1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 static bool isCallingConvCCompatible(CallInst *CI) { 60 switch(CI->getCallingConv()) { 61 default: 62 return false; 63 case llvm::CallingConv::C: 64 return true; 65 case llvm::CallingConv::ARM_APCS: 66 case llvm::CallingConv::ARM_AAPCS: 67 case llvm::CallingConv::ARM_AAPCS_VFP: { 68 69 // The iOS ABI diverges from the standard in some cases, so for now don't 70 // try to simplify those calls. 71 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 72 return false; 73 74 auto *FuncTy = CI->getFunctionType(); 75 76 if (!FuncTy->getReturnType()->isPointerTy() && 77 !FuncTy->getReturnType()->isIntegerTy() && 78 !FuncTy->getReturnType()->isVoidTy()) 79 return false; 80 81 for (auto Param : FuncTy->params()) { 82 if (!Param->isPointerTy() && !Param->isIntegerTy()) 83 return false; 84 } 85 return true; 86 } 87 } 88 return false; 89 } 90 91 /// Return true if it is only used in equality comparisons with With. 92 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 93 for (User *U : V->users()) { 94 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 95 if (IC->isEquality() && IC->getOperand(1) == With) 96 continue; 97 // Unknown instruction. 98 return false; 99 } 100 return true; 101 } 102 103 static bool callHasFloatingPointArgument(const CallInst *CI) { 104 return any_of(CI->operands(), [](const Use &OI) { 105 return OI->getType()->isFloatingPointTy(); 106 }); 107 } 108 109 static bool callHasFP128Argument(const CallInst *CI) { 110 return any_of(CI->operands(), [](const Use &OI) { 111 return OI->getType()->isFP128Ty(); 112 }); 113 } 114 115 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 116 if (Base < 2 || Base > 36) 117 // handle special zero base 118 if (Base != 0) 119 return nullptr; 120 121 char *End; 122 std::string nptr = Str.str(); 123 errno = 0; 124 long long int Result = strtoll(nptr.c_str(), &End, Base); 125 if (errno) 126 return nullptr; 127 128 // if we assume all possible target locales are ASCII supersets, 129 // then if strtoll successfully parses a number on the host, 130 // it will also successfully parse the same way on the target 131 if (*End != '\0') 132 return nullptr; 133 134 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 135 return nullptr; 136 137 return ConstantInt::get(CI->getType(), Result); 138 } 139 140 static bool isOnlyUsedInComparisonWithZero(Value *V) { 141 for (User *U : V->users()) { 142 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 143 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 144 if (C->isNullValue()) 145 continue; 146 // Unknown instruction. 147 return false; 148 } 149 return true; 150 } 151 152 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 153 const DataLayout &DL) { 154 if (!isOnlyUsedInComparisonWithZero(CI)) 155 return false; 156 157 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 158 return false; 159 160 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 161 return false; 162 163 return true; 164 } 165 166 static void annotateDereferenceableBytes(CallInst *CI, 167 ArrayRef<unsigned> ArgNos, 168 uint64_t DereferenceableBytes) { 169 const Function *F = CI->getCaller(); 170 if (!F) 171 return; 172 for (unsigned ArgNo : ArgNos) { 173 uint64_t DerefBytes = DereferenceableBytes; 174 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 175 if (!llvm::NullPointerIsDefined(F, AS) || 176 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 177 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 178 ArgNo + AttributeList::FirstArgIndex), 179 DereferenceableBytes); 180 181 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 182 DerefBytes) { 183 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 184 if (!llvm::NullPointerIsDefined(F, AS) || 185 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 186 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 187 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 188 CI->getContext(), DerefBytes)); 189 } 190 } 191 } 192 193 static void annotateNonNullBasedOnAccess(CallInst *CI, 194 ArrayRef<unsigned> ArgNos) { 195 Function *F = CI->getCaller(); 196 if (!F) 197 return; 198 199 for (unsigned ArgNo : ArgNos) { 200 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 201 continue; 202 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 203 if (llvm::NullPointerIsDefined(F, AS)) 204 continue; 205 206 CI->addParamAttr(ArgNo, Attribute::NonNull); 207 annotateDereferenceableBytes(CI, ArgNo, 1); 208 } 209 } 210 211 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 212 Value *Size, const DataLayout &DL) { 213 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 214 annotateNonNullBasedOnAccess(CI, ArgNos); 215 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 216 } else if (isKnownNonZero(Size, DL)) { 217 annotateNonNullBasedOnAccess(CI, ArgNos); 218 const APInt *X, *Y; 219 uint64_t DerefMin = 1; 220 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 221 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 222 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 223 } 224 } 225 } 226 227 //===----------------------------------------------------------------------===// 228 // String and Memory Library Call Optimizations 229 //===----------------------------------------------------------------------===// 230 231 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 232 // Extract some information from the instruction 233 Value *Dst = CI->getArgOperand(0); 234 Value *Src = CI->getArgOperand(1); 235 annotateNonNullBasedOnAccess(CI, {0, 1}); 236 237 // See if we can get the length of the input string. 238 uint64_t Len = GetStringLength(Src); 239 if (Len) 240 annotateDereferenceableBytes(CI, 1, Len); 241 else 242 return nullptr; 243 --Len; // Unbias length. 244 245 // Handle the simple, do-nothing case: strcat(x, "") -> x 246 if (Len == 0) 247 return Dst; 248 249 return emitStrLenMemCpy(Src, Dst, Len, B); 250 } 251 252 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 253 IRBuilderBase &B) { 254 // We need to find the end of the destination string. That's where the 255 // memory is to be moved to. We just generate a call to strlen. 256 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 257 if (!DstLen) 258 return nullptr; 259 260 // Now that we have the destination's length, we must index into the 261 // destination's pointer to get the actual memcpy destination (end of 262 // the string .. we're concatenating). 263 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 264 265 // We have enough information to now generate the memcpy call to do the 266 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 267 B.CreateMemCpy( 268 CpyDst, Align(1), Src, Align(1), 269 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 270 return Dst; 271 } 272 273 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 274 // Extract some information from the instruction. 275 Value *Dst = CI->getArgOperand(0); 276 Value *Src = CI->getArgOperand(1); 277 Value *Size = CI->getArgOperand(2); 278 uint64_t Len; 279 annotateNonNullBasedOnAccess(CI, 0); 280 if (isKnownNonZero(Size, DL)) 281 annotateNonNullBasedOnAccess(CI, 1); 282 283 // We don't do anything if length is not constant. 284 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 285 if (LengthArg) { 286 Len = LengthArg->getZExtValue(); 287 // strncat(x, c, 0) -> x 288 if (!Len) 289 return Dst; 290 } else { 291 return nullptr; 292 } 293 294 // See if we can get the length of the input string. 295 uint64_t SrcLen = GetStringLength(Src); 296 if (SrcLen) { 297 annotateDereferenceableBytes(CI, 1, SrcLen); 298 --SrcLen; // Unbias length. 299 } else { 300 return nullptr; 301 } 302 303 // strncat(x, "", c) -> x 304 if (SrcLen == 0) 305 return Dst; 306 307 // We don't optimize this case. 308 if (Len < SrcLen) 309 return nullptr; 310 311 // strncat(x, s, c) -> strcat(x, s) 312 // s is constant so the strcat can be optimized further. 313 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 314 } 315 316 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 317 Function *Callee = CI->getCalledFunction(); 318 FunctionType *FT = Callee->getFunctionType(); 319 Value *SrcStr = CI->getArgOperand(0); 320 annotateNonNullBasedOnAccess(CI, 0); 321 322 // If the second operand is non-constant, see if we can compute the length 323 // of the input string and turn this into memchr. 324 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 325 if (!CharC) { 326 uint64_t Len = GetStringLength(SrcStr); 327 if (Len) 328 annotateDereferenceableBytes(CI, 0, Len); 329 else 330 return nullptr; 331 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 332 return nullptr; 333 334 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 335 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 336 B, DL, TLI); 337 } 338 339 // Otherwise, the character is a constant, see if the first argument is 340 // a string literal. If so, we can constant fold. 341 StringRef Str; 342 if (!getConstantStringInfo(SrcStr, Str)) { 343 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 344 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 345 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 346 return nullptr; 347 } 348 349 // Compute the offset, make sure to handle the case when we're searching for 350 // zero (a weird way to spell strlen). 351 size_t I = (0xFF & CharC->getSExtValue()) == 0 352 ? Str.size() 353 : Str.find(CharC->getSExtValue()); 354 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 355 return Constant::getNullValue(CI->getType()); 356 357 // strchr(s+n,c) -> gep(s+n+i,c) 358 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 359 } 360 361 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 362 Value *SrcStr = CI->getArgOperand(0); 363 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 364 annotateNonNullBasedOnAccess(CI, 0); 365 366 // Cannot fold anything if we're not looking for a constant. 367 if (!CharC) 368 return nullptr; 369 370 StringRef Str; 371 if (!getConstantStringInfo(SrcStr, Str)) { 372 // strrchr(s, 0) -> strchr(s, 0) 373 if (CharC->isZero()) 374 return emitStrChr(SrcStr, '\0', B, TLI); 375 return nullptr; 376 } 377 378 // Compute the offset. 379 size_t I = (0xFF & CharC->getSExtValue()) == 0 380 ? Str.size() 381 : Str.rfind(CharC->getSExtValue()); 382 if (I == StringRef::npos) // Didn't find the char. Return null. 383 return Constant::getNullValue(CI->getType()); 384 385 // strrchr(s+n,c) -> gep(s+n+i,c) 386 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 387 } 388 389 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 390 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 391 if (Str1P == Str2P) // strcmp(x,x) -> 0 392 return ConstantInt::get(CI->getType(), 0); 393 394 StringRef Str1, Str2; 395 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 396 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 397 398 // strcmp(x, y) -> cnst (if both x and y are constant strings) 399 if (HasStr1 && HasStr2) 400 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 401 402 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 403 return B.CreateNeg(B.CreateZExt( 404 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 405 406 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 407 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 408 CI->getType()); 409 410 // strcmp(P, "x") -> memcmp(P, "x", 2) 411 uint64_t Len1 = GetStringLength(Str1P); 412 if (Len1) 413 annotateDereferenceableBytes(CI, 0, Len1); 414 uint64_t Len2 = GetStringLength(Str2P); 415 if (Len2) 416 annotateDereferenceableBytes(CI, 1, Len2); 417 418 if (Len1 && Len2) { 419 return emitMemCmp(Str1P, Str2P, 420 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 421 std::min(Len1, Len2)), 422 B, DL, TLI); 423 } 424 425 // strcmp to memcmp 426 if (!HasStr1 && HasStr2) { 427 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 428 return emitMemCmp( 429 Str1P, Str2P, 430 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 431 TLI); 432 } else if (HasStr1 && !HasStr2) { 433 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 434 return emitMemCmp( 435 Str1P, Str2P, 436 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 437 TLI); 438 } 439 440 annotateNonNullBasedOnAccess(CI, {0, 1}); 441 return nullptr; 442 } 443 444 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 445 Value *Str1P = CI->getArgOperand(0); 446 Value *Str2P = CI->getArgOperand(1); 447 Value *Size = CI->getArgOperand(2); 448 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 449 return ConstantInt::get(CI->getType(), 0); 450 451 if (isKnownNonZero(Size, DL)) 452 annotateNonNullBasedOnAccess(CI, {0, 1}); 453 // Get the length argument if it is constant. 454 uint64_t Length; 455 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 456 Length = LengthArg->getZExtValue(); 457 else 458 return nullptr; 459 460 if (Length == 0) // strncmp(x,y,0) -> 0 461 return ConstantInt::get(CI->getType(), 0); 462 463 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 464 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 465 466 StringRef Str1, Str2; 467 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 468 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 469 470 // strncmp(x, y) -> cnst (if both x and y are constant strings) 471 if (HasStr1 && HasStr2) { 472 StringRef SubStr1 = Str1.substr(0, Length); 473 StringRef SubStr2 = Str2.substr(0, Length); 474 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 475 } 476 477 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 478 return B.CreateNeg(B.CreateZExt( 479 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 480 481 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 482 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 483 CI->getType()); 484 485 uint64_t Len1 = GetStringLength(Str1P); 486 if (Len1) 487 annotateDereferenceableBytes(CI, 0, Len1); 488 uint64_t Len2 = GetStringLength(Str2P); 489 if (Len2) 490 annotateDereferenceableBytes(CI, 1, Len2); 491 492 // strncmp to memcmp 493 if (!HasStr1 && HasStr2) { 494 Len2 = std::min(Len2, Length); 495 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 496 return emitMemCmp( 497 Str1P, Str2P, 498 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 499 TLI); 500 } else if (HasStr1 && !HasStr2) { 501 Len1 = std::min(Len1, Length); 502 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 503 return emitMemCmp( 504 Str1P, Str2P, 505 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 506 TLI); 507 } 508 509 return nullptr; 510 } 511 512 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 513 Value *Src = CI->getArgOperand(0); 514 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 515 uint64_t SrcLen = GetStringLength(Src); 516 if (SrcLen && Size) { 517 annotateDereferenceableBytes(CI, 0, SrcLen); 518 if (SrcLen <= Size->getZExtValue() + 1) 519 return emitStrDup(Src, B, TLI); 520 } 521 522 return nullptr; 523 } 524 525 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 526 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 527 if (Dst == Src) // strcpy(x,x) -> x 528 return Src; 529 530 annotateNonNullBasedOnAccess(CI, {0, 1}); 531 // See if we can get the length of the input string. 