xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp (revision 5eb81a4b4028113e3c319f21a1db6b67613ec7ab)
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Transforms/Utils/BuildLibCalls.h"
39 #include "llvm/Transforms/Utils/SizeOpts.h"
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 static cl::opt<bool>
45     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
46                          cl::init(false),
47                          cl::desc("Enable unsafe double to float "
48                                   "shrinking for math lib calls"));
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
54 static bool ignoreCallingConv(LibFunc Func) {
55   return Func == LibFunc_abs || Func == LibFunc_labs ||
56          Func == LibFunc_llabs || Func == LibFunc_strlen;
57 }
58 
59 /// Return true if it is only used in equality comparisons with With.
60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
61   for (User *U : V->users()) {
62     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
63       if (IC->isEquality() && IC->getOperand(1) == With)
64         continue;
65     // Unknown instruction.
66     return false;
67   }
68   return true;
69 }
70 
71 static bool callHasFloatingPointArgument(const CallInst *CI) {
72   return any_of(CI->operands(), [](const Use &OI) {
73     return OI->getType()->isFloatingPointTy();
74   });
75 }
76 
77 static bool callHasFP128Argument(const CallInst *CI) {
78   return any_of(CI->operands(), [](const Use &OI) {
79     return OI->getType()->isFP128Ty();
80   });
81 }
82 
83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
84   if (Base < 2 || Base > 36)
85     // handle special zero base
86     if (Base != 0)
87       return nullptr;
88 
89   char *End;
90   std::string nptr = Str.str();
91   errno = 0;
92   long long int Result = strtoll(nptr.c_str(), &End, Base);
93   if (errno)
94     return nullptr;
95 
96   // if we assume all possible target locales are ASCII supersets,
97   // then if strtoll successfully parses a number on the host,
98   // it will also successfully parse the same way on the target
99   if (*End != '\0')
100     return nullptr;
101 
102   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
103     return nullptr;
104 
105   return ConstantInt::get(CI->getType(), Result);
106 }
107 
108 static bool isOnlyUsedInComparisonWithZero(Value *V) {
109   for (User *U : V->users()) {
110     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
111       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
112         if (C->isNullValue())
113           continue;
114     // Unknown instruction.
115     return false;
116   }
117   return true;
118 }
119 
120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
121                                  const DataLayout &DL) {
122   if (!isOnlyUsedInComparisonWithZero(CI))
123     return false;
124 
125   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
126     return false;
127 
128   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
129     return false;
130 
131   return true;
132 }
133 
134 static void annotateDereferenceableBytes(CallInst *CI,
135                                          ArrayRef<unsigned> ArgNos,
136                                          uint64_t DereferenceableBytes) {
137   const Function *F = CI->getCaller();
138   if (!F)
139     return;
140   for (unsigned ArgNo : ArgNos) {
141     uint64_t DerefBytes = DereferenceableBytes;
142     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
143     if (!llvm::NullPointerIsDefined(F, AS) ||
144         CI->paramHasAttr(ArgNo, Attribute::NonNull))
145       DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
146                                 ArgNo + AttributeList::FirstArgIndex),
147                             DereferenceableBytes);
148 
149     if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
150         DerefBytes) {
151       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
152       if (!llvm::NullPointerIsDefined(F, AS) ||
153           CI->paramHasAttr(ArgNo, Attribute::NonNull))
154         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
155       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
156                                   CI->getContext(), DerefBytes));
157     }
158   }
159 }
160 
161 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
162                                          ArrayRef<unsigned> ArgNos) {
163   Function *F = CI->getCaller();
164   if (!F)
165     return;
166 
167   for (unsigned ArgNo : ArgNos) {
168     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
169       CI->addParamAttr(ArgNo, Attribute::NoUndef);
170 
171     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
172       continue;
173     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
174     if (llvm::NullPointerIsDefined(F, AS))
175       continue;
176 
177     CI->addParamAttr(ArgNo, Attribute::NonNull);
178     annotateDereferenceableBytes(CI, ArgNo, 1);
179   }
180 }
181 
182 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
183                                Value *Size, const DataLayout &DL) {
184   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
185     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
186     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
187   } else if (isKnownNonZero(Size, DL)) {
188     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
189     const APInt *X, *Y;
190     uint64_t DerefMin = 1;
191     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
192       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
193       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
194     }
195   }
196 }
197 
198 //===----------------------------------------------------------------------===//
199 // String and Memory Library Call Optimizations
200 //===----------------------------------------------------------------------===//
201 
202 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
203   // Extract some information from the instruction
204   Value *Dst = CI->getArgOperand(0);
205   Value *Src = CI->getArgOperand(1);
206   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
207 
208   // See if we can get the length of the input string.
209   uint64_t Len = GetStringLength(Src);
210   if (Len)
211     annotateDereferenceableBytes(CI, 1, Len);
212   else
213     return nullptr;
214   --Len; // Unbias length.
215 
216   // Handle the simple, do-nothing case: strcat(x, "") -> x
217   if (Len == 0)
218     return Dst;
219 
220   return emitStrLenMemCpy(Src, Dst, Len, B);
221 }
222 
223 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
224                                            IRBuilderBase &B) {
225   // We need to find the end of the destination string.  That's where the
226   // memory is to be moved to. We just generate a call to strlen.
227   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
228   if (!DstLen)
229     return nullptr;
230 
231   // Now that we have the destination's length, we must index into the
232   // destination's pointer to get the actual memcpy destination (end of
233   // the string .. we're concatenating).
234   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
235 
236   // We have enough information to now generate the memcpy call to do the
237   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
238   B.CreateMemCpy(
239       CpyDst, Align(1), Src, Align(1),
240       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
241   return Dst;
242 }
243 
244 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
245   // Extract some information from the instruction.
246   Value *Dst = CI->getArgOperand(0);
247   Value *Src = CI->getArgOperand(1);
248   Value *Size = CI->getArgOperand(2);
249   uint64_t Len;
250   annotateNonNullNoUndefBasedOnAccess(CI, 0);
251   if (isKnownNonZero(Size, DL))
252     annotateNonNullNoUndefBasedOnAccess(CI, 1);
253 
254   // We don't do anything if length is not constant.
255   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
256   if (LengthArg) {
257     Len = LengthArg->getZExtValue();
258     // strncat(x, c, 0) -> x
259     if (!Len)
260       return Dst;
261   } else {
262     return nullptr;
263   }
264 
265   // See if we can get the length of the input string.
266   uint64_t SrcLen = GetStringLength(Src);
267   if (SrcLen) {
268     annotateDereferenceableBytes(CI, 1, SrcLen);
269     --SrcLen; // Unbias length.
270   } else {
271     return nullptr;
272   }
273 
274   // strncat(x, "", c) -> x
275   if (SrcLen == 0)
276     return Dst;
277 
278   // We don't optimize this case.
279   if (Len < SrcLen)
280     return nullptr;
281 
282   // strncat(x, s, c) -> strcat(x, s)
283   // s is constant so the strcat can be optimized further.
284   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
285 }
286 
287 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
288   Function *Callee = CI->getCalledFunction();
289   FunctionType *FT = Callee->getFunctionType();
290   Value *SrcStr = CI->getArgOperand(0);
291   annotateNonNullNoUndefBasedOnAccess(CI, 0);
292 
293   // If the second operand is non-constant, see if we can compute the length
294   // of the input string and turn this into memchr.
295   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
296   if (!CharC) {
297     uint64_t Len = GetStringLength(SrcStr);
298     if (Len)
299       annotateDereferenceableBytes(CI, 0, Len);
300     else
301       return nullptr;
302     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
303       return nullptr;
304 
305     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
306                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
307                       B, DL, TLI);
308   }
309 
310   // Otherwise, the character is a constant, see if the first argument is
311   // a string literal.  If so, we can constant fold.
312   StringRef Str;
313   if (!getConstantStringInfo(SrcStr, Str)) {
314     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
315       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
316         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
317     return nullptr;
318   }
319 
320   // Compute the offset, make sure to handle the case when we're searching for
321   // zero (a weird way to spell strlen).
322   size_t I = (0xFF & CharC->getSExtValue()) == 0
323                  ? Str.size()
324                  : Str.find(CharC->getSExtValue());
325   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
326     return Constant::getNullValue(CI->getType());
327 
328   // strchr(s+n,c)  -> gep(s+n+i,c)
329   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
330 }
331 
332 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
333   Value *SrcStr = CI->getArgOperand(0);
334   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
335   annotateNonNullNoUndefBasedOnAccess(CI, 0);
336 
337   // Cannot fold anything if we're not looking for a constant.
338   if (!CharC)
339     return nullptr;
340 
341   StringRef Str;
342   if (!getConstantStringInfo(SrcStr, Str)) {
343     // strrchr(s, 0) -> strchr(s, 0)
344     if (CharC->isZero())
345       return emitStrChr(SrcStr, '\0', B, TLI);
346     return nullptr;
347   }
348 
349   // Compute the offset.
350   size_t I = (0xFF & CharC->getSExtValue()) == 0
351                  ? Str.size()
352                  : Str.rfind(CharC->getSExtValue());
353   if (I == StringRef::npos) // Didn't find the char. Return null.
354     return Constant::getNullValue(CI->getType());
355 
356   // strrchr(s+n,c) -> gep(s+n+i,c)
357   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
358 }
359 
360 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
361   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
362   if (Str1P == Str2P) // strcmp(x,x)  -> 0
363     return ConstantInt::get(CI->getType(), 0);
364 
365   StringRef Str1, Str2;
366   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
367   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
368 
369   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
370   if (HasStr1 && HasStr2)
371     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
372 
373   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
374     return B.CreateNeg(B.CreateZExt(
375         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
376 
377   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
378     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
379                         CI->getType());
380 
381   // strcmp(P, "x") -> memcmp(P, "x", 2)
382   uint64_t Len1 = GetStringLength(Str1P);
383   if (Len1)
384     annotateDereferenceableBytes(CI, 0, Len1);
385   uint64_t Len2 = GetStringLength(Str2P);
386   if (Len2)
387     annotateDereferenceableBytes(CI, 1, Len2);
388 
389   if (Len1 && Len2) {
390     return emitMemCmp(Str1P, Str2P,
391                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
392                                        std::min(Len1, Len2)),
393                       B, DL, TLI);
394   }
395 
396   // strcmp to memcmp
397   if (!HasStr1 && HasStr2) {
398     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
399       return emitMemCmp(
400           Str1P, Str2P,
401           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
402           TLI);
403   } else if (HasStr1 && !HasStr2) {
404     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
405       return emitMemCmp(
406           Str1P, Str2P,
407           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
408           TLI);
409   }
410 
411   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
412   return nullptr;
413 }
414 
415 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
416   Value *Str1P = CI->getArgOperand(0);
417   Value *Str2P = CI->getArgOperand(1);
418   Value *Size = CI->getArgOperand(2);
419   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
420     return ConstantInt::get(CI->getType(), 0);
421 
422   if (isKnownNonZero(Size, DL))
423     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
424   // Get the length argument if it is constant.
425   uint64_t Length;
426   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
427     Length = LengthArg->getZExtValue();
428   else
429     return nullptr;
430 
431   if (Length == 0) // strncmp(x,y,0)   -> 0
432     return ConstantInt::get(CI->getType(), 0);
433 
434   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
435     return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
436 
437   StringRef Str1, Str2;
438   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
439   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
440 
441   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
442   if (HasStr1 && HasStr2) {
443     StringRef SubStr1 = Str1.substr(0, Length);
444     StringRef SubStr2 = Str2.substr(0, Length);
445     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
446   }
447 
448   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
449     return B.CreateNeg(B.CreateZExt(
450         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
451 
452   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
453     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
454                         CI->getType());
455 
456   uint64_t Len1 = GetStringLength(Str1P);
457   if (Len1)
458     annotateDereferenceableBytes(CI, 0, Len1);
459   uint64_t Len2 = GetStringLength(Str2P);
460   if (Len2)
461     annotateDereferenceableBytes(CI, 1, Len2);
462 
463   // strncmp to memcmp
464   if (!HasStr1 && HasStr2) {
465     Len2 = std::min(Len2, Length);
466     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
467       return emitMemCmp(
468           Str1P, Str2P,
469           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
470           TLI);
471   } else if (HasStr1 && !HasStr2) {
472     Len1 = std::min(Len1, Length);
473     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
474       return emitMemCmp(
475           Str1P, Str2P,
476           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
477           TLI);
478   }
479 
480   return nullptr;
481 }
482 
483 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
484   Value *Src = CI->getArgOperand(0);
485   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
486   uint64_t SrcLen = GetStringLength(Src);
487   if (SrcLen && Size) {
488     annotateDereferenceableBytes(CI, 0, SrcLen);
489     if (SrcLen <= Size->getZExtValue() + 1)
490       return emitStrDup(Src, B, TLI);
491   }
492 
493   return nullptr;
494 }
495 
496 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
497   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
498   if (Dst == Src) // strcpy(x,x)  -> x
499     return Src;
500 
501   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
502   // See if we can get the length of the input string.
503   uint64_t Len = GetStringLength(Src);
504   if (Len)
505     annotateDereferenceableBytes(CI, 1, Len);
506   else
507     return nullptr;
508 
509   // We have enough information to now generate the memcpy call to do the
510   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
511   CallInst *NewCI =
512       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
513                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
514   NewCI->setAttributes(CI->getAttributes());
515   NewCI->removeAttributes(AttributeList::ReturnIndex,
516                           AttributeFuncs::typeIncompatible(NewCI->getType()));
517   return Dst;
518 }
519 
520 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
521   Function *Callee = CI->getCalledFunction();
522   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
523   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
524     Value *StrLen = emitStrLen(Src, B, DL, TLI);
525     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
526   }
527 
528   // See if we can get the length of the input string.
