0), "char"); 3409 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3410 Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari"); 3411 Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI); 3412 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 3413 } 3414 } 3415 3416 return nullptr; 3417 } 3418 3419 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 3420 optimizeErrorReporting(CI, B, 1); 3421 3422 // Don't rewrite fputs to fwrite when optimising for size because fwrite 3423 // requires more arguments and thus extra MOVs are required. 3424 bool OptForSize = CI->getFunction()->hasOptSize() || 3425 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3426 PGSOQueryType::IRPass); 3427 if (OptForSize) 3428 return nullptr; 3429 3430 // We can't optimize if return value is used. 3431 if (!CI->use_empty()) 3432 return nullptr; 3433 3434 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 3435 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 3436 if (!Len) 3437 return nullptr; 3438 3439 // Known to have no uses (see above). 3440 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3441 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3442 return copyFlags( 3443 *CI, 3444 emitFWrite(CI->getArgOperand(0), 3445 ConstantInt::get(SizeTTy, Len - 1), 3446 CI->getArgOperand(1), B, DL, TLI)); 3447 } 3448 3449 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 3450 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3451 if (!CI->use_empty()) 3452 return nullptr; 3453 3454 // Check for a constant string. 3455 // puts("") -> putchar('\n') 3456 StringRef Str; 3457 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) { 3458 // putchar takes an argument of the same type as puts returns, i.e., 3459 // int, which need not be 32 bits wide. 3460 Type *IntTy = CI->getType(); 3461 return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI)); 3462 } 3463 3464 return nullptr; 3465 } 3466 3467 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 3468 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 3469 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 3470 CI->getArgOperand(0), Align(1), 3471 CI->getArgOperand(2))); 3472 } 3473 3474 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 3475 SmallString<20> FloatFuncName = FuncName; 3476 FloatFuncName += 'f'; 3477 return isLibFuncEmittable(M, TLI, FloatFuncName); 3478 } 3479 3480 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 3481 IRBuilderBase &Builder) { 3482 Module *M = CI->getModule(); 3483 LibFunc Func; 3484 Function *Callee = CI->getCalledFunction(); 3485 // Check for string/memory library functions. 3486 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3487 // Make sure we never change the calling convention. 3488 assert( 3489 (ignoreCallingConv(Func) || 3490 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3491 "Optimizing string/memory libcall would change the calling convention"); 3492 switch (Func) { 3493 case LibFunc_strcat: 3494 return optimizeStrCat(CI, Builder); 3495 case LibFunc_strncat: 3496 return optimizeStrNCat(CI, Builder); 3497 case LibFunc_strchr: 3498 return optimizeStrChr(CI, Builder); 3499 case LibFunc_strrchr: 3500 return optimizeStrRChr(CI, Builder); 3501 case LibFunc_strcmp: 3502 return optimizeStrCmp(CI, Builder); 3503 case LibFunc_strncmp: 3504 return optimizeStrNCmp(CI, Builder); 3505 case LibFunc_strcpy: 3506 return optimizeStrCpy(CI, Builder); 3507 case LibFunc_stpcpy: 3508 return optimizeStpCpy(CI, Builder); 3509 case LibFunc_strlcpy: 3510 return optimizeStrLCpy(CI, Builder); 3511 case LibFunc_stpncpy: 3512 return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder); 3513 case LibFunc_strncpy: 3514 return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder); 3515 case LibFunc_strlen: 3516 return optimizeStrLen(CI, Builder); 3517 case LibFunc_strnlen: 3518 return optimizeStrNLen(CI, Builder); 3519 case LibFunc_strpbrk: 3520 return optimizeStrPBrk(CI, Builder); 3521 case LibFunc_strndup: 3522 return optimizeStrNDup(CI, Builder); 3523 case LibFunc_strtol: 3524 case LibFunc_strtod: 3525 case LibFunc_strtof: 3526 case LibFunc_strtoul: 3527 case LibFunc_strtoll: 3528 case LibFunc_strtold: 3529 case LibFunc_strtoull: 3530 return optimizeStrTo(CI, Builder); 3531 case LibFunc_strspn: 3532 return optimizeStrSpn(CI, Builder); 3533 case LibFunc_strcspn: 3534 return