1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/AttributeMask.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/TargetParser/Triple.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/SizeOpts.h" 37 38 #include <cmath> 39 40 using namespace llvm; 41 using namespace PatternMatch; 42 43 static cl::opt<bool> 44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 45 cl::init(false), 46 cl::desc("Enable unsafe double to float " 47 "shrinking for math lib calls")); 48 49 // Enable conversion of operator new calls with a MemProf hot or cold hint 50 // to an operator new call that takes a hot/cold hint. Off by default since 51 // not all allocators currently support this extension. 52 static cl::opt<bool> 53 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false), 54 cl::desc("Enable hot/cold operator new library calls")); 55 56 namespace { 57 58 // Specialized parser to ensure the hint is an 8 bit value (we can't specify 59 // uint8_t to opt<> as that is interpreted to mean that we are passing a char 60 // option with a specific set of values. 61 struct HotColdHintParser : public cl::parser<unsigned> { 62 HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {} 63 64 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 65 if (Arg.getAsInteger(0, Value)) 66 return O.error("'" + Arg + "' value invalid for uint argument!"); 67 68 if (Value > 255) 69 return O.error("'" + Arg + "' value must be in the range [0, 255]!"); 70 71 return false; 72 } 73 }; 74 75 } // end anonymous namespace 76 77 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest 78 // and 255 is the hottest. Default to 1 value away from the coldest and hottest 79 // hints, so that the compiler hinted allocations are slightly less strong than 80 // manually inserted hints at the two extremes. 81 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue( 82 "cold-new-hint-value", cl::Hidden, cl::init(1), 83 cl::desc("Value to pass to hot/cold operator new for cold allocation")); 84 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue( 85 "hot-new-hint-value", cl::Hidden, cl::init(254), 86 cl::desc("Value to pass to hot/cold operator new for hot allocation")); 87 88 //===----------------------------------------------------------------------===// 89 // Helper Functions 90 //===----------------------------------------------------------------------===// 91 92 static bool ignoreCallingConv(LibFunc Func) { 93 return Func == LibFunc_abs || Func == LibFunc_labs || 94 Func == LibFunc_llabs || Func == LibFunc_strlen; 95 } 96 97 /// Return true if it is only used in equality comparisons with With. 98 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 99 for (User *U : V->users()) { 100 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 101 if (IC->isEquality() && IC->getOperand(1) == With) 102 continue; 103 // Unknown instruction. 104 return false; 105 } 106 return true; 107 } 108 109 static bool callHasFloatingPointArgument(const CallInst *CI) { 110 return any_of(CI->operands(), [](const Use &OI) { 111 return OI->getType()->isFloatingPointTy(); 112 }); 113 } 114 115 static bool callHasFP128Argument(const CallInst *CI) { 116 return any_of(CI->operands(), [](const Use &OI) { 117 return OI->getType()->isFP128Ty(); 118 }); 119 } 120 121 // Convert the entire string Str representing an integer in Base, up to 122 // the terminating nul if present, to a constant according to the rules 123 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success 124 // return the result, otherwise null. 125 // The function assumes the string is encoded in ASCII and carefully 126 // avoids converting sequences (including "") that the corresponding 127 // library call might fail and set errno for. 128 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr, 129 uint64_t Base, bool AsSigned, IRBuilderBase &B) { 130 if (Base < 2 || Base > 36) 131 if (Base != 0) 132 // Fail for an invalid base (required by POSIX). 133 return nullptr; 134 135 // Current offset into the original string to reflect in EndPtr. 136 size_t Offset = 0; 137 // Strip leading whitespace. 138 for ( ; Offset != Str.size(); ++Offset) 139 if (!isSpace((unsigned char)Str[Offset])) { 140 Str = Str.substr(Offset); 141 break; 142 } 143 144 if (Str.empty()) 145 // Fail for empty subject sequences (POSIX allows but doesn't require 146 // strtol[l]/strtoul[l] to fail with EINVAL). 147 return nullptr; 148 149 // Strip but remember the sign. 150 bool Negate = Str[0] == '-'; 151 if (Str[0] == '-' || Str[0] == '+') { 152 Str = Str.drop_front(); 153 if (Str.empty()) 154 // Fail for a sign with nothing after it. 155 return nullptr; 156 ++Offset; 157 } 158 159 // Set Max to the absolute value of the minimum (for signed), or 160 // to the maximum (for unsigned) value representable in the type. 161 Type *RetTy = CI->getType(); 162 unsigned NBits = RetTy->getPrimitiveSizeInBits(); 163 uint64_t Max = AsSigned && Negate ? 1 : 0; 164 Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits); 165 166 // Autodetect Base if it's zero and consume the "0x" prefix. 167 if (Str.size() > 1) { 168 if (Str[0] == '0') { 169 if (toUpper((unsigned char)Str[1]) == 'X') { 170 if (Str.size() == 2 || (Base && Base != 16)) 171 // Fail if Base doesn't allow the "0x" prefix or for the prefix 172 // alone that implementations like BSD set errno to EINVAL for. 173 return nullptr; 174 175 Str = Str.drop_front(2); 176 Offset += 2; 177 Base = 16; 178 } 179 else if (Base == 0) 180 Base = 8; 181 } else if (Base == 0) 182 Base = 10; 183 } 184 else if (Base == 0) 185 Base = 10; 186 187 // Convert the rest of the subject sequence, not including the sign, 188 // to its uint64_t representation (this assumes the source character 189 // set is ASCII). 190 uint64_t Result = 0; 191 for (unsigned i = 0; i != Str.size(); ++i) { 192 unsigned char DigVal = Str[i]; 193 if (isDigit(DigVal)) 194 DigVal = DigVal - '0'; 195 else { 196 DigVal = toUpper(DigVal); 197 if (isAlpha(DigVal)) 198 DigVal = DigVal - 'A' + 10; 199 else 200 return nullptr; 201 } 202 203 if (DigVal >= Base) 204 // Fail if the digit is not valid in the Base. 205 return nullptr; 206 207 // Add the digit and fail if the result is not representable in 208 // the (unsigned form of the) destination type. 209 bool VFlow; 210 Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow); 211 if (VFlow || Result > Max) 212 return nullptr; 213 } 214 215 if (EndPtr) { 216 // Store the pointer to the end. 217 Value *Off = B.getInt64(Offset + Str.size()); 218 Value *StrBeg = CI->getArgOperand(0); 219 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr"); 220 B.CreateStore(StrEnd, EndPtr); 221 } 222 223 if (Negate) 224 // Unsigned negation doesn't overflow. 225 Result = -Result; 226 227 return ConstantInt::get(RetTy, Result); 228 } 229 230 static bool isOnlyUsedInComparisonWithZero(Value *V) { 231 for (User *U : V->users()) { 232 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 233 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 234 if (C->isNullValue()) 235 continue; 236 // Unknown instruction. 237 return false; 238 } 239 return true; 240 } 241 242 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 243 const DataLayout &DL) { 244 if (!isOnlyUsedInComparisonWithZero(CI)) 245 return false; 246 247 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 248 return false; 249 250 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 251 return false; 252 253 return true; 254 } 255 256 static void annotateDereferenceableBytes(CallInst *CI, 257 ArrayRef<unsigned> ArgNos, 258 uint64_t DereferenceableBytes) { 259 const Function *F = CI->getCaller(); 260 if (!F) 261 return; 262 for (unsigned ArgNo : ArgNos) { 263 uint64_t DerefBytes = DereferenceableBytes; 264 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 265 if (!llvm::NullPointerIsDefined(F, AS) || 266 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 267 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 268 DereferenceableBytes); 269 270 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 271 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 272 if (!llvm::NullPointerIsDefined(F, AS) || 273 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 274 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 275 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 276 CI->getContext(), DerefBytes)); 277 } 278 } 279 } 280 281 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 282 ArrayRef<unsigned> ArgNos) { 283 Function *F = CI->getCaller(); 284 if (!F) 285 return; 286 287 for (unsigned ArgNo : ArgNos) { 288 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 289 CI->addParamAttr(ArgNo, Attribute::NoUndef); 290 291 if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) { 292 unsigned AS = 293 CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 294 if (llvm::NullPointerIsDefined(F, AS)) 295 continue; 296 CI->addParamAttr(ArgNo, Attribute::NonNull); 297 } 298 299 annotateDereferenceableBytes(CI, ArgNo, 1); 300 } 301 } 302 303 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 304 Value *Size, const DataLayout &DL) { 305 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 306 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 307 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 308 } else if (isKnownNonZero(Size, DL)) { 309 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 310 const APInt *X, *Y; 311 uint64_t DerefMin = 1; 312 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 313 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 314 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 315 } 316 } 317 } 318 319 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 320 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 321 // in this function when New is created to replace Old. Callers should take 322 // care to check Old.isMustTailCall() if they aren't replacing Old directly 323 // with New. 324 static Value *copyFlags(const CallInst &Old, Value *New) { 325 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 326 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 327 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 328 NewCI->setTailCallKind(Old.getTailCallKind()); 329 return New; 330 } 331 332 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) { 333 NewCI->setAttributes(AttributeList::get( 334 NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()})); 335 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 336 return copyFlags(Old, NewCI); 337 } 338 339 // Helper to avoid truncating the length if size_t is 32-bits. 340 static StringRef substr(StringRef Str, uint64_t Len) { 341 return Len >= Str.size() ? Str : Str.substr(0, Len); 342 } 343 344 //===----------------------------------------------------------------------===// 345 // String and Memory Library Call Optimizations 346 //===----------------------------------------------------------------------===// 347 348 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 349 // Extract some information from the instruction 350 Value *Dst = CI->getArgOperand(0); 351 Value *Src = CI->getArgOperand(1); 352 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 353 354 // See if we can get the length of the input string. 355 uint64_t Len = GetStringLength(Src); 356 if (Len) 357 annotateDereferenceableBytes(CI, 1, Len); 358 else 359 return nullptr; 360 --Len; // Unbias length. 361 362 // Handle the simple, do-nothing case: strcat(x, "") -> x 363 if (Len == 0) 364 return Dst; 365 366 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 367 } 368 369 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 370 IRBuilderBase &B) { 371 // We need to find the end of the destination string. That's where the 372 // memory is to be moved to. We just generate a call to strlen. 373 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 374 if (!DstLen) 375 return nullptr; 376 377 // Now that we have the destination's length, we must index into the 378 // destination's pointer to get the actual memcpy destination (end of 379 // the string .. we're concatenating). 380 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 381 382 // We have enough information to now generate the memcpy call to do the 383 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 384 B.CreateMemCpy( 385 CpyDst, Align(1), Src, Align(1), 386 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 387 return Dst; 388 } 389 390 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 391 // Extract some information from the instruction. 392 Value *Dst = CI->getArgOperand(0); 393 Value *Src = CI->getArgOperand(1); 394 Value *Size = CI->getArgOperand(2); 395 uint64_t Len; 396 annotateNonNullNoUndefBasedOnAccess(CI, 0); 397 if (isKnownNonZero(Size, DL)) 398 annotateNonNullNoUndefBasedOnAccess(CI, 1); 399 400 // We don't do anything if length is not constant. 401 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 402 if (LengthArg) { 403 Len = LengthArg->getZExtValue(); 404 // strncat(x, c, 0) -> x 405 if (!Len) 406 return Dst; 407 } else { 408 return nullptr; 409 } 410 411 // See if we can get the length of the input string. 412 uint64_t SrcLen = GetStringLength(Src); 413 if (SrcLen) { 414 annotateDereferenceableBytes(CI, 1, SrcLen); 415 --SrcLen; // Unbias length. 416 } else { 417 return nullptr; 418 } 419 420 // strncat(x, "", c) -> x 421 if (SrcLen == 0) 422 return Dst; 423 424 // We don't optimize this case. 425 if (Len < SrcLen) 426 return nullptr; 427 428 // strncat(x, s, c) -> strcat(x, s) 429 // s is constant so the strcat can be optimized further. 430 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 431 } 432 433 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when 434 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function 435 // is that either S is dereferenceable or the value of N is nonzero. 436 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes, 437 IRBuilderBase &B, const DataLayout &DL) 438 { 439 Value *Src = CI->getArgOperand(0); 440 Value *CharVal = CI->getArgOperand(1); 441 442 // Fold memchr(A, C, N) == A to N && *A == C. 443 Type *CharTy = B.getInt8Ty(); 444 Value *Char0 = B.CreateLoad(CharTy, Src); 445 CharVal = B.CreateTrunc(CharVal, CharTy); 446 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp"); 447 448 if (NBytes) { 449 Value *Zero = ConstantInt::get(NBytes->getType(), 0); 450 Value *And = B.CreateICmpNE(NBytes, Zero); 451 Cmp = B.CreateLogicalAnd(And, Cmp); 452 } 453 454 Value *NullPtr = Constant::getNullValue(CI->getType()); 455 return B.CreateSelect(Cmp, Src, NullPtr); 456 } 457 458 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 459 Value *SrcStr = CI->getArgOperand(0); 460 Value *CharVal = CI->getArgOperand(1); 461 annotateNonNullNoUndefBasedOnAccess(CI, 0); 462 463 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 464 return memChrToCharCompare(CI, nullptr, B, DL); 465 466 // If the second operand is non-constant, see if we can compute the length 467 // of the input string and turn this into memchr. 468 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 469 if (!CharC) { 470 uint64_t Len = GetStringLength(SrcStr); 471 if (Len) 472 annotateDereferenceableBytes(CI, 0, Len); 473 else 474 return nullptr; 475 476 Function *Callee = CI->getCalledFunction(); 477 FunctionType *FT = Callee->getFunctionType(); 478 unsigned IntBits = TLI->getIntSize(); 479 if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'. 480 return nullptr; 481 482 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 483 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 484 return copyFlags(*CI, 485 emitMemChr(SrcStr, CharVal, // include nul. 486 ConstantInt::get(SizeTTy, Len), B, 487 DL, TLI)); 488 } 489 490 if (CharC->isZero()) { 491 Value *NullPtr = Constant::getNullValue(CI->getType()); 492 if (isOnlyUsedInEqualityComparison(CI, NullPtr)) 493 // Pre-empt the transformation to strlen below and fold 494 // strchr(A, '\0') == null to false. 495 return B.CreateIntToPtr(B.getTrue(), CI->getType()); 496 } 497 498 // Otherwise, the character is a constant, see if the first argument is 499 // a string literal. If so, we can constant fold. 500 StringRef Str; 501 if (!getConstantStringInfo(SrcStr, Str)) { 502 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 503 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 504 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 505 return nullptr; 506 } 507 508 // Compute the offset, make sure to handle the case when we're searching for 509 // zero (a weird way to spell strlen). 510 size_t I = (0xFF & CharC->getSExtValue()) == 0 511 ? Str.size() 512 : Str.find(CharC->getSExtValue()); 513 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 514 return Constant::getNullValue(CI->getType()); 515 516 // strchr(s+n,c) -> gep(s+n+i,c) 517 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 518 } 519 520 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 521 Value *SrcStr = CI->getArgOperand(0); 522 Value *CharVal = CI->getArgOperand(1); 523 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 524 annotateNonNullNoUndefBasedOnAccess(CI, 0); 525 526 StringRef Str; 527 if (!getConstantStringInfo(SrcStr, Str)) { 528 // strrchr(s, 0) -> strchr(s, 0) 529 if (CharC && CharC->isZero()) 530 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 531 return nullptr; 532 } 533 534 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 535 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 536 537 // Try to expand strrchr to the memrchr nonstandard extension if it's 538 // available, or simply fail otherwise. 