529   uint64_t Len = GetStringLength(Src);
530   if (Len)
531     annotateDereferenceableBytes(CI, 1, Len);
532   else
533     return nullptr;
534 
535   Type *PT = Callee->getFunctionType()->getParamType(0);
536   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
537   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
538                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
539 
540   // We have enough information to now generate the memcpy call to do the
541   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
542   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
543   NewCI->setAttributes(CI->getAttributes());
544   NewCI->removeAttributes(AttributeList::ReturnIndex,
545                           AttributeFuncs::typeIncompatible(NewCI->getType()));
546   return DstEnd;
547 }
548 
549 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
550   Function *Callee = CI->getCalledFunction();
551   Value *Dst = CI->getArgOperand(0);
552   Value *Src = CI->getArgOperand(1);
553   Value *Size = CI->getArgOperand(2);
554   annotateNonNullNoUndefBasedOnAccess(CI, 0);
555   if (isKnownNonZero(Size, DL))
556     annotateNonNullNoUndefBasedOnAccess(CI, 1);
557 
558   uint64_t Len;
559   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
560     Len = LengthArg->getZExtValue();
561   else
562     return nullptr;
563 
564   // strncpy(x, y, 0) -> x
565   if (Len == 0)
566     return Dst;
567 
568   // See if we can get the length of the input string.
569   uint64_t SrcLen = GetStringLength(Src);
570   if (SrcLen) {
571     annotateDereferenceableBytes(CI, 1, SrcLen);
572     --SrcLen; // Unbias length.
573   } else {
574     return nullptr;
575   }
576 
577   if (SrcLen == 0) {
578     // strncpy(x, "", y) -> memset(x, '\0', y)
579     Align MemSetAlign =
580         CI->getAttributes().getParamAttributes(0).getAlignment().valueOrOne();
581     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
582     AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
583     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
584         CI->getContext(), 0, ArgAttrs));
585     return Dst;
586   }
587 
588   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
589   if (Len > SrcLen + 1) {
590     if (Len <= 128) {
591       StringRef Str;
592       if (!getConstantStringInfo(Src, Str))
593         return nullptr;
594       std::string SrcStr = Str.str();
595       SrcStr.resize(Len, '\0');
596       Src = B.CreateGlobalString(SrcStr, "str");
597     } else {
598       return nullptr;
599     }
600   }
601 
602   Type *PT = Callee->getFunctionType()->getParamType(0);
603   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
604   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
605                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
606   NewCI->setAttributes(CI->getAttributes());
607   NewCI->removeAttributes(AttributeList::ReturnIndex,
608                           AttributeFuncs::typeIncompatible(NewCI->getType()));
609   return Dst;
610 }
611 
612 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
613                                                unsigned CharSize) {
614   Value *Src = CI->getArgOperand(0);
615 
616   // Constant folding: strlen("xyz") -> 3
617   if (uint64_t Len = GetStringLength(Src, CharSize))
618     return ConstantInt::get(CI->getType(), Len - 1);
619 
620   // If s is a constant pointer pointing to a string literal, we can fold
621   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
622   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
623   // We only try to simplify strlen when the pointer s points to an array
624   // of i8. Otherwise, we would need to scale the offset x before doing the
625   // subtraction. This will make the optimization more complex, and it's not
626   // very useful because calling strlen for a pointer of other types is
627   // very uncommon.
628   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
629     if (!isGEPBasedOnPointerToString(GEP, CharSize))
630       return nullptr;
631 
632     ConstantDataArraySlice Slice;
633     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
634       uint64_t NullTermIdx;
635       if (Slice.Array == nullptr) {
636         NullTermIdx = 0;
637       } else {
638         NullTermIdx = ~((uint64_t)0);
639         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
640           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
641             NullTermIdx = I;
642             break;
643           }
644         }
645         // If the string does not have '\0', leave it to strlen to compute
646         // its length.
647         if (NullTermIdx == ~((uint64_t)0))
648           return nullptr;
649       }
650 
651       Value *Offset = GEP->getOperand(2);
652       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
653       Known.Zero.flipAllBits();
654       uint64_t ArrSize =
655              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
656 
657       // KnownZero's bits are flipped, so zeros in KnownZero now represent
658       // bits known to be zeros in Offset, and ones in KnowZero represent
659       // bits unknown in Offset. Therefore, Offset is known to be in range
660       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
661       // unsigned-less-than NullTermIdx.
662       //
663       // If Offset is not provably in the range [0, NullTermIdx], we can still
664       // optimize if we can prove that the program has undefined behavior when
665       // Offset is outside that range. That is the case when GEP->getOperand(0)
666       // is a pointer to an object whose memory extent is NullTermIdx+1.
667       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
668           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
669            NullTermIdx == ArrSize - 1)) {
670         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
671         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
672                            Offset);
673       }
674     }
675   }
676 
677   // strlen(x?"foo":"bars") --> x ? 3 : 4
678   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
679     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
680     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
681     if (LenTrue && LenFalse) {
682       ORE.emit([&]() {
683         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
684                << "folded strlen(select) to select of constants";
685       });
686       return B.CreateSelect(SI->getCondition(),
687                             ConstantInt::get(CI->getType(), LenTrue - 1),
688                             ConstantInt::get(CI->getType(), LenFalse - 1));
689     }
690   }
691 
692   // strlen(x) != 0 --> *x != 0
693   // strlen(x) == 0 --> *x == 0
694   if (isOnlyUsedInZeroEqualityComparison(CI))
695     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
696                         CI->getType());
697 
698   return nullptr;
699 }
700 
701 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
702   if (Value *V = optimizeStringLength(CI, B, 8))
703     return V;
704   annotateNonNullNoUndefBasedOnAccess(CI, 0);
705   return nullptr;
706 }
707 
708 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
709   Module &M = *CI->getModule();
710   unsigned WCharSize = TLI->getWCharSize(M) * 8;
711   // We cannot perform this optimization without wchar_size metadata.
712   if (WCharSize == 0)
713     return nullptr;
714 
715   return optimizeStringLength(CI, B, WCharSize);
716 }
717 
718 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
719   StringRef S1, S2;
720   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
721   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
722 
723   // strpbrk(s, "") -> nullptr
724   // strpbrk("", s) -> nullptr
725   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
726     return Constant::getNullValue(CI->getType());
727 
728   // Constant folding.
729   if (HasS1 && HasS2) {
730     size_t I = S1.find_first_of(S2);
731     if (I == StringRef::npos) // No match.
732       return Constant::getNullValue(CI->getType());
733 
734     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
735                        "strpbrk");
736   }
737 
738   // strpbrk(s, "a") -> strchr(s, 'a')
739   if (HasS2 && S2.size() == 1)
740     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
741 
742   return nullptr;
743 }
744 
745 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
746   Value *EndPtr = CI->getArgOperand(1);
747   if (isa<ConstantPointerNull>(EndPtr)) {
748     // With a null EndPtr, this function won't capture the main argument.
749     // It would be readonly too, except that it still may write to errno.
750     CI->addParamAttr(0, Attribute::NoCapture);
751   }
752 
753   return nullptr;
754 }
755 
756 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
757   StringRef S1, S2;
758   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
759   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
760 
761   // strspn(s, "") -> 0
762   // strspn("", s) -> 0
763   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
764     return Constant::getNullValue(CI->getType());
765 
766   // Constant folding.
767   if (HasS1 && HasS2) {
768     size_t Pos = S1.find_first_not_of(S2);
769     if (Pos == StringRef::npos)
770       Pos = S1.size();
771     return ConstantInt::get(CI->getType(), Pos);
772   }
773 
774   return nullptr;
775 }
776 
777 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
778   StringRef S1, S2;
779   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
780   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
781 
782   // strcspn("", s) -> 0
783   if (HasS1 && S1.empty())
784     return Constant::getNullValue(CI->getType());
785 
786   // Constant folding.
787   if (HasS1 && HasS2) {
788     size_t Pos = S1.find_first_of(S2);
789     if (Pos == StringRef::npos)
790       Pos = S1.size();
791     return ConstantInt::get(CI->getType(), Pos);
792   }
793 
794   // strcspn(s, "") -> strlen(s)
795   if (HasS2 && S2.empty())
796     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
797 
798   return nullptr;
799 }
800 
801 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
802   // fold strstr(x, x) -> x.
803   if (CI->getArgOperand(0) == CI->getArgOperand(1))
804     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
805 
806   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
807   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
808     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
809     if (!StrLen)
810       return nullptr;
811     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
812                                  StrLen, B, DL, TLI);
813     if (!StrNCmp)
814       return nullptr;
815     for (User *U : llvm::make_early_inc_range(CI->users())) {
816       ICmpInst *Old = cast<ICmpInst>(U);
817       Value *Cmp =
818           B.CreateICmp(Old->getPredicate(), StrNCmp,
819                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
820       replaceAllUsesWith(Old, Cmp);
821     }
822     return CI;
823   }
824 
825   // See if either input string is a constant string.
826   StringRef SearchStr, ToFindStr;
827   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
828   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
829 
830   // fold strstr(x, "") -> x.
831   if (HasStr2 && ToFindStr.empty())
832     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
833 
834   // If both strings are known, constant fold it.
835   if (HasStr1 && HasStr2) {
836     size_t Offset = SearchStr.find(ToFindStr);
837 
838     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
839       return Constant::getNullValue(CI->getType());
840 
841     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
842     Value *Result = castToCStr(CI->getArgOperand(0), B);
843     Result =
844         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
845     return B.CreateBitCast(Result, CI->getType());
846   }
847 
848   // fold strstr(x, "y") -> strchr(x, 'y').
849   if (HasStr2 && ToFindStr.size() == 1) {
850     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
851     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
852   }
853 
854   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
855   return nullptr;
856 }
857 
858 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
859   if (isKnownNonZero(CI->getOperand(2), DL))
860     annotateNonNullNoUndefBasedOnAccess(CI, 0);
861   return nullptr;
862 }
863 
864 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
865   Value *SrcStr = CI->getArgOperand(0);
866   Value *Size = CI->getArgOperand(2);
867   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
868   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
869   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
870 
871   // memchr(x, y, 0) -> null
872   if (LenC) {
873     if (LenC->isZero())
874       return Constant::getNullValue(CI->getType());
875   } else {
876     // From now on we need at least constant length and string.
877     return nullptr;
878   }
879 
880   StringRef Str;
881   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
882     return nullptr;
883 
884   // Truncate the string to LenC. If Str is smaller than LenC we will still only
885   // scan the string, as reading past the end of it is undefined and we can just
886   // return null if we don't find the char.
887   Str = Str.substr(0, LenC->getZExtValue());
888 
889   // If the char is variable but the input str and length are not we can turn
890   // this memchr call into a simple bit field test. Of course this only works
891   // when the return value is only checked against null.
892   //
893   // It would be really nice to reuse switch lowering here but we can't change
894   // the CFG at this point.
895   //
896   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
897   // != 0
898   //   after bounds check.
899   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
900     unsigned char Max =
901         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
902                           reinterpret_cast<const unsigned char *>(Str.end()));
903 
904     // Make sure the bit field we're about to create fits in a register on the
905     // target.
906     // FIXME: On a 64 bit architecture this prevents us from using the
907     // interesting range of alpha ascii chars. We could do better by emitting
908     // two bitfields or shifting the range by 64 if no lower chars are used.
909     if (!DL.fitsInLegalInteger(Max + 1))
910       return nullptr;
911 
912     // For the bit field use a power-of-2 type with at least 8 bits to avoid
913     // creating unnecessary illegal types.
914     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
915 
916     // Now build the bit field.
917     APInt Bitfield(Width, 0);
918     for (char C : Str)
919       Bitfield.setBit((unsigned char)C);
920     Value *BitfieldC = B.getInt(Bitfield);
921 
922     // Adjust width of "C" to the bitfield width, then mask off the high bits.
923     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
924     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
925 
926     // First check that the bit field access is within bounds.
927     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
928                                  "memchr.bounds");
929 
930     // Create code that checks if the given bit is set in the field.
931     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
932     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
933 
934     // Finally merge both checks and cast to pointer type. The inttoptr
935     // implicitly zexts the i1 to intptr type.
936     return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
937                             CI->getType());
938   }
939 
940   // Check if all arguments are constants.  If so, we can constant fold.
941   if (!CharC)
942     return nullptr;
943 
944   // Compute the offset.
945   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
946   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
947     return Constant::getNullValue(CI->getType());
948 
949   // memchr(s+n,c,l) -> gep(s+n+i,c)
950   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
951 }
952 
953 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
954                                          uint64_t Len, IRBuilderBase &B,
955                                          const DataLayout &DL) {
956   if (Len == 0) // memcmp(s1,s2,0) -> 0
957     return Constant::getNullValue(CI->getType());
958 
959   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
960   if (Len == 1) {
961     Value *LHSV =
962         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
963                      CI->getType(), "lhsv");
964     Value *RHSV =
965         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
966                      CI->getType(), "rhsv");
967     return B.CreateSub(LHSV, RHSV, "chardiff");
968   }
969 
970   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
971   // TODO: The case where both inputs are constants does not need to be limited
972   // to legal integers or equality comparison. See block below this.
973   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
974     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
975     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
976 
977     // First, see if we can fold either argument to a constant.
978     Value *LHSV = nullptr;
979     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
980       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
981       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
982     }
983     Value *RHSV = nullptr;
984     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
985       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
986       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
987     }
988 
989     // Don't generate unaligned loads. If either source is constant data,
990     // alignment doesn't matter for that source because there is no load.