532 uint64_t Len = GetStringLength(Src); 533 if (Len) 534 annotateDereferenceableBytes(CI, 1, Len); 535 else 536 return nullptr; 537 538 // We have enough information to now generate the memcpy call to do the 539 // copy for us. Make a memcpy to copy the nul byte with align = 1. 540 CallInst *NewCI = 541 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 542 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 543 NewCI->setAttributes(CI->getAttributes()); 544 NewCI->removeAttributes(AttributeList::ReturnIndex, 545 AttributeFuncs::typeIncompatible(NewCI->getType())); 546 return Dst; 547 } 548 549 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 550 Function *Callee = CI->getCalledFunction(); 551 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 552 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 553 Value *StrLen = emitStrLen(Src, B, DL, TLI); 554 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 555 } 556 557 // See if we can get the length of the input string. 558 uint64_t Len = GetStringLength(Src); 559 if (Len) 560 annotateDereferenceableBytes(CI, 1, Len); 561 else 562 return nullptr; 563 564 Type *PT = Callee->getFunctionType()->getParamType(0); 565 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 566 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 567 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 568 569 // We have enough information to now generate the memcpy call to do the 570 // copy for us. Make a memcpy to copy the nul byte with align = 1. 571 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 572 NewCI->setAttributes(CI->getAttributes()); 573 NewCI->removeAttributes(AttributeList::ReturnIndex, 574 AttributeFuncs::typeIncompatible(NewCI->getType())); 575 return DstEnd; 576 } 577 578 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 579 Function *Callee = CI->getCalledFunction(); 580 Value *Dst = CI->getArgOperand(0); 581 Value *Src = CI->getArgOperand(1); 582 Value *Size = CI->getArgOperand(2); 583 annotateNonNullBasedOnAccess(CI, 0); 584 if (isKnownNonZero(Size, DL)) 585 annotateNonNullBasedOnAccess(CI, 1); 586 587 uint64_t Len; 588 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 589 Len = LengthArg->getZExtValue(); 590 else 591 return nullptr; 592 593 // strncpy(x, y, 0) -> x 594 if (Len == 0) 595 return Dst; 596 597 // See if we can get the length of the input string. 598 uint64_t SrcLen = GetStringLength(Src); 599 if (SrcLen) { 600 annotateDereferenceableBytes(CI, 1, SrcLen); 601 --SrcLen; // Unbias length. 602 } else { 603 return nullptr; 604 } 605 606 if (SrcLen == 0) { 607 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 608 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1)); 609 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0)); 610 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 611 CI->getContext(), 0, ArgAttrs)); 612 return Dst; 613 } 614 615 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 616 if (Len > SrcLen + 1) { 617 if (Len <= 128) { 618 StringRef Str; 619 if (!getConstantStringInfo(Src, Str)) 620 return nullptr; 621 std::string SrcStr = Str.str(); 622 SrcStr.resize(Len, '\0'); 623 Src = B.CreateGlobalString(SrcStr, "str"); 624 } else { 625 return nullptr; 626 } 627 } 628 629 Type *PT = Callee->getFunctionType()->getParamType(0); 630 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 631 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 632 ConstantInt::get(DL.getIntPtrType(PT), Len)); 633 NewCI->setAttributes(CI->getAttributes()); 634 NewCI->removeAttributes(AttributeList::ReturnIndex, 635 AttributeFuncs::typeIncompatible(NewCI->getType())); 636 return Dst; 637 } 638 639 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 640 unsigned CharSize) { 641 Value *Src = CI->getArgOperand(0); 642 643 // Constant folding: strlen("xyz") -> 3 644 if (uint64_t Len = GetStringLength(Src, CharSize)) 645 return ConstantInt::get(CI->getType(), Len - 1); 646 647 // If s is a constant pointer pointing to a string literal, we can fold 648 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 649 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 650 // We only try to simplify strlen when the pointer s points to an array 651 // of i8. Otherwise, we would need to scale the offset x before doing the 652 // subtraction. This will make the optimization more complex, and it's not 653 // very useful because calling strlen for a pointer of other types is 654 // very uncommon. 655 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 656 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 657 return nullptr; 658 659 ConstantDataArraySlice Slice; 660 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 661 uint64_t NullTermIdx; 662 if (Slice.Array == nullptr) { 663 NullTermIdx = 0; 664 } else { 665 NullTermIdx = ~((uint64_t)0); 666 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 667 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 668 NullTermIdx = I; 669 break; 670 } 671 } 672 // If the string does not have '\0', leave it to strlen to compute 673 // its length. 674 if (NullTermIdx == ~((uint64_t)0)) 675 return nullptr; 676 } 677 678 Value *Offset = GEP->getOperand(2); 679 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 680 Known.Zero.flipAllBits(); 681 uint64_t ArrSize = 682 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 683 684 // KnownZero's bits are flipped, so zeros in KnownZero now represent 685 // bits known to be zeros in Offset, and ones in KnowZero represent 686 // bits unknown in Offset. Therefore, Offset is known to be in range 687 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 688 // unsigned-less-than NullTermIdx. 689 // 690 // If Offset is not provably in the range [0, NullTermIdx], we can still 691 // optimize if we can prove that the program has undefined behavior when 692 // Offset is outside that range. That is the case when GEP->getOperand(0) 693 // is a pointer to an object whose memory extent is NullTermIdx+1. 694 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 695 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 696 NullTermIdx == ArrSize - 1)) { 697 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 698 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 699 Offset); 700 } 701 } 702 } 703 704 // strlen(x?"foo":"bars") --> x ? 3 : 4 705 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 706 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 707 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 708 if (LenTrue && LenFalse) { 709 ORE.emit([&]() { 710 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 711 << "folded strlen(select) to select of constants"; 712 }); 713 return B.CreateSelect(SI->getCondition(), 714 ConstantInt::get(CI->getType(), LenTrue - 1), 715 ConstantInt::get(CI->getType(), LenFalse - 1)); 716 } 717 } 718 719 // strlen(x) != 0 --> *x != 0 720 // strlen(x) == 0 --> *x == 0 721 if (isOnlyUsedInZeroEqualityComparison(CI)) 722 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 723 CI->getType()); 724 725 return nullptr; 726 } 727 728 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 729 if (Value *V = optimizeStringLength(CI, B, 8)) 730 return V; 731 annotateNonNullBasedOnAccess(CI, 0); 732 return nullptr; 733 } 734 735 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 736 Module &M = *CI->getModule(); 737 unsigned WCharSize = TLI->getWCharSize(M) * 8; 738 // We cannot perform this optimization without wchar_size metadata. 739 if (WCharSize == 0) 740 return nullptr; 741 742 return optimizeStringLength(CI, B, WCharSize); 743 } 744 745 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 746 StringRef S1, S2; 747 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 748 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 749 750 // strpbrk(s, "") -> nullptr 751 // strpbrk("", s) -> nullptr 752 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 753 return Constant::getNullValue(CI->getType()); 754 755 // Constant folding. 756 if (HasS1 && HasS2) { 757 size_t I = S1.find_first_of(S2); 758 if (I == StringRef::npos) // No match. 759 return Constant::getNullValue(CI->getType()); 760 761 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 762 "strpbrk"); 763 } 764 765 // strpbrk(s, "a") -> strchr(s, 'a') 766 if (HasS2 && S2.size() == 1) 767 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 768 769 return nullptr; 770 } 771 772 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 773 Value *EndPtr = CI->getArgOperand(1); 774 if (isa<ConstantPointerNull>(EndPtr)) { 775 // With a null EndPtr, this function won't capture the main argument. 776 // It would be readonly too, except that it still may write to errno. 777 CI->addParamAttr(0, Attribute::NoCapture); 778 } 779 780 return nullptr; 781 } 782 783 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 784 StringRef S1, S2; 785 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 786 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 787 788 // strspn(s, "") -> 0 789 // strspn("", s) -> 0 790 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 791 return Constant::getNullValue(CI->getType()); 792 793 // Constant folding. 794 if (HasS1 && HasS2) { 795 size_t Pos = S1.find_first_not_of(S2); 796 if (Pos == StringRef::npos) 797 Pos = S1.size(); 798 return ConstantInt::get(CI->getType(), Pos); 799 } 800 801 return nullptr; 802 } 803 804 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 805 StringRef S1, S2; 806 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 807 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 808 809 // strcspn("", s) -> 0 810 if (HasS1 && S1.empty()) 811 return Constant::getNullValue(CI->getType()); 812 813 // Constant folding. 814 if (HasS1 && HasS2) { 815 size_t Pos = S1.find_first_of(S2); 816 if (Pos == StringRef::npos) 817 Pos = S1.size(); 818 return ConstantInt::get(CI->getType(), Pos); 819 } 820 821 // strcspn(s, "") -> strlen(s) 822 if (HasS2 && S2.empty()) 823 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 824 825 return nullptr; 826 } 827 828 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 829 // fold strstr(x, x) -> x. 830 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 831 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 832 833 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 834 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 835 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 836 if (!StrLen) 837 return nullptr; 838 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 839 StrLen, B, DL, TLI); 840 if (!StrNCmp) 841 return nullptr; 842 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 843 ICmpInst *Old = cast<ICmpInst>(*UI++); 844 Value *Cmp = 845 B.CreateICmp(Old->getPredicate(), StrNCmp, 846 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 847 replaceAllUsesWith(Old, Cmp); 848 } 849 return CI; 850 } 851 852 // See if either input string is a constant string. 853 StringRef SearchStr, ToFindStr; 854 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 855 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 856 857 // fold strstr(x, "") -> x. 858 if (HasStr2 && ToFindStr.empty()) 859 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 860 861 // If both strings are known, constant fold it. 862 if (HasStr1 && HasStr2) { 863 size_t Offset = SearchStr.find(ToFindStr); 864 865 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 866 return Constant::getNullValue(CI->getType()); 867 868 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 869 Value *Result = castToCStr(CI->getArgOperand(0), B); 870 Result = 871 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 872 return B.CreateBitCast(Result, CI->getType()); 873 } 874 875 // fold strstr(x, "y") -> strchr(x, 'y'). 876 if (HasStr2 && ToFindStr.size() == 1) { 877 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 878 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 879 } 880 881 annotateNonNullBasedOnAccess(CI, {0, 1}); 882 return nullptr; 883 } 884 885 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 886 if (isKnownNonZero(CI->getOperand(2), DL)) 887 annotateNonNullBasedOnAccess(CI, 0); 888 return nullptr; 889 } 890 891 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 892 Value *SrcStr = CI->getArgOperand(0); 893 Value *Size = CI->getArgOperand(2); 894 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 895 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 896 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 897 898 // memchr(x, y, 0) -> null 899 if (LenC) { 900 if (LenC->isZero()) 901 return Constant::getNullValue(CI->getType()); 902 } else { 903 // From now on we need at least constant length and string. 904 return nullptr; 905 } 906 907 StringRef Str; 908 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 909 return nullptr; 910 911 // Truncate the string to LenC. If Str is smaller than LenC we will still only 912 // scan the string, as reading past the end of it is undefined and we can just 913 // return null if we don't find the char. 914 Str = Str.substr(0, LenC->getZExtValue()); 915 916 // If the char is variable but the input str and length are not we can turn 917 // this memchr call into a simple bit field test. Of course this only works 918 // when the return value is only checked against null. 919 // 920 // It would be really nice to reuse switch lowering here but we can't change 921 // the CFG at this point. 922 // 923 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 924 // != 0 925 // after bounds check. 926 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 927 unsigned char Max = 928 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 929 reinterpret_cast<const unsigned char *>(Str.end())); 930 931 // Make sure the bit field we're about to create fits in a register on the 932 // target. 933 // FIXME: On a 64 bit architecture this prevents us from using the 934 // interesting range of alpha ascii chars. We could do better by emitting 935 // two bitfields or shifting the range by 64 if no lower chars are used. 936 if (!DL.fitsInLegalInteger(Max + 1)) 937 return nullptr; 938 939 // For the bit field use a power-of-2 type with at least 8 bits to avoid 940 // creating unnecessary illegal types. 941 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 942 943 // Now build the bit field. 944 APInt Bitfield(Width, 0); 945 for (char C : Str) 946 Bitfield.setBit((unsigned char)C); 947 Value *BitfieldC = B.getInt(Bitfield); 948 949 // Adjust width of "C" to the bitfield width, then mask off the high bits. 950 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 951 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 952 953 // First check that the bit field access is within bounds. 954 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 955 "memchr.bounds"); 956 957 // Create code that checks if the given bit is set in the field. 958 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 959 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 960 961 // Finally merge both checks and cast to pointer type. The inttoptr 962 // implicitly zexts the i1 to intptr type. 963 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 964 } 965 966 // Check if all arguments are constants. If so, we can constant fold. 967 if (!CharC) 968 return nullptr; 969 970 // Compute the offset. 