539 uint64_t NBytes = Str.size() + 1; // Include the terminating nul. 540 Value *Size = ConstantInt::get(SizeTTy, NBytes); 541 return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI)); 542 } 543 544 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 545 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 546 if (Str1P == Str2P) // strcmp(x,x) -> 0 547 return ConstantInt::get(CI->getType(), 0); 548 549 StringRef Str1, Str2; 550 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 551 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 552 553 // strcmp(x, y) -> cnst (if both x and y are constant strings) 554 if (HasStr1 && HasStr2) 555 return ConstantInt::get(CI->getType(), 556 std::clamp(Str1.compare(Str2), -1, 1)); 557 558 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 559 return B.CreateNeg(B.CreateZExt( 560 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 561 562 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 563 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 564 CI->getType()); 565 566 // strcmp(P, "x") -> memcmp(P, "x", 2) 567 uint64_t Len1 = GetStringLength(Str1P); 568 if (Len1) 569 annotateDereferenceableBytes(CI, 0, Len1); 570 uint64_t Len2 = GetStringLength(Str2P); 571 if (Len2) 572 annotateDereferenceableBytes(CI, 1, Len2); 573 574 if (Len1 && Len2) { 575 return copyFlags( 576 *CI, emitMemCmp(Str1P, Str2P, 577 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 578 std::min(Len1, Len2)), 579 B, DL, TLI)); 580 } 581 582 // strcmp to memcmp 583 if (!HasStr1 && HasStr2) { 584 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 585 return copyFlags( 586 *CI, 587 emitMemCmp(Str1P, Str2P, 588 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 589 B, DL, TLI)); 590 } else if (HasStr1 && !HasStr2) { 591 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 592 return copyFlags( 593 *CI, 594 emitMemCmp(Str1P, Str2P, 595 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 596 B, DL, TLI)); 597 } 598 599 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 600 return nullptr; 601 } 602 603 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 604 // arrays LHS and RHS and nonconstant Size. 605 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 606 Value *Size, bool StrNCmp, 607 IRBuilderBase &B, const DataLayout &DL); 608 609 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 610 Value *Str1P = CI->getArgOperand(0); 611 Value *Str2P = CI->getArgOperand(1); 612 Value *Size = CI->getArgOperand(2); 613 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 614 return ConstantInt::get(CI->getType(), 0); 615 616 if (isKnownNonZero(Size, DL)) 617 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 618 // Get the length argument if it is constant. 619 uint64_t Length; 620 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 621 Length = LengthArg->getZExtValue(); 622 else 623 return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL); 624 625 if (Length == 0) // strncmp(x,y,0) -> 0 626 return ConstantInt::get(CI->getType(), 0); 627 628 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 629 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 630 631 StringRef Str1, Str2; 632 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 633 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 634 635 // strncmp(x, y) -> cnst (if both x and y are constant strings) 636 if (HasStr1 && HasStr2) { 637 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 638 StringRef SubStr1 = substr(Str1, Length); 639 StringRef SubStr2 = substr(Str2, Length); 640 return ConstantInt::get(CI->getType(), 641 std::clamp(SubStr1.compare(SubStr2), -1, 1)); 642 } 643 644 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 645 return B.CreateNeg(B.CreateZExt( 646 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 647 648 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 649 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 650 CI->getType()); 651 652 uint64_t Len1 = GetStringLength(Str1P); 653 if (Len1) 654 annotateDereferenceableBytes(CI, 0, Len1); 655 uint64_t Len2 = GetStringLength(Str2P); 656 if (Len2) 657 annotateDereferenceableBytes(CI, 1, Len2); 658 659 // strncmp to memcmp 660 if (!HasStr1 && HasStr2) { 661 Len2 = std::min(Len2, Length); 662 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 663 return copyFlags( 664 *CI, 665 emitMemCmp(Str1P, Str2P, 666 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 667 B, DL, TLI)); 668 } else if (HasStr1 && !HasStr2) { 669 Len1 = std::min(Len1, Length); 670 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 671 return copyFlags( 672 *CI, 673 emitMemCmp(Str1P, Str2P, 674 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 675 B, DL, TLI)); 676 } 677 678 return nullptr; 679 } 680 681 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 682 Value *Src = CI->getArgOperand(0); 683 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 684 uint64_t SrcLen = GetStringLength(Src); 685 if (SrcLen && Size) { 686 annotateDereferenceableBytes(CI, 0, SrcLen); 687 if (SrcLen <= Size->getZExtValue() + 1) 688 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 689 } 690 691 return nullptr; 692 } 693 694 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 695 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 696 if (Dst == Src) // strcpy(x,x) -> x 697 return Src; 698 699 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 700 // See if we can get the length of the input string. 701 uint64_t Len = GetStringLength(Src); 702 if (Len) 703 annotateDereferenceableBytes(CI, 1, Len); 704 else 705 return nullptr; 706 707 // We have enough information to now generate the memcpy call to do the 708 // copy for us. Make a memcpy to copy the nul byte with align = 1. 709 CallInst *NewCI = 710 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 711 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 712 mergeAttributesAndFlags(NewCI, *CI); 713 return Dst; 714 } 715 716 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 717 Function *Callee = CI->getCalledFunction(); 718 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 719 720 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 721 if (CI->use_empty()) 722 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 723 724 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 725 Value *StrLen = emitStrLen(Src, B, DL, TLI); 726 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 727 } 728 729 // See if we can get the length of the input string. 730 uint64_t Len = GetStringLength(Src); 731 if (Len) 732 annotateDereferenceableBytes(CI, 1, Len); 733 else 734 return nullptr; 735 736 Type *PT = Callee->getFunctionType()->getParamType(0); 737 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 738 Value *DstEnd = B.CreateInBoundsGEP( 739 B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 740 741 // We have enough information to now generate the memcpy call to do the 742 // copy for us. Make a memcpy to copy the nul byte with align = 1. 743 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 744 mergeAttributesAndFlags(NewCI, *CI); 745 return DstEnd; 746 } 747 748 // Optimize a call to size_t strlcpy(char*, const char*, size_t). 749 750 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) { 751 Value *Size = CI->getArgOperand(2); 752 if (isKnownNonZero(Size, DL)) 753 // Like snprintf, the function stores into the destination only when 754 // the size argument is nonzero. 755 annotateNonNullNoUndefBasedOnAccess(CI, 0); 756 // The function reads the source argument regardless of Size (it returns 757 // its length). 758 annotateNonNullNoUndefBasedOnAccess(CI, 1); 759 760 uint64_t NBytes; 761 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 762 NBytes = SizeC->getZExtValue(); 763 else 764 return nullptr; 765 766 Value *Dst = CI->getArgOperand(0); 767 Value *Src = CI->getArgOperand(1); 768 if (NBytes <= 1) { 769 if (NBytes == 1) 770 // For a call to strlcpy(D, S, 1) first store a nul in *D. 771 B.CreateStore(B.getInt8(0), Dst); 772 773 // Transform strlcpy(D, S, 0) to a call to strlen(S). 774 return copyFlags(*CI, emitStrLen(Src, B, DL, TLI)); 775 } 776 777 // Try to determine the length of the source, substituting its size 778 // when it's not nul-terminated (as it's required to be) to avoid 779 // reading past its end. 780 StringRef Str; 781 if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false)) 782 return nullptr; 783 784 uint64_t SrcLen = Str.find('\0'); 785 // Set if the terminating nul should be copied by the call to memcpy 786 // below. 787 bool NulTerm = SrcLen < NBytes; 788 789 if (NulTerm) 790 // Overwrite NBytes with the number of bytes to copy, including 791 // the terminating nul. 792 NBytes = SrcLen + 1; 793 else { 794 // Set the length of the source for the function to return to its 795 // size, and cap NBytes at the same. 796 SrcLen = std::min(SrcLen, uint64_t(Str.size())); 797 NBytes = std::min(NBytes - 1, SrcLen); 798 } 799 800 if (SrcLen == 0) { 801 // Transform strlcpy(D, "", N) to (*D = '\0, 0). 802 B.CreateStore(B.getInt8(0), Dst); 803 return ConstantInt::get(CI->getType(), 0); 804 } 805 806 Function *Callee = CI->getCalledFunction(); 807 Type *PT = Callee->getFunctionType()->getParamType(0); 808 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower 809 // bound on strlen(S) + 1 and N, optionally followed by a nul store to 810 // D[N' - 1] if necessary. 811 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 812 ConstantInt::get(DL.getIntPtrType(PT), NBytes)); 813 mergeAttributesAndFlags(NewCI, *CI); 814 815 if (!NulTerm) { 816 Value *EndOff = ConstantInt::get(CI->getType(), NBytes); 817 Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff); 818 B.CreateStore(B.getInt8(0), EndPtr); 819 } 820 821 // Like snprintf, strlcpy returns the number of nonzero bytes that would 822 // have been copied if the bound had been sufficiently big (which in this 823 // case is strlen(Src)). 824 return ConstantInt::get(CI->getType(), SrcLen); 825 } 826 827 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy 828 // otherwise. 829 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd, 830 IRBuilderBase &B) { 831 Function *Callee = CI->getCalledFunction(); 832 Value *Dst = CI->getArgOperand(0); 833 Value *Src = CI->getArgOperand(1); 834 Value *Size = CI->getArgOperand(2); 835 836 if (isKnownNonZero(Size, DL)) { 837 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays 838 // only when N is nonzero. 839 annotateNonNullNoUndefBasedOnAccess(CI, 0); 840 annotateNonNullNoUndefBasedOnAccess(CI, 1); 841 } 842 843 // If the "bound" argument is known set N to it. Otherwise set it to 844 // UINT64_MAX and handle it later. 845 uint64_t N = UINT64_MAX; 846 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 847 N = SizeC->getZExtValue(); 848 849 if (N == 0) 850 // Fold st{p,r}ncpy(D, S, 0) to D. 851 return Dst; 852 853 if (N == 1) { 854 Type *CharTy = B.getInt8Ty(); 855 Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0"); 856 B.CreateStore(CharVal, Dst); 857 if (!RetEnd) 858 // Transform strncpy(D, S, 1) to return (*D = *S), D. 859 return Dst; 860 861 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D. 862 Value *ZeroChar = ConstantInt::get(CharTy, 0); 863 Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp"); 864 865 Value *Off1 = B.getInt32(1); 866 Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end"); 867 return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel"); 868 } 869 870 // If the length of the input string is known set SrcLen to it. 871 uint64_t SrcLen = GetStringLength(Src); 872 if (SrcLen) 873 annotateDereferenceableBytes(CI, 1, SrcLen); 874 else 875 return nullptr; 876 877 --SrcLen; // Unbias length. 878 879 if (SrcLen == 0) { 880 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N. 881 Align MemSetAlign = 882 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 883 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 884 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 885 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 886 CI->getContext(), 0, ArgAttrs)); 887 copyFlags(*CI, NewCI); 888 return Dst; 889 } 890 891 if (N > SrcLen + 1) { 892 if (N > 128) 893 // Bail if N is large or unknown. 894 return nullptr; 895 896 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128. 897 StringRef Str; 898 if (!getConstantStringInfo(Src, Str)) 899 return nullptr; 900 std::string SrcStr = Str.str(); 901 // Create a bigger, nul-padded array with the same length, SrcLen, 902 // as the original string. 903 SrcStr.resize(N, '\0'); 904 Src = B.CreateGlobalString(SrcStr, "str"); 905 } 906 907 Type *PT = Callee->getFunctionType()->getParamType(0); 908 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both 909 // S and N are constant. 910 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 911 ConstantInt::get(DL.getIntPtrType(PT), N)); 912 mergeAttributesAndFlags(NewCI, *CI); 913 if (!RetEnd) 914 return Dst; 915 916 // stpncpy(D, S, N) returns the address of the first null in D if it writes 917 // one, otherwise D + N. 918 Value *Off = B.getInt64(std::min(SrcLen, N)); 919 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr"); 920 } 921 922 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 923 unsigned CharSize, 924 Value *Bound) { 925 Value *Src = CI->getArgOperand(0); 926 Type *CharTy = B.getIntNTy(CharSize); 927 928 if (isOnlyUsedInZeroEqualityComparison(CI) && 929 (!Bound || isKnownNonZero(Bound, DL))) { 930 // Fold strlen: 931 // strlen(x) != 0 --> *x != 0 932 // strlen(x) == 0 --> *x == 0 933 // and likewise strnlen with constant N > 0: 934 // strnlen(x, N) != 0 --> *x != 0 935 // strnlen(x, N) == 0 --> *x == 0 936 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 937 CI->getType()); 938 } 939 940 if (Bound) { 941 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 942 if (BoundCst->isZero()) 943 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 944 return ConstantInt::get(CI->getType(), 0); 945 946 if (BoundCst->isOne()) { 947 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 948 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 949 Value *ZeroChar = ConstantInt::get(CharTy, 0); 950 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 951 return B.CreateZExt(Cmp, CI->getType()); 952 } 953 } 954 } 955 956 if (uint64_t Len = GetStringLength(Src, CharSize)) { 957 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 958 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 959 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 960 if (Bound) 961 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 962 return LenC; 963 } 964 965 if (Bound) 966 // Punt for strnlen for now. 967 return nullptr; 968 969 // If s is a constant pointer pointing to a string literal, we can fold 970 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 971 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 972 // We only try to simplify strlen when the pointer s points to an array 973 // of CharSize elements. Otherwise, we would need to scale the offset x before 974 // doing the subtraction. This will make the optimization more complex, and 975 // it's not very useful because calling strlen for a pointer of other types is 976 // very uncommon. 977 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 978 // TODO: Handle subobjects. 979 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 980 return nullptr; 981 982 ConstantDataArraySlice Slice; 983 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 984 uint64_t NullTermIdx; 985 if (Slice.Array == nullptr) { 986 NullTermIdx = 0; 987 } else { 988 NullTermIdx = ~((uint64_t)0); 989 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 990 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 991 NullTermIdx = I; 992 break; 993 } 994 } 995 // If the string does not have '\0', leave it to strlen to compute 996 // its length. 997 if (NullTermIdx == ~((uint64_t)0)) 998 return nullptr; 999 } 1000 1001 Value *Offset = GEP->getOperand(2); 1002 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 1003 uint64_t ArrSize = 1004 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 1005 1006 // If Offset is not provably in the range [0, NullTermIdx], we can still 1007 // optimize if we can prove that the program has undefined behavior when 1008 // Offset is outside that range. That is the case when GEP->getOperand(0) 1009 // is a pointer to an object whose memory extent is NullTermIdx+1. 1010 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 1011 (isa<GlobalVariable>(GEP->getOperand(0)) && 1012 NullTermIdx == ArrSize - 1)) { 1013 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 1014 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 1015 Offset); 1016 } 1017 } 1018 } 1019 1020 // strlen(x?"foo":"bars") --> x ? 3 : 4 1021 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 1022 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 1023 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 1024 if (LenTrue && LenFalse) { 1025 ORE.emit([&]() { 1026 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 1027 << "folded strlen(select) to select of constants"; 1028 }); 1029 return B.CreateSelect(SI->getCondition(), 1030 ConstantInt::get(CI->getType(), LenTrue - 1), 1031 ConstantInt::get(CI->getType(), LenFalse - 1)); 1032 } 1033 } 1034 1035 return nullptr; 1036 } 1037 1038 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 1039 if (Value *V = optimizeStringLength(CI, B, 8)) 1040 return V; 1041 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1042 return nullptr; 1043 } 1044 1045 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 1046 Value *Bound = CI->getArgOperand(1); 1047 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 1048 return V; 1049 1050 if (isKnownNonZero(Bound, DL)) 1051 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1052 return nullptr; 1053 } 1054 1055 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 1056 Module &M = *CI->getModule(); 1057 unsigned WCharSize = TLI->getWCharSize(M) * 8; 1058 // We cannot perform this optimization without wchar_size metadata. 1059 if (WCharSize == 0) 1060 return nullptr; 1061 1062 return optimizeStringLength(CI, B, WCharSize); 1063 } 1064 1065 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 1066 StringRef S1, S2; 1067 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1068 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1069 1070 // strpbrk(s, "") -> nullptr 1071 // strpbrk("", s) -> nullptr 1072 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1073 return Constant::getNullValue(CI->getType()); 1074 1075 // Constant folding. 1076 if (HasS1 && HasS2) { 1077 size_t I = S1.find_first_of(S2); 1078 if (I == StringRef::npos) // No match. 1079 return Constant::getNullValue(CI->getType()); 1080 1081 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0), 1082 B.getInt64(I), "strpbrk"); 1083 } 1084 1085 // strpbrk(s, "a") -> strchr(s, 'a') 1086 if (HasS2 && S2.size() == 1) 1087 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 1088 1089 return nullptr; 1090 } 1091 1092 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 1093 Value *EndPtr = CI->getArgOperand(1); 1094 if (isa<ConstantPointerNull>(EndPtr)) { 1095 // With a null EndPtr, this function won't capture the main argument. 1096 // It would be readonly too, except that it still may write to errno. 