optimizeStrCSpn(CI, Builder); 3535 case LibFunc_strstr: 3536 return optimizeStrStr(CI, Builder); 3537 case LibFunc_memchr: 3538 return optimizeMemChr(CI, Builder); 3539 case LibFunc_memrchr: 3540 return optimizeMemRChr(CI, Builder); 3541 case LibFunc_bcmp: 3542 return optimizeBCmp(CI, Builder); 3543 case LibFunc_memcmp: 3544 return optimizeMemCmp(CI, Builder); 3545 case LibFunc_memcpy: 3546 return optimizeMemCpy(CI, Builder); 3547 case LibFunc_memccpy: 3548 return optimizeMemCCpy(CI, Builder); 3549 case LibFunc_mempcpy: 3550 return optimizeMemPCpy(CI, Builder); 3551 case LibFunc_memmove: 3552 return optimizeMemMove(CI, Builder); 3553 case LibFunc_memset: 3554 return optimizeMemSet(CI, Builder); 3555 case LibFunc_realloc: 3556 return optimizeRealloc(CI, Builder); 3557 case LibFunc_wcslen: 3558 return optimizeWcslen(CI, Builder); 3559 case LibFunc_bcopy: 3560 return optimizeBCopy(CI, Builder); 3561 case LibFunc_Znwm: 3562 case LibFunc_ZnwmRKSt9nothrow_t: 3563 case LibFunc_ZnwmSt11align_val_t: 3564 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 3565 case LibFunc_Znam: 3566 case LibFunc_ZnamRKSt9nothrow_t: 3567 case LibFunc_ZnamSt11align_val_t: 3568 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 3569 return optimizeNew(CI, Builder, Func); 3570 default: 3571 break; 3572 } 3573 } 3574 return nullptr; 3575 } 3576 3577 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3578 LibFunc Func, 3579 IRBuilderBase &Builder) { 3580 const Module *M = CI->getModule(); 3581 3582 // Don't optimize calls that require strict floating point semantics. 3583 if (CI->isStrictFP()) 3584 return nullptr; 3585 3586 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 3587 return V; 3588 3589 switch (Func) { 3590 case LibFunc_sinpif: 3591 case LibFunc_sinpi: 3592 return optimizeSinCosPi(CI, /*IsSin*/true, Builder); 3593 case LibFunc_cospif: 3594 case LibFunc_cospi: 3595 return optimizeSinCosPi(CI, /*IsSin*/false, Builder); 3596 case LibFunc_powf: 3597 case LibFunc_pow: 3598 case LibFunc_powl: 3599 return optimizePow(CI, Builder); 3600 case LibFunc_exp2l: 3601 case LibFunc_exp2: 3602 case LibFunc_exp2f: 3603 return optimizeExp2(CI, Builder); 3604 case LibFunc_fabsf: 3605 case LibFunc_fabs: 3606 case LibFunc_fabsl: 3607 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3608 case LibFunc_sqrtf: 3609 case LibFunc_sqrt: 3610 case LibFunc_sqrtl: 3611 return optimizeSqrt(CI, Builder); 3612 case LibFunc_logf: 3613 case LibFunc_log: 3614 case LibFunc_logl: 3615 case LibFunc_log10f: 3616 case LibFunc_log10: 3617 case LibFunc_log10l: 3618 case LibFunc_log1pf: 3619 case LibFunc_log1p: 3620 case LibFunc_log1pl: 3621 case LibFunc_log2f: 3622 case LibFunc_log2: 3623 case LibFunc_log2l: 3624 case LibFunc_logbf: 3625 case LibFunc_logb: 3626 case LibFunc_logbl: 3627 return optimizeLog(CI, Builder); 3628 case LibFunc_tan: 3629 case LibFunc_tanf: 3630 case LibFunc_tanl: 3631 return optimizeTan(CI, Builder); 3632 case LibFunc_ceil: 3633 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3634 case LibFunc_floor: 3635 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3636 case LibFunc_round: 3637 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3638 case LibFunc_roundeven: 3639 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3640 case LibFunc_nearbyint: 3641 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3642 case LibFunc_rint: 3643 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3644 case LibFunc_trunc: 3645 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3646 case LibFunc_acos: 3647 case LibFunc_acosh: 3648 case LibFunc_asin: 3649 case LibFunc_asinh: 3650 case LibFunc_atan: 3651 case LibFunc_atanh: 3652 case LibFunc_cbrt: 3653 case LibFunc_cosh: 3654 case LibFunc_exp: 3655 case LibFunc_exp10: 3656 case LibFunc_expm1: 3657 case LibFunc_cos: 3658 case LibFunc_sin: 3659 case LibFunc_sinh: 3660 case LibFunc_tanh: 3661 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 3662 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 3663 return nullptr; 3664 case LibFunc_copysign: 3665 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 3666 return optimizeBinaryDoubleFP(CI, Builder, TLI); 3667 return nullptr; 3668 case LibFunc_fminf: 3669 case LibFunc_fmin: 3670 case LibFunc_fminl: 3671 case LibFunc_fmaxf: 3672 case LibFunc_fmax: 3673 case LibFunc_fmaxl: 3674 return optimizeFMinFMax(CI, Builder); 3675 case LibFunc_cabs: 3676 case LibFunc_cabsf: 3677 case LibFunc_cabsl: 3678 return optimizeCAbs(CI, Builder); 3679 default: 3680 return nullptr; 3681 } 3682 } 3683 3684 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3685 Module *M = CI->getModule(); 3686 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3687 3688 // TODO: Split out the code below that operates on FP calls so that 3689 // we can all non-FP calls with the StrictFP attribute to be 3690 // optimized. 