xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp (revision 77013d11e6483b970af25e13c9b892075742f7e5)
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Transforms/Utils/BuildLibCalls.h"
39 #include "llvm/Transforms/Utils/SizeOpts.h"
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 static cl::opt<bool>
45     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
46                          cl::init(false),
47                          cl::desc("Enable unsafe double to float "
48                                   "shrinking for math lib calls"));
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
54 static bool ignoreCallingConv(LibFunc Func) {
55   return Func == LibFunc_abs || Func == LibFunc_labs ||
56          Func == LibFunc_llabs || Func == LibFunc_strlen;
57 }
58 
59 static bool isCallingConvCCompatible(CallInst *CI) {
60   switch(CI->getCallingConv()) {
61   default:
62     return false;
63   case llvm::CallingConv::C:
64     return true;
65   case llvm::CallingConv::ARM_APCS:
66   case llvm::CallingConv::ARM_AAPCS:
67   case llvm::CallingConv::ARM_AAPCS_VFP: {
68 
69     // The iOS ABI diverges from the standard in some cases, so for now don't
70     // try to simplify those calls.
71     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
72       return false;
73 
74     auto *FuncTy = CI->getFunctionType();
75 
76     if (!FuncTy->getReturnType()->isPointerTy() &&
77         !FuncTy->getReturnType()->isIntegerTy() &&
78         !FuncTy->getReturnType()->isVoidTy())
79       return false;
80 
81     for (auto Param : FuncTy->params()) {
82       if (!Param->isPointerTy() && !Param->isIntegerTy())
83         return false;
84     }
85     return true;
86   }
87   }
88   return false;
89 }
90 
91 /// Return true if it is only used in equality comparisons with With.
92 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
93   for (User *U : V->users()) {
94     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
95       if (IC->isEquality() && IC->getOperand(1) == With)
96         continue;
97     // Unknown instruction.
98     return false;
99   }
100   return true;
101 }
102 
103 static bool callHasFloatingPointArgument(const CallInst *CI) {
104   return any_of(CI->operands(), [](const Use &OI) {
105     return OI->getType()->isFloatingPointTy();
106   });
107 }
108 
109 static bool callHasFP128Argument(const CallInst *CI) {
110   return any_of(CI->operands(), [](const Use &OI) {
111     return OI->getType()->isFP128Ty();
112   });
113 }
114 
115 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
116   if (Base < 2 || Base > 36)
117     // handle special zero base
118     if (Base != 0)
119       return nullptr;
120 
121   char *End;
122   std::string nptr = Str.str();
123   errno = 0;
124   long long int Result = strtoll(nptr.c_str(), &End, Base);
125   if (errno)
126     return nullptr;
127 
128   // if we assume all possible target locales are ASCII supersets,
129   // then if strtoll successfully parses a number on the host,
130   // it will also successfully parse the same way on the target
131   if (*End != '\0')
132     return nullptr;
133 
134   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
135     return nullptr;
136 
137   return ConstantInt::get(CI->getType(), Result);
138 }
139 
140 static bool isOnlyUsedInComparisonWithZero(Value *V) {
141   for (User *U : V->users()) {
142     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
143       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
144         if (C->isNullValue())
145           continue;
146     // Unknown instruction.
147     return false;
148   }
149   return true;
150 }
151 
152 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
153                                  const DataLayout &DL) {
154   if (!isOnlyUsedInComparisonWithZero(CI))
155     return false;
156 
157   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
158     return false;
159 
160   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
161     return false;
162 
163   return true;
164 }
165 
166 static void annotateDereferenceableBytes(CallInst *CI,
167                                          ArrayRef<unsigned> ArgNos,
168                                          uint64_t DereferenceableBytes) {
169   const Function *F = CI->getCaller();
170   if (!F)
171     return;
172   for (unsigned ArgNo : ArgNos) {
173     uint64_t DerefBytes = DereferenceableBytes;
174     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
175     if (!llvm::NullPointerIsDefined(F, AS) ||
176         CI->paramHasAttr(ArgNo, Attribute::NonNull))
177       DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
178                                 ArgNo + AttributeList::FirstArgIndex),
179                             DereferenceableBytes);
180 
181     if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
182         DerefBytes) {
183       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
184       if (!llvm::NullPointerIsDefined(F, AS) ||
185           CI->paramHasAttr(ArgNo, Attribute::NonNull))
186         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
187       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
188                                   CI->getContext(), DerefBytes));
189     }
190   }
191 }
192 
193 static void annotateNonNullBasedOnAccess(CallInst *CI,
194                                          ArrayRef<unsigned> ArgNos) {
195   Function *F = CI->getCaller();
196   if (!F)
197     return;
198 
199   for (unsigned ArgNo : ArgNos) {
200     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
201       continue;
202     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
203     if (llvm::NullPointerIsDefined(F, AS))
204       continue;
205 
206     CI->addParamAttr(ArgNo, Attribute::NonNull);
207     annotateDereferenceableBytes(CI, ArgNo, 1);
208   }
209 }
210 
211 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
212                                Value *Size, const DataLayout &DL) {
213   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
214     annotateNonNullBasedOnAccess(CI, ArgNos);
215     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
216   } else if (isKnownNonZero(Size, DL)) {
217     annotateNonNullBasedOnAccess(CI, ArgNos);
218     const APInt *X, *Y;
219     uint64_t DerefMin = 1;
220     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
221       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
222       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
223     }
224   }
225 }
226 
227 //===----------------------------------------------------------------------===//
228 // String and Memory Library Call Optimizations
229 //===----------------------------------------------------------------------===//
230 
231 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
232   // Extract some information from the instruction
233   Value *Dst = CI->getArgOperand(0);
234   Value *Src = CI->getArgOperand(1);
235   annotateNonNullBasedOnAccess(CI, {0, 1});
236 
237   // See if we can get the length of the input string.
238   uint64_t Len = GetStringLength(Src);
239   if (Len)
240     annotateDereferenceableBytes(CI, 1, Len);
241   else
242     return nullptr;
243   --Len; // Unbias length.
244 
245   // Handle the simple, do-nothing case: strcat(x, "") -> x
246   if (Len == 0)
247     return Dst;
248 
249   return emitStrLenMemCpy(Src, Dst, Len, B);
250 }
251 
252 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
253                                            IRBuilderBase &B) {
254   // We need to find the end of the destination string.  That's where the
255   // memory is to be moved to. We just generate a call to strlen.
256   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
257   if (!DstLen)
258     return nullptr;
259 
260   // Now that we have the destination's length, we must index into the
261   // destination's pointer to get the actual memcpy destination (end of
262   // the string .. we're concatenating).
263   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
264 
265   // We have enough information to now generate the memcpy call to do the
266   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
267   B.CreateMemCpy(
268       CpyDst, Align(1), Src, Align(1),
269       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
270   return Dst;
271 }
272 
273 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
274   // Extract some information from the instruction.
275   Value *Dst = CI->getArgOperand(0);
276   Value *Src = CI->getArgOperand(1);
277   Value *Size = CI->getArgOperand(2);
278   uint64_t Len;
279   annotateNonNullBasedOnAccess(CI, 0);
280   if (isKnownNonZero(Size, DL))
281     annotateNonNullBasedOnAccess(CI, 1);
282 
283   // We don't do anything if length is not constant.
284   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
285   if (LengthArg) {
286     Len = LengthArg->getZExtValue();
287     // strncat(x, c, 0) -> x
288     if (!Len)
289       return Dst;
290   } else {
291     return nullptr;
292   }
293 
294   // See if we can get the length of the input string.
295   uint64_t SrcLen = GetStringLength(Src);
296   if (SrcLen) {
297     annotateDereferenceableBytes(CI, 1, SrcLen);
298     --SrcLen; // Unbias length.
299   } else {
300     return nullptr;
301   }
302 
303   // strncat(x, "", c) -> x
304   if (SrcLen == 0)
305     return Dst;
306 
307   // We don't optimize this case.
308   if (Len < SrcLen)
309     return nullptr;
310 
311   // strncat(x, s, c) -> strcat(x, s)
312   // s is constant so the strcat can be optimized further.
313   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
314 }
315 
316 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
317   Function *Callee = CI->getCalledFunction();
318   FunctionType *FT = Callee->getFunctionType();
319   Value *SrcStr = CI->getArgOperand(0);
320   annotateNonNullBasedOnAccess(CI, 0);
321 
322   // If the second operand is non-constant, see if we can compute the length
323   // of the input string and turn this into memchr.
324   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
325   if (!CharC) {
326     uint64_t Len = GetStringLength(SrcStr);
327     if (Len)
328       annotateDereferenceableBytes(CI, 0, Len);
329     else
330       return nullptr;
331     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
332       return nullptr;
333 
334     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
335                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
336                       B, DL, TLI);
337   }
338 
339   // Otherwise, the character is a constant, see if the first argument is
340   // a string literal.  If so, we can constant fold.
341   StringRef Str;
342   if (!getConstantStringInfo(SrcStr, Str)) {
343     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
344       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
345         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
346     return nullptr;
347   }
348 
349   // Compute the offset, make sure to handle the case when we're searching for
350   // zero (a weird way to spell strlen).
351   size_t I = (0xFF & CharC->getSExtValue()) == 0
352                  ? Str.size()
353                  : Str.find(CharC->getSExtValue());
354   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
355     return Constant::getNullValue(CI->getType());
356 
357   // strchr(s+n,c)  -> gep(s+n+i,c)
358   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
359 }
360 
361 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
362   Value *SrcStr = CI->getArgOperand(0);
363   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
364   annotateNonNullBasedOnAccess(CI, 0);
365 
366   // Cannot fold anything if we're not looking for a constant.
367   if (!CharC)
368     return nullptr;
369 
370   StringRef Str;
371   if (!getConstantStringInfo(SrcStr, Str)) {
372     // strrchr(s, 0) -> strchr(s, 0)
373     if (CharC->isZero())
374       return emitStrChr(SrcStr, '\0', B, TLI);
375     return nullptr;
376   }
377 
378   // Compute the offset.
379   size_t I = (0xFF & CharC->getSExtValue()) == 0
380                  ? Str.size()
381                  : Str.rfind(CharC->getSExtValue());
382   if (I == StringRef::npos) // Didn't find the char. Return null.
383     return Constant::getNullValue(CI->getType());
384 
385   // strrchr(s+n,c) -> gep(s+n+i,c)
386   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
387 }
388 
389 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
390   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
391   if (Str1P == Str2P) // strcmp(x,x)  -> 0
392     return ConstantInt::get(CI->getType(), 0);
393 
394   StringRef Str1, Str2;
395   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
396   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
397 
398   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
399   if (HasStr1 && HasStr2)
400     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
401 
402   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
403     return B.CreateNeg(B.CreateZExt(
404         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
405 
406   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
407     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
408                         CI->getType());
409 
410   // strcmp(P, "x") -> memcmp(P, "x", 2)
411   uint64_t Len1 = GetStringLength(Str1P);
412   if (Len1)
413     annotateDereferenceableBytes(CI, 0, Len1);
414   uint64_t Len2 = GetStringLength(Str2P);
415   if (Len2)
416     annotateDereferenceableBytes(CI, 1, Len2);
417 
418   if (Len1 && Len2) {
419     return emitMemCmp(Str1P, Str2P,
420                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
421                                        std::min(Len1, Len2)),
422                       B, DL, TLI);
423   }
424 
425   // strcmp to memcmp
426   if (!HasStr1 && HasStr2) {
427     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
428       return emitMemCmp(
429           Str1P, Str2P,
430           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
431           TLI);
432   } else if (HasStr1 && !HasStr2) {
433     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
434       return emitMemCmp(
435           Str1P, Str2P,
436           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
437           TLI);
438   }
439 
440   annotateNonNullBasedOnAccess(CI, {0, 1});
441   return nullptr;
442 }
443 
444 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
445   Value *Str1P = CI->getArgOperand(0);
446   Value *Str2P = CI->getArgOperand(1);
447   Value *Size = CI->getArgOperand(2);
448   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
449     return ConstantInt::get(CI->getType(), 0);
450 
451   if (isKnownNonZero(Size, DL))
452     annotateNonNullBasedOnAccess(CI, {0, 1});
453   // Get the length argument if it is constant.
454   uint64_t Length;
455   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
456     Length = LengthArg->getZExtValue();
457   else
458     return nullptr;
459 
460   if (Length == 0) // strncmp(x,y,0)   -> 0
461     return ConstantInt::get(CI->getType(), 0);
462 
463   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
464     return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
465 
466   StringRef Str1, Str2;
467   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
468   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
469 
470   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
471   if (HasStr1 && HasStr2) {
472     StringRef SubStr1 = Str1.substr(0, Length);
473     StringRef SubStr2 = Str2.substr(0, Length);
474     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
475   }
476 
477   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
478     return B.CreateNeg(B.CreateZExt(
479         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
480 
481   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
482     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
483                         CI->getType());
484 
485   uint64_t Len1 = GetStringLength(Str1P);
486   if (Len1)
487     annotateDereferenceableBytes(CI, 0, Len1);
488   uint64_t Len2 = GetStringLength(Str2P);
489   if (Len2)
490     annotateDereferenceableBytes(CI, 1, Len2);
491 
492   // strncmp to memcmp
493   if (!HasStr1 && HasStr2) {
494     Len2 = std::min(Len2, Length);
495     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
496       return emitMemCmp(
497           Str1P, Str2P,
498           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
499           TLI);
500   } else if (HasStr1 && !HasStr2) {
501     Len1 = std::min(Len1, Length);
502     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
503       return emitMemCmp(
504           Str1P, Str2P,
505           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
506           TLI);
507   }
508 
509   return nullptr;
510 }
511 
512 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
513   Value *Src = CI->getArgOperand(0);
514   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
515   uint64_t SrcLen = GetStringLength(Src);
516   if (SrcLen && Size) {
517     annotateDereferenceableBytes(CI, 0, SrcLen);
518     if (SrcLen <= Size->getZExtValue() + 1)
519       return emitStrDup(Src, B, TLI);
520   }
521 
522   return nullptr;
523 }
524 
525 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
526   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
527   if (Dst == Src) // strcpy(x,x)  -> x
528     return Src;
529 
530   annotateNonNullBasedOnAccess(CI, {0, 1});
531   // See if we can get the length of the input string.