1097 CI->addParamAttr(0, Attribute::NoCapture); 1098 } 1099 1100 return nullptr; 1101 } 1102 1103 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 1104 StringRef S1, S2; 1105 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1106 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1107 1108 // strspn(s, "") -> 0 1109 // strspn("", s) -> 0 1110 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1111 return Constant::getNullValue(CI->getType()); 1112 1113 // Constant folding. 1114 if (HasS1 && HasS2) { 1115 size_t Pos = S1.find_first_not_of(S2); 1116 if (Pos == StringRef::npos) 1117 Pos = S1.size(); 1118 return ConstantInt::get(CI->getType(), Pos); 1119 } 1120 1121 return nullptr; 1122 } 1123 1124 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 1125 StringRef S1, S2; 1126 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1127 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1128 1129 // strcspn("", s) -> 0 1130 if (HasS1 && S1.empty()) 1131 return Constant::getNullValue(CI->getType()); 1132 1133 // Constant folding. 1134 if (HasS1 && HasS2) { 1135 size_t Pos = S1.find_first_of(S2); 1136 if (Pos == StringRef::npos) 1137 Pos = S1.size(); 1138 return ConstantInt::get(CI->getType(), Pos); 1139 } 1140 1141 // strcspn(s, "") -> strlen(s) 1142 if (HasS2 && S2.empty()) 1143 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 1144 1145 return nullptr; 1146 } 1147 1148 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 1149 // fold strstr(x, x) -> x. 1150 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 1151 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 1152 1153 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 1154 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 1155 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 1156 if (!StrLen) 1157 return nullptr; 1158 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 1159 StrLen, B, DL, TLI); 1160 if (!StrNCmp) 1161 return nullptr; 1162 for (User *U : llvm::make_early_inc_range(CI->users())) { 1163 ICmpInst *Old = cast<ICmpInst>(U); 1164 Value *Cmp = 1165 B.CreateICmp(Old->getPredicate(), StrNCmp, 1166 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 1167 replaceAllUsesWith(Old, Cmp); 1168 } 1169 return CI; 1170 } 1171 1172 // See if either input string is a constant string. 1173 StringRef SearchStr, ToFindStr; 1174 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 1175 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 1176 1177 // fold strstr(x, "") -> x. 1178 if (HasStr2 && ToFindStr.empty()) 1179 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 1180 1181 // If both strings are known, constant fold it. 1182 if (HasStr1 && HasStr2) { 1183 size_t Offset = SearchStr.find(ToFindStr); 1184 1185 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 1186 return Constant::getNullValue(CI->getType()); 1187 1188 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 1189 Value *Result = castToCStr(CI->getArgOperand(0), B); 1190 Result = 1191 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 1192 return B.CreateBitCast(Result, CI->getType()); 1193 } 1194 1195 // fold strstr(x, "y") -> strchr(x, 'y'). 1196 if (HasStr2 && ToFindStr.size() == 1) { 1197 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 1198 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 1199 } 1200 1201 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 1202 return nullptr; 1203 } 1204 1205 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 1206 Value *SrcStr = CI->getArgOperand(0); 1207 Value *Size = CI->getArgOperand(2); 1208 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1209 Value *CharVal = CI->getArgOperand(1); 1210 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1211 Value *NullPtr = Constant::getNullValue(CI->getType()); 1212 1213 if (LenC) { 1214 if (LenC->isZero()) 1215 // Fold memrchr(x, y, 0) --> null. 1216 return NullPtr; 1217 1218 if (LenC->isOne()) { 1219 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 1220 // constant or otherwise. 1221 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 1222 // Slice off the character's high end bits. 1223 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1224 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 1225 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 1226 } 1227 } 1228 1229 StringRef Str; 1230 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1231 return nullptr; 1232 1233 if (Str.size() == 0) 1234 // If the array is empty fold memrchr(A, C, N) to null for any value 1235 // of C and N on the basis that the only valid value of N is zero 1236 // (otherwise the call is undefined). 1237 return NullPtr; 1238 1239 uint64_t EndOff = UINT64_MAX; 1240 if (LenC) { 1241 EndOff = LenC->getZExtValue(); 1242 if (Str.size() < EndOff) 1243 // Punt out-of-bounds accesses to sanitizers and/or libc. 1244 return nullptr; 1245 } 1246 1247 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 1248 // Fold memrchr(S, C, N) for a constant C. 1249 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 1250 if (Pos == StringRef::npos) 1251 // When the character is not in the source array fold the result 1252 // to null regardless of Size. 1253 return NullPtr; 1254 1255 if (LenC) 1256 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 1257 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 1258 1259 if (Str.find(Str[Pos]) == Pos) { 1260 // When there is just a single occurrence of C in S, i.e., the one 1261 // in Str[Pos], fold 1262 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 1263 // for nonconstant N. 1264 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1265 "memrchr.cmp"); 1266 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, 1267 B.getInt64(Pos), "memrchr.ptr_plus"); 1268 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 1269 } 1270 } 1271 1272 // Truncate the string to search at most EndOff characters. 1273 Str = Str.substr(0, EndOff); 1274 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 1275 return nullptr; 1276 1277 // If the source array consists of all equal characters, then for any 1278 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 1279 // N != 0 && *S == C ? S + N - 1 : null 1280 Type *SizeTy = Size->getType(); 1281 Type *Int8Ty = B.getInt8Ty(); 1282 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1283 // Slice off the sought character's high end bits. 1284 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1285 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 1286 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 1287 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 1288 Value *SrcPlus = 1289 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 1290 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 1291 } 1292 1293 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 1294 Value *SrcStr = CI->getArgOperand(0); 1295 Value *Size = CI->getArgOperand(2); 1296 1297 if (isKnownNonZero(Size, DL)) { 1298 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1299 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1300 return memChrToCharCompare(CI, Size, B, DL); 1301 } 1302 1303 Value *CharVal = CI->getArgOperand(1); 1304 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1305 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1306 Value *NullPtr = Constant::getNullValue(CI->getType()); 1307 1308 // memchr(x, y, 0) -> null 1309 if (LenC) { 1310 if (LenC->isZero()) 1311 return NullPtr; 1312 1313 if (LenC->isOne()) { 1314 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1315 // constant or otherwise. 1316 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1317 // Slice off the character's high end bits. 1318 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1319 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1320 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1321 } 1322 } 1323 1324 StringRef Str; 1325 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1326 return nullptr; 1327 1328 if (CharC) { 1329 size_t Pos = Str.find(CharC->getZExtValue()); 1330 if (Pos == StringRef::npos) 1331 // When the character is not in the source array fold the result 1332 // to null regardless of Size. 1333 return NullPtr; 1334 1335 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1336 // When the constant Size is less than or equal to the character 1337 // position also fold the result to null. 1338 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1339 "memchr.cmp"); 1340 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 1341 "memchr.ptr"); 1342 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1343 } 1344 1345 if (Str.size() == 0) 1346 // If the array is empty fold memchr(A, C, N) to null for any value 1347 // of C and N on the basis that the only valid value of N is zero 1348 // (otherwise the call is undefined). 1349 return NullPtr; 1350 1351 if (LenC) 1352 Str = substr(Str, LenC->getZExtValue()); 1353 1354 size_t Pos = Str.find_first_not_of(Str[0]); 1355 if (Pos == StringRef::npos 1356 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) { 1357 // If the source array consists of at most two consecutive sequences 1358 // of the same characters, then for any C and N (whether in bounds or 1359 // not), fold memchr(S, C, N) to 1360 // N != 0 && *S == C ? S : null 1361 // or for the two sequences to: 1362 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null) 1363 // ^Sel2 ^Sel1 are denoted above. 1364 // The latter makes it also possible to fold strchr() calls with strings 1365 // of the same characters. 1366 Type *SizeTy = Size->getType(); 1367 Type *Int8Ty = B.getInt8Ty(); 1368 1369 // Slice off the sought character's high end bits. 1370 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1371 1372 Value *Sel1 = NullPtr; 1373 if (Pos != StringRef::npos) { 1374 // Handle two consecutive sequences of the same characters. 1375 Value *PosVal = ConstantInt::get(SizeTy, Pos); 1376 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]); 1377 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos); 1378 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal); 1379 Value *And = B.CreateAnd(CEqSPos, NGtPos); 1380 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal); 1381 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1"); 1382 } 1383 1384 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]); 1385 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal); 1386 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1387 Value *And = B.CreateAnd(NNeZ, CEqS0); 1388 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2"); 1389 } 1390 1391 if (!LenC) { 1392 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1393 // S is dereferenceable so it's safe to load from it and fold 1394 // memchr(S, C, N) == S to N && *S == C for any C and N. 1395 // TODO: This is safe even even for nonconstant S. 1396 return memChrToCharCompare(CI, Size, B, DL); 1397 1398 // From now on we need a constant length and constant array. 1399 return nullptr; 1400 } 1401 1402 bool OptForSize = CI->getFunction()->hasOptSize() || 1403 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 1404 PGSOQueryType::IRPass); 1405 1406 // If the char is variable but the input str and length are not we can turn 1407 // this memchr call into a simple bit field test. Of course this only works 1408 // when the return value is only checked against null. 1409 // 1410 // It would be really nice to reuse switch lowering here but we can't change 1411 // the CFG at this point. 1412 // 1413 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1414 // != 0 1415 // after bounds check. 1416 if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1417 return nullptr; 1418 1419 unsigned char Max = 1420 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1421 reinterpret_cast<const unsigned char *>(Str.end())); 1422 1423 // Make sure the bit field we're about to create fits in a register on the 1424 // target. 1425 // FIXME: On a 64 bit architecture this prevents us from using the 1426 // interesting range of alpha ascii chars. We could do better by emitting 1427 // two bitfields or shifting the range by 64 if no lower chars are used. 1428 if (!DL.fitsInLegalInteger(Max + 1)) { 1429 // Build chain of ORs 1430 // Transform: 1431 // memchr("abcd", C, 4) != nullptr 1432 // to: 1433 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0 1434 std::string SortedStr = Str.str(); 1435 llvm::sort(SortedStr); 1436 // Compute the number of of non-contiguous ranges. 1437 unsigned NonContRanges = 1; 1438 for (size_t i = 1; i < SortedStr.size(); ++i) { 1439 if (SortedStr[i] > SortedStr[i - 1] + 1) { 1440 NonContRanges++; 1441 } 1442 } 1443 1444 // Restrict this optimization to profitable cases with one or two range 1445 // checks. 1446 if (NonContRanges > 2) 1447 return nullptr; 1448 1449 SmallVector<Value *> CharCompares; 1450 for (unsigned char C : SortedStr) 1451 CharCompares.push_back( 1452 B.CreateICmpEQ(CharVal, ConstantInt::get(CharVal->getType(), C))); 1453 1454 return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType()); 1455 } 1456 1457 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1458 // creating unnecessary illegal types. 1459 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1460 1461 // Now build the bit field. 1462 APInt Bitfield(Width, 0); 1463 for (char C : Str) 1464 Bitfield.setBit((unsigned char)C); 1465 Value *BitfieldC = B.getInt(Bitfield); 1466 1467 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1468 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1469 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1470 1471 // First check that the bit field access is within bounds. 1472 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1473 "memchr.bounds"); 1474 1475 // Create code that checks if the given bit is set in the field. 1476 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1477 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1478 1479 // Finally merge both checks and cast to pointer type. The inttoptr 1480 // implicitly zexts the i1 to intptr type. 1481 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1482 CI->getType()); 1483 } 1484 1485 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 1486 // arrays LHS and RHS and nonconstant Size. 1487 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 1488 Value *Size, bool StrNCmp, 1489 IRBuilderBase &B, const DataLayout &DL) { 1490 if (LHS == RHS) // memcmp(s,s,x) -> 0 1491 return Constant::getNullValue(CI->getType()); 1492 1493 StringRef LStr, RStr; 1494 if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) || 1495 !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false)) 1496 return nullptr; 1497 1498 // If the contents of both constant arrays are known, fold a call to 1499 // memcmp(A, B, N) to 1500 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0) 1501 // where Pos is the first mismatch between A and B, determined below. 1502 1503 uint64_t Pos = 0; 1504 Value *Zero = ConstantInt::get(CI->getType(), 0); 1505 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) { 1506 if (Pos == MinSize || 1507 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) { 1508 // One array is a leading part of the other of equal or greater 1509 // size, or for strncmp, the arrays are equal strings. 1510 // Fold the result to zero. Size is assumed to be in bounds, since 1511 // otherwise the call would be undefined. 1512 return Zero; 1513 } 1514 1515 if (LStr[Pos] != RStr[Pos]) 1516 break; 1517 } 1518 1519 // Normalize the result. 1520 typedef unsigned char UChar; 1521 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1; 1522 Value *MaxSize = ConstantInt::get(Size->getType(), Pos); 1523 Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize); 1524 Value *Res = ConstantInt::get(CI->getType(), IRes); 1525 return B.CreateSelect(Cmp, Zero, Res); 1526 } 1527 1528 // Optimize a memcmp call CI with constant size Len. 1529 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1530 uint64_t Len, IRBuilderBase &B, 1531 const DataLayout &DL) { 1532 if (Len == 0) // memcmp(s1,s2,0) -> 0 1533 return Constant::getNullValue(CI->getType()); 1534 1535 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1536 if (Len == 1) { 1537 Value *LHSV = 1538 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 1539 CI->getType(), "lhsv"); 1540 Value *RHSV = 1541 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 1542 CI->getType(), "rhsv"); 1543 return B.CreateSub(LHSV, RHSV, "chardiff"); 1544 } 1545 1546 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1547 // TODO: The case where both inputs are constants does not need to be limited 1548 // to legal integers or equality comparison. See block below this. 1549 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1550 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1551 Align PrefAlignment = DL.getPrefTypeAlign(IntType); 1552 1553 // First, see if we can fold either argument to a constant. 1554 Value *LHSV = nullptr; 1555 if (auto *LHSC = dyn_cast<Constant>(LHS)) 1556 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1557 1558 Value *RHSV = nullptr; 1559 if (auto *RHSC = dyn_cast<Constant>(RHS)) 1560 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1561 1562 // Don't generate unaligned loads. If either source is constant data, 1563 // alignment doesn't matter for that source because there is no load. 1564 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1565 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1566 if (!LHSV) 1567 LHSV = B.CreateLoad(IntType, LHS, "lhsv"); 1568 if (!RHSV) 1569 RHSV = B.CreateLoad(IntType, RHS, "rhsv"); 1570 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1571 } 1572 } 1573 1574 return nullptr; 1575 } 1576 1577 // Most simplifications for memcmp also apply to bcmp. 1578 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1579 IRBuilderBase &B) { 1580 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1581 Value *Size = CI->getArgOperand(2); 1582 1583 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1584 1585 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL)) 1586 return Res; 1587 1588 // Handle constant Size. 1589 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1590 if (!LenC) 1591 return nullptr; 1592 1593 return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL); 1594 } 1595 1596 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1597 Module *M = CI->getModule(); 1598 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1599 return V; 1600 1601 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1602 // bcmp can be more efficient than memcmp because it only has to know that 1603 // there is a difference, not how different one is to the other. 