991     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
992         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
993       if (!LHSV) {
994         Type *LHSPtrTy =
995             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
996         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
997       }
998       if (!RHSV) {
999         Type *RHSPtrTy =
1000             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1001         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1002       }
1003       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1004     }
1005   }
1006 
1007   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1008   // TODO: This is limited to i8 arrays.
1009   StringRef LHSStr, RHSStr;
1010   if (getConstantStringInfo(LHS, LHSStr) &&
1011       getConstantStringInfo(RHS, RHSStr)) {
1012     // Make sure we're not reading out-of-bounds memory.
1013     if (Len > LHSStr.size() || Len > RHSStr.size())
1014       return nullptr;
1015     // Fold the memcmp and normalize the result.  This way we get consistent
1016     // results across multiple platforms.
1017     uint64_t Ret = 0;
1018     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1019     if (Cmp < 0)
1020       Ret = -1;
1021     else if (Cmp > 0)
1022       Ret = 1;
1023     return ConstantInt::get(CI->getType(), Ret);
1024   }
1025 
1026   return nullptr;
1027 }
1028 
1029 // Most simplifications for memcmp also apply to bcmp.
1030 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1031                                                    IRBuilderBase &B) {
1032   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1033   Value *Size = CI->getArgOperand(2);
1034 
1035   if (LHS == RHS) // memcmp(s,s,x) -> 0
1036     return Constant::getNullValue(CI->getType());
1037 
1038   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1039   // Handle constant lengths.
1040   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1041   if (!LenC)
1042     return nullptr;
1043 
1044   // memcmp(d,s,0) -> 0
1045   if (LenC->getZExtValue() == 0)
1046     return Constant::getNullValue(CI->getType());
1047 
1048   if (Value *Res =
1049           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1050     return Res;
1051   return nullptr;
1052 }
1053 
1054 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1055   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1056     return V;
1057 
1058   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1059   // bcmp can be more efficient than memcmp because it only has to know that
1060   // there is a difference, not how different one is to the other.
1061   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1062     Value *LHS = CI->getArgOperand(0);
1063     Value *RHS = CI->getArgOperand(1);
1064     Value *Size = CI->getArgOperand(2);
1065     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1066   }
1067 
1068   return nullptr;
1069 }
1070 
1071 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1072   return optimizeMemCmpBCmpCommon(CI, B);
1073 }
1074 
1075 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1076   Value *Size = CI->getArgOperand(2);
1077   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1078   if (isa<IntrinsicInst>(CI))
1079     return nullptr;
1080 
1081   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1082   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1083                                    CI->getArgOperand(1), Align(1), Size);
1084   NewCI->setAttributes(CI->getAttributes());
1085   NewCI->removeAttributes(AttributeList::ReturnIndex,
1086                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1087   return CI->getArgOperand(0);
1088 }
1089 
1090 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1091   Value *Dst = CI->getArgOperand(0);
1092   Value *Src = CI->getArgOperand(1);
1093   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1094   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1095   StringRef SrcStr;
1096   if (CI->use_empty() && Dst == Src)
1097     return Dst;
1098   // memccpy(d, s, c, 0) -> nullptr
1099   if (N) {
1100     if (N->isNullValue())
1101       return Constant::getNullValue(CI->getType());
1102     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1103                                /*TrimAtNul=*/false) ||
1104         !StopChar)
1105       return nullptr;
1106   } else {
1107     return nullptr;
1108   }
1109 
1110   // Wrap arg 'c' of type int to char
1111   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1112   if (Pos == StringRef::npos) {
1113     if (N->getZExtValue() <= SrcStr.size()) {
1114       B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3));
1115       return Constant::getNullValue(CI->getType());
1116     }
1117     return nullptr;
1118   }
1119 
1120   Value *NewN =
1121       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1122   // memccpy -> llvm.memcpy
1123   B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN);
1124   return Pos + 1 <= N->getZExtValue()
1125              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1126              : Constant::getNullValue(CI->getType());
1127 }
1128 
1129 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1130   Value *Dst = CI->getArgOperand(0);
1131   Value *N = CI->getArgOperand(2);
1132   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1133   CallInst *NewCI =
1134       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1135   // Propagate attributes, but memcpy has no return value, so make sure that
1136   // any return attributes are compliant.
1137   // TODO: Attach return value attributes to the 1st operand to preserve them?
1138   NewCI->setAttributes(CI->getAttributes());
1139   NewCI->removeAttributes(AttributeList::ReturnIndex,
1140                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1141   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1142 }
1143 
1144 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1145   Value *Size = CI->getArgOperand(2);
1146   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1147   if (isa<IntrinsicInst>(CI))
1148     return nullptr;
1149 
1150   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1151   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1152                                     CI->getArgOperand(1), Align(1), Size);
1153   NewCI->setAttributes(CI->getAttributes());
1154   NewCI->removeAttributes(AttributeList::ReturnIndex,
1155                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1156   return CI->getArgOperand(0);
1157 }
1158 
1159 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1160 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) {
1161   // This has to be a memset of zeros (bzero).
1162   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1163   if (!FillValue || FillValue->getZExtValue() != 0)
1164     return nullptr;
1165 
1166   // TODO: We should handle the case where the malloc has more than one use.
1167   // This is necessary to optimize common patterns such as when the result of
1168   // the malloc is checked against null or when a memset intrinsic is used in
1169   // place of a memset library call.
1170   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1171   if (!Malloc || !Malloc->hasOneUse())
1172     return nullptr;
1173 
1174   // Is the inner call really malloc()?
1175   Function *InnerCallee = Malloc->getCalledFunction();
1176   if (!InnerCallee)
1177     return nullptr;
1178 
1179   LibFunc Func;
1180   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1181       Func != LibFunc_malloc)
1182     return nullptr;
1183 
1184   // The memset must cover the same number of bytes that are malloc'd.
1185   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1186     return nullptr;
1187 
1188   // Replace the malloc with a calloc. We need the data layout to know what the
1189   // actual size of a 'size_t' parameter is.
1190   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1191   const DataLayout &DL = Malloc->getModule()->getDataLayout();
1192   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1193   if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1194                                  Malloc->getArgOperand(0),
1195                                  Malloc->getAttributes(), B, *TLI)) {
1196     substituteInParent(Malloc, Calloc);
1197     return Calloc;
1198   }
1199 
1200   return nullptr;
1201 }
1202 
1203 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1204   Value *Size = CI->getArgOperand(2);
1205   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1206   if (isa<IntrinsicInst>(CI))
1207     return nullptr;
1208 
1209   if (auto *Calloc = foldMallocMemset(CI, B))
1210     return Calloc;
1211 
1212   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1213   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1214   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1215   NewCI->setAttributes(CI->getAttributes());
1216   NewCI->removeAttributes(AttributeList::ReturnIndex,
1217                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1218   return CI->getArgOperand(0);
1219 }
1220 
1221 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1222   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1223     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1224 
1225   return nullptr;
1226 }
1227 
1228 //===----------------------------------------------------------------------===//
1229 // Math Library Optimizations
1230 //===----------------------------------------------------------------------===//
1231 
1232 // Replace a libcall \p CI with a call to intrinsic \p IID
1233 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1234                                Intrinsic::ID IID) {
1235   // Propagate fast-math flags from the existing call to the new call.
1236   IRBuilderBase::FastMathFlagGuard Guard(B);
1237   B.setFastMathFlags(CI->getFastMathFlags());
1238 
1239   Module *M = CI->getModule();
1240   Value *V = CI->getArgOperand(0);
1241   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1242   CallInst *NewCall = B.CreateCall(F, V);
1243   NewCall->takeName(CI);
1244   return NewCall;
1245 }
1246 
1247 /// Return a variant of Val with float type.
1248 /// Currently this works in two cases: If Val is an FPExtension of a float
1249 /// value to something bigger, simply return the operand.
1250 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1251 /// loss of precision do so.
1252 static Value *valueHasFloatPrecision(Value *Val) {
1253   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1254     Value *Op = Cast->getOperand(0);
1255     if (Op->getType()->isFloatTy())
1256       return Op;
1257   }
1258   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1259     APFloat F = Const->getValueAPF();
1260     bool losesInfo;
1261     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1262                     &losesInfo);
1263     if (!losesInfo)
1264       return ConstantFP::get(Const->getContext(), F);
1265   }
1266   return nullptr;
1267 }
1268 
1269 /// Shrink double -> float functions.
1270 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1271                                bool isBinary, bool isPrecise = false) {
1272   Function *CalleeFn = CI->getCalledFunction();
1273   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1274     return nullptr;
1275 
1276   // If not all the uses of the function are converted to float, then bail out.
1277   // This matters if the precision of the result is more important than the
1278   // precision of the arguments.
1279   if (isPrecise)
1280     for (User *U : CI->users()) {
1281       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1282       if (!Cast || !Cast->getType()->isFloatTy())
1283         return nullptr;
1284     }
1285 
1286   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1287   Value *V[2];
1288   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1289   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1290   if (!V[0] || (isBinary && !V[1]))
1291     return nullptr;
1292 
1293   // If call isn't an intrinsic, check that it isn't within a function with the
1294   // same name as the float version of this call, otherwise the result is an
1295   // infinite loop.  For example, from MinGW-w64:
1296   //
1297   // float expf(float val) { return (float) exp((double) val); }
1298   StringRef CalleeName = CalleeFn->getName();
1299   bool IsIntrinsic = CalleeFn->isIntrinsic();
1300   if (!IsIntrinsic) {
1301     StringRef CallerName = CI->getFunction()->getName();
1302     if (!CallerName.empty() && CallerName.back() == 'f' &&
1303         CallerName.size() == (CalleeName.size() + 1) &&
1304         CallerName.startswith(CalleeName))
1305       return nullptr;
1306   }
1307 
1308   // Propagate the math semantics from the current function to the new function.
1309   IRBuilderBase::FastMathFlagGuard Guard(B);
1310   B.setFastMathFlags(CI->getFastMathFlags());
1311 
1312   // g((double) float) -> (double) gf(float)
1313   Value *R;
1314   if (IsIntrinsic) {
1315     Module *M = CI->getModule();
1316     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1317     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1318     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1319   } else {
1320     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1321     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1322                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1323   }
1324   return B.CreateFPExt(R, B.getDoubleTy());
1325 }
1326 
1327 /// Shrink double -> float for unary functions.
1328 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1329                                     bool isPrecise = false) {
1330   return optimizeDoubleFP(CI, B, false, isPrecise);
1331 }
1332 
1333 /// Shrink double -> float for binary functions.
1334 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1335                                      bool isPrecise = false) {
1336   return optimizeDoubleFP(CI, B, true, isPrecise);
1337 }
1338 
1339 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1340 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1341   if (!CI->isFast())
1342     return nullptr;
1343 
1344   // Propagate fast-math flags from the existing call to new instructions.
1345   IRBuilderBase::FastMathFlagGuard Guard(B);
1346   B.setFastMathFlags(CI->getFastMathFlags());
1347 
1348   Value *Real, *Imag;
1349   if (CI->getNumArgOperands() == 1) {
1350     Value *Op = CI->getArgOperand(0);
1351     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1352     Real = B.CreateExtractValue(Op, 0, "real");
1353     Imag = B.CreateExtractValue(Op, 1, "imag");
1354   } else {
1355     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1356     Real = CI->getArgOperand(0);
1357     Imag = CI->getArgOperand(1);
1358   }
1359 
1360   Value *RealReal = B.CreateFMul(Real, Real);
1361   Value *ImagImag = B.CreateFMul(Imag, Imag);
1362 
1363   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1364                                               CI->getType());
1365   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1366 }
1367 
1368 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1369                                       IRBuilderBase &B) {
1370   if (!isa<FPMathOperator>(Call))
1371     return nullptr;
1372 
1373   IRBuilderBase::FastMathFlagGuard Guard(B);
1374   B.setFastMathFlags(Call->getFastMathFlags());
1375 
1376   // TODO: Can this be shared to also handle LLVM intrinsics?
1377   Value *X;
1378   switch (Func) {
1379   case LibFunc_sin:
1380   case LibFunc_sinf:
1381   case LibFunc_sinl:
1382   case LibFunc_tan:
1383   case LibFunc_tanf:
1384   case LibFunc_tanl:
1385     // sin(-X) --> -sin(X)
1386     // tan(-X) --> -tan(X)
1387     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1388       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1389     break;
1390   case LibFunc_cos:
1391   case LibFunc_cosf:
1392   case LibFunc_cosl:
1393     // cos(-X) --> cos(X)
1394     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1395       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1396     break;
1397   default:
1398     break;
1399   }
1400   return nullptr;
1401 }
1402 
1403 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1404   // Multiplications calculated using Addition Chains.
1405   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1406 
1407   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1408 
1409   if (InnerChain[Exp])
1410     return InnerChain[Exp];
1411 
1412   static const unsigned AddChain[33][2] = {
1413       {0, 0}, // Unused.
1414       {0, 0}, // Unused (base case = pow1).
1415       {1, 1}, // Unused (pre-computed).
1416       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1417       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1418       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1419       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1420       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1421   };
1422 
1423   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1424                                  getPow(InnerChain, AddChain[Exp][1], B));
1425   return InnerChain[Exp];
1426 }
1427 
1428 // Return a properly extended integer (DstWidth bits wide) if the operation is
1429 // an itofp.
1430 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1431   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1432     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1433     // Make sure that the exponent fits inside an "int" of size DstWidth,
1434     // thus avoiding any range issues that FP has not.
1435     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1436     if (BitWidth < DstWidth ||
1437         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1438       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1439                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1440   }
1441 
1442   return nullptr;
1443 }
1444 
1445 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1446 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1447 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1448 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1449   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1450   AttributeList Attrs; // Attributes are only meaningful on the original call
1451   Module *Mod = Pow->getModule();
1452   Type *Ty = Pow->getType();
1453   bool Ignored;
1454 
1455   // Evaluate special cases related to a nested function as the base.