3691 if (CI->isNoBuiltin()) 3692 return nullptr; 3693 3694 LibFunc Func; 3695 Function *Callee = CI->getCalledFunction(); 3696 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3697 3698 SmallVector<OperandBundleDef, 2> OpBundles; 3699 CI->getOperandBundlesAsDefs(OpBundles); 3700 3701 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3702 Builder.setDefaultOperandBundles(OpBundles); 3703 3704 // Command-line parameter overrides instruction attribute. 3705 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3706 // used by the intrinsic optimizations. 3707 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3708 UnsafeFPShrink = EnableUnsafeFPShrink; 3709 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3710 UnsafeFPShrink = true; 3711 3712 // First, check for intrinsics. 3713 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3714 if (!IsCallingConvC) 3715 return nullptr; 3716 // The FP intrinsics have corresponding constrained versions so we don't 3717 // need to check for the StrictFP attribute here. 3718 switch (II->getIntrinsicID()) { 3719 case Intrinsic::pow: 3720 return optimizePow(CI, Builder); 3721 case Intrinsic::exp2: 3722 return optimizeExp2(CI, Builder); 3723 case Intrinsic::log: 3724 case Intrinsic::log2: 3725 case Intrinsic::log10: 3726 return optimizeLog(CI, Builder); 3727 case Intrinsic::sqrt: 3728 return optimizeSqrt(CI, Builder); 3729 case Intrinsic::memset: 3730 return optimizeMemSet(CI, Builder); 3731 case Intrinsic::memcpy: 3732 return optimizeMemCpy(CI, Builder); 3733 case Intrinsic::memmove: 3734 return optimizeMemMove(CI, Builder); 3735 default: 3736 return nullptr; 3737 } 3738 } 3739 3740 // Also try to simplify calls to fortified library functions. 3741 if (Value *SimplifiedFortifiedCI = 3742 FortifiedSimplifier.optimizeCall(CI, Builder)) 3743 return SimplifiedFortifiedCI; 3744 3745 // Then check for known library functions. 3746 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3747 // We never change the calling convention. 3748 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3749 return nullptr; 3750 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3751 return V; 3752 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3753 return V; 3754 switch (Func) { 3755 case LibFunc_ffs: 3756 case LibFunc_ffsl: 3757 case LibFunc_ffsll: 3758 return optimizeFFS(CI, Builder); 3759 case LibFunc_fls: 3760 case LibFunc_flsl: 3761 case LibFunc_flsll: 3762 return optimizeFls(CI, Builder); 3763 case LibFunc_abs: 3764 case LibFunc_labs: 3765 case LibFunc_llabs: 3766 return optimizeAbs(CI, Builder); 3767 case LibFunc_isdigit: 3768 return optimizeIsDigit(CI, Builder); 3769 case LibFunc_isascii: 3770 return optimizeIsAscii(CI, Builder); 3771 case LibFunc_toascii: 3772 return optimizeToAscii(CI, Builder); 3773 case LibFunc_atoi: 3774 case LibFunc_atol: 3775 case LibFunc_atoll: 3776 return optimizeAtoi(CI, Builder); 3777 case LibFunc_strtol: 3778 case LibFunc_strtoll: 3779 return optimizeStrToInt(CI, Builder, /*AsSigned=*/true); 3780 case LibFunc_strtoul: 3781 case LibFunc_strtoull: 3782 return optimizeStrToInt(CI, Builder, /*AsSigned=*/false); 3783 case LibFunc_printf: 3784 return optimizePrintF(CI, Builder); 3785 case LibFunc_sprintf: 3786 return optimizeSPrintF(CI, Builder); 3787 case LibFunc_snprintf: 3788 return optimizeSnPrintF(CI, Builder); 3789 case LibFunc_fprintf: 3790 return optimizeFPrintF(CI, Builder); 3791 case LibFunc_fwrite: 3792 return optimizeFWrite(CI, Builder); 3793 case LibFunc_fputs: 3794 return optimizeFPuts(CI, Builder); 3795 case LibFunc_puts: 3796 return optimizePuts(CI, Builder); 3797 case LibFunc_perror: 3798 return optimizeErrorReporting(CI, Builder); 3799 case LibFunc_vfprintf: 3800 case LibFunc_fiprintf: 3801 return optimizeErrorReporting(CI, Builder, 0); 3802 default: 3803 return nullptr; 3804 } 3805 } 3806 return nullptr; 3807 } 3808 3809 LibCallSimplifier::LibCallSimplifier( 3810 const DataLayout &DL, const TargetLibraryInfo *TLI, AssumptionCache *AC, 3811 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 3812 ProfileSummaryInfo *PSI, 3813 function_ref<void(Instruction *, Value *)> Replacer, 3814 function_ref<void(Instruction *)> Eraser) 3815 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), AC(AC), ORE(ORE), BFI(BFI), 3816 PSI(PSI), Replacer(Replacer), Eraser(Eraser) {} 3817 3818 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3819 // Indirect through the replacer used in this instance. 