1604 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1605 isOnlyUsedInZeroEqualityComparison(CI)) { 1606 Value *LHS = CI->getArgOperand(0); 1607 Value *RHS = CI->getArgOperand(1); 1608 Value *Size = CI->getArgOperand(2); 1609 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1610 } 1611 1612 return nullptr; 1613 } 1614 1615 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1616 return optimizeMemCmpBCmpCommon(CI, B); 1617 } 1618 1619 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1620 Value *Size = CI->getArgOperand(2); 1621 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1622 if (isa<IntrinsicInst>(CI)) 1623 return nullptr; 1624 1625 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1626 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1627 CI->getArgOperand(1), Align(1), Size); 1628 mergeAttributesAndFlags(NewCI, *CI); 1629 return CI->getArgOperand(0); 1630 } 1631 1632 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1633 Value *Dst = CI->getArgOperand(0); 1634 Value *Src = CI->getArgOperand(1); 1635 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1636 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1637 StringRef SrcStr; 1638 if (CI->use_empty() && Dst == Src) 1639 return Dst; 1640 // memccpy(d, s, c, 0) -> nullptr 1641 if (N) { 1642 if (N->isNullValue()) 1643 return Constant::getNullValue(CI->getType()); 1644 if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) || 1645 // TODO: Handle zeroinitializer. 1646 !StopChar) 1647 return nullptr; 1648 } else { 1649 return nullptr; 1650 } 1651 1652 // Wrap arg 'c' of type int to char 1653 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1654 if (Pos == StringRef::npos) { 1655 if (N->getZExtValue() <= SrcStr.size()) { 1656 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1657 CI->getArgOperand(3))); 1658 return Constant::getNullValue(CI->getType()); 1659 } 1660 return nullptr; 1661 } 1662 1663 Value *NewN = 1664 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1665 // memccpy -> llvm.memcpy 1666 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1667 return Pos + 1 <= N->getZExtValue() 1668 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1669 : Constant::getNullValue(CI->getType()); 1670 } 1671 1672 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1673 Value *Dst = CI->getArgOperand(0); 1674 Value *N = CI->getArgOperand(2); 1675 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1676 CallInst *NewCI = 1677 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1678 // Propagate attributes, but memcpy has no return value, so make sure that 1679 // any return attributes are compliant. 1680 // TODO: Attach return value attributes to the 1st operand to preserve them? 1681 mergeAttributesAndFlags(NewCI, *CI); 1682 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1683 } 1684 1685 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1686 Value *Size = CI->getArgOperand(2); 1687 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1688 if (isa<IntrinsicInst>(CI)) 1689 return nullptr; 1690 1691 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1692 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1693 CI->getArgOperand(1), Align(1), Size); 1694 mergeAttributesAndFlags(NewCI, *CI); 1695 return CI->getArgOperand(0); 1696 } 1697 1698 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1699 Value *Size = CI->getArgOperand(2); 1700 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1701 if (isa<IntrinsicInst>(CI)) 1702 return nullptr; 1703 1704 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1705 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1706 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1707 mergeAttributesAndFlags(NewCI, *CI); 1708 return CI->getArgOperand(0); 1709 } 1710 1711 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1712 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1713 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1714 1715 return nullptr; 1716 } 1717 1718 // When enabled, replace operator new() calls marked with a hot or cold memprof 1719 // attribute with an operator new() call that takes a __hot_cold_t parameter. 1720 // Currently this is supported by the open source version of tcmalloc, see: 1721 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h 1722 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B, 1723 LibFunc &Func) { 1724 if (!OptimizeHotColdNew) 1725 return nullptr; 1726 1727 uint8_t HotCold; 1728 if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold") 1729 HotCold = ColdNewHintValue; 1730 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot") 1731 HotCold = HotNewHintValue; 1732 else 1733 return nullptr; 1734 1735 switch (Func) { 1736 case LibFunc_Znwm: 1737 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1738 LibFunc_Znwm12__hot_cold_t, HotCold); 1739 case LibFunc_Znam: 1740 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1741 LibFunc_Znam12__hot_cold_t, HotCold); 1742 case LibFunc_ZnwmRKSt9nothrow_t: 1743 return emitHotColdNewNoThrow(CI->getArgOperand(0), CI->getArgOperand(1), B, 1744 TLI, LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, 1745 HotCold); 1746 case LibFunc_ZnamRKSt9nothrow_t: 1747 return emitHotColdNewNoThrow(CI->getArgOperand(0), CI->getArgOperand(1), B, 1748 TLI, LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, 1749 HotCold); 1750 case LibFunc_ZnwmSt11align_val_t: 1751 return emitHotColdNewAligned(CI->getArgOperand(0), CI->getArgOperand(1), B, 1752 TLI, LibFunc_ZnwmSt11align_val_t12__hot_cold_t, 1753 HotCold); 1754 case LibFunc_ZnamSt11align_val_t: 1755 return emitHotColdNewAligned(CI->getArgOperand(0), CI->getArgOperand(1), B, 1756 TLI, LibFunc_ZnamSt11align_val_t12__hot_cold_t, 1757 HotCold); 1758 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 1759 return emitHotColdNewAlignedNoThrow( 1760 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1761 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold); 1762 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 1763 return emitHotColdNewAlignedNoThrow( 1764 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1765 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold); 1766 default: 1767 return nullptr; 1768 } 1769 } 1770 1771 //===----------------------------------------------------------------------===// 1772 // Math Library Optimizations 1773 //===----------------------------------------------------------------------===// 1774 1775 // Replace a libcall \p CI with a call to intrinsic \p IID 1776 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1777 Intrinsic::ID IID) { 1778 // Propagate fast-math flags from the existing call to the new call. 1779 IRBuilderBase::FastMathFlagGuard Guard(B); 1780 B.setFastMathFlags(CI->getFastMathFlags()); 1781 1782 Module *M = CI->getModule(); 1783 Value *V = CI->getArgOperand(0); 1784 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1785 CallInst *NewCall = B.CreateCall(F, V); 1786 NewCall->takeName(CI); 1787 return copyFlags(*CI, NewCall); 1788 } 1789 1790 /// Return a variant of Val with float type. 1791 /// Currently this works in two cases: If Val is an FPExtension of a float 1792 /// value to something bigger, simply return the operand. 1793 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1794 /// loss of precision do so. 1795 static Value *valueHasFloatPrecision(Value *Val) { 1796 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1797 Value *Op = Cast->getOperand(0); 1798 if (Op->getType()->isFloatTy()) 1799 return Op; 1800 } 1801 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1802 APFloat F = Const->getValueAPF(); 1803 bool losesInfo; 1804 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1805 &losesInfo); 1806 if (!losesInfo) 1807 return ConstantFP::get(Const->getContext(), F); 1808 } 1809 return nullptr; 1810 } 1811 1812 /// Shrink double -> float functions. 1813 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1814 bool isBinary, const TargetLibraryInfo *TLI, 1815 bool isPrecise = false) { 1816 Function *CalleeFn = CI->getCalledFunction(); 1817 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1818 return nullptr; 1819 1820 // If not all the uses of the function are converted to float, then bail out. 1821 // This matters if the precision of the result is more important than the 1822 // precision of the arguments. 1823 if (isPrecise) 1824 for (User *U : CI->users()) { 1825 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1826 if (!Cast || !Cast->getType()->isFloatTy()) 1827 return nullptr; 1828 } 1829 1830 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1831 Value *V[2]; 1832 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1833 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1834 if (!V[0] || (isBinary && !V[1])) 1835 return nullptr; 1836 1837 // If call isn't an intrinsic, check that it isn't within a function with the 1838 // same name as the float version of this call, otherwise the result is an 1839 // infinite loop. For example, from MinGW-w64: 1840 // 1841 // float expf(float val) { return (float) exp((double) val); } 1842 StringRef CalleeName = CalleeFn->getName(); 1843 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1844 if (!IsIntrinsic) { 1845 StringRef CallerName = CI->getFunction()->getName(); 1846 if (!CallerName.empty() && CallerName.back() == 'f' && 1847 CallerName.size() == (CalleeName.size() + 1) && 1848 CallerName.startswith(CalleeName)) 1849 return nullptr; 1850 } 1851 1852 // Propagate the math semantics from the current function to the new function. 1853 IRBuilderBase::FastMathFlagGuard Guard(B); 1854 B.setFastMathFlags(CI->getFastMathFlags()); 1855 1856 // g((double) float) -> (double) gf(float) 1857 Value *R; 1858 if (IsIntrinsic) { 1859 Module *M = CI->getModule(); 1860 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1861 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1862 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1863 } else { 1864 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1865 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1866 CalleeAttrs) 1867 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1868 } 1869 return B.CreateFPExt(R, B.getDoubleTy()); 1870 } 1871 1872 /// Shrink double -> float for unary functions. 1873 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1874 const TargetLibraryInfo *TLI, 1875 bool isPrecise = false) { 1876 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1877 } 1878 1879 /// Shrink double -> float for binary functions. 1880 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1881 const TargetLibraryInfo *TLI, 1882 bool isPrecise = false) { 1883 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1884 } 1885 1886 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1887 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1888 if (!CI->isFast()) 1889 return nullptr; 1890 1891 // Propagate fast-math flags from the existing call to new instructions. 1892 IRBuilderBase::FastMathFlagGuard Guard(B); 1893 B.setFastMathFlags(CI->getFastMathFlags()); 1894 1895 Value *Real, *Imag; 1896 if (CI->arg_size() == 1) { 1897 Value *Op = CI->getArgOperand(0); 1898 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1899 Real = B.CreateExtractValue(Op, 0, "real"); 1900 Imag = B.CreateExtractValue(Op, 1, "imag"); 1901 } else { 1902 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1903 Real = CI->getArgOperand(0); 1904 Imag = CI->getArgOperand(1); 1905 } 1906 1907 Value *RealReal = B.CreateFMul(Real, Real); 1908 Value *ImagImag = B.CreateFMul(Imag, Imag); 1909 1910 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1911 CI->getType()); 1912 return copyFlags( 1913 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1914 } 1915 1916 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1917 IRBuilderBase &B) { 1918 if (!isa<FPMathOperator>(Call)) 1919 return nullptr; 1920 1921 IRBuilderBase::FastMathFlagGuard Guard(B); 1922 B.setFastMathFlags(Call->getFastMathFlags()); 1923 1924 // TODO: Can this be shared to also handle LLVM intrinsics? 1925 Value *X; 1926 switch (Func) { 1927 case LibFunc_sin: 1928 case LibFunc_sinf: 1929 case LibFunc_sinl: 1930 case LibFunc_tan: 1931 case LibFunc_tanf: 1932 case LibFunc_tanl: 1933 // sin(-X) --> -sin(X) 1934 // tan(-X) --> -tan(X) 1935 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1936 return B.CreateFNeg( 1937 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1938 break; 1939 case LibFunc_cos: 1940 case LibFunc_cosf: 1941 case LibFunc_cosl: 1942 // cos(-X) --> cos(X) 1943 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1944 return copyFlags(*Call, 1945 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1946 break; 1947 default: 1948 break; 1949 } 1950 return nullptr; 1951 } 1952 1953 // Return a properly extended integer (DstWidth bits wide) if the operation is 1954 // an itofp. 1955 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1956 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1957 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1958 // Make sure that the exponent fits inside an "int" of size DstWidth, 1959 // thus avoiding any range issues that FP has not. 1960 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1961 if (BitWidth < DstWidth || 1962 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1963 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1964 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1965 } 1966 1967 return nullptr; 1968 } 1969 1970 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1971 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1972 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1973 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1974 Module *M = Pow->getModule(); 1975 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1976 Module *Mod = Pow->getModule(); 1977 Type *Ty = Pow->getType(); 1978 bool Ignored; 1979 1980 // Evaluate special cases related to a nested function as the base. 1981 1982 // pow(exp(x), y) -> exp(x * y) 1983 // pow(exp2(x), y) -> exp2(x * y) 1984 // If exp{,2}() is used only once, it is better to fold two transcendental 1985 // math functions into one. If used again, exp{,2}() would still have to be 1986 // called with the original argument, then keep both original transcendental 1987 // functions. However, this transformation is only safe with fully relaxed 1988 // math semantics, since, besides rounding differences, it changes overflow 1989 // and underflow behavior quite dramatically. For example: 1990 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1991 // Whereas: 1992 // exp(1000 * 0.001) = exp(1) 1993 // TODO: Loosen the requirement for fully relaxed math semantics. 1994 // TODO: Handle exp10() when more targets have it available. 1995 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1996 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1997 LibFunc LibFn; 1998 1999 Function *CalleeFn = BaseFn->getCalledFunction(); 2000 if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) && 2001 isLibFuncEmittable(M, TLI, LibFn)) { 2002 StringRef ExpName; 2003 Intrinsic::ID ID; 2004 Value *ExpFn; 2005 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 2006 2007 switch (LibFn) { 2008 default: 2009 return nullptr; 2010 case LibFunc_expf: 2011 case LibFunc_exp: 2012 case LibFunc_expl: 2013 ExpName = TLI->getName(LibFunc_exp); 2014 ID = Intrinsic::exp; 2015 LibFnFloat = LibFunc_expf; 2016 LibFnDouble = LibFunc_exp; 2017 LibFnLongDouble = LibFunc_expl; 2018 break; 2019 case LibFunc_exp2f: 2020 case LibFunc_exp2: 2021 case LibFunc_exp2l: 2022 ExpName = TLI->getName(LibFunc_exp2); 2023 ID = Intrinsic::exp2; 2024 LibFnFloat = LibFunc_exp2f; 2025 LibFnDouble = LibFunc_exp2; 2026 LibFnLongDouble = LibFunc_exp2l; 2027 break; 2028 } 2029 2030 // Create new exp{,2}() with the product as its argument. 2031 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 2032 ExpFn = BaseFn->doesNotAccessMemory() 2033 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 2034 FMul, ExpName) 2035 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 2036 LibFnLongDouble, B, 2037 BaseFn->getAttributes()); 2038 2039 // Since the new exp{,2}() is different from the original one, dead code 2040 // elimination cannot be trusted to remove it, since it may have side 2041 // effects (e.g., errno). When the only consumer for the original 2042 // exp{,2}() is pow(), then it has to be explicitly erased. 2043 substituteInParent(BaseFn, ExpFn); 2044 return ExpFn; 2045 } 2046 } 2047 2048 // Evaluate special cases related to a constant base. 2049 2050 const APFloat *BaseF; 2051 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 2052 return nullptr; 2053 2054 AttributeList NoAttrs; // Attributes are only meaningful on the original call 2055 2056 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 2057 // TODO: This does not work for vectors because there is no ldexp intrinsic. 