532   uint64_t Len = GetStringLength(Src);
533   if (Len)
534     annotateDereferenceableBytes(CI, 1, Len);
535   else
536     return nullptr;
537 
538   // We have enough information to now generate the memcpy call to do the
539   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
540   CallInst *NewCI =
541       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
542                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
543   NewCI->setAttributes(CI->getAttributes());
544   NewCI->removeAttributes(AttributeList::ReturnIndex,
545                           AttributeFuncs::typeIncompatible(NewCI->getType()));
546   return Dst;
547 }
548 
549 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
550   Function *Callee = CI->getCalledFunction();
551   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
552   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
553     Value *StrLen = emitStrLen(Src, B, DL, TLI);
554     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
555   }
556 
557   // See if we can get the length of the input string.
558   uint64_t Len = GetStringLength(Src);
559   if (Len)
560     annotateDereferenceableBytes(CI, 1, Len);
561   else
562     return nullptr;
563 
564   Type *PT = Callee->getFunctionType()->getParamType(0);
565   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
566   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
567                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
568 
569   // We have enough information to now generate the memcpy call to do the
570   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
571   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
572   NewCI->setAttributes(CI->getAttributes());
573   NewCI->removeAttributes(AttributeList::ReturnIndex,
574                           AttributeFuncs::typeIncompatible(NewCI->getType()));
575   return DstEnd;
576 }
577 
578 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
579   Function *Callee = CI->getCalledFunction();
580   Value *Dst = CI->getArgOperand(0);
581   Value *Src = CI->getArgOperand(1);
582   Value *Size = CI->getArgOperand(2);
583   annotateNonNullBasedOnAccess(CI, 0);
584   if (isKnownNonZero(Size, DL))
585     annotateNonNullBasedOnAccess(CI, 1);
586 
587   uint64_t Len;
588   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
589     Len = LengthArg->getZExtValue();
590   else
591     return nullptr;
592 
593   // strncpy(x, y, 0) -> x
594   if (Len == 0)
595     return Dst;
596 
597   // See if we can get the length of the input string.
598   uint64_t SrcLen = GetStringLength(Src);
599   if (SrcLen) {
600     annotateDereferenceableBytes(CI, 1, SrcLen);
601     --SrcLen; // Unbias length.
602   } else {
603     return nullptr;
604   }
605 
606   if (SrcLen == 0) {
607     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
608     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1));
609     AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
610     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
611         CI->getContext(), 0, ArgAttrs));
612     return Dst;
613   }
614 
615   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
616   if (Len > SrcLen + 1) {
617     if (Len <= 128) {
618       StringRef Str;
619       if (!getConstantStringInfo(Src, Str))
620         return nullptr;
621       std::string SrcStr = Str.str();
622       SrcStr.resize(Len, '\0');
623       Src = B.CreateGlobalString(SrcStr, "str");
624     } else {
625       return nullptr;
626     }
627   }
628 
629   Type *PT = Callee->getFunctionType()->getParamType(0);
630   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
631   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
632                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
633   NewCI->setAttributes(CI->getAttributes());
634   NewCI->removeAttributes(AttributeList::ReturnIndex,
635                           AttributeFuncs::typeIncompatible(NewCI->getType()));
636   return Dst;
637 }
638 
639 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
640                                                unsigned CharSize) {
641   Value *Src = CI->getArgOperand(0);
642 
643   // Constant folding: strlen("xyz") -> 3
644   if (uint64_t Len = GetStringLength(Src, CharSize))
645     return ConstantInt::get(CI->getType(), Len - 1);
646 
647   // If s is a constant pointer pointing to a string literal, we can fold
648   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
649   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
650   // We only try to simplify strlen when the pointer s points to an array
651   // of i8. Otherwise, we would need to scale the offset x before doing the
652   // subtraction. This will make the optimization more complex, and it's not
653   // very useful because calling strlen for a pointer of other types is
654   // very uncommon.
655   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
656     if (!isGEPBasedOnPointerToString(GEP, CharSize))
657       return nullptr;
658 
659     ConstantDataArraySlice Slice;
660     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
661       uint64_t NullTermIdx;
662       if (Slice.Array == nullptr) {
663         NullTermIdx = 0;
664       } else {
665         NullTermIdx = ~((uint64_t)0);
666         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
667           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
668             NullTermIdx = I;
669             break;
670           }
671         }
672         // If the string does not have '\0', leave it to strlen to compute
673         // its length.
674         if (NullTermIdx == ~((uint64_t)0))
675           return nullptr;
676       }
677 
678       Value *Offset = GEP->getOperand(2);
679       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
680       Known.Zero.flipAllBits();
681       uint64_t ArrSize =
682              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
683 
684       // KnownZero's bits are flipped, so zeros in KnownZero now represent
685       // bits known to be zeros in Offset, and ones in KnowZero represent
686       // bits unknown in Offset. Therefore, Offset is known to be in range
687       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
688       // unsigned-less-than NullTermIdx.
689       //
690       // If Offset is not provably in the range [0, NullTermIdx], we can still
691       // optimize if we can prove that the program has undefined behavior when
692       // Offset is outside that range. That is the case when GEP->getOperand(0)
693       // is a pointer to an object whose memory extent is NullTermIdx+1.
694       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
695           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
696            NullTermIdx == ArrSize - 1)) {
697         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
698         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
699                            Offset);
700       }
701     }
702   }
703 
704   // strlen(x?"foo":"bars") --> x ? 3 : 4
705   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
706     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
707     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
708     if (LenTrue && LenFalse) {
709       ORE.emit([&]() {
710         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
711                << "folded strlen(select) to select of constants";
712       });
713       return B.CreateSelect(SI->getCondition(),
714                             ConstantInt::get(CI->getType(), LenTrue - 1),
715                             ConstantInt::get(CI->getType(), LenFalse - 1));
716     }
717   }
718 
719   // strlen(x) != 0 --> *x != 0
720   // strlen(x) == 0 --> *x == 0
721   if (isOnlyUsedInZeroEqualityComparison(CI))
722     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
723                         CI->getType());
724 
725   return nullptr;
726 }
727 
728 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
729   if (Value *V = optimizeStringLength(CI, B, 8))
730     return V;
731   annotateNonNullBasedOnAccess(CI, 0);
732   return nullptr;
733 }
734 
735 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
736   Module &M = *CI->getModule();
737   unsigned WCharSize = TLI->getWCharSize(M) * 8;
738   // We cannot perform this optimization without wchar_size metadata.
739   if (WCharSize == 0)
740     return nullptr;
741 
742   return optimizeStringLength(CI, B, WCharSize);
743 }
744 
745 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
746   StringRef S1, S2;
747   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
748   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
749 
750   // strpbrk(s, "") -> nullptr
751   // strpbrk("", s) -> nullptr
752   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
753     return Constant::getNullValue(CI->getType());
754 
755   // Constant folding.
756   if (HasS1 && HasS2) {
757     size_t I = S1.find_first_of(S2);
758     if (I == StringRef::npos) // No match.
759       return Constant::getNullValue(CI->getType());
760 
761     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
762                        "strpbrk");
763   }
764 
765   // strpbrk(s, "a") -> strchr(s, 'a')
766   if (HasS2 && S2.size() == 1)
767     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
768 
769   return nullptr;
770 }
771 
772 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
773   Value *EndPtr = CI->getArgOperand(1);
774   if (isa<ConstantPointerNull>(EndPtr)) {
775     // With a null EndPtr, this function won't capture the main argument.
776     // It would be readonly too, except that it still may write to errno.
777     CI->addParamAttr(0, Attribute::NoCapture);
778   }
779 
780   return nullptr;
781 }
782 
783 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
784   StringRef S1, S2;
785   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
786   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
787 
788   // strspn(s, "") -> 0
789   // strspn("", s) -> 0
790   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
791     return Constant::getNullValue(CI->getType());
792 
793   // Constant folding.
794   if (HasS1 && HasS2) {
795     size_t Pos = S1.find_first_not_of(S2);
796     if (Pos == StringRef::npos)
797       Pos = S1.size();
798     return ConstantInt::get(CI->getType(), Pos);
799   }
800 
801   return nullptr;
802 }
803 
804 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
805   StringRef S1, S2;
806   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
807   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
808 
809   // strcspn("", s) -> 0
810   if (HasS1 && S1.empty())
811     return Constant::getNullValue(CI->getType());
812 
813   // Constant folding.
814   if (HasS1 && HasS2) {
815     size_t Pos = S1.find_first_of(S2);
816     if (Pos == StringRef::npos)
817       Pos = S1.size();
818     return ConstantInt::get(CI->getType(), Pos);
819   }
820 
821   // strcspn(s, "") -> strlen(s)
822   if (HasS2 && S2.empty())
823     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
824 
825   return nullptr;
826 }
827 
828 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
829   // fold strstr(x, x) -> x.
830   if (CI->getArgOperand(0) == CI->getArgOperand(1))
831     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
832 
833   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
834   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
835     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
836     if (!StrLen)
837       return nullptr;
838     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
839                                  StrLen, B, DL, TLI);
840     if (!StrNCmp)
841       return nullptr;
842     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
843       ICmpInst *Old = cast<ICmpInst>(*UI++);
844       Value *Cmp =
845           B.CreateICmp(Old->getPredicate(), StrNCmp,
846                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
847       replaceAllUsesWith(Old, Cmp);
848     }
849     return CI;
850   }
851 
852   // See if either input string is a constant string.
853   StringRef SearchStr, ToFindStr;
854   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
855   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
856 
857   // fold strstr(x, "") -> x.
858   if (HasStr2 && ToFindStr.empty())
859     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
860 
861   // If both strings are known, constant fold it.
862   if (HasStr1 && HasStr2) {
863     size_t Offset = SearchStr.find(ToFindStr);
864 
865     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
866       return Constant::getNullValue(CI->getType());
867 
868     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
869     Value *Result = castToCStr(CI->getArgOperand(0), B);
870     Result =
871         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
872     return B.CreateBitCast(Result, CI->getType());
873   }
874 
875   // fold strstr(x, "y") -> strchr(x, 'y').
876   if (HasStr2 && ToFindStr.size() == 1) {
877     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
878     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
879   }
880 
881   annotateNonNullBasedOnAccess(CI, {0, 1});
882   return nullptr;
883 }
884 
885 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
886   if (isKnownNonZero(CI->getOperand(2), DL))
887     annotateNonNullBasedOnAccess(CI, 0);
888   return nullptr;
889 }
890 
891 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
892   Value *SrcStr = CI->getArgOperand(0);
893   Value *Size = CI->getArgOperand(2);
894   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
895   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
896   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
897 
898   // memchr(x, y, 0) -> null
899   if (LenC) {
900     if (LenC->isZero())
901       return Constant::getNullValue(CI->getType());
902   } else {
903     // From now on we need at least constant length and string.
904     return nullptr;
905   }
906 
907   StringRef Str;
908   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
909     return nullptr;
910 
911   // Truncate the string to LenC. If Str is smaller than LenC we will still only
912   // scan the string, as reading past the end of it is undefined and we can just
913   // return null if we don't find the char.
914   Str = Str.substr(0, LenC->getZExtValue());
915 
916   // If the char is variable but the input str and length are not we can turn
917   // this memchr call into a simple bit field test. Of course this only works
918   // when the return value is only checked against null.
919   //
920   // It would be really nice to reuse switch lowering here but we can't change
921   // the CFG at this point.
922   //
923   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
924   // != 0
925   //   after bounds check.
926   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
927     unsigned char Max =
928         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
929                           reinterpret_cast<const unsigned char *>(Str.end()));
930 
931     // Make sure the bit field we're about to create fits in a register on the
932     // target.
933     // FIXME: On a 64 bit architecture this prevents us from using the
934     // interesting range of alpha ascii chars. We could do better by emitting
935     // two bitfields or shifting the range by 64 if no lower chars are used.
936     if (!DL.fitsInLegalInteger(Max + 1))
937       return nullptr;
938 
939     // For the bit field use a power-of-2 type with at least 8 bits to avoid
940     // creating unnecessary illegal types.
941     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
942 
943     // Now build the bit field.
944     APInt Bitfield(Width, 0);
945     for (char C : Str)
946       Bitfield.setBit((unsigned char)C);
947     Value *BitfieldC = B.getInt(Bitfield);
948 
949     // Adjust width of "C" to the bitfield width, then mask off the high bits.
950     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
951     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
952 
953     // First check that the bit field access is within bounds.
954     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
955                                  "memchr.bounds");
956 
957     // Create code that checks if the given bit is set in the field.
958     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
959     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
960 
961     // Finally merge both checks and cast to pointer type. The inttoptr
962     // implicitly zexts the i1 to intptr type.
963     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
964   }
965 
966   // Check if all arguments are constants.  If so, we can constant fold.
967   if (!CharC)
968     return nullptr;
969 
970   // Compute the offset.
971   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
972   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
973     return Constant::getNullValue(CI->getType());
974 
975   // memchr(s+n,c,l) -> gep(s+n+i,c)
976   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
977 }
978 
979 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
980                                          uint64_t Len, IRBuilderBase &B,
981                                          const DataLayout &DL) {
982   if (Len == 0) // memcmp(s1,s2,0) -> 0
983     return Constant::getNullValue(CI->getType());
984 
985   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
986   if (Len == 1) {
987     Value *LHSV =
988         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
989                      CI->getType(), "lhsv");
990     Value *RHSV =
991         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
992                      CI->getType(), "rhsv");
993     return B.CreateSub(LHSV, RHSV, "chardiff");
994   }
995 
996   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
997   // TODO: The case where both inputs are constants does not need to be limited
998   // to legal integers or equality comparison. See block below this.
