xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Utils/BuildLibCalls.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/SizeOpts.h"
35 
36 #include <cmath>
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 static cl::opt<bool>
42     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
43                          cl::init(false),
44                          cl::desc("Enable unsafe double to float "
45                                   "shrinking for math lib calls"));
46 
47 //===----------------------------------------------------------------------===//
48 // Helper Functions
49 //===----------------------------------------------------------------------===//
50 
51 static bool ignoreCallingConv(LibFunc Func) {
52   return Func == LibFunc_abs || Func == LibFunc_labs ||
53          Func == LibFunc_llabs || Func == LibFunc_strlen;
54 }
55 
56 /// Return true if it is only used in equality comparisons with With.
57 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
58   for (User *U : V->users()) {
59     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
60       if (IC->isEquality() && IC->getOperand(1) == With)
61         continue;
62     // Unknown instruction.
63     return false;
64   }
65   return true;
66 }
67 
68 static bool callHasFloatingPointArgument(const CallInst *CI) {
69   return any_of(CI->operands(), [](const Use &OI) {
70     return OI->getType()->isFloatingPointTy();
71   });
72 }
73 
74 static bool callHasFP128Argument(const CallInst *CI) {
75   return any_of(CI->operands(), [](const Use &OI) {
76     return OI->getType()->isFP128Ty();
77   });
78 }
79 
80 // Convert the entire string Str representing an integer in Base, up to
81 // the terminating nul if present, to a constant according to the rules
82 // of strtoul[l] or, when AsSigned is set, of strtol[l].  On success
83 // return the result, otherwise null.
84 // The function assumes the string is encoded in ASCII and carefully
85 // avoids converting sequences (including "") that the corresponding
86 // library call might fail and set errno for.
87 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr,
88                               uint64_t Base, bool AsSigned, IRBuilderBase &B) {
89   if (Base < 2 || Base > 36)
90     if (Base != 0)
91       // Fail for an invalid base (required by POSIX).
92       return nullptr;
93 
94   // Current offset into the original string to reflect in EndPtr.
95   size_t Offset = 0;
96   // Strip leading whitespace.
97   for ( ; Offset != Str.size(); ++Offset)
98     if (!isSpace((unsigned char)Str[Offset])) {
99       Str = Str.substr(Offset);
100       break;
101     }
102 
103   if (Str.empty())
104     // Fail for empty subject sequences (POSIX allows but doesn't require
105     // strtol[l]/strtoul[l] to fail with EINVAL).
106     return nullptr;
107 
108   // Strip but remember the sign.
109   bool Negate = Str[0] == '-';
110   if (Str[0] == '-' || Str[0] == '+') {
111     Str = Str.drop_front();
112     if (Str.empty())
113       // Fail for a sign with nothing after it.
114       return nullptr;
115     ++Offset;
116   }
117 
118   // Set Max to the absolute value of the minimum (for signed), or
119   // to the maximum (for unsigned) value representable in the type.
120   Type *RetTy = CI->getType();
121   unsigned NBits = RetTy->getPrimitiveSizeInBits();
122   uint64_t Max = AsSigned && Negate ? 1 : 0;
123   Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits);
124 
125   // Autodetect Base if it's zero and consume the "0x" prefix.
126   if (Str.size() > 1) {
127     if (Str[0] == '0') {
128       if (toUpper((unsigned char)Str[1]) == 'X') {
129         if (Str.size() == 2 || (Base && Base != 16))
130           // Fail if Base doesn't allow the "0x" prefix or for the prefix
131           // alone that implementations like BSD set errno to EINVAL for.
132           return nullptr;
133 
134         Str = Str.drop_front(2);
135         Offset += 2;
136         Base = 16;
137       }
138       else if (Base == 0)
139         Base = 8;
140     } else if (Base == 0)
141       Base = 10;
142   }
143   else if (Base == 0)
144     Base = 10;
145 
146   // Convert the rest of the subject sequence, not including the sign,
147   // to its uint64_t representation (this assumes the source character
148   // set is ASCII).
149   uint64_t Result = 0;
150   for (unsigned i = 0; i != Str.size(); ++i) {
151     unsigned char DigVal = Str[i];
152     if (isDigit(DigVal))
153       DigVal = DigVal - '0';
154     else {
155       DigVal = toUpper(DigVal);
156       if (isAlpha(DigVal))
157         DigVal = DigVal - 'A' + 10;
158       else
159         return nullptr;
160     }
161 
162     if (DigVal >= Base)
163       // Fail if the digit is not valid in the Base.
164       return nullptr;
165 
166     // Add the digit and fail if the result is not representable in
167     // the (unsigned form of the) destination type.
168     bool VFlow;
169     Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow);
170     if (VFlow || Result > Max)
171       return nullptr;
172   }
173 
174   if (EndPtr) {
175     // Store the pointer to the end.
176     Value *Off = B.getInt64(Offset + Str.size());
177     Value *StrBeg = CI->getArgOperand(0);
178     Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr");
179     B.CreateStore(StrEnd, EndPtr);
180   }
181 
182   if (Negate)
183     // Unsigned negation doesn't overflow.
184     Result = -Result;
185 
186   return ConstantInt::get(RetTy, Result);
187 }
188 
189 static bool isOnlyUsedInComparisonWithZero(Value *V) {
190   for (User *U : V->users()) {
191     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
192       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
193         if (C->isNullValue())
194           continue;
195     // Unknown instruction.
196     return false;
197   }
198   return true;
199 }
200 
201 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
202                                  const DataLayout &DL) {
203   if (!isOnlyUsedInComparisonWithZero(CI))
204     return false;
205 
206   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
207     return false;
208 
209   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
210     return false;
211 
212   return true;
213 }
214 
215 static void annotateDereferenceableBytes(CallInst *CI,
216                                          ArrayRef<unsigned> ArgNos,
217                                          uint64_t DereferenceableBytes) {
218   const Function *F = CI->getCaller();
219   if (!F)
220     return;
221   for (unsigned ArgNo : ArgNos) {
222     uint64_t DerefBytes = DereferenceableBytes;
223     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
224     if (!llvm::NullPointerIsDefined(F, AS) ||
225         CI->paramHasAttr(ArgNo, Attribute::NonNull))
226       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
227                             DereferenceableBytes);
228 
229     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
230       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
231       if (!llvm::NullPointerIsDefined(F, AS) ||
232           CI->paramHasAttr(ArgNo, Attribute::NonNull))
233         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
234       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
235                                   CI->getContext(), DerefBytes));
236     }
237   }
238 }
239 
240 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
241                                          ArrayRef<unsigned> ArgNos) {
242   Function *F = CI->getCaller();
243   if (!F)
244     return;
245 
246   for (unsigned ArgNo : ArgNos) {
247     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
248       CI->addParamAttr(ArgNo, Attribute::NoUndef);
249 
250     if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) {
251       unsigned AS =
252           CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
253       if (llvm::NullPointerIsDefined(F, AS))
254         continue;
255       CI->addParamAttr(ArgNo, Attribute::NonNull);
256     }
257 
258     annotateDereferenceableBytes(CI, ArgNo, 1);
259   }
260 }
261 
262 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
263                                Value *Size, const DataLayout &DL) {
264   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
265     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
266     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
267   } else if (isKnownNonZero(Size, DL)) {
268     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
269     const APInt *X, *Y;
270     uint64_t DerefMin = 1;
271     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
272       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
273       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
274     }
275   }
276 }
277 
278 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
279 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
280 // in this function when New is created to replace Old. Callers should take
281 // care to check Old.isMustTailCall() if they aren't replacing Old directly
282 // with New.
283 static Value *copyFlags(const CallInst &Old, Value *New) {
284   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
285   assert(!Old.isNoTailCall() && "do not copy notail call flags");
286   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
287     NewCI->setTailCallKind(Old.getTailCallKind());
288   return New;
289 }
290 
291 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) {
292   NewCI->setAttributes(AttributeList::get(
293       NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()}));
294   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
295   return copyFlags(Old, NewCI);
296 }
297 
298 // Helper to avoid truncating the length if size_t is 32-bits.
299 static StringRef substr(StringRef Str, uint64_t Len) {
300   return Len >= Str.size() ? Str : Str.substr(0, Len);
301 }
302 
303 //===----------------------------------------------------------------------===//
304 // String and Memory Library Call Optimizations
305 //===----------------------------------------------------------------------===//
306 
307 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
308   // Extract some information from the instruction
309   Value *Dst = CI->getArgOperand(0);
310   Value *Src = CI->getArgOperand(1);
311   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
312 
313   // See if we can get the length of the input string.
314   uint64_t Len = GetStringLength(Src);
315   if (Len)
316     annotateDereferenceableBytes(CI, 1, Len);
317   else
318     return nullptr;
319   --Len; // Unbias length.
320 
321   // Handle the simple, do-nothing case: strcat(x, "") -> x
322   if (Len == 0)
323     return Dst;
324 
325   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
326 }
327 
328 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
329                                            IRBuilderBase &B) {
330   // We need to find the end of the destination string.  That's where the
331   // memory is to be moved to. We just generate a call to strlen.
332   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
333   if (!DstLen)
334     return nullptr;
335 
336   // Now that we have the destination's length, we must index into the
337   // destination's pointer to get the actual memcpy destination (end of
338   // the string .. we're concatenating).
339   Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
340 
341   // We have enough information to now generate the memcpy call to do the
342   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
343   B.CreateMemCpy(
344       CpyDst, Align(1), Src, Align(1),
345       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
346   return Dst;
347 }
348 
349 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
350   // Extract some information from the instruction.
351   Value *Dst = CI->getArgOperand(0);
352   Value *Src = CI->getArgOperand(1);
353   Value *Size = CI->getArgOperand(2);
354   uint64_t Len;
355   annotateNonNullNoUndefBasedOnAccess(CI, 0);
356   if (isKnownNonZero(Size, DL))
357     annotateNonNullNoUndefBasedOnAccess(CI, 1);
358 
359   // We don't do anything if length is not constant.
360   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
361   if (LengthArg) {
362     Len = LengthArg->getZExtValue();
363     // strncat(x, c, 0) -> x
364     if (!Len)
365       return Dst;
366   } else {
367     return nullptr;
368   }
369 
370   // See if we can get the length of the input string.
371   uint64_t SrcLen = GetStringLength(Src);
372   if (SrcLen) {
373     annotateDereferenceableBytes(CI, 1, SrcLen);
374     --SrcLen; // Unbias length.
375   } else {
376     return nullptr;
377   }
378 
379   // strncat(x, "", c) -> x
380   if (SrcLen == 0)
381     return Dst;
382 
383   // We don't optimize this case.
384   if (Len < SrcLen)
385     return nullptr;
386 
387   // strncat(x, s, c) -> strcat(x, s)
388   // s is constant so the strcat can be optimized further.
389   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
390 }
391 
392 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when
393 // NBytes is null, strchr(S, C) to *S == C.  A precondition of the function
394 // is that either S is dereferenceable or the value of N is nonzero.
395 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes,
396                                   IRBuilderBase &B, const DataLayout &DL)
397 {
398   Value *Src = CI->getArgOperand(0);
399   Value *CharVal = CI->getArgOperand(1);
400 
401   // Fold memchr(A, C, N) == A to N && *A == C.
402   Type *CharTy = B.getInt8Ty();
403   Value *Char0 = B.CreateLoad(CharTy, Src);
404   CharVal = B.CreateTrunc(CharVal, CharTy);
405   Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp");
406 
407   if (NBytes) {
408     Value *Zero = ConstantInt::get(NBytes->getType(), 0);
409     Value *And = B.CreateICmpNE(NBytes, Zero);
410     Cmp = B.CreateLogicalAnd(And, Cmp);
411   }
412 
413   Value *NullPtr = Constant::getNullValue(CI->getType());
414   return B.CreateSelect(Cmp, Src, NullPtr);
415 }
416 
417 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
418   Value *SrcStr = CI->getArgOperand(0);
419   Value *CharVal = CI->getArgOperand(1);
420   annotateNonNullNoUndefBasedOnAccess(CI, 0);
421 
422   if (isOnlyUsedInEqualityComparison(CI, SrcStr))
423     return memChrToCharCompare(CI, nullptr, B, DL);
424 
425   // If the second operand is non-constant, see if we can compute the length
426   // of the input string and turn this into memchr.
427   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
428   if (!CharC) {
429     uint64_t Len = GetStringLength(SrcStr);
430     if (Len)
431       annotateDereferenceableBytes(CI, 0, Len);
432     else
433       return nullptr;
434 
435     Function *Callee = CI->getCalledFunction();
436     FunctionType *FT = Callee->getFunctionType();
437     unsigned IntBits = TLI->getIntSize();
438     if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'.
439       return nullptr;
440 
441     unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
442     Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
443     return copyFlags(*CI,
444                      emitMemChr(SrcStr, CharVal, // include nul.
445                                 ConstantInt::get(SizeTTy, Len), B,
446                                 DL, TLI));
447   }
448 
449   if (CharC->isZero()) {
450     Value *NullPtr = Constant::getNullValue(CI->getType());
451     if (isOnlyUsedInEqualityComparison(CI, NullPtr))
452       // Pre-empt the transformation to strlen below and fold
453       // strchr(A, '\0') == null to false.
454       return B.CreateIntToPtr(B.getTrue(), CI->getType());
455   }
456 
457   // Otherwise, the character is a constant, see if the first argument is
458   // a string literal.  If so, we can constant fold.
459   StringRef Str;
460   if (!getConstantStringInfo(SrcStr, Str)) {
461     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
462       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
463         return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
464     return nullptr;
465   }
466 
467   // Compute the offset, make sure to handle the case when we're searching for
468   // zero (a weird way to spell strlen).
469   size_t I = (0xFF & CharC->getSExtValue()) == 0
470                  ? Str.size()
471                  : Str.find(CharC->getSExtValue());
472   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
473     return Constant::getNullValue(CI->getType());
474 
475   // strchr(s+n,c)  -> gep(s+n+i,c)
476   return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
477 }
478 
479 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
480   Value *SrcStr = CI->getArgOperand(0);
481   Value *CharVal = CI->getArgOperand(1);
482   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
483   annotateNonNullNoUndefBasedOnAccess(CI, 0);
484 
485   StringRef Str;
486   if (!getConstantStringInfo(SrcStr, Str)) {
487     // strrchr(s, 0) -> strchr(s, 0)
488     if (CharC && CharC->isZero())
489       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
490     return nullptr;
491   }
492 
493   unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
494   Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
495 
496   // Try to expand strrchr to the memrchr nonstandard extension if it's
497   // available, or simply fail otherwise.
498   uint64_t NBytes = Str.size() + 1;   // Include the terminating nul.
499   Value *Size = ConstantInt::get(SizeTTy, NBytes);
500   return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI));
501 }
502 
503 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
504   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
505   if (Str1P == Str2P) // strcmp(x,x)  -> 0
506     return ConstantInt::get(CI->getType(), 0);
507 
508   StringRef Str1, Str2;
509   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
510   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
511 
512   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
513   if (HasStr1 && HasStr2)
514     return ConstantInt::get(CI->getType(),
515                             std::clamp(Str1.compare(Str2), -1, 1));
516 
517   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
518     return B.CreateNeg(B.CreateZExt(
519         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
520 
521   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
522     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
523                         CI->getType());
524 
525   // strcmp(P, "x") -> memcmp(P, "x", 2)
526   uint64_t Len1 = GetStringLength(Str1P);
527   if (Len1)
528     annotateDereferenceableBytes(CI, 0, Len1);
529   uint64_t Len2 = GetStringLength(Str2P);
530   if (Len2)
531     annotateDereferenceableBytes(CI, 1, Len2);
532 
533   if (Len1 && Len2) {
534     return copyFlags(
535         *CI, emitMemCmp(Str1P, Str2P,
536                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
537                                          std::min(Len1, Len2)),
538                         B, DL, TLI));
539   }
540 
541   // strcmp to memcmp
542   if (!HasStr1 && HasStr2) {
543     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
544       return copyFlags(
545           *CI,
546           emitMemCmp(Str1P, Str2P,
547                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
548                      B, DL, TLI));
549   } else if (HasStr1 && !HasStr2) {
550     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
551       return copyFlags(
552           *CI,
553           emitMemCmp(Str1P, Str2P,
554                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
555                      B, DL, TLI));
556   }
557 
558   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
559   return nullptr;
560 }
561 
562 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
563 // arrays LHS and RHS and nonconstant Size.