2058 if (!Ty->isVectorTy() && match(Base, m_SpecificFP(2.0)) && 2059 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 2060 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 2061 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2062 return copyFlags(*Pow, 2063 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 2064 TLI, LibFunc_ldexp, LibFunc_ldexpf, 2065 LibFunc_ldexpl, B, NoAttrs)); 2066 } 2067 2068 // pow(2.0 ** n, x) -> exp2(n * x) 2069 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 2070 APFloat BaseR = APFloat(1.0); 2071 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 2072 BaseR = BaseR / *BaseF; 2073 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 2074 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 2075 APSInt NI(64, false); 2076 if ((IsInteger || IsReciprocal) && 2077 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 2078 APFloat::opOK && 2079 NI > 1 && NI.isPowerOf2()) { 2080 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 2081 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 2082 if (Pow->doesNotAccessMemory()) 2083 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 2084 Mod, Intrinsic::exp2, Ty), 2085 FMul, "exp2")); 2086 else 2087 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2088 LibFunc_exp2f, 2089 LibFunc_exp2l, B, NoAttrs)); 2090 } 2091 } 2092 2093 // pow(10.0, x) -> exp10(x) 2094 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 2095 if (match(Base, m_SpecificFP(10.0)) && 2096 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 2097 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 2098 LibFunc_exp10f, LibFunc_exp10l, 2099 B, NoAttrs)); 2100 2101 // pow(x, y) -> exp2(log2(x) * y) 2102 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 2103 !BaseF->isNegative()) { 2104 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 2105 // Luckily optimizePow has already handled the x == 1 case. 2106 assert(!match(Base, m_FPOne()) && 2107 "pow(1.0, y) should have been simplified earlier!"); 2108 2109 Value *Log = nullptr; 2110 if (Ty->isFloatTy()) 2111 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 2112 else if (Ty->isDoubleTy()) 2113 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 2114 2115 if (Log) { 2116 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 2117 if (Pow->doesNotAccessMemory()) 2118 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 2119 Mod, Intrinsic::exp2, Ty), 2120 FMul, "exp2")); 2121 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 2122 LibFunc_exp2l)) 2123 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2124 LibFunc_exp2f, 2125 LibFunc_exp2l, B, NoAttrs)); 2126 } 2127 } 2128 2129 return nullptr; 2130 } 2131 2132 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 2133 Module *M, IRBuilderBase &B, 2134 const TargetLibraryInfo *TLI) { 2135 // If errno is never set, then use the intrinsic for sqrt(). 2136 if (NoErrno) { 2137 Function *SqrtFn = 2138 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 2139 return B.CreateCall(SqrtFn, V, "sqrt"); 2140 } 2141 2142 // Otherwise, use the libcall for sqrt(). 2143 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 2144 LibFunc_sqrtl)) 2145 // TODO: We also should check that the target can in fact lower the sqrt() 2146 // libcall. We currently have no way to ask this question, so we ask if 2147 // the target has a sqrt() libcall, which is not exactly the same. 2148 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 2149 LibFunc_sqrtl, B, Attrs); 2150 2151 return nullptr; 2152 } 2153 2154 /// Use square root in place of pow(x, +/-0.5). 2155 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 2156 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2157 Module *Mod = Pow->getModule(); 2158 Type *Ty = Pow->getType(); 2159 2160 const APFloat *ExpoF; 2161 if (!match(Expo, m_APFloat(ExpoF)) || 2162 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 2163 return nullptr; 2164 2165 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 2166 // so that requires fast-math-flags (afn or reassoc). 2167 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 2168 return nullptr; 2169 2170 // If we have a pow() library call (accesses memory) and we can't guarantee 2171 // that the base is not an infinity, give up: 2172 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 2173 // errno), but sqrt(-Inf) is required by various standards to set errno. 2174 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 2175 !isKnownNeverInfinity(Base, DL, TLI, 0, AC, Pow)) 2176 return nullptr; 2177 2178 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B, 2179 TLI); 2180 if (!Sqrt) 2181 return nullptr; 2182 2183 // Handle signed zero base by expanding to fabs(sqrt(x)). 2184 if (!Pow->hasNoSignedZeros()) { 2185 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 2186 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 2187 } 2188 2189 Sqrt = copyFlags(*Pow, Sqrt); 2190 2191 // Handle non finite base by expanding to 2192 // (x == -infinity ? +infinity : sqrt(x)). 2193 if (!Pow->hasNoInfs()) { 2194 Value *PosInf = ConstantFP::getInfinity(Ty), 2195 *NegInf = ConstantFP::getInfinity(Ty, true); 2196 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 2197 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 2198 } 2199 2200 // If the exponent is negative, then get the reciprocal. 2201 if (ExpoF->isNegative()) 2202 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 2203 2204 return Sqrt; 2205 } 2206 2207 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 2208 IRBuilderBase &B) { 2209 Value *Args[] = {Base, Expo}; 2210 Type *Types[] = {Base->getType(), Expo->getType()}; 2211 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 2212 return B.CreateCall(F, Args); 2213 } 2214 2215 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 2216 Value *Base = Pow->getArgOperand(0); 2217 Value *Expo = Pow->getArgOperand(1); 2218 Function *Callee = Pow->getCalledFunction(); 2219 StringRef Name = Callee->getName(); 2220 Type *Ty = Pow->getType(); 2221 Module *M = Pow->getModule(); 2222 bool AllowApprox = Pow->hasApproxFunc(); 2223 bool Ignored; 2224 2225 // Propagate the math semantics from the call to any created instructions. 2226 IRBuilderBase::FastMathFlagGuard Guard(B); 2227 B.setFastMathFlags(Pow->getFastMathFlags()); 2228 // Evaluate special cases related to the base. 2229 2230 // pow(1.0, x) -> 1.0 2231 if (match(Base, m_FPOne())) 2232 return Base; 2233 2234 if (Value *Exp = replacePowWithExp(Pow, B)) 2235 return Exp; 2236 2237 // Evaluate special cases related to the exponent. 2238 2239 // pow(x, -1.0) -> 1.0 / x 2240 if (match(Expo, m_SpecificFP(-1.0))) 2241 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 2242 2243 // pow(x, +/-0.0) -> 1.0 2244 if (match(Expo, m_AnyZeroFP())) 2245 return ConstantFP::get(Ty, 1.0); 2246 2247 // pow(x, 1.0) -> x 2248 if (match(Expo, m_FPOne())) 2249 return Base; 2250 2251 // pow(x, 2.0) -> x * x 2252 if (match(Expo, m_SpecificFP(2.0))) 2253 return B.CreateFMul(Base, Base, "square"); 2254 2255 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 2256 return Sqrt; 2257 2258 // If we can approximate pow: 2259 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction 2260 // pow(x, n) -> powi(x, n) if n is a constant signed integer value 2261 const APFloat *ExpoF; 2262 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 2263 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 2264 APFloat ExpoA(abs(*ExpoF)); 2265 APFloat ExpoI(*ExpoF); 2266 Value *Sqrt = nullptr; 2267 if (!ExpoA.isInteger()) { 2268 APFloat Expo2 = ExpoA; 2269 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 2270 // is no floating point exception and the result is an integer, then 2271 // ExpoA == integer + 0.5 2272 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 2273 return nullptr; 2274 2275 if (!Expo2.isInteger()) 2276 return nullptr; 2277 2278 if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) != 2279 APFloat::opInexact) 2280 return nullptr; 2281 if (!ExpoI.isInteger()) 2282 return nullptr; 2283 ExpoF = &ExpoI; 2284 2285 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M, 2286 B, TLI); 2287 if (!Sqrt) 2288 return nullptr; 2289 } 2290 2291 // 0.5 fraction is now optionally handled. 2292 // Do pow -> powi for remaining integer exponent 2293 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 2294 if (ExpoF->isInteger() && 2295 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 2296 APFloat::opOK) { 2297 Value *PowI = copyFlags( 2298 *Pow, 2299 createPowWithIntegerExponent( 2300 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 2301 M, B)); 2302 2303 if (PowI && Sqrt) 2304 return B.CreateFMul(PowI, Sqrt); 2305 2306 return PowI; 2307 } 2308 } 2309 2310 // powf(x, itofp(y)) -> powi(x, y) 2311 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 2312 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2313 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 2314 } 2315 2316 // Shrink pow() to powf() if the arguments are single precision, 2317 // unless the result is expected to be double precision. 2318 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 2319 hasFloatVersion(M, Name)) { 2320 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 2321 return Shrunk; 2322 } 2323 2324 return nullptr; 2325 } 2326 2327 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 2328 Module *M = CI->getModule(); 2329 Function *Callee = CI->getCalledFunction(); 2330 StringRef Name = Callee->getName(); 2331 Value *Ret = nullptr; 2332 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 2333 hasFloatVersion(M, Name)) 2334 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2335 2336 // Bail out for vectors because the code below only expects scalars. 2337 // TODO: This could be allowed if we had a ldexp intrinsic (D14327). 2338 Type *Ty = CI->getType(); 2339 if (Ty->isVectorTy()) 2340 return Ret; 2341 2342 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 2343 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 2344 Value *Op = CI->getArgOperand(0); 2345 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 2346 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 2347 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) { 2348 IRBuilderBase::FastMathFlagGuard Guard(B); 2349 B.setFastMathFlags(CI->getFastMathFlags()); 2350 return copyFlags( 2351 *CI, emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 2352 LibFunc_ldexp, LibFunc_ldexpf, 2353 LibFunc_ldexpl, B, AttributeList())); 2354 } 2355 } 2356 2357 return Ret; 2358 } 2359 2360 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 2361 Module *M = CI->getModule(); 2362 2363 // If we can shrink the call to a float function rather than a double 2364 // function, do that first. 2365 Function *Callee = CI->getCalledFunction(); 2366 StringRef Name = Callee->getName(); 2367 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 2368 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 2369 return Ret; 2370 2371 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 2372 // the intrinsics for improved optimization (for example, vectorization). 2373 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 2374 // From the C standard draft WG14/N1256: 2375 // "Ideally, fmax would be sensitive to the sign of zero, for example 2376 // fmax(-0.0, +0.0) would return +0; however, implementation in software 2377 // might be impractical." 2378 IRBuilderBase::FastMathFlagGuard Guard(B); 2379 FastMathFlags FMF = CI->getFastMathFlags(); 2380 FMF.setNoSignedZeros(); 2381 B.setFastMathFlags(FMF); 2382 2383 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 2384 : Intrinsic::maxnum; 2385 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 2386 return copyFlags( 2387 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 2388 } 2389 2390 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 2391 Function *LogFn = Log->getCalledFunction(); 2392 StringRef LogNm = LogFn->getName(); 2393 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 2394 Module *Mod = Log->getModule(); 2395 Type *Ty = Log->getType(); 2396 Value *Ret = nullptr; 2397 2398 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 2399 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true); 2400 2401 // The earlier call must also be 'fast' in order to do these transforms. 2402 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2403 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2404 return Ret; 2405 2406 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2407 2408 // This is only applicable to log(), log2(), log10(). 2409 if (TLI->getLibFunc(LogNm, LogLb)) 2410 switch (LogLb) { 2411 case LibFunc_logf: 2412 LogID = Intrinsic::log; 2413 ExpLb = LibFunc_expf; 2414 Exp2Lb = LibFunc_exp2f; 2415 Exp10Lb = LibFunc_exp10f; 2416 PowLb = LibFunc_powf; 2417 break; 2418 case LibFunc_log: 2419 LogID = Intrinsic::log; 2420 ExpLb = LibFunc_exp; 2421 Exp2Lb = LibFunc_exp2; 2422 Exp10Lb = LibFunc_exp10; 2423 PowLb = LibFunc_pow; 2424 break; 2425 case LibFunc_logl: 2426 LogID = Intrinsic::log; 2427 ExpLb = LibFunc_expl; 2428 Exp2Lb = LibFunc_exp2l; 2429 Exp10Lb = LibFunc_exp10l; 2430 PowLb = LibFunc_powl; 2431 break; 2432 case LibFunc_log2f: 2433 LogID = Intrinsic::log2; 2434 ExpLb = LibFunc_expf; 2435 Exp2Lb = LibFunc_exp2f; 2436 Exp10Lb = LibFunc_exp10f; 2437 PowLb = LibFunc_powf; 2438 break; 2439 case LibFunc_log2: 2440 LogID = Intrinsic::log2; 2441 ExpLb = LibFunc_exp; 2442 Exp2Lb = LibFunc_exp2; 2443 Exp10Lb = LibFunc_exp10; 2444 PowLb = LibFunc_pow; 2445 break; 2446 case LibFunc_log2l: 2447 LogID = Intrinsic::log2; 2448 ExpLb = LibFunc_expl; 2449 Exp2Lb = LibFunc_exp2l; 2450 Exp10Lb = LibFunc_exp10l; 2451 PowLb = LibFunc_powl; 2452 break; 2453 case LibFunc_log10f: 2454 LogID = Intrinsic::log10; 2455 ExpLb = LibFunc_expf; 2456 Exp2Lb = LibFunc_exp2f; 2457 Exp10Lb = LibFunc_exp10f; 2458 PowLb = LibFunc_powf; 2459 break; 2460 case LibFunc_log10: 2461 LogID = Intrinsic::log10; 2462 ExpLb = LibFunc_exp; 2463 Exp2Lb = LibFunc_exp2; 2464 Exp10Lb = LibFunc_exp10; 2465 PowLb = LibFunc_pow; 2466 break; 2467 case LibFunc_log10l: 2468 LogID = Intrinsic::log10; 2469 ExpLb = LibFunc_expl; 2470 Exp2Lb = LibFunc_exp2l; 2471 Exp10Lb = LibFunc_exp10l; 2472 PowLb = LibFunc_powl; 2473 break; 2474 default: 2475 return Ret; 2476 } 2477 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2478 LogID == Intrinsic::log10) { 2479 if (Ty->getScalarType()->isFloatTy()) { 2480 ExpLb = LibFunc_expf; 2481 Exp2Lb = LibFunc_exp2f; 2482 Exp10Lb = LibFunc_exp10f; 2483 PowLb = LibFunc_powf; 2484 } else if (Ty->getScalarType()->isDoubleTy()) { 2485 ExpLb = LibFunc_exp; 2486 Exp2Lb = LibFunc_exp2; 2487 Exp10Lb = LibFunc_exp10; 2488 PowLb = LibFunc_pow; 2489 } else 2490 return Ret; 2491 } else 2492 return Ret; 2493 2494 IRBuilderBase::FastMathFlagGuard Guard(B); 2495 B.setFastMathFlags(FastMathFlags::getFast()); 2496 2497 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2498 LibFunc ArgLb = NotLibFunc; 2499 TLI->getLibFunc(*Arg, ArgLb); 2500 2501 // log(pow(x,y)) -> y*log(x) 2502 AttributeList NoAttrs; 2503 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 2504 Value *LogX = 2505 Log->doesNotAccessMemory() 2506 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2507 Arg->getOperand(0), "log") 2508 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs); 2509 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 2510 // Since pow() may have side effects, e.g. errno, 2511 // dead code elimination may not be trusted to remove it. 2512 substituteInParent(Arg, MulY); 2513 return MulY; 2514 } 2515 2516 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2517 // TODO: There is no exp10() intrinsic yet. 2518 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2519 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2520 Constant *Eul; 2521 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2522 // FIXME: Add more precise value of e for long double. 2523 Eul = ConstantFP::get(Log->getType(), numbers::e); 2524 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2525 Eul = ConstantFP::get(Log->getType(), 2.0); 2526 else 2527 Eul = ConstantFP::get(Log->getType(), 10.0); 2528 Value *LogE = Log->doesNotAccessMemory() 2529 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2530 Eul, "log") 2531 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs); 2532 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2533 // Since exp() may have side effects, e.g. errno, 2534 // dead code elimination may not be trusted to remove it. 2535 substituteInParent(Arg, MulY); 2536 return MulY; 2537 } 2538 2539 return Ret; 2540 } 2541 2542 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2543 Module *M = CI->getModule(); 2544 Function *Callee = CI->getCalledFunction(); 2545 Value *Ret = nullptr; 2546 // TODO: Once we have a way (other than checking for the existince of the 2547 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2548 // condition below. 2549 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2550 (Callee->getName() == "sqrt" || 2551 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2552 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2553 2554 if (!CI->isFast()) 2555 return Ret; 2556 2557 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2558 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2559 return Ret; 2560 2561 // We're looking for a repeated factor in a multiplication tree, 2562 // so we can do this fold: sqrt(x * x) -> fabs(x); 2563 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2564 Value *Op0 = I->getOperand(0); 2565 Value *Op1 = I->getOperand(1); 2566 Value *RepeatOp = nullptr; 2567 Value *OtherOp = nullptr; 2568 if (Op0 == Op1) { 2569 // Simple match: the operands of the multiply are identical. 2570 RepeatOp = Op0; 2571 } else { 2572 // Look for a more complicated pattern: one of the operands is itself 2573 // a multiply, so search for a common factor in that multiply. 2574 // Note: We don't bother looking any deeper than this first level or for 2575 // variations of this pattern because instcombine's visitFMUL and/or the 2576 // reassociation pass should give us this form. 2577 Value *OtherMul0, *OtherMul1; 2578 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2579 // Pattern: sqrt((x * y) * z) 2580 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2581 // Matched: sqrt((x * x) * z) 2582 RepeatOp = OtherMul0; 2583 OtherOp = Op1; 2584 } 2585 } 2586 } 2587 if (!RepeatOp) 2588 return Ret; 2589 2590 // Fast math flags for any created instructions should match the sqrt 2591 // and multiply. 2592 IRBuilderBase::FastMathFlagGuard Guard(B); 2593 B.setFastMathFlags(I->getFastMathFlags()); 2594 2595 // If we found a repeated factor, hoist it out of the square root and 2596 // replace it with the fabs of that factor. 2597 Type *ArgType = I->getType(); 2598 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2599 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2600 if (OtherOp) { 2601 // If we found a non-repeated factor, we still need to get its square 2602 // root. We then multiply that by the value that was simplified out 2603 // of the square root calculation. 2604 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2605 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2606 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2607 } 2608 return copyFlags(*CI, FabsCall); 2609 } 2610 2611 // TODO: Generalize to handle any trig function and its inverse. 