971 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 972 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 973 return Constant::getNullValue(CI->getType()); 974 975 // memchr(s+n,c,l) -> gep(s+n+i,c) 976 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 977 } 978 979 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 980 uint64_t Len, IRBuilderBase &B, 981 const DataLayout &DL) { 982 if (Len == 0) // memcmp(s1,s2,0) -> 0 983 return Constant::getNullValue(CI->getType()); 984 985 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 986 if (Len == 1) { 987 Value *LHSV = 988 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 989 CI->getType(), "lhsv"); 990 Value *RHSV = 991 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 992 CI->getType(), "rhsv"); 993 return B.CreateSub(LHSV, RHSV, "chardiff"); 994 } 995 996 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 997 // TODO: The case where both inputs are constants does not need to be limited 998 // to legal integers or equality comparison. See block below this. 999 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1000 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1001 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1002 1003 // First, see if we can fold either argument to a constant. 1004 Value *LHSV = nullptr; 1005 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1006 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1007 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1008 } 1009 Value *RHSV = nullptr; 1010 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1011 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1012 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1013 } 1014 1015 // Don't generate unaligned loads. If either source is constant data, 1016 // alignment doesn't matter for that source because there is no load. 1017 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1018 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1019 if (!LHSV) { 1020 Type *LHSPtrTy = 1021 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1022 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1023 } 1024 if (!RHSV) { 1025 Type *RHSPtrTy = 1026 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1027 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1028 } 1029 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1030 } 1031 } 1032 1033 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1034 // TODO: This is limited to i8 arrays. 1035 StringRef LHSStr, RHSStr; 1036 if (getConstantStringInfo(LHS, LHSStr) && 1037 getConstantStringInfo(RHS, RHSStr)) { 1038 // Make sure we're not reading out-of-bounds memory. 1039 if (Len > LHSStr.size() || Len > RHSStr.size()) 1040 return nullptr; 1041 // Fold the memcmp and normalize the result. This way we get consistent 1042 // results across multiple platforms. 1043 uint64_t Ret = 0; 1044 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1045 if (Cmp < 0) 1046 Ret = -1; 1047 else if (Cmp > 0) 1048 Ret = 1; 1049 return ConstantInt::get(CI->getType(), Ret); 1050 } 1051 1052 return nullptr; 1053 } 1054 1055 // Most simplifications for memcmp also apply to bcmp. 1056 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1057 IRBuilderBase &B) { 1058 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1059 Value *Size = CI->getArgOperand(2); 1060 1061 if (LHS == RHS) // memcmp(s,s,x) -> 0 1062 return Constant::getNullValue(CI->getType()); 1063 1064 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1065 // Handle constant lengths. 1066 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1067 if (!LenC) 1068 return nullptr; 1069 1070 // memcmp(d,s,0) -> 0 1071 if (LenC->getZExtValue() == 0) 1072 return Constant::getNullValue(CI->getType()); 1073 1074 if (Value *Res = 1075 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1076 return Res; 1077 return nullptr; 1078 } 1079 1080 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1081 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1082 return V; 1083 1084 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1085 // bcmp can be more efficient than memcmp because it only has to know that 1086 // there is a difference, not how different one is to the other. 1087 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1088 Value *LHS = CI->getArgOperand(0); 1089 Value *RHS = CI->getArgOperand(1); 1090 Value *Size = CI->getArgOperand(2); 1091 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1092 } 1093 1094 return nullptr; 1095 } 1096 1097 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1098 return optimizeMemCmpBCmpCommon(CI, B); 1099 } 1100 1101 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1102 Value *Size = CI->getArgOperand(2); 1103 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1104 if (isa<IntrinsicInst>(CI)) 1105 return nullptr; 1106 1107 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1108 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1109 CI->getArgOperand(1), Align(1), Size); 1110 NewCI->setAttributes(CI->getAttributes()); 1111 NewCI->removeAttributes(AttributeList::ReturnIndex, 1112 AttributeFuncs::typeIncompatible(NewCI->getType())); 1113 return CI->getArgOperand(0); 1114 } 1115 1116 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1117 Value *Dst = CI->getArgOperand(0); 1118 Value *Src = CI->getArgOperand(1); 1119 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1120 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1121 StringRef SrcStr; 1122 if (CI->use_empty() && Dst == Src) 1123 return Dst; 1124 // memccpy(d, s, c, 0) -> nullptr 1125 if (N) { 1126 if (N->isNullValue()) 1127 return Constant::getNullValue(CI->getType()); 1128 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1129 /*TrimAtNul=*/false) || 1130 !StopChar) 1131 return nullptr; 1132 } else { 1133 return nullptr; 1134 } 1135 1136 // Wrap arg 'c' of type int to char 1137 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1138 if (Pos == StringRef::npos) { 1139 if (N->getZExtValue() <= SrcStr.size()) { 1140 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1141 return Constant::getNullValue(CI->getType()); 1142 } 1143 return nullptr; 1144 } 1145 1146 Value *NewN = 1147 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1148 // memccpy -> llvm.memcpy 1149 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1150 return Pos + 1 <= N->getZExtValue() 1151 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1152 : Constant::getNullValue(CI->getType()); 1153 } 1154 1155 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1156 Value *Dst = CI->getArgOperand(0); 1157 Value *N = CI->getArgOperand(2); 1158 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1159 CallInst *NewCI = 1160 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1161 // Propagate attributes, but memcpy has no return value, so make sure that 1162 // any return attributes are compliant. 1163 // TODO: Attach return value attributes to the 1st operand to preserve them? 1164 NewCI->setAttributes(CI->getAttributes()); 1165 NewCI->removeAttributes(AttributeList::ReturnIndex, 1166 AttributeFuncs::typeIncompatible(NewCI->getType())); 1167 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1168 } 1169 1170 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1171 Value *Size = CI->getArgOperand(2); 1172 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1173 if (isa<IntrinsicInst>(CI)) 1174 return nullptr; 1175 1176 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1177 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1178 CI->getArgOperand(1), Align(1), Size); 1179 NewCI->setAttributes(CI->getAttributes()); 1180 NewCI->removeAttributes(AttributeList::ReturnIndex, 1181 AttributeFuncs::typeIncompatible(NewCI->getType())); 1182 return CI->getArgOperand(0); 1183 } 1184 1185 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 1186 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) { 1187 // This has to be a memset of zeros (bzero). 1188 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 1189 if (!FillValue || FillValue->getZExtValue() != 0) 1190 return nullptr; 1191 1192 // TODO: We should handle the case where the malloc has more than one use. 1193 // This is necessary to optimize common patterns such as when the result of 1194 // the malloc is checked against null or when a memset intrinsic is used in 1195 // place of a memset library call. 1196 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1197 if (!Malloc || !Malloc->hasOneUse()) 1198 return nullptr; 1199 1200 // Is the inner call really malloc()? 1201 Function *InnerCallee = Malloc->getCalledFunction(); 1202 if (!InnerCallee) 1203 return nullptr; 1204 1205 LibFunc Func; 1206 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 1207 Func != LibFunc_malloc) 1208 return nullptr; 1209 1210 // The memset must cover the same number of bytes that are malloc'd. 1211 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1212 return nullptr; 1213 1214 // Replace the malloc with a calloc. We need the data layout to know what the 1215 // actual size of a 'size_t' parameter is. 1216 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1217 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1218 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1219 if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1220 Malloc->getArgOperand(0), 1221 Malloc->getAttributes(), B, *TLI)) { 1222 substituteInParent(Malloc, Calloc); 1223 return Calloc; 1224 } 1225 1226 return nullptr; 1227 } 1228 1229 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1230 Value *Size = CI->getArgOperand(2); 1231 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1232 if (isa<IntrinsicInst>(CI)) 1233 return nullptr; 1234 1235 if (auto *Calloc = foldMallocMemset(CI, B)) 1236 return Calloc; 1237 1238 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1239 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1240 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1241 NewCI->setAttributes(CI->getAttributes()); 1242 NewCI->removeAttributes(AttributeList::ReturnIndex, 1243 AttributeFuncs::typeIncompatible(NewCI->getType())); 1244 return CI->getArgOperand(0); 1245 } 1246 1247 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1248 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1249 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1250 1251 return nullptr; 1252 } 1253 1254 //===----------------------------------------------------------------------===// 1255 // Math Library Optimizations 1256 //===----------------------------------------------------------------------===// 1257 1258 // Replace a libcall \p CI with a call to intrinsic \p IID 1259 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1260 Intrinsic::ID IID) { 1261 // Propagate fast-math flags from the existing call to the new call. 1262 IRBuilderBase::FastMathFlagGuard Guard(B); 1263 B.setFastMathFlags(CI->getFastMathFlags()); 1264 1265 Module *M = CI->getModule(); 1266 Value *V = CI->getArgOperand(0); 1267 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1268 CallInst *NewCall = B.CreateCall(F, V); 1269 NewCall->takeName(CI); 1270 return NewCall; 1271 } 1272 1273 /// Return a variant of Val with float type. 1274 /// Currently this works in two cases: If Val is an FPExtension of a float 1275 /// value to something bigger, simply return the operand. 1276 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1277 /// loss of precision do so. 1278 static Value *valueHasFloatPrecision(Value *Val) { 1279 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1280 Value *Op = Cast->getOperand(0); 1281 if (Op->getType()->isFloatTy()) 1282 return Op; 1283 } 1284 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1285 APFloat F = Const->getValueAPF(); 1286 bool losesInfo; 1287 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1288 &losesInfo); 1289 if (!losesInfo) 1290 return ConstantFP::get(Const->getContext(), F); 1291 } 1292 return nullptr; 1293 } 1294 1295 /// Shrink double -> float functions. 1296 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1297 bool isBinary, bool isPrecise = false) { 1298 Function *CalleeFn = CI->getCalledFunction(); 1299 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1300 return nullptr; 1301 1302 // If not all the uses of the function are converted to float, then bail out. 1303 // This matters if the precision of the result is more important than the 1304 // precision of the arguments. 1305 if (isPrecise) 1306 for (User *U : CI->users()) { 1307 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1308 if (!Cast || !Cast->getType()->isFloatTy()) 1309 return nullptr; 1310 } 1311 1312 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1313 Value *V[2]; 1314 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1315 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1316 if (!V[0] || (isBinary && !V[1])) 1317 return nullptr; 1318 1319 // If call isn't an intrinsic, check that it isn't within a function with the 1320 // same name as the float version of this call, otherwise the result is an 1321 // infinite loop. For example, from MinGW-w64: 1322 // 1323 // float expf(float val) { return (float) exp((double) val); } 1324 StringRef CalleeName = CalleeFn->getName(); 1325 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1326 if (!IsIntrinsic) { 1327 StringRef CallerName = CI->getFunction()->getName(); 1328 if (!CallerName.empty() && CallerName.back() == 'f' && 1329 CallerName.size() == (CalleeName.size() + 1) && 1330 CallerName.startswith(CalleeName)) 1331 return nullptr; 1332 } 1333 1334 // Propagate the math semantics from the current function to the new function. 1335 IRBuilderBase::FastMathFlagGuard Guard(B); 1336 B.setFastMathFlags(CI->getFastMathFlags()); 1337 1338 // g((double) float) -> (double) gf(float) 1339 Value *R; 1340 if (IsIntrinsic) { 1341 Module *M = CI->getModule(); 1342 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1343 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1344 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1345 } else { 1346 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1347 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1348 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1349 } 1350 return B.CreateFPExt(R, B.getDoubleTy()); 1351 } 1352 1353 /// Shrink double -> float for unary functions. 1354 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1355 bool isPrecise = false) { 1356 return optimizeDoubleFP(CI, B, false, isPrecise); 1357 } 1358 1359 /// Shrink double -> float for binary functions. 1360 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1361 bool isPrecise = false) { 1362 return optimizeDoubleFP(CI, B, true, isPrecise); 1363 } 1364 1365 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1366 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1367 if (!CI->isFast()) 1368 return nullptr; 1369 1370 // Propagate fast-math flags from the existing call to new instructions. 