564 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
565                                     Value *Size, bool StrNCmp,
566                                     IRBuilderBase &B, const DataLayout &DL);
567 
568 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
569   Value *Str1P = CI->getArgOperand(0);
570   Value *Str2P = CI->getArgOperand(1);
571   Value *Size = CI->getArgOperand(2);
572   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
573     return ConstantInt::get(CI->getType(), 0);
574 
575   if (isKnownNonZero(Size, DL))
576     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
577   // Get the length argument if it is constant.
578   uint64_t Length;
579   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
580     Length = LengthArg->getZExtValue();
581   else
582     return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
583 
584   if (Length == 0) // strncmp(x,y,0)   -> 0
585     return ConstantInt::get(CI->getType(), 0);
586 
587   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
588     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
589 
590   StringRef Str1, Str2;
591   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
592   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
593 
594   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
595   if (HasStr1 && HasStr2) {
596     // Avoid truncating the 64-bit Length to 32 bits in ILP32.
597     StringRef SubStr1 = substr(Str1, Length);
598     StringRef SubStr2 = substr(Str2, Length);
599     return ConstantInt::get(CI->getType(),
600                             std::clamp(SubStr1.compare(SubStr2), -1, 1));
601   }
602 
603   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
604     return B.CreateNeg(B.CreateZExt(
605         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
606 
607   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
608     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
609                         CI->getType());
610 
611   uint64_t Len1 = GetStringLength(Str1P);
612   if (Len1)
613     annotateDereferenceableBytes(CI, 0, Len1);
614   uint64_t Len2 = GetStringLength(Str2P);
615   if (Len2)
616     annotateDereferenceableBytes(CI, 1, Len2);
617 
618   // strncmp to memcmp
619   if (!HasStr1 && HasStr2) {
620     Len2 = std::min(Len2, Length);
621     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
622       return copyFlags(
623           *CI,
624           emitMemCmp(Str1P, Str2P,
625                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
626                      B, DL, TLI));
627   } else if (HasStr1 && !HasStr2) {
628     Len1 = std::min(Len1, Length);
629     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
630       return copyFlags(
631           *CI,
632           emitMemCmp(Str1P, Str2P,
633                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
634                      B, DL, TLI));
635   }
636 
637   return nullptr;
638 }
639 
640 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
641   Value *Src = CI->getArgOperand(0);
642   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
643   uint64_t SrcLen = GetStringLength(Src);
644   if (SrcLen && Size) {
645     annotateDereferenceableBytes(CI, 0, SrcLen);
646     if (SrcLen <= Size->getZExtValue() + 1)
647       return copyFlags(*CI, emitStrDup(Src, B, TLI));
648   }
649 
650   return nullptr;
651 }
652 
653 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
654   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
655   if (Dst == Src) // strcpy(x,x)  -> x
656     return Src;
657 
658   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
659   // See if we can get the length of the input string.
660   uint64_t Len = GetStringLength(Src);
661   if (Len)
662     annotateDereferenceableBytes(CI, 1, Len);
663   else
664     return nullptr;
665 
666   // We have enough information to now generate the memcpy call to do the
667   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
668   CallInst *NewCI =
669       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
670                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
671   mergeAttributesAndFlags(NewCI, *CI);
672   return Dst;
673 }
674 
675 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
676   Function *Callee = CI->getCalledFunction();
677   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
678 
679   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
680   if (CI->use_empty())
681     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
682 
683   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
684     Value *StrLen = emitStrLen(Src, B, DL, TLI);
685     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
686   }
687 
688   // See if we can get the length of the input string.
689   uint64_t Len = GetStringLength(Src);
690   if (Len)
691     annotateDereferenceableBytes(CI, 1, Len);
692   else
693     return nullptr;
694 
695   Type *PT = Callee->getFunctionType()->getParamType(0);
696   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
697   Value *DstEnd = B.CreateInBoundsGEP(
698       B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
699 
700   // We have enough information to now generate the memcpy call to do the
701   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
702   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
703   mergeAttributesAndFlags(NewCI, *CI);
704   return DstEnd;
705 }
706 
707 // Optimize a call to size_t strlcpy(char*, const char*, size_t).
708 
709 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) {
710   Value *Size = CI->getArgOperand(2);
711   if (isKnownNonZero(Size, DL))
712     // Like snprintf, the function stores into the destination only when
713     // the size argument is nonzero.
714     annotateNonNullNoUndefBasedOnAccess(CI, 0);
715   // The function reads the source argument regardless of Size (it returns
716   // its length).
717   annotateNonNullNoUndefBasedOnAccess(CI, 1);
718 
719   uint64_t NBytes;
720   if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
721     NBytes = SizeC->getZExtValue();
722   else
723     return nullptr;
724 
725   Value *Dst = CI->getArgOperand(0);
726   Value *Src = CI->getArgOperand(1);
727   if (NBytes <= 1) {
728     if (NBytes == 1)
729       // For a call to strlcpy(D, S, 1) first store a nul in *D.
730       B.CreateStore(B.getInt8(0), Dst);
731 
732     // Transform strlcpy(D, S, 0) to a call to strlen(S).
733     return copyFlags(*CI, emitStrLen(Src, B, DL, TLI));
734   }
735 
736   // Try to determine the length of the source, substituting its size
737   // when it's not nul-terminated (as it's required to be) to avoid
738   // reading past its end.
739   StringRef Str;
740   if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false))
741     return nullptr;
742 
743   uint64_t SrcLen = Str.find('\0');
744   // Set if the terminating nul should be copied by the call to memcpy
745   // below.
746   bool NulTerm = SrcLen < NBytes;
747 
748   if (NulTerm)
749     // Overwrite NBytes with the number of bytes to copy, including
750     // the terminating nul.
751     NBytes = SrcLen + 1;
752   else {
753     // Set the length of the source for the function to return to its
754     // size, and cap NBytes at the same.
755     SrcLen = std::min(SrcLen, uint64_t(Str.size()));
756     NBytes = std::min(NBytes - 1, SrcLen);
757   }
758 
759   if (SrcLen == 0) {
760     // Transform strlcpy(D, "", N) to (*D = '\0, 0).
761     B.CreateStore(B.getInt8(0), Dst);
762     return ConstantInt::get(CI->getType(), 0);
763   }
764 
765   Function *Callee = CI->getCalledFunction();
766   Type *PT = Callee->getFunctionType()->getParamType(0);
767   // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower
768   // bound on strlen(S) + 1 and N, optionally followed by a nul store to
769   // D[N' - 1] if necessary.
770   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
771                         ConstantInt::get(DL.getIntPtrType(PT), NBytes));
772   mergeAttributesAndFlags(NewCI, *CI);
773 
774   if (!NulTerm) {
775     Value *EndOff = ConstantInt::get(CI->getType(), NBytes);
776     Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff);
777     B.CreateStore(B.getInt8(0), EndPtr);
778   }
779 
780   // Like snprintf, strlcpy returns the number of nonzero bytes that would
781   // have been copied if the bound had been sufficiently big (which in this
782   // case is strlen(Src)).
783   return ConstantInt::get(CI->getType(), SrcLen);
784 }
785 
786 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy
787 // otherwise.
788 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd,
789                                              IRBuilderBase &B) {
790   Function *Callee = CI->getCalledFunction();
791   Value *Dst = CI->getArgOperand(0);
792   Value *Src = CI->getArgOperand(1);
793   Value *Size = CI->getArgOperand(2);
794 
795   if (isKnownNonZero(Size, DL)) {
796     // Both st{p,r}ncpy(D, S, N) access the source and destination arrays
797     // only when N is nonzero.
798     annotateNonNullNoUndefBasedOnAccess(CI, 0);
799     annotateNonNullNoUndefBasedOnAccess(CI, 1);
800   }
801 
802   // If the "bound" argument is known set N to it.  Otherwise set it to
803   // UINT64_MAX and handle it later.
804   uint64_t N = UINT64_MAX;
805   if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
806     N = SizeC->getZExtValue();
807 
808   if (N == 0)
809     // Fold st{p,r}ncpy(D, S, 0) to D.
810     return Dst;
811 
812   if (N == 1) {
813     Type *CharTy = B.getInt8Ty();
814     Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0");
815     B.CreateStore(CharVal, Dst);
816     if (!RetEnd)
817       // Transform strncpy(D, S, 1) to return (*D = *S), D.
818       return Dst;
819 
820     // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D.
821     Value *ZeroChar = ConstantInt::get(CharTy, 0);
822     Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp");
823 
824     Value *Off1 = B.getInt32(1);
825     Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end");
826     return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel");
827   }
828 
829   // If the length of the input string is known set SrcLen to it.
830   uint64_t SrcLen = GetStringLength(Src);
831   if (SrcLen)
832     annotateDereferenceableBytes(CI, 1, SrcLen);
833   else
834     return nullptr;
835 
836   --SrcLen; // Unbias length.
837 
838   if (SrcLen == 0) {
839     // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N.
840     Align MemSetAlign =
841       CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
842     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
843     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
844     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
845         CI->getContext(), 0, ArgAttrs));
846     copyFlags(*CI, NewCI);
847     return Dst;
848   }
849 
850   if (N > SrcLen + 1) {
851     if (N > 128)
852       // Bail if N is large or unknown.
853       return nullptr;
854 
855     // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128.
856     StringRef Str;
857     if (!getConstantStringInfo(Src, Str))
858       return nullptr;
859     std::string SrcStr = Str.str();
860     // Create a bigger, nul-padded array with the same length, SrcLen,
861     // as the original string.
862     SrcStr.resize(N, '\0');
863     Src = B.CreateGlobalString(SrcStr, "str");
864   }
865 
866   Type *PT = Callee->getFunctionType()->getParamType(0);
867   // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both
868   // S and N are constant.
869   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
870                                    ConstantInt::get(DL.getIntPtrType(PT), N));
871   mergeAttributesAndFlags(NewCI, *CI);
872   if (!RetEnd)
873     return Dst;
874 
875   // stpncpy(D, S, N) returns the address of the first null in D if it writes
876   // one, otherwise D + N.
877   Value *Off = B.getInt64(std::min(SrcLen, N));
878   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr");
879 }
880 
881 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
882                                                unsigned CharSize,
883                                                Value *Bound) {
884   Value *Src = CI->getArgOperand(0);
885   Type *CharTy = B.getIntNTy(CharSize);
886 
887   if (isOnlyUsedInZeroEqualityComparison(CI) &&
888       (!Bound || isKnownNonZero(Bound, DL))) {
889     // Fold strlen:
890     //   strlen(x) != 0 --> *x != 0
891     //   strlen(x) == 0 --> *x == 0
892     // and likewise strnlen with constant N > 0:
893     //   strnlen(x, N) != 0 --> *x != 0
894     //   strnlen(x, N) == 0 --> *x == 0
895     return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
896                         CI->getType());
897   }
898 
899   if (Bound) {
900     if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
901       if (BoundCst->isZero())
902         // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
903         return ConstantInt::get(CI->getType(), 0);
904 
905       if (BoundCst->isOne()) {
906         // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
907         Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
908         Value *ZeroChar = ConstantInt::get(CharTy, 0);
909         Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
910         return B.CreateZExt(Cmp, CI->getType());
911       }
912     }
913   }
914 
915   if (uint64_t Len = GetStringLength(Src, CharSize)) {
916     Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
917     // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
918     // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
919     if (Bound)
920       return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
921     return LenC;
922   }
923 
924   if (Bound)
925     // Punt for strnlen for now.
926     return nullptr;
927 
928   // If s is a constant pointer pointing to a string literal, we can fold
929   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
930   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
931   // We only try to simplify strlen when the pointer s points to an array
932   // of CharSize elements. Otherwise, we would need to scale the offset x before
933   // doing the subtraction. This will make the optimization more complex, and
934   // it's not very useful because calling strlen for a pointer of other types is
935   // very uncommon.
936   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
937     // TODO: Handle subobjects.
938     if (!isGEPBasedOnPointerToString(GEP, CharSize))
939       return nullptr;
940 
941     ConstantDataArraySlice Slice;
942     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
943       uint64_t NullTermIdx;
944       if (Slice.Array == nullptr) {
945         NullTermIdx = 0;
946       } else {
947         NullTermIdx = ~((uint64_t)0);
948         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
949           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
950             NullTermIdx = I;
951             break;
952           }
953         }
954         // If the string does not have '\0', leave it to strlen to compute
955         // its length.
956         if (NullTermIdx == ~((uint64_t)0))
957           return nullptr;
958       }
959 
960       Value *Offset = GEP->getOperand(2);
961       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
962       uint64_t ArrSize =
963              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
964 
965       // If Offset is not provably in the range [0, NullTermIdx], we can still
966       // optimize if we can prove that the program has undefined behavior when
967       // Offset is outside that range. That is the case when GEP->getOperand(0)
968       // is a pointer to an object whose memory extent is NullTermIdx+1.
969       if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
970           (isa<GlobalVariable>(GEP->getOperand(0)) &&
971            NullTermIdx == ArrSize - 1)) {
972         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
973         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
974                            Offset);
975       }
976     }
977   }
978 
979   // strlen(x?"foo":"bars") --> x ? 3 : 4
980   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
981     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
982     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
983     if (LenTrue && LenFalse) {
984       ORE.emit([&]() {
985         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
986                << "folded strlen(select) to select of constants";
987       });
988       return B.CreateSelect(SI->getCondition(),
989                             ConstantInt::get(CI->getType(), LenTrue - 1),
990                             ConstantInt::get(CI->getType(), LenFalse - 1));
991     }
992   }
993 
994   return nullptr;
995 }
996 
997 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
998   if (Value *V = optimizeStringLength(CI, B, 8))
999     return V;
1000   annotateNonNullNoUndefBasedOnAccess(CI, 0);
1001   return nullptr;
1002 }
1003 
1004 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
1005   Value *Bound = CI->getArgOperand(1);
1006   if (Value *V = optimizeStringLength(CI, B, 8, Bound))
1007     return V;
1008 
1009   if (isKnownNonZero(Bound, DL))
1010     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1011   return nullptr;
1012 }
1013 
1014 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
1015   Module &M = *CI->getModule();
1016   unsigned WCharSize = TLI->getWCharSize(M) * 8;
1017   // We cannot perform this optimization without wchar_size metadata.
1018   if (WCharSize == 0)
1019     return nullptr;
1020 
1021   return optimizeStringLength(CI, B, WCharSize);
1022 }
1023 
1024 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
1025   StringRef S1, S2;
1026   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1027   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1028 
1029   // strpbrk(s, "") -> nullptr
1030   // strpbrk("", s) -> nullptr
1031   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1032     return Constant::getNullValue(CI->getType());
1033 
1034   // Constant folding.
1035   if (HasS1 && HasS2) {
1036     size_t I = S1.find_first_of(S2);
1037     if (I == StringRef::npos) // No match.
1038       return Constant::getNullValue(CI->getType());
1039 
1040     return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
1041                                B.getInt64(I), "strpbrk");
1042   }
1043 
1044   // strpbrk(s, "a") -> strchr(s, 'a')
1045   if (HasS2 && S2.size() == 1)
1046     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
1047 
1048   return nullptr;
1049 }
1050 
1051 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
1052   Value *EndPtr = CI->getArgOperand(1);
1053   if (isa<ConstantPointerNull>(EndPtr)) {
1054     // With a null EndPtr, this function won't capture the main argument.
1055     // It would be readonly too, except that it still may write to errno.
1056     CI->addParamAttr(0, Attribute::NoCapture);
1057   }
1058 
1059   return nullptr;
1060 }
1061 
1062 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
1063   StringRef S1, S2;
1064   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1065   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1066 
1067   // strspn(s, "") -> 0
1068   // strspn("", s) -> 0
1069   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1070     return Constant::getNullValue(CI->getType());
1071 
1072   // Constant folding.
1073   if (HasS1 && HasS2) {
1074     size_t Pos = S1.find_first_not_of(S2);
1075     if (Pos == StringRef::npos)
1076       Pos = S1.size();
1077     return ConstantInt::get(CI->getType(), Pos);
1078   }
1079 
1080   return nullptr;
1081 }
1082 
1083 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
1084   StringRef S1, S2;
1085   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1086   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1087 
1088   // strcspn("", s) -> 0
1089   if (HasS1 && S1.empty())
1090     return Constant::getNullValue(CI->getType());
1091 
1092   // Constant folding.