2612 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2613 Module *M = CI->getModule(); 2614 Function *Callee = CI->getCalledFunction(); 2615 Value *Ret = nullptr; 2616 StringRef Name = Callee->getName(); 2617 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name)) 2618 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2619 2620 Value *Op1 = CI->getArgOperand(0); 2621 auto *OpC = dyn_cast<CallInst>(Op1); 2622 if (!OpC) 2623 return Ret; 2624 2625 // Both calls must be 'fast' in order to remove them. 2626 if (!CI->isFast() || !OpC->isFast()) 2627 return Ret; 2628 2629 // tan(atan(x)) -> x 2630 // tanf(atanf(x)) -> x 2631 // tanl(atanl(x)) -> x 2632 LibFunc Func; 2633 Function *F = OpC->getCalledFunction(); 2634 if (F && TLI->getLibFunc(F->getName(), Func) && 2635 isLibFuncEmittable(M, TLI, Func) && 2636 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2637 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2638 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2639 Ret = OpC->getArgOperand(0); 2640 return Ret; 2641 } 2642 2643 static bool isTrigLibCall(CallInst *CI) { 2644 // We can only hope to do anything useful if we can ignore things like errno 2645 // and floating-point exceptions. 2646 // We already checked the prototype. 2647 return CI->doesNotThrow() && CI->doesNotAccessMemory(); 2648 } 2649 2650 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2651 bool UseFloat, Value *&Sin, Value *&Cos, 2652 Value *&SinCos, const TargetLibraryInfo *TLI) { 2653 Module *M = OrigCallee->getParent(); 2654 Type *ArgTy = Arg->getType(); 2655 Type *ResTy; 2656 StringRef Name; 2657 2658 Triple T(OrigCallee->getParent()->getTargetTriple()); 2659 if (UseFloat) { 2660 Name = "__sincospif_stret"; 2661 2662 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2663 // x86_64 can't use {float, float} since that would be returned in both 2664 // xmm0 and xmm1, which isn't what a real struct would do. 2665 ResTy = T.getArch() == Triple::x86_64 2666 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2667 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2668 } else { 2669 Name = "__sincospi_stret"; 2670 ResTy = StructType::get(ArgTy, ArgTy); 2671 } 2672 2673 if (!isLibFuncEmittable(M, TLI, Name)) 2674 return false; 2675 LibFunc TheLibFunc; 2676 TLI->getLibFunc(Name, TheLibFunc); 2677 FunctionCallee Callee = getOrInsertLibFunc( 2678 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2679 2680 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2681 // If the argument is an instruction, it must dominate all uses so put our 2682 // sincos call there. 2683 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2684 } else { 2685 // Otherwise (e.g. for a constant) the beginning of the function is as 2686 // good a place as any. 2687 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2688 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2689 } 2690 2691 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2692 2693 if (SinCos->getType()->isStructTy()) { 2694 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2695 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2696 } else { 2697 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2698 "sinpi"); 2699 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2700 "cospi"); 2701 } 2702 2703 return true; 2704 } 2705 2706 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) { 2707 // Make sure the prototype is as expected, otherwise the rest of the 2708 // function is probably invalid and likely to abort. 2709 if (!isTrigLibCall(CI)) 2710 return nullptr; 2711 2712 Value *Arg = CI->getArgOperand(0); 2713 SmallVector<CallInst *, 1> SinCalls; 2714 SmallVector<CallInst *, 1> CosCalls; 2715 SmallVector<CallInst *, 1> SinCosCalls; 2716 2717 bool IsFloat = Arg->getType()->isFloatTy(); 2718 2719 // Look for all compatible sinpi, cospi and sincospi calls with the same 2720 // argument. If there are enough (in some sense) we can make the 2721 // substitution. 2722 Function *F = CI->getFunction(); 2723 for (User *U : Arg->users()) 2724 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2725 2726 // It's only worthwhile if both sinpi and cospi are actually used. 2727 if (SinCalls.empty() || CosCalls.empty()) 2728 return nullptr; 2729 2730 Value *Sin, *Cos, *SinCos; 2731 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 2732 SinCos, TLI)) 2733 return nullptr; 2734 2735 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2736 Value *Res) { 2737 for (CallInst *C : Calls) 2738 replaceAllUsesWith(C, Res); 2739 }; 2740 2741 replaceTrigInsts(SinCalls, Sin); 2742 replaceTrigInsts(CosCalls, Cos); 2743 replaceTrigInsts(SinCosCalls, SinCos); 2744 2745 return IsSin ? Sin : Cos; 2746 } 2747 2748 void LibCallSimplifier::classifyArgUse( 2749 Value *Val, Function *F, bool IsFloat, 2750 SmallVectorImpl<CallInst *> &SinCalls, 2751 SmallVectorImpl<CallInst *> &CosCalls, 2752 SmallVectorImpl<CallInst *> &SinCosCalls) { 2753 auto *CI = dyn_cast<CallInst>(Val); 2754 if (!CI || CI->use_empty()) 2755 return; 2756 2757 // Don't consider calls in other functions. 2758 if (CI->getFunction() != F) 2759 return; 2760 2761 Module *M = CI->getModule(); 2762 Function *Callee = CI->getCalledFunction(); 2763 LibFunc Func; 2764 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 2765 !isLibFuncEmittable(M, TLI, Func) || 2766 !isTrigLibCall(CI)) 2767 return; 2768 2769 if (IsFloat) { 2770 if (Func == LibFunc_sinpif) 2771 SinCalls.push_back(CI); 2772 else if (Func == LibFunc_cospif) 2773 CosCalls.push_back(CI); 2774 else if (Func == LibFunc_sincospif_stret) 2775 SinCosCalls.push_back(CI); 2776 } else { 2777 if (Func == LibFunc_sinpi) 2778 SinCalls.push_back(CI); 2779 else if (Func == LibFunc_cospi) 2780 CosCalls.push_back(CI); 2781 else if (Func == LibFunc_sincospi_stret) 2782 SinCosCalls.push_back(CI); 2783 } 2784 } 2785 2786 //===----------------------------------------------------------------------===// 2787 // Integer Library Call Optimizations 2788 //===----------------------------------------------------------------------===// 2789 2790 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2791 // All variants of ffs return int which need not be 32 bits wide. 2792 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0 2793 Type *RetType = CI->getType(); 2794 Value *Op = CI->getArgOperand(0); 2795 Type *ArgType = Op->getType(); 2796 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2797 Intrinsic::cttz, ArgType); 2798 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2799 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2800 V = B.CreateIntCast(V, RetType, false); 2801 2802 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2803 return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0)); 2804 } 2805 2806 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2807 // All variants of fls return int which need not be 32 bits wide. 2808 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false)) 2809 Value *Op = CI->getArgOperand(0); 2810 Type *ArgType = Op->getType(); 2811 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2812 Intrinsic::ctlz, ArgType); 2813 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2814 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2815 V); 2816 return B.CreateIntCast(V, CI->getType(), false); 2817 } 2818 2819 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2820 // abs(x) -> x <s 0 ? -x : x 2821 // The negation has 'nsw' because abs of INT_MIN is undefined. 2822 Value *X = CI->getArgOperand(0); 2823 Value *IsNeg = B.CreateIsNeg(X); 2824 Value *NegX = B.CreateNSWNeg(X, "neg"); 2825 return B.CreateSelect(IsNeg, NegX, X); 2826 } 2827 2828 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2829 // isdigit(c) -> (c-'0') <u 10 2830 Value *Op = CI->getArgOperand(0); 2831 Type *ArgType = Op->getType(); 2832 Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp"); 2833 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit"); 2834 return B.CreateZExt(Op, CI->getType()); 2835 } 2836 2837 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2838 // isascii(c) -> c <u 128 2839 Value *Op = CI->getArgOperand(0); 2840 Type *ArgType = Op->getType(); 2841 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii"); 2842 return B.CreateZExt(Op, CI->getType()); 2843 } 2844 2845 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2846 // toascii(c) -> c & 0x7f 2847 return B.CreateAnd(CI->getArgOperand(0), 2848 ConstantInt::get(CI->getType(), 0x7F)); 2849 } 2850 2851 // Fold calls to atoi, atol, and atoll. 2852 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2853 CI->addParamAttr(0, Attribute::NoCapture); 2854 2855 StringRef Str; 2856 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2857 return nullptr; 2858 2859 return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B); 2860 } 2861 2862 // Fold calls to strtol, strtoll, strtoul, and strtoull. 2863 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B, 2864 bool AsSigned) { 2865 Value *EndPtr = CI->getArgOperand(1); 2866 if (isa<ConstantPointerNull>(EndPtr)) { 2867 // With a null EndPtr, this function won't capture the main argument. 2868 // It would be readonly too, except that it still may write to errno. 2869 CI->addParamAttr(0, Attribute::NoCapture); 2870 EndPtr = nullptr; 2871 } else if (!isKnownNonZero(EndPtr, DL)) 2872 return nullptr; 2873 2874 StringRef Str; 2875 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2876 return nullptr; 2877 2878 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2879 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B); 2880 } 2881 2882 return nullptr; 2883 } 2884 2885 //===----------------------------------------------------------------------===// 2886 // Formatting and IO Library Call Optimizations 2887 //===----------------------------------------------------------------------===// 2888 2889 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2890 2891 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2892 int StreamArg) { 2893 Function *Callee = CI->getCalledFunction(); 2894 // Error reporting calls should be cold, mark them as such. 2895 // This applies even to non-builtin calls: it is only a hint and applies to 2896 // functions that the frontend might not understand as builtins. 2897 2898 // This heuristic was suggested in: 2899 // Improving Static Branch Prediction in a Compiler 2900 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2901 // Proceedings of PACT'98, Oct. 1998, IEEE 2902 if (!CI->hasFnAttr(Attribute::Cold) && 2903 isReportingError(Callee, CI, StreamArg)) { 2904 CI->addFnAttr(Attribute::Cold); 2905 } 2906 2907 return nullptr; 2908 } 2909 2910 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2911 if (!Callee || !Callee->isDeclaration()) 2912 return false; 2913 2914 if (StreamArg < 0) 2915 return true; 2916 2917 // These functions might be considered cold, but only if their stream 2918 // argument is stderr. 2919 2920 if (StreamArg >= (int)CI->arg_size()) 2921 return false; 2922 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2923 if (!LI) 2924 return false; 2925 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2926 if (!GV || !GV->isDeclaration()) 2927 return false; 2928 return GV->getName() == "stderr"; 2929 } 2930 2931 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2932 // Check for a fixed format string. 2933 StringRef FormatStr; 2934 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2935 return nullptr; 2936 2937 // Empty format string -> noop. 2938 if (FormatStr.empty()) // Tolerate printf's declared void. 2939 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2940 2941 // Do not do any of the following transformations if the printf return value 2942 // is used, in general the printf return value is not compatible with either 2943 // putchar() or puts(). 2944 if (!CI->use_empty()) 2945 return nullptr; 2946 2947 Type *IntTy = CI->getType(); 2948 // printf("x") -> putchar('x'), even for "%" and "%%". 2949 if (FormatStr.size() == 1 || FormatStr == "%%") { 2950 // Convert the character to unsigned char before passing it to putchar 2951 // to avoid host-specific sign extension in the IR. Putchar converts 2952 // it to unsigned char regardless. 2953 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]); 2954 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 2955 } 2956 2957 // Try to remove call or emit putchar/puts. 2958 if (FormatStr == "%s" && CI->arg_size() > 1) { 2959 StringRef OperandStr; 2960 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2961 return nullptr; 2962 // printf("%s", "") --> NOP 2963 if (OperandStr.empty()) 2964 return (Value *)CI; 2965 // printf("%s", "a") --> putchar('a') 2966 if (OperandStr.size() == 1) { 2967 // Convert the character to unsigned char before passing it to putchar 2968 // to avoid host-specific sign extension in the IR. Putchar converts 2969 // it to unsigned char regardless. 2970 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]); 2971 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 2972 } 2973 // printf("%s", str"\n") --> puts(str) 2974 if (OperandStr.back() == '\n') { 2975 OperandStr = OperandStr.drop_back(); 2976 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2977 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2978 } 2979 return nullptr; 2980 } 2981 2982 // printf("foo\n") --> puts("foo") 2983 if (FormatStr.back() == '\n' && 2984 !FormatStr.contains('%')) { // No format characters. 2985 // Create a string literal with no \n on it. We expect the constant merge 2986 // pass to be run after this pass, to merge duplicate strings. 2987 FormatStr = FormatStr.drop_back(); 2988 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2989 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2990 } 2991 2992 // Optimize specific format strings. 2993 // printf("%c", chr) --> putchar(chr) 2994 if (FormatStr == "%c" && CI->arg_size() > 1 && 2995 CI->getArgOperand(1)->getType()->isIntegerTy()) { 2996 // Convert the argument to the type expected by putchar, i.e., int, which 2997 // need not be 32 bits wide but which is the same as printf's return type. 2998 Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false); 2999 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3000 } 3001 3002 // printf("%s\n", str) --> puts(str) 3003 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 3004 CI->getArgOperand(1)->getType()->isPointerTy()) 3005 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 3006 return nullptr; 3007 } 3008 3009 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 3010 3011 Module *M = CI->getModule(); 3012 Function *Callee = CI->getCalledFunction(); 3013 FunctionType *FT = Callee->getFunctionType(); 3014 if (Value *V = optimizePrintFString(CI, B)) { 3015 return V; 3016 } 3017 3018 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3019 3020 // printf(format, ...) -> iprintf(format, ...) if no floating point 3021 // arguments. 3022 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 3023 !callHasFloatingPointArgument(CI)) { 3024 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 3025 Callee->getAttributes()); 3026 CallInst *New = cast<CallInst>(CI->clone()); 3027 New->setCalledFunction(IPrintFFn); 3028 B.Insert(New); 3029 return New; 3030 } 3031 3032 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 3033 // arguments. 3034 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 3035 !callHasFP128Argument(CI)) { 3036 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 3037 Callee->getAttributes()); 3038 CallInst *New = cast<CallInst>(CI->clone()); 3039 New->setCalledFunction(SmallPrintFFn); 3040 B.Insert(New); 3041 return New; 3042 } 3043 3044 return nullptr; 3045 } 3046 3047 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 3048 IRBuilderBase &B) { 3049 // Check for a fixed format string. 3050 StringRef FormatStr; 3051 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3052 return nullptr; 3053 3054 // If we just have a format string (nothing else crazy) transform it. 3055 Value *Dest = CI->getArgOperand(0); 3056 if (CI->arg_size() == 2) { 3057 // Make sure there's no % in the constant array. We could try to handle 3058 // %% -> % in the future if we cared. 3059 if (FormatStr.contains('%')) 3060 return nullptr; // we found a format specifier, bail out. 3061 3062 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 3063 B.CreateMemCpy( 3064 Dest, Align(1), CI->getArgOperand(1), Align(1), 3065 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 3066 FormatStr.size() + 1)); // Copy the null byte. 3067 return ConstantInt::get(CI->getType(), FormatStr.size()); 3068 } 3069 3070 // The remaining optimizations require the format string to be "%s" or "%c" 3071 // and have an extra operand. 3072 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3073 return nullptr; 3074 3075 // Decode the second character of the format string. 3076 if (FormatStr[1] == 'c') { 3077 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3078 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3079 return nullptr; 3080 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 3081 Value *Ptr = castToCStr(Dest, B); 3082 B.CreateStore(V, Ptr); 3083 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3084 B.CreateStore(B.getInt8(0), Ptr); 3085 3086 return ConstantInt::get(CI->getType(), 1); 3087 } 3088 3089 if (FormatStr[1] == 's') { 3090 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 3091 // strlen(str)+1) 3092 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3093 return nullptr; 3094 3095 if (CI->use_empty()) 3096 // sprintf(dest, "%s", str) -> strcpy(dest, str) 3097 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 3098 3099 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 3100 if (SrcLen) { 3101 B.CreateMemCpy( 3102 Dest, Align(1), CI->getArgOperand(2), Align(1), 3103 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 3104 // Returns total number of characters written without null-character. 3105 return ConstantInt::get(CI->getType(), SrcLen - 1); 3106 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 3107 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 3108 // Handle mismatched pointer types (goes away with typeless pointers?). 3109 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 3110 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 3111 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 3112 return B.CreateIntCast(PtrDiff, CI->getType(), false); 3113 } 3114 3115 bool OptForSize = CI->getFunction()->hasOptSize() || 3116 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3117 PGSOQueryType::IRPass); 3118 if (OptForSize) 3119 return nullptr; 3120 3121 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 3122 if (!Len) 3123 return nullptr; 3124 Value *IncLen = 3125 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 3126 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 3127 3128 // The sprintf result is the unincremented number of bytes in the string. 