3820 Replacer(I, With); 3821 } 3822 3823 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3824 Eraser(I); 3825 } 3826 3827 // TODO: 3828 // Additional cases that we need to add to this file: 3829 // 3830 // cbrt: 3831 // * cbrt(expN(X)) -> expN(x/3) 3832 // * cbrt(sqrt(x)) -> pow(x,1/6) 3833 // * cbrt(cbrt(x)) -> pow(x,1/9) 3834 // 3835 // exp, expf, expl: 3836 // * exp(log(x)) -> x 3837 // 3838 // log, logf, logl: 3839 // * log(exp(x)) -> x 3840 // * log(exp(y)) -> y*log(e) 3841 // * log(exp10(y)) -> y*log(10) 3842 // * log(sqrt(x)) -> 0.5*log(x) 3843 // 3844 // pow, powf, powl: 3845 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3846 // * pow(pow(x,y),z)-> pow(x,y*z) 3847 // 3848 // signbit: 3849 // * signbit(cnst) -> cnst' 3850 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3851 // 3852 // sqrt, sqrtf, sqrtl: 3853 // * sqrt(expN(x)) -> expN(x*0.5) 3854 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3855 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3856 // 3857 3858 //===----------------------------------------------------------------------===// 3859 // Fortified Library Call Optimizations 3860 //===----------------------------------------------------------------------===// 3861 3862 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable( 3863 CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp, 3864 std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) { 3865 // If this function takes a flag argument, the implementation may use it to 3866 // perform extra checks. Don't fold into the non-checking variant. 3867 if (FlagOp) { 3868 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3869 if (!Flag || !Flag->isZero()) 3870 return false; 3871 } 3872 3873 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3874 return true; 3875 3876 if (ConstantInt *ObjSizeCI = 3877 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3878 if (ObjSizeCI->isMinusOne()) 3879 return true; 3880 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3881 if (OnlyLowerUnknownSize) 3882 return false; 3883 if (StrOp) { 3884 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3885 // If the length is 0 we don't know how long it is and so we can't 3886 // remove the check. 3887 if (Len) 3888 annotateDereferenceableBytes(CI, *StrOp, Len); 3889 else 3890 return false; 3891 return ObjSizeCI->getZExtValue() >= Len; 3892 } 3893 3894 if (SizeOp) { 3895 if (ConstantInt *SizeCI = 3896 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3897 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3898 } 3899 } 3900 return false; 3901 } 3902 3903 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3904 IRBuilderBase &B) { 3905 if (isFortifiedCallFoldable(CI, 3, 2)) { 3906 CallInst *NewCI = 3907 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3908 Align(1), CI->getArgOperand(2)); 3909 mergeAttributesAndFlags(NewCI, *CI); 3910 return CI->getArgOperand(0); 3911 } 3912 return nullptr; 3913 } 3914 3915 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3916 IRBuilderBase &B) { 3917 if (isFortifiedCallFoldable(CI, 3, 2)) { 3918 CallInst *NewCI = 3919 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3920 Align(1), CI->getArgOperand(2)); 3921 mergeAttributesAndFlags(NewCI, *CI); 3922 return CI->getArgOperand(0); 3923 } 3924 return nullptr; 3925 } 3926 3927 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3928 IRBuilderBase &B) { 3929 if (isFortifiedCallFoldable(CI, 3, 2)) { 3930 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3931 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3932 CI->getArgOperand(2), Align(1)); 3933 mergeAttributesAndFlags(NewCI, *CI); 3934 return CI->getArgOperand(0); 3935 } 3936 return nullptr; 3937 } 3938 3939 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3940 