1093   if (HasS1 && HasS2) {
1094     size_t Pos = S1.find_first_of(S2);
1095     if (Pos == StringRef::npos)
1096       Pos = S1.size();
1097     return ConstantInt::get(CI->getType(), Pos);
1098   }
1099 
1100   // strcspn(s, "") -> strlen(s)
1101   if (HasS2 && S2.empty())
1102     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
1103 
1104   return nullptr;
1105 }
1106 
1107 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
1108   // fold strstr(x, x) -> x.
1109   if (CI->getArgOperand(0) == CI->getArgOperand(1))
1110     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
1111 
1112   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
1113   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
1114     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
1115     if (!StrLen)
1116       return nullptr;
1117     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
1118                                  StrLen, B, DL, TLI);
1119     if (!StrNCmp)
1120       return nullptr;
1121     for (User *U : llvm::make_early_inc_range(CI->users())) {
1122       ICmpInst *Old = cast<ICmpInst>(U);
1123       Value *Cmp =
1124           B.CreateICmp(Old->getPredicate(), StrNCmp,
1125                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
1126       replaceAllUsesWith(Old, Cmp);
1127     }
1128     return CI;
1129   }
1130 
1131   // See if either input string is a constant string.
1132   StringRef SearchStr, ToFindStr;
1133   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
1134   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
1135 
1136   // fold strstr(x, "") -> x.
1137   if (HasStr2 && ToFindStr.empty())
1138     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
1139 
1140   // If both strings are known, constant fold it.
1141   if (HasStr1 && HasStr2) {
1142     size_t Offset = SearchStr.find(ToFindStr);
1143 
1144     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
1145       return Constant::getNullValue(CI->getType());
1146 
1147     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
1148     Value *Result = castToCStr(CI->getArgOperand(0), B);
1149     Result =
1150         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
1151     return B.CreateBitCast(Result, CI->getType());
1152   }
1153 
1154   // fold strstr(x, "y") -> strchr(x, 'y').
1155   if (HasStr2 && ToFindStr.size() == 1) {
1156     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
1157     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
1158   }
1159 
1160   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
1161   return nullptr;
1162 }
1163 
1164 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
1165   Value *SrcStr = CI->getArgOperand(0);
1166   Value *Size = CI->getArgOperand(2);
1167   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1168   Value *CharVal = CI->getArgOperand(1);
1169   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1170   Value *NullPtr = Constant::getNullValue(CI->getType());
1171 
1172   if (LenC) {
1173     if (LenC->isZero())
1174       // Fold memrchr(x, y, 0) --> null.
1175       return NullPtr;
1176 
1177     if (LenC->isOne()) {
1178       // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
1179       // constant or otherwise.
1180       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
1181       // Slice off the character's high end bits.
1182       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1183       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
1184       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
1185     }
1186   }
1187 
1188   StringRef Str;
1189   if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1190     return nullptr;
1191 
1192   if (Str.size() == 0)
1193     // If the array is empty fold memrchr(A, C, N) to null for any value
1194     // of C and N on the basis that the only valid value of N is zero
1195     // (otherwise the call is undefined).
1196     return NullPtr;
1197 
1198   uint64_t EndOff = UINT64_MAX;
1199   if (LenC) {
1200     EndOff = LenC->getZExtValue();
1201     if (Str.size() < EndOff)
1202       // Punt out-of-bounds accesses to sanitizers and/or libc.
1203       return nullptr;
1204   }
1205 
1206   if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
1207     // Fold memrchr(S, C, N) for a constant C.
1208     size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
1209     if (Pos == StringRef::npos)
1210       // When the character is not in the source array fold the result
1211       // to null regardless of Size.
1212       return NullPtr;
1213 
1214     if (LenC)
1215       // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
1216       return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
1217 
1218     if (Str.find(Str[Pos]) == Pos) {
1219       // When there is just a single occurrence of C in S, i.e., the one
1220       // in Str[Pos], fold
1221       //   memrchr(s, c, N) --> N <= Pos ? null : s + Pos
1222       // for nonconstant N.
1223       Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1224                                    "memrchr.cmp");
1225       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
1226                                            B.getInt64(Pos), "memrchr.ptr_plus");
1227       return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
1228     }
1229   }
1230 
1231   // Truncate the string to search at most EndOff characters.
1232   Str = Str.substr(0, EndOff);
1233   if (Str.find_first_not_of(Str[0]) != StringRef::npos)
1234     return nullptr;
1235 
1236   // If the source array consists of all equal characters, then for any
1237   // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1238   //   N != 0 && *S == C ? S + N - 1 : null
1239   Type *SizeTy = Size->getType();
1240   Type *Int8Ty = B.getInt8Ty();
1241   Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1242   // Slice off the sought character's high end bits.
1243   CharVal = B.CreateTrunc(CharVal, Int8Ty);
1244   Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1245   Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
1246   Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
1247   Value *SrcPlus =
1248       B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
1249   return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
1250 }
1251 
1252 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1253   Value *SrcStr = CI->getArgOperand(0);
1254   Value *Size = CI->getArgOperand(2);
1255 
1256   if (isKnownNonZero(Size, DL)) {
1257     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1258     if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1259       return memChrToCharCompare(CI, Size, B, DL);
1260   }
1261 
1262   Value *CharVal = CI->getArgOperand(1);
1263   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1264   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1265   Value *NullPtr = Constant::getNullValue(CI->getType());
1266 
1267   // memchr(x, y, 0) -> null
1268   if (LenC) {
1269     if (LenC->isZero())
1270       return NullPtr;
1271 
1272     if (LenC->isOne()) {
1273       // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1274       // constant or otherwise.
1275       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1276       // Slice off the character's high end bits.
1277       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1278       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1279       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1280     }
1281   }
1282 
1283   StringRef Str;
1284   if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1285     return nullptr;
1286 
1287   if (CharC) {
1288     size_t Pos = Str.find(CharC->getZExtValue());
1289     if (Pos == StringRef::npos)
1290       // When the character is not in the source array fold the result
1291       // to null regardless of Size.
1292       return NullPtr;
1293 
1294     // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1295     // When the constant Size is less than or equal to the character
1296     // position also fold the result to null.
1297     Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1298                                  "memchr.cmp");
1299     Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
1300                                          "memchr.ptr");
1301     return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1302   }
1303 
1304   if (Str.size() == 0)
1305     // If the array is empty fold memchr(A, C, N) to null for any value
1306     // of C and N on the basis that the only valid value of N is zero
1307     // (otherwise the call is undefined).
1308     return NullPtr;
1309 
1310   if (LenC)
1311     Str = substr(Str, LenC->getZExtValue());
1312 
1313   size_t Pos = Str.find_first_not_of(Str[0]);
1314   if (Pos == StringRef::npos
1315       || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1316     // If the source array consists of at most two consecutive sequences
1317     // of the same characters, then for any C and N (whether in bounds or
1318     // not), fold memchr(S, C, N) to
1319     //   N != 0 && *S == C ? S : null
1320     // or for the two sequences to:
1321     //   N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1322     //   ^Sel2                   ^Sel1 are denoted above.
1323     // The latter makes it also possible to fold strchr() calls with strings
1324     // of the same characters.
1325     Type *SizeTy = Size->getType();
1326     Type *Int8Ty = B.getInt8Ty();
1327 
1328     // Slice off the sought character's high end bits.
1329     CharVal = B.CreateTrunc(CharVal, Int8Ty);
1330 
1331     Value *Sel1 = NullPtr;
1332     if (Pos != StringRef::npos) {
1333       // Handle two consecutive sequences of the same characters.
1334       Value *PosVal = ConstantInt::get(SizeTy, Pos);
1335       Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1336       Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1337       Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
1338       Value *And = B.CreateAnd(CEqSPos, NGtPos);
1339       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1340       Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1341     }
1342 
1343     Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1344     Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1345     Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1346     Value *And = B.CreateAnd(NNeZ, CEqS0);
1347     return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1348   }
1349 
1350   if (!LenC) {
1351     if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1352       // S is dereferenceable so it's safe to load from it and fold
1353       //   memchr(S, C, N) == S to N && *S == C for any C and N.
1354       // TODO: This is safe even even for nonconstant S.
1355       return memChrToCharCompare(CI, Size, B, DL);
1356 
1357     // From now on we need a constant length and constant array.
1358     return nullptr;
1359   }
1360 
1361   // If the char is variable but the input str and length are not we can turn
1362   // this memchr call into a simple bit field test. Of course this only works
1363   // when the return value is only checked against null.
1364   //
1365   // It would be really nice to reuse switch lowering here but we can't change
1366   // the CFG at this point.
1367   //
1368   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1369   // != 0
1370   //   after bounds check.
1371   if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1372     return nullptr;
1373 
1374   unsigned char Max =
1375       *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1376                         reinterpret_cast<const unsigned char *>(Str.end()));
1377 
1378   // Make sure the bit field we're about to create fits in a register on the
1379   // target.
1380   // FIXME: On a 64 bit architecture this prevents us from using the
1381   // interesting range of alpha ascii chars. We could do better by emitting
1382   // two bitfields or shifting the range by 64 if no lower chars are used.
1383   if (!DL.fitsInLegalInteger(Max + 1))
1384     return nullptr;
1385 
1386   // For the bit field use a power-of-2 type with at least 8 bits to avoid
1387   // creating unnecessary illegal types.
1388   unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1389 
1390   // Now build the bit field.
1391   APInt Bitfield(Width, 0);
1392   for (char C : Str)
1393     Bitfield.setBit((unsigned char)C);
1394   Value *BitfieldC = B.getInt(Bitfield);
1395 
1396   // Adjust width of "C" to the bitfield width, then mask off the high bits.
1397   Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1398   C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1399 
1400   // First check that the bit field access is within bounds.
1401   Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1402                                "memchr.bounds");
1403 
1404   // Create code that checks if the given bit is set in the field.
1405   Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1406   Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1407 
1408   // Finally merge both checks and cast to pointer type. The inttoptr
1409   // implicitly zexts the i1 to intptr type.
1410   return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1411                           CI->getType());
1412 }
1413 
1414 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1415 // arrays LHS and RHS and nonconstant Size.
1416 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1417                                     Value *Size, bool StrNCmp,
1418                                     IRBuilderBase &B, const DataLayout &DL) {
1419   if (LHS == RHS) // memcmp(s,s,x) -> 0
1420     return Constant::getNullValue(CI->getType());
1421 
1422   StringRef LStr, RStr;
1423   if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) ||
1424       !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false))
1425     return nullptr;
1426 
1427   // If the contents of both constant arrays are known, fold a call to
1428   // memcmp(A, B, N) to
1429   //   N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1430   // where Pos is the first mismatch between A and B, determined below.
1431 
1432   uint64_t Pos = 0;
1433   Value *Zero = ConstantInt::get(CI->getType(), 0);
1434   for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
1435     if (Pos == MinSize ||
1436         (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1437       // One array is a leading part of the other of equal or greater
1438       // size, or for strncmp, the arrays are equal strings.
1439       // Fold the result to zero.  Size is assumed to be in bounds, since
1440       // otherwise the call would be undefined.
1441       return Zero;
1442     }
1443 
1444     if (LStr[Pos] != RStr[Pos])
1445       break;
1446   }
1447 
1448   // Normalize the result.
1449   typedef unsigned char UChar;
1450   int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1451   Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1452   Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
1453   Value *Res = ConstantInt::get(CI->getType(), IRes);
1454   return B.CreateSelect(Cmp, Zero, Res);
1455 }
1456 
1457 // Optimize a memcmp call CI with constant size Len.
1458 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1459                                          uint64_t Len, IRBuilderBase &B,
1460                                          const DataLayout &DL) {
1461   if (Len == 0) // memcmp(s1,s2,0) -> 0
1462     return Constant::getNullValue(CI->getType());
1463 
1464   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1465   if (Len == 1) {
1466     Value *LHSV =
1467         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1468                      CI->getType(), "lhsv");
1469     Value *RHSV =
1470         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1471                      CI->getType(), "rhsv");
1472     return B.CreateSub(LHSV, RHSV, "chardiff");
1473   }
1474 
1475   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1476   // TODO: The case where both inputs are constants does not need to be limited
1477   // to legal integers or equality comparison. See block below this.
1478   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1479     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1480     Align PrefAlignment = DL.getPrefTypeAlign(IntType);
1481 
1482     // First, see if we can fold either argument to a constant.
1483     Value *LHSV = nullptr;
1484     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1485       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1486       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1487     }
1488     Value *RHSV = nullptr;
1489     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1490       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1491       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1492     }
1493 
1494     // Don't generate unaligned loads. If either source is constant data,
1495     // alignment doesn't matter for that source because there is no load.
1496     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1497         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1498       if (!LHSV) {
1499         Type *LHSPtrTy =
1500             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1501         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1502       }
1503       if (!RHSV) {
1504         Type *RHSPtrTy =
1505             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1506         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1507       }
1508       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1509     }
1510   }
1511 
1512   return nullptr;
1513 }
1514 
1515 // Most simplifications for memcmp also apply to bcmp.
1516 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1517                                                    IRBuilderBase &B) {
1518   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1519   Value *Size = CI->getArgOperand(2);
1520 
1521   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1522 
1523   if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
1524     return Res;
1525 
1526   // Handle constant Size.
1527   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1528   if (!LenC)
1529     return nullptr;
1530 
1531   return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
1532 }
1533 
1534 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1535   Module *M = CI->getModule();
1536   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1537     return V;
1538 
1539   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1540   // bcmp can be more efficient than memcmp because it only has to know that
1541   // there is a difference, not how different one is to the other.
1542   if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
1543       isOnlyUsedInZeroEqualityComparison(CI)) {
1544     Value *LHS = CI->getArgOperand(0);
1545     Value *RHS = CI->getArgOperand(1);
1546     Value *Size = CI->getArgOperand(2);
1547     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1548   }
1549 
1550   return nullptr;
1551 }
1552 
1553 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1554   return optimizeMemCmpBCmpCommon(CI, B);
1555 }
1556 
1557 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1558   Value *Size = CI->getArgOperand(2);
1559   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1560   if (isa<IntrinsicInst>(CI))
1561     return nullptr;
1562 
1563   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1564   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1565                                    CI->getArgOperand(1), Align(1), Size);
1566   mergeAttributesAndFlags(NewCI, *CI);
1567   return CI->getArgOperand(0);
1568 }
1569 
1570 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1571   Value *Dst = CI->getArgOperand(0);
1572   Value *Src = CI->getArgOperand(1);
1573   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1574   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1575   StringRef SrcStr;
1576   if (CI->use_empty() && Dst == Src)
1577     return Dst;
1578   // memccpy(d, s, c, 0) -> nullptr
1579   if (N) {
1580     if (N->isNullValue())
1581       return Constant::getNullValue(CI->getType());
1582     if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) ||
1583         // TODO: Handle zeroinitializer.
1584         !StopChar)
1585       return nullptr;
1586   } else {
1587     return nullptr;
1588   }
1589 
1590   // Wrap arg 'c' of type int to char
1591   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1592   if (Pos == StringRef::npos) {
1593     if (N->getZExtValue() <= SrcStr.size()) {
1594       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1595                                     CI->getArgOperand(3)));
1596       return Constant::getNullValue(CI->getType());
1597     }
1598     return nullptr;
1599   }
1600 
1601   Value *NewN =
1602       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1603   // memccpy -> llvm.memcpy
1604   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1605   return Pos + 1 <= N->getZExtValue()
1606              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1607              : Constant::getNullValue(CI->getType());
1608 }
1609 
1610 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1611   Value *Dst = CI->getArgOperand(0);
1612   Value *N = CI->getArgOperand(2);
1613   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1614   CallInst *NewCI =
1615       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1616   // Propagate attributes, but memcpy has no return value, so make sure that
1617   // any return attributes are compliant.
1618   // TODO: Attach return value attributes to the 1st operand to preserve them?