3129 return B.CreateIntCast(Len, CI->getType(), false); 3130 } 3131 return nullptr; 3132 } 3133 3134 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 3135 Module *M = CI->getModule(); 3136 Function *Callee = CI->getCalledFunction(); 3137 FunctionType *FT = Callee->getFunctionType(); 3138 if (Value *V = optimizeSPrintFString(CI, B)) { 3139 return V; 3140 } 3141 3142 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 3143 3144 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 3145 // point arguments. 3146 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 3147 !callHasFloatingPointArgument(CI)) { 3148 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 3149 FT, Callee->getAttributes()); 3150 CallInst *New = cast<CallInst>(CI->clone()); 3151 New->setCalledFunction(SIPrintFFn); 3152 B.Insert(New); 3153 return New; 3154 } 3155 3156 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 3157 // floating point arguments. 3158 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 3159 !callHasFP128Argument(CI)) { 3160 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 3161 Callee->getAttributes()); 3162 CallInst *New = cast<CallInst>(CI->clone()); 3163 New->setCalledFunction(SmallSPrintFFn); 3164 B.Insert(New); 3165 return New; 3166 } 3167 3168 return nullptr; 3169 } 3170 3171 // Transform an snprintf call CI with the bound N to format the string Str 3172 // either to a call to memcpy, or to single character a store, or to nothing, 3173 // and fold the result to a constant. A nonnull StrArg refers to the string 3174 // argument being formatted. Otherwise the call is one with N < 2 and 3175 // the "%c" directive to format a single character. 3176 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg, 3177 StringRef Str, uint64_t N, 3178 IRBuilderBase &B) { 3179 assert(StrArg || (N < 2 && Str.size() == 1)); 3180 3181 unsigned IntBits = TLI->getIntSize(); 3182 uint64_t IntMax = maxIntN(IntBits); 3183 if (Str.size() > IntMax) 3184 // Bail if the string is longer than INT_MAX. POSIX requires 3185 // implementations to set errno to EOVERFLOW in this case, in 3186 // addition to when N is larger than that (checked by the caller). 3187 return nullptr; 3188 3189 Value *StrLen = ConstantInt::get(CI->getType(), Str.size()); 3190 if (N == 0) 3191 return StrLen; 3192 3193 // Set to the number of bytes to copy fron StrArg which is also 3194 // the offset of the terinating nul. 3195 uint64_t NCopy; 3196 if (N > Str.size()) 3197 // Copy the full string, including the terminating nul (which must 3198 // be present regardless of the bound). 3199 NCopy = Str.size() + 1; 3200 else 3201 NCopy = N - 1; 3202 3203 Value *DstArg = CI->getArgOperand(0); 3204 if (NCopy && StrArg) 3205 // Transform the call to lvm.memcpy(dst, fmt, N). 3206 copyFlags( 3207 *CI, 3208 B.CreateMemCpy( 3209 DstArg, Align(1), StrArg, Align(1), 3210 ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy))); 3211 3212 if (N > Str.size()) 3213 // Return early when the whole format string, including the final nul, 3214 // has been copied. 3215 return StrLen; 3216 3217 // Otherwise, when truncating the string append a terminating nul. 3218 Type *Int8Ty = B.getInt8Ty(); 3219 Value *NulOff = B.getIntN(IntBits, NCopy); 3220 Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr"); 3221 B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd); 3222 return StrLen; 3223 } 3224 3225 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 3226 IRBuilderBase &B) { 3227 // Check for size 3228 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3229 if (!Size) 3230 return nullptr; 3231 3232 uint64_t N = Size->getZExtValue(); 3233 uint64_t IntMax = maxIntN(TLI->getIntSize()); 3234 if (N > IntMax) 3235 // Bail if the bound exceeds INT_MAX. POSIX requires implementations 3236 // to set errno to EOVERFLOW in this case. 3237 return nullptr; 3238 3239 Value *DstArg = CI->getArgOperand(0); 3240 Value *FmtArg = CI->getArgOperand(2); 3241 3242 // Check for a fixed format string. 3243 StringRef FormatStr; 3244 if (!getConstantStringInfo(FmtArg, FormatStr)) 3245 return nullptr; 3246 3247 // If we just have a format string (nothing else crazy) transform it. 3248 if (CI->arg_size() == 3) { 3249 if (FormatStr.contains('%')) 3250 // Bail if the format string contains a directive and there are 3251 // no arguments. We could handle "%%" in the future. 3252 return nullptr; 3253 3254 return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B); 3255 } 3256 3257 // The remaining optimizations require the format string to be "%s" or "%c" 3258 // and have an extra operand. 3259 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4) 3260 return nullptr; 3261 3262 // Decode the second character of the format string. 3263 if (FormatStr[1] == 'c') { 3264 if (N <= 1) { 3265 // Use an arbitary string of length 1 to transform the call into 3266 // either a nul store (N == 1) or a no-op (N == 0) and fold it 3267 // to one. 3268 StringRef CharStr("*"); 3269 return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B); 3270 } 3271 3272 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3273 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 3274 return nullptr; 3275 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 3276 Value *Ptr = castToCStr(DstArg, B); 3277 B.CreateStore(V, Ptr); 3278 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3279 B.CreateStore(B.getInt8(0), Ptr); 3280 return ConstantInt::get(CI->getType(), 1); 3281 } 3282 3283 if (FormatStr[1] != 's') 3284 return nullptr; 3285 3286 Value *StrArg = CI->getArgOperand(3); 3287 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 3288 StringRef Str; 3289 if (!getConstantStringInfo(StrArg, Str)) 3290 return nullptr; 3291 3292 return emitSnPrintfMemCpy(CI, StrArg, Str, N, B); 3293 } 3294 3295 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 3296 if (Value *V = optimizeSnPrintFString(CI, B)) { 3297 return V; 3298 } 3299 3300 if (isKnownNonZero(CI->getOperand(1), DL)) 3301 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3302 return nullptr; 3303 } 3304 3305 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 3306 IRBuilderBase &B) { 3307 optimizeErrorReporting(CI, B, 0); 3308 3309 // All the optimizations depend on the format string. 3310 StringRef FormatStr; 3311 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3312 return nullptr; 3313 3314 // Do not do any of the following transformations if the fprintf return 3315 // value is used, in general the fprintf return value is not compatible 3316 // with fwrite(), fputc() or fputs(). 3317 if (!CI->use_empty()) 3318 return nullptr; 3319 3320 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 3321 if (CI->arg_size() == 2) { 3322 // Could handle %% -> % if we cared. 3323 if (FormatStr.contains('%')) 3324 return nullptr; // We found a format specifier. 3325 3326 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3327 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3328 return copyFlags( 3329 *CI, emitFWrite(CI->getArgOperand(1), 3330 ConstantInt::get(SizeTTy, FormatStr.size()), 3331 CI->getArgOperand(0), B, DL, TLI)); 3332 } 3333 3334 // The remaining optimizations require the format string to be "%s" or "%c" 3335 // and have an extra operand. 3336 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3337 return nullptr; 3338 3339 // Decode the second character of the format string. 3340 if (FormatStr[1] == 'c') { 3341 // fprintf(F, "%c", chr) --> fputc((int)chr, F) 3342 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3343 return nullptr; 3344 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3345 Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true, 3346 "chari"); 3347 return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI)); 3348 } 3349 3350 if (FormatStr[1] == 's') { 3351 // fprintf(F, "%s", str) --> fputs(str, F) 3352 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3353 return nullptr; 3354 return copyFlags( 3355 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 3356 } 3357 return nullptr; 3358 } 3359 3360 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 3361 Module *M = CI->getModule(); 3362 Function *Callee = CI->getCalledFunction(); 3363 FunctionType *FT = Callee->getFunctionType(); 3364 if (Value *V = optimizeFPrintFString(CI, B)) { 3365 return V; 3366 } 3367 3368 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 3369 // floating point arguments. 3370 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 3371 !callHasFloatingPointArgument(CI)) { 3372 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 3373 FT, Callee->getAttributes()); 3374 CallInst *New = cast<CallInst>(CI->clone()); 3375 New->setCalledFunction(FIPrintFFn); 3376 B.Insert(New); 3377 return New; 3378 } 3379 3380 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 3381 // 128-bit floating point arguments. 3382 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 3383 !callHasFP128Argument(CI)) { 3384 auto SmallFPrintFFn = 3385 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 3386 Callee->getAttributes()); 3387 CallInst *New = cast<CallInst>(CI->clone()); 3388 New->setCalledFunction(SmallFPrintFFn); 3389 B.Insert(New); 3390 return New; 3391 } 3392 3393 return nullptr; 3394 } 3395 3396 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 3397 optimizeErrorReporting(CI, B, 3); 3398 3399 // Get the element size and count. 3400 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3401 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 3402 if (SizeC && CountC) { 3403 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 3404 3405 // If this is writing zero records, remove the call (it's a noop). 3406 if (Bytes == 0) 3407 return ConstantInt::get(CI->getType(), 0); 3408 3409 // If this is writing one byte, turn it into fputc. 3410 // This optimisation is only valid, if the return value is unused. 3411 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 3412 Value *Char = B.CreateLoad(B.getInt8Ty(), 3413 castToCStr(CI->getArgOperand(0), B), "char"); 3414 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3415 Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari"); 3416 Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI); 3417 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 3418 } 3419 } 3420 3421 return nullptr; 3422 } 3423 3424 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 3425 optimizeErrorReporting(CI, B, 1); 3426 3427 // Don't rewrite fputs to fwrite when optimising for size because fwrite 3428 // requires more arguments and thus extra MOVs are required. 3429 bool OptForSize = CI->getFunction()->hasOptSize() || 3430 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3431 PGSOQueryType::IRPass); 3432 if (OptForSize) 3433 return nullptr; 3434 3435 // We can't optimize if return value is used. 3436 if (!CI->use_empty()) 3437 return nullptr; 3438 3439 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 3440 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 3441 if (!Len) 3442 return nullptr; 3443 3444 // Known to have no uses (see above). 3445 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3446 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3447 return copyFlags( 3448 *CI, 3449 emitFWrite(CI->getArgOperand(0), 3450 ConstantInt::get(SizeTTy, Len - 1), 3451 CI->getArgOperand(1), B, DL, TLI)); 3452 } 3453 3454 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 3455 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3456 if (!CI->use_empty()) 3457 return nullptr; 3458 3459 // Check for a constant string. 3460 // puts("") -> putchar('\n') 3461 StringRef Str; 3462 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) { 3463 // putchar takes an argument of the same type as puts returns, i.e., 3464 // int, which need not be 32 bits wide. 3465 Type *IntTy = CI->getType(); 3466 return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI)); 3467 } 3468 3469 return nullptr; 3470 } 3471 3472 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 3473 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 3474 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 3475 CI->getArgOperand(0), Align(1), 3476 CI->getArgOperand(2))); 3477 } 3478 3479 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 3480 SmallString<20> FloatFuncName = FuncName; 3481 FloatFuncName += 'f'; 3482 return isLibFuncEmittable(M, TLI, FloatFuncName); 3483 } 3484 3485 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 3486 IRBuilderBase &Builder) { 3487 Module *M = CI->getModule(); 3488 LibFunc Func; 3489 Function *Callee = CI->getCalledFunction(); 3490 // Check for string/memory library functions. 3491 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3492 // Make sure we never change the calling convention. 3493 assert( 3494 (ignoreCallingConv(Func) || 3495 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3496 "Optimizing string/memory libcall would change the calling convention"); 3497 switch (Func) { 3498 case LibFunc_strcat: 3499 return optimizeStrCat(CI, Builder); 3500 case LibFunc_strncat: 3501 return optimizeStrNCat(CI, Builder); 3502 case LibFunc_strchr: 3503 return optimizeStrChr(CI, Builder); 3504 case LibFunc_strrchr: 3505 return optimizeStrRChr(CI, Builder); 3506 case LibFunc_strcmp: 3507 return optimizeStrCmp(CI, Builder); 3508 case LibFunc_strncmp: 3509 return optimizeStrNCmp(CI, Builder); 3510 case LibFunc_strcpy: 3511 return optimizeStrCpy(CI, Builder); 3512 case LibFunc_stpcpy: 3513 return optimizeStpCpy(CI, Builder); 3514 case LibFunc_strlcpy: 3515 return optimizeStrLCpy(CI, Builder); 3516 case LibFunc_stpncpy: 3517 return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder); 3518 case LibFunc_strncpy: 3519 return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder); 3520 case LibFunc_strlen: 3521 return optimizeStrLen(CI, Builder); 3522 case LibFunc_strnlen: 3523 return optimizeStrNLen(CI, Builder); 3524 case LibFunc_strpbrk: 3525 return optimizeStrPBrk(CI, Builder); 3526 case LibFunc_strndup: 3527 return optimizeStrNDup(CI, Builder); 3528 case LibFunc_strtol: 3529 case LibFunc_strtod: 3530 case LibFunc_strtof: 3531 case LibFunc_strtoul: 3532 case LibFunc_strtoll: 3533 case LibFunc_strtold: 3534 case LibFunc_strtoull: 3535 return optimizeStrTo(CI, Builder); 3536 case LibFunc_strspn: 3537 return optimizeStrSpn(CI, Builder); 3538 case LibFunc_strcspn: 3539 return optimizeStrCSpn(CI, Builder); 3540 case LibFunc_strstr: 3541 return optimizeStrStr(CI, Builder); 3542 case LibFunc_memchr: 3543 return optimizeMemChr(CI, Builder); 3544 case LibFunc_memrchr: 3545 return optimizeMemRChr(CI, Builder); 3546 case LibFunc_bcmp: 3547 return optimizeBCmp(CI, Builder); 3548 case LibFunc_memcmp: 3549 return optimizeMemCmp(CI, Builder); 3550 case LibFunc_memcpy: 3551 return optimizeMemCpy(CI, Builder); 3552 case LibFunc_memccpy: 3553 return optimizeMemCCpy(CI, Builder); 3554 case LibFunc_mempcpy: 3555 return optimizeMemPCpy(CI, Builder); 3556 case LibFunc_memmove: 3557 return optimizeMemMove(CI, Builder); 3558 case LibFunc_memset: 3559 return optimizeMemSet(CI, Builder); 3560 case LibFunc_realloc: 3561 return optimizeRealloc(CI, Builder); 3562 case LibFunc_wcslen: 3563 return optimizeWcslen(CI, Builder); 3564 case LibFunc_bcopy: 3565 return optimizeBCopy(CI, Builder); 3566 case LibFunc_Znwm: 3567 case LibFunc_ZnwmRKSt9nothrow_t: 3568 case LibFunc_ZnwmSt11align_val_t: 3569 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 3570 case LibFunc_Znam: 3571 case LibFunc_ZnamRKSt9nothrow_t: 3572 case LibFunc_ZnamSt11align_val_t: 3573 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 3574 return optimizeNew(CI, Builder, Func); 3575 default: 3576 break; 3577 } 3578 } 3579 return nullptr; 3580 } 3581 3582 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3583 LibFunc Func, 3584 IRBuilderBase &Builder) { 3585 const Module *M = CI->getModule(); 3586 3587 // Don't optimize calls that require strict floating point semantics. 3588 if (CI->isStrictFP()) 3589 return nullptr; 3590 3591 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 3592 return V; 3593 3594 switch (Func) { 3595 case LibFunc_sinpif: 3596 case LibFunc_sinpi: 3597 return optimizeSinCosPi(CI, /*IsSin*/true, Builder); 3598 case LibFunc_cospif: 3599 case LibFunc_cospi: 3600 return optimizeSinCosPi(CI, /*IsSin*/false, Builder); 3601 case LibFunc_powf: 3602 case LibFunc_pow: 3603 case LibFunc_powl: 3604 return optimizePow(CI, Builder); 3605 case LibFunc_exp2l: 3606 case LibFunc_exp2: 3607 case LibFunc_exp2f: 3608 return optimizeExp2(CI, Builder); 3609 case LibFunc_fabsf: 3610 case LibFunc_fabs: 3611 case LibFunc_fabsl: 3612 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3613 case LibFunc_sqrtf: 3614 case LibFunc_sqrt: 3615 case LibFunc_sqrtl: 3616 return optimizeSqrt(CI, Builder); 3617 case LibFunc_logf: 3618 case LibFunc_log: 3619 case LibFunc_logl: 3620 case LibFunc_log10f: 3621 case LibFunc_log10: 3622 case LibFunc_log10l: 3623 case LibFunc_log1pf: 3624 case LibFunc_log1p: 3625 case LibFunc_log1pl: 3626 case LibFunc_log2f: 3627 case LibFunc_log2: 3628 case LibFunc_log2l: 3629 case LibFunc_logbf: 3630 case LibFunc_logb: 3631 case LibFunc_logbl: 3632 return optimizeLog(CI, Builder); 3633 case LibFunc_tan: 3634 case LibFunc_tanf: 3635 case LibFunc_tanl: 3636 return optimizeTan(CI, Builder); 3637 case LibFunc_ceil: 3638 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3639 case LibFunc_floor: 3640 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3641 case LibFunc_round: 3642 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3643 case LibFunc_roundeven: 3644 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3645 case LibFunc_nearbyint: 3646 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3647 case LibFunc_rint: 3648 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3649 case LibFunc_trunc: 3650 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3651 case LibFunc_acos: 3652 case LibFunc_acosh: 3653 case LibFunc_asin: 3654 case LibFunc_asinh: 3655 case LibFunc_atan: 3656 case LibFunc_atanh: 3657 case LibFunc_cbrt: 3658 case LibFunc_cosh: 3659 case LibFunc_exp: 3660 case LibFunc_exp10: 3661 case LibFunc_expm1: 3662 case LibFunc_cos: 3663 case LibFunc_sin: 3664 case LibFunc_sinh: 3665 case LibFunc_tanh: 3666 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 3667 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 3668 return nullptr; 3669 case LibFunc_copysign: 3670 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 3671 return optimizeBinaryDoubleFP(CI, Builder, TLI); 3672 return nullptr; 3673 case LibFunc_fminf: 3674 case LibFunc_fmin: 3675 case LibFunc_fminl: 3676 case LibFunc_fmaxf: 3677 case LibFunc_fmax: 3678 case LibFunc_fmaxl: 3679 return optimizeFMinFMax(CI, Builder); 3680 case LibFunc_cabs: 3681 case LibFunc_cabsf: 3682 case LibFunc_cabsl: 3683 return optimizeCAbs(CI, Builder); 3684 default: 3685 return nullptr; 3686 } 3687 } 3688 3689 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3690 Module *M = CI->getModule(); 3691 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3692 3693 // TODO: Split out the code below that operates on FP calls so that 3694 // we can all non-FP calls with the StrictFP attribute to be 3695 // optimized. 