1456 
1457   // pow(exp(x), y) -> exp(x * y)
1458   // pow(exp2(x), y) -> exp2(x * y)
1459   // If exp{,2}() is used only once, it is better to fold two transcendental
1460   // math functions into one.  If used again, exp{,2}() would still have to be
1461   // called with the original argument, then keep both original transcendental
1462   // functions.  However, this transformation is only safe with fully relaxed
1463   // math semantics, since, besides rounding differences, it changes overflow
1464   // and underflow behavior quite dramatically.  For example:
1465   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1466   // Whereas:
1467   //   exp(1000 * 0.001) = exp(1)
1468   // TODO: Loosen the requirement for fully relaxed math semantics.
1469   // TODO: Handle exp10() when more targets have it available.
1470   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1471   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1472     LibFunc LibFn;
1473 
1474     Function *CalleeFn = BaseFn->getCalledFunction();
1475     if (CalleeFn &&
1476         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1477       StringRef ExpName;
1478       Intrinsic::ID ID;
1479       Value *ExpFn;
1480       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1481 
1482       switch (LibFn) {
1483       default:
1484         return nullptr;
1485       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1486         ExpName = TLI->getName(LibFunc_exp);
1487         ID = Intrinsic::exp;
1488         LibFnFloat = LibFunc_expf;
1489         LibFnDouble = LibFunc_exp;
1490         LibFnLongDouble = LibFunc_expl;
1491         break;
1492       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1493         ExpName = TLI->getName(LibFunc_exp2);
1494         ID = Intrinsic::exp2;
1495         LibFnFloat = LibFunc_exp2f;
1496         LibFnDouble = LibFunc_exp2;
1497         LibFnLongDouble = LibFunc_exp2l;
1498         break;
1499       }
1500 
1501       // Create new exp{,2}() with the product as its argument.
1502       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1503       ExpFn = BaseFn->doesNotAccessMemory()
1504               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1505                              FMul, ExpName)
1506               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1507                                      LibFnLongDouble, B,
1508                                      BaseFn->getAttributes());
1509 
1510       // Since the new exp{,2}() is different from the original one, dead code
1511       // elimination cannot be trusted to remove it, since it may have side
1512       // effects (e.g., errno).  When the only consumer for the original
1513       // exp{,2}() is pow(), then it has to be explicitly erased.
1514       substituteInParent(BaseFn, ExpFn);
1515       return ExpFn;
1516     }
1517   }
1518 
1519   // Evaluate special cases related to a constant base.
1520 
1521   const APFloat *BaseF;
1522   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1523     return nullptr;
1524 
1525   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1526   if (match(Base, m_SpecificFP(2.0)) &&
1527       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1528       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1529     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1530       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1531                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1532                                    B, Attrs);
1533   }
1534 
1535   // pow(2.0 ** n, x) -> exp2(n * x)
1536   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1537     APFloat BaseR = APFloat(1.0);
1538     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1539     BaseR = BaseR / *BaseF;
1540     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1541     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1542     APSInt NI(64, false);
1543     if ((IsInteger || IsReciprocal) &&
1544         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1545             APFloat::opOK &&
1546         NI > 1 && NI.isPowerOf2()) {
1547       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1548       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1549       if (Pow->doesNotAccessMemory())
1550         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1551                             FMul, "exp2");
1552       else
1553         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1554                                     LibFunc_exp2l, B, Attrs);
1555     }
1556   }
1557 
1558   // pow(10.0, x) -> exp10(x)
1559   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1560   if (match(Base, m_SpecificFP(10.0)) &&
1561       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1562     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1563                                 LibFunc_exp10l, B, Attrs);
1564 
1565   // pow(x, y) -> exp2(log2(x) * y)
1566   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1567       !BaseF->isNegative()) {
1568     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1569     // Luckily optimizePow has already handled the x == 1 case.
1570     assert(!match(Base, m_FPOne()) &&
1571            "pow(1.0, y) should have been simplified earlier!");
1572 
1573     Value *Log = nullptr;
1574     if (Ty->isFloatTy())
1575       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1576     else if (Ty->isDoubleTy())
1577       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1578 
1579     if (Log) {
1580       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1581       if (Pow->doesNotAccessMemory())
1582         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1583                             FMul, "exp2");
1584       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1585         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1586                                     LibFunc_exp2l, B, Attrs);
1587     }
1588   }
1589 
1590   return nullptr;
1591 }
1592 
1593 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1594                           Module *M, IRBuilderBase &B,
1595                           const TargetLibraryInfo *TLI) {
1596   // If errno is never set, then use the intrinsic for sqrt().
1597   if (NoErrno) {
1598     Function *SqrtFn =
1599         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1600     return B.CreateCall(SqrtFn, V, "sqrt");
1601   }
1602 
1603   // Otherwise, use the libcall for sqrt().
1604   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1605     // TODO: We also should check that the target can in fact lower the sqrt()
1606     // libcall. We currently have no way to ask this question, so we ask if
1607     // the target has a sqrt() libcall, which is not exactly the same.
1608     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1609                                 LibFunc_sqrtl, B, Attrs);
1610 
1611   return nullptr;
1612 }
1613 
1614 /// Use square root in place of pow(x, +/-0.5).
1615 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1616   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1617   AttributeList Attrs; // Attributes are only meaningful on the original call
1618   Module *Mod = Pow->getModule();
1619   Type *Ty = Pow->getType();
1620 
1621   const APFloat *ExpoF;
1622   if (!match(Expo, m_APFloat(ExpoF)) ||
1623       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1624     return nullptr;
1625 
1626   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1627   // so that requires fast-math-flags (afn or reassoc).
1628   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1629     return nullptr;
1630 
1631   // If we have a pow() library call (accesses memory) and we can't guarantee
1632   // that the base is not an infinity, give up:
1633   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1634   // errno), but sqrt(-Inf) is required by various standards to set errno.
1635   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1636       !isKnownNeverInfinity(Base, TLI))
1637     return nullptr;
1638 
1639   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1640   if (!Sqrt)
1641     return nullptr;
1642 
1643   // Handle signed zero base by expanding to fabs(sqrt(x)).
1644   if (!Pow->hasNoSignedZeros()) {
1645     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1646     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1647   }
1648 
1649   // Handle non finite base by expanding to
1650   // (x == -infinity ? +infinity : sqrt(x)).
1651   if (!Pow->hasNoInfs()) {
1652     Value *PosInf = ConstantFP::getInfinity(Ty),
1653           *NegInf = ConstantFP::getInfinity(Ty, true);
1654     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1655     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1656   }
1657 
1658   // If the exponent is negative, then get the reciprocal.
1659   if (ExpoF->isNegative())
1660     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1661 
1662   return Sqrt;
1663 }
1664 
1665 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1666                                            IRBuilderBase &B) {
1667   Value *Args[] = {Base, Expo};
1668   Type *Types[] = {Base->getType(), Expo->getType()};
1669   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
1670   return B.CreateCall(F, Args);
1671 }
1672 
1673 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1674   Value *Base = Pow->getArgOperand(0);
1675   Value *Expo = Pow->getArgOperand(1);
1676   Function *Callee = Pow->getCalledFunction();
1677   StringRef Name = Callee->getName();
1678   Type *Ty = Pow->getType();
1679   Module *M = Pow->getModule();
1680   bool AllowApprox = Pow->hasApproxFunc();
1681   bool Ignored;
1682 
1683   // Propagate the math semantics from the call to any created instructions.
1684   IRBuilderBase::FastMathFlagGuard Guard(B);
1685   B.setFastMathFlags(Pow->getFastMathFlags());
1686   // Evaluate special cases related to the base.
1687 
1688   // pow(1.0, x) -> 1.0
1689   if (match(Base, m_FPOne()))
1690     return Base;
1691 
1692   if (Value *Exp = replacePowWithExp(Pow, B))
1693     return Exp;
1694 
1695   // Evaluate special cases related to the exponent.
1696 
1697   // pow(x, -1.0) -> 1.0 / x
1698   if (match(Expo, m_SpecificFP(-1.0)))
1699     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1700 
1701   // pow(x, +/-0.0) -> 1.0
1702   if (match(Expo, m_AnyZeroFP()))
1703     return ConstantFP::get(Ty, 1.0);
1704 
1705   // pow(x, 1.0) -> x
1706   if (match(Expo, m_FPOne()))
1707     return Base;
1708 
1709   // pow(x, 2.0) -> x * x
1710   if (match(Expo, m_SpecificFP(2.0)))
1711     return B.CreateFMul(Base, Base, "square");
1712 
1713   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1714     return Sqrt;
1715 
1716   // pow(x, n) -> x * x * x * ...
1717   const APFloat *ExpoF;
1718   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1719       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1720     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1721     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1722     // additional fmul.
1723     // TODO: This whole transformation should be backend specific (e.g. some
1724     //       backends might prefer libcalls or the limit for the exponent might
1725     //       be different) and it should also consider optimizing for size.
1726     APFloat LimF(ExpoF->getSemantics(), 33),
1727             ExpoA(abs(*ExpoF));
1728     if (ExpoA < LimF) {
1729       // This transformation applies to integer or integer+0.5 exponents only.
1730       // For integer+0.5, we create a sqrt(Base) call.
1731       Value *Sqrt = nullptr;
1732       if (!ExpoA.isInteger()) {
1733         APFloat Expo2 = ExpoA;
1734         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1735         // is no floating point exception and the result is an integer, then
1736         // ExpoA == integer + 0.5
1737         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1738           return nullptr;
1739 
1740         if (!Expo2.isInteger())
1741           return nullptr;
1742 
1743         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1744                            Pow->doesNotAccessMemory(), M, B, TLI);
1745         if (!Sqrt)
1746           return nullptr;
1747       }
1748 
1749       // We will memoize intermediate products of the Addition Chain.
1750       Value *InnerChain[33] = {nullptr};
1751       InnerChain[1] = Base;
1752       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1753 
1754       // We cannot readily convert a non-double type (like float) to a double.
1755       // So we first convert it to something which could be converted to double.
1756       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1757       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1758 
1759       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1760       if (Sqrt)
1761         FMul = B.CreateFMul(FMul, Sqrt);
1762 
1763       // If the exponent is negative, then get the reciprocal.
1764       if (ExpoF->isNegative())
1765         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1766 
1767       return FMul;
1768     }
1769 
1770     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
1771     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1772     if (ExpoF->isInteger() &&
1773         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1774             APFloat::opOK) {
1775       return createPowWithIntegerExponent(
1776           Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), M, B);
1777     }
1778   }
1779 
1780   // powf(x, itofp(y)) -> powi(x, y)
1781   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1782     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1783       return createPowWithIntegerExponent(Base, ExpoI, M, B);
1784   }
1785 
1786   // Shrink pow() to powf() if the arguments are single precision,
1787   // unless the result is expected to be double precision.
1788   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1789       hasFloatVersion(Name)) {
1790     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true))
1791       return Shrunk;
1792   }
1793 
1794   return nullptr;
1795 }
1796 
1797 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1798   Function *Callee = CI->getCalledFunction();
1799   AttributeList Attrs; // Attributes are only meaningful on the original call
1800   StringRef Name = Callee->getName();
1801   Value *Ret = nullptr;
1802   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1803       hasFloatVersion(Name))
1804     Ret = optimizeUnaryDoubleFP(CI, B, true);
1805 
1806   Type *Ty = CI->getType();
1807   Value *Op = CI->getArgOperand(0);
1808 
1809   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
1810   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
1811   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1812       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1813     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
1814       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1815                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1816                                    B, Attrs);
1817   }
1818 
1819   return Ret;
1820 }
1821 
1822 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1823   // If we can shrink the call to a float function rather than a double
1824   // function, do that first.
1825   Function *Callee = CI->getCalledFunction();
1826   StringRef Name = Callee->getName();
1827   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1828     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1829       return Ret;
1830 
1831   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1832   // the intrinsics for improved optimization (for example, vectorization).
1833   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1834   // From the C standard draft WG14/N1256:
1835   // "Ideally, fmax would be sensitive to the sign of zero, for example
1836   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1837   // might be impractical."
1838   IRBuilderBase::FastMathFlagGuard Guard(B);
1839   FastMathFlags FMF = CI->getFastMathFlags();
1840   FMF.setNoSignedZeros();
1841   B.setFastMathFlags(FMF);
1842 
1843   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1844                                                            : Intrinsic::maxnum;
1845   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1846   return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1847 }
1848 
1849 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1850   Function *LogFn = Log->getCalledFunction();
1851   AttributeList Attrs; // Attributes are only meaningful on the original call
1852   StringRef LogNm = LogFn->getName();
1853   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1854   Module *Mod = Log->getModule();
1855   Type *Ty = Log->getType();
1856   Value *Ret = nullptr;
1857 
1858   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1859     Ret = optimizeUnaryDoubleFP(Log, B, true);
1860 
1861   // The earlier call must also be 'fast' in order to do these transforms.
1862   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1863   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1864     return Ret;
1865 
1866   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1867 
1868   // This is only applicable to log(), log2(), log10().