999   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1000     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1001     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1002 
1003     // First, see if we can fold either argument to a constant.
1004     Value *LHSV = nullptr;
1005     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1006       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1007       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1008     }
1009     Value *RHSV = nullptr;
1010     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1011       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1012       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1013     }
1014 
1015     // Don't generate unaligned loads. If either source is constant data,
1016     // alignment doesn't matter for that source because there is no load.
1017     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1018         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1019       if (!LHSV) {
1020         Type *LHSPtrTy =
1021             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1022         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1023       }
1024       if (!RHSV) {
1025         Type *RHSPtrTy =
1026             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1027         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1028       }
1029       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1030     }
1031   }
1032 
1033   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1034   // TODO: This is limited to i8 arrays.
1035   StringRef LHSStr, RHSStr;
1036   if (getConstantStringInfo(LHS, LHSStr) &&
1037       getConstantStringInfo(RHS, RHSStr)) {
1038     // Make sure we're not reading out-of-bounds memory.
1039     if (Len > LHSStr.size() || Len > RHSStr.size())
1040       return nullptr;
1041     // Fold the memcmp and normalize the result.  This way we get consistent
1042     // results across multiple platforms.
1043     uint64_t Ret = 0;
1044     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1045     if (Cmp < 0)
1046       Ret = -1;
1047     else if (Cmp > 0)
1048       Ret = 1;
1049     return ConstantInt::get(CI->getType(), Ret);
1050   }
1051 
1052   return nullptr;
1053 }
1054 
1055 // Most simplifications for memcmp also apply to bcmp.
1056 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1057                                                    IRBuilderBase &B) {
1058   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1059   Value *Size = CI->getArgOperand(2);
1060 
1061   if (LHS == RHS) // memcmp(s,s,x) -> 0
1062     return Constant::getNullValue(CI->getType());
1063 
1064   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1065   // Handle constant lengths.
1066   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1067   if (!LenC)
1068     return nullptr;
1069 
1070   // memcmp(d,s,0) -> 0
1071   if (LenC->getZExtValue() == 0)
1072     return Constant::getNullValue(CI->getType());
1073 
1074   if (Value *Res =
1075           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1076     return Res;
1077   return nullptr;
1078 }
1079 
1080 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1081   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1082     return V;
1083 
1084   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1085   // bcmp can be more efficient than memcmp because it only has to know that
1086   // there is a difference, not how different one is to the other.
1087   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1088     Value *LHS = CI->getArgOperand(0);
1089     Value *RHS = CI->getArgOperand(1);
1090     Value *Size = CI->getArgOperand(2);
1091     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1092   }
1093 
1094   return nullptr;
1095 }
1096 
1097 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1098   return optimizeMemCmpBCmpCommon(CI, B);
1099 }
1100 
1101 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1102   Value *Size = CI->getArgOperand(2);
1103   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1104   if (isa<IntrinsicInst>(CI))
1105     return nullptr;
1106 
1107   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1108   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1109                                    CI->getArgOperand(1), Align(1), Size);
1110   NewCI->setAttributes(CI->getAttributes());
1111   NewCI->removeAttributes(AttributeList::ReturnIndex,
1112                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1113   return CI->getArgOperand(0);
1114 }
1115 
1116 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1117   Value *Dst = CI->getArgOperand(0);
1118   Value *Src = CI->getArgOperand(1);
1119   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1120   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1121   StringRef SrcStr;
1122   if (CI->use_empty() && Dst == Src)
1123     return Dst;
1124   // memccpy(d, s, c, 0) -> nullptr
1125   if (N) {
1126     if (N->isNullValue())
1127       return Constant::getNullValue(CI->getType());
1128     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1129                                /*TrimAtNul=*/false) ||
1130         !StopChar)
1131       return nullptr;
1132   } else {
1133     return nullptr;
1134   }
1135 
1136   // Wrap arg 'c' of type int to char
1137   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1138   if (Pos == StringRef::npos) {
1139     if (N->getZExtValue() <= SrcStr.size()) {
1140       B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3));
1141       return Constant::getNullValue(CI->getType());
1142     }
1143     return nullptr;
1144   }
1145 
1146   Value *NewN =
1147       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1148   // memccpy -> llvm.memcpy
1149   B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN);
1150   return Pos + 1 <= N->getZExtValue()
1151              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1152              : Constant::getNullValue(CI->getType());
1153 }
1154 
1155 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1156   Value *Dst = CI->getArgOperand(0);
1157   Value *N = CI->getArgOperand(2);
1158   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1159   CallInst *NewCI =
1160       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1161   // Propagate attributes, but memcpy has no return value, so make sure that
1162   // any return attributes are compliant.
1163   // TODO: Attach return value attributes to the 1st operand to preserve them?
1164   NewCI->setAttributes(CI->getAttributes());
1165   NewCI->removeAttributes(AttributeList::ReturnIndex,
1166                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1167   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1168 }
1169 
1170 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1171   Value *Size = CI->getArgOperand(2);
1172   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1173   if (isa<IntrinsicInst>(CI))
1174     return nullptr;
1175 
1176   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1177   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1178                                     CI->getArgOperand(1), Align(1), Size);
1179   NewCI->setAttributes(CI->getAttributes());
1180   NewCI->removeAttributes(AttributeList::ReturnIndex,
1181                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1182   return CI->getArgOperand(0);
1183 }
1184 
1185 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1186 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) {
1187   // This has to be a memset of zeros (bzero).
1188   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1189   if (!FillValue || FillValue->getZExtValue() != 0)
1190     return nullptr;
1191 
1192   // TODO: We should handle the case where the malloc has more than one use.
1193   // This is necessary to optimize common patterns such as when the result of
1194   // the malloc is checked against null or when a memset intrinsic is used in
1195   // place of a memset library call.
1196   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1197   if (!Malloc || !Malloc->hasOneUse())
1198     return nullptr;
1199 
1200   // Is the inner call really malloc()?
1201   Function *InnerCallee = Malloc->getCalledFunction();
1202   if (!InnerCallee)
1203     return nullptr;
1204 
1205   LibFunc Func;
1206   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1207       Func != LibFunc_malloc)
1208     return nullptr;
1209 
1210   // The memset must cover the same number of bytes that are malloc'd.
1211   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1212     return nullptr;
1213 
1214   // Replace the malloc with a calloc. We need the data layout to know what the
1215   // actual size of a 'size_t' parameter is.
1216   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1217   const DataLayout &DL = Malloc->getModule()->getDataLayout();
1218   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1219   if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1220                                  Malloc->getArgOperand(0),
1221                                  Malloc->getAttributes(), B, *TLI)) {
1222     substituteInParent(Malloc, Calloc);
1223     return Calloc;
1224   }
1225 
1226   return nullptr;
1227 }
1228 
1229 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1230   Value *Size = CI->getArgOperand(2);
1231   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1232   if (isa<IntrinsicInst>(CI))
1233     return nullptr;
1234 
1235   if (auto *Calloc = foldMallocMemset(CI, B))
1236     return Calloc;
1237 
1238   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1239   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1240   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1241   NewCI->setAttributes(CI->getAttributes());
1242   NewCI->removeAttributes(AttributeList::ReturnIndex,
1243                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1244   return CI->getArgOperand(0);
1245 }
1246 
1247 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1248   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1249     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1250 
1251   return nullptr;
1252 }
1253 
1254 //===----------------------------------------------------------------------===//
1255 // Math Library Optimizations
1256 //===----------------------------------------------------------------------===//
1257 
1258 // Replace a libcall \p CI with a call to intrinsic \p IID
1259 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1260                                Intrinsic::ID IID) {
1261   // Propagate fast-math flags from the existing call to the new call.
1262   IRBuilderBase::FastMathFlagGuard Guard(B);
1263   B.setFastMathFlags(CI->getFastMathFlags());
1264 
1265   Module *M = CI->getModule();
1266   Value *V = CI->getArgOperand(0);
1267   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1268   CallInst *NewCall = B.CreateCall(F, V);
1269   NewCall->takeName(CI);
1270   return NewCall;
1271 }
1272 
1273 /// Return a variant of Val with float type.
1274 /// Currently this works in two cases: If Val is an FPExtension of a float
1275 /// value to something bigger, simply return the operand.
1276 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1277 /// loss of precision do so.
1278 static Value *valueHasFloatPrecision(Value *Val) {
1279   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1280     Value *Op = Cast->getOperand(0);
1281     if (Op->getType()->isFloatTy())
1282       return Op;
1283   }
1284   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1285     APFloat F = Const->getValueAPF();
1286     bool losesInfo;
1287     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1288                     &losesInfo);
1289     if (!losesInfo)
1290       return ConstantFP::get(Const->getContext(), F);
1291   }
1292   return nullptr;
1293 }
1294 
1295 /// Shrink double -> float functions.
1296 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1297                                bool isBinary, bool isPrecise = false) {
1298   Function *CalleeFn = CI->getCalledFunction();
1299   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1300     return nullptr;
1301 
1302   // If not all the uses of the function are converted to float, then bail out.
1303   // This matters if the precision of the result is more important than the
1304   // precision of the arguments.
1305   if (isPrecise)
1306     for (User *U : CI->users()) {
1307       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1308       if (!Cast || !Cast->getType()->isFloatTy())
1309         return nullptr;
1310     }
1311 
1312   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1313   Value *V[2];
1314   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1315   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1316   if (!V[0] || (isBinary && !V[1]))
1317     return nullptr;
1318 
1319   // If call isn't an intrinsic, check that it isn't within a function with the
1320   // same name as the float version of this call, otherwise the result is an
1321   // infinite loop.  For example, from MinGW-w64:
1322   //
1323   // float expf(float val) { return (float) exp((double) val); }
1324   StringRef CalleeName = CalleeFn->getName();
1325   bool IsIntrinsic = CalleeFn->isIntrinsic();
1326   if (!IsIntrinsic) {
1327     StringRef CallerName = CI->getFunction()->getName();
1328     if (!CallerName.empty() && CallerName.back() == 'f' &&
1329         CallerName.size() == (CalleeName.size() + 1) &&
1330         CallerName.startswith(CalleeName))
1331       return nullptr;
1332   }
1333 
1334   // Propagate the math semantics from the current function to the new function.
1335   IRBuilderBase::FastMathFlagGuard Guard(B);
1336   B.setFastMathFlags(CI->getFastMathFlags());
1337 
1338   // g((double) float) -> (double) gf(float)
1339   Value *R;
1340   if (IsIntrinsic) {
1341     Module *M = CI->getModule();
1342     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1343     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1344     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1345   } else {
1346     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1347     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1348                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1349   }
1350   return B.CreateFPExt(R, B.getDoubleTy());
1351 }
1352 
1353 /// Shrink double -> float for unary functions.
1354 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1355                                     bool isPrecise = false) {
1356   return optimizeDoubleFP(CI, B, false, isPrecise);
1357 }
1358 
1359 /// Shrink double -> float for binary functions.
1360 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1361                                      bool isPrecise = false) {
1362   return optimizeDoubleFP(CI, B, true, isPrecise);
1363 }
1364 
1365 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1366 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1367   if (!CI->isFast())
1368     return nullptr;
1369 
1370   // Propagate fast-math flags from the existing call to new instructions.
1371   IRBuilderBase::FastMathFlagGuard Guard(B);
1372   B.setFastMathFlags(CI->getFastMathFlags());
1373 
1374   Value *Real, *Imag;
1375   if (CI->getNumArgOperands() == 1) {
1376     Value *Op = CI->getArgOperand(0);
1377     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1378     Real = B.CreateExtractValue(Op, 0, "real");
1379     Imag = B.CreateExtractValue(Op, 1, "imag");
1380   } else {
1381     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1382     Real = CI->getArgOperand(0);
1383     Imag = CI->getArgOperand(1);
1384   }
1385 
1386   Value *RealReal = B.CreateFMul(Real, Real);
1387   Value *ImagImag = B.CreateFMul(Imag, Imag);
1388 
1389   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1390                                               CI->getType());
1391   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1392 }
1393 
1394 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1395                                       IRBuilderBase &B) {
1396   if (!isa<FPMathOperator>(Call))
1397     return nullptr;
1398 
1399   IRBuilderBase::FastMathFlagGuard Guard(B);
1400   B.setFastMathFlags(Call->getFastMathFlags());
1401 
1402   // TODO: Can this be shared to also handle LLVM intrinsics?
1403   Value *X;
1404   switch (Func) {
1405   case LibFunc_sin:
1406   case LibFunc_sinf:
1407   case LibFunc_sinl:
1408   case LibFunc_tan:
1409   case LibFunc_tanf:
1410   case LibFunc_tanl:
1411     // sin(-X) --> -sin(X)
1412     // tan(-X) --> -tan(X)
1413     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1414       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1415     break;
1416   case LibFunc_cos:
1417   case LibFunc_cosf:
1418   case LibFunc_cosl:
1419     // cos(-X) --> cos(X)
1420     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1421       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1422     break;
1423   default:
1424     break;
1425   }
1426   return nullptr;
1427 }
1428 
1429 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1430   // Multiplications calculated using Addition Chains.
1431   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1432 
1433   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1434 
1435   if (InnerChain[Exp])
1436     return InnerChain[Exp];
1437 
1438   static const unsigned AddChain[33][2] = {
1439       {0, 0}, // Unused.
1440       {0, 0}, // Unused (base case = pow1).
1441       {1, 1}, // Unused (pre-computed).