1371 IRBuilderBase::FastMathFlagGuard Guard(B); 1372 B.setFastMathFlags(CI->getFastMathFlags()); 1373 1374 Value *Real, *Imag; 1375 if (CI->getNumArgOperands() == 1) { 1376 Value *Op = CI->getArgOperand(0); 1377 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1378 Real = B.CreateExtractValue(Op, 0, "real"); 1379 Imag = B.CreateExtractValue(Op, 1, "imag"); 1380 } else { 1381 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1382 Real = CI->getArgOperand(0); 1383 Imag = CI->getArgOperand(1); 1384 } 1385 1386 Value *RealReal = B.CreateFMul(Real, Real); 1387 Value *ImagImag = B.CreateFMul(Imag, Imag); 1388 1389 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1390 CI->getType()); 1391 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1392 } 1393 1394 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1395 IRBuilderBase &B) { 1396 if (!isa<FPMathOperator>(Call)) 1397 return nullptr; 1398 1399 IRBuilderBase::FastMathFlagGuard Guard(B); 1400 B.setFastMathFlags(Call->getFastMathFlags()); 1401 1402 // TODO: Can this be shared to also handle LLVM intrinsics? 1403 Value *X; 1404 switch (Func) { 1405 case LibFunc_sin: 1406 case LibFunc_sinf: 1407 case LibFunc_sinl: 1408 case LibFunc_tan: 1409 case LibFunc_tanf: 1410 case LibFunc_tanl: 1411 // sin(-X) --> -sin(X) 1412 // tan(-X) --> -tan(X) 1413 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1414 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1415 break; 1416 case LibFunc_cos: 1417 case LibFunc_cosf: 1418 case LibFunc_cosl: 1419 // cos(-X) --> cos(X) 1420 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1421 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1422 break; 1423 default: 1424 break; 1425 } 1426 return nullptr; 1427 } 1428 1429 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1430 // Multiplications calculated using Addition Chains. 1431 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1432 1433 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1434 1435 if (InnerChain[Exp]) 1436 return InnerChain[Exp]; 1437 1438 static const unsigned AddChain[33][2] = { 1439 {0, 0}, // Unused. 1440 {0, 0}, // Unused (base case = pow1). 1441 {1, 1}, // Unused (pre-computed). 1442 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1443 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1444 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1445 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1446 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1447 }; 1448 1449 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1450 getPow(InnerChain, AddChain[Exp][1], B)); 1451 return InnerChain[Exp]; 1452 } 1453 1454 // Return a properly extended 32-bit integer if the operation is an itofp. 1455 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) { 1456 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1457 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1458 // Make sure that the exponent fits inside an int32_t, 1459 // thus avoiding any range issues that FP has not. 1460 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1461 if (BitWidth < 32 || 1462 (BitWidth == 32 && isa<SIToFPInst>(I2F))) 1463 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty()) 1464 : B.CreateZExt(Op, B.getInt32Ty()); 1465 } 1466 1467 return nullptr; 1468 } 1469 1470 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1471 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1472 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1473 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1474 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1475 AttributeList Attrs; // Attributes are only meaningful on the original call 1476 Module *Mod = Pow->getModule(); 1477 Type *Ty = Pow->getType(); 1478 bool Ignored; 1479 1480 // Evaluate special cases related to a nested function as the base. 1481 1482 // pow(exp(x), y) -> exp(x * y) 1483 // pow(exp2(x), y) -> exp2(x * y) 1484 // If exp{,2}() is used only once, it is better to fold two transcendental 1485 // math functions into one. If used again, exp{,2}() would still have to be 1486 // called with the original argument, then keep both original transcendental 1487 // functions. However, this transformation is only safe with fully relaxed 1488 // math semantics, since, besides rounding differences, it changes overflow 1489 // and underflow behavior quite dramatically. For example: 1490 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1491 // Whereas: 1492 // exp(1000 * 0.001) = exp(1) 1493 // TODO: Loosen the requirement for fully relaxed math semantics. 1494 // TODO: Handle exp10() when more targets have it available. 1495 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1496 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1497 LibFunc LibFn; 1498 1499 Function *CalleeFn = BaseFn->getCalledFunction(); 1500 if (CalleeFn && 1501 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1502 StringRef ExpName; 1503 Intrinsic::ID ID; 1504 Value *ExpFn; 1505 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1506 1507 switch (LibFn) { 1508 default: 1509 return nullptr; 1510 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1511 ExpName = TLI->getName(LibFunc_exp); 1512 ID = Intrinsic::exp; 1513 LibFnFloat = LibFunc_expf; 1514 LibFnDouble = LibFunc_exp; 1515 LibFnLongDouble = LibFunc_expl; 1516 break; 1517 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1518 ExpName = TLI->getName(LibFunc_exp2); 1519 ID = Intrinsic::exp2; 1520 LibFnFloat = LibFunc_exp2f; 1521 LibFnDouble = LibFunc_exp2; 1522 LibFnLongDouble = LibFunc_exp2l; 1523 break; 1524 } 1525 1526 // Create new exp{,2}() with the product as its argument. 1527 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1528 ExpFn = BaseFn->doesNotAccessMemory() 1529 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1530 FMul, ExpName) 1531 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1532 LibFnLongDouble, B, 1533 BaseFn->getAttributes()); 1534 1535 // Since the new exp{,2}() is different from the original one, dead code 1536 // elimination cannot be trusted to remove it, since it may have side 1537 // effects (e.g., errno). When the only consumer for the original 1538 // exp{,2}() is pow(), then it has to be explicitly erased. 1539 substituteInParent(BaseFn, ExpFn); 1540 return ExpFn; 1541 } 1542 } 1543 1544 // Evaluate special cases related to a constant base. 1545 1546 const APFloat *BaseF; 1547 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1548 return nullptr; 1549 1550 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1551 if (match(Base, m_SpecificFP(2.0)) && 1552 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1553 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1554 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1555 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1556 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1557 B, Attrs); 1558 } 1559 1560 // pow(2.0 ** n, x) -> exp2(n * x) 1561 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1562 APFloat BaseR = APFloat(1.0); 1563 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1564 BaseR = BaseR / *BaseF; 1565 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1566 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1567 APSInt NI(64, false); 1568 if ((IsInteger || IsReciprocal) && 1569 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1570 APFloat::opOK && 1571 NI > 1 && NI.isPowerOf2()) { 1572 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1573 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1574 if (Pow->doesNotAccessMemory()) 1575 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1576 FMul, "exp2"); 1577 else 1578 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1579 LibFunc_exp2l, B, Attrs); 1580 } 1581 } 1582 1583 // pow(10.0, x) -> exp10(x) 1584 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1585 if (match(Base, m_SpecificFP(10.0)) && 1586 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1587 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1588 LibFunc_exp10l, B, Attrs); 1589 1590 // pow(x, y) -> exp2(log2(x) * y) 1591 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1592 !BaseF->isNegative()) { 1593 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1594 // Luckily optimizePow has already handled the x == 1 case. 1595 assert(!match(Base, m_FPOne()) && 1596 "pow(1.0, y) should have been simplified earlier!"); 1597 1598 Value *Log = nullptr; 1599 if (Ty->isFloatTy()) 1600 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1601 else if (Ty->isDoubleTy()) 1602 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1603 1604 if (Log) { 1605 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1606 if (Pow->doesNotAccessMemory()) 1607 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1608 FMul, "exp2"); 1609 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1610 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1611 LibFunc_exp2l, B, Attrs); 1612 } 1613 } 1614 1615 return nullptr; 1616 } 1617 1618 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1619 Module *M, IRBuilderBase &B, 1620 const TargetLibraryInfo *TLI) { 1621 // If errno is never set, then use the intrinsic for sqrt(). 1622 if (NoErrno) { 1623 Function *SqrtFn = 1624 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1625 return B.CreateCall(SqrtFn, V, "sqrt"); 1626 } 1627 1628 // Otherwise, use the libcall for sqrt(). 1629 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1630 // TODO: We also should check that the target can in fact lower the sqrt() 1631 // libcall. We currently have no way to ask this question, so we ask if 1632 // the target has a sqrt() libcall, which is not exactly the same. 1633 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1634 LibFunc_sqrtl, B, Attrs); 1635 1636 return nullptr; 1637 } 1638 1639 /// Use square root in place of pow(x, +/-0.5). 1640 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1641 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1642 AttributeList Attrs; // Attributes are only meaningful on the original call 1643 Module *Mod = Pow->getModule(); 1644 Type *Ty = Pow->getType(); 1645 1646 const APFloat *ExpoF; 1647 if (!match(Expo, m_APFloat(ExpoF)) || 1648 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1649 return nullptr; 1650 1651 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1652 // so that requires fast-math-flags (afn or reassoc). 1653 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1654 return nullptr; 1655 1656 // If we have a pow() library call (accesses memory) and we can't guarantee 1657 // that the base is not an infinity, give up: 1658 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1659 // errno), but sqrt(-Inf) is required by various standards to set errno. 1660 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1661 !isKnownNeverInfinity(Base, TLI)) 1662 return nullptr; 1663 1664 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1665 if (!Sqrt) 1666 return nullptr; 1667 1668 // Handle signed zero base by expanding to fabs(sqrt(x)). 1669 if (!Pow->hasNoSignedZeros()) { 1670 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1671 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1672 } 1673 1674 // Handle non finite base by expanding to 1675 // (x == -infinity ? +infinity : sqrt(x)). 1676 if (!Pow->hasNoInfs()) { 1677 Value *PosInf = ConstantFP::getInfinity(Ty), 1678 *NegInf = ConstantFP::getInfinity(Ty, true); 1679 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1680 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1681 } 1682 1683 // If the exponent is negative, then get the reciprocal. 1684 if (ExpoF->isNegative()) 1685 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1686 1687 return Sqrt; 1688 } 1689 1690 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1691 IRBuilderBase &B) { 1692 Value *Args[] = {Base, Expo}; 1693 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); 1694 return B.CreateCall(F, Args); 1695 } 1696 1697 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1698 Value *Base = Pow->getArgOperand(0); 1699 Value *Expo = Pow->getArgOperand(1); 1700 Function *Callee = Pow->getCalledFunction(); 1701 StringRef Name = Callee->getName(); 1702 Type *Ty = Pow->getType(); 1703 Module *M = Pow->getModule(); 1704 Value *Shrunk = nullptr; 1705 bool AllowApprox = Pow->hasApproxFunc(); 1706 bool Ignored; 1707 1708 // Propagate the math semantics from the call to any created instructions. 1709 IRBuilderBase::FastMathFlagGuard Guard(B); 1710 B.setFastMathFlags(Pow->getFastMathFlags()); 1711 1712 // Shrink pow() to powf() if the arguments are single precision, 1713 // unless the result is expected to be double precision. 1714 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1715 hasFloatVersion(Name)) 1716 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1717 1718 // Evaluate special cases related to the base. 1719 1720 // pow(1.0, x) -> 1.0 1721 if (match(Base, m_FPOne())) 1722 return Base; 1723 1724 if (Value *Exp = replacePowWithExp(Pow, B)) 1725 return Exp; 1726 1727 // Evaluate special cases related to the exponent. 1728 1729 // pow(x, -1.0) -> 1.0 / x 1730 if (match(Expo, m_SpecificFP(-1.0))) 1731 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1732 1733 // pow(x, +/-0.0) -> 1.0 1734 if (match(Expo, m_AnyZeroFP())) 1735 return ConstantFP::get(Ty, 1.0); 1736 1737 // pow(x, 1.0) -> x 1738 if (match(Expo, m_FPOne())) 1739 return Base; 1740 1741 // pow(x, 2.0) -> x * x 1742 if (match(Expo, m_SpecificFP(2.0))) 1743 return B.CreateFMul(Base, Base, "square"); 1744 1745 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1746 return Sqrt; 1747 1748 // pow(x, n) -> x * x * x * ... 1749 const APFloat *ExpoF; 1750 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1751 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1752 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1753 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1754 // additional fmul. 1755 // TODO: This whole transformation should be backend specific (e.g. some 1756 // backends might prefer libcalls or the limit for the exponent might 1757 // be different) and it should also consider optimizing for size. 1758 APFloat LimF(ExpoF->getSemantics(), 33), 1759 ExpoA(abs(*ExpoF)); 1760 if (ExpoA < LimF) { 1761 // This transformation applies to integer or integer+0.5 exponents only. 1762 // For integer+0.5, we create a sqrt(Base) call. 1763 Value *Sqrt = nullptr; 1764 if (!ExpoA.isInteger()) { 1765 APFloat Expo2 = ExpoA; 1766 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1767 // is no floating point exception and the result is an integer, then 1768 // ExpoA == integer + 0.5 1769 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1770 return nullptr; 1771 1772 if (!Expo2.isInteger()) 1773 return nullptr; 1774 1775 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1776 Pow->doesNotAccessMemory(), M, B, TLI); 1777 if (!Sqrt) 1778 return nullptr; 1779 } 1780 1781 // We will memoize intermediate products of the Addition Chain. 1782 Value *InnerChain[33] = {nullptr}; 1783 InnerChain[1] = Base; 1784 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1785 1786 // We cannot readily convert a non-double type (like float) to a double. 