1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/AttributeMask.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/TargetParser/Triple.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/SizeOpts.h" 37 38 #include <cmath> 39 40 using namespace llvm; 41 using namespace PatternMatch; 42 43 static cl::opt<bool> 44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 45 cl::init(false), 46 cl::desc("Enable unsafe double to float " 47 "shrinking for math lib calls")); 48 49 // Enable conversion of operator new calls with a MemProf hot or cold hint 50 // to an operator new call that takes a hot/cold hint. Off by default since 51 // not all allocators currently support this extension. 52 static cl::opt<bool> 53 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false), 54 cl::desc("Enable hot/cold operator new library calls")); 55 56 namespace { 57 58 // Specialized parser to ensure the hint is an 8 bit value (we can't specify 59 // uint8_t to opt<> as that is interpreted to mean that we are passing a char 60 // option with a specific set of values. 61 struct HotColdHintParser : public cl::parser<unsigned> { 62 HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {} 63 64 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 65 if (Arg.getAsInteger(0, Value)) 66 return O.error("'" + Arg + "' value invalid for uint argument!"); 67 68 if (Value > 255) 69 return O.error("'" + Arg + "' value must be in the range [0, 255]!"); 70 71 return false; 72 } 73 }; 74 75 } // end anonymous namespace 76 77 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest 78 // and 255 is the hottest. Default to 1 value away from the coldest and hottest 79 // hints, so that the compiler hinted allocations are slightly less strong than 80 // manually inserted hints at the two extremes. 81 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue( 82 "cold-new-hint-value", cl::Hidden, cl::init(1), 83 cl::desc("Value to pass to hot/cold operator new for cold allocation")); 84 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue( 85 "hot-new-hint-value", cl::Hidden, cl::init(254), 86 cl::desc("Value to pass to hot/cold operator new for hot allocation")); 87 88 //===----------------------------------------------------------------------===// 89 // Helper Functions 90 //===----------------------------------------------------------------------===// 91 92 static bool ignoreCallingConv(LibFunc Func) { 93 return Func == LibFunc_abs || Func == LibFunc_labs || 94 Func == LibFunc_llabs || Func == LibFunc_strlen; 95 } 96 97 /// Return true if it is only used in equality comparisons with With. 98 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 99 for (User *U : V->users()) { 100 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 101 if (IC->isEquality() && IC->getOperand(1) == With) 102 continue; 103 // Unknown instruction. 104 return false; 105 } 106 return true; 107 } 108 109 static bool callHasFloatingPointArgument(const CallInst *CI) { 110 return any_of(CI->operands(), [](const Use &OI) { 111 return OI->getType()->isFloatingPointTy(); 112 }); 113 } 114 115 static bool callHasFP128Argument(const CallInst *CI) { 116 return any_of(CI->operands(), [](const Use &OI) { 117 return OI->getType()->isFP128Ty(); 118 }); 119 } 120 121 // Convert the entire string Str representing an integer in Base, up to 122 // the terminating nul if present, to a constant according to the rules 123 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success 124 // return the result, otherwise null. 125 // The function assumes the string is encoded in ASCII and carefully 126 // avoids converting sequences (including "") that the corresponding 127 // library call might fail and set errno for. 128 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr, 129 uint64_t Base, bool AsSigned, IRBuilderBase &B) { 130 if (Base < 2 || Base > 36) 131 if (Base != 0) 132 // Fail for an invalid base (required by POSIX). 133 return nullptr; 134 135 // Current offset into the original string to reflect in EndPtr. 136 size_t Offset = 0; 137 // Strip leading whitespace. 138 for ( ; Offset != Str.size(); ++Offset) 139 if (!isSpace((unsigned char)Str[Offset])) { 140 Str = Str.substr(Offset); 141 break; 142 } 143 144 if (Str.empty()) 145 // Fail for empty subject sequences (POSIX allows but doesn't require 146 // strtol[l]/strtoul[l] to fail with EINVAL). 