1442       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1443       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1444       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1445       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1446       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1447   };
1448 
1449   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1450                                  getPow(InnerChain, AddChain[Exp][1], B));
1451   return InnerChain[Exp];
1452 }
1453 
1454 // Return a properly extended 32-bit integer if the operation is an itofp.
1455 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) {
1456   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1457     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1458     // Make sure that the exponent fits inside an int32_t,
1459     // thus avoiding any range issues that FP has not.
1460     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1461     if (BitWidth < 32 ||
1462         (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1463       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1464                                   : B.CreateZExt(Op, B.getInt32Ty());
1465   }
1466 
1467   return nullptr;
1468 }
1469 
1470 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1471 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1472 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1473 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1474   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1475   AttributeList Attrs; // Attributes are only meaningful on the original call
1476   Module *Mod = Pow->getModule();
1477   Type *Ty = Pow->getType();
1478   bool Ignored;
1479 
1480   // Evaluate special cases related to a nested function as the base.
1481 
1482   // pow(exp(x), y) -> exp(x * y)
1483   // pow(exp2(x), y) -> exp2(x * y)
1484   // If exp{,2}() is used only once, it is better to fold two transcendental
1485   // math functions into one.  If used again, exp{,2}() would still have to be
1486   // called with the original argument, then keep both original transcendental
1487   // functions.  However, this transformation is only safe with fully relaxed
1488   // math semantics, since, besides rounding differences, it changes overflow
1489   // and underflow behavior quite dramatically.  For example:
1490   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1491   // Whereas:
1492   //   exp(1000 * 0.001) = exp(1)
1493   // TODO: Loosen the requirement for fully relaxed math semantics.
1494   // TODO: Handle exp10() when more targets have it available.
1495   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1496   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1497     LibFunc LibFn;
1498 
1499     Function *CalleeFn = BaseFn->getCalledFunction();
1500     if (CalleeFn &&
1501         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1502       StringRef ExpName;
1503       Intrinsic::ID ID;
1504       Value *ExpFn;
1505       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1506 
1507       switch (LibFn) {
1508       default:
1509         return nullptr;
1510       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1511         ExpName = TLI->getName(LibFunc_exp);
1512         ID = Intrinsic::exp;
1513         LibFnFloat = LibFunc_expf;
1514         LibFnDouble = LibFunc_exp;
1515         LibFnLongDouble = LibFunc_expl;
1516         break;
1517       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1518         ExpName = TLI->getName(LibFunc_exp2);
1519         ID = Intrinsic::exp2;
1520         LibFnFloat = LibFunc_exp2f;
1521         LibFnDouble = LibFunc_exp2;
1522         LibFnLongDouble = LibFunc_exp2l;
1523         break;
1524       }
1525 
1526       // Create new exp{,2}() with the product as its argument.
1527       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1528       ExpFn = BaseFn->doesNotAccessMemory()
1529               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1530                              FMul, ExpName)
1531               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1532                                      LibFnLongDouble, B,
1533                                      BaseFn->getAttributes());
1534 
1535       // Since the new exp{,2}() is different from the original one, dead code
1536       // elimination cannot be trusted to remove it, since it may have side
1537       // effects (e.g., errno).  When the only consumer for the original
1538       // exp{,2}() is pow(), then it has to be explicitly erased.
1539       substituteInParent(BaseFn, ExpFn);
1540       return ExpFn;
1541     }
1542   }
1543 
1544   // Evaluate special cases related to a constant base.
1545 
1546   const APFloat *BaseF;
1547   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1548     return nullptr;
1549 
1550   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1551   if (match(Base, m_SpecificFP(2.0)) &&
1552       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1553       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1554     if (Value *ExpoI = getIntToFPVal(Expo, B))
1555       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1556                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1557                                    B, Attrs);
1558   }
1559 
1560   // pow(2.0 ** n, x) -> exp2(n * x)
1561   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1562     APFloat BaseR = APFloat(1.0);
1563     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1564     BaseR = BaseR / *BaseF;
1565     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1566     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1567     APSInt NI(64, false);
1568     if ((IsInteger || IsReciprocal) &&
1569         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1570             APFloat::opOK &&
1571         NI > 1 && NI.isPowerOf2()) {
1572       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1573       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1574       if (Pow->doesNotAccessMemory())
1575         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1576                             FMul, "exp2");
1577       else
1578         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1579                                     LibFunc_exp2l, B, Attrs);
1580     }
1581   }
1582 
1583   // pow(10.0, x) -> exp10(x)
1584   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1585   if (match(Base, m_SpecificFP(10.0)) &&
1586       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1587     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1588                                 LibFunc_exp10l, B, Attrs);
1589 
1590   // pow(x, y) -> exp2(log2(x) * y)
1591   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1592       !BaseF->isNegative()) {
1593     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1594     // Luckily optimizePow has already handled the x == 1 case.
1595     assert(!match(Base, m_FPOne()) &&
1596            "pow(1.0, y) should have been simplified earlier!");
1597 
1598     Value *Log = nullptr;
1599     if (Ty->isFloatTy())
1600       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1601     else if (Ty->isDoubleTy())
1602       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1603 
1604     if (Log) {
1605       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1606       if (Pow->doesNotAccessMemory())
1607         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1608                             FMul, "exp2");
1609       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1610         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1611                                     LibFunc_exp2l, B, Attrs);
1612     }
1613   }
1614 
1615   return nullptr;
1616 }
1617 
1618 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1619                           Module *M, IRBuilderBase &B,
1620                           const TargetLibraryInfo *TLI) {
1621   // If errno is never set, then use the intrinsic for sqrt().
1622   if (NoErrno) {
1623     Function *SqrtFn =
1624         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1625     return B.CreateCall(SqrtFn, V, "sqrt");
1626   }
1627 
1628   // Otherwise, use the libcall for sqrt().
1629   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1630     // TODO: We also should check that the target can in fact lower the sqrt()
1631     // libcall. We currently have no way to ask this question, so we ask if
1632     // the target has a sqrt() libcall, which is not exactly the same.
1633     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1634                                 LibFunc_sqrtl, B, Attrs);
1635 
1636   return nullptr;
1637 }
1638 
1639 /// Use square root in place of pow(x, +/-0.5).
1640 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1641   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1642   AttributeList Attrs; // Attributes are only meaningful on the original call
1643   Module *Mod = Pow->getModule();
1644   Type *Ty = Pow->getType();
1645 
1646   const APFloat *ExpoF;
1647   if (!match(Expo, m_APFloat(ExpoF)) ||
1648       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1649     return nullptr;
1650 
1651   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1652   // so that requires fast-math-flags (afn or reassoc).
1653   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1654     return nullptr;
1655 
1656   // If we have a pow() library call (accesses memory) and we can't guarantee
1657   // that the base is not an infinity, give up:
1658   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1659   // errno), but sqrt(-Inf) is required by various standards to set errno.
1660   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1661       !isKnownNeverInfinity(Base, TLI))
1662     return nullptr;
1663 
1664   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1665   if (!Sqrt)
1666     return nullptr;
1667 
1668   // Handle signed zero base by expanding to fabs(sqrt(x)).
1669   if (!Pow->hasNoSignedZeros()) {
1670     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1671     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1672   }
1673 
1674   // Handle non finite base by expanding to
1675   // (x == -infinity ? +infinity : sqrt(x)).
1676   if (!Pow->hasNoInfs()) {
1677     Value *PosInf = ConstantFP::getInfinity(Ty),
1678           *NegInf = ConstantFP::getInfinity(Ty, true);
1679     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1680     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1681   }
1682 
1683   // If the exponent is negative, then get the reciprocal.
1684   if (ExpoF->isNegative())
1685     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1686 
1687   return Sqrt;
1688 }
1689 
1690 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1691                                            IRBuilderBase &B) {
1692   Value *Args[] = {Base, Expo};
1693   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1694   return B.CreateCall(F, Args);
1695 }
1696 
1697 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1698   Value *Base = Pow->getArgOperand(0);
1699   Value *Expo = Pow->getArgOperand(1);
1700   Function *Callee = Pow->getCalledFunction();
1701   StringRef Name = Callee->getName();
1702   Type *Ty = Pow->getType();
1703   Module *M = Pow->getModule();
1704   Value *Shrunk = nullptr;
1705   bool AllowApprox = Pow->hasApproxFunc();
1706   bool Ignored;
1707 
1708   // Propagate the math semantics from the call to any created instructions.
1709   IRBuilderBase::FastMathFlagGuard Guard(B);
1710   B.setFastMathFlags(Pow->getFastMathFlags());
1711 
1712   // Shrink pow() to powf() if the arguments are single precision,
1713   // unless the result is expected to be double precision.
1714   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1715       hasFloatVersion(Name))
1716     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1717 
1718   // Evaluate special cases related to the base.
1719 
1720   // pow(1.0, x) -> 1.0
1721   if (match(Base, m_FPOne()))
1722     return Base;
1723 
1724   if (Value *Exp = replacePowWithExp(Pow, B))
1725     return Exp;
1726 
1727   // Evaluate special cases related to the exponent.
1728 
1729   // pow(x, -1.0) -> 1.0 / x
1730   if (match(Expo, m_SpecificFP(-1.0)))
1731     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1732 
1733   // pow(x, +/-0.0) -> 1.0
1734   if (match(Expo, m_AnyZeroFP()))
1735     return ConstantFP::get(Ty, 1.0);
1736 
1737   // pow(x, 1.0) -> x
1738   if (match(Expo, m_FPOne()))
1739     return Base;
1740 
1741   // pow(x, 2.0) -> x * x
1742   if (match(Expo, m_SpecificFP(2.0)))
1743     return B.CreateFMul(Base, Base, "square");
1744 
1745   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1746     return Sqrt;
1747 
1748   // pow(x, n) -> x * x * x * ...
1749   const APFloat *ExpoF;
1750   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1751       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1752     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1753     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1754     // additional fmul.
1755     // TODO: This whole transformation should be backend specific (e.g. some
1756     //       backends might prefer libcalls or the limit for the exponent might
1757     //       be different) and it should also consider optimizing for size.
1758     APFloat LimF(ExpoF->getSemantics(), 33),
1759             ExpoA(abs(*ExpoF));
1760     if (ExpoA < LimF) {
1761       // This transformation applies to integer or integer+0.5 exponents only.
1762       // For integer+0.5, we create a sqrt(Base) call.
1763       Value *Sqrt = nullptr;
1764       if (!ExpoA.isInteger()) {
1765         APFloat Expo2 = ExpoA;
1766         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1767         // is no floating point exception and the result is an integer, then
1768         // ExpoA == integer + 0.5
1769         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1770           return nullptr;
1771 
1772         if (!Expo2.isInteger())
1773           return nullptr;
1774 
1775         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1776                            Pow->doesNotAccessMemory(), M, B, TLI);
1777         if (!Sqrt)
1778           return nullptr;
1779       }
1780 
1781       // We will memoize intermediate products of the Addition Chain.
1782       Value *InnerChain[33] = {nullptr};
1783       InnerChain[1] = Base;
1784       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1785 
1786       // We cannot readily convert a non-double type (like float) to a double.
1787       // So we first convert it to something which could be converted to double.
1788       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1789       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1790 
1791       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1792       if (Sqrt)
1793         FMul = B.CreateFMul(FMul, Sqrt);
1794 
1795       // If the exponent is negative, then get the reciprocal.
1796       if (ExpoF->isNegative())
1797         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1798 
1799       return FMul;
1800     }
1801 
1802     APSInt IntExpo(32, /*isUnsigned=*/false);
1803     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1804     if (ExpoF->isInteger() &&
1805         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1806             APFloat::opOK) {
1807       return createPowWithIntegerExponent(
1808           Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1809     }
1810   }
1811 
1812   // powf(x, itofp(y)) -> powi(x, y)
1813   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1814     if (Value *ExpoI = getIntToFPVal(Expo, B))
1815       return createPowWithIntegerExponent(Base, ExpoI, M, B);
1816   }
1817 
1818   return Shrunk;
1819 }
1820 
1821 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1822   Function *Callee = CI->getCalledFunction();
1823   AttributeList Attrs; // Attributes are only meaningful on the original call
1824   StringRef Name = Callee->getName();
1825   Value *Ret = nullptr;
1826   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1827       hasFloatVersion(Name))
1828     Ret = optimizeUnaryDoubleFP(CI, B, true);
1829 
1830   Type *Ty = CI->getType();
1831   Value *Op = CI->getArgOperand(0);
1832 
1833   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1834   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1835   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1836       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1837     if (Value *Exp = getIntToFPVal(Op, B))
1838       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1839                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1840                                    B, Attrs);
1841   }
1842 
1843   return Ret;
1844 }
1845 
1846 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1847   // If we can shrink the call to a float function rather than a double
1848   // function, do that first.
1849   Function *Callee = CI->getCalledFunction();
1850   StringRef Name = Callee->getName();
1851   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1852     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1853       return Ret;
1854 
1855   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1856   // the intrinsics for improved optimization (for example, vectorization).
1857   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1858   // From the C standard draft WG14/N1256:
1859   // "Ideally, fmax would be sensitive to the sign of zero, for example
1860   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1861   // might be impractical."
1862   IRBuilderBase::FastMathFlagGuard Guard(B);
1863   FastMathFlags FMF = CI->getFastMathFlags();
1864   FMF.setNoSignedZeros();
1865   B.setFastMathFlags(FMF);
1866 
1867   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1868                                                            : Intrinsic::maxnum;
1869   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1870   return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1871 }
1872 
1873 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1874   Function *LogFn = Log->getCalledFunction();
1875   AttributeList Attrs; // Attributes are only meaningful on the original call
1876   StringRef LogNm = LogFn->getName();
1877   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1878   Module *Mod = Log->getModule();
1879   Type *Ty = Log->getType();
1880   Value *Ret = nullptr;
1881 
1882   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1883     Ret = optimizeUnaryDoubleFP(Log, B, true);
1884 
1885   // The earlier call must also be 'fast' in order to do these transforms.