1869   if (TLI->getLibFunc(LogNm, LogLb))
1870     switch (LogLb) {
1871     case LibFunc_logf:
1872       LogID = Intrinsic::log;
1873       ExpLb = LibFunc_expf;
1874       Exp2Lb = LibFunc_exp2f;
1875       Exp10Lb = LibFunc_exp10f;
1876       PowLb = LibFunc_powf;
1877       break;
1878     case LibFunc_log:
1879       LogID = Intrinsic::log;
1880       ExpLb = LibFunc_exp;
1881       Exp2Lb = LibFunc_exp2;
1882       Exp10Lb = LibFunc_exp10;
1883       PowLb = LibFunc_pow;
1884       break;
1885     case LibFunc_logl:
1886       LogID = Intrinsic::log;
1887       ExpLb = LibFunc_expl;
1888       Exp2Lb = LibFunc_exp2l;
1889       Exp10Lb = LibFunc_exp10l;
1890       PowLb = LibFunc_powl;
1891       break;
1892     case LibFunc_log2f:
1893       LogID = Intrinsic::log2;
1894       ExpLb = LibFunc_expf;
1895       Exp2Lb = LibFunc_exp2f;
1896       Exp10Lb = LibFunc_exp10f;
1897       PowLb = LibFunc_powf;
1898       break;
1899     case LibFunc_log2:
1900       LogID = Intrinsic::log2;
1901       ExpLb = LibFunc_exp;
1902       Exp2Lb = LibFunc_exp2;
1903       Exp10Lb = LibFunc_exp10;
1904       PowLb = LibFunc_pow;
1905       break;
1906     case LibFunc_log2l:
1907       LogID = Intrinsic::log2;
1908       ExpLb = LibFunc_expl;
1909       Exp2Lb = LibFunc_exp2l;
1910       Exp10Lb = LibFunc_exp10l;
1911       PowLb = LibFunc_powl;
1912       break;
1913     case LibFunc_log10f:
1914       LogID = Intrinsic::log10;
1915       ExpLb = LibFunc_expf;
1916       Exp2Lb = LibFunc_exp2f;
1917       Exp10Lb = LibFunc_exp10f;
1918       PowLb = LibFunc_powf;
1919       break;
1920     case LibFunc_log10:
1921       LogID = Intrinsic::log10;
1922       ExpLb = LibFunc_exp;
1923       Exp2Lb = LibFunc_exp2;
1924       Exp10Lb = LibFunc_exp10;
1925       PowLb = LibFunc_pow;
1926       break;
1927     case LibFunc_log10l:
1928       LogID = Intrinsic::log10;
1929       ExpLb = LibFunc_expl;
1930       Exp2Lb = LibFunc_exp2l;
1931       Exp10Lb = LibFunc_exp10l;
1932       PowLb = LibFunc_powl;
1933       break;
1934     default:
1935       return Ret;
1936     }
1937   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1938            LogID == Intrinsic::log10) {
1939     if (Ty->getScalarType()->isFloatTy()) {
1940       ExpLb = LibFunc_expf;
1941       Exp2Lb = LibFunc_exp2f;
1942       Exp10Lb = LibFunc_exp10f;
1943       PowLb = LibFunc_powf;
1944     } else if (Ty->getScalarType()->isDoubleTy()) {
1945       ExpLb = LibFunc_exp;
1946       Exp2Lb = LibFunc_exp2;
1947       Exp10Lb = LibFunc_exp10;
1948       PowLb = LibFunc_pow;
1949     } else
1950       return Ret;
1951   } else
1952     return Ret;
1953 
1954   IRBuilderBase::FastMathFlagGuard Guard(B);
1955   B.setFastMathFlags(FastMathFlags::getFast());
1956 
1957   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1958   LibFunc ArgLb = NotLibFunc;
1959   TLI->getLibFunc(*Arg, ArgLb);
1960 
1961   // log(pow(x,y)) -> y*log(x)
1962   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1963     Value *LogX =
1964         Log->doesNotAccessMemory()
1965             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1966                            Arg->getOperand(0), "log")
1967             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1968     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1969     // Since pow() may have side effects, e.g. errno,
1970     // dead code elimination may not be trusted to remove it.
1971     substituteInParent(Arg, MulY);
1972     return MulY;
1973   }
1974 
1975   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1976   // TODO: There is no exp10() intrinsic yet.
1977   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1978            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1979     Constant *Eul;
1980     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1981       // FIXME: Add more precise value of e for long double.
1982       Eul = ConstantFP::get(Log->getType(), numbers::e);
1983     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1984       Eul = ConstantFP::get(Log->getType(), 2.0);
1985     else
1986       Eul = ConstantFP::get(Log->getType(), 10.0);
1987     Value *LogE = Log->doesNotAccessMemory()
1988                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1989                                      Eul, "log")
1990                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1991     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1992     // Since exp() may have side effects, e.g. errno,
1993     // dead code elimination may not be trusted to remove it.
1994     substituteInParent(Arg, MulY);
1995     return MulY;
1996   }
1997 
1998   return Ret;
1999 }
2000 
2001 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2002   Function *Callee = CI->getCalledFunction();
2003   Value *Ret = nullptr;
2004   // TODO: Once we have a way (other than checking for the existince of the
2005   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2006   // condition below.
2007   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2008                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
2009     Ret = optimizeUnaryDoubleFP(CI, B, true);
2010 
2011   if (!CI->isFast())
2012     return Ret;
2013 
2014   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2015   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2016     return Ret;
2017 
2018   // We're looking for a repeated factor in a multiplication tree,
2019   // so we can do this fold: sqrt(x * x) -> fabs(x);
2020   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2021   Value *Op0 = I->getOperand(0);
2022   Value *Op1 = I->getOperand(1);
2023   Value *RepeatOp = nullptr;
2024   Value *OtherOp = nullptr;
2025   if (Op0 == Op1) {
2026     // Simple match: the operands of the multiply are identical.
2027     RepeatOp = Op0;
2028   } else {
2029     // Look for a more complicated pattern: one of the operands is itself
2030     // a multiply, so search for a common factor in that multiply.
2031     // Note: We don't bother looking any deeper than this first level or for
2032     // variations of this pattern because instcombine's visitFMUL and/or the
2033     // reassociation pass should give us this form.
2034     Value *OtherMul0, *OtherMul1;
2035     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2036       // Pattern: sqrt((x * y) * z)
2037       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2038         // Matched: sqrt((x * x) * z)
2039         RepeatOp = OtherMul0;
2040         OtherOp = Op1;
2041       }
2042     }
2043   }
2044   if (!RepeatOp)
2045     return Ret;
2046 
2047   // Fast math flags for any created instructions should match the sqrt
2048   // and multiply.
2049   IRBuilderBase::FastMathFlagGuard Guard(B);
2050   B.setFastMathFlags(I->getFastMathFlags());
2051 
2052   // If we found a repeated factor, hoist it out of the square root and
2053   // replace it with the fabs of that factor.
2054   Module *M = Callee->getParent();
2055   Type *ArgType = I->getType();
2056   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2057   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2058   if (OtherOp) {
2059     // If we found a non-repeated factor, we still need to get its square
2060     // root. We then multiply that by the value that was simplified out
2061     // of the square root calculation.
2062     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2063     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2064     return B.CreateFMul(FabsCall, SqrtCall);
2065   }
2066   return FabsCall;
2067 }
2068 
2069 // TODO: Generalize to handle any trig function and its inverse.
2070 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2071   Function *Callee = CI->getCalledFunction();
2072   Value *Ret = nullptr;
2073   StringRef Name = Callee->getName();
2074   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2075     Ret = optimizeUnaryDoubleFP(CI, B, true);
2076 
2077   Value *Op1 = CI->getArgOperand(0);
2078   auto *OpC = dyn_cast<CallInst>(Op1);
2079   if (!OpC)
2080     return Ret;
2081 
2082   // Both calls must be 'fast' in order to remove them.
2083   if (!CI->isFast() || !OpC->isFast())
2084     return Ret;
2085 
2086   // tan(atan(x)) -> x
2087   // tanf(atanf(x)) -> x
2088   // tanl(atanl(x)) -> x
2089   LibFunc Func;
2090   Function *F = OpC->getCalledFunction();
2091   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2092       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2093        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2094        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2095     Ret = OpC->getArgOperand(0);
2096   return Ret;
2097 }
2098 
2099 static bool isTrigLibCall(CallInst *CI) {
2100   // We can only hope to do anything useful if we can ignore things like errno
2101   // and floating-point exceptions.
2102   // We already checked the prototype.
2103   return CI->hasFnAttr(Attribute::NoUnwind) &&
2104          CI->hasFnAttr(Attribute::ReadNone);
2105 }
2106 
2107 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2108                              bool UseFloat, Value *&Sin, Value *&Cos,
2109                              Value *&SinCos) {
2110   Type *ArgTy = Arg->getType();
2111   Type *ResTy;
2112   StringRef Name;
2113 
2114   Triple T(OrigCallee->getParent()->getTargetTriple());
2115   if (UseFloat) {
2116     Name = "__sincospif_stret";
2117 
2118     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2119     // x86_64 can't use {float, float} since that would be returned in both
2120     // xmm0 and xmm1, which isn't what a real struct would do.
2121     ResTy = T.getArch() == Triple::x86_64
2122                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2123                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2124   } else {
2125     Name = "__sincospi_stret";
2126     ResTy = StructType::get(ArgTy, ArgTy);
2127   }
2128 
2129   Module *M = OrigCallee->getParent();
2130   FunctionCallee Callee =
2131       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2132 
2133   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2134     // If the argument is an instruction, it must dominate all uses so put our
2135     // sincos call there.
2136     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2137   } else {
2138     // Otherwise (e.g. for a constant) the beginning of the function is as
2139     // good a place as any.
2140     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2141     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2142   }
2143 
2144   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2145 
2146   if (SinCos->getType()->isStructTy()) {
2147     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2148     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2149   } else {
2150     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2151                                  "sinpi");
2152     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2153                                  "cospi");
2154   }
2155 }
2156 
2157 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2158   // Make sure the prototype is as expected, otherwise the rest of the
2159   // function is probably invalid and likely to abort.
2160   if (!isTrigLibCall(CI))
2161     return nullptr;
2162 
2163   Value *Arg = CI->getArgOperand(0);
2164   SmallVector<CallInst *, 1> SinCalls;
2165   SmallVector<CallInst *, 1> CosCalls;
2166   SmallVector<CallInst *, 1> SinCosCalls;
2167 
2168   bool IsFloat = Arg->getType()->isFloatTy();
2169 
2170   // Look for all compatible sinpi, cospi and sincospi calls with the same
2171   // argument. If there are enough (in some sense) we can make the
2172   // substitution.
2173   Function *F = CI->getFunction();
2174   for (User *U : Arg->users())
2175     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2176 
2177   // It's only worthwhile if both sinpi and cospi are actually used.
2178   if (SinCalls.empty() || CosCalls.empty())
2179     return nullptr;
2180 
2181   Value *Sin, *Cos, *SinCos;
2182   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2183 
2184   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2185                                  Value *Res) {
2186     for (CallInst *C : Calls)
2187       replaceAllUsesWith(C, Res);
2188   };
2189 
2190   replaceTrigInsts(SinCalls, Sin);
2191   replaceTrigInsts(CosCalls, Cos);
2192   replaceTrigInsts(SinCosCalls, SinCos);
2193 
2194   return nullptr;
2195 }
2196 
2197 void LibCallSimplifier::classifyArgUse(
2198     Value *Val, Function *F, bool IsFloat,
2199     SmallVectorImpl<CallInst *> &SinCalls,
2200     SmallVectorImpl<CallInst *> &CosCalls,
2201     SmallVectorImpl<CallInst *> &SinCosCalls) {
2202   CallInst *CI = dyn_cast<CallInst>(Val);
2203 
2204   if (!CI || CI->use_empty())
2205     return;
2206 
2207   // Don't consider calls in other functions.
2208   if (CI->getFunction() != F)
2209     return;
2210 
2211   Function *Callee = CI->getCalledFunction();
2212   LibFunc Func;
2213   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2214       !isTrigLibCall(CI))
2215     return;
2216 
2217   if (IsFloat) {
2218     if (Func == LibFunc_sinpif)
2219       SinCalls.push_back(CI);
2220     else if (Func == LibFunc_cospif)
2221       CosCalls.push_back(CI);
2222     else if (Func == LibFunc_sincospif_stret)
2223       SinCosCalls.push_back(CI);
2224   } else {
2225     if (Func == LibFunc_sinpi)
2226       SinCalls.push_back(CI);
2227     else if (Func == LibFunc_cospi)
2228       CosCalls.push_back(CI);
2229     else if (Func == LibFunc_sincospi_stret)
2230       SinCosCalls.push_back(CI);
2231   }
2232 }
2233 
2234 //===----------------------------------------------------------------------===//
2235 // Integer Library Call Optimizations
2236 //===----------------------------------------------------------------------===//
2237 
2238 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2239   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2240   Value *Op = CI->getArgOperand(0);
2241   Type *ArgType = Op->getType();
2242   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2243                                           Intrinsic::cttz, ArgType);
2244   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2245   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2246   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2247 
2248   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2249   return B.CreateSelect(Cond, V, B.getInt32(0));
2250 }
2251 
2252 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2253   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2254   Value *Op = CI->getArgOperand(0);
2255   Type *ArgType = Op->getType();
2256   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2257                                           Intrinsic::ctlz, ArgType);
2258   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2259   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2260                   V);
2261   return B.CreateIntCast(V, CI->getType(), false);
2262 }
2263 
2264 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2265   // abs(x) -> x <s 0 ? -x : x
2266   // The negation has 'nsw' because abs of INT_MIN is undefined.