1787 // So we first convert it to something which could be converted to double. 1788 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1789 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1790 1791 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1792 if (Sqrt) 1793 FMul = B.CreateFMul(FMul, Sqrt); 1794 1795 // If the exponent is negative, then get the reciprocal. 1796 if (ExpoF->isNegative()) 1797 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1798 1799 return FMul; 1800 } 1801 1802 APSInt IntExpo(32, /*isUnsigned=*/false); 1803 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1804 if (ExpoF->isInteger() && 1805 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1806 APFloat::opOK) { 1807 return createPowWithIntegerExponent( 1808 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); 1809 } 1810 } 1811 1812 // powf(x, itofp(y)) -> powi(x, y) 1813 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1814 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1815 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1816 } 1817 1818 return Shrunk; 1819 } 1820 1821 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1822 Function *Callee = CI->getCalledFunction(); 1823 AttributeList Attrs; // Attributes are only meaningful on the original call 1824 StringRef Name = Callee->getName(); 1825 Value *Ret = nullptr; 1826 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1827 hasFloatVersion(Name)) 1828 Ret = optimizeUnaryDoubleFP(CI, B, true); 1829 1830 Type *Ty = CI->getType(); 1831 Value *Op = CI->getArgOperand(0); 1832 1833 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1834 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1835 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1836 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1837 if (Value *Exp = getIntToFPVal(Op, B)) 1838 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1839 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1840 B, Attrs); 1841 } 1842 1843 return Ret; 1844 } 1845 1846 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1847 // If we can shrink the call to a float function rather than a double 1848 // function, do that first. 1849 Function *Callee = CI->getCalledFunction(); 1850 StringRef Name = Callee->getName(); 1851 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1852 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1853 return Ret; 1854 1855 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1856 // the intrinsics for improved optimization (for example, vectorization). 1857 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1858 // From the C standard draft WG14/N1256: 1859 // "Ideally, fmax would be sensitive to the sign of zero, for example 1860 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1861 // might be impractical." 1862 IRBuilderBase::FastMathFlagGuard Guard(B); 1863 FastMathFlags FMF = CI->getFastMathFlags(); 1864 FMF.setNoSignedZeros(); 1865 B.setFastMathFlags(FMF); 1866 1867 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1868 : Intrinsic::maxnum; 1869 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1870 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1871 } 1872 1873 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1874 Function *LogFn = Log->getCalledFunction(); 1875 AttributeList Attrs; // Attributes are only meaningful on the original call 1876 StringRef LogNm = LogFn->getName(); 1877 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1878 Module *Mod = Log->getModule(); 1879 Type *Ty = Log->getType(); 1880 Value *Ret = nullptr; 1881 1882 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1883 Ret = optimizeUnaryDoubleFP(Log, B, true); 1884 1885 // The earlier call must also be 'fast' in order to do these transforms. 1886 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1887 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1888 return Ret; 1889 1890 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1891 1892 // This is only applicable to log(), log2(), log10(). 1893 if (TLI->getLibFunc(LogNm, LogLb)) 1894 switch (LogLb) { 1895 case LibFunc_logf: 1896 LogID = Intrinsic::log; 1897 ExpLb = LibFunc_expf; 1898 Exp2Lb = LibFunc_exp2f; 1899 Exp10Lb = LibFunc_exp10f; 1900 PowLb = LibFunc_powf; 1901 break; 1902 case LibFunc_log: 1903 LogID = Intrinsic::log; 1904 ExpLb = LibFunc_exp; 1905 Exp2Lb = LibFunc_exp2; 1906 Exp10Lb = LibFunc_exp10; 1907 PowLb = LibFunc_pow; 1908 break; 1909 case LibFunc_logl: 1910 LogID = Intrinsic::log; 1911 ExpLb = LibFunc_expl; 1912 Exp2Lb = LibFunc_exp2l; 1913 Exp10Lb = LibFunc_exp10l; 1914 PowLb = LibFunc_powl; 1915 break; 1916 case LibFunc_log2f: 1917 LogID = Intrinsic::log2; 1918 ExpLb = LibFunc_expf; 1919 Exp2Lb = LibFunc_exp2f; 1920 Exp10Lb = LibFunc_exp10f; 1921 PowLb = LibFunc_powf; 1922 break; 1923 case LibFunc_log2: 1924 LogID = Intrinsic::log2; 1925 ExpLb = LibFunc_exp; 1926 Exp2Lb = LibFunc_exp2; 1927 Exp10Lb = LibFunc_exp10; 1928 PowLb = LibFunc_pow; 1929 break; 1930 case LibFunc_log2l: 1931 LogID = Intrinsic::log2; 1932 ExpLb = LibFunc_expl; 1933 Exp2Lb = LibFunc_exp2l; 1934 Exp10Lb = LibFunc_exp10l; 1935 PowLb = LibFunc_powl; 1936 break; 1937 case LibFunc_log10f: 1938 LogID = Intrinsic::log10; 1939 ExpLb = LibFunc_expf; 1940 Exp2Lb = LibFunc_exp2f; 1941 Exp10Lb = LibFunc_exp10f; 1942 PowLb = LibFunc_powf; 1943 break; 1944 case LibFunc_log10: 1945 LogID = Intrinsic::log10; 1946 ExpLb = LibFunc_exp; 1947 Exp2Lb = LibFunc_exp2; 1948 Exp10Lb = LibFunc_exp10; 1949 PowLb = LibFunc_pow; 1950 break; 1951 case LibFunc_log10l: 1952 LogID = Intrinsic::log10; 1953 ExpLb = LibFunc_expl; 1954 Exp2Lb = LibFunc_exp2l; 1955 Exp10Lb = LibFunc_exp10l; 1956 PowLb = LibFunc_powl; 1957 break; 1958 default: 1959 return Ret; 1960 } 1961 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1962 LogID == Intrinsic::log10) { 1963 if (Ty->getScalarType()->isFloatTy()) { 1964 ExpLb = LibFunc_expf; 1965 Exp2Lb = LibFunc_exp2f; 1966 Exp10Lb = LibFunc_exp10f; 1967 PowLb = LibFunc_powf; 1968 } else if (Ty->getScalarType()->isDoubleTy()) { 1969 ExpLb = LibFunc_exp; 1970 Exp2Lb = LibFunc_exp2; 1971 Exp10Lb = LibFunc_exp10; 1972 PowLb = LibFunc_pow; 1973 } else 1974 return Ret; 1975 } else 1976 return Ret; 1977 1978 IRBuilderBase::FastMathFlagGuard Guard(B); 1979 B.setFastMathFlags(FastMathFlags::getFast()); 1980 1981 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1982 LibFunc ArgLb = NotLibFunc; 1983 TLI->getLibFunc(*Arg, ArgLb); 1984 1985 // log(pow(x,y)) -> y*log(x) 1986 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1987 Value *LogX = 1988 Log->doesNotAccessMemory() 1989 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1990 Arg->getOperand(0), "log") 1991 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1992 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1993 // Since pow() may have side effects, e.g. errno, 1994 // dead code elimination may not be trusted to remove it. 1995 substituteInParent(Arg, MulY); 1996 return MulY; 1997 } 1998 1999 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2000 // TODO: There is no exp10() intrinsic yet. 2001 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2002 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2003 Constant *Eul; 2004 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2005 // FIXME: Add more precise value of e for long double. 2006 Eul = ConstantFP::get(Log->getType(), numbers::e); 2007 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2008 Eul = ConstantFP::get(Log->getType(), 2.0); 2009 else 2010 Eul = ConstantFP::get(Log->getType(), 10.0); 2011 Value *LogE = Log->doesNotAccessMemory() 2012 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2013 Eul, "log") 2014 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 2015 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2016 // Since exp() may have side effects, e.g. errno, 2017 // dead code elimination may not be trusted to remove it. 2018 substituteInParent(Arg, MulY); 2019 return MulY; 2020 } 2021 2022 return Ret; 2023 } 2024 2025 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2026 Function *Callee = CI->getCalledFunction(); 2027 Value *Ret = nullptr; 2028 // TODO: Once we have a way (other than checking for the existince of the 2029 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2030 // condition below. 2031 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2032 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2033 Ret = optimizeUnaryDoubleFP(CI, B, true); 2034 2035 if (!CI->isFast()) 2036 return Ret; 2037 2038 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2039 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2040 return Ret; 2041 2042 // We're looking for a repeated factor in a multiplication tree, 2043 // so we can do this fold: sqrt(x * x) -> fabs(x); 2044 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2045 Value *Op0 = I->getOperand(0); 2046 Value *Op1 = I->getOperand(1); 2047 Value *RepeatOp = nullptr; 2048 Value *OtherOp = nullptr; 2049 if (Op0 == Op1) { 2050 // Simple match: the operands of the multiply are identical. 2051 RepeatOp = Op0; 2052 } else { 2053 // Look for a more complicated pattern: one of the operands is itself 2054 // a multiply, so search for a common factor in that multiply. 2055 // Note: We don't bother looking any deeper than this first level or for 2056 // variations of this pattern because instcombine's visitFMUL and/or the 2057 // reassociation pass should give us this form. 2058 Value *OtherMul0, *OtherMul1; 2059 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2060 // Pattern: sqrt((x * y) * z) 2061 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2062 // Matched: sqrt((x * x) * z) 2063 RepeatOp = OtherMul0; 2064 OtherOp = Op1; 2065 } 2066 } 2067 } 2068 if (!RepeatOp) 2069 return Ret; 2070 2071 // Fast math flags for any created instructions should match the sqrt 2072 // and multiply. 2073 IRBuilderBase::FastMathFlagGuard Guard(B); 2074 B.setFastMathFlags(I->getFastMathFlags()); 2075 2076 // If we found a repeated factor, hoist it out of the square root and 2077 // replace it with the fabs of that factor. 2078 Module *M = Callee->getParent(); 2079 Type *ArgType = I->getType(); 2080 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2081 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2082 if (OtherOp) { 2083 // If we found a non-repeated factor, we still need to get its square 2084 // root. We then multiply that by the value that was simplified out 2085 // of the square root calculation. 2086 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2087 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2088 return B.CreateFMul(FabsCall, SqrtCall); 2089 } 2090 return FabsCall; 2091 } 2092 2093 // TODO: Generalize to handle any trig function and its inverse. 2094 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2095 Function *Callee = CI->getCalledFunction(); 2096 Value *Ret = nullptr; 2097 StringRef Name = Callee->getName(); 2098 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2099 Ret = optimizeUnaryDoubleFP(CI, B, true); 2100 2101 Value *Op1 = CI->getArgOperand(0); 2102 auto *OpC = dyn_cast<CallInst>(Op1); 2103 if (!OpC) 2104 return Ret; 2105 2106 // Both calls must be 'fast' in order to remove them. 2107 if (!CI->isFast() || !OpC->isFast()) 2108 return Ret; 2109 2110 // tan(atan(x)) -> x 2111 // tanf(atanf(x)) -> x 2112 // tanl(atanl(x)) -> x 2113 LibFunc Func; 2114 Function *F = OpC->getCalledFunction(); 2115 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2116 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2117 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2118 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2119 Ret = OpC->getArgOperand(0); 2120 return Ret; 2121 } 2122 2123 static bool isTrigLibCall(CallInst *CI) { 2124 // We can only hope to do anything useful if we can ignore things like errno 2125 // and floating-point exceptions. 2126 // We already checked the prototype. 2127 return CI->hasFnAttr(Attribute::NoUnwind) && 2128 CI->hasFnAttr(Attribute::ReadNone); 2129 } 2130 2131 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2132 bool UseFloat, Value *&Sin, Value *&Cos, 2133 Value *&SinCos) { 2134 Type *ArgTy = Arg->getType(); 2135 Type *ResTy; 2136 StringRef Name; 2137 2138 Triple T(OrigCallee->getParent()->getTargetTriple()); 2139 if (UseFloat) { 2140 Name = "__sincospif_stret"; 2141 2142 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2143 // x86_64 can't use {float, float} since that would be returned in both 2144 // xmm0 and xmm1, which isn't what a real struct would do. 2145 ResTy = T.getArch() == Triple::x86_64 2146 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2147 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2148 } else { 2149 Name = "__sincospi_stret"; 2150 ResTy = StructType::get(ArgTy, ArgTy); 2151 } 2152 2153 Module *M = OrigCallee->getParent(); 2154 FunctionCallee Callee = 2155 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2156 2157 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2158 // If the argument is an instruction, it must dominate all uses so put our 2159 // sincos call there. 2160 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2161 } else { 2162 // Otherwise (e.g. for a constant) the beginning of the function is as 2163 // good a place as any. 2164 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2165 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2166 } 2167 2168 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2169 2170 if (SinCos->getType()->isStructTy()) { 2171 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2172 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2173 } else { 2174 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2175 "sinpi"); 2176 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2177 "cospi"); 2178 } 2179 } 2180 2181 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2182 // Make sure the prototype is as expected, otherwise the rest of the 2183 // function is probably invalid and likely to abort. 2184 if (!isTrigLibCall(CI)) 2185 return nullptr; 2186 2187 Value *Arg = CI->getArgOperand(0); 2188 SmallVector<CallInst *, 1> SinCalls; 2189 SmallVector<CallInst *, 1> CosCalls; 2190 SmallVector<CallInst *, 1> SinCosCalls; 2191 2192 bool IsFloat = Arg->getType()->isFloatTy(); 2193 2194 // Look for all compatible sinpi, cospi and sincospi calls with the same 2195 // argument. If there are enough (in some sense) we can make the 2196 // substitution. 2197 Function *F = CI->getFunction(); 2198 for (User *U : Arg->users()) 2199 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2200 2201 // It's only worthwhile if both sinpi and cospi are actually used. 2202 if (SinCalls.empty() || CosCalls.empty()) 2203 return nullptr; 2204 2205 Value *Sin, *Cos, *SinCos; 2206 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2207 2208 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2209 Value *Res) { 2210 for (CallInst *C : Calls) 2211 replaceAllUsesWith(C, Res); 2212 }; 2213 2214 replaceTrigInsts(SinCalls, Sin); 2215 replaceTrigInsts(CosCalls, Cos); 2216 replaceTrigInsts(SinCosCalls, SinCos); 2217 2218 return nullptr; 2219 } 2220 2221 void LibCallSimplifier::classifyArgUse( 2222 Value *Val, Function *F, bool IsFloat, 2223 SmallVectorImpl<CallInst *> &SinCalls, 2224 SmallVectorImpl<CallInst *> &CosCalls, 2225 SmallVectorImpl<CallInst *> &SinCosCalls) { 2226 CallInst *CI = dyn_cast<CallInst>(Val); 2227 2228 if (!CI || CI->use_empty()) 2229 return; 2230 2231 // Don't consider calls in other functions. 