1886   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1887   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1888     return Ret;
1889 
1890   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1891 
1892   // This is only applicable to log(), log2(), log10().
1893   if (TLI->getLibFunc(LogNm, LogLb))
1894     switch (LogLb) {
1895     case LibFunc_logf:
1896       LogID = Intrinsic::log;
1897       ExpLb = LibFunc_expf;
1898       Exp2Lb = LibFunc_exp2f;
1899       Exp10Lb = LibFunc_exp10f;
1900       PowLb = LibFunc_powf;
1901       break;
1902     case LibFunc_log:
1903       LogID = Intrinsic::log;
1904       ExpLb = LibFunc_exp;
1905       Exp2Lb = LibFunc_exp2;
1906       Exp10Lb = LibFunc_exp10;
1907       PowLb = LibFunc_pow;
1908       break;
1909     case LibFunc_logl:
1910       LogID = Intrinsic::log;
1911       ExpLb = LibFunc_expl;
1912       Exp2Lb = LibFunc_exp2l;
1913       Exp10Lb = LibFunc_exp10l;
1914       PowLb = LibFunc_powl;
1915       break;
1916     case LibFunc_log2f:
1917       LogID = Intrinsic::log2;
1918       ExpLb = LibFunc_expf;
1919       Exp2Lb = LibFunc_exp2f;
1920       Exp10Lb = LibFunc_exp10f;
1921       PowLb = LibFunc_powf;
1922       break;
1923     case LibFunc_log2:
1924       LogID = Intrinsic::log2;
1925       ExpLb = LibFunc_exp;
1926       Exp2Lb = LibFunc_exp2;
1927       Exp10Lb = LibFunc_exp10;
1928       PowLb = LibFunc_pow;
1929       break;
1930     case LibFunc_log2l:
1931       LogID = Intrinsic::log2;
1932       ExpLb = LibFunc_expl;
1933       Exp2Lb = LibFunc_exp2l;
1934       Exp10Lb = LibFunc_exp10l;
1935       PowLb = LibFunc_powl;
1936       break;
1937     case LibFunc_log10f:
1938       LogID = Intrinsic::log10;
1939       ExpLb = LibFunc_expf;
1940       Exp2Lb = LibFunc_exp2f;
1941       Exp10Lb = LibFunc_exp10f;
1942       PowLb = LibFunc_powf;
1943       break;
1944     case LibFunc_log10:
1945       LogID = Intrinsic::log10;
1946       ExpLb = LibFunc_exp;
1947       Exp2Lb = LibFunc_exp2;
1948       Exp10Lb = LibFunc_exp10;
1949       PowLb = LibFunc_pow;
1950       break;
1951     case LibFunc_log10l:
1952       LogID = Intrinsic::log10;
1953       ExpLb = LibFunc_expl;
1954       Exp2Lb = LibFunc_exp2l;
1955       Exp10Lb = LibFunc_exp10l;
1956       PowLb = LibFunc_powl;
1957       break;
1958     default:
1959       return Ret;
1960     }
1961   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1962            LogID == Intrinsic::log10) {
1963     if (Ty->getScalarType()->isFloatTy()) {
1964       ExpLb = LibFunc_expf;
1965       Exp2Lb = LibFunc_exp2f;
1966       Exp10Lb = LibFunc_exp10f;
1967       PowLb = LibFunc_powf;
1968     } else if (Ty->getScalarType()->isDoubleTy()) {
1969       ExpLb = LibFunc_exp;
1970       Exp2Lb = LibFunc_exp2;
1971       Exp10Lb = LibFunc_exp10;
1972       PowLb = LibFunc_pow;
1973     } else
1974       return Ret;
1975   } else
1976     return Ret;
1977 
1978   IRBuilderBase::FastMathFlagGuard Guard(B);
1979   B.setFastMathFlags(FastMathFlags::getFast());
1980 
1981   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1982   LibFunc ArgLb = NotLibFunc;
1983   TLI->getLibFunc(*Arg, ArgLb);
1984 
1985   // log(pow(x,y)) -> y*log(x)
1986   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1987     Value *LogX =
1988         Log->doesNotAccessMemory()
1989             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1990                            Arg->getOperand(0), "log")
1991             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1992     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1993     // Since pow() may have side effects, e.g. errno,
1994     // dead code elimination may not be trusted to remove it.
1995     substituteInParent(Arg, MulY);
1996     return MulY;
1997   }
1998 
1999   // log(exp{,2,10}(y)) -> y*log({e,2,10})
2000   // TODO: There is no exp10() intrinsic yet.
2001   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2002            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2003     Constant *Eul;
2004     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2005       // FIXME: Add more precise value of e for long double.
2006       Eul = ConstantFP::get(Log->getType(), numbers::e);
2007     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2008       Eul = ConstantFP::get(Log->getType(), 2.0);
2009     else
2010       Eul = ConstantFP::get(Log->getType(), 10.0);
2011     Value *LogE = Log->doesNotAccessMemory()
2012                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2013                                      Eul, "log")
2014                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
2015     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2016     // Since exp() may have side effects, e.g. errno,
2017     // dead code elimination may not be trusted to remove it.
2018     substituteInParent(Arg, MulY);
2019     return MulY;
2020   }
2021 
2022   return Ret;
2023 }
2024 
2025 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2026   Function *Callee = CI->getCalledFunction();
2027   Value *Ret = nullptr;
2028   // TODO: Once we have a way (other than checking for the existince of the
2029   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2030   // condition below.
2031   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2032                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
2033     Ret = optimizeUnaryDoubleFP(CI, B, true);
2034 
2035   if (!CI->isFast())
2036     return Ret;
2037 
2038   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2039   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2040     return Ret;
2041 
2042   // We're looking for a repeated factor in a multiplication tree,
2043   // so we can do this fold: sqrt(x * x) -> fabs(x);
2044   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2045   Value *Op0 = I->getOperand(0);
2046   Value *Op1 = I->getOperand(1);
2047   Value *RepeatOp = nullptr;
2048   Value *OtherOp = nullptr;
2049   if (Op0 == Op1) {
2050     // Simple match: the operands of the multiply are identical.
2051     RepeatOp = Op0;
2052   } else {
2053     // Look for a more complicated pattern: one of the operands is itself
2054     // a multiply, so search for a common factor in that multiply.
2055     // Note: We don't bother looking any deeper than this first level or for
2056     // variations of this pattern because instcombine's visitFMUL and/or the
2057     // reassociation pass should give us this form.
2058     Value *OtherMul0, *OtherMul1;
2059     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2060       // Pattern: sqrt((x * y) * z)
2061       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2062         // Matched: sqrt((x * x) * z)
2063         RepeatOp = OtherMul0;
2064         OtherOp = Op1;
2065       }
2066     }
2067   }
2068   if (!RepeatOp)
2069     return Ret;
2070 
2071   // Fast math flags for any created instructions should match the sqrt
2072   // and multiply.
2073   IRBuilderBase::FastMathFlagGuard Guard(B);
2074   B.setFastMathFlags(I->getFastMathFlags());
2075 
2076   // If we found a repeated factor, hoist it out of the square root and
2077   // replace it with the fabs of that factor.
2078   Module *M = Callee->getParent();
2079   Type *ArgType = I->getType();
2080   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2081   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2082   if (OtherOp) {
2083     // If we found a non-repeated factor, we still need to get its square
2084     // root. We then multiply that by the value that was simplified out
2085     // of the square root calculation.
2086     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2087     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2088     return B.CreateFMul(FabsCall, SqrtCall);
2089   }
2090   return FabsCall;
2091 }
2092 
2093 // TODO: Generalize to handle any trig function and its inverse.
2094 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2095   Function *Callee = CI->getCalledFunction();
2096   Value *Ret = nullptr;
2097   StringRef Name = Callee->getName();
2098   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2099     Ret = optimizeUnaryDoubleFP(CI, B, true);
2100 
2101   Value *Op1 = CI->getArgOperand(0);
2102   auto *OpC = dyn_cast<CallInst>(Op1);
2103   if (!OpC)
2104     return Ret;
2105 
2106   // Both calls must be 'fast' in order to remove them.
2107   if (!CI->isFast() || !OpC->isFast())
2108     return Ret;
2109 
2110   // tan(atan(x)) -> x
2111   // tanf(atanf(x)) -> x
2112   // tanl(atanl(x)) -> x
2113   LibFunc Func;
2114   Function *F = OpC->getCalledFunction();
2115   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2116       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2117        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2118        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2119     Ret = OpC->getArgOperand(0);
2120   return Ret;
2121 }
2122 
2123 static bool isTrigLibCall(CallInst *CI) {
2124   // We can only hope to do anything useful if we can ignore things like errno
2125   // and floating-point exceptions.
2126   // We already checked the prototype.
2127   return CI->hasFnAttr(Attribute::NoUnwind) &&
2128          CI->hasFnAttr(Attribute::ReadNone);
2129 }
2130 
2131 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2132                              bool UseFloat, Value *&Sin, Value *&Cos,
2133                              Value *&SinCos) {
2134   Type *ArgTy = Arg->getType();
2135   Type *ResTy;
2136   StringRef Name;
2137 
2138   Triple T(OrigCallee->getParent()->getTargetTriple());
2139   if (UseFloat) {
2140     Name = "__sincospif_stret";
2141 
2142     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2143     // x86_64 can't use {float, float} since that would be returned in both
2144     // xmm0 and xmm1, which isn't what a real struct would do.
2145     ResTy = T.getArch() == Triple::x86_64
2146                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2147                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2148   } else {
2149     Name = "__sincospi_stret";
2150     ResTy = StructType::get(ArgTy, ArgTy);
2151   }
2152 
2153   Module *M = OrigCallee->getParent();
2154   FunctionCallee Callee =
2155       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2156 
2157   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2158     // If the argument is an instruction, it must dominate all uses so put our
2159     // sincos call there.
2160     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2161   } else {
2162     // Otherwise (e.g. for a constant) the beginning of the function is as
2163     // good a place as any.
2164     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2165     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2166   }
2167 
2168   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2169 
2170   if (SinCos->getType()->isStructTy()) {
2171     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2172     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2173   } else {
2174     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2175                                  "sinpi");
2176     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2177                                  "cospi");
2178   }
2179 }
2180 
2181 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2182   // Make sure the prototype is as expected, otherwise the rest of the
2183   // function is probably invalid and likely to abort.
2184   if (!isTrigLibCall(CI))
2185     return nullptr;
2186 
2187   Value *Arg = CI->getArgOperand(0);
2188   SmallVector<CallInst *, 1> SinCalls;
2189   SmallVector<CallInst *, 1> CosCalls;
2190   SmallVector<CallInst *, 1> SinCosCalls;
2191 
2192   bool IsFloat = Arg->getType()->isFloatTy();
2193 
2194   // Look for all compatible sinpi, cospi and sincospi calls with the same
2195   // argument. If there are enough (in some sense) we can make the
2196   // substitution.
2197   Function *F = CI->getFunction();
2198   for (User *U : Arg->users())
2199     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2200 
2201   // It's only worthwhile if both sinpi and cospi are actually used.
2202   if (SinCalls.empty() || CosCalls.empty())
2203     return nullptr;
2204 
2205   Value *Sin, *Cos, *SinCos;
2206   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2207 
2208   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2209                                  Value *Res) {
2210     for (CallInst *C : Calls)
2211       replaceAllUsesWith(C, Res);
2212   };
2213 
2214   replaceTrigInsts(SinCalls, Sin);
2215   replaceTrigInsts(CosCalls, Cos);
2216   replaceTrigInsts(SinCosCalls, SinCos);
2217 
2218   return nullptr;
2219 }
2220 
2221 void LibCallSimplifier::classifyArgUse(
2222     Value *Val, Function *F, bool IsFloat,
2223     SmallVectorImpl<CallInst *> &SinCalls,
2224     SmallVectorImpl<CallInst *> &CosCalls,
2225     SmallVectorImpl<CallInst *> &SinCosCalls) {
2226   CallInst *CI = dyn_cast<CallInst>(Val);
2227 
2228   if (!CI || CI->use_empty())
2229     return;
2230 
2231   // Don't consider calls in other functions.
2232   if (CI->getFunction() != F)
2233     return;
2234 
2235   Function *Callee = CI->getCalledFunction();
2236   LibFunc Func;
2237   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2238       !isTrigLibCall(CI))
2239     return;
2240 
2241   if (IsFloat) {
2242     if (Func == LibFunc_sinpif)
2243       SinCalls.push_back(CI);
2244     else if (Func == LibFunc_cospif)
2245       CosCalls.push_back(CI);
2246     else if (Func == LibFunc_sincospif_stret)
2247       SinCosCalls.push_back(CI);
2248   } else {
2249     if (Func == LibFunc_sinpi)
2250       SinCalls.push_back(CI);
2251     else if (Func == LibFunc_cospi)
2252       CosCalls.push_back(CI);
2253     else if (Func == LibFunc_sincospi_stret)
2254       SinCosCalls.push_back(CI);
2255   }
2256 }
2257 
2258 //===----------------------------------------------------------------------===//
2259 // Integer Library Call Optimizations
2260 //===----------------------------------------------------------------------===//
2261 
2262 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2263   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2264   Value *Op = CI->getArgOperand(0);
2265   Type *ArgType = Op->getType();
2266   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2267                                           Intrinsic::cttz, ArgType);
2268   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2269   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2270   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2271 
2272   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2273   return B.CreateSelect(Cond, V, B.getInt32(0));
2274 }
2275 
2276 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2277   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2278   Value *Op = CI->getArgOperand(0);
2279   Type *ArgType = Op->getType();
2280   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2281                                           Intrinsic::ctlz, ArgType);
2282   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2283   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2284                   V);
2285   return B.CreateIntCast(V, CI->getType(), false);
2286 }
2287 
2288 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2289   // abs(x) -> x <s 0 ? -x : x
2290   // The negation has 'nsw' because abs of INT_MIN is undefined.