2267   Value *X = CI->getArgOperand(0);
2268   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2269   Value *NegX = B.CreateNSWNeg(X, "neg");
2270   return B.CreateSelect(IsNeg, NegX, X);
2271 }
2272 
2273 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2274   // isdigit(c) -> (c-'0') <u 10
2275   Value *Op = CI->getArgOperand(0);
2276   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2277   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2278   return B.CreateZExt(Op, CI->getType());
2279 }
2280 
2281 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2282   // isascii(c) -> c <u 128
2283   Value *Op = CI->getArgOperand(0);
2284   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2285   return B.CreateZExt(Op, CI->getType());
2286 }
2287 
2288 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2289   // toascii(c) -> c & 0x7f
2290   return B.CreateAnd(CI->getArgOperand(0),
2291                      ConstantInt::get(CI->getType(), 0x7F));
2292 }
2293 
2294 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2295   StringRef Str;
2296   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2297     return nullptr;
2298 
2299   return convertStrToNumber(CI, Str, 10);
2300 }
2301 
2302 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2303   StringRef Str;
2304   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2305     return nullptr;
2306 
2307   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2308     return nullptr;
2309 
2310   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2311     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2312   }
2313 
2314   return nullptr;
2315 }
2316 
2317 //===----------------------------------------------------------------------===//
2318 // Formatting and IO Library Call Optimizations
2319 //===----------------------------------------------------------------------===//
2320 
2321 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2322 
2323 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2324                                                  int StreamArg) {
2325   Function *Callee = CI->getCalledFunction();
2326   // Error reporting calls should be cold, mark them as such.
2327   // This applies even to non-builtin calls: it is only a hint and applies to
2328   // functions that the frontend might not understand as builtins.
2329 
2330   // This heuristic was suggested in:
2331   // Improving Static Branch Prediction in a Compiler
2332   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2333   // Proceedings of PACT'98, Oct. 1998, IEEE
2334   if (!CI->hasFnAttr(Attribute::Cold) &&
2335       isReportingError(Callee, CI, StreamArg)) {
2336     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2337   }
2338 
2339   return nullptr;
2340 }
2341 
2342 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2343   if (!Callee || !Callee->isDeclaration())
2344     return false;
2345 
2346   if (StreamArg < 0)
2347     return true;
2348 
2349   // These functions might be considered cold, but only if their stream
2350   // argument is stderr.
2351 
2352   if (StreamArg >= (int)CI->getNumArgOperands())
2353     return false;
2354   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2355   if (!LI)
2356     return false;
2357   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2358   if (!GV || !GV->isDeclaration())
2359     return false;
2360   return GV->getName() == "stderr";
2361 }
2362 
2363 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2364   // Check for a fixed format string.
2365   StringRef FormatStr;
2366   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2367     return nullptr;
2368 
2369   // Empty format string -> noop.
2370   if (FormatStr.empty()) // Tolerate printf's declared void.
2371     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2372 
2373   // Do not do any of the following transformations if the printf return value
2374   // is used, in general the printf return value is not compatible with either
2375   // putchar() or puts().
2376   if (!CI->use_empty())
2377     return nullptr;
2378 
2379   // printf("x") -> putchar('x'), even for "%" and "%%".
2380   if (FormatStr.size() == 1 || FormatStr == "%%")
2381     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2382 
2383   // Try to remove call or emit putchar/puts.
2384   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2385     StringRef OperandStr;
2386     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2387       return nullptr;
2388     // printf("%s", "") --> NOP
2389     if (OperandStr.empty())
2390       return (Value *)CI;
2391     // printf("%s", "a") --> putchar('a')
2392     if (OperandStr.size() == 1)
2393       return emitPutChar(B.getInt32(OperandStr[0]), B, TLI);
2394     // printf("%s", str"\n") --> puts(str)
2395     if (OperandStr.back() == '\n') {
2396       OperandStr = OperandStr.drop_back();
2397       Value *GV = B.CreateGlobalString(OperandStr, "str");
2398       return emitPutS(GV, B, TLI);
2399     }
2400     return nullptr;
2401   }
2402 
2403   // printf("foo\n") --> puts("foo")
2404   if (FormatStr.back() == '\n' &&
2405       FormatStr.find('%') == StringRef::npos) { // No format characters.
2406     // Create a string literal with no \n on it.  We expect the constant merge
2407     // pass to be run after this pass, to merge duplicate strings.
2408     FormatStr = FormatStr.drop_back();
2409     Value *GV = B.CreateGlobalString(FormatStr, "str");
2410     return emitPutS(GV, B, TLI);
2411   }
2412 
2413   // Optimize specific format strings.
2414   // printf("%c", chr) --> putchar(chr)
2415   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2416       CI->getArgOperand(1)->getType()->isIntegerTy())
2417     return emitPutChar(CI->getArgOperand(1), B, TLI);
2418 
2419   // printf("%s\n", str) --> puts(str)
2420   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2421       CI->getArgOperand(1)->getType()->isPointerTy())
2422     return emitPutS(CI->getArgOperand(1), B, TLI);
2423   return nullptr;
2424 }
2425 
2426 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2427 
2428   Function *Callee = CI->getCalledFunction();
2429   FunctionType *FT = Callee->getFunctionType();
2430   if (Value *V = optimizePrintFString(CI, B)) {
2431     return V;
2432   }
2433 
2434   // printf(format, ...) -> iprintf(format, ...) if no floating point
2435   // arguments.
2436   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2437     Module *M = B.GetInsertBlock()->getParent()->getParent();
2438     FunctionCallee IPrintFFn =
2439         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2440     CallInst *New = cast<CallInst>(CI->clone());
2441     New->setCalledFunction(IPrintFFn);
2442     B.Insert(New);
2443     return New;
2444   }
2445 
2446   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2447   // arguments.
2448   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2449     Module *M = B.GetInsertBlock()->getParent()->getParent();
2450     auto SmallPrintFFn =
2451         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2452                                FT, Callee->getAttributes());
2453     CallInst *New = cast<CallInst>(CI->clone());
2454     New->setCalledFunction(SmallPrintFFn);
2455     B.Insert(New);
2456     return New;
2457   }
2458 
2459   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2460   return nullptr;
2461 }
2462 
2463 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2464                                                 IRBuilderBase &B) {
2465   // Check for a fixed format string.
2466   StringRef FormatStr;
2467   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2468     return nullptr;
2469 
2470   // If we just have a format string (nothing else crazy) transform it.
2471   Value *Dest = CI->getArgOperand(0);
2472   if (CI->getNumArgOperands() == 2) {
2473     // Make sure there's no % in the constant array.  We could try to handle
2474     // %% -> % in the future if we cared.
2475     if (FormatStr.find('%') != StringRef::npos)
2476       return nullptr; // we found a format specifier, bail out.
2477 
2478     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2479     B.CreateMemCpy(
2480         Dest, Align(1), CI->getArgOperand(1), Align(1),
2481         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2482                          FormatStr.size() + 1)); // Copy the null byte.
2483     return ConstantInt::get(CI->getType(), FormatStr.size());
2484   }
2485 
2486   // The remaining optimizations require the format string to be "%s" or "%c"
2487   // and have an extra operand.
2488   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2489       CI->getNumArgOperands() < 3)
2490     return nullptr;
2491 
2492   // Decode the second character of the format string.
2493   if (FormatStr[1] == 'c') {
2494     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2495     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2496       return nullptr;
2497     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2498     Value *Ptr = castToCStr(Dest, B);
2499     B.CreateStore(V, Ptr);
2500     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2501     B.CreateStore(B.getInt8(0), Ptr);
2502 
2503     return ConstantInt::get(CI->getType(), 1);
2504   }
2505 
2506   if (FormatStr[1] == 's') {
2507     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2508     // strlen(str)+1)
2509     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2510       return nullptr;
2511 
2512     if (CI->use_empty())
2513       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2514       return emitStrCpy(Dest, CI->getArgOperand(2), B, TLI);
2515 
2516     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2517     if (SrcLen) {
2518       B.CreateMemCpy(
2519           Dest, Align(1), CI->getArgOperand(2), Align(1),
2520           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2521       // Returns total number of characters written without null-character.
2522       return ConstantInt::get(CI->getType(), SrcLen - 1);
2523     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2524       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2525       // Handle mismatched pointer types (goes away with typeless pointers?).
2526       V = B.CreatePointerCast(V, Dest->getType());
2527       Value *PtrDiff = B.CreatePtrDiff(V, Dest);
2528       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2529     }
2530 
2531     bool OptForSize = CI->getFunction()->hasOptSize() ||
2532                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2533                                                   PGSOQueryType::IRPass);
2534     if (OptForSize)
2535       return nullptr;
2536 
2537     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2538     if (!Len)
2539       return nullptr;
2540     Value *IncLen =
2541         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2542     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
2543 
2544     // The sprintf result is the unincremented number of bytes in the string.
2545     return B.CreateIntCast(Len, CI->getType(), false);
2546   }
2547   return nullptr;
2548 }
2549 
2550 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2551   Function *Callee = CI->getCalledFunction();
2552   FunctionType *FT = Callee->getFunctionType();
2553   if (Value *V = optimizeSPrintFString(CI, B)) {
2554     return V;
2555   }
2556 
2557   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2558   // point arguments.
2559   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2560     Module *M = B.GetInsertBlock()->getParent()->getParent();
2561     FunctionCallee SIPrintFFn =
2562         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2563     CallInst *New = cast<CallInst>(CI->clone());
2564     New->setCalledFunction(SIPrintFFn);
2565     B.Insert(New);
2566     return New;
2567   }
2568 
2569   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2570   // floating point arguments.
2571   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2572     Module *M = B.GetInsertBlock()->getParent()->getParent();
2573     auto SmallSPrintFFn =
2574         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2575                                FT, Callee->getAttributes());
2576     CallInst *New = cast<CallInst>(CI->clone());
2577     New->setCalledFunction(SmallSPrintFFn);
2578     B.Insert(New);
2579     return New;
2580   }
2581 
2582   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2583   return nullptr;
2584 }
2585 
2586 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2587                                                  IRBuilderBase &B) {
2588   // Check for size
2589   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2590   if (!Size)
2591     return nullptr;
2592 
2593   uint64_t N = Size->getZExtValue();
2594   // Check for a fixed format string.
2595   StringRef FormatStr;
2596   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2597     return nullptr;
2598 
2599   // If we just have a format string (nothing else crazy) transform it.
2600   if (CI->getNumArgOperands() == 3) {
2601     // Make sure there's no % in the constant array.  We could try to handle
2602     // %% -> % in the future if we cared.
2603     if (FormatStr.find('%') != StringRef::npos)
2604       return nullptr; // we found a format specifier, bail out.
2605 
2606     if (N == 0)
2607       return ConstantInt::get(CI->getType(), FormatStr.size());
2608     else if (N < FormatStr.size() + 1)
2609       return nullptr;
2610 
2611     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2612     // strlen(fmt)+1)
2613     B.CreateMemCpy(
2614         CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2615         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2616                          FormatStr.size() + 1)); // Copy the null byte.
2617     return ConstantInt::get(CI->getType(), FormatStr.size());
2618   }
2619 
2620   // The remaining optimizations require the format string to be "%s" or "%c"
2621   // and have an extra operand.
2622   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2623       CI->getNumArgOperands() == 4) {
2624 
2625     // Decode the second character of the format string.
2626     if (FormatStr[1] == 'c') {
2627       if (N == 0)
2628         return ConstantInt::get(CI->getType(), 1);
2629       else if (N == 1)
2630         return nullptr;
2631 
2632       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2633       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2634         return nullptr;
2635       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2636       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2637       B.CreateStore(V, Ptr);
2638       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2639       B.CreateStore(B.getInt8(0), Ptr);
2640 
2641       return ConstantInt::get(CI->getType(), 1);
2642     }
2643 
2644     if (FormatStr[1] == 's') {
2645       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2646       StringRef Str;
2647       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2648         return nullptr;
2649 
2650       if (N == 0)
2651         return ConstantInt::get(CI->getType(), Str.size());
2652       else if (N < Str.size() + 1)
2653         return nullptr;
2654 
2655       B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3),
2656                      Align(1), ConstantInt::get(CI->getType(), Str.size() + 1));
2657 
2658       // The snprintf result is the unincremented number of bytes in the string.
2659       return ConstantInt::get(CI->getType(), Str.size());
2660     }
2661   }
2662   return nullptr;
2663 }
2664 
2665 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2666   if (Value *V = optimizeSnPrintFString(CI, B)) {
2667     return V;
2668   }
2669 
2670   if (isKnownNonZero(CI->getOperand(1), DL))
2671     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2672   return nullptr;
2673 }
2674 
2675 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2676                                                 IRBuilderBase &B) {
2677   optimizeErrorReporting(CI, B, 0);
2678 
2679   // All the optimizations depend on the format string.
2680   StringRef FormatStr;
2681   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2682     return nullptr;
2683 
2684   // Do not do any of the following transformations if the fprintf return
2685   // value is used, in general the fprintf return value is not compatible
2686   // with fwrite(), fputc() or fputs().
2687   if (!CI->use_empty())
2688     return nullptr;
2689 
2690   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2691   if (CI->getNumArgOperands() == 2) {
2692     // Could handle %% -> % if we cared.
2693     if (FormatStr.find('%') != StringRef::npos)
2694       return nullptr; // We found a format specifier.
2695 
2696     return emitFWrite(
2697         CI->getArgOperand(1),
2698         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2699         CI->getArgOperand(0), B, DL, TLI);
2700   }
2701 
2702   // The remaining optimizations require the format string to be "%s" or "%c"
2703   // and have an extra operand.
2704   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2705       CI->getNumArgOperands() < 3)
2706     return nullptr;
2707 
2708   // Decode the second character of the format string.