IRBuilderBase &B) { 3941 const DataLayout &DL = CI->getModule()->getDataLayout(); 3942 if (isFortifiedCallFoldable(CI, 3, 2)) 3943 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3944 CI->getArgOperand(2), B, DL, TLI)) { 3945 return mergeAttributesAndFlags(cast<CallInst>(Call), *CI); 3946 } 3947 return nullptr; 3948 } 3949 3950 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3951 IRBuilderBase &B, 3952 LibFunc Func) { 3953 const DataLayout &DL = CI->getModule()->getDataLayout(); 3954 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3955 *ObjSize = CI->getArgOperand(2); 3956 3957 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3958 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3959 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3960 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3961 } 3962 3963 // If a) we don't have any length information, or b) we know this will 3964 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3965 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3966 // TODO: It might be nice to get a maximum length out of the possible 3967 // string lengths for varying. 3968 if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) { 3969 if (Func == LibFunc_strcpy_chk) 3970 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3971 else 3972 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3973 } 3974 3975 if (OnlyLowerUnknownSize) 3976 return nullptr; 3977 3978 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3979 uint64_t Len = GetStringLength(Src); 3980 if (Len) 3981 annotateDereferenceableBytes(CI, 1, Len); 3982 else 3983 return nullptr; 3984 3985 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3986 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3987 Value *LenV = ConstantInt::get(SizeTTy, Len); 3988 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3989 // If the function was an __stpcpy_chk, and we were able to fold it into 3990 // a __memcpy_chk, we still need to return the correct end pointer. 3991 if (Ret && Func == LibFunc_stpcpy_chk) 3992 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, 3993 ConstantInt::get(SizeTTy, Len - 1)); 3994 return copyFlags(*CI, cast<CallInst>(Ret)); 3995 } 3996 3997 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3998 IRBuilderBase &B) { 3999 if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0)) 4000 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 4001 CI->getModule()->getDataLayout(), TLI)); 4002 return nullptr; 4003 } 4004 4005 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 4006 IRBuilderBase &B, 4007 LibFunc Func) { 4008 if (isFortifiedCallFoldable(CI, 3, 2)) { 4009 if (Func == LibFunc_strncpy_chk) 4010 return copyFlags(*CI, 4011 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4012 CI->getArgOperand(2), B, TLI)); 4013 else 4014 return copyFlags(*CI, 4015 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4016 CI->getArgOperand(2), B, TLI)); 4017 } 4018 4019 return nullptr; 4020 } 4021 4022 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 4023 IRBuilderBase &B) { 4024 if (isFortifiedCallFoldable(CI, 4, 3)) 4025 return copyFlags( 4026 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4027 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 4028 4029 return nullptr; 4030 } 4031 4032 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 4033 IRBuilderBase &B) { 4034 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) { 4035 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 4036 return copyFlags(*CI, 4037 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4038 CI->getArgOperand(4), VariadicArgs, B, TLI)); 4039 } 4040 4041 return nullptr; 4042 } 4043 4044 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 4045 IRBuilderBase &B) { 4046 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) { 4047 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 4048 return copyFlags(*CI, 4049 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4050 VariadicArgs, B, TLI)); 4051 } 4052 4053 return nullptr; 4054 } 4055 4056 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 4057 IRBuilderBase &B) { 4058 if (isFortifiedCallFoldable(CI, 2)) 4059 return copyFlags( 4060 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 4061 4062 return nullptr; 4063 } 4064 4065 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 