2291   Value *X = CI->getArgOperand(0);
2292   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2293   Value *NegX = B.CreateNSWNeg(X, "neg");
2294   return B.CreateSelect(IsNeg, NegX, X);
2295 }
2296 
2297 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2298   // isdigit(c) -> (c-'0') <u 10
2299   Value *Op = CI->getArgOperand(0);
2300   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2301   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2302   return B.CreateZExt(Op, CI->getType());
2303 }
2304 
2305 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2306   // isascii(c) -> c <u 128
2307   Value *Op = CI->getArgOperand(0);
2308   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2309   return B.CreateZExt(Op, CI->getType());
2310 }
2311 
2312 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2313   // toascii(c) -> c & 0x7f
2314   return B.CreateAnd(CI->getArgOperand(0),
2315                      ConstantInt::get(CI->getType(), 0x7F));
2316 }
2317 
2318 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2319   StringRef Str;
2320   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2321     return nullptr;
2322 
2323   return convertStrToNumber(CI, Str, 10);
2324 }
2325 
2326 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2327   StringRef Str;
2328   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2329     return nullptr;
2330 
2331   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2332     return nullptr;
2333 
2334   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2335     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2336   }
2337 
2338   return nullptr;
2339 }
2340 
2341 //===----------------------------------------------------------------------===//
2342 // Formatting and IO Library Call Optimizations
2343 //===----------------------------------------------------------------------===//
2344 
2345 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2346 
2347 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2348                                                  int StreamArg) {
2349   Function *Callee = CI->getCalledFunction();
2350   // Error reporting calls should be cold, mark them as such.
2351   // This applies even to non-builtin calls: it is only a hint and applies to
2352   // functions that the frontend might not understand as builtins.
2353 
2354   // This heuristic was suggested in:
2355   // Improving Static Branch Prediction in a Compiler
2356   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2357   // Proceedings of PACT'98, Oct. 1998, IEEE
2358   if (!CI->hasFnAttr(Attribute::Cold) &&
2359       isReportingError(Callee, CI, StreamArg)) {
2360     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2361   }
2362 
2363   return nullptr;
2364 }
2365 
2366 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2367   if (!Callee || !Callee->isDeclaration())
2368     return false;
2369 
2370   if (StreamArg < 0)
2371     return true;
2372 
2373   // These functions might be considered cold, but only if their stream
2374   // argument is stderr.
2375 
2376   if (StreamArg >= (int)CI->getNumArgOperands())
2377     return false;
2378   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2379   if (!LI)
2380     return false;
2381   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2382   if (!GV || !GV->isDeclaration())
2383     return false;
2384   return GV->getName() == "stderr";
2385 }
2386 
2387 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2388   // Check for a fixed format string.
2389   StringRef FormatStr;
2390   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2391     return nullptr;
2392 
2393   // Empty format string -> noop.
2394   if (FormatStr.empty()) // Tolerate printf's declared void.
2395     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2396 
2397   // Do not do any of the following transformations if the printf return value
2398   // is used, in general the printf return value is not compatible with either
2399   // putchar() or puts().
2400   if (!CI->use_empty())
2401     return nullptr;
2402 
2403   // printf("x") -> putchar('x'), even for "%" and "%%".
2404   if (FormatStr.size() == 1 || FormatStr == "%%")
2405     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2406 
2407   // printf("%s", "a") --> putchar('a')
2408   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2409     StringRef ChrStr;
2410     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2411       return nullptr;
2412     if (ChrStr.size() != 1)
2413       return nullptr;
2414     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2415   }
2416 
2417   // printf("foo\n") --> puts("foo")
2418   if (FormatStr[FormatStr.size() - 1] == '\n' &&
2419       FormatStr.find('%') == StringRef::npos) { // No format characters.
2420     // Create a string literal with no \n on it.  We expect the constant merge
2421     // pass to be run after this pass, to merge duplicate strings.
2422     FormatStr = FormatStr.drop_back();
2423     Value *GV = B.CreateGlobalString(FormatStr, "str");
2424     return emitPutS(GV, B, TLI);
2425   }
2426 
2427   // Optimize specific format strings.
2428   // printf("%c", chr) --> putchar(chr)
2429   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2430       CI->getArgOperand(1)->getType()->isIntegerTy())
2431     return emitPutChar(CI->getArgOperand(1), B, TLI);
2432 
2433   // printf("%s\n", str) --> puts(str)
2434   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2435       CI->getArgOperand(1)->getType()->isPointerTy())
2436     return emitPutS(CI->getArgOperand(1), B, TLI);
2437   return nullptr;
2438 }
2439 
2440 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2441 
2442   Function *Callee = CI->getCalledFunction();
2443   FunctionType *FT = Callee->getFunctionType();
2444   if (Value *V = optimizePrintFString(CI, B)) {
2445     return V;
2446   }
2447 
2448   // printf(format, ...) -> iprintf(format, ...) if no floating point
2449   // arguments.
2450   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2451     Module *M = B.GetInsertBlock()->getParent()->getParent();
2452     FunctionCallee IPrintFFn =
2453         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2454     CallInst *New = cast<CallInst>(CI->clone());
2455     New->setCalledFunction(IPrintFFn);
2456     B.Insert(New);
2457     return New;
2458   }
2459 
2460   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2461   // arguments.
2462   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2463     Module *M = B.GetInsertBlock()->getParent()->getParent();
2464     auto SmallPrintFFn =
2465         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2466                                FT, Callee->getAttributes());
2467     CallInst *New = cast<CallInst>(CI->clone());
2468     New->setCalledFunction(SmallPrintFFn);
2469     B.Insert(New);
2470     return New;
2471   }
2472 
2473   annotateNonNullBasedOnAccess(CI, 0);
2474   return nullptr;
2475 }
2476 
2477 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2478                                                 IRBuilderBase &B) {
2479   // Check for a fixed format string.
2480   StringRef FormatStr;
2481   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2482     return nullptr;
2483 
2484   // If we just have a format string (nothing else crazy) transform it.
2485   if (CI->getNumArgOperands() == 2) {
2486     // Make sure there's no % in the constant array.  We could try to handle
2487     // %% -> % in the future if we cared.
2488     if (FormatStr.find('%') != StringRef::npos)
2489       return nullptr; // we found a format specifier, bail out.
2490 
2491     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2492     B.CreateMemCpy(
2493         CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1),
2494         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2495                          FormatStr.size() + 1)); // Copy the null byte.
2496     return ConstantInt::get(CI->getType(), FormatStr.size());
2497   }
2498 
2499   // The remaining optimizations require the format string to be "%s" or "%c"
2500   // and have an extra operand.
2501   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2502       CI->getNumArgOperands() < 3)
2503     return nullptr;
2504 
2505   // Decode the second character of the format string.
2506   if (FormatStr[1] == 'c') {
2507     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2508     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2509       return nullptr;
2510     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2511     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2512     B.CreateStore(V, Ptr);
2513     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2514     B.CreateStore(B.getInt8(0), Ptr);
2515 
2516     return ConstantInt::get(CI->getType(), 1);
2517   }
2518 
2519   if (FormatStr[1] == 's') {
2520     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2521     // strlen(str)+1)
2522     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2523       return nullptr;
2524 
2525     if (CI->use_empty())
2526       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2527       return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI);
2528 
2529     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2530     if (SrcLen) {
2531       B.CreateMemCpy(
2532           CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2533           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2534       // Returns total number of characters written without null-character.
2535       return ConstantInt::get(CI->getType(), SrcLen - 1);
2536     } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2),
2537                                      B, TLI)) {
2538       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2539       Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0));
2540       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2541     }
2542 
2543     bool OptForSize = CI->getFunction()->hasOptSize() ||
2544                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2545                                                   PGSOQueryType::IRPass);
2546     if (OptForSize)
2547       return nullptr;
2548 
2549     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2550     if (!Len)
2551       return nullptr;
2552     Value *IncLen =
2553         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2554     B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2),
2555                    Align(1), IncLen);
2556 
2557     // The sprintf result is the unincremented number of bytes in the string.
2558     return B.CreateIntCast(Len, CI->getType(), false);
2559   }
2560   return nullptr;
2561 }
2562 
2563 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2564   Function *Callee = CI->getCalledFunction();
2565   FunctionType *FT = Callee->getFunctionType();
2566   if (Value *V = optimizeSPrintFString(CI, B)) {
2567     return V;
2568   }
2569 
2570   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2571   // point arguments.
2572   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2573     Module *M = B.GetInsertBlock()->getParent()->getParent();
2574     FunctionCallee SIPrintFFn =
2575         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2576     CallInst *New = cast<CallInst>(CI->clone());
2577     New->setCalledFunction(SIPrintFFn);
2578     B.Insert(New);
2579     return New;
2580   }
2581 
2582   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2583   // floating point arguments.
2584   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2585     Module *M = B.GetInsertBlock()->getParent()->getParent();
2586     auto SmallSPrintFFn =
2587         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2588                                FT, Callee->getAttributes());
2589     CallInst *New = cast<CallInst>(CI->clone());
2590     New->setCalledFunction(SmallSPrintFFn);
2591     B.Insert(New);
2592     return New;
2593   }
2594 
2595   annotateNonNullBasedOnAccess(CI, {0, 1});
2596   return nullptr;
2597 }
2598 
2599 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2600                                                  IRBuilderBase &B) {
2601   // Check for size
2602   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2603   if (!Size)
2604     return nullptr;
2605 
2606   uint64_t N = Size->getZExtValue();
2607   // Check for a fixed format string.
2608   StringRef FormatStr;
2609   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2610     return nullptr;
2611 
2612   // If we just have a format string (nothing else crazy) transform it.
2613   if (CI->getNumArgOperands() == 3) {
2614     // Make sure there's no % in the constant array.  We could try to handle
2615     // %% -> % in the future if we cared.
2616     if (FormatStr.find('%') != StringRef::npos)
2617       return nullptr; // we found a format specifier, bail out.
2618 
2619     if (N == 0)
2620       return ConstantInt::get(CI->getType(), FormatStr.size());
2621     else if (N < FormatStr.size() + 1)
2622       return nullptr;
2623 
2624     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2625     // strlen(fmt)+1)
2626     B.CreateMemCpy(
2627         CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2628         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2629                          FormatStr.size() + 1)); // Copy the null byte.
2630     return ConstantInt::get(CI->getType(), FormatStr.size());
2631   }
2632 
2633   // The remaining optimizations require the format string to be "%s" or "%c"
2634   // and have an extra operand.
2635   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2636       CI->getNumArgOperands() == 4) {
2637 
2638     // Decode the second character of the format string.
2639     if (FormatStr[1] == 'c') {
2640       if (N == 0)
2641         return ConstantInt::get(CI->getType(), 1);
2642       else if (N == 1)
2643         return nullptr;
2644 
2645       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2646       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2647         return nullptr;
2648       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2649       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2650       B.CreateStore(V, Ptr);
2651       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2652       B.CreateStore(B.getInt8(0), Ptr);
2653 
2654       return ConstantInt::get(CI->getType(), 1);
2655     }
2656 
2657     if (FormatStr[1] == 's') {
2658       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2659       StringRef Str;
2660       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2661         return nullptr;
2662 
2663       if (N == 0)
2664         return ConstantInt::get(CI->getType(), Str.size());
2665       else if (N < Str.size() + 1)
2666         return nullptr;
2667 
2668       B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3),
2669                      Align(1), ConstantInt::get(CI->getType(), Str.size() + 1));
2670 
2671       // The snprintf result is the unincremented number of bytes in the string.
2672       return ConstantInt::get(CI->getType(), Str.size());
2673     }
2674   }
2675   return nullptr;
2676 }
2677 
2678 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2679   if (Value *V = optimizeSnPrintFString(CI, B)) {
2680     return V;
2681   }
2682 
2683   if (isKnownNonZero(CI->getOperand(1), DL))
2684     annotateNonNullBasedOnAccess(CI, 0);
2685   return nullptr;
2686 }
2687 
2688 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2689                                                 IRBuilderBase &B) {
2690   optimizeErrorReporting(CI, B, 0);
2691 
2692   // All the optimizations depend on the format string.
2693   StringRef FormatStr;
2694   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2695     return nullptr;
2696 
2697   // Do not do any of the following transformations if the fprintf return
2698   // value is used, in general the fprintf return value is not compatible
2699   // with fwrite(), fputc() or fputs().
2700   if (!CI->use_empty())
2701     return nullptr;
2702 
2703   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2704   if (CI->getNumArgOperands() == 2) {
2705     // Could handle %% -> % if we cared.
2706     if (FormatStr.find('%') != StringRef::npos)
2707       return nullptr; // We found a format specifier.
2708 
2709     return emitFWrite(
2710         CI->getArgOperand(1),
2711         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2712         CI->getArgOperand(0), B, DL, TLI);
2713   }
2714 
2715   // The remaining optimizations require the format string to be "%s" or "%c"
2716   // and have an extra operand.
2717   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2718       CI->getNumArgOperands() < 3)
2719     return nullptr;
2720 
2721   // Decode the second character of the format string.
2722   if (FormatStr[1] == 'c') {
2723     // fprintf(F, "%c", chr) --> fputc(chr, F)
2724     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2725       return nullptr;
2726     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2727   }
2728 
2729   if (FormatStr[1] == 's') {
2730     // fprintf(F, "%s", str) --> fputs(str, F)
2731     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2732       return nullptr;
2733     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2734   }
2735   return nullptr;
2736 }
2737 
2738 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2739   Function *Callee = CI->getCalledFunction();
2740   FunctionType *FT = Callee->getFunctionType();
2741   if (Value *V = optimizeFPrintFString(CI, B)) {
2742     return V;
2743   }
2744 
2745   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2746   // floating point arguments.