1619   mergeAttributesAndFlags(NewCI, *CI);
1620   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1621 }
1622 
1623 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1624   Value *Size = CI->getArgOperand(2);
1625   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1626   if (isa<IntrinsicInst>(CI))
1627     return nullptr;
1628 
1629   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1630   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1631                                     CI->getArgOperand(1), Align(1), Size);
1632   mergeAttributesAndFlags(NewCI, *CI);
1633   return CI->getArgOperand(0);
1634 }
1635 
1636 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1637   Value *Size = CI->getArgOperand(2);
1638   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1639   if (isa<IntrinsicInst>(CI))
1640     return nullptr;
1641 
1642   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1643   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1644   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1645   mergeAttributesAndFlags(NewCI, *CI);
1646   return CI->getArgOperand(0);
1647 }
1648 
1649 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1650   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1651     return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1652 
1653   return nullptr;
1654 }
1655 
1656 //===----------------------------------------------------------------------===//
1657 // Math Library Optimizations
1658 //===----------------------------------------------------------------------===//
1659 
1660 // Replace a libcall \p CI with a call to intrinsic \p IID
1661 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1662                                Intrinsic::ID IID) {
1663   // Propagate fast-math flags from the existing call to the new call.
1664   IRBuilderBase::FastMathFlagGuard Guard(B);
1665   B.setFastMathFlags(CI->getFastMathFlags());
1666 
1667   Module *M = CI->getModule();
1668   Value *V = CI->getArgOperand(0);
1669   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1670   CallInst *NewCall = B.CreateCall(F, V);
1671   NewCall->takeName(CI);
1672   return copyFlags(*CI, NewCall);
1673 }
1674 
1675 /// Return a variant of Val with float type.
1676 /// Currently this works in two cases: If Val is an FPExtension of a float
1677 /// value to something bigger, simply return the operand.
1678 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1679 /// loss of precision do so.
1680 static Value *valueHasFloatPrecision(Value *Val) {
1681   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1682     Value *Op = Cast->getOperand(0);
1683     if (Op->getType()->isFloatTy())
1684       return Op;
1685   }
1686   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1687     APFloat F = Const->getValueAPF();
1688     bool losesInfo;
1689     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1690                     &losesInfo);
1691     if (!losesInfo)
1692       return ConstantFP::get(Const->getContext(), F);
1693   }
1694   return nullptr;
1695 }
1696 
1697 /// Shrink double -> float functions.
1698 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1699                                bool isBinary, const TargetLibraryInfo *TLI,
1700                                bool isPrecise = false) {
1701   Function *CalleeFn = CI->getCalledFunction();
1702   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1703     return nullptr;
1704 
1705   // If not all the uses of the function are converted to float, then bail out.
1706   // This matters if the precision of the result is more important than the
1707   // precision of the arguments.
1708   if (isPrecise)
1709     for (User *U : CI->users()) {
1710       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1711       if (!Cast || !Cast->getType()->isFloatTy())
1712         return nullptr;
1713     }
1714 
1715   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1716   Value *V[2];
1717   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1718   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1719   if (!V[0] || (isBinary && !V[1]))
1720     return nullptr;
1721 
1722   // If call isn't an intrinsic, check that it isn't within a function with the
1723   // same name as the float version of this call, otherwise the result is an
1724   // infinite loop.  For example, from MinGW-w64:
1725   //
1726   // float expf(float val) { return (float) exp((double) val); }
1727   StringRef CalleeName = CalleeFn->getName();
1728   bool IsIntrinsic = CalleeFn->isIntrinsic();
1729   if (!IsIntrinsic) {
1730     StringRef CallerName = CI->getFunction()->getName();
1731     if (!CallerName.empty() && CallerName.back() == 'f' &&
1732         CallerName.size() == (CalleeName.size() + 1) &&
1733         CallerName.startswith(CalleeName))
1734       return nullptr;
1735   }
1736 
1737   // Propagate the math semantics from the current function to the new function.
1738   IRBuilderBase::FastMathFlagGuard Guard(B);
1739   B.setFastMathFlags(CI->getFastMathFlags());
1740 
1741   // g((double) float) -> (double) gf(float)
1742   Value *R;
1743   if (IsIntrinsic) {
1744     Module *M = CI->getModule();
1745     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1746     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1747     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1748   } else {
1749     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1750     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
1751                                          CalleeAttrs)
1752                  : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
1753   }
1754   return B.CreateFPExt(R, B.getDoubleTy());
1755 }
1756 
1757 /// Shrink double -> float for unary functions.
1758 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1759                                     const TargetLibraryInfo *TLI,
1760                                     bool isPrecise = false) {
1761   return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
1762 }
1763 
1764 /// Shrink double -> float for binary functions.
1765 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1766                                      const TargetLibraryInfo *TLI,
1767                                      bool isPrecise = false) {
1768   return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
1769 }
1770 
1771 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1772 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1773   if (!CI->isFast())
1774     return nullptr;
1775 
1776   // Propagate fast-math flags from the existing call to new instructions.
1777   IRBuilderBase::FastMathFlagGuard Guard(B);
1778   B.setFastMathFlags(CI->getFastMathFlags());
1779 
1780   Value *Real, *Imag;
1781   if (CI->arg_size() == 1) {
1782     Value *Op = CI->getArgOperand(0);
1783     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1784     Real = B.CreateExtractValue(Op, 0, "real");
1785     Imag = B.CreateExtractValue(Op, 1, "imag");
1786   } else {
1787     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1788     Real = CI->getArgOperand(0);
1789     Imag = CI->getArgOperand(1);
1790   }
1791 
1792   Value *RealReal = B.CreateFMul(Real, Real);
1793   Value *ImagImag = B.CreateFMul(Imag, Imag);
1794 
1795   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1796                                               CI->getType());
1797   return copyFlags(
1798       *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
1799 }
1800 
1801 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1802                                       IRBuilderBase &B) {
1803   if (!isa<FPMathOperator>(Call))
1804     return nullptr;
1805 
1806   IRBuilderBase::FastMathFlagGuard Guard(B);
1807   B.setFastMathFlags(Call->getFastMathFlags());
1808 
1809   // TODO: Can this be shared to also handle LLVM intrinsics?
1810   Value *X;
1811   switch (Func) {
1812   case LibFunc_sin:
1813   case LibFunc_sinf:
1814   case LibFunc_sinl:
1815   case LibFunc_tan:
1816   case LibFunc_tanf:
1817   case LibFunc_tanl:
1818     // sin(-X) --> -sin(X)
1819     // tan(-X) --> -tan(X)
1820     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1821       return B.CreateFNeg(
1822           copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
1823     break;
1824   case LibFunc_cos:
1825   case LibFunc_cosf:
1826   case LibFunc_cosl:
1827     // cos(-X) --> cos(X)
1828     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1829       return copyFlags(*Call,
1830                        B.CreateCall(Call->getCalledFunction(), X, "cos"));
1831     break;
1832   default:
1833     break;
1834   }
1835   return nullptr;
1836 }
1837 
1838 // Return a properly extended integer (DstWidth bits wide) if the operation is
1839 // an itofp.
1840 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1841   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1842     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1843     // Make sure that the exponent fits inside an "int" of size DstWidth,
1844     // thus avoiding any range issues that FP has not.
1845     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1846     if (BitWidth < DstWidth ||
1847         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1848       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1849                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1850   }
1851 
1852   return nullptr;
1853 }
1854 
1855 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1856 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1857 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1858 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1859   Module *M = Pow->getModule();
1860   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1861   Module *Mod = Pow->getModule();
1862   Type *Ty = Pow->getType();
1863   bool Ignored;
1864 
1865   // Evaluate special cases related to a nested function as the base.
1866 
1867   // pow(exp(x), y) -> exp(x * y)
1868   // pow(exp2(x), y) -> exp2(x * y)
1869   // If exp{,2}() is used only once, it is better to fold two transcendental
1870   // math functions into one.  If used again, exp{,2}() would still have to be
1871   // called with the original argument, then keep both original transcendental
1872   // functions.  However, this transformation is only safe with fully relaxed
1873   // math semantics, since, besides rounding differences, it changes overflow
1874   // and underflow behavior quite dramatically.  For example:
1875   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1876   // Whereas:
1877   //   exp(1000 * 0.001) = exp(1)
1878   // TODO: Loosen the requirement for fully relaxed math semantics.
1879   // TODO: Handle exp10() when more targets have it available.
1880   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1881   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1882     LibFunc LibFn;
1883 
1884     Function *CalleeFn = BaseFn->getCalledFunction();
1885     if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
1886         isLibFuncEmittable(M, TLI, LibFn)) {
1887       StringRef ExpName;
1888       Intrinsic::ID ID;
1889       Value *ExpFn;
1890       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1891 
1892       switch (LibFn) {
1893       default:
1894         return nullptr;
1895       case LibFunc_expf:
1896       case LibFunc_exp:
1897       case LibFunc_expl:
1898         ExpName = TLI->getName(LibFunc_exp);
1899         ID = Intrinsic::exp;
1900         LibFnFloat = LibFunc_expf;
1901         LibFnDouble = LibFunc_exp;
1902         LibFnLongDouble = LibFunc_expl;
1903         break;
1904       case LibFunc_exp2f:
1905       case LibFunc_exp2:
1906       case LibFunc_exp2l:
1907         ExpName = TLI->getName(LibFunc_exp2);
1908         ID = Intrinsic::exp2;
1909         LibFnFloat = LibFunc_exp2f;
1910         LibFnDouble = LibFunc_exp2;
1911         LibFnLongDouble = LibFunc_exp2l;
1912         break;
1913       }
1914 
1915       // Create new exp{,2}() with the product as its argument.
1916       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1917       ExpFn = BaseFn->doesNotAccessMemory()
1918               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1919                              FMul, ExpName)
1920               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1921                                      LibFnLongDouble, B,
1922                                      BaseFn->getAttributes());
1923 
1924       // Since the new exp{,2}() is different from the original one, dead code
1925       // elimination cannot be trusted to remove it, since it may have side
1926       // effects (e.g., errno).  When the only consumer for the original
1927       // exp{,2}() is pow(), then it has to be explicitly erased.
1928       substituteInParent(BaseFn, ExpFn);
1929       return ExpFn;
1930     }
1931   }
1932 
1933   // Evaluate special cases related to a constant base.
1934 
1935   const APFloat *BaseF;
1936   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1937     return nullptr;
1938 
1939   AttributeList NoAttrs; // Attributes are only meaningful on the original call
1940 
1941   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1942   if (match(Base, m_SpecificFP(2.0)) &&
1943       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1944       hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1945     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1946       return copyFlags(*Pow,
1947                        emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
1948                                              TLI, LibFunc_ldexp, LibFunc_ldexpf,
1949                                              LibFunc_ldexpl, B, NoAttrs));
1950   }
1951 
1952   // pow(2.0 ** n, x) -> exp2(n * x)
1953   if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1954     APFloat BaseR = APFloat(1.0);
1955     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1956     BaseR = BaseR / *BaseF;
1957     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1958     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1959     APSInt NI(64, false);
1960     if ((IsInteger || IsReciprocal) &&
1961         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1962             APFloat::opOK &&
1963         NI > 1 && NI.isPowerOf2()) {
1964       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1965       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1966       if (Pow->doesNotAccessMemory())
1967         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1968                                                 Mod, Intrinsic::exp2, Ty),
1969                                             FMul, "exp2"));
1970       else
1971         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1972                                                     LibFunc_exp2f,
1973                                                     LibFunc_exp2l, B, NoAttrs));
1974     }
1975   }
1976 
1977   // pow(10.0, x) -> exp10(x)
1978   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1979   if (match(Base, m_SpecificFP(10.0)) &&
1980       hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1981     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
1982                                                 LibFunc_exp10f, LibFunc_exp10l,
1983                                                 B, NoAttrs));
1984 
1985   // pow(x, y) -> exp2(log2(x) * y)
1986   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1987       !BaseF->isNegative()) {
1988     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1989     // Luckily optimizePow has already handled the x == 1 case.
1990     assert(!match(Base, m_FPOne()) &&
1991            "pow(1.0, y) should have been simplified earlier!");
1992 
1993     Value *Log = nullptr;
1994     if (Ty->isFloatTy())
1995       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1996     else if (Ty->isDoubleTy())
1997       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1998 
1999     if (Log) {
2000       Value *FMul = B.CreateFMul(Log, Expo, "mul");
2001       if (Pow->doesNotAccessMemory())
2002         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
2003                                                 Mod, Intrinsic::exp2, Ty),
2004                                             FMul, "exp2"));
2005       else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
2006                           LibFunc_exp2l))
2007         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
2008                                                     LibFunc_exp2f,
2009                                                     LibFunc_exp2l, B, NoAttrs));
2010     }
2011   }
2012 
2013   return nullptr;
2014 }
2015 
2016 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
2017                           Module *M, IRBuilderBase &B,
2018                           const TargetLibraryInfo *TLI) {
2019   // If errno is never set, then use the intrinsic for sqrt().
2020   if (NoErrno) {
2021     Function *SqrtFn =
2022         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
2023     return B.CreateCall(SqrtFn, V, "sqrt");
2024   }
2025 
2026   // Otherwise, use the libcall for sqrt().
2027   if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
2028                  LibFunc_sqrtl))
2029     // TODO: We also should check that the target can in fact lower the sqrt()
2030     // libcall. We currently have no way to ask this question, so we ask if
2031     // the target has a sqrt() libcall, which is not exactly the same.
2032     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
2033                                 LibFunc_sqrtl, B, Attrs);
2034 
2035   return nullptr;
2036 }
2037 
2038 /// Use square root in place of pow(x, +/-0.5).
2039 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
2040   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
2041   Module *Mod = Pow->getModule();
2042   Type *Ty = Pow->getType();
2043 
2044   const APFloat *ExpoF;
2045   if (!match(Expo, m_APFloat(ExpoF)) ||
2046       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
2047     return nullptr;
2048 
2049   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
2050   // so that requires fast-math-flags (afn or reassoc).
2051   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
2052     return nullptr;
2053 
2054   // If we have a pow() library call (accesses memory) and we can't guarantee
2055   // that the base is not an infinity, give up:
2056   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
2057   // errno), but sqrt(-Inf) is required by various standards to set errno.
2058   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
2059       !isKnownNeverInfinity(Base, TLI))
2060     return nullptr;
2061 
2062   Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B,
2063                      TLI);
2064   if (!Sqrt)
2065     return nullptr;
2066 
2067   // Handle signed zero base by expanding to fabs(sqrt(x)).
2068   if (!Pow->hasNoSignedZeros()) {
2069     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
2070     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
2071   }
2072 
2073   Sqrt = copyFlags(*Pow, Sqrt);
2074 
2075   // Handle non finite base by expanding to
2076   // (x == -infinity ? +infinity : sqrt(x)).
2077   if (!Pow->hasNoInfs()) {
2078     Value *PosInf = ConstantFP::getInfinity(Ty),
2079           *NegInf = ConstantFP::getInfinity(Ty, true);
2080     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
2081     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
2082   }
2083 
2084   // If the exponent is negative, then get the reciprocal.
2085   if (ExpoF->isNegative())
2086     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
2087 
2088   return Sqrt;
2089 }
2090 
2091 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
2092                                            IRBuilderBase &B) {
2093   Value *Args[] = {Base, Expo};
2094   Type *Types[] = {Base->getType(), Expo->getType()};
2095   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
2096   return B.CreateCall(F, Args);
2097 }
2098 
2099 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
2100   Value *Base = Pow->getArgOperand(0);
2101   Value *Expo = Pow->getArgOperand(1);
2102   Function *Callee = Pow->getCalledFunction();
2103   StringRef Name = Callee->getName();
2104   Type *Ty = Pow->getType();
2105   Module *M = Pow->getModule();
2106   bool AllowApprox = Pow->hasApproxFunc();
2107   bool Ignored;
2108 
2109   // Propagate the math semantics from the call to any created instructions.
2110   IRBuilderBase::FastMathFlagGuard Guard(B);
2111   B.setFastMathFlags(Pow->getFastMathFlags());
2112   // Evaluate special cases related to the base.
2113 
2114   // pow(1.0, x) -> 1.0
2115   if (match(Base, m_FPOne()))
2116     return Base;
2117 
2118   if (Value *Exp = replacePowWithExp(Pow, B))
2119     return Exp;
2120 
2121   // Evaluate special cases related to the exponent.