2709   if (FormatStr[1] == 'c') {
2710     // fprintf(F, "%c", chr) --> fputc(chr, F)
2711     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2712       return nullptr;
2713     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2714   }
2715 
2716   if (FormatStr[1] == 's') {
2717     // fprintf(F, "%s", str) --> fputs(str, F)
2718     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2719       return nullptr;
2720     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2721   }
2722   return nullptr;
2723 }
2724 
2725 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2726   Function *Callee = CI->getCalledFunction();
2727   FunctionType *FT = Callee->getFunctionType();
2728   if (Value *V = optimizeFPrintFString(CI, B)) {
2729     return V;
2730   }
2731 
2732   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2733   // floating point arguments.
2734   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2735     Module *M = B.GetInsertBlock()->getParent()->getParent();
2736     FunctionCallee FIPrintFFn =
2737         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2738     CallInst *New = cast<CallInst>(CI->clone());
2739     New->setCalledFunction(FIPrintFFn);
2740     B.Insert(New);
2741     return New;
2742   }
2743 
2744   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2745   // 128-bit floating point arguments.
2746   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2747     Module *M = B.GetInsertBlock()->getParent()->getParent();
2748     auto SmallFPrintFFn =
2749         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2750                                FT, Callee->getAttributes());
2751     CallInst *New = cast<CallInst>(CI->clone());
2752     New->setCalledFunction(SmallFPrintFFn);
2753     B.Insert(New);
2754     return New;
2755   }
2756 
2757   return nullptr;
2758 }
2759 
2760 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2761   optimizeErrorReporting(CI, B, 3);
2762 
2763   // Get the element size and count.
2764   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2765   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2766   if (SizeC && CountC) {
2767     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2768 
2769     // If this is writing zero records, remove the call (it's a noop).
2770     if (Bytes == 0)
2771       return ConstantInt::get(CI->getType(), 0);
2772 
2773     // If this is writing one byte, turn it into fputc.
2774     // This optimisation is only valid, if the return value is unused.
2775     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2776       Value *Char = B.CreateLoad(B.getInt8Ty(),
2777                                  castToCStr(CI->getArgOperand(0), B), "char");
2778       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2779       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2780     }
2781   }
2782 
2783   return nullptr;
2784 }
2785 
2786 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2787   optimizeErrorReporting(CI, B, 1);
2788 
2789   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2790   // requires more arguments and thus extra MOVs are required.
2791   bool OptForSize = CI->getFunction()->hasOptSize() ||
2792                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2793                                                 PGSOQueryType::IRPass);
2794   if (OptForSize)
2795     return nullptr;
2796 
2797   // We can't optimize if return value is used.
2798   if (!CI->use_empty())
2799     return nullptr;
2800 
2801   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2802   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2803   if (!Len)
2804     return nullptr;
2805 
2806   // Known to have no uses (see above).
2807   return emitFWrite(
2808       CI->getArgOperand(0),
2809       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2810       CI->getArgOperand(1), B, DL, TLI);
2811 }
2812 
2813 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2814   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2815   if (!CI->use_empty())
2816     return nullptr;
2817 
2818   // Check for a constant string.
2819   // puts("") -> putchar('\n')
2820   StringRef Str;
2821   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2822     return emitPutChar(B.getInt32('\n'), B, TLI);
2823 
2824   return nullptr;
2825 }
2826 
2827 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2828   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2829   return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0),
2830                          Align(1), CI->getArgOperand(2));
2831 }
2832 
2833 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2834   LibFunc Func;
2835   SmallString<20> FloatFuncName = FuncName;
2836   FloatFuncName += 'f';
2837   if (TLI->getLibFunc(FloatFuncName, Func))
2838     return TLI->has(Func);
2839   return false;
2840 }
2841 
2842 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2843                                                       IRBuilderBase &Builder) {
2844   LibFunc Func;
2845   Function *Callee = CI->getCalledFunction();
2846   // Check for string/memory library functions.
2847   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2848     // Make sure we never change the calling convention.
2849     assert(
2850         (ignoreCallingConv(Func) ||
2851          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
2852         "Optimizing string/memory libcall would change the calling convention");
2853     switch (Func) {
2854     case LibFunc_strcat:
2855       return optimizeStrCat(CI, Builder);
2856     case LibFunc_strncat:
2857       return optimizeStrNCat(CI, Builder);
2858     case LibFunc_strchr:
2859       return optimizeStrChr(CI, Builder);
2860     case LibFunc_strrchr:
2861       return optimizeStrRChr(CI, Builder);
2862     case LibFunc_strcmp:
2863       return optimizeStrCmp(CI, Builder);
2864     case LibFunc_strncmp:
2865       return optimizeStrNCmp(CI, Builder);
2866     case LibFunc_strcpy:
2867       return optimizeStrCpy(CI, Builder);
2868     case LibFunc_stpcpy:
2869       return optimizeStpCpy(CI, Builder);
2870     case LibFunc_strncpy:
2871       return optimizeStrNCpy(CI, Builder);
2872     case LibFunc_strlen:
2873       return optimizeStrLen(CI, Builder);
2874     case LibFunc_strpbrk:
2875       return optimizeStrPBrk(CI, Builder);
2876     case LibFunc_strndup:
2877       return optimizeStrNDup(CI, Builder);
2878     case LibFunc_strtol:
2879     case LibFunc_strtod:
2880     case LibFunc_strtof:
2881     case LibFunc_strtoul:
2882     case LibFunc_strtoll:
2883     case LibFunc_strtold:
2884     case LibFunc_strtoull:
2885       return optimizeStrTo(CI, Builder);
2886     case LibFunc_strspn:
2887       return optimizeStrSpn(CI, Builder);
2888     case LibFunc_strcspn:
2889       return optimizeStrCSpn(CI, Builder);
2890     case LibFunc_strstr:
2891       return optimizeStrStr(CI, Builder);
2892     case LibFunc_memchr:
2893       return optimizeMemChr(CI, Builder);
2894     case LibFunc_memrchr:
2895       return optimizeMemRChr(CI, Builder);
2896     case LibFunc_bcmp:
2897       return optimizeBCmp(CI, Builder);
2898     case LibFunc_memcmp:
2899       return optimizeMemCmp(CI, Builder);
2900     case LibFunc_memcpy:
2901       return optimizeMemCpy(CI, Builder);
2902     case LibFunc_memccpy:
2903       return optimizeMemCCpy(CI, Builder);
2904     case LibFunc_mempcpy:
2905       return optimizeMemPCpy(CI, Builder);
2906     case LibFunc_memmove:
2907       return optimizeMemMove(CI, Builder);
2908     case LibFunc_memset:
2909       return optimizeMemSet(CI, Builder);
2910     case LibFunc_realloc:
2911       return optimizeRealloc(CI, Builder);
2912     case LibFunc_wcslen:
2913       return optimizeWcslen(CI, Builder);
2914     case LibFunc_bcopy:
2915       return optimizeBCopy(CI, Builder);
2916     default:
2917       break;
2918     }
2919   }
2920   return nullptr;
2921 }
2922 
2923 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2924                                                        LibFunc Func,
2925                                                        IRBuilderBase &Builder) {
2926   // Don't optimize calls that require strict floating point semantics.
2927   if (CI->isStrictFP())
2928     return nullptr;
2929 
2930   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2931     return V;
2932 
2933   switch (Func) {
2934   case LibFunc_sinpif:
2935   case LibFunc_sinpi:
2936   case LibFunc_cospif:
2937   case LibFunc_cospi:
2938     return optimizeSinCosPi(CI, Builder);
2939   case LibFunc_powf:
2940   case LibFunc_pow:
2941   case LibFunc_powl:
2942     return optimizePow(CI, Builder);
2943   case LibFunc_exp2l:
2944   case LibFunc_exp2:
2945   case LibFunc_exp2f:
2946     return optimizeExp2(CI, Builder);
2947   case LibFunc_fabsf:
2948   case LibFunc_fabs:
2949   case LibFunc_fabsl:
2950     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2951   case LibFunc_sqrtf:
2952   case LibFunc_sqrt:
2953   case LibFunc_sqrtl:
2954     return optimizeSqrt(CI, Builder);
2955   case LibFunc_logf:
2956   case LibFunc_log:
2957   case LibFunc_logl:
2958   case LibFunc_log10f:
2959   case LibFunc_log10:
2960   case LibFunc_log10l:
2961   case LibFunc_log1pf:
2962   case LibFunc_log1p:
2963   case LibFunc_log1pl:
2964   case LibFunc_log2f:
2965   case LibFunc_log2:
2966   case LibFunc_log2l:
2967   case LibFunc_logbf:
2968   case LibFunc_logb:
2969   case LibFunc_logbl:
2970     return optimizeLog(CI, Builder);
2971   case LibFunc_tan:
2972   case LibFunc_tanf:
2973   case LibFunc_tanl:
2974     return optimizeTan(CI, Builder);
2975   case LibFunc_ceil:
2976     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2977   case LibFunc_floor:
2978     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2979   case LibFunc_round:
2980     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2981   case LibFunc_roundeven:
2982     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
2983   case LibFunc_nearbyint:
2984     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2985   case LibFunc_rint:
2986     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2987   case LibFunc_trunc:
2988     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2989   case LibFunc_acos:
2990   case LibFunc_acosh:
2991   case LibFunc_asin:
2992   case LibFunc_asinh:
2993   case LibFunc_atan:
2994   case LibFunc_atanh:
2995   case LibFunc_cbrt:
2996   case LibFunc_cosh:
2997   case LibFunc_exp:
2998   case LibFunc_exp10:
2999   case LibFunc_expm1:
3000   case LibFunc_cos:
3001   case LibFunc_sin:
3002   case LibFunc_sinh:
3003   case LibFunc_tanh:
3004     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3005       return optimizeUnaryDoubleFP(CI, Builder, true);
3006     return nullptr;
3007   case LibFunc_copysign:
3008     if (hasFloatVersion(CI->getCalledFunction()->getName()))
3009       return optimizeBinaryDoubleFP(CI, Builder);
3010     return nullptr;
3011   case LibFunc_fminf:
3012   case LibFunc_fmin:
3013   case LibFunc_fminl:
3014   case LibFunc_fmaxf:
3015   case LibFunc_fmax:
3016   case LibFunc_fmaxl:
3017     return optimizeFMinFMax(CI, Builder);
3018   case LibFunc_cabs:
3019   case LibFunc_cabsf:
3020   case LibFunc_cabsl:
3021     return optimizeCAbs(CI, Builder);
3022   default:
3023     return nullptr;
3024   }
3025 }
3026 
3027 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3028   // TODO: Split out the code below that operates on FP calls so that
3029   //       we can all non-FP calls with the StrictFP attribute to be
3030   //       optimized.
3031   if (CI->isNoBuiltin())
3032     return nullptr;
3033 
3034   LibFunc Func;
3035   Function *Callee = CI->getCalledFunction();
3036   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3037 
3038   SmallVector<OperandBundleDef, 2> OpBundles;
3039   CI->getOperandBundlesAsDefs(OpBundles);
3040 
3041   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3042   Builder.setDefaultOperandBundles(OpBundles);
3043 
3044   // Command-line parameter overrides instruction attribute.
3045   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3046   // used by the intrinsic optimizations.
3047   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3048     UnsafeFPShrink = EnableUnsafeFPShrink;
3049   else if (isa<FPMathOperator>(CI) && CI->isFast())
3050     UnsafeFPShrink = true;
3051 
3052   // First, check for intrinsics.
3053   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3054     if (!IsCallingConvC)
3055       return nullptr;
3056     // The FP intrinsics have corresponding constrained versions so we don't
3057     // need to check for the StrictFP attribute here.
3058     switch (II->getIntrinsicID()) {
3059     case Intrinsic::pow:
3060       return optimizePow(CI, Builder);
3061     case Intrinsic::exp2:
3062       return optimizeExp2(CI, Builder);
3063     case Intrinsic::log:
3064     case Intrinsic::log2:
3065     case Intrinsic::log10:
3066       return optimizeLog(CI, Builder);
3067     case Intrinsic::sqrt:
3068       return optimizeSqrt(CI, Builder);
3069     // TODO: Use foldMallocMemset() with memset intrinsic.
3070     case Intrinsic::memset:
3071       return optimizeMemSet(CI, Builder);
3072     case Intrinsic::memcpy:
3073       return optimizeMemCpy(CI, Builder);
3074     case Intrinsic::memmove:
3075       return optimizeMemMove(CI, Builder);
3076     default:
3077       return nullptr;
3078     }
3079   }
3080 
3081   // Also try to simplify calls to fortified library functions.
3082   if (Value *SimplifiedFortifiedCI =
3083           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3084     // Try to further simplify the result.
3085     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3086     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3087       // Ensure that SimplifiedCI's uses are complete, since some calls have
3088       // their uses analyzed.
3089       replaceAllUsesWith(CI, SimplifiedCI);
3090 
3091       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3092       // we might replace later on.
3093       IRBuilderBase::InsertPointGuard Guard(Builder);
3094       Builder.SetInsertPoint(SimplifiedCI);
3095       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3096         // If we were able to further simplify, remove the now redundant call.
3097         substituteInParent(SimplifiedCI, V);
3098         return V;
3099       }
3100     }
3101     return SimplifiedFortifiedCI;
3102   }
3103 
3104   // Then check for known library functions.
3105   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3106     // We never change the calling convention.