2232 if (CI->getFunction() != F) 2233 return; 2234 2235 Function *Callee = CI->getCalledFunction(); 2236 LibFunc Func; 2237 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2238 !isTrigLibCall(CI)) 2239 return; 2240 2241 if (IsFloat) { 2242 if (Func == LibFunc_sinpif) 2243 SinCalls.push_back(CI); 2244 else if (Func == LibFunc_cospif) 2245 CosCalls.push_back(CI); 2246 else if (Func == LibFunc_sincospif_stret) 2247 SinCosCalls.push_back(CI); 2248 } else { 2249 if (Func == LibFunc_sinpi) 2250 SinCalls.push_back(CI); 2251 else if (Func == LibFunc_cospi) 2252 CosCalls.push_back(CI); 2253 else if (Func == LibFunc_sincospi_stret) 2254 SinCosCalls.push_back(CI); 2255 } 2256 } 2257 2258 //===----------------------------------------------------------------------===// 2259 // Integer Library Call Optimizations 2260 //===----------------------------------------------------------------------===// 2261 2262 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2263 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2264 Value *Op = CI->getArgOperand(0); 2265 Type *ArgType = Op->getType(); 2266 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2267 Intrinsic::cttz, ArgType); 2268 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2269 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2270 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2271 2272 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2273 return B.CreateSelect(Cond, V, B.getInt32(0)); 2274 } 2275 2276 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2277 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2278 Value *Op = CI->getArgOperand(0); 2279 Type *ArgType = Op->getType(); 2280 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2281 Intrinsic::ctlz, ArgType); 2282 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2283 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2284 V); 2285 return B.CreateIntCast(V, CI->getType(), false); 2286 } 2287 2288 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2289 // abs(x) -> x <s 0 ? -x : x 2290 // The negation has 'nsw' because abs of INT_MIN is undefined. 2291 Value *X = CI->getArgOperand(0); 2292 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2293 Value *NegX = B.CreateNSWNeg(X, "neg"); 2294 return B.CreateSelect(IsNeg, NegX, X); 2295 } 2296 2297 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2298 // isdigit(c) -> (c-'0') <u 10 2299 Value *Op = CI->getArgOperand(0); 2300 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2301 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2302 return B.CreateZExt(Op, CI->getType()); 2303 } 2304 2305 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2306 // isascii(c) -> c <u 128 2307 Value *Op = CI->getArgOperand(0); 2308 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2309 return B.CreateZExt(Op, CI->getType()); 2310 } 2311 2312 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2313 // toascii(c) -> c & 0x7f 2314 return B.CreateAnd(CI->getArgOperand(0), 2315 ConstantInt::get(CI->getType(), 0x7F)); 2316 } 2317 2318 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2319 StringRef Str; 2320 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2321 return nullptr; 2322 2323 return convertStrToNumber(CI, Str, 10); 2324 } 2325 2326 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2327 StringRef Str; 2328 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2329 return nullptr; 2330 2331 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2332 return nullptr; 2333 2334 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2335 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2336 } 2337 2338 return nullptr; 2339 } 2340 2341 //===----------------------------------------------------------------------===// 2342 // Formatting and IO Library Call Optimizations 2343 //===----------------------------------------------------------------------===// 2344 2345 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2346 2347 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2348 int StreamArg) { 2349 Function *Callee = CI->getCalledFunction(); 2350 // Error reporting calls should be cold, mark them as such. 2351 // This applies even to non-builtin calls: it is only a hint and applies to 2352 // functions that the frontend might not understand as builtins. 2353 2354 // This heuristic was suggested in: 2355 // Improving Static Branch Prediction in a Compiler 2356 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2357 // Proceedings of PACT'98, Oct. 1998, IEEE 2358 if (!CI->hasFnAttr(Attribute::Cold) && 2359 isReportingError(Callee, CI, StreamArg)) { 2360 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2361 } 2362 2363 return nullptr; 2364 } 2365 2366 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2367 if (!Callee || !Callee->isDeclaration()) 2368 return false; 2369 2370 if (StreamArg < 0) 2371 return true; 2372 2373 // These functions might be considered cold, but only if their stream 2374 // argument is stderr. 2375 2376 if (StreamArg >= (int)CI->getNumArgOperands()) 2377 return false; 2378 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2379 if (!LI) 2380 return false; 2381 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2382 if (!GV || !GV->isDeclaration()) 2383 return false; 2384 return GV->getName() == "stderr"; 2385 } 2386 2387 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2388 // Check for a fixed format string. 2389 StringRef FormatStr; 2390 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2391 return nullptr; 2392 2393 // Empty format string -> noop. 2394 if (FormatStr.empty()) // Tolerate printf's declared void. 2395 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2396 2397 // Do not do any of the following transformations if the printf return value 2398 // is used, in general the printf return value is not compatible with either 2399 // putchar() or puts(). 2400 if (!CI->use_empty()) 2401 return nullptr; 2402 2403 // printf("x") -> putchar('x'), even for "%" and "%%". 2404 if (FormatStr.size() == 1 || FormatStr == "%%") 2405 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2406 2407 // printf("%s", "a") --> putchar('a') 2408 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2409 StringRef ChrStr; 2410 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2411 return nullptr; 2412 if (ChrStr.size() != 1) 2413 return nullptr; 2414 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2415 } 2416 2417 // printf("foo\n") --> puts("foo") 2418 if (FormatStr[FormatStr.size() - 1] == '\n' && 2419 FormatStr.find('%') == StringRef::npos) { // No format characters. 2420 // Create a string literal with no \n on it. We expect the constant merge 2421 // pass to be run after this pass, to merge duplicate strings. 2422 FormatStr = FormatStr.drop_back(); 2423 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2424 return emitPutS(GV, B, TLI); 2425 } 2426 2427 // Optimize specific format strings. 2428 // printf("%c", chr) --> putchar(chr) 2429 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2430 CI->getArgOperand(1)->getType()->isIntegerTy()) 2431 return emitPutChar(CI->getArgOperand(1), B, TLI); 2432 2433 // printf("%s\n", str) --> puts(str) 2434 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2435 CI->getArgOperand(1)->getType()->isPointerTy()) 2436 return emitPutS(CI->getArgOperand(1), B, TLI); 2437 return nullptr; 2438 } 2439 2440 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2441 2442 Function *Callee = CI->getCalledFunction(); 2443 FunctionType *FT = Callee->getFunctionType(); 2444 if (Value *V = optimizePrintFString(CI, B)) { 2445 return V; 2446 } 2447 2448 // printf(format, ...) -> iprintf(format, ...) if no floating point 2449 // arguments. 2450 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2451 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2452 FunctionCallee IPrintFFn = 2453 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2454 CallInst *New = cast<CallInst>(CI->clone()); 2455 New->setCalledFunction(IPrintFFn); 2456 B.Insert(New); 2457 return New; 2458 } 2459 2460 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2461 // arguments. 2462 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2463 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2464 auto SmallPrintFFn = 2465 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2466 FT, Callee->getAttributes()); 2467 CallInst *New = cast<CallInst>(CI->clone()); 2468 New->setCalledFunction(SmallPrintFFn); 2469 B.Insert(New); 2470 return New; 2471 } 2472 2473 annotateNonNullBasedOnAccess(CI, 0); 2474 return nullptr; 2475 } 2476 2477 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2478 IRBuilderBase &B) { 2479 // Check for a fixed format string. 2480 StringRef FormatStr; 2481 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2482 return nullptr; 2483 2484 // If we just have a format string (nothing else crazy) transform it. 2485 if (CI->getNumArgOperands() == 2) { 2486 // Make sure there's no % in the constant array. We could try to handle 2487 // %% -> % in the future if we cared. 2488 if (FormatStr.find('%') != StringRef::npos) 2489 return nullptr; // we found a format specifier, bail out. 2490 2491 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2492 B.CreateMemCpy( 2493 CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1), 2494 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2495 FormatStr.size() + 1)); // Copy the null byte. 2496 return ConstantInt::get(CI->getType(), FormatStr.size()); 2497 } 2498 2499 // The remaining optimizations require the format string to be "%s" or "%c" 2500 // and have an extra operand. 2501 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2502 CI->getNumArgOperands() < 3) 2503 return nullptr; 2504 2505 // Decode the second character of the format string. 2506 if (FormatStr[1] == 'c') { 2507 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2508 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2509 return nullptr; 2510 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2511 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2512 B.CreateStore(V, Ptr); 2513 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2514 B.CreateStore(B.getInt8(0), Ptr); 2515 2516 return ConstantInt::get(CI->getType(), 1); 2517 } 2518 2519 if (FormatStr[1] == 's') { 2520 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2521 // strlen(str)+1) 2522 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2523 return nullptr; 2524 2525 if (CI->use_empty()) 2526 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2527 return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI); 2528 2529 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2530 if (SrcLen) { 2531 B.CreateMemCpy( 2532 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2533 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2534 // Returns total number of characters written without null-character. 2535 return ConstantInt::get(CI->getType(), SrcLen - 1); 2536 } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2), 2537 B, TLI)) { 2538 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2539 Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0)); 2540 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2541 } 2542 2543 bool OptForSize = CI->getFunction()->hasOptSize() || 2544 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2545 PGSOQueryType::IRPass); 2546 if (OptForSize) 2547 return nullptr; 2548 2549 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2550 if (!Len) 2551 return nullptr; 2552 Value *IncLen = 2553 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2554 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2), 2555 Align(1), IncLen); 2556 2557 // The sprintf result is the unincremented number of bytes in the string. 2558 return B.CreateIntCast(Len, CI->getType(), false); 2559 } 2560 return nullptr; 2561 } 2562 2563 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2564 Function *Callee = CI->getCalledFunction(); 2565 FunctionType *FT = Callee->getFunctionType(); 2566 if (Value *V = optimizeSPrintFString(CI, B)) { 2567 return V; 2568 } 2569 2570 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2571 // point arguments. 2572 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2573 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2574 FunctionCallee SIPrintFFn = 2575 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2576 CallInst *New = cast<CallInst>(CI->clone()); 2577 New->setCalledFunction(SIPrintFFn); 2578 B.Insert(New); 2579 return New; 2580 } 2581 2582 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2583 // floating point arguments. 2584 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2585 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2586 auto SmallSPrintFFn = 2587 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2588 FT, Callee->getAttributes()); 2589 CallInst *New = cast<CallInst>(CI->clone()); 2590 New->setCalledFunction(SmallSPrintFFn); 2591 B.Insert(New); 2592 return New; 2593 } 2594 2595 annotateNonNullBasedOnAccess(CI, {0, 1}); 2596 return nullptr; 2597 } 2598 2599 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2600 IRBuilderBase &B) { 2601 // Check for size 2602 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2603 if (!Size) 2604 return nullptr; 2605 2606 uint64_t N = Size->getZExtValue(); 2607 // Check for a fixed format string. 2608 StringRef FormatStr; 2609 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2610 return nullptr; 2611 2612 // If we just have a format string (nothing else crazy) transform it. 2613 if (CI->getNumArgOperands() == 3) { 2614 // Make sure there's no % in the constant array. We could try to handle 2615 // %% -> % in the future if we cared. 2616 if (FormatStr.find('%') != StringRef::npos) 2617 return nullptr; // we found a format specifier, bail out. 2618 2619 if (N == 0) 2620 return ConstantInt::get(CI->getType(), FormatStr.size()); 2621 else if (N < FormatStr.size() + 1) 2622 return nullptr; 2623 2624 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2625 // strlen(fmt)+1) 2626 B.CreateMemCpy( 2627 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2628 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2629 FormatStr.size() + 1)); // Copy the null byte. 2630 return ConstantInt::get(CI->getType(), FormatStr.size()); 2631 } 2632 2633 // The remaining optimizations require the format string to be "%s" or "%c" 2634 // and have an extra operand. 2635 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2636 CI->getNumArgOperands() == 4) { 2637 2638 // Decode the second character of the format string. 