4066 IRBuilderBase &B) { 4067 if (isFortifiedCallFoldable(CI, 3)) 4068 return copyFlags(*CI, 4069 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 4070 CI->getArgOperand(2), B, TLI)); 4071 4072 return nullptr; 4073 } 4074 4075 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 4076 IRBuilderBase &B) { 4077 if (isFortifiedCallFoldable(CI, 3)) 4078 return copyFlags(*CI, 4079 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 4080 CI->getArgOperand(2), B, TLI)); 4081 4082 return nullptr; 4083 } 4084 4085 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 4086 IRBuilderBase &B) { 4087 if (isFortifiedCallFoldable(CI, 3)) 4088 return copyFlags(*CI, 4089 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4090 CI->getArgOperand(2), B, TLI)); 4091 4092 return nullptr; 4093 } 4094 4095 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 4096 IRBuilderBase &B) { 4097 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) 4098 return copyFlags( 4099 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4100 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 4101 4102 return nullptr; 4103 } 4104 4105 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 4106 IRBuilderBase &B) { 4107 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) 4108 return copyFlags(*CI, 4109 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4110 CI->getArgOperand(4), B, TLI)); 4111 4112 return nullptr; 4113 } 4114 4115 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 4116 IRBuilderBase &Builder) { 4117 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 4118 // Some clang users checked for _chk libcall availability using: 4119 // __has_builtin(__builtin___memcpy_chk) 4120 // When compiling with -fno-builtin, this is always true. 4121 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 4122 // end up with fortified libcalls, which isn't acceptable in a freestanding 4123 // environment which only provides their non-fortified counterparts. 4124 // 4125 // Until we change clang and/or teach external users to check for availability 4126 // differently, disregard the "nobuiltin" attribute and TLI::has. 4127 // 4128 // PR23093. 4129 4130 LibFunc Func; 4131 Function *Callee = CI->getCalledFunction(); 4132 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 4133 4134 SmallVector<OperandBundleDef, 2> OpBundles; 4135 CI->getOperandBundlesAsDefs(OpBundles); 4136 4137 IRBuilderBase::OperandBundlesGuard Guard(Builder); 4138 Builder.setDefaultOperandBundles(OpBundles); 4139 4140 // First, check that this is a known library functions and that the prototype 4141 // is correct. 4142 if (!TLI->getLibFunc(*Callee, Func)) 4143 return nullptr; 4144 4145 // We never change the calling convention. 4146 if (!ignoreCallingConv(Func) && !IsCallingConvC) 4147 return nullptr; 4148 4149 switch (Func) { 4150 case LibFunc_memcpy_chk: 4151 return optimizeMemCpyChk(CI, Builder); 4152 case LibFunc_mempcpy_chk: 4153 return optimizeMemPCpyChk(CI, Builder); 4154 case LibFunc_memmove_chk: 4155 return optimizeMemMoveChk(CI, Builder); 4156 case LibFunc_memset_chk: 4157 return optimizeMemSetChk(CI, Builder); 4158 case LibFunc_stpcpy_chk: 4159 case LibFunc_strcpy_chk: 4160 return optimizeStrpCpyChk(CI, Builder, Func); 4161 case LibFunc_strlen_chk: 4162 return optimizeStrLenChk(CI, Builder); 4163 case LibFunc_stpncpy_chk: 4164 case LibFunc_strncpy_chk: 4165 return optimizeStrpNCpyChk(CI, Builder, Func); 4166 case LibFunc_memccpy_chk: 4167 return optimizeMemCCpyChk(CI, Builder); 4168 case LibFunc_snprintf_chk: 4169 return optimizeSNPrintfChk(CI, Builder); 4170 case LibFunc_sprintf_chk: 4171 return optimizeSPrintfChk(CI, Builder); 4172 case LibFunc_strcat_chk: 4173 return optimizeStrCatChk(CI, Builder); 4174 case LibFunc_strlcat_chk: 4175 return optimizeStrLCat(CI, Builder); 4176 case LibFunc_strncat_chk: 4177 return optimizeStrNCatChk(CI, Builder); 4178 case LibFunc_strlcpy_chk: 4179 return optimizeStrLCpyChk(CI, Builder); 4180 case LibFunc_vsnprintf_chk: 4181 return optimizeVSNPrintfChk(CI, Builder); 4182 case LibFunc_vsprintf_chk: 4183 return optimizeVSPrintfChk(CI, Builder); 4184 default: 4185 break; 4186 } 4187 return nullptr; 4188 } 4189 4190 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 4191 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 4192 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 4193