3696 if (CI->isNoBuiltin()) 3697 return nullptr; 3698 3699 LibFunc Func; 3700 Function *Callee = CI->getCalledFunction(); 3701 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3702 3703 SmallVector<OperandBundleDef, 2> OpBundles; 3704 CI->getOperandBundlesAsDefs(OpBundles); 3705 3706 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3707 Builder.setDefaultOperandBundles(OpBundles); 3708 3709 // Command-line parameter overrides instruction attribute. 3710 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3711 // used by the intrinsic optimizations. 3712 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3713 UnsafeFPShrink = EnableUnsafeFPShrink; 3714 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3715 UnsafeFPShrink = true; 3716 3717 // First, check for intrinsics. 3718 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3719 if (!IsCallingConvC) 3720 return nullptr; 3721 // The FP intrinsics have corresponding constrained versions so we don't 3722 // need to check for the StrictFP attribute here. 3723 switch (II->getIntrinsicID()) { 3724 case Intrinsic::pow: 3725 return optimizePow(CI, Builder); 3726 case Intrinsic::exp2: 3727 return optimizeExp2(CI, Builder); 3728 case Intrinsic::log: 3729 case Intrinsic::log2: 3730 case Intrinsic::log10: 3731 return optimizeLog(CI, Builder); 3732 case Intrinsic::sqrt: 3733 return optimizeSqrt(CI, Builder); 3734 case Intrinsic::memset: 3735 return optimizeMemSet(CI, Builder); 3736 case Intrinsic::memcpy: 3737 return optimizeMemCpy(CI, Builder); 3738 case Intrinsic::memmove: 3739 return optimizeMemMove(CI, Builder); 3740 default: 3741 return nullptr; 3742 } 3743 } 3744 3745 // Also try to simplify calls to fortified library functions. 3746 if (Value *SimplifiedFortifiedCI = 3747 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3748 // Try to further simplify the result. 3749 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3750 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3751 // Ensure that SimplifiedCI's uses are complete, since some calls have 3752 // their uses analyzed. 3753 replaceAllUsesWith(CI, SimplifiedCI); 3754 3755 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3756 // we might replace later on. 3757 IRBuilderBase::InsertPointGuard Guard(Builder); 3758 Builder.SetInsertPoint(SimplifiedCI); 3759 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3760 // If we were able to further simplify, remove the now redundant call. 3761 substituteInParent(SimplifiedCI, V); 3762 return V; 3763 } 3764 } 3765 return SimplifiedFortifiedCI; 3766 } 3767 3768 // Then check for known library functions. 3769 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3770 // We never change the calling convention. 3771 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3772 return nullptr; 3773 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3774 return V; 3775 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3776 return V; 3777 switch (Func) { 3778 case LibFunc_ffs: 3779 case LibFunc_ffsl: 3780 case LibFunc_ffsll: 3781 return optimizeFFS(CI, Builder); 3782 case LibFunc_fls: 3783 case LibFunc_flsl: 3784 case LibFunc_flsll: 3785 return optimizeFls(CI, Builder); 3786 case LibFunc_abs: 3787 case LibFunc_labs: 3788 case LibFunc_llabs: 3789 return optimizeAbs(CI, Builder); 3790 case LibFunc_isdigit: 3791 return optimizeIsDigit(CI, Builder); 3792 case LibFunc_isascii: 3793 return optimizeIsAscii(CI, Builder); 3794 case LibFunc_toascii: 3795 return optimizeToAscii(CI, Builder); 3796 case LibFunc_atoi: 3797 case LibFunc_atol: 3798 case LibFunc_atoll: 3799 return optimizeAtoi(CI, Builder); 3800 case LibFunc_strtol: 3801 case LibFunc_strtoll: 3802 return optimizeStrToInt(CI, Builder, /*AsSigned=*/true); 3803 case LibFunc_strtoul: 3804 case LibFunc_strtoull: 3805 return optimizeStrToInt(CI, Builder, /*AsSigned=*/false); 3806 case LibFunc_printf: 3807 return optimizePrintF(CI, Builder); 3808 case LibFunc_sprintf: 3809 return optimizeSPrintF(CI, Builder); 3810 case LibFunc_snprintf: 3811 return optimizeSnPrintF(CI, Builder); 3812 case LibFunc_fprintf: 3813 return optimizeFPrintF(CI, Builder); 3814 case LibFunc_fwrite: 3815 return optimizeFWrite(CI, Builder); 3816 case LibFunc_fputs: 3817 return optimizeFPuts(CI, Builder); 3818 case LibFunc_puts: 3819 return optimizePuts(CI, Builder); 3820 case LibFunc_perror: 3821 return optimizeErrorReporting(CI, Builder); 3822 case LibFunc_vfprintf: 3823 case LibFunc_fiprintf: 3824 return optimizeErrorReporting(CI, Builder, 0); 3825 default: 3826 return nullptr; 3827 } 3828 } 3829 return nullptr; 3830 } 3831 3832 LibCallSimplifier::LibCallSimplifier( 3833 const DataLayout &DL, const TargetLibraryInfo *TLI, AssumptionCache *AC, 3834 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 3835 ProfileSummaryInfo *PSI, 3836 function_ref<void(Instruction *, Value *)> Replacer, 3837 function_ref<void(Instruction *)> Eraser) 3838 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), AC(AC), ORE(ORE), BFI(BFI), 3839 PSI(PSI), Replacer(Replacer), Eraser(Eraser) {} 3840 3841 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3842 // Indirect through the replacer used in this instance. 3843 Replacer(I, With); 3844 } 3845 3846 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3847 Eraser(I); 3848 } 3849 3850 // TODO: 3851 // Additional cases that we need to add to this file: 3852 // 3853 // cbrt: 3854 // * cbrt(expN(X)) -> expN(x/3) 3855 // * cbrt(sqrt(x)) -> pow(x,1/6) 3856 // * cbrt(cbrt(x)) -> pow(x,1/9) 3857 // 3858 // exp, expf, expl: 3859 // * exp(log(x)) -> x 3860 // 3861 // log, logf, logl: 3862 // * log(exp(x)) -> x 3863 // * log(exp(y)) -> y*log(e) 3864 // * log(exp10(y)) -> y*log(10) 3865 // * log(sqrt(x)) -> 0.5*log(x) 3866 // 3867 // pow, powf, powl: 3868 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3869 // * pow(pow(x,y),z)-> pow(x,y*z) 3870 // 3871 // signbit: 3872 // * signbit(cnst) -> cnst' 3873 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3874 // 3875 // sqrt, sqrtf, sqrtl: 3876 // * sqrt(expN(x)) -> expN(x*0.5) 3877 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3878 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3879 // 3880 3881 //===----------------------------------------------------------------------===// 3882 // Fortified Library Call Optimizations 3883 //===----------------------------------------------------------------------===// 3884 3885 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable( 3886 CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp, 3887 std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) { 3888 // If this function takes a flag argument, the implementation may use it to 3889 // perform extra checks. Don't fold into the non-checking variant. 3890 if (FlagOp) { 3891 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3892 if (!Flag || !Flag->isZero()) 3893 return false; 3894 } 3895 3896 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3897 return true; 3898 3899 if (ConstantInt *ObjSizeCI = 3900 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3901 if (ObjSizeCI->isMinusOne()) 3902 return true; 3903 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3904 if (OnlyLowerUnknownSize) 3905 return false; 3906 if (StrOp) { 3907 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3908 // If the length is 0 we don't know how long it is and so we can't 3909 // remove the check. 3910 if (Len) 3911 annotateDereferenceableBytes(CI, *StrOp, Len); 3912 else 3913 return false; 3914 return ObjSizeCI->getZExtValue() >= Len; 3915 } 3916 3917 if (SizeOp) { 3918 if (ConstantInt *SizeCI = 3919 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3920 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3921 } 3922 } 3923 return false; 3924 } 3925 3926 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3927 IRBuilderBase &B) { 3928 if (isFortifiedCallFoldable(CI, 3, 2)) { 3929 CallInst *NewCI = 3930 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3931 Align(1), CI->getArgOperand(2)); 3932 mergeAttributesAndFlags(NewCI, *CI); 3933 return CI->getArgOperand(0); 3934 } 3935 return nullptr; 3936 } 3937 3938 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3939 IRBuilderBase &B) { 3940 if (isFortifiedCallFoldable(CI, 3, 2)) { 3941 CallInst *NewCI = 3942 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3943 Align(1), CI->getArgOperand(2)); 3944 mergeAttributesAndFlags(NewCI, *CI); 3945 return CI->getArgOperand(0); 3946 } 3947 return nullptr; 3948 } 3949 3950 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3951 IRBuilderBase &B) { 3952 if (isFortifiedCallFoldable(CI, 3, 2)) { 3953 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3954 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3955 CI->getArgOperand(2), Align(1)); 3956 mergeAttributesAndFlags(NewCI, *CI); 3957 return CI->getArgOperand(0); 3958 } 3959 return nullptr; 3960 } 3961 3962 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3963 IRBuilderBase &B) { 3964 const DataLayout &DL = CI->getModule()->getDataLayout(); 3965 if (isFortifiedCallFoldable(CI, 3, 2)) 3966 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3967 CI->getArgOperand(2), B, DL, TLI)) { 3968 return mergeAttributesAndFlags(cast<CallInst>(Call), *CI); 3969 } 3970 return nullptr; 3971 } 3972 3973 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3974 IRBuilderBase &B, 3975 LibFunc Func) { 3976 const DataLayout &DL = CI->getModule()->getDataLayout(); 3977 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3978 *ObjSize = CI->getArgOperand(2); 3979 3980 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3981 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3982 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3983 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3984 } 3985 3986 // If a) we don't have any length information, or b) we know this will 3987 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3988 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3989 // TODO: It might be nice to get a maximum length out of the possible 3990 // string lengths for varying. 3991 if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) { 3992 if (Func == LibFunc_strcpy_chk) 3993 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3994 else 3995 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3996 } 3997 3998 if (OnlyLowerUnknownSize) 3999 return nullptr; 4000 4001 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 4002 uint64_t Len = GetStringLength(Src); 4003 if (Len) 4004 annotateDereferenceableBytes(CI, 1, Len); 4005 else 4006 return nullptr; 4007 4008 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 4009 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 4010 Value *LenV = ConstantInt::get(SizeTTy, Len); 4011 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 4012 // If the function was an __stpcpy_chk, and we were able to fold it into 4013 // a __memcpy_chk, we still need to return the correct end pointer. 4014 if (Ret && Func == LibFunc_stpcpy_chk) 4015 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, 4016 ConstantInt::get(SizeTTy, Len - 1)); 4017 return copyFlags(*CI, cast<CallInst>(Ret)); 4018 } 4019 4020 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 4021 IRBuilderBase &B) { 4022 if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0)) 4023 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 4024 CI->getModule()->getDataLayout(), TLI)); 4025 return nullptr; 4026 } 4027 4028 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 4029 IRBuilderBase &B, 4030 LibFunc Func) { 4031 if (isFortifiedCallFoldable(CI, 3, 2)) { 4032 if (Func == LibFunc_strncpy_chk) 4033 return copyFlags(*CI, 4034 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4035 CI->getArgOperand(2), B, TLI)); 4036 else 4037 return copyFlags(*CI, 4038 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4039 CI->getArgOperand(2), B, TLI)); 4040 } 4041 4042 return nullptr; 4043 } 4044 4045 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 4046 IRBuilderBase &B) { 4047 if (isFortifiedCallFoldable(CI, 4, 3)) 4048 return copyFlags( 4049 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4050 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 4051 4052 return nullptr; 4053 } 4054 4055 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 4056 IRBuilderBase &B) { 4057 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) { 4058 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 4059 return copyFlags(*CI, 4060 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4061 CI->getArgOperand(4), VariadicArgs, B, TLI)); 4062 } 4063 4064 return nullptr; 4065 } 4066 4067 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 4068 IRBuilderBase &B) { 4069 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) { 4070 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 4071 return copyFlags(*CI, 4072 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4073 VariadicArgs, B, TLI)); 4074 } 4075 4076 return nullptr; 4077 } 4078 4079 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 4080 IRBuilderBase &B) { 4081 if (isFortifiedCallFoldable(CI, 2)) 4082 return copyFlags( 4083 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 4084 4085 return nullptr; 4086 } 4087 4088 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 4089 IRBuilderBase &B) { 4090 if (isFortifiedCallFoldable(CI, 3)) 4091 return copyFlags(*CI, 4092 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 4093 CI->getArgOperand(2), B, TLI)); 4094 4095 return nullptr; 4096 } 4097 4098 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 4099 IRBuilderBase &B) { 4100 if (isFortifiedCallFoldable(CI, 3)) 4101 return copyFlags(*CI, 4102 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 4103 CI->getArgOperand(2), B, TLI)); 4104 4105 return nullptr; 4106 } 4107 4108 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 4109 IRBuilderBase &B) { 4110 if (isFortifiedCallFoldable(CI, 3)) 4111 return copyFlags(*CI, 4112 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4113 CI->getArgOperand(2), B, TLI)); 4114 4115 return nullptr; 4116 } 4117 4118 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 4119 IRBuilderBase &B) { 4120 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) 4121 return copyFlags( 4122 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4123 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 4124 4125 return nullptr; 4126 } 4127 4128 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 4129 IRBuilderBase &B) { 4130 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) 4131 return copyFlags(*CI, 4132 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4133 CI->getArgOperand(4), B, TLI)); 4134 4135 return nullptr; 4136 } 4137 4138 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 4139 IRBuilderBase &Builder) { 4140 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 4141 // Some clang users checked for _chk libcall availability using: 4142 // __has_builtin(__builtin___memcpy_chk) 4143 // When compiling with -fno-builtin, this is always true. 4144 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 4145 // end up with fortified libcalls, which isn't acceptable in a freestanding 4146 // environment which only provides their non-fortified counterparts. 4147 // 4148 // Until we change clang and/or teach external users to check for availability 4149 // differently, disregard the "nobuiltin" attribute and TLI::has. 4150 // 4151 // PR23093. 4152 4153 LibFunc Func; 4154 Function *Callee = CI->getCalledFunction(); 4155 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 4156 4157 SmallVector<OperandBundleDef, 2> OpBundles; 4158 CI->getOperandBundlesAsDefs(OpBundles); 4159 4160 IRBuilderBase::OperandBundlesGuard Guard(Builder); 4161 Builder.setDefaultOperandBundles(OpBundles); 4162 4163 // First, check that this is a known library functions and that the prototype 4164 // is correct. 4165 if (!TLI->getLibFunc(*Callee, Func)) 4166 return nullptr; 4167 4168 // We never change the calling convention. 4169 if (!ignoreCallingConv(Func) && !IsCallingConvC) 4170 return nullptr; 4171 4172 switch (Func) { 4173 case LibFunc_memcpy_chk: 4174 return optimizeMemCpyChk(CI, Builder); 4175 case LibFunc_mempcpy_chk: 4176 return optimizeMemPCpyChk(CI, Builder); 4177 case LibFunc_memmove_chk: 4178 return optimizeMemMoveChk(CI, Builder); 4179 case LibFunc_memset_chk: 4180 return optimizeMemSetChk(CI, Builder); 4181 case LibFunc_stpcpy_chk: 4182 case LibFunc_strcpy_chk: 4183 return optimizeStrpCpyChk(CI, Builder, Func); 4184 case LibFunc_strlen_chk: 4185 return optimizeStrLenChk(CI, Builder); 4186 case LibFunc_stpncpy_chk: 4187 case LibFunc_strncpy_chk: 4188 return optimizeStrpNCpyChk(CI, Builder, Func); 4189 case LibFunc_memccpy_chk: 4190 return optimizeMemCCpyChk(CI, Builder); 4191 case LibFunc_snprintf_chk: 4192 return optimizeSNPrintfChk(CI, Builder); 4193 case LibFunc_sprintf_chk: 4194 return optimizeSPrintfChk(CI, Builder); 4195 case LibFunc_strcat_chk: 4196 return optimizeStrCatChk(CI, Builder); 4197 case LibFunc_strlcat_chk: 4198 return optimizeStrLCat(CI, Builder); 4199 case LibFunc_strncat_chk: 4200 return optimizeStrNCatChk(CI, Builder); 4201 case LibFunc_strlcpy_chk: 4202 return optimizeStrLCpyChk(CI, Builder); 4203 case LibFunc_vsnprintf_chk: 4204 return optimizeVSNPrintfChk(CI, Builder); 4205 case LibFunc_vsprintf_chk: 4206 return optimizeVSPrintfChk(CI, Builder); 4207 default: 4208 break; 4209 } 4210 return nullptr; 4211 } 4212 4213 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 4214 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 4215 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 4216