2122 
2123   // pow(x, -1.0) -> 1.0 / x
2124   if (match(Expo, m_SpecificFP(-1.0)))
2125     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
2126 
2127   // pow(x, +/-0.0) -> 1.0
2128   if (match(Expo, m_AnyZeroFP()))
2129     return ConstantFP::get(Ty, 1.0);
2130 
2131   // pow(x, 1.0) -> x
2132   if (match(Expo, m_FPOne()))
2133     return Base;
2134 
2135   // pow(x, 2.0) -> x * x
2136   if (match(Expo, m_SpecificFP(2.0)))
2137     return B.CreateFMul(Base, Base, "square");
2138 
2139   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
2140     return Sqrt;
2141 
2142   // If we can approximate pow:
2143   // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction
2144   // pow(x, n) -> powi(x, n) if n is a constant signed integer value
2145   const APFloat *ExpoF;
2146   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
2147       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
2148     APFloat ExpoA(abs(*ExpoF));
2149     APFloat ExpoI(*ExpoF);
2150     Value *Sqrt = nullptr;
2151     if (!ExpoA.isInteger()) {
2152       APFloat Expo2 = ExpoA;
2153       // To check if ExpoA is an integer + 0.5, we add it to itself. If there
2154       // is no floating point exception and the result is an integer, then
2155       // ExpoA == integer + 0.5
2156       if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
2157         return nullptr;
2158 
2159       if (!Expo2.isInteger())
2160         return nullptr;
2161 
2162       if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) !=
2163           APFloat::opInexact)
2164         return nullptr;
2165       if (!ExpoI.isInteger())
2166         return nullptr;
2167       ExpoF = &ExpoI;
2168 
2169       Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M,
2170                          B, TLI);
2171       if (!Sqrt)
2172         return nullptr;
2173     }
2174 
2175     // 0.5 fraction is now optionally handled.
2176     // Do pow -> powi for remaining integer exponent
2177     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
2178     if (ExpoF->isInteger() &&
2179         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
2180             APFloat::opOK) {
2181       Value *PowI = copyFlags(
2182           *Pow,
2183           createPowWithIntegerExponent(
2184               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
2185               M, B));
2186 
2187       if (PowI && Sqrt)
2188         return B.CreateFMul(PowI, Sqrt);
2189 
2190       return PowI;
2191     }
2192   }
2193 
2194   // powf(x, itofp(y)) -> powi(x, y)
2195   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
2196     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
2197       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
2198   }
2199 
2200   // Shrink pow() to powf() if the arguments are single precision,
2201   // unless the result is expected to be double precision.
2202   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
2203       hasFloatVersion(M, Name)) {
2204     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
2205       return Shrunk;
2206   }
2207 
2208   return nullptr;
2209 }
2210 
2211 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
2212   Module *M = CI->getModule();
2213   Function *Callee = CI->getCalledFunction();
2214   StringRef Name = Callee->getName();
2215   Value *Ret = nullptr;
2216   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
2217       hasFloatVersion(M, Name))
2218     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2219 
2220   Type *Ty = CI->getType();
2221   Value *Op = CI->getArgOperand(0);
2222 
2223   // exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
2224   // exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
2225   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
2226       hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
2227     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
2228       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
2229                                    LibFunc_ldexp, LibFunc_ldexpf,
2230                                    LibFunc_ldexpl, B, AttributeList());
2231   }
2232 
2233   return Ret;
2234 }
2235 
2236 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2237   Module *M = CI->getModule();
2238 
2239   // If we can shrink the call to a float function rather than a double
2240   // function, do that first.
2241   Function *Callee = CI->getCalledFunction();
2242   StringRef Name = Callee->getName();
2243   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2244     if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2245       return Ret;
2246 
2247   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2248   // the intrinsics for improved optimization (for example, vectorization).
2249   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2250   // From the C standard draft WG14/N1256:
2251   // "Ideally, fmax would be sensitive to the sign of zero, for example
2252   // fmax(-0.0, +0.0) would return +0; however, implementation in software
2253   // might be impractical."
2254   IRBuilderBase::FastMathFlagGuard Guard(B);
2255   FastMathFlags FMF = CI->getFastMathFlags();
2256   FMF.setNoSignedZeros();
2257   B.setFastMathFlags(FMF);
2258 
2259   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
2260                                                            : Intrinsic::maxnum;
2261   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
2262   return copyFlags(
2263       *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
2264 }
2265 
2266 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2267   Function *LogFn = Log->getCalledFunction();
2268   StringRef LogNm = LogFn->getName();
2269   Intrinsic::ID LogID = LogFn->getIntrinsicID();
2270   Module *Mod = Log->getModule();
2271   Type *Ty = Log->getType();
2272   Value *Ret = nullptr;
2273 
2274   if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2275     Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
2276 
2277   // The earlier call must also be 'fast' in order to do these transforms.
2278   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
2279   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2280     return Ret;
2281 
2282   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2283 
2284   // This is only applicable to log(), log2(), log10().
2285   if (TLI->getLibFunc(LogNm, LogLb))
2286     switch (LogLb) {
2287     case LibFunc_logf:
2288       LogID = Intrinsic::log;
2289       ExpLb = LibFunc_expf;
2290       Exp2Lb = LibFunc_exp2f;
2291       Exp10Lb = LibFunc_exp10f;
2292       PowLb = LibFunc_powf;
2293       break;
2294     case LibFunc_log:
2295       LogID = Intrinsic::log;
2296       ExpLb = LibFunc_exp;
2297       Exp2Lb = LibFunc_exp2;
2298       Exp10Lb = LibFunc_exp10;
2299       PowLb = LibFunc_pow;
2300       break;
2301     case LibFunc_logl:
2302       LogID = Intrinsic::log;
2303       ExpLb = LibFunc_expl;
2304       Exp2Lb = LibFunc_exp2l;
2305       Exp10Lb = LibFunc_exp10l;
2306       PowLb = LibFunc_powl;
2307       break;
2308     case LibFunc_log2f:
2309       LogID = Intrinsic::log2;
2310       ExpLb = LibFunc_expf;
2311       Exp2Lb = LibFunc_exp2f;
2312       Exp10Lb = LibFunc_exp10f;
2313       PowLb = LibFunc_powf;
2314       break;
2315     case LibFunc_log2:
2316       LogID = Intrinsic::log2;
2317       ExpLb = LibFunc_exp;
2318       Exp2Lb = LibFunc_exp2;
2319       Exp10Lb = LibFunc_exp10;
2320       PowLb = LibFunc_pow;
2321       break;
2322     case LibFunc_log2l:
2323       LogID = Intrinsic::log2;
2324       ExpLb = LibFunc_expl;
2325       Exp2Lb = LibFunc_exp2l;
2326       Exp10Lb = LibFunc_exp10l;
2327       PowLb = LibFunc_powl;
2328       break;
2329     case LibFunc_log10f:
2330       LogID = Intrinsic::log10;
2331       ExpLb = LibFunc_expf;
2332       Exp2Lb = LibFunc_exp2f;
2333       Exp10Lb = LibFunc_exp10f;
2334       PowLb = LibFunc_powf;
2335       break;
2336     case LibFunc_log10:
2337       LogID = Intrinsic::log10;
2338       ExpLb = LibFunc_exp;
2339       Exp2Lb = LibFunc_exp2;
2340       Exp10Lb = LibFunc_exp10;
2341       PowLb = LibFunc_pow;
2342       break;
2343     case LibFunc_log10l:
2344       LogID = Intrinsic::log10;
2345       ExpLb = LibFunc_expl;
2346       Exp2Lb = LibFunc_exp2l;
2347       Exp10Lb = LibFunc_exp10l;
2348       PowLb = LibFunc_powl;
2349       break;
2350     default:
2351       return Ret;
2352     }
2353   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2354            LogID == Intrinsic::log10) {
2355     if (Ty->getScalarType()->isFloatTy()) {
2356       ExpLb = LibFunc_expf;
2357       Exp2Lb = LibFunc_exp2f;
2358       Exp10Lb = LibFunc_exp10f;
2359       PowLb = LibFunc_powf;
2360     } else if (Ty->getScalarType()->isDoubleTy()) {
2361       ExpLb = LibFunc_exp;
2362       Exp2Lb = LibFunc_exp2;
2363       Exp10Lb = LibFunc_exp10;
2364       PowLb = LibFunc_pow;
2365     } else
2366       return Ret;
2367   } else
2368     return Ret;
2369 
2370   IRBuilderBase::FastMathFlagGuard Guard(B);
2371   B.setFastMathFlags(FastMathFlags::getFast());
2372 
2373   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2374   LibFunc ArgLb = NotLibFunc;
2375   TLI->getLibFunc(*Arg, ArgLb);
2376 
2377   // log(pow(x,y)) -> y*log(x)
2378   AttributeList NoAttrs;
2379   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
2380     Value *LogX =
2381         Log->doesNotAccessMemory()
2382             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2383                            Arg->getOperand(0), "log")
2384             : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs);
2385     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
2386     // Since pow() may have side effects, e.g. errno,
2387     // dead code elimination may not be trusted to remove it.
2388     substituteInParent(Arg, MulY);
2389     return MulY;
2390   }
2391 
2392   // log(exp{,2,10}(y)) -> y*log({e,2,10})
2393   // TODO: There is no exp10() intrinsic yet.
2394   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2395            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2396     Constant *Eul;
2397     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2398       // FIXME: Add more precise value of e for long double.
2399       Eul = ConstantFP::get(Log->getType(), numbers::e);
2400     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2401       Eul = ConstantFP::get(Log->getType(), 2.0);
2402     else
2403       Eul = ConstantFP::get(Log->getType(), 10.0);
2404     Value *LogE = Log->doesNotAccessMemory()
2405                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2406                                      Eul, "log")
2407                       : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs);
2408     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2409     // Since exp() may have side effects, e.g. errno,
2410     // dead code elimination may not be trusted to remove it.
2411     substituteInParent(Arg, MulY);
2412     return MulY;
2413   }
2414 
2415   return Ret;
2416 }
2417 
2418 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2419   Module *M = CI->getModule();
2420   Function *Callee = CI->getCalledFunction();
2421   Value *Ret = nullptr;
2422   // TODO: Once we have a way (other than checking for the existince of the
2423   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2424   // condition below.
2425   if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
2426       (Callee->getName() == "sqrt" ||
2427        Callee->getIntrinsicID() == Intrinsic::sqrt))
2428     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2429 
2430   if (!CI->isFast())
2431     return Ret;
2432 
2433   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2434   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2435     return Ret;
2436 
2437   // We're looking for a repeated factor in a multiplication tree,
2438   // so we can do this fold: sqrt(x * x) -> fabs(x);
2439   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2440   Value *Op0 = I->getOperand(0);
2441   Value *Op1 = I->getOperand(1);
2442   Value *RepeatOp = nullptr;
2443   Value *OtherOp = nullptr;
2444   if (Op0 == Op1) {
2445     // Simple match: the operands of the multiply are identical.
2446     RepeatOp = Op0;
2447   } else {
2448     // Look for a more complicated pattern: one of the operands is itself
2449     // a multiply, so search for a common factor in that multiply.
2450     // Note: We don't bother looking any deeper than this first level or for
2451     // variations of this pattern because instcombine's visitFMUL and/or the
2452     // reassociation pass should give us this form.
2453     Value *OtherMul0, *OtherMul1;
2454     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2455       // Pattern: sqrt((x * y) * z)
2456       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2457         // Matched: sqrt((x * x) * z)
2458         RepeatOp = OtherMul0;
2459         OtherOp = Op1;
2460       }
2461     }
2462   }
2463   if (!RepeatOp)
2464     return Ret;
2465 
2466   // Fast math flags for any created instructions should match the sqrt
2467   // and multiply.
2468   IRBuilderBase::FastMathFlagGuard Guard(B);
2469   B.setFastMathFlags(I->getFastMathFlags());
2470 
2471   // If we found a repeated factor, hoist it out of the square root and
2472   // replace it with the fabs of that factor.
2473   Type *ArgType = I->getType();
2474   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2475   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2476   if (OtherOp) {
2477     // If we found a non-repeated factor, we still need to get its square
2478     // root. We then multiply that by the value that was simplified out
2479     // of the square root calculation.
2480     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2481     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2482     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2483   }
2484   return copyFlags(*CI, FabsCall);
2485 }
2486 
2487 // TODO: Generalize to handle any trig function and its inverse.
2488 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2489   Module *M = CI->getModule();
2490   Function *Callee = CI->getCalledFunction();
2491   Value *Ret = nullptr;
2492   StringRef Name = Callee->getName();
2493   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name))
2494     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2495 
2496   Value *Op1 = CI->getArgOperand(0);
2497   auto *OpC = dyn_cast<CallInst>(Op1);
2498   if (!OpC)
2499     return Ret;
2500 
2501   // Both calls must be 'fast' in order to remove them.
2502   if (!CI->isFast() || !OpC->isFast())
2503     return Ret;
2504 
2505   // tan(atan(x)) -> x
2506   // tanf(atanf(x)) -> x
2507   // tanl(atanl(x)) -> x
2508   LibFunc Func;
2509   Function *F = OpC->getCalledFunction();
2510   if (F && TLI->getLibFunc(F->getName(), Func) &&
2511       isLibFuncEmittable(M, TLI, Func) &&
2512       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2513        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2514        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2515     Ret = OpC->getArgOperand(0);
2516   return Ret;
2517 }
2518 
2519 static bool isTrigLibCall(CallInst *CI) {
2520   // We can only hope to do anything useful if we can ignore things like errno
2521   // and floating-point exceptions.
2522   // We already checked the prototype.
2523   return CI->doesNotThrow() && CI->doesNotAccessMemory();
2524 }
2525 
2526 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2527                              bool UseFloat, Value *&Sin, Value *&Cos,
2528                              Value *&SinCos, const TargetLibraryInfo *TLI) {
2529   Module *M = OrigCallee->getParent();
2530   Type *ArgTy = Arg->getType();
2531   Type *ResTy;
2532   StringRef Name;
2533 
2534   Triple T(OrigCallee->getParent()->getTargetTriple());
2535   if (UseFloat) {
2536     Name = "__sincospif_stret";
2537 
2538     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2539     // x86_64 can't use {float, float} since that would be returned in both
2540     // xmm0 and xmm1, which isn't what a real struct would do.
2541     ResTy = T.getArch() == Triple::x86_64
2542                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2543                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2544   } else {
2545     Name = "__sincospi_stret";
2546     ResTy = StructType::get(ArgTy, ArgTy);
2547   }
2548 
2549   if (!isLibFuncEmittable(M, TLI, Name))
2550     return false;
2551   LibFunc TheLibFunc;
2552   TLI->getLibFunc(Name, TheLibFunc);
2553   FunctionCallee Callee = getOrInsertLibFunc(
2554       M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2555 
2556   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2557     // If the argument is an instruction, it must dominate all uses so put our
2558     // sincos call there.
2559     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2560   } else {
2561     // Otherwise (e.g. for a constant) the beginning of the function is as
2562     // good a place as any.
2563     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2564     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2565   }
2566 
2567   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2568 
2569   if (SinCos->getType()->isStructTy()) {
2570     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2571     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2572   } else {
2573     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2574                                  "sinpi");
2575     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2576                                  "cospi");
2577   }
2578 
2579   return true;
2580 }
2581 
2582 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2583   // Make sure the prototype is as expected, otherwise the rest of the
2584   // function is probably invalid and likely to abort.
2585   if (!isTrigLibCall(CI))
2586     return nullptr;
2587 
2588   Value *Arg = CI->getArgOperand(0);
2589   SmallVector<CallInst *, 1> SinCalls;
2590   SmallVector<CallInst *, 1> CosCalls;
2591   SmallVector<CallInst *, 1> SinCosCalls;
2592 
2593   bool IsFloat = Arg->getType()->isFloatTy();
2594 
2595   // Look for all compatible sinpi, cospi and sincospi calls with the same
2596   // argument. If there are enough (in some sense) we can make the
2597   // substitution.
2598   Function *F = CI->getFunction();
2599   for (User *U : Arg->users())
2600     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2601 
2602   // It's only worthwhile if both sinpi and cospi are actually used.