2747   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2748     Module *M = B.GetInsertBlock()->getParent()->getParent();
2749     FunctionCallee FIPrintFFn =
2750         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2751     CallInst *New = cast<CallInst>(CI->clone());
2752     New->setCalledFunction(FIPrintFFn);
2753     B.Insert(New);
2754     return New;
2755   }
2756 
2757   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2758   // 128-bit floating point arguments.
2759   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2760     Module *M = B.GetInsertBlock()->getParent()->getParent();
2761     auto SmallFPrintFFn =
2762         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2763                                FT, Callee->getAttributes());
2764     CallInst *New = cast<CallInst>(CI->clone());
2765     New->setCalledFunction(SmallFPrintFFn);
2766     B.Insert(New);
2767     return New;
2768   }
2769 
2770   return nullptr;
2771 }
2772 
2773 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2774   optimizeErrorReporting(CI, B, 3);
2775 
2776   // Get the element size and count.
2777   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2778   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2779   if (SizeC && CountC) {
2780     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2781 
2782     // If this is writing zero records, remove the call (it's a noop).
2783     if (Bytes == 0)
2784       return ConstantInt::get(CI->getType(), 0);
2785 
2786     // If this is writing one byte, turn it into fputc.
2787     // This optimisation is only valid, if the return value is unused.
2788     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2789       Value *Char = B.CreateLoad(B.getInt8Ty(),
2790                                  castToCStr(CI->getArgOperand(0), B), "char");
2791       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2792       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2793     }
2794   }
2795 
2796   return nullptr;
2797 }
2798 
2799 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2800   optimizeErrorReporting(CI, B, 1);
2801 
2802   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2803   // requires more arguments and thus extra MOVs are required.
2804   bool OptForSize = CI->getFunction()->hasOptSize() ||
2805                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2806                                                 PGSOQueryType::IRPass);
2807   if (OptForSize)
2808     return nullptr;
2809 
2810   // We can't optimize if return value is used.
2811   if (!CI->use_empty())
2812     return nullptr;
2813 
2814   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2815   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2816   if (!Len)
2817     return nullptr;
2818 
2819   // Known to have no uses (see above).
2820   return emitFWrite(
2821       CI->getArgOperand(0),
2822       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2823       CI->getArgOperand(1), B, DL, TLI);
2824 }
2825 
2826 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2827   annotateNonNullBasedOnAccess(CI, 0);
2828   if (!CI->use_empty())
2829     return nullptr;
2830 
2831   // Check for a constant string.
2832   // puts("") -> putchar('\n')
2833   StringRef Str;
2834   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2835     return emitPutChar(B.getInt32('\n'), B, TLI);
2836 
2837   return nullptr;
2838 }
2839 
2840 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2841   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2842   return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0),
2843                          Align(1), CI->getArgOperand(2));
2844 }
2845 
2846 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2847   LibFunc Func;
2848   SmallString<20> FloatFuncName = FuncName;
2849   FloatFuncName += 'f';
2850   if (TLI->getLibFunc(FloatFuncName, Func))
2851     return TLI->has(Func);
2852   return false;
2853 }
2854 
2855 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2856                                                       IRBuilderBase &Builder) {
2857   LibFunc Func;
2858   Function *Callee = CI->getCalledFunction();
2859   // Check for string/memory library functions.
2860   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2861     // Make sure we never change the calling convention.
2862     assert((ignoreCallingConv(Func) ||
2863             isCallingConvCCompatible(CI)) &&
2864       "Optimizing string/memory libcall would change the calling convention");
2865     switch (Func) {
2866     case LibFunc_strcat:
2867       return optimizeStrCat(CI, Builder);
2868     case LibFunc_strncat:
2869       return optimizeStrNCat(CI, Builder);
2870     case LibFunc_strchr:
2871       return optimizeStrChr(CI, Builder);
2872     case LibFunc_strrchr:
2873       return optimizeStrRChr(CI, Builder);
2874     case LibFunc_strcmp:
2875       return optimizeStrCmp(CI, Builder);
2876     case LibFunc_strncmp:
2877       return optimizeStrNCmp(CI, Builder);
2878     case LibFunc_strcpy:
2879       return optimizeStrCpy(CI, Builder);
2880     case LibFunc_stpcpy:
2881       return optimizeStpCpy(CI, Builder);
2882     case LibFunc_strncpy:
2883       return optimizeStrNCpy(CI, Builder);
2884     case LibFunc_strlen:
2885       return optimizeStrLen(CI, Builder);
2886     case LibFunc_strpbrk:
2887       return optimizeStrPBrk(CI, Builder);
2888     case LibFunc_strndup:
2889       return optimizeStrNDup(CI, Builder);
2890     case LibFunc_strtol:
2891     case LibFunc_strtod:
2892     case LibFunc_strtof:
2893     case LibFunc_strtoul:
2894     case LibFunc_strtoll:
2895     case LibFunc_strtold:
2896     case LibFunc_strtoull:
2897       return optimizeStrTo(CI, Builder);
2898     case LibFunc_strspn:
2899       return optimizeStrSpn(CI, Builder);
2900     case LibFunc_strcspn:
2901       return optimizeStrCSpn(CI, Builder);
2902     case LibFunc_strstr:
2903       return optimizeStrStr(CI, Builder);
2904     case LibFunc_memchr:
2905       return optimizeMemChr(CI, Builder);
2906     case LibFunc_memrchr:
2907       return optimizeMemRChr(CI, Builder);
2908     case LibFunc_bcmp:
2909       return optimizeBCmp(CI, Builder);
2910     case LibFunc_memcmp:
2911       return optimizeMemCmp(CI, Builder);
2912     case LibFunc_memcpy:
2913       return optimizeMemCpy(CI, Builder);
2914     case LibFunc_memccpy:
2915       return optimizeMemCCpy(CI, Builder);
2916     case LibFunc_mempcpy:
2917       return optimizeMemPCpy(CI, Builder);
2918     case LibFunc_memmove:
2919       return optimizeMemMove(CI, Builder);
2920     case LibFunc_memset:
2921       return optimizeMemSet(CI, Builder);
2922     case LibFunc_realloc:
2923       return optimizeRealloc(CI, Builder);
2924     case LibFunc_wcslen:
2925       return optimizeWcslen(CI, Builder);
2926     case LibFunc_bcopy:
2927       return optimizeBCopy(CI, Builder);
2928     default:
2929       break;
2930     }
2931   }
2932   return nullptr;
2933 }
2934 
2935 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2936                                                        LibFunc Func,
2937                                                        IRBuilderBase &Builder) {
2938   // Don't optimize calls that require strict floating point semantics.
2939   if (CI->isStrictFP())
2940     return nullptr;
2941 
2942   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2943     return V;
2944 
2945   switch (Func) {
2946   case LibFunc_sinpif:
2947   case LibFunc_sinpi:
2948   case LibFunc_cospif:
2949   case LibFunc_cospi:
2950     return optimizeSinCosPi(CI, Builder);
2951   case LibFunc_powf:
2952   case LibFunc_pow:
2953   case LibFunc_powl:
2954     return optimizePow(CI, Builder);
2955   case LibFunc_exp2l:
2956   case LibFunc_exp2:
2957   case LibFunc_exp2f:
2958     return optimizeExp2(CI, Builder);
2959   case LibFunc_fabsf:
2960   case LibFunc_fabs:
2961   case LibFunc_fabsl:
2962     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2963   case LibFunc_sqrtf:
2964   case LibFunc_sqrt:
2965   case LibFunc_sqrtl:
2966     return optimizeSqrt(CI, Builder);
2967   case LibFunc_logf:
2968   case LibFunc_log:
2969   case LibFunc_logl:
2970   case LibFunc_log10f:
2971   case LibFunc_log10:
2972   case LibFunc_log10l:
2973   case LibFunc_log1pf:
2974   case LibFunc_log1p:
2975   case LibFunc_log1pl:
2976   case LibFunc_log2f:
2977   case LibFunc_log2:
2978   case LibFunc_log2l:
2979   case LibFunc_logbf:
2980   case LibFunc_logb:
2981   case LibFunc_logbl:
2982     return optimizeLog(CI, Builder);
2983   case LibFunc_tan:
2984   case LibFunc_tanf:
2985   case LibFunc_tanl:
2986     return optimizeTan(CI, Builder);
2987   case LibFunc_ceil:
2988     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2989   case LibFunc_floor:
2990     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2991   case LibFunc_round:
2992     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2993   case LibFunc_roundeven:
2994     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
2995   case LibFunc_nearbyint:
2996     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2997   case LibFunc_rint:
2998     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2999   case LibFunc_trunc:
3000     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3001   case LibFunc_acos:
3002   case LibFunc_acosh:
3003   case LibFunc_asin:
3004   case LibFunc_asinh:
3005   case LibFunc_atan:
3006   case LibFunc_atanh:
3007   case LibFunc_cbrt:
3008   case LibFunc_cosh:
3009   case LibFunc_exp:
3010   case LibFunc_exp10:
3011   case LibFunc_expm1:
3012   case LibFunc_cos:
3013   case LibFunc_sin:
3014   case LibFunc_sinh:
3015   case LibFunc_tanh:
3016     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3017       return optimizeUnaryDoubleFP(CI, Builder, true);
3018     return nullptr;
3019   case LibFunc_copysign:
3020     if (hasFloatVersion(CI->getCalledFunction()->getName()))
3021       return optimizeBinaryDoubleFP(CI, Builder);
3022     return nullptr;
3023   case LibFunc_fminf:
3024   case LibFunc_fmin:
3025   case LibFunc_fminl:
3026   case LibFunc_fmaxf:
3027   case LibFunc_fmax:
3028   case LibFunc_fmaxl:
3029     return optimizeFMinFMax(CI, Builder);
3030   case LibFunc_cabs:
3031   case LibFunc_cabsf:
3032   case LibFunc_cabsl:
3033     return optimizeCAbs(CI, Builder);
3034   default:
3035     return nullptr;
3036   }
3037 }
3038 
3039 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3040   // TODO: Split out the code below that operates on FP calls so that
3041   //       we can all non-FP calls with the StrictFP attribute to be
3042   //       optimized.
3043   if (CI->isNoBuiltin())
3044     return nullptr;
3045 
3046   LibFunc Func;
3047   Function *Callee = CI->getCalledFunction();
3048   bool isCallingConvC = isCallingConvCCompatible(CI);
3049 
3050   SmallVector<OperandBundleDef, 2> OpBundles;
3051   CI->getOperandBundlesAsDefs(OpBundles);
3052 
3053   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3054   Builder.setDefaultOperandBundles(OpBundles);
3055 
3056   // Command-line parameter overrides instruction attribute.
3057   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3058   // used by the intrinsic optimizations.
3059   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3060     UnsafeFPShrink = EnableUnsafeFPShrink;
3061   else if (isa<FPMathOperator>(CI) && CI->isFast())
3062     UnsafeFPShrink = true;
3063 
3064   // First, check for intrinsics.
3065   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3066     if (!isCallingConvC)
3067       return nullptr;
3068     // The FP intrinsics have corresponding constrained versions so we don't
3069     // need to check for the StrictFP attribute here.
3070     switch (II->getIntrinsicID()) {
3071     case Intrinsic::pow:
3072       return optimizePow(CI, Builder);
3073     case Intrinsic::exp2:
3074       return optimizeExp2(CI, Builder);
3075     case Intrinsic::log:
3076     case Intrinsic::log2:
3077     case Intrinsic::log10:
3078       return optimizeLog(CI, Builder);
3079     case Intrinsic::sqrt:
3080       return optimizeSqrt(CI, Builder);
3081     // TODO: Use foldMallocMemset() with memset intrinsic.
3082     case Intrinsic::memset:
3083       return optimizeMemSet(CI, Builder);
3084     case Intrinsic::memcpy:
3085       return optimizeMemCpy(CI, Builder);
3086     case Intrinsic::memmove:
3087       return optimizeMemMove(CI, Builder);
3088     default:
3089       return nullptr;
3090     }
3091   }
3092 
3093   // Also try to simplify calls to fortified library functions.
3094   if (Value *SimplifiedFortifiedCI =
3095           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3096     // Try to further simplify the result.
3097     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3098     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3099       // Ensure that SimplifiedCI's uses are complete, since some calls have
3100       // their uses analyzed.
3101       replaceAllUsesWith(CI, SimplifiedCI);
3102 
3103       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3104       // we might replace later on.
3105       IRBuilderBase::InsertPointGuard Guard(Builder);
3106       Builder.SetInsertPoint(SimplifiedCI);
3107       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3108         // If we were able to further simplify, remove the now redundant call.
3109         substituteInParent(SimplifiedCI, V);
3110         return V;
3111       }
3112     }
3113     return SimplifiedFortifiedCI;
3114   }
3115 
3116   // Then check for known library functions.
3117   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3118     // We never change the calling convention.