3107     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3108       return nullptr;
3109     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3110       return V;
3111     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3112       return V;
3113     switch (Func) {
3114     case LibFunc_ffs:
3115     case LibFunc_ffsl:
3116     case LibFunc_ffsll:
3117       return optimizeFFS(CI, Builder);
3118     case LibFunc_fls:
3119     case LibFunc_flsl:
3120     case LibFunc_flsll:
3121       return optimizeFls(CI, Builder);
3122     case LibFunc_abs:
3123     case LibFunc_labs:
3124     case LibFunc_llabs:
3125       return optimizeAbs(CI, Builder);
3126     case LibFunc_isdigit:
3127       return optimizeIsDigit(CI, Builder);
3128     case LibFunc_isascii:
3129       return optimizeIsAscii(CI, Builder);
3130     case LibFunc_toascii:
3131       return optimizeToAscii(CI, Builder);
3132     case LibFunc_atoi:
3133     case LibFunc_atol:
3134     case LibFunc_atoll:
3135       return optimizeAtoi(CI, Builder);
3136     case LibFunc_strtol:
3137     case LibFunc_strtoll:
3138       return optimizeStrtol(CI, Builder);
3139     case LibFunc_printf:
3140       return optimizePrintF(CI, Builder);
3141     case LibFunc_sprintf:
3142       return optimizeSPrintF(CI, Builder);
3143     case LibFunc_snprintf:
3144       return optimizeSnPrintF(CI, Builder);
3145     case LibFunc_fprintf:
3146       return optimizeFPrintF(CI, Builder);
3147     case LibFunc_fwrite:
3148       return optimizeFWrite(CI, Builder);
3149     case LibFunc_fputs:
3150       return optimizeFPuts(CI, Builder);
3151     case LibFunc_puts:
3152       return optimizePuts(CI, Builder);
3153     case LibFunc_perror:
3154       return optimizeErrorReporting(CI, Builder);
3155     case LibFunc_vfprintf:
3156     case LibFunc_fiprintf:
3157       return optimizeErrorReporting(CI, Builder, 0);
3158     default:
3159       return nullptr;
3160     }
3161   }
3162   return nullptr;
3163 }
3164 
3165 LibCallSimplifier::LibCallSimplifier(
3166     const DataLayout &DL, const TargetLibraryInfo *TLI,
3167     OptimizationRemarkEmitter &ORE,
3168     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3169     function_ref<void(Instruction *, Value *)> Replacer,
3170     function_ref<void(Instruction *)> Eraser)
3171     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3172       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3173 
3174 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3175   // Indirect through the replacer used in this instance.
3176   Replacer(I, With);
3177 }
3178 
3179 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3180   Eraser(I);
3181 }
3182 
3183 // TODO:
3184 //   Additional cases that we need to add to this file:
3185 //
3186 // cbrt:
3187 //   * cbrt(expN(X))  -> expN(x/3)
3188 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3189 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3190 //
3191 // exp, expf, expl:
3192 //   * exp(log(x))  -> x
3193 //
3194 // log, logf, logl:
3195 //   * log(exp(x))   -> x
3196 //   * log(exp(y))   -> y*log(e)
3197 //   * log(exp10(y)) -> y*log(10)
3198 //   * log(sqrt(x))  -> 0.5*log(x)
3199 //
3200 // pow, powf, powl:
3201 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3202 //   * pow(pow(x,y),z)-> pow(x,y*z)
3203 //
3204 // signbit:
3205 //   * signbit(cnst) -> cnst'
3206 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3207 //
3208 // sqrt, sqrtf, sqrtl:
3209 //   * sqrt(expN(x))  -> expN(x*0.5)
3210 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3211 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3212 //
3213 
3214 //===----------------------------------------------------------------------===//
3215 // Fortified Library Call Optimizations
3216 //===----------------------------------------------------------------------===//
3217 
3218 bool
3219 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3220                                                     unsigned ObjSizeOp,
3221                                                     Optional<unsigned> SizeOp,
3222                                                     Optional<unsigned> StrOp,
3223                                                     Optional<unsigned> FlagOp) {
3224   // If this function takes a flag argument, the implementation may use it to
3225   // perform extra checks. Don't fold into the non-checking variant.
3226   if (FlagOp) {
3227     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3228     if (!Flag || !Flag->isZero())
3229       return false;
3230   }
3231 
3232   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3233     return true;
3234 
3235   if (ConstantInt *ObjSizeCI =
3236           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3237     if (ObjSizeCI->isMinusOne())
3238       return true;
3239     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3240     if (OnlyLowerUnknownSize)
3241       return false;
3242     if (StrOp) {
3243       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3244       // If the length is 0 we don't know how long it is and so we can't
3245       // remove the check.
3246       if (Len)
3247         annotateDereferenceableBytes(CI, *StrOp, Len);
3248       else
3249         return false;
3250       return ObjSizeCI->getZExtValue() >= Len;
3251     }
3252 
3253     if (SizeOp) {
3254       if (ConstantInt *SizeCI =
3255               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3256         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3257     }
3258   }
3259   return false;
3260 }
3261 
3262 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3263                                                      IRBuilderBase &B) {
3264   if (isFortifiedCallFoldable(CI, 3, 2)) {
3265     CallInst *NewCI =
3266         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3267                        Align(1), CI->getArgOperand(2));
3268     NewCI->setAttributes(CI->getAttributes());
3269     NewCI->removeAttributes(AttributeList::ReturnIndex,
3270                             AttributeFuncs::typeIncompatible(NewCI->getType()));
3271     return CI->getArgOperand(0);
3272   }
3273   return nullptr;
3274 }
3275 
3276 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3277                                                       IRBuilderBase &B) {
3278   if (isFortifiedCallFoldable(CI, 3, 2)) {
3279     CallInst *NewCI =
3280         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3281                         Align(1), CI->getArgOperand(2));
3282     NewCI->setAttributes(CI->getAttributes());
3283     NewCI->removeAttributes(AttributeList::ReturnIndex,
3284                             AttributeFuncs::typeIncompatible(NewCI->getType()));
3285     return CI->getArgOperand(0);
3286   }
3287   return nullptr;
3288 }
3289 
3290 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3291                                                      IRBuilderBase &B) {
3292   // TODO: Try foldMallocMemset() here.
3293 
3294   if (isFortifiedCallFoldable(CI, 3, 2)) {
3295     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3296     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3297                                      CI->getArgOperand(2), Align(1));
3298     NewCI->setAttributes(CI->getAttributes());
3299     NewCI->removeAttributes(AttributeList::ReturnIndex,
3300                             AttributeFuncs::typeIncompatible(NewCI->getType()));
3301     return CI->getArgOperand(0);
3302   }
3303   return nullptr;
3304 }
3305 
3306 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3307                                                       IRBuilderBase &B) {
3308   const DataLayout &DL = CI->getModule()->getDataLayout();
3309   if (isFortifiedCallFoldable(CI, 3, 2))
3310     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3311                                   CI->getArgOperand(2), B, DL, TLI)) {
3312       CallInst *NewCI = cast<CallInst>(Call);
3313       NewCI->setAttributes(CI->getAttributes());
3314       NewCI->removeAttributes(
3315           AttributeList::ReturnIndex,
3316           AttributeFuncs::typeIncompatible(NewCI->getType()));
3317       return NewCI;
3318     }
3319   return nullptr;
3320 }
3321 
3322 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3323                                                       IRBuilderBase &B,
3324                                                       LibFunc Func) {
3325   const DataLayout &DL = CI->getModule()->getDataLayout();
3326   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3327         *ObjSize = CI->getArgOperand(2);
3328 
3329   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3330   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3331     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3332     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3333   }
3334 
3335   // If a) we don't have any length information, or b) we know this will
3336   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3337   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3338   // TODO: It might be nice to get a maximum length out of the possible
3339   // string lengths for varying.
3340   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3341     if (Func == LibFunc_strcpy_chk)
3342       return emitStrCpy(Dst, Src, B, TLI);
3343     else
3344       return emitStpCpy(Dst, Src, B, TLI);
3345   }
3346 
3347   if (OnlyLowerUnknownSize)
3348     return nullptr;
3349 
3350   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3351   uint64_t Len = GetStringLength(Src);
3352   if (Len)
3353     annotateDereferenceableBytes(CI, 1, Len);
3354   else
3355     return nullptr;
3356 
3357   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3358   Value *LenV = ConstantInt::get(SizeTTy, Len);
3359   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3360   // If the function was an __stpcpy_chk, and we were able to fold it into
3361   // a __memcpy_chk, we still need to return the correct end pointer.
3362   if (Ret && Func == LibFunc_stpcpy_chk)
3363     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3364   return Ret;
3365 }
3366 
3367 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3368                                                      IRBuilderBase &B) {
3369   if (isFortifiedCallFoldable(CI, 1, None, 0))
3370     return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(),
3371                       TLI);
3372   return nullptr;
3373 }
3374 
3375 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3376                                                        IRBuilderBase &B,
3377                                                        LibFunc Func) {
3378   if (isFortifiedCallFoldable(CI, 3, 2)) {
3379     if (Func == LibFunc_strncpy_chk)
3380       return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3381                                CI->getArgOperand(2), B, TLI);
3382     else
3383       return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3384                          CI->getArgOperand(2), B, TLI);
3385   }
3386 
3387   return nullptr;
3388 }
3389 
3390 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3391                                                       IRBuilderBase &B) {
3392   if (isFortifiedCallFoldable(CI, 4, 3))
3393     return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3394                        CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3395 
3396   return nullptr;
3397 }
3398 
3399 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3400                                                        IRBuilderBase &B) {
3401   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3402     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3403     return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3404                         CI->getArgOperand(4), VariadicArgs, B, TLI);
3405   }
3406 
3407   return nullptr;
3408 }
3409 
3410 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3411                                                       IRBuilderBase &B) {
3412   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3413     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3414     return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3415                        B, TLI);
3416   }
3417 
3418   return nullptr;
3419 }
3420 
3421 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3422                                                      IRBuilderBase &B) {
3423   if (isFortifiedCallFoldable(CI, 2))
3424     return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3425 
3426   return nullptr;
3427 }
3428 
3429 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3430                                                    IRBuilderBase &B) {
3431   if (isFortifiedCallFoldable(CI, 3))
3432     return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3433                        CI->getArgOperand(2), B, TLI);
3434 
3435   return nullptr;
3436 }
3437 
3438 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3439                                                       IRBuilderBase &B) {
3440   if (isFortifiedCallFoldable(CI, 3))
3441     return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3442                        CI->getArgOperand(2), B, TLI);
3443 
3444   return nullptr;
3445 }
3446 
3447 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3448                                                       IRBuilderBase &B) {
3449   if (isFortifiedCallFoldable(CI, 3))
3450     return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3451                        CI->getArgOperand(2), B, TLI);
3452 
3453   return nullptr;
3454 }
3455 
3456 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3457                                                         IRBuilderBase &B) {
3458   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3459     return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3460                          CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3461 
3462   return nullptr;
3463 }
3464 
3465 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3466                                                        IRBuilderBase &B) {
3467   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3468     return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3469                         CI->getArgOperand(4), B, TLI);
3470 
3471   return nullptr;
3472 }
3473 
3474 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3475                                                 IRBuilderBase &Builder) {
3476   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3477   // Some clang users checked for _chk libcall availability using:
3478   //   __has_builtin(__builtin___memcpy_chk)
3479   // When compiling with -fno-builtin, this is always true.
3480   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3481   // end up with fortified libcalls, which isn't acceptable in a freestanding
3482   // environment which only provides their non-fortified counterparts.
3483   //
3484   // Until we change clang and/or teach external users to check for availability
3485   // differently, disregard the "nobuiltin" attribute and TLI::has.
3486   //
3487   // PR23093.
3488 
3489   LibFunc Func;
3490   Function *Callee = CI->getCalledFunction();
3491   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3492 
3493   SmallVector<OperandBundleDef, 2> OpBundles;
3494   CI->getOperandBundlesAsDefs(OpBundles);
3495 
3496   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3497   Builder.setDefaultOperandBundles(OpBundles);
3498 
3499   // First, check that this is a known library functions and that the prototype
3500   // is correct.
3501   if (!TLI->getLibFunc(*Callee, Func))
3502     return nullptr;
3503 
3504   // We never change the calling convention.
3505   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3506     return nullptr;
3507 
3508   switch (Func) {
3509   case LibFunc_memcpy_chk:
3510     return optimizeMemCpyChk(CI, Builder);
3511   case LibFunc_mempcpy_chk:
3512     return optimizeMemPCpyChk(CI, Builder);
3513   case LibFunc_memmove_chk:
3514     return optimizeMemMoveChk(CI, Builder);
3515   case LibFunc_memset_chk:
3516     return optimizeMemSetChk(CI, Builder);
3517   case LibFunc_stpcpy_chk:
3518   case LibFunc_strcpy_chk:
3519     return optimizeStrpCpyChk(CI, Builder, Func);
3520   case LibFunc_strlen_chk:
3521     return optimizeStrLenChk(CI, Builder);
3522   case LibFunc_stpncpy_chk:
3523   case LibFunc_strncpy_chk:
3524     return optimizeStrpNCpyChk(CI, Builder, Func);
3525   case LibFunc_memccpy_chk:
3526     return optimizeMemCCpyChk(CI, Builder);
3527   case LibFunc_snprintf_chk:
3528     return optimizeSNPrintfChk(CI, Builder);
3529   case LibFunc_sprintf_chk:
3530     return optimizeSPrintfChk(CI, Builder);
3531   case LibFunc_strcat_chk:
3532     return optimizeStrCatChk(CI, Builder);
3533   case LibFunc_strlcat_chk:
3534     return optimizeStrLCat(CI, Builder);
3535   case LibFunc_strncat_chk:
3536     return optimizeStrNCatChk(CI, Builder);
3537   case LibFunc_strlcpy_chk:
3538     return optimizeStrLCpyChk(CI, Builder);
3539   case LibFunc_vsnprintf_chk:
3540     return optimizeVSNPrintfChk(CI, Builder);
3541   case LibFunc_vsprintf_chk:
3542     return optimizeVSPrintfChk(CI, Builder);
3543   default:
3544     break;
3545   }
3546   return nullptr;
3547 }
3548 
3549 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3550     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3551     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3552