2603   if (SinCalls.empty() || CosCalls.empty())
2604     return nullptr;
2605 
2606   Value *Sin, *Cos, *SinCos;
2607   if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
2608                         SinCos, TLI))
2609     return nullptr;
2610 
2611   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2612                                  Value *Res) {
2613     for (CallInst *C : Calls)
2614       replaceAllUsesWith(C, Res);
2615   };
2616 
2617   replaceTrigInsts(SinCalls, Sin);
2618   replaceTrigInsts(CosCalls, Cos);
2619   replaceTrigInsts(SinCosCalls, SinCos);
2620 
2621   return nullptr;
2622 }
2623 
2624 void LibCallSimplifier::classifyArgUse(
2625     Value *Val, Function *F, bool IsFloat,
2626     SmallVectorImpl<CallInst *> &SinCalls,
2627     SmallVectorImpl<CallInst *> &CosCalls,
2628     SmallVectorImpl<CallInst *> &SinCosCalls) {
2629   auto *CI = dyn_cast<CallInst>(Val);
2630   if (!CI || CI->use_empty())
2631     return;
2632 
2633   // Don't consider calls in other functions.
2634   if (CI->getFunction() != F)
2635     return;
2636 
2637   Module *M = CI->getModule();
2638   Function *Callee = CI->getCalledFunction();
2639   LibFunc Func;
2640   if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
2641       !isLibFuncEmittable(M, TLI, Func) ||
2642       !isTrigLibCall(CI))
2643     return;
2644 
2645   if (IsFloat) {
2646     if (Func == LibFunc_sinpif)
2647       SinCalls.push_back(CI);
2648     else if (Func == LibFunc_cospif)
2649       CosCalls.push_back(CI);
2650     else if (Func == LibFunc_sincospif_stret)
2651       SinCosCalls.push_back(CI);
2652   } else {
2653     if (Func == LibFunc_sinpi)
2654       SinCalls.push_back(CI);
2655     else if (Func == LibFunc_cospi)
2656       CosCalls.push_back(CI);
2657     else if (Func == LibFunc_sincospi_stret)
2658       SinCosCalls.push_back(CI);
2659   }
2660 }
2661 
2662 //===----------------------------------------------------------------------===//
2663 // Integer Library Call Optimizations
2664 //===----------------------------------------------------------------------===//
2665 
2666 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2667   // All variants of ffs return int which need not be 32 bits wide.
2668   // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0
2669   Type *RetType = CI->getType();
2670   Value *Op = CI->getArgOperand(0);
2671   Type *ArgType = Op->getType();
2672   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2673                                           Intrinsic::cttz, ArgType);
2674   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2675   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2676   V = B.CreateIntCast(V, RetType, false);
2677 
2678   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2679   return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0));
2680 }
2681 
2682 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2683   // All variants of fls return int which need not be 32 bits wide.
2684   // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false))
2685   Value *Op = CI->getArgOperand(0);
2686   Type *ArgType = Op->getType();
2687   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2688                                           Intrinsic::ctlz, ArgType);
2689   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2690   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2691                   V);
2692   return B.CreateIntCast(V, CI->getType(), false);
2693 }
2694 
2695 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2696   // abs(x) -> x <s 0 ? -x : x
2697   // The negation has 'nsw' because abs of INT_MIN is undefined.
2698   Value *X = CI->getArgOperand(0);
2699   Value *IsNeg = B.CreateIsNeg(X);
2700   Value *NegX = B.CreateNSWNeg(X, "neg");
2701   return B.CreateSelect(IsNeg, NegX, X);
2702 }
2703 
2704 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2705   // isdigit(c) -> (c-'0') <u 10
2706   Value *Op = CI->getArgOperand(0);
2707   Type *ArgType = Op->getType();
2708   Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp");
2709   Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit");
2710   return B.CreateZExt(Op, CI->getType());
2711 }
2712 
2713 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2714   // isascii(c) -> c <u 128
2715   Value *Op = CI->getArgOperand(0);
2716   Type *ArgType = Op->getType();
2717   Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii");
2718   return B.CreateZExt(Op, CI->getType());
2719 }
2720 
2721 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2722   // toascii(c) -> c & 0x7f
2723   return B.CreateAnd(CI->getArgOperand(0),
2724                      ConstantInt::get(CI->getType(), 0x7F));
2725 }
2726 
2727 // Fold calls to atoi, atol, and atoll.
2728 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2729   CI->addParamAttr(0, Attribute::NoCapture);
2730 
2731   StringRef Str;
2732   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2733     return nullptr;
2734 
2735   return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B);
2736 }
2737 
2738 // Fold calls to strtol, strtoll, strtoul, and strtoull.
2739 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B,
2740                                            bool AsSigned) {
2741   Value *EndPtr = CI->getArgOperand(1);
2742   if (isa<ConstantPointerNull>(EndPtr)) {
2743     // With a null EndPtr, this function won't capture the main argument.
2744     // It would be readonly too, except that it still may write to errno.
2745     CI->addParamAttr(0, Attribute::NoCapture);
2746     EndPtr = nullptr;
2747   } else if (!isKnownNonZero(EndPtr, DL))
2748     return nullptr;
2749 
2750   StringRef Str;
2751   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2752     return nullptr;
2753 
2754   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2755     return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B);
2756   }
2757 
2758   return nullptr;
2759 }
2760 
2761 //===----------------------------------------------------------------------===//
2762 // Formatting and IO Library Call Optimizations
2763 //===----------------------------------------------------------------------===//
2764 
2765 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2766 
2767 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2768                                                  int StreamArg) {
2769   Function *Callee = CI->getCalledFunction();
2770   // Error reporting calls should be cold, mark them as such.
2771   // This applies even to non-builtin calls: it is only a hint and applies to
2772   // functions that the frontend might not understand as builtins.
2773 
2774   // This heuristic was suggested in:
2775   // Improving Static Branch Prediction in a Compiler
2776   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2777   // Proceedings of PACT'98, Oct. 1998, IEEE
2778   if (!CI->hasFnAttr(Attribute::Cold) &&
2779       isReportingError(Callee, CI, StreamArg)) {
2780     CI->addFnAttr(Attribute::Cold);
2781   }
2782 
2783   return nullptr;
2784 }
2785 
2786 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2787   if (!Callee || !Callee->isDeclaration())
2788     return false;
2789 
2790   if (StreamArg < 0)
2791     return true;
2792 
2793   // These functions might be considered cold, but only if their stream
2794   // argument is stderr.
2795 
2796   if (StreamArg >= (int)CI->arg_size())
2797     return false;
2798   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2799   if (!LI)
2800     return false;
2801   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2802   if (!GV || !GV->isDeclaration())
2803     return false;
2804   return GV->getName() == "stderr";
2805 }
2806 
2807 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2808   // Check for a fixed format string.
2809   StringRef FormatStr;
2810   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2811     return nullptr;
2812 
2813   // Empty format string -> noop.
2814   if (FormatStr.empty()) // Tolerate printf's declared void.
2815     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2816 
2817   // Do not do any of the following transformations if the printf return value
2818   // is used, in general the printf return value is not compatible with either
2819   // putchar() or puts().
2820   if (!CI->use_empty())
2821     return nullptr;
2822 
2823   Type *IntTy = CI->getType();
2824   // printf("x") -> putchar('x'), even for "%" and "%%".
2825   if (FormatStr.size() == 1 || FormatStr == "%%") {
2826     // Convert the character to unsigned char before passing it to putchar
2827     // to avoid host-specific sign extension in the IR.  Putchar converts
2828     // it to unsigned char regardless.
2829     Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]);
2830     return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
2831   }
2832 
2833   // Try to remove call or emit putchar/puts.
2834   if (FormatStr == "%s" && CI->arg_size() > 1) {
2835     StringRef OperandStr;
2836     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2837       return nullptr;
2838     // printf("%s", "") --> NOP
2839     if (OperandStr.empty())
2840       return (Value *)CI;
2841     // printf("%s", "a") --> putchar('a')
2842     if (OperandStr.size() == 1) {
2843       // Convert the character to unsigned char before passing it to putchar
2844       // to avoid host-specific sign extension in the IR.  Putchar converts
2845       // it to unsigned char regardless.
2846       Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]);
2847       return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
2848     }
2849     // printf("%s", str"\n") --> puts(str)
2850     if (OperandStr.back() == '\n') {
2851       OperandStr = OperandStr.drop_back();
2852       Value *GV = B.CreateGlobalString(OperandStr, "str");
2853       return copyFlags(*CI, emitPutS(GV, B, TLI));
2854     }
2855     return nullptr;
2856   }
2857 
2858   // printf("foo\n") --> puts("foo")
2859   if (FormatStr.back() == '\n' &&
2860       !FormatStr.contains('%')) { // No format characters.
2861     // Create a string literal with no \n on it.  We expect the constant merge
2862     // pass to be run after this pass, to merge duplicate strings.
2863     FormatStr = FormatStr.drop_back();
2864     Value *GV = B.CreateGlobalString(FormatStr, "str");
2865     return copyFlags(*CI, emitPutS(GV, B, TLI));
2866   }
2867 
2868   // Optimize specific format strings.
2869   // printf("%c", chr) --> putchar(chr)
2870   if (FormatStr == "%c" && CI->arg_size() > 1 &&
2871       CI->getArgOperand(1)->getType()->isIntegerTy()) {
2872     // Convert the argument to the type expected by putchar, i.e., int, which
2873     // need not be 32 bits wide but which is the same as printf's return type.
2874     Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false);
2875     return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
2876   }
2877 
2878   // printf("%s\n", str) --> puts(str)
2879   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
2880       CI->getArgOperand(1)->getType()->isPointerTy())
2881     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
2882   return nullptr;
2883 }
2884 
2885 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2886 
2887   Module *M = CI->getModule();
2888   Function *Callee = CI->getCalledFunction();
2889   FunctionType *FT = Callee->getFunctionType();
2890   if (Value *V = optimizePrintFString(CI, B)) {
2891     return V;
2892   }
2893 
2894   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2895 
2896   // printf(format, ...) -> iprintf(format, ...) if no floating point
2897   // arguments.
2898   if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
2899       !callHasFloatingPointArgument(CI)) {
2900     FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
2901                                                   Callee->getAttributes());
2902     CallInst *New = cast<CallInst>(CI->clone());
2903     New->setCalledFunction(IPrintFFn);
2904     B.Insert(New);
2905     return New;
2906   }
2907 
2908   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2909   // arguments.
2910   if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
2911       !callHasFP128Argument(CI)) {
2912     auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
2913                                             Callee->getAttributes());
2914     CallInst *New = cast<CallInst>(CI->clone());
2915     New->setCalledFunction(SmallPrintFFn);
2916     B.Insert(New);
2917     return New;
2918   }
2919 
2920   return nullptr;
2921 }
2922 
2923 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2924                                                 IRBuilderBase &B) {
2925   // Check for a fixed format string.
2926   StringRef FormatStr;
2927   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2928     return nullptr;
2929 
2930   // If we just have a format string (nothing else crazy) transform it.
2931   Value *Dest = CI->getArgOperand(0);
2932   if (CI->arg_size() == 2) {
2933     // Make sure there's no % in the constant array.  We could try to handle
2934     // %% -> % in the future if we cared.
2935     if (FormatStr.contains('%'))
2936       return nullptr; // we found a format specifier, bail out.
2937 
2938     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2939     B.CreateMemCpy(
2940         Dest, Align(1), CI->getArgOperand(1), Align(1),
2941         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2942                          FormatStr.size() + 1)); // Copy the null byte.
2943     return ConstantInt::get(CI->getType(), FormatStr.size());
2944   }
2945 
2946   // The remaining optimizations require the format string to be "%s" or "%c"
2947   // and have an extra operand.
2948   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2949     return nullptr;
2950 
2951   // Decode the second character of the format string.
2952   if (FormatStr[1] == 'c') {
2953     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2954     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2955       return nullptr;
2956     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2957     Value *Ptr = castToCStr(Dest, B);
2958     B.CreateStore(V, Ptr);
2959     Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2960     B.CreateStore(B.getInt8(0), Ptr);
2961 
2962     return ConstantInt::get(CI->getType(), 1);
2963   }
2964 
2965   if (FormatStr[1] == 's') {
2966     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2967     // strlen(str)+1)
2968     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2969       return nullptr;
2970 
2971     if (CI->use_empty())
2972       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2973       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
2974 
2975     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2976     if (SrcLen) {
2977       B.CreateMemCpy(
2978           Dest, Align(1), CI->getArgOperand(2), Align(1),
2979           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2980       // Returns total number of characters written without null-character.
2981       return ConstantInt::get(CI->getType(), SrcLen - 1);
2982     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2983       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2984       // Handle mismatched pointer types (goes away with typeless pointers?).
2985       V = B.CreatePointerCast(V, B.getInt8PtrTy());
2986       Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
2987       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
2988       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2989     }
2990 
2991     bool OptForSize = CI->getFunction()->hasOptSize() ||
2992                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2993                                                   PGSOQueryType::IRPass);
2994     if (OptForSize)
2995       return nullptr;
2996 
2997     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2998     if (!Len)
2999       return nullptr;
3000     Value *IncLen =
3001         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
3002     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
3003 
3004     // The sprintf result is the unincremented number of bytes in the string.
3005     return B.CreateIntCast(Len, CI->getType(), false);
3006   }
3007   return nullptr;
3008 }
3009 
3010 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
3011   Module *M = CI->getModule();
3012   Function *Callee = CI->getCalledFunction();
3013   FunctionType *FT = Callee->getFunctionType();
3014   if (Value *V = optimizeSPrintFString(CI, B)) {
3015     return V;
3016   }
3017 
3018   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
3019 
3020   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
3021   // point arguments.
3022   if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
3023       !callHasFloatingPointArgument(CI)) {
3024     FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
3025                                                    FT, Callee->getAttributes());
3026     CallInst *New = cast<CallInst>(CI->clone());
3027     New->setCalledFunction(SIPrintFFn);
3028     B.Insert(New);
3029     return New;
3030   }
3031 
3032   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
3033   // floating point arguments.
3034   if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
3035       !callHasFP128Argument(CI)) {
3036     auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
3037                                              Callee->getAttributes());
3038     CallInst *New = cast<CallInst>(CI->clone());
3039     New->setCalledFunction(SmallSPrintFFn);
3040     B.Insert(New);
3041     return New;
3042   }
3043 
3044   return nullptr;
3045 }
3046 
3047 // Transform an snprintf call CI with the bound N to format the string Str
3048 // either to a call to memcpy, or to single character a store, or to nothing,
3049 // and fold the result to a constant.  A nonnull StrArg refers to the string
3050 // argument being formatted.  Otherwise the call is one with N < 2 and
3051 // the "%c" directive to format a single character.
3052 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg,
3053                                              StringRef Str, uint64_t N,
3054                                              IRBuilderBase &B) {
3055   assert(StrArg || (N < 2 && Str.size() == 1));
3056 
3057   unsigned IntBits = TLI->getIntSize();
3058   uint64_t IntMax = maxIntN(IntBits);
3059   if (Str.size() > IntMax)
3060     // Bail if the string is longer than INT_MAX.  POSIX requires
3061     // implementations to set errno to EOVERFLOW in this case, in
3062     // addition to when N is larger than that (checked by the caller).
3063     return nullptr;
3064 
3065   Value *StrLen = ConstantInt::get(CI->getType(), Str.size());
3066   if (N == 0)
3067     return StrLen;
3068 
3069   // Set to the number of bytes to copy fron StrArg which is also
3070   // the offset of the terinating nul.
3071   uint64_t NCopy;
3072   if (N > Str.size())
3073     // Copy the full string, including the terminating nul (which must
3074     // be present regardless of the bound).
3075     NCopy = Str.size() + 1;
3076   else
3077     NCopy = N - 1;
3078 
3079   Value *DstArg = CI->getArgOperand(0);
3080   if (NCopy && StrArg)
3081     // Transform the call to lvm.memcpy(dst, fmt, N).
3082     copyFlags(
3083          *CI,
3084           B.CreateMemCpy(
3085                          DstArg, Align(1), StrArg, Align(1),
3086               ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy)));
3087 
3088   if (N > Str.size())
3089     // Return early when the whole format string, including the final nul,
3090     // has been copied.
3091     return StrLen;
3092 
3093   // Otherwise, when truncating the string append a terminating nul.