3119     if (!ignoreCallingConv(Func) && !isCallingConvC)
3120       return nullptr;
3121     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3122       return V;
3123     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3124       return V;
3125     switch (Func) {
3126     case LibFunc_ffs:
3127     case LibFunc_ffsl:
3128     case LibFunc_ffsll:
3129       return optimizeFFS(CI, Builder);
3130     case LibFunc_fls:
3131     case LibFunc_flsl:
3132     case LibFunc_flsll:
3133       return optimizeFls(CI, Builder);
3134     case LibFunc_abs:
3135     case LibFunc_labs:
3136     case LibFunc_llabs:
3137       return optimizeAbs(CI, Builder);
3138     case LibFunc_isdigit:
3139       return optimizeIsDigit(CI, Builder);
3140     case LibFunc_isascii:
3141       return optimizeIsAscii(CI, Builder);
3142     case LibFunc_toascii:
3143       return optimizeToAscii(CI, Builder);
3144     case LibFunc_atoi:
3145     case LibFunc_atol:
3146     case LibFunc_atoll:
3147       return optimizeAtoi(CI, Builder);
3148     case LibFunc_strtol:
3149     case LibFunc_strtoll:
3150       return optimizeStrtol(CI, Builder);
3151     case LibFunc_printf:
3152       return optimizePrintF(CI, Builder);
3153     case LibFunc_sprintf:
3154       return optimizeSPrintF(CI, Builder);
3155     case LibFunc_snprintf:
3156       return optimizeSnPrintF(CI, Builder);
3157     case LibFunc_fprintf:
3158       return optimizeFPrintF(CI, Builder);
3159     case LibFunc_fwrite:
3160       return optimizeFWrite(CI, Builder);
3161     case LibFunc_fputs:
3162       return optimizeFPuts(CI, Builder);
3163     case LibFunc_puts:
3164       return optimizePuts(CI, Builder);
3165     case LibFunc_perror:
3166       return optimizeErrorReporting(CI, Builder);
3167     case LibFunc_vfprintf:
3168     case LibFunc_fiprintf:
3169       return optimizeErrorReporting(CI, Builder, 0);
3170     default:
3171       return nullptr;
3172     }
3173   }
3174   return nullptr;
3175 }
3176 
3177 LibCallSimplifier::LibCallSimplifier(
3178     const DataLayout &DL, const TargetLibraryInfo *TLI,
3179     OptimizationRemarkEmitter &ORE,
3180     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3181     function_ref<void(Instruction *, Value *)> Replacer,
3182     function_ref<void(Instruction *)> Eraser)
3183     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3184       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3185 
3186 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3187   // Indirect through the replacer used in this instance.
3188   Replacer(I, With);
3189 }
3190 
3191 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3192   Eraser(I);
3193 }
3194 
3195 // TODO:
3196 //   Additional cases that we need to add to this file:
3197 //
3198 // cbrt:
3199 //   * cbrt(expN(X))  -> expN(x/3)
3200 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3201 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3202 //
3203 // exp, expf, expl:
3204 //   * exp(log(x))  -> x
3205 //
3206 // log, logf, logl:
3207 //   * log(exp(x))   -> x
3208 //   * log(exp(y))   -> y*log(e)
3209 //   * log(exp10(y)) -> y*log(10)
3210 //   * log(sqrt(x))  -> 0.5*log(x)
3211 //
3212 // pow, powf, powl:
3213 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3214 //   * pow(pow(x,y),z)-> pow(x,y*z)
3215 //
3216 // signbit:
3217 //   * signbit(cnst) -> cnst'
3218 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3219 //
3220 // sqrt, sqrtf, sqrtl:
3221 //   * sqrt(expN(x))  -> expN(x*0.5)
3222 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3223 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3224 //
3225 
3226 //===----------------------------------------------------------------------===//
3227 // Fortified Library Call Optimizations
3228 //===----------------------------------------------------------------------===//
3229 
3230 bool
3231 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3232                                                     unsigned ObjSizeOp,
3233                                                     Optional<unsigned> SizeOp,
3234                                                     Optional<unsigned> StrOp,
3235                                                     Optional<unsigned> FlagOp) {
3236   // If this function takes a flag argument, the implementation may use it to
3237   // perform extra checks. Don't fold into the non-checking variant.
3238   if (FlagOp) {
3239     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3240     if (!Flag || !Flag->isZero())
3241       return false;
3242   }
3243 
3244   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3245     return true;
3246 
3247   if (ConstantInt *ObjSizeCI =
3248           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3249     if (ObjSizeCI->isMinusOne())
3250       return true;
3251     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3252     if (OnlyLowerUnknownSize)
3253       return false;
3254     if (StrOp) {
3255       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3256       // If the length is 0 we don't know how long it is and so we can't
3257       // remove the check.
3258       if (Len)
3259         annotateDereferenceableBytes(CI, *StrOp, Len);
3260       else
3261         return false;
3262       return ObjSizeCI->getZExtValue() >= Len;
3263     }
3264 
3265     if (SizeOp) {
3266       if (ConstantInt *SizeCI =
3267               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3268         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3269     }
3270   }
3271   return false;
3272 }
3273 
3274 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3275                                                      IRBuilderBase &B) {
3276   if (isFortifiedCallFoldable(CI, 3, 2)) {
3277     CallInst *NewCI =
3278         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3279                        Align(1), CI->getArgOperand(2));
3280     NewCI->setAttributes(CI->getAttributes());
3281     NewCI->removeAttributes(AttributeList::ReturnIndex,
3282                             AttributeFuncs::typeIncompatible(NewCI->getType()));
3283     return CI->getArgOperand(0);
3284   }
3285   return nullptr;
3286 }
3287 
3288 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3289                                                       IRBuilderBase &B) {
3290   if (isFortifiedCallFoldable(CI, 3, 2)) {
3291     CallInst *NewCI =
3292         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3293                         Align(1), CI->getArgOperand(2));
3294     NewCI->setAttributes(CI->getAttributes());
3295     NewCI->removeAttributes(AttributeList::ReturnIndex,
3296                             AttributeFuncs::typeIncompatible(NewCI->getType()));
3297     return CI->getArgOperand(0);
3298   }
3299   return nullptr;
3300 }
3301 
3302 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3303                                                      IRBuilderBase &B) {
3304   // TODO: Try foldMallocMemset() here.
3305 
3306   if (isFortifiedCallFoldable(CI, 3, 2)) {
3307     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3308     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3309                                      CI->getArgOperand(2), Align(1));
3310     NewCI->setAttributes(CI->getAttributes());
3311     NewCI->removeAttributes(AttributeList::ReturnIndex,
3312                             AttributeFuncs::typeIncompatible(NewCI->getType()));
3313     return CI->getArgOperand(0);
3314   }
3315   return nullptr;
3316 }
3317 
3318 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3319                                                       IRBuilderBase &B) {
3320   const DataLayout &DL = CI->getModule()->getDataLayout();
3321   if (isFortifiedCallFoldable(CI, 3, 2))
3322     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3323                                   CI->getArgOperand(2), B, DL, TLI)) {
3324       CallInst *NewCI = cast<CallInst>(Call);
3325       NewCI->setAttributes(CI->getAttributes());
3326       NewCI->removeAttributes(
3327           AttributeList::ReturnIndex,
3328           AttributeFuncs::typeIncompatible(NewCI->getType()));
3329       return NewCI;
3330     }
3331   return nullptr;
3332 }
3333 
3334 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3335                                                       IRBuilderBase &B,
3336                                                       LibFunc Func) {
3337   const DataLayout &DL = CI->getModule()->getDataLayout();
3338   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3339         *ObjSize = CI->getArgOperand(2);
3340 
3341   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3342   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3343     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3344     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3345   }
3346 
3347   // If a) we don't have any length information, or b) we know this will
3348   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3349   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3350   // TODO: It might be nice to get a maximum length out of the possible
3351   // string lengths for varying.
3352   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3353     if (Func == LibFunc_strcpy_chk)
3354       return emitStrCpy(Dst, Src, B, TLI);
3355     else
3356       return emitStpCpy(Dst, Src, B, TLI);
3357   }
3358 
3359   if (OnlyLowerUnknownSize)
3360     return nullptr;
3361 
3362   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3363   uint64_t Len = GetStringLength(Src);
3364   if (Len)
3365     annotateDereferenceableBytes(CI, 1, Len);
3366   else
3367     return nullptr;
3368 
3369   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3370   Value *LenV = ConstantInt::get(SizeTTy, Len);
3371   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3372   // If the function was an __stpcpy_chk, and we were able to fold it into
3373   // a __memcpy_chk, we still need to return the correct end pointer.
3374   if (Ret && Func == LibFunc_stpcpy_chk)
3375     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3376   return Ret;
3377 }
3378 
3379 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3380                                                      IRBuilderBase &B) {
3381   if (isFortifiedCallFoldable(CI, 1, None, 0))
3382     return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(),
3383                       TLI);
3384   return nullptr;
3385 }
3386 
3387 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3388                                                        IRBuilderBase &B,
3389                                                        LibFunc Func) {
3390   if (isFortifiedCallFoldable(CI, 3, 2)) {
3391     if (Func == LibFunc_strncpy_chk)
3392       return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3393                                CI->getArgOperand(2), B, TLI);
3394     else
3395       return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3396                          CI->getArgOperand(2), B, TLI);
3397   }
3398 
3399   return nullptr;
3400 }
3401 
3402 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3403                                                       IRBuilderBase &B) {
3404   if (isFortifiedCallFoldable(CI, 4, 3))
3405     return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3406                        CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3407 
3408   return nullptr;
3409 }
3410 
3411 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3412                                                        IRBuilderBase &B) {
3413   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3414     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3415     return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3416                         CI->getArgOperand(4), VariadicArgs, B, TLI);
3417   }
3418 
3419   return nullptr;
3420 }
3421 
3422 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3423                                                       IRBuilderBase &B) {
3424   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3425     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3426     return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3427                        B, TLI);
3428   }
3429 
3430   return nullptr;
3431 }
3432 
3433 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3434                                                      IRBuilderBase &B) {
3435   if (isFortifiedCallFoldable(CI, 2))
3436     return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3437 
3438   return nullptr;
3439 }
3440 
3441 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3442                                                    IRBuilderBase &B) {
3443   if (isFortifiedCallFoldable(CI, 3))
3444     return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3445                        CI->getArgOperand(2), B, TLI);
3446 
3447   return nullptr;
3448 }
3449 
3450 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3451                                                       IRBuilderBase &B) {
3452   if (isFortifiedCallFoldable(CI, 3))
3453     return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3454                        CI->getArgOperand(2), B, TLI);
3455 
3456   return nullptr;
3457 }
3458 
3459 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3460                                                       IRBuilderBase &B) {
3461   if (isFortifiedCallFoldable(CI, 3))
3462     return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3463                        CI->getArgOperand(2), B, TLI);
3464 
3465   return nullptr;
3466 }
3467 
3468 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3469                                                         IRBuilderBase &B) {
3470   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3471     return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3472                          CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3473 
3474   return nullptr;
3475 }
3476 
3477 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3478                                                        IRBuilderBase &B) {
3479   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3480     return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3481                         CI->getArgOperand(4), B, TLI);
3482 
3483   return nullptr;
3484 }
3485 
3486 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3487                                                 IRBuilderBase &Builder) {
3488   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3489   // Some clang users checked for _chk libcall availability using:
3490   //   __has_builtin(__builtin___memcpy_chk)
3491   // When compiling with -fno-builtin, this is always true.
3492   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3493   // end up with fortified libcalls, which isn't acceptable in a freestanding
3494   // environment which only provides their non-fortified counterparts.
3495   //
3496   // Until we change clang and/or teach external users to check for availability
3497   // differently, disregard the "nobuiltin" attribute and TLI::has.
3498   //
3499   // PR23093.
3500 
3501   LibFunc Func;
3502   Function *Callee = CI->getCalledFunction();
3503   bool isCallingConvC = isCallingConvCCompatible(CI);
3504 
3505   SmallVector<OperandBundleDef, 2> OpBundles;
3506   CI->getOperandBundlesAsDefs(OpBundles);
3507 
3508   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3509   Builder.setDefaultOperandBundles(OpBundles);
3510 
3511   // First, check that this is a known library functions and that the prototype
3512   // is correct.
3513   if (!TLI->getLibFunc(*Callee, Func))
3514     return nullptr;
3515 
3516   // We never change the calling convention.
3517   if (!ignoreCallingConv(Func) && !isCallingConvC)
3518     return nullptr;
3519 
3520   switch (Func) {
3521   case LibFunc_memcpy_chk:
3522     return optimizeMemCpyChk(CI, Builder);
3523   case LibFunc_mempcpy_chk:
3524     return optimizeMemPCpyChk(CI, Builder);
3525   case LibFunc_memmove_chk:
3526     return optimizeMemMoveChk(CI, Builder);
3527   case LibFunc_memset_chk:
3528     return optimizeMemSetChk(CI, Builder);
3529   case LibFunc_stpcpy_chk:
3530   case LibFunc_strcpy_chk:
3531     return optimizeStrpCpyChk(CI, Builder, Func);
3532   case LibFunc_strlen_chk:
3533     return optimizeStrLenChk(CI, Builder);
3534   case LibFunc_stpncpy_chk:
3535   case LibFunc_strncpy_chk:
3536     return optimizeStrpNCpyChk(CI, Builder, Func);
3537   case LibFunc_memccpy_chk:
3538     return optimizeMemCCpyChk(CI, Builder);
3539   case LibFunc_snprintf_chk:
3540     return optimizeSNPrintfChk(CI, Builder);
3541   case LibFunc_sprintf_chk:
3542     return optimizeSPrintfChk(CI, Builder);
3543   case LibFunc_strcat_chk:
3544     return optimizeStrCatChk(CI, Builder);
3545   case LibFunc_strlcat_chk:
3546     return optimizeStrLCat(CI, Builder);
3547   case LibFunc_strncat_chk:
3548     return optimizeStrNCatChk(CI, Builder);
3549   case LibFunc_strlcpy_chk:
3550     return optimizeStrLCpyChk(CI, Builder);
3551   case LibFunc_vsnprintf_chk:
3552     return optimizeVSNPrintfChk(CI, Builder);
3553   case LibFunc_vsprintf_chk:
3554     return optimizeVSPrintfChk(CI, Builder);
3555   default:
3556     break;
3557   }
3558   return nullptr;
3559 }
3560 
3561 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3562     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3563     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3564