2639 if (FormatStr[1] == 'c') { 2640 if (N == 0) 2641 return ConstantInt::get(CI->getType(), 1); 2642 else if (N == 1) 2643 return nullptr; 2644 2645 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2646 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2647 return nullptr; 2648 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2649 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2650 B.CreateStore(V, Ptr); 2651 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2652 B.CreateStore(B.getInt8(0), Ptr); 2653 2654 return ConstantInt::get(CI->getType(), 1); 2655 } 2656 2657 if (FormatStr[1] == 's') { 2658 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2659 StringRef Str; 2660 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2661 return nullptr; 2662 2663 if (N == 0) 2664 return ConstantInt::get(CI->getType(), Str.size()); 2665 else if (N < Str.size() + 1) 2666 return nullptr; 2667 2668 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2669 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2670 2671 // The snprintf result is the unincremented number of bytes in the string. 2672 return ConstantInt::get(CI->getType(), Str.size()); 2673 } 2674 } 2675 return nullptr; 2676 } 2677 2678 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2679 if (Value *V = optimizeSnPrintFString(CI, B)) { 2680 return V; 2681 } 2682 2683 if (isKnownNonZero(CI->getOperand(1), DL)) 2684 annotateNonNullBasedOnAccess(CI, 0); 2685 return nullptr; 2686 } 2687 2688 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2689 IRBuilderBase &B) { 2690 optimizeErrorReporting(CI, B, 0); 2691 2692 // All the optimizations depend on the format string. 2693 StringRef FormatStr; 2694 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2695 return nullptr; 2696 2697 // Do not do any of the following transformations if the fprintf return 2698 // value is used, in general the fprintf return value is not compatible 2699 // with fwrite(), fputc() or fputs(). 2700 if (!CI->use_empty()) 2701 return nullptr; 2702 2703 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2704 if (CI->getNumArgOperands() == 2) { 2705 // Could handle %% -> % if we cared. 2706 if (FormatStr.find('%') != StringRef::npos) 2707 return nullptr; // We found a format specifier. 2708 2709 return emitFWrite( 2710 CI->getArgOperand(1), 2711 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2712 CI->getArgOperand(0), B, DL, TLI); 2713 } 2714 2715 // The remaining optimizations require the format string to be "%s" or "%c" 2716 // and have an extra operand. 2717 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2718 CI->getNumArgOperands() < 3) 2719 return nullptr; 2720 2721 // Decode the second character of the format string. 2722 if (FormatStr[1] == 'c') { 2723 // fprintf(F, "%c", chr) --> fputc(chr, F) 2724 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2725 return nullptr; 2726 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2727 } 2728 2729 if (FormatStr[1] == 's') { 2730 // fprintf(F, "%s", str) --> fputs(str, F) 2731 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2732 return nullptr; 2733 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2734 } 2735 return nullptr; 2736 } 2737 2738 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2739 Function *Callee = CI->getCalledFunction(); 2740 FunctionType *FT = Callee->getFunctionType(); 2741 if (Value *V = optimizeFPrintFString(CI, B)) { 2742 return V; 2743 } 2744 2745 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2746 // floating point arguments. 2747 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2748 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2749 FunctionCallee FIPrintFFn = 2750 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2751 CallInst *New = cast<CallInst>(CI->clone()); 2752 New->setCalledFunction(FIPrintFFn); 2753 B.Insert(New); 2754 return New; 2755 } 2756 2757 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2758 // 128-bit floating point arguments. 2759 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2760 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2761 auto SmallFPrintFFn = 2762 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2763 FT, Callee->getAttributes()); 2764 CallInst *New = cast<CallInst>(CI->clone()); 2765 New->setCalledFunction(SmallFPrintFFn); 2766 B.Insert(New); 2767 return New; 2768 } 2769 2770 return nullptr; 2771 } 2772 2773 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2774 optimizeErrorReporting(CI, B, 3); 2775 2776 // Get the element size and count. 2777 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2778 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2779 if (SizeC && CountC) { 2780 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2781 2782 // If this is writing zero records, remove the call (it's a noop). 2783 if (Bytes == 0) 2784 return ConstantInt::get(CI->getType(), 0); 2785 2786 // If this is writing one byte, turn it into fputc. 2787 // This optimisation is only valid, if the return value is unused. 2788 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2789 Value *Char = B.CreateLoad(B.getInt8Ty(), 2790 castToCStr(CI->getArgOperand(0), B), "char"); 2791 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2792 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2793 } 2794 } 2795 2796 return nullptr; 2797 } 2798 2799 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2800 optimizeErrorReporting(CI, B, 1); 2801 2802 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2803 // requires more arguments and thus extra MOVs are required. 2804 bool OptForSize = CI->getFunction()->hasOptSize() || 2805 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2806 PGSOQueryType::IRPass); 2807 if (OptForSize) 2808 return nullptr; 2809 2810 // We can't optimize if return value is used. 2811 if (!CI->use_empty()) 2812 return nullptr; 2813 2814 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2815 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2816 if (!Len) 2817 return nullptr; 2818 2819 // Known to have no uses (see above). 2820 return emitFWrite( 2821 CI->getArgOperand(0), 2822 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2823 CI->getArgOperand(1), B, DL, TLI); 2824 } 2825 2826 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2827 annotateNonNullBasedOnAccess(CI, 0); 2828 if (!CI->use_empty()) 2829 return nullptr; 2830 2831 // Check for a constant string. 2832 // puts("") -> putchar('\n') 2833 StringRef Str; 2834 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2835 return emitPutChar(B.getInt32('\n'), B, TLI); 2836 2837 return nullptr; 2838 } 2839 2840 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2841 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2842 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2843 Align(1), CI->getArgOperand(2)); 2844 } 2845 2846 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2847 LibFunc Func; 2848 SmallString<20> FloatFuncName = FuncName; 2849 FloatFuncName += 'f'; 2850 if (TLI->getLibFunc(FloatFuncName, Func)) 2851 return TLI->has(Func); 2852 return false; 2853 } 2854 2855 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2856 IRBuilderBase &Builder) { 2857 LibFunc Func; 2858 Function *Callee = CI->getCalledFunction(); 2859 // Check for string/memory library functions. 2860 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2861 // Make sure we never change the calling convention. 2862 assert((ignoreCallingConv(Func) || 2863 isCallingConvCCompatible(CI)) && 2864 "Optimizing string/memory libcall would change the calling convention"); 2865 switch (Func) { 2866 case LibFunc_strcat: 2867 return optimizeStrCat(CI, Builder); 2868 case LibFunc_strncat: 2869 return optimizeStrNCat(CI, Builder); 2870 case LibFunc_strchr: 2871 return optimizeStrChr(CI, Builder); 2872 case LibFunc_strrchr: 2873 return optimizeStrRChr(CI, Builder); 2874 case LibFunc_strcmp: 2875 return optimizeStrCmp(CI, Builder); 2876 case LibFunc_strncmp: 2877 return optimizeStrNCmp(CI, Builder); 2878 case LibFunc_strcpy: 2879 return optimizeStrCpy(CI, Builder); 2880 case LibFunc_stpcpy: 2881 return optimizeStpCpy(CI, Builder); 2882 case LibFunc_strncpy: 2883 return optimizeStrNCpy(CI, Builder); 2884 case LibFunc_strlen: 2885 return optimizeStrLen(CI, Builder); 2886 case LibFunc_strpbrk: 2887 return optimizeStrPBrk(CI, Builder); 2888 case LibFunc_strndup: 2889 return optimizeStrNDup(CI, Builder); 2890 case LibFunc_strtol: 2891 case LibFunc_strtod: 2892 case LibFunc_strtof: 2893 case LibFunc_strtoul: 2894 case LibFunc_strtoll: 2895 case LibFunc_strtold: 2896 case LibFunc_strtoull: 2897 return optimizeStrTo(CI, Builder); 2898 case LibFunc_strspn: 2899 return optimizeStrSpn(CI, Builder); 2900 case LibFunc_strcspn: 2901 return optimizeStrCSpn(CI, Builder); 2902 case LibFunc_strstr: 2903 return optimizeStrStr(CI, Builder); 2904 case LibFunc_memchr: 2905 return optimizeMemChr(CI, Builder); 2906 case LibFunc_memrchr: 2907 return optimizeMemRChr(CI, Builder); 2908 case LibFunc_bcmp: 2909 return optimizeBCmp(CI, Builder); 2910 case LibFunc_memcmp: 2911 return optimizeMemCmp(CI, Builder); 2912 case LibFunc_memcpy: 2913 return optimizeMemCpy(CI, Builder); 2914 case LibFunc_memccpy: 2915 return optimizeMemCCpy(CI, Builder); 2916 case LibFunc_mempcpy: 2917 return optimizeMemPCpy(CI, Builder); 2918 case LibFunc_memmove: 2919 return optimizeMemMove(CI, Builder); 2920 case LibFunc_memset: 2921 return optimizeMemSet(CI, Builder); 2922 case LibFunc_realloc: 2923 return optimizeRealloc(CI, Builder); 2924 case LibFunc_wcslen: 2925 return optimizeWcslen(CI, Builder); 2926 case LibFunc_bcopy: 2927 return optimizeBCopy(CI, Builder); 2928 default: 2929 break; 2930 } 2931 } 2932 return nullptr; 2933 } 2934 2935 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2936 LibFunc Func, 2937 IRBuilderBase &Builder) { 2938 // Don't optimize calls that require strict floating point semantics. 2939 if (CI->isStrictFP()) 2940 return nullptr; 2941 2942 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2943 return V; 2944 2945 switch (Func) { 2946 case LibFunc_sinpif: 2947 case LibFunc_sinpi: 2948 case LibFunc_cospif: 2949 case LibFunc_cospi: 2950 return optimizeSinCosPi(CI, Builder); 2951 case LibFunc_powf: 2952 case LibFunc_pow: 2953 case LibFunc_powl: 2954 return optimizePow(CI, Builder); 2955 case LibFunc_exp2l: 2956 case LibFunc_exp2: 2957 case LibFunc_exp2f: 2958 return optimizeExp2(CI, Builder); 2959 case LibFunc_fabsf: 2960 case LibFunc_fabs: 2961 case LibFunc_fabsl: 2962 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2963 case LibFunc_sqrtf: 2964 case LibFunc_sqrt: 2965 case LibFunc_sqrtl: 2966 return optimizeSqrt(CI, Builder); 2967 case LibFunc_logf: 2968 case LibFunc_log: 2969 case LibFunc_logl: 2970 case LibFunc_log10f: 2971 case LibFunc_log10: 2972 case LibFunc_log10l: 2973 case LibFunc_log1pf: 2974 case LibFunc_log1p: 2975 case LibFunc_log1pl: 2976 case LibFunc_log2f: 2977 case LibFunc_log2: 2978 case LibFunc_log2l: 2979 case LibFunc_logbf: 2980 case LibFunc_logb: 2981 case LibFunc_logbl: 2982 return optimizeLog(CI, Builder); 2983 case LibFunc_tan: 2984 case LibFunc_tanf: 2985 case LibFunc_tanl: 2986 return optimizeTan(CI, Builder); 2987 case LibFunc_ceil: 2988 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2989 case LibFunc_floor: 2990 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2991 case LibFunc_round: 2992 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2993 case LibFunc_roundeven: 2994 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2995 case LibFunc_nearbyint: 2996 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2997 case LibFunc_rint: 2998 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2999 case LibFunc_trunc: 3000 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3001 case LibFunc_acos: 3002 case LibFunc_acosh: 3003 case LibFunc_asin: 3004 case LibFunc_asinh: 3005 case LibFunc_atan: 3006 case LibFunc_atanh: 3007 case LibFunc_cbrt: 3008 case LibFunc_cosh: 3009 case LibFunc_exp: 3010 case LibFunc_exp10: 3011 case LibFunc_expm1: 3012 case LibFunc_cos: 3013 case LibFunc_sin: 3014 case LibFunc_sinh: 3015 case LibFunc_tanh: 3016 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 3017 return optimizeUnaryDoubleFP(CI, Builder, true); 3018 return nullptr; 3019 case LibFunc_copysign: 3020 if (hasFloatVersion(CI->getCalledFunction()->getName())) 3021 return optimizeBinaryDoubleFP(CI, Builder); 3022 return nullptr; 3023 case LibFunc_fminf: 3024 case LibFunc_fmin: 3025 case LibFunc_fminl: 3026 case LibFunc_fmaxf: 3027 case LibFunc_fmax: 3028 case LibFunc_fmaxl: 3029 return optimizeFMinFMax(CI, Builder); 3030 case LibFunc_cabs: 3031 case LibFunc_cabsf: 3032 case LibFunc_cabsl: 3033 return optimizeCAbs(CI, Builder); 3034 default: 3035 return nullptr; 3036 } 3037 } 3038 3039 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3040 // TODO: Split out the code below that operates on FP calls so that 3041 // we can all non-FP calls with the StrictFP attribute to be 3042 // optimized. 3043 if (CI->isNoBuiltin()) 3044 return nullptr; 3045 3046 LibFunc Func; 3047 Function *Callee = CI->getCalledFunction(); 3048 bool isCallingConvC = isCallingConvCCompatible(CI); 3049 3050 SmallVector<OperandBundleDef, 2> OpBundles; 3051 CI->getOperandBundlesAsDefs(OpBundles); 3052 3053 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3054 Builder.setDefaultOperandBundles(OpBundles); 3055 3056 // Command-line parameter overrides instruction attribute. 3057 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3058 // used by the intrinsic optimizations. 3059 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3060 UnsafeFPShrink = EnableUnsafeFPShrink; 3061 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3062 UnsafeFPShrink = true; 3063 3064 // First, check for intrinsics. 3065 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3066 if (!isCallingConvC) 3067 return nullptr; 3068 // The FP intrinsics have corresponding constrained versions so we don't 3069 // need to check for the StrictFP attribute here. 3070 switch (II->getIntrinsicID()) { 3071 case Intrinsic::pow: 3072 return optimizePow(CI, Builder); 3073 case Intrinsic::exp2: 3074 return optimizeExp2(CI, Builder); 3075 case Intrinsic::log: 3076 case Intrinsic::log2: 3077 case Intrinsic::log10: 3078 return optimizeLog(CI, Builder); 3079 case Intrinsic::sqrt: 3080 return optimizeSqrt(CI, Builder); 3081 // TODO: Use foldMallocMemset() with memset intrinsic. 3082 case Intrinsic::memset: 3083 return optimizeMemSet(CI, Builder); 3084 case Intrinsic::memcpy: 3085 return optimizeMemCpy(CI, Builder); 3086 case Intrinsic::memmove: 3087 return optimizeMemMove(CI, Builder); 3088 default: 3089 return nullptr; 3090 } 3091 } 3092 3093 // Also try to simplify calls to fortified library functions. 3094 if (Value *SimplifiedFortifiedCI = 3095 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3096 // Try to further simplify the result. 3097 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3098 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3099 // Ensure that SimplifiedCI's uses are complete, since some calls have 3100 // their uses analyzed. 