3094   Type *Int8Ty = B.getInt8Ty();
3095   Value *NulOff = B.getIntN(IntBits, NCopy);
3096   Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr");
3097   B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd);
3098   return StrLen;
3099 }
3100 
3101 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
3102                                                  IRBuilderBase &B) {
3103   // Check for size
3104   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3105   if (!Size)
3106     return nullptr;
3107 
3108   uint64_t N = Size->getZExtValue();
3109   uint64_t IntMax = maxIntN(TLI->getIntSize());
3110   if (N > IntMax)
3111     // Bail if the bound exceeds INT_MAX.  POSIX requires implementations
3112     // to set errno to EOVERFLOW in this case.
3113     return nullptr;
3114 
3115   Value *DstArg = CI->getArgOperand(0);
3116   Value *FmtArg = CI->getArgOperand(2);
3117 
3118   // Check for a fixed format string.
3119   StringRef FormatStr;
3120   if (!getConstantStringInfo(FmtArg, FormatStr))
3121     return nullptr;
3122 
3123   // If we just have a format string (nothing else crazy) transform it.
3124   if (CI->arg_size() == 3) {
3125     if (FormatStr.contains('%'))
3126       // Bail if the format string contains a directive and there are
3127       // no arguments.  We could handle "%%" in the future.
3128       return nullptr;
3129 
3130     return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B);
3131   }
3132 
3133   // The remaining optimizations require the format string to be "%s" or "%c"
3134   // and have an extra operand.
3135   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4)
3136     return nullptr;
3137 
3138   // Decode the second character of the format string.
3139   if (FormatStr[1] == 'c') {
3140     if (N <= 1) {
3141       // Use an arbitary string of length 1 to transform the call into
3142       // either a nul store (N == 1) or a no-op (N == 0) and fold it
3143       // to one.
3144       StringRef CharStr("*");
3145       return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B);
3146     }
3147 
3148     // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3149     if (!CI->getArgOperand(3)->getType()->isIntegerTy())
3150       return nullptr;
3151     Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
3152     Value *Ptr = castToCStr(DstArg, B);
3153     B.CreateStore(V, Ptr);
3154     Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3155     B.CreateStore(B.getInt8(0), Ptr);
3156     return ConstantInt::get(CI->getType(), 1);
3157   }
3158 
3159   if (FormatStr[1] != 's')
3160     return nullptr;
3161 
3162   Value *StrArg = CI->getArgOperand(3);
3163   // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
3164   StringRef Str;
3165   if (!getConstantStringInfo(StrArg, Str))
3166     return nullptr;
3167 
3168   return emitSnPrintfMemCpy(CI, StrArg, Str, N, B);
3169 }
3170 
3171 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
3172   if (Value *V = optimizeSnPrintFString(CI, B)) {
3173     return V;
3174   }
3175 
3176   if (isKnownNonZero(CI->getOperand(1), DL))
3177     annotateNonNullNoUndefBasedOnAccess(CI, 0);
3178   return nullptr;
3179 }
3180 
3181 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
3182                                                 IRBuilderBase &B) {
3183   optimizeErrorReporting(CI, B, 0);
3184 
3185   // All the optimizations depend on the format string.
3186   StringRef FormatStr;
3187   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3188     return nullptr;
3189 
3190   // Do not do any of the following transformations if the fprintf return
3191   // value is used, in general the fprintf return value is not compatible
3192   // with fwrite(), fputc() or fputs().
3193   if (!CI->use_empty())
3194     return nullptr;
3195 
3196   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
3197   if (CI->arg_size() == 2) {
3198     // Could handle %% -> % if we cared.
3199     if (FormatStr.contains('%'))
3200       return nullptr; // We found a format specifier.
3201 
3202     unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3203     Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3204     return copyFlags(
3205         *CI, emitFWrite(CI->getArgOperand(1),
3206                         ConstantInt::get(SizeTTy, FormatStr.size()),
3207                         CI->getArgOperand(0), B, DL, TLI));
3208   }
3209 
3210   // The remaining optimizations require the format string to be "%s" or "%c"
3211   // and have an extra operand.
3212   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3213     return nullptr;
3214 
3215   // Decode the second character of the format string.
3216   if (FormatStr[1] == 'c') {
3217     // fprintf(F, "%c", chr) --> fputc((int)chr, F)
3218     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3219       return nullptr;
3220     Type *IntTy = B.getIntNTy(TLI->getIntSize());
3221     Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true,
3222                                "chari");
3223     return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI));
3224   }
3225 
3226   if (FormatStr[1] == 's') {
3227     // fprintf(F, "%s", str) --> fputs(str, F)
3228     if (!CI->getArgOperand(2)->getType()->isPointerTy())
3229       return nullptr;
3230     return copyFlags(
3231         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
3232   }
3233   return nullptr;
3234 }
3235 
3236 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
3237   Module *M = CI->getModule();
3238   Function *Callee = CI->getCalledFunction();
3239   FunctionType *FT = Callee->getFunctionType();
3240   if (Value *V = optimizeFPrintFString(CI, B)) {
3241     return V;
3242   }
3243 
3244   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
3245   // floating point arguments.
3246   if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
3247       !callHasFloatingPointArgument(CI)) {
3248     FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
3249                                                    FT, Callee->getAttributes());
3250     CallInst *New = cast<CallInst>(CI->clone());
3251     New->setCalledFunction(FIPrintFFn);
3252     B.Insert(New);
3253     return New;
3254   }
3255 
3256   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
3257   // 128-bit floating point arguments.
3258   if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
3259       !callHasFP128Argument(CI)) {
3260     auto SmallFPrintFFn =
3261         getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
3262                            Callee->getAttributes());
3263     CallInst *New = cast<CallInst>(CI->clone());
3264     New->setCalledFunction(SmallFPrintFFn);
3265     B.Insert(New);
3266     return New;
3267   }
3268 
3269   return nullptr;
3270 }
3271 
3272 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
3273   optimizeErrorReporting(CI, B, 3);
3274 
3275   // Get the element size and count.
3276   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3277   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
3278   if (SizeC && CountC) {
3279     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
3280 
3281     // If this is writing zero records, remove the call (it's a noop).
3282     if (Bytes == 0)
3283       return ConstantInt::get(CI->getType(), 0);
3284 
3285     // If this is writing one byte, turn it into fputc.
3286     // This optimisation is only valid, if the return value is unused.
3287     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3288       Value *Char = B.CreateLoad(B.getInt8Ty(),
3289                                  castToCStr(CI->getArgOperand(0), B), "char");
3290       Type *IntTy = B.getIntNTy(TLI->getIntSize());
3291       Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari");
3292       Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI);
3293       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
3294     }
3295   }
3296 
3297   return nullptr;
3298 }
3299 
3300 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
3301   optimizeErrorReporting(CI, B, 1);
3302 
3303   // Don't rewrite fputs to fwrite when optimising for size because fwrite
3304   // requires more arguments and thus extra MOVs are required.
3305   bool OptForSize = CI->getFunction()->hasOptSize() ||
3306                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3307                                                 PGSOQueryType::IRPass);
3308   if (OptForSize)
3309     return nullptr;
3310 
3311   // We can't optimize if return value is used.
3312   if (!CI->use_empty())
3313     return nullptr;
3314 
3315   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3316   uint64_t Len = GetStringLength(CI->getArgOperand(0));
3317   if (!Len)
3318     return nullptr;
3319 
3320   // Known to have no uses (see above).
3321   unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3322   Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3323   return copyFlags(
3324       *CI,
3325       emitFWrite(CI->getArgOperand(0),
3326                  ConstantInt::get(SizeTTy, Len - 1),
3327                  CI->getArgOperand(1), B, DL, TLI));
3328 }
3329 
3330 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3331   annotateNonNullNoUndefBasedOnAccess(CI, 0);
3332   if (!CI->use_empty())
3333     return nullptr;
3334 
3335   // Check for a constant string.
3336   // puts("") -> putchar('\n')
3337   StringRef Str;
3338   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) {
3339     // putchar takes an argument of the same type as puts returns, i.e.,
3340     // int, which need not be 32 bits wide.
3341     Type *IntTy = CI->getType();
3342     return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI));
3343   }
3344 
3345   return nullptr;
3346 }
3347 
3348 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3349   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3350   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
3351                                         CI->getArgOperand(0), Align(1),
3352                                         CI->getArgOperand(2)));
3353 }
3354 
3355 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3356   SmallString<20> FloatFuncName = FuncName;
3357   FloatFuncName += 'f';
3358   return isLibFuncEmittable(M, TLI, FloatFuncName);
3359 }
3360 
3361 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3362                                                       IRBuilderBase &Builder) {
3363   Module *M = CI->getModule();
3364   LibFunc Func;
3365   Function *Callee = CI->getCalledFunction();
3366   // Check for string/memory library functions.
3367   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3368     // Make sure we never change the calling convention.
3369     assert(
3370         (ignoreCallingConv(Func) ||
3371          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3372         "Optimizing string/memory libcall would change the calling convention");
3373     switch (Func) {
3374     case LibFunc_strcat:
3375       return optimizeStrCat(CI, Builder);
3376     case LibFunc_strncat:
3377       return optimizeStrNCat(CI, Builder);
3378     case LibFunc_strchr:
3379       return optimizeStrChr(CI, Builder);
3380     case LibFunc_strrchr:
3381       return optimizeStrRChr(CI, Builder);
3382     case LibFunc_strcmp:
3383       return optimizeStrCmp(CI, Builder);
3384     case LibFunc_strncmp:
3385       return optimizeStrNCmp(CI, Builder);
3386     case LibFunc_strcpy:
3387       return optimizeStrCpy(CI, Builder);
3388     case LibFunc_stpcpy:
3389       return optimizeStpCpy(CI, Builder);
3390     case LibFunc_strlcpy:
3391       return optimizeStrLCpy(CI, Builder);
3392     case LibFunc_stpncpy:
3393       return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder);
3394     case LibFunc_strncpy:
3395       return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder);
3396     case LibFunc_strlen:
3397       return optimizeStrLen(CI, Builder);
3398     case LibFunc_strnlen:
3399       return optimizeStrNLen(CI, Builder);
3400     case LibFunc_strpbrk:
3401       return optimizeStrPBrk(CI, Builder);
3402     case LibFunc_strndup:
3403       return optimizeStrNDup(CI, Builder);
3404     case LibFunc_strtol:
3405     case LibFunc_strtod:
3406     case LibFunc_strtof:
3407     case LibFunc_strtoul:
3408     case LibFunc_strtoll:
3409     case LibFunc_strtold:
3410     case LibFunc_strtoull:
3411       return optimizeStrTo(CI, Builder);
3412     case LibFunc_strspn:
3413       return optimizeStrSpn(CI, Builder);
3414     case LibFunc_strcspn:
3415       return optimizeStrCSpn(CI, Builder);
3416     case LibFunc_strstr:
3417       return optimizeStrStr(CI, Builder);
3418     case LibFunc_memchr:
3419       return optimizeMemChr(CI, Builder);
3420     case LibFunc_memrchr:
3421       return optimizeMemRChr(CI, Builder);
3422     case LibFunc_bcmp:
3423       return optimizeBCmp(CI, Builder);
3424     case LibFunc_memcmp:
3425       return optimizeMemCmp(CI, Builder);
3426     case LibFunc_memcpy:
3427       return optimizeMemCpy(CI, Builder);
3428     case LibFunc_memccpy:
3429       return optimizeMemCCpy(CI, Builder);
3430     case LibFunc_mempcpy:
3431       return optimizeMemPCpy(CI, Builder);
3432     case LibFunc_memmove:
3433       return optimizeMemMove(CI, Builder);
3434     case LibFunc_memset:
3435       return optimizeMemSet(CI, Builder);
3436     case LibFunc_realloc:
3437       return optimizeRealloc(CI, Builder);
3438     case LibFunc_wcslen:
3439       return optimizeWcslen(CI, Builder);
3440     case LibFunc_bcopy:
3441       return optimizeBCopy(CI, Builder);
3442     default:
3443       break;
3444     }
3445   }
3446   return nullptr;
3447 }
3448 
3449 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3450                                                        LibFunc Func,
3451                                                        IRBuilderBase &Builder) {
3452   const Module *M = CI->getModule();
3453 
3454   // Don't optimize calls that require strict floating point semantics.
3455   if (CI->isStrictFP())
3456     return nullptr;
3457 
3458   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
3459     return V;
3460 
3461   switch (Func) {
3462   case LibFunc_sinpif:
3463   case LibFunc_sinpi:
3464   case LibFunc_cospif:
3465   case LibFunc_cospi:
3466     return optimizeSinCosPi(CI, Builder);
3467   case LibFunc_powf:
3468   case LibFunc_pow:
3469   case LibFunc_powl:
3470     return optimizePow(CI, Builder);
3471   case LibFunc_exp2l:
3472   case LibFunc_exp2:
3473   case LibFunc_exp2f:
3474     return optimizeExp2(CI, Builder);
3475   case LibFunc_fabsf:
3476   case LibFunc_fabs:
3477   case LibFunc_fabsl:
3478     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
3479   case LibFunc_sqrtf:
3480   case LibFunc_sqrt:
3481   case LibFunc_sqrtl:
3482     return optimizeSqrt(CI, Builder);
3483   case LibFunc_logf:
3484   case LibFunc_log:
3485   case LibFunc_logl:
3486   case LibFunc_log10f:
3487   case LibFunc_log10:
3488   case LibFunc_log10l:
3489   case LibFunc_log1pf:
3490   case LibFunc_log1p:
3491   case LibFunc_log1pl:
3492   case LibFunc_log2f:
3493   case LibFunc_log2:
3494   case LibFunc_log2l:
3495   case LibFunc_logbf:
3496   case LibFunc_logb:
3497   case LibFunc_logbl:
3498     return optimizeLog(CI, Builder);
3499   case LibFunc_tan:
3500   case LibFunc_tanf:
3501   case LibFunc_tanl:
3502     return optimizeTan(CI, Builder);
3503   case LibFunc_ceil:
3504     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
3505   case LibFunc_floor:
3506     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3507   case LibFunc_round:
3508     return replaceUnaryCall(CI, Builder, Intrinsic::round);
3509   case LibFunc_roundeven:
3510     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
3511   case LibFunc_nearbyint:
3512     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3513   case LibFunc_rint:
3514     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3515   case LibFunc_trunc:
3516     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3517   case LibFunc_acos:
3518   case LibFunc_acosh:
3519   case LibFunc_asin:
3520   case LibFunc_asinh:
3521   case LibFunc_atan:
3522   case LibFunc_atanh:
3523   case LibFunc_cbrt:
3524   case LibFunc_cosh:
3525   case LibFunc_exp:
3526   case LibFunc_exp10:
3527   case LibFunc_expm1:
3528   case LibFunc_cos:
3529   case LibFunc_sin:
3530   case LibFunc_sinh:
3531   case LibFunc_tanh:
3532     if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
3533       return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
3534     return nullptr;
3535   case LibFunc_copysign:
3536     if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
3537       return optimizeBinaryDoubleFP(CI, Builder, TLI);
3538     return nullptr;
3539   case LibFunc_fminf:
3540   case LibFunc_fmin:
3541   case LibFunc_fminl:
3542   case LibFunc_fmaxf:
3543   case LibFunc_fmax:
3544   case LibFunc_fmaxl:
3545     return optimizeFMinFMax(CI, Builder);
3546   case LibFunc_cabs:
3547   case LibFunc_cabsf:
3548   case LibFunc_cabsl:
3549     return optimizeCAbs(CI, Builder);
3550   default:
3551     return nullptr;
3552   }
3553 }
3554 
3555 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3556   Module *M = CI->getModule();
3557   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3558 
3559   // TODO: Split out the code below that operates on FP calls so that
3560   //       we can all non-FP calls with the StrictFP attribute to be
3561   //       optimized.
3562   if (CI->isNoBuiltin())
3563     return nullptr;
3564 
3565   LibFunc Func;
3566   Function *Callee = CI->getCalledFunction();
3567   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3568 
3569   SmallVector<OperandBundleDef, 2> OpBundles;
3570   CI->getOperandBundlesAsDefs(OpBundles);
3571 
3572   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3573   Builder.setDefaultOperandBundles(OpBundles);
3574 
3575   // Command-line parameter overrides instruction attribute.