147 return nullptr; 148 149 // Strip but remember the sign. 150 bool Negate = Str[0] == '-'; 151 if (Str[0] == '-' || Str[0] == '+') { 152 Str = Str.drop_front(); 153 if (Str.empty()) 154 // Fail for a sign with nothing after it. 155 return nullptr; 156 ++Offset; 157 } 158 159 // Set Max to the absolute value of the minimum (for signed), or 160 // to the maximum (for unsigned) value representable in the type. 161 Type *RetTy = CI->getType(); 162 unsigned NBits = RetTy->getPrimitiveSizeInBits(); 163 uint64_t Max = AsSigned && Negate ? 1 : 0; 164 Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits); 165 166 // Autodetect Base if it's zero and consume the "0x" prefix. 167 if (Str.size() > 1) { 168 if (Str[0] == '0') { 169 if (toUpper((unsigned char)Str[1]) == 'X') { 170 if (Str.size() == 2 || (Base && Base != 16)) 171 // Fail if Base doesn't allow the "0x" prefix or for the prefix 172 // alone that implementations like BSD set errno to EINVAL for. 173 return nullptr; 174 175 Str = Str.drop_front(2); 176 Offset += 2; 177 Base = 16; 178 } 179 else if (Base == 0) 180 Base = 8; 181 } else if (Base == 0) 182 Base = 10; 183 } 184 else if (Base == 0) 185 Base = 10; 186 187 // Convert the rest of the subject sequence, not including the sign, 188 // to its uint64_t representation (this assumes the source character 189 // set is ASCII). 190 uint64_t Result = 0; 191 for (unsigned i = 0; i != Str.size(); ++i) { 192 unsigned char DigVal = Str[i]; 193 if (isDigit(DigVal)) 194 DigVal = DigVal - '0'; 195 else { 196 DigVal = toUpper(DigVal); 197 if (isAlpha(DigVal)) 198 DigVal = DigVal - 'A' + 10; 199 else 200 return nullptr; 201 } 202 203 if (DigVal >= Base) 204 // Fail if the digit is not valid in the Base. 205 return nullptr; 206 207 // Add the digit and fail if the result is not representable in 208 // the (unsigned form of the) destination type. 209 bool VFlow; 210 Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow); 211 if (VFlow || Result > Max) 212 return nullptr; 213 } 214 215 if (EndPtr) { 216 // Store the pointer to the end. 217 Value *Off = B.getInt64(Offset + Str.size()); 218 Value *StrBeg = CI->getArgOperand(0); 219 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr"); 220 B.CreateStore(StrEnd, EndPtr); 221 } 222 223 if (Negate) 224 // Unsigned negation doesn't overflow. 225 Result = -Result; 226 227 return ConstantInt::get(RetTy, Result); 228 } 229 230 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 231 const DataLayout &DL) { 232 if (!isOnlyUsedInZeroComparison(CI)) 233 return false; 234 235 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 236 return false; 237 238 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 239 return false; 240 241 return true; 242 } 243 244 static void annotateDereferenceableBytes(CallInst *CI, 245 ArrayRef<unsigned> ArgNos, 246 uint64_t DereferenceableBytes) { 247 const Function *F = CI->getCaller(); 248 if (!F) 249 return; 250 for (unsigned ArgNo : ArgNos) { 251 uint64_t DerefBytes = DereferenceableBytes; 252 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 253 if (!llvm::NullPointerIsDefined(F, AS) || 254 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 255 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 256 DereferenceableBytes); 257 258 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 259 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 260 if (!llvm::NullPointerIsDefined(F, AS) || 261 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 262 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 263 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 264 CI->getContext(), DerefBytes)); 265 } 266 } 267 } 268 269 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 270 ArrayRef<unsigned> ArgNos) { 271 Function *F = CI->getCaller(); 272 if (!F) 273 return; 274 275 for (unsigned ArgNo : ArgNos) { 276 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 277 CI->addParamAttr(ArgNo, Attribute::NoUndef); 278 279 if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) { 280 unsigned AS = 281 CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 282 if (llvm::NullPointerIsDefined(F, AS)) 283 continue; 284 CI->addParamAttr(ArgNo, Attribute::NonNull); 285 } 286 287 annotateDereferenceableBytes(CI, ArgNo, 1); 288 } 289 } 290 291 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 292 Value *Size, const DataLayout &DL) { 293 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 294 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 295 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 296 } else if (isKnownNonZero(Size, DL)) { 297 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 298 const APInt *X, *Y; 299 uint64_t DerefMin = 1; 300 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 301 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 302 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 303 } 304 } 305 } 306 307 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 308 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 309 // in this function when New is created to replace Old. Callers should take 310 // care to check Old.isMustTailCall() if they aren't replacing Old directly 311 // with New. 312 static Value *copyFlags(const CallInst &Old, Value *New) { 313 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 314 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 315 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 316 NewCI->setTailCallKind(Old.getTailCallKind()); 317 return New; 318 } 319 320 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) { 321 NewCI->setAttributes(AttributeList::get( 322 NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()})); 323 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 324 return copyFlags(Old, NewCI); 325 } 326 327 // Helper to avoid truncating the length if size_t is 32-bits. 328 static StringRef substr(StringRef Str, uint64_t Len) { 329 return Len >= Str.size() ? Str : Str.substr(0, Len); 330 } 331 332 //===----------------------------------------------------------------------===// 333 // String and Memory Library Call Optimizations 334 //===----------------------------------------------------------------------===// 335 336 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 337 // Extract some information from the instruction 338 Value *Dst = CI->getArgOperand(0); 339 Value *Src = CI->getArgOperand(1); 340 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 341 342 // See if we can get the length of the input string. 343 uint64_t Len = GetStringLength(Src); 344 if (Len) 345 annotateDereferenceableBytes(CI, 1, Len); 346 else 347 return nullptr; 348 --Len; // Unbias length. 349 350 // Handle the simple, do-nothing case: strcat(x, "") -> x 351 if (Len == 0) 352 return Dst; 353 354 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 355 } 356 357 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 358 IRBuilderBase &B) { 359 // We need to find the end of the destination string. That's where the 360 // memory is to be moved to. We just generate a call to strlen. 361 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 362 if (!DstLen) 363 return nullptr; 364 365 // Now that we have the destination's length, we must index into the 366 // destination's pointer to get the actual memcpy destination (end of 367 // the string .. we're concatenating). 368 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 369 370 // We have enough information to now generate the memcpy call to do the 371 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 372 B.CreateMemCpy( 373 CpyDst, Align(1), Src, Align(1), 374 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 375 return Dst; 376 } 377 378 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 379 // Extract some information from the instruction. 380 Value *Dst = CI->getArgOperand(0); 381 Value *Src = CI->getArgOperand(1); 382 Value *Size = CI->getArgOperand(2); 383 uint64_t Len; 384 annotateNonNullNoUndefBasedOnAccess(CI, 0); 385 if (isKnownNonZero(Size, DL)) 386 annotateNonNullNoUndefBasedOnAccess(CI, 1); 387 388 // We don't do anything if length is not constant. 389 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 390 if (LengthArg) { 391 Len = LengthArg->getZExtValue(); 392 // strncat(x, c, 0) -> x 393 if (!Len) 394 return Dst; 395 } else { 396 return nullptr; 397 } 398 399 // See if we can get the length of the input string. 