3101 replaceAllUsesWith(CI, SimplifiedCI); 3102 3103 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3104 // we might replace later on. 3105 IRBuilderBase::InsertPointGuard Guard(Builder); 3106 Builder.SetInsertPoint(SimplifiedCI); 3107 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3108 // If we were able to further simplify, remove the now redundant call. 3109 substituteInParent(SimplifiedCI, V); 3110 return V; 3111 } 3112 } 3113 return SimplifiedFortifiedCI; 3114 } 3115 3116 // Then check for known library functions. 3117 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3118 // We never change the calling convention. 3119 if (!ignoreCallingConv(Func) && !isCallingConvC) 3120 return nullptr; 3121 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3122 return V; 3123 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3124 return V; 3125 switch (Func) { 3126 case LibFunc_ffs: 3127 case LibFunc_ffsl: 3128 case LibFunc_ffsll: 3129 return optimizeFFS(CI, Builder); 3130 case LibFunc_fls: 3131 case LibFunc_flsl: 3132 case LibFunc_flsll: 3133 return optimizeFls(CI, Builder); 3134 case LibFunc_abs: 3135 case LibFunc_labs: 3136 case LibFunc_llabs: 3137 return optimizeAbs(CI, Builder); 3138 case LibFunc_isdigit: 3139 return optimizeIsDigit(CI, Builder); 3140 case LibFunc_isascii: 3141 return optimizeIsAscii(CI, Builder); 3142 case LibFunc_toascii: 3143 return optimizeToAscii(CI, Builder); 3144 case LibFunc_atoi: 3145 case LibFunc_atol: 3146 case LibFunc_atoll: 3147 return optimizeAtoi(CI, Builder); 3148 case LibFunc_strtol: 3149 case LibFunc_strtoll: 3150 return optimizeStrtol(CI, Builder); 3151 case LibFunc_printf: 3152 return optimizePrintF(CI, Builder); 3153 case LibFunc_sprintf: 3154 return optimizeSPrintF(CI, Builder); 3155 case LibFunc_snprintf: 3156 return optimizeSnPrintF(CI, Builder); 3157 case LibFunc_fprintf: 3158 return optimizeFPrintF(CI, Builder); 3159 case LibFunc_fwrite: 3160 return optimizeFWrite(CI, Builder); 3161 case LibFunc_fputs: 3162 return optimizeFPuts(CI, Builder); 3163 case LibFunc_puts: 3164 return optimizePuts(CI, Builder); 3165 case LibFunc_perror: 3166 return optimizeErrorReporting(CI, Builder); 3167 case LibFunc_vfprintf: 3168 case LibFunc_fiprintf: 3169 return optimizeErrorReporting(CI, Builder, 0); 3170 default: 3171 return nullptr; 3172 } 3173 } 3174 return nullptr; 3175 } 3176 3177 LibCallSimplifier::LibCallSimplifier( 3178 const DataLayout &DL, const TargetLibraryInfo *TLI, 3179 OptimizationRemarkEmitter &ORE, 3180 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3181 function_ref<void(Instruction *, Value *)> Replacer, 3182 function_ref<void(Instruction *)> Eraser) 3183 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3184 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3185 3186 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3187 // Indirect through the replacer used in this instance. 3188 Replacer(I, With); 3189 } 3190 3191 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3192 Eraser(I); 3193 } 3194 3195 // TODO: 3196 // Additional cases that we need to add to this file: 3197 // 3198 // cbrt: 3199 // * cbrt(expN(X)) -> expN(x/3) 3200 // * cbrt(sqrt(x)) -> pow(x,1/6) 3201 // * cbrt(cbrt(x)) -> pow(x,1/9) 3202 // 3203 // exp, expf, expl: 3204 // * exp(log(x)) -> x 3205 // 3206 // log, logf, logl: 3207 // * log(exp(x)) -> x 3208 // * log(exp(y)) -> y*log(e) 3209 // * log(exp10(y)) -> y*log(10) 3210 // * log(sqrt(x)) -> 0.5*log(x) 3211 // 3212 // pow, powf, powl: 3213 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3214 // * pow(pow(x,y),z)-> pow(x,y*z) 3215 // 3216 // signbit: 3217 // * signbit(cnst) -> cnst' 3218 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3219 // 3220 // sqrt, sqrtf, sqrtl: 3221 // * sqrt(expN(x)) -> expN(x*0.5) 3222 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3223 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3224 // 3225 3226 //===----------------------------------------------------------------------===// 3227 // Fortified Library Call Optimizations 3228 //===----------------------------------------------------------------------===// 3229 3230 bool 3231 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3232 unsigned ObjSizeOp, 3233 Optional<unsigned> SizeOp, 3234 Optional<unsigned> StrOp, 3235 Optional<unsigned> FlagOp) { 3236 // If this function takes a flag argument, the implementation may use it to 3237 // perform extra checks. Don't fold into the non-checking variant. 3238 if (FlagOp) { 3239 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3240 if (!Flag || !Flag->isZero()) 3241 return false; 3242 } 3243 3244 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3245 return true; 3246 3247 if (ConstantInt *ObjSizeCI = 3248 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3249 if (ObjSizeCI->isMinusOne()) 3250 return true; 3251 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3252 if (OnlyLowerUnknownSize) 3253 return false; 3254 if (StrOp) { 3255 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3256 // If the length is 0 we don't know how long it is and so we can't 3257 // remove the check. 3258 if (Len) 3259 annotateDereferenceableBytes(CI, *StrOp, Len); 3260 else 3261 return false; 3262 return ObjSizeCI->getZExtValue() >= Len; 3263 } 3264 3265 if (SizeOp) { 3266 if (ConstantInt *SizeCI = 3267 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3268 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3269 } 3270 } 3271 return false; 3272 } 3273 3274 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3275 IRBuilderBase &B) { 3276 if (isFortifiedCallFoldable(CI, 3, 2)) { 3277 CallInst *NewCI = 3278 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3279 Align(1), CI->getArgOperand(2)); 3280 NewCI->setAttributes(CI->getAttributes()); 3281 NewCI->removeAttributes(AttributeList::ReturnIndex, 3282 AttributeFuncs::typeIncompatible(NewCI->getType())); 3283 return CI->getArgOperand(0); 3284 } 3285 return nullptr; 3286 } 3287 3288 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3289 IRBuilderBase &B) { 3290 if (isFortifiedCallFoldable(CI, 3, 2)) { 3291 CallInst *NewCI = 3292 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3293 Align(1), CI->getArgOperand(2)); 3294 NewCI->setAttributes(CI->getAttributes()); 3295 NewCI->removeAttributes(AttributeList::ReturnIndex, 3296 AttributeFuncs::typeIncompatible(NewCI->getType())); 3297 return CI->getArgOperand(0); 3298 } 3299 return nullptr; 3300 } 3301 3302 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3303 IRBuilderBase &B) { 3304 // TODO: Try foldMallocMemset() here. 3305 3306 if (isFortifiedCallFoldable(CI, 3, 2)) { 3307 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3308 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3309 CI->getArgOperand(2), Align(1)); 3310 NewCI->setAttributes(CI->getAttributes()); 3311 NewCI->removeAttributes(AttributeList::ReturnIndex, 3312 AttributeFuncs::typeIncompatible(NewCI->getType())); 3313 return CI->getArgOperand(0); 3314 } 3315 return nullptr; 3316 } 3317 3318 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3319 IRBuilderBase &B) { 3320 const DataLayout &DL = CI->getModule()->getDataLayout(); 3321 if (isFortifiedCallFoldable(CI, 3, 2)) 3322 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3323 CI->getArgOperand(2), B, DL, TLI)) { 3324 CallInst *NewCI = cast<CallInst>(Call); 3325 NewCI->setAttributes(CI->getAttributes()); 3326 NewCI->removeAttributes( 3327 AttributeList::ReturnIndex, 3328 AttributeFuncs::typeIncompatible(NewCI->getType())); 3329 return NewCI; 3330 } 3331 return nullptr; 3332 } 3333 3334 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3335 IRBuilderBase &B, 3336 LibFunc Func) { 3337 const DataLayout &DL = CI->getModule()->getDataLayout(); 3338 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3339 *ObjSize = CI->getArgOperand(2); 3340 3341 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3342 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3343 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3344 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3345 } 3346 3347 // If a) we don't have any length information, or b) we know this will 3348 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3349 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3350 // TODO: It might be nice to get a maximum length out of the possible 3351 // string lengths for varying. 3352 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3353 if (Func == LibFunc_strcpy_chk) 3354 return emitStrCpy(Dst, Src, B, TLI); 3355 else 3356 return emitStpCpy(Dst, Src, B, TLI); 3357 } 3358 3359 if (OnlyLowerUnknownSize) 3360 return nullptr; 3361 3362 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3363 uint64_t Len = GetStringLength(Src); 3364 if (Len) 3365 annotateDereferenceableBytes(CI, 1, Len); 3366 else 3367 return nullptr; 3368 3369 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3370 Value *LenV = ConstantInt::get(SizeTTy, Len); 3371 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3372 // If the function was an __stpcpy_chk, and we were able to fold it into 3373 // a __memcpy_chk, we still need to return the correct end pointer. 3374 if (Ret && Func == LibFunc_stpcpy_chk) 3375 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3376 return Ret; 3377 } 3378 3379 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3380 IRBuilderBase &B) { 3381 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3382 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3383 TLI); 3384 return nullptr; 3385 } 3386 3387 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3388 IRBuilderBase &B, 3389 LibFunc Func) { 3390 if (isFortifiedCallFoldable(CI, 3, 2)) { 3391 if (Func == LibFunc_strncpy_chk) 3392 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3393 CI->getArgOperand(2), B, TLI); 3394 else 3395 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3396 CI->getArgOperand(2), B, TLI); 3397 } 3398 3399 return nullptr; 3400 } 3401 3402 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3403 IRBuilderBase &B) { 3404 if (isFortifiedCallFoldable(CI, 4, 3)) 3405 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3406 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3407 3408 return nullptr; 3409 } 3410 3411 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3412 IRBuilderBase &B) { 3413 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3414 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3415 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3416 CI->getArgOperand(4), VariadicArgs, B, TLI); 3417 } 3418 3419 return nullptr; 3420 } 3421 3422 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3423 IRBuilderBase &B) { 3424 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3425 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3426 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3427 B, TLI); 3428 } 3429 3430 return nullptr; 3431 } 3432 3433 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3434 IRBuilderBase &B) { 3435 if (isFortifiedCallFoldable(CI, 2)) 3436 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3437 3438 return nullptr; 3439 } 3440 3441 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3442 IRBuilderBase &B) { 3443 if (isFortifiedCallFoldable(CI, 3)) 3444 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3445 CI->getArgOperand(2), B, TLI); 3446 3447 return nullptr; 3448 } 3449 3450 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3451 IRBuilderBase &B) { 3452 if (isFortifiedCallFoldable(CI, 3)) 3453 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3454 CI->getArgOperand(2), B, TLI); 3455 3456 return nullptr; 3457 } 3458 3459 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3460 IRBuilderBase &B) { 3461 if (isFortifiedCallFoldable(CI, 3)) 3462 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3463 CI->getArgOperand(2), B, TLI); 3464 3465 return nullptr; 3466 } 3467 3468 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3469 IRBuilderBase &B) { 3470 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3471 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3472 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3473 3474 return nullptr; 3475 } 3476 3477 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3478 IRBuilderBase &B) { 3479 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3480 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3481 CI->getArgOperand(4), B, TLI); 3482 3483 return nullptr; 3484 } 3485 3486 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3487 IRBuilderBase &Builder) { 3488 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3489 // Some clang users checked for _chk libcall availability using: 3490 // __has_builtin(__builtin___memcpy_chk) 3491 // When compiling with -fno-builtin, this is always true. 3492 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3493 // end up with fortified libcalls, which isn't acceptable in a freestanding 3494 // environment which only provides their non-fortified counterparts. 3495 // 3496 // Until we change clang and/or teach external users to check for availability 3497 // differently, disregard the "nobuiltin" attribute and TLI::has. 3498 // 3499 // PR23093. 3500 3501 LibFunc Func; 3502 Function *Callee = CI->getCalledFunction(); 3503 bool isCallingConvC = isCallingConvCCompatible(CI); 3504 3505 SmallVector<OperandBundleDef, 2> OpBundles; 3506 CI->getOperandBundlesAsDefs(OpBundles); 3507 3508 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3509 Builder.setDefaultOperandBundles(OpBundles); 3510 3511 // First, check that this is a known library functions and that the prototype 3512 // is correct. 3513 if (!TLI->getLibFunc(*Callee, Func)) 3514 return nullptr; 3515 3516 // We never change the calling convention. 3517 if (!ignoreCallingConv(Func) && !isCallingConvC) 3518 return nullptr; 3519 3520 switch (Func) { 3521 case LibFunc_memcpy_chk: 3522 return optimizeMemCpyChk(CI, Builder); 3523 case LibFunc_mempcpy_chk: 3524 return optimizeMemPCpyChk(CI, Builder); 3525 case LibFunc_memmove_chk: 3526 return optimizeMemMoveChk(CI, Builder); 3527 case LibFunc_memset_chk: 3528 return optimizeMemSetChk(CI, Builder); 3529 case LibFunc_stpcpy_chk: 3530 case LibFunc_strcpy_chk: 3531 return optimizeStrpCpyChk(CI, Builder, Func); 3532 case LibFunc_strlen_chk: 3533 return optimizeStrLenChk(CI, Builder); 3534 case LibFunc_stpncpy_chk: 3535 case LibFunc_strncpy_chk: 3536 return optimizeStrpNCpyChk(CI, Builder, Func); 3537 case LibFunc_memccpy_chk: 3538 return optimizeMemCCpyChk(CI, Builder); 3539 case LibFunc_snprintf_chk: 3540 return optimizeSNPrintfChk(CI, Builder); 3541 case LibFunc_sprintf_chk: 3542 return optimizeSPrintfChk(CI, Builder); 3543 case LibFunc_strcat_chk: 3544 return optimizeStrCatChk(CI, Builder); 3545 case LibFunc_strlcat_chk: 3546 return optimizeStrLCat(CI, Builder); 3547 case LibFunc_strncat_chk: 3548 return optimizeStrNCatChk(CI, Builder); 3549 case LibFunc_strlcpy_chk: 3550 return optimizeStrLCpyChk(CI, Builder); 3551 case LibFunc_vsnprintf_chk: 3552 return optimizeVSNPrintfChk(CI, Builder); 3553 case LibFunc_vsprintf_chk: 3554 return optimizeVSPrintfChk(CI, Builder); 3555 default: 3556 break; 3557 } 3558 return nullptr; 3559 } 3560 3561 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3562 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3563 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3564