3576   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3577   // used by the intrinsic optimizations.
3578   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3579     UnsafeFPShrink = EnableUnsafeFPShrink;
3580   else if (isa<FPMathOperator>(CI) && CI->isFast())
3581     UnsafeFPShrink = true;
3582 
3583   // First, check for intrinsics.
3584   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3585     if (!IsCallingConvC)
3586       return nullptr;
3587     // The FP intrinsics have corresponding constrained versions so we don't
3588     // need to check for the StrictFP attribute here.
3589     switch (II->getIntrinsicID()) {
3590     case Intrinsic::pow:
3591       return optimizePow(CI, Builder);
3592     case Intrinsic::exp2:
3593       return optimizeExp2(CI, Builder);
3594     case Intrinsic::log:
3595     case Intrinsic::log2:
3596     case Intrinsic::log10:
3597       return optimizeLog(CI, Builder);
3598     case Intrinsic::sqrt:
3599       return optimizeSqrt(CI, Builder);
3600     case Intrinsic::memset:
3601       return optimizeMemSet(CI, Builder);
3602     case Intrinsic::memcpy:
3603       return optimizeMemCpy(CI, Builder);
3604     case Intrinsic::memmove:
3605       return optimizeMemMove(CI, Builder);
3606     default:
3607       return nullptr;
3608     }
3609   }
3610 
3611   // Also try to simplify calls to fortified library functions.
3612   if (Value *SimplifiedFortifiedCI =
3613           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3614     // Try to further simplify the result.
3615     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3616     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3617       // Ensure that SimplifiedCI's uses are complete, since some calls have
3618       // their uses analyzed.
3619       replaceAllUsesWith(CI, SimplifiedCI);
3620 
3621       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3622       // we might replace later on.
3623       IRBuilderBase::InsertPointGuard Guard(Builder);
3624       Builder.SetInsertPoint(SimplifiedCI);
3625       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3626         // If we were able to further simplify, remove the now redundant call.
3627         substituteInParent(SimplifiedCI, V);
3628         return V;
3629       }
3630     }
3631     return SimplifiedFortifiedCI;
3632   }
3633 
3634   // Then check for known library functions.
3635   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3636     // We never change the calling convention.
3637     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3638       return nullptr;
3639     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3640       return V;
3641     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3642       return V;
3643     switch (Func) {
3644     case LibFunc_ffs:
3645     case LibFunc_ffsl:
3646     case LibFunc_ffsll:
3647       return optimizeFFS(CI, Builder);
3648     case LibFunc_fls:
3649     case LibFunc_flsl:
3650     case LibFunc_flsll:
3651       return optimizeFls(CI, Builder);
3652     case LibFunc_abs:
3653     case LibFunc_labs:
3654     case LibFunc_llabs:
3655       return optimizeAbs(CI, Builder);
3656     case LibFunc_isdigit:
3657       return optimizeIsDigit(CI, Builder);
3658     case LibFunc_isascii:
3659       return optimizeIsAscii(CI, Builder);
3660     case LibFunc_toascii:
3661       return optimizeToAscii(CI, Builder);
3662     case LibFunc_atoi:
3663     case LibFunc_atol:
3664     case LibFunc_atoll:
3665       return optimizeAtoi(CI, Builder);
3666     case LibFunc_strtol:
3667     case LibFunc_strtoll:
3668       return optimizeStrToInt(CI, Builder, /*AsSigned=*/true);
3669     case LibFunc_strtoul:
3670     case LibFunc_strtoull:
3671       return optimizeStrToInt(CI, Builder, /*AsSigned=*/false);
3672     case LibFunc_printf:
3673       return optimizePrintF(CI, Builder);
3674     case LibFunc_sprintf:
3675       return optimizeSPrintF(CI, Builder);
3676     case LibFunc_snprintf:
3677       return optimizeSnPrintF(CI, Builder);
3678     case LibFunc_fprintf:
3679       return optimizeFPrintF(CI, Builder);
3680     case LibFunc_fwrite:
3681       return optimizeFWrite(CI, Builder);
3682     case LibFunc_fputs:
3683       return optimizeFPuts(CI, Builder);
3684     case LibFunc_puts:
3685       return optimizePuts(CI, Builder);
3686     case LibFunc_perror:
3687       return optimizeErrorReporting(CI, Builder);
3688     case LibFunc_vfprintf:
3689     case LibFunc_fiprintf:
3690       return optimizeErrorReporting(CI, Builder, 0);
3691     default:
3692       return nullptr;
3693     }
3694   }
3695   return nullptr;
3696 }
3697 
3698 LibCallSimplifier::LibCallSimplifier(
3699     const DataLayout &DL, const TargetLibraryInfo *TLI,
3700     OptimizationRemarkEmitter &ORE,
3701     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3702     function_ref<void(Instruction *, Value *)> Replacer,
3703     function_ref<void(Instruction *)> Eraser)
3704     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3705       Replacer(Replacer), Eraser(Eraser) {}
3706 
3707 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3708   // Indirect through the replacer used in this instance.
3709   Replacer(I, With);
3710 }
3711 
3712 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3713   Eraser(I);
3714 }
3715 
3716 // TODO:
3717 //   Additional cases that we need to add to this file:
3718 //
3719 // cbrt:
3720 //   * cbrt(expN(X))  -> expN(x/3)
3721 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3722 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3723 //
3724 // exp, expf, expl:
3725 //   * exp(log(x))  -> x
3726 //
3727 // log, logf, logl:
3728 //   * log(exp(x))   -> x
3729 //   * log(exp(y))   -> y*log(e)
3730 //   * log(exp10(y)) -> y*log(10)
3731 //   * log(sqrt(x))  -> 0.5*log(x)
3732 //
3733 // pow, powf, powl:
3734 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3735 //   * pow(pow(x,y),z)-> pow(x,y*z)
3736 //
3737 // signbit:
3738 //   * signbit(cnst) -> cnst'
3739 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3740 //
3741 // sqrt, sqrtf, sqrtl:
3742 //   * sqrt(expN(x))  -> expN(x*0.5)
3743 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3744 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3745 //
3746 
3747 //===----------------------------------------------------------------------===//
3748 // Fortified Library Call Optimizations
3749 //===----------------------------------------------------------------------===//
3750 
3751 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(
3752     CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp,
3753     std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) {
3754   // If this function takes a flag argument, the implementation may use it to
3755   // perform extra checks. Don't fold into the non-checking variant.
3756   if (FlagOp) {
3757     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3758     if (!Flag || !Flag->isZero())
3759       return false;
3760   }
3761 
3762   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3763     return true;
3764 
3765   if (ConstantInt *ObjSizeCI =
3766           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3767     if (ObjSizeCI->isMinusOne())
3768       return true;
3769     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3770     if (OnlyLowerUnknownSize)
3771       return false;
3772     if (StrOp) {
3773       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3774       // If the length is 0 we don't know how long it is and so we can't
3775       // remove the check.
3776       if (Len)
3777         annotateDereferenceableBytes(CI, *StrOp, Len);
3778       else
3779         return false;
3780       return ObjSizeCI->getZExtValue() >= Len;
3781     }
3782 
3783     if (SizeOp) {
3784       if (ConstantInt *SizeCI =
3785               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3786         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3787     }
3788   }
3789   return false;
3790 }
3791 
3792 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3793                                                      IRBuilderBase &B) {
3794   if (isFortifiedCallFoldable(CI, 3, 2)) {
3795     CallInst *NewCI =
3796         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3797                        Align(1), CI->getArgOperand(2));
3798     mergeAttributesAndFlags(NewCI, *CI);
3799     return CI->getArgOperand(0);
3800   }
3801   return nullptr;
3802 }
3803 
3804 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3805                                                       IRBuilderBase &B) {
3806   if (isFortifiedCallFoldable(CI, 3, 2)) {
3807     CallInst *NewCI =
3808         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3809                         Align(1), CI->getArgOperand(2));
3810     mergeAttributesAndFlags(NewCI, *CI);
3811     return CI->getArgOperand(0);
3812   }
3813   return nullptr;
3814 }
3815 
3816 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3817                                                      IRBuilderBase &B) {
3818   if (isFortifiedCallFoldable(CI, 3, 2)) {
3819     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3820     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3821                                      CI->getArgOperand(2), Align(1));
3822     mergeAttributesAndFlags(NewCI, *CI);
3823     return CI->getArgOperand(0);
3824   }
3825   return nullptr;
3826 }
3827 
3828 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3829                                                       IRBuilderBase &B) {
3830   const DataLayout &DL = CI->getModule()->getDataLayout();
3831   if (isFortifiedCallFoldable(CI, 3, 2))
3832     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3833                                   CI->getArgOperand(2), B, DL, TLI)) {
3834       return mergeAttributesAndFlags(cast<CallInst>(Call), *CI);
3835     }
3836   return nullptr;
3837 }
3838 
3839 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3840                                                       IRBuilderBase &B,
3841                                                       LibFunc Func) {
3842   const DataLayout &DL = CI->getModule()->getDataLayout();
3843   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3844         *ObjSize = CI->getArgOperand(2);
3845 
3846   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3847   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3848     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3849     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3850   }
3851 
3852   // If a) we don't have any length information, or b) we know this will
3853   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3854   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3855   // TODO: It might be nice to get a maximum length out of the possible
3856   // string lengths for varying.
3857   if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) {
3858     if (Func == LibFunc_strcpy_chk)
3859       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
3860     else
3861       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
3862   }
3863 
3864   if (OnlyLowerUnknownSize)
3865     return nullptr;
3866 
3867   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3868   uint64_t Len = GetStringLength(Src);
3869   if (Len)
3870     annotateDereferenceableBytes(CI, 1, Len);
3871   else
3872     return nullptr;
3873 
3874   unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3875   Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3876   Value *LenV = ConstantInt::get(SizeTTy, Len);
3877   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3878   // If the function was an __stpcpy_chk, and we were able to fold it into
3879   // a __memcpy_chk, we still need to return the correct end pointer.
3880   if (Ret && Func == LibFunc_stpcpy_chk)
3881     return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
3882                                ConstantInt::get(SizeTTy, Len - 1));
3883   return copyFlags(*CI, cast<CallInst>(Ret));
3884 }
3885 
3886 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3887                                                      IRBuilderBase &B) {
3888   if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0))
3889     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
3890                                      CI->getModule()->getDataLayout(), TLI));
3891   return nullptr;
3892 }
3893 
3894 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3895                                                        IRBuilderBase &B,
3896                                                        LibFunc Func) {
3897   if (isFortifiedCallFoldable(CI, 3, 2)) {
3898     if (Func == LibFunc_strncpy_chk)
3899       return copyFlags(*CI,
3900                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3901                                    CI->getArgOperand(2), B, TLI));
3902     else
3903       return copyFlags(*CI,
3904                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3905                                    CI->getArgOperand(2), B, TLI));
3906   }
3907 
3908   return nullptr;
3909 }
3910 
3911 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3912                                                       IRBuilderBase &B) {
3913   if (isFortifiedCallFoldable(CI, 4, 3))
3914     return copyFlags(
3915         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3916                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
3917 
3918   return nullptr;
3919 }
3920 
3921 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3922                                                        IRBuilderBase &B) {
3923   if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) {
3924     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3925     return copyFlags(*CI,
3926                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3927                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
3928   }
3929 
3930   return nullptr;
3931 }
3932 
3933 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3934                                                       IRBuilderBase &B) {
3935   if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) {
3936     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3937     return copyFlags(*CI,
3938                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3939                                  VariadicArgs, B, TLI));
3940   }
3941 
3942   return nullptr;
3943 }
3944 
3945 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3946                                                      IRBuilderBase &B) {
3947   if (isFortifiedCallFoldable(CI, 2))
3948     return copyFlags(
3949         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
3950 
3951   return nullptr;
3952 }
3953 
3954 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3955                                                    IRBuilderBase &B) {
3956   if (isFortifiedCallFoldable(CI, 3))
3957     return copyFlags(*CI,
3958                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3959                                  CI->getArgOperand(2), B, TLI));
3960 
3961   return nullptr;
3962 }
3963 
3964 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3965                                                       IRBuilderBase &B) {
3966   if (isFortifiedCallFoldable(CI, 3))
3967     return copyFlags(*CI,
3968                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3969                                  CI->getArgOperand(2), B, TLI));
3970 
3971   return nullptr;
3972 }
3973 
3974 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3975                                                       IRBuilderBase &B) {
3976   if (isFortifiedCallFoldable(CI, 3))
3977     return copyFlags(*CI,
3978                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3979                                  CI->getArgOperand(2), B, TLI));
3980 
3981   return nullptr;
3982 }
3983 
3984 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3985                                                         IRBuilderBase &B) {
3986   if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2))
3987     return copyFlags(
3988         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3989                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
3990 
3991   return nullptr;
3992 }
3993 
3994 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3995                                                        IRBuilderBase &B) {
3996   if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1))
3997     return copyFlags(*CI,
3998                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3999                                   CI->getArgOperand(4), B, TLI));
4000 
4001   return nullptr;
4002 }
4003 
4004 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
4005                                                 IRBuilderBase &Builder) {
4006   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
4007   // Some clang users checked for _chk libcall availability using:
4008   //   __has_builtin(__builtin___memcpy_chk)
4009   // When compiling with -fno-builtin, this is always true.
4010   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
4011   // end up with fortified libcalls, which isn't acceptable in a freestanding
4012   // environment which only provides their non-fortified counterparts.
4013   //
4014   // Until we change clang and/or teach external users to check for availability
4015   // differently, disregard the "nobuiltin" attribute and TLI::has.
4016   //
4017   // PR23093.
4018 
4019   LibFunc Func;
4020   Function *Callee = CI->getCalledFunction();
4021   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
4022 
4023   SmallVector<OperandBundleDef, 2> OpBundles;
4024   CI->getOperandBundlesAsDefs(OpBundles);
4025 
4026   IRBuilderBase::OperandBundlesGuard Guard(Builder);
4027   Builder.setDefaultOperandBundles(OpBundles);
4028 
4029   // First, check that this is a known library functions and that the prototype
4030   // is correct.
4031   if (!TLI->getLibFunc(*Callee, Func))
4032     return nullptr;
4033 
4034   // We never change the calling convention.
4035   if (!ignoreCallingConv(Func) && !IsCallingConvC)
4036     return nullptr;
4037 
4038   switch (Func) {
4039   case LibFunc_memcpy_chk:
4040     return optimizeMemCpyChk(CI, Builder);
4041   case LibFunc_mempcpy_chk:
4042     return optimizeMemPCpyChk(CI, Builder);
4043   case LibFunc_memmove_chk:
4044     return optimizeMemMoveChk(CI, Builder);
4045   case LibFunc_memset_chk:
4046     return optimizeMemSetChk(CI, Builder);
4047   case LibFunc_stpcpy_chk:
4048   case LibFunc_strcpy_chk:
4049     return optimizeStrpCpyChk(CI, Builder, Func);
4050   case LibFunc_strlen_chk:
4051     return optimizeStrLenChk(CI, Builder);
4052   case LibFunc_stpncpy_chk:
4053   case LibFunc_strncpy_chk:
4054     return optimizeStrpNCpyChk(CI, Builder, Func);
4055   case LibFunc_memccpy_chk:
4056     return optimizeMemCCpyChk(CI, Builder);
4057   case LibFunc_snprintf_chk:
4058     return optimizeSNPrintfChk(CI, Builder);
4059   case LibFunc_sprintf_chk:
4060     return optimizeSPrintfChk(CI, Builder);
4061   case LibFunc_strcat_chk:
4062     return optimizeStrCatChk(CI, Builder);
4063   case LibFunc_strlcat_chk:
4064     return optimizeStrLCat(CI, Builder);
4065   case LibFunc_strncat_chk:
4066     return optimizeStrNCatChk(CI, Builder);
4067   case LibFunc_strlcpy_chk:
4068     return optimizeStrLCpyChk(CI, Builder);
4069   case LibFunc_vsnprintf_chk:
4070     return optimizeVSNPrintfChk(CI, Builder);
4071   case LibFunc_vsprintf_chk:
4072     return optimizeVSPrintfChk(CI, Builder);
4073   default:
4074     break;
4075   }
4076   return nullptr;
4077 }
4078 
4079 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
4080     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
4081     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
4082