400 uint64_t SrcLen = GetStringLength(Src); 401 if (SrcLen) { 402 annotateDereferenceableBytes(CI, 1, SrcLen); 403 --SrcLen; // Unbias length. 404 } else { 405 return nullptr; 406 } 407 408 // strncat(x, "", c) -> x 409 if (SrcLen == 0) 410 return Dst; 411 412 // We don't optimize this case. 413 if (Len < SrcLen) 414 return nullptr; 415 416 // strncat(x, s, c) -> strcat(x, s) 417 // s is constant so the strcat can be optimized further. 418 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 419 } 420 421 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when 422 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function 423 // is that either S is dereferenceable or the value of N is nonzero. 424 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes, 425 IRBuilderBase &B, const DataLayout &DL) 426 { 427 Value *Src = CI->getArgOperand(0); 428 Value *CharVal = CI->getArgOperand(1); 429 430 // Fold memchr(A, C, N) == A to N && *A == C. 431 Type *CharTy = B.getInt8Ty(); 432 Value *Char0 = B.CreateLoad(CharTy, Src); 433 CharVal = B.CreateTrunc(CharVal, CharTy); 434 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp"); 435 436 if (NBytes) { 437 Value *Zero = ConstantInt::get(NBytes->getType(), 0); 438 Value *And = B.CreateICmpNE(NBytes, Zero); 439 Cmp = B.CreateLogicalAnd(And, Cmp); 440 } 441 442 Value *NullPtr = Constant::getNullValue(CI->getType()); 443 return B.CreateSelect(Cmp, Src, NullPtr); 444 } 445 446 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 447 Value *SrcStr = CI->getArgOperand(0); 448 Value *CharVal = CI->getArgOperand(1); 449 annotateNonNullNoUndefBasedOnAccess(CI, 0); 450 451 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 452 return memChrToCharCompare(CI, nullptr, B, DL); 453 454 // If the second operand is non-constant, see if we can compute the length 455 // of the input string and turn this into memchr. 456 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 457 if (!CharC) { 458 uint64_t Len = GetStringLength(SrcStr); 459 if (Len) 460 annotateDereferenceableBytes(CI, 0, Len); 461 else 462 return nullptr; 463 464 Function *Callee = CI->getCalledFunction(); 465 FunctionType *FT = Callee->getFunctionType(); 466 unsigned IntBits = TLI->getIntSize(); 467 if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'. 468 return nullptr; 469 470 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 471 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 472 return copyFlags(*CI, 473 emitMemChr(SrcStr, CharVal, // include nul. 474 ConstantInt::get(SizeTTy, Len), B, 475 DL, TLI)); 476 } 477 478 if (CharC->isZero()) { 479 Value *NullPtr = Constant::getNullValue(CI->getType()); 480 if (isOnlyUsedInEqualityComparison(CI, NullPtr)) 481 // Pre-empt the transformation to strlen below and fold 482 // strchr(A, '\0') == null to false. 483 return B.CreateIntToPtr(B.getTrue(), CI->getType()); 484 } 485 486 // Otherwise, the character is a constant, see if the first argument is 487 // a string literal. If so, we can constant fold. 488 StringRef Str; 489 if (!getConstantStringInfo(SrcStr, Str)) { 490 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 491 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 492 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 493 return nullptr; 494 } 495 496 // Compute the offset, make sure to handle the case when we're searching for 497 // zero (a weird way to spell strlen). 498 size_t I = (0xFF & CharC->getSExtValue()) == 0 499 ? Str.size() 500 : Str.find(CharC->getSExtValue()); 501 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 502 return Constant::getNullValue(CI->getType()); 503 504 // strchr(s+n,c) -> gep(s+n+i,c) 505 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 506 } 507 508 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 509 Value *SrcStr = CI->getArgOperand(0); 510 Value *CharVal = CI->getArgOperand(1); 511 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 512 annotateNonNullNoUndefBasedOnAccess(CI, 0); 513 514 StringRef Str; 515 if (!getConstantStringInfo(SrcStr, Str)) { 516 // strrchr(s, 0) -> strchr(s, 0) 517 if (CharC && CharC->isZero()) 518 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 519 return nullptr; 520 } 521 522 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 523 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 524 525 // Try to expand strrchr to the memrchr nonstandard extension if it's 526 // available, or simply fail otherwise. 527 uint64_t NBytes = Str.size() + 1; // Include the terminating nul. 528 Value *Size = ConstantInt::get(SizeTTy, NBytes); 529 return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI)); 530 } 531 532 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 533 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 534 if (Str1P == Str2P) // strcmp(x,x) -> 0 535 return ConstantInt::get(CI->getType(), 0); 536 537 StringRef Str1, Str2; 538 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 539 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 540 541 // strcmp(x, y) -> cnst (if both x and y are constant strings) 542 if (HasStr1 && HasStr2) 543 return ConstantInt::get(CI->getType(), 544 std::clamp(Str1.compare(Str2), -1, 1)); 545 546 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 547 return B.CreateNeg(B.CreateZExt( 548 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 549 550 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 551 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 552 CI->getType()); 553 554 // strcmp(P, "x") -> memcmp(P, "x", 2) 555 uint64_t Len1 = GetStringLength(Str1P); 556 if (Len1) 557 annotateDereferenceableBytes(CI, 0, Len1); 558 uint64_t Len2 = GetStringLength(Str2P); 559 if (Len2) 560 annotateDereferenceableBytes(CI, 1, Len2); 561 562 if (Len1 && Len2) { 563 return copyFlags( 564 *CI, emitMemCmp(Str1P, Str2P, 565 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 566 std::min(Len1, Len2)), 567 B, DL, TLI)); 568 } 569 570 // strcmp to memcmp 571 if (!HasStr1 && HasStr2) { 572 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 573 return copyFlags( 574 *CI, 575 emitMemCmp(Str1P, Str2P, 576 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 577 B, DL, TLI)); 578 } else if (HasStr1 && !HasStr2) { 579 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 580 return copyFlags( 581 *CI, 582 emitMemCmp(Str1P, Str2P, 583 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 584 B, DL, TLI)); 585 } 586 587 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 588 return nullptr; 589 } 590 591 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 592 // arrays LHS and RHS and nonconstant Size. 593 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 594 Value *Size, bool StrNCmp, 595 IRBuilderBase &B, const DataLayout &DL); 596 597 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 598 Value *Str1P = CI->getArgOperand(0); 599 Value *Str2P = CI->getArgOperand(1); 600 Value *Size = CI->getArgOperand(2); 601 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 602 return ConstantInt::get(CI->getType(), 0); 603 604 if (isKnownNonZero(Size, DL)) 605 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 606 // Get the length argument if it is constant. 607 uint64_t Length; 608 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 609 Length = LengthArg->getZExtValue(); 610 else 611 return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL); 612 613 if (Length == 0) // strncmp(x,y,0) -> 0 614 return ConstantInt::get(CI->getType(), 0); 615 616 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 617 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 618 619 StringRef Str1, Str2; 620 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 621 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 622 623 // strncmp(x, y) -> cnst (if both x and y are constant strings) 624 if (HasStr1 && HasStr2) { 625 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 626 StringRef SubStr1 = substr(Str1, Length); 627 StringRef SubStr2 = substr(Str2, Length); 628 return ConstantInt::get(CI->getType(), 629 std::clamp(SubStr1.compare(SubStr2), -1, 1)); 630 } 631 632 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 633 return B.CreateNeg(B.CreateZExt( 634 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 635 636 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 637 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 638 CI->getType()); 639 640 uint64_t Len1 = GetStringLength(Str1P); 641 if (Len1) 642 annotateDereferenceableBytes(CI, 0, Len1); 643 uint64_t Len2 = GetStringLength(Str2P); 644 if (Len2) 645 annotateDereferenceableBytes(CI, 1, Len2); 646 647 // strncmp to memcmp 648 if (!HasStr1 && HasStr2) { 649 Len2 = std::min(Len2, Length); 650 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 651 return copyFlags( 652 *CI, 653 emitMemCmp(Str1P, Str2P, 654 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 655 B, DL, TLI)); 656 } else if (HasStr1 && !HasStr2) { 657 Len1 = std::min(Len1, Length); 658 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 659 return copyFlags( 660 *CI, 661 emitMemCmp(Str1P, Str2P, 662 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 663 B, DL, TLI)); 664 } 665 666 return nullptr; 667 } 668 669 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 670 Value *Src = CI->getArgOperand(0); 671 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 672 uint64_t SrcLen = GetStringLength(Src); 673 if (SrcLen && Size) { 674 annotateDereferenceableBytes(CI, 0, SrcLen); 675 if (SrcLen <= Size->getZExtValue() + 1) 676 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 677 } 678 679 return nullptr; 680 } 681 682 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 683 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 684 if (Dst == Src) // strcpy(x,x) -> x 685 return Src; 686 687 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 688 // See if we can get the length of the input string. 689 uint64_t Len = GetStringLength(Src); 690 if (Len) 691 annotateDereferenceableBytes(CI, 1, Len); 692 else 693 return nullptr; 694 695 // We have enough information to now generate the memcpy call to do the 696 // copy for us. Make a memcpy to copy the nul byte with align = 1. 697 CallInst *NewCI = 698 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 699 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 700 mergeAttributesAndFlags(NewCI, *CI); 701 return Dst; 702 } 703 704 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 705 Function *Callee = CI->getCalledFunction(); 706 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 707 708 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 709 if (CI->use_empty()) 710 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 711 712 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 713 Value *StrLen = emitStrLen(Src, B, DL, TLI); 714 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 715 } 716 717 // See if we can get the length of the input string. 718 uint64_t Len = GetStringLength(Src); 719 if (Len) 720 annotateDereferenceableBytes(CI, 1, Len); 721 else 722 return nullptr; 723 724 Type *PT = Callee->getFunctionType()->getParamType(0); 725 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 726 Value *DstEnd = B.CreateInBoundsGEP( 727 B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 728 729 // We have enough information to now generate the memcpy call to do the 730 // copy for us. Make a memcpy to copy the nul byte with align = 1. 731 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 732 mergeAttributesAndFlags(NewCI, *CI); 733 return DstEnd; 734 } 735 736 // Optimize a call to size_t strlcpy(char*, const char*, size_t). 737 738 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) { 739 Value *Size = CI->getArgOperand(2); 740 if (isKnownNonZero(Size, DL)) 741 // Like snprintf, the function stores into the destination only when 742 // the size argument is nonzero. 743 annotateNonNullNoUndefBasedOnAccess(CI, 0); 744 // The function reads the source argument regardless of Size (it returns 745 // its length). 746 annotateNonNullNoUndefBasedOnAccess(CI, 1); 747 748 uint64_t NBytes; 749 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 750 NBytes = SizeC->getZExtValue(); 751 else 752 return nullptr; 753 754 Value *Dst = CI->getArgOperand(0); 755 Value *Src = CI->getArgOperand(1); 756 if (NBytes <= 1) { 757 if (NBytes == 1) 758 // For a call to strlcpy(D, S, 1) first store a nul in *D. 759 B.CreateStore(B.getInt8(0), Dst); 760 761 // Transform strlcpy(D, S, 0) to a call to strlen(S). 762 return copyFlags(*CI, emitStrLen(Src, B, DL, TLI)); 763 } 764 765 // Try to determine the length of the source, substituting its size 766 // when it's not nul-terminated (as it's required to be) to avoid 767 // reading past its end. 768 StringRef Str; 769 if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false)) 770 return nullptr; 771 772 uint64_t SrcLen = Str.find('\0'); 773 // Set if the terminating nul should be copied by the call to memcpy 774 // below. 775 bool NulTerm = SrcLen < NBytes; 776 777 if (NulTerm) 778 // Overwrite NBytes with the number of bytes to copy, including 779 // the terminating nul. 780 NBytes = SrcLen + 1; 781 else { 782 // Set the length of the source for the function to return to its 783 // size, and cap NBytes at the same. 784 SrcLen = std::min(SrcLen, uint64_t(Str.size())); 785 NBytes = std::min(NBytes - 1, SrcLen); 786 } 787 788 if (SrcLen == 0) { 789 // Transform strlcpy(D, "", N) to (*D = '\0, 0). 790 B.CreateStore(B.getInt8(0), Dst); 791 return ConstantInt::get(CI->getType(), 0); 792 } 793 794 Function *Callee = CI->getCalledFunction(); 795 Type *PT = Callee->getFunctionType()->getParamType(0); 796 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower 797 // bound on strlen(S) + 1 and N, optionally followed by a nul store to 798 // D[N' - 1] if necessary. 799 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 800 ConstantInt::get(DL.getIntPtrType(PT), NBytes)); 801 mergeAttributesAndFlags(NewCI, *CI); 802 803 if (!NulTerm) { 804 Value *EndOff = ConstantInt::get(CI->getType(), NBytes); 805 Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff); 806 B.CreateStore(B.getInt8(0), EndPtr); 807 } 808 809 // Like snprintf, strlcpy returns the number of nonzero bytes that would 810 // have been copied if the bound had been sufficiently big (which in this 811 // case is strlen(Src)). 812 return ConstantInt::get(CI->getType(), SrcLen); 813 } 814 815 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy 816 // otherwise. 817 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd, 818 IRBuilderBase &B) { 819 Function *Callee = CI->getCalledFunction(); 820 Value *Dst = CI->getArgOperand(0); 821 Value *Src = CI->getArgOperand(1); 822 Value *Size = CI->getArgOperand(2); 823 824 if (isKnownNonZero(Size, DL)) { 825 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays 826 // only when N is nonzero. 827 annotateNonNullNoUndefBasedOnAccess(CI, 0); 828 annotateNonNullNoUndefBasedOnAccess(CI, 1); 829 } 830 831 // If the "bound" argument is known set N to it. Otherwise set it to 832 // UINT64_MAX and handle it later. 833 uint64_t N = UINT64_MAX; 834 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 835 N = SizeC->getZExtValue(); 836 837 if (N == 0) 838 // Fold st{p,r}ncpy(D, S, 0) to D. 839 return Dst; 840 841 if (N == 1) { 842 Type *CharTy = B.getInt8Ty(); 843 Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0"); 844 B.CreateStore(CharVal, Dst); 845 if (!RetEnd) 846 // Transform strncpy(D, S, 1) to return (*D = *S), D. 847 return Dst; 848 849 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D. 850 Value *ZeroChar = ConstantInt::get(CharTy, 0); 851 Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp"); 852 853 Value *Off1 = B.getInt32(1); 854 Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end"); 855 return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel"); 856 } 857 858 // If the length of the input string is known set SrcLen to it. 859 uint64_t SrcLen = GetStringLength(Src); 860 if (SrcLen) 861 annotateDereferenceableBytes(CI, 1, SrcLen); 862 else 863 return nullptr; 864 865 --SrcLen; // Unbias length. 866 867 if (SrcLen == 0) { 868 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N. 869 Align MemSetAlign = 870 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 871 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 872 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 873 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 874 CI->getContext(), 0, ArgAttrs)); 875 copyFlags(*CI, NewCI); 876 return Dst; 877 } 878 879 if (N > SrcLen + 1) { 880 if (N > 128) 881 // Bail if N is large or unknown. 882 return nullptr; 883 884 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128. 885 StringRef Str; 886 if (!getConstantStringInfo(Src, Str)) 887 return nullptr; 888 std::string SrcStr = Str.str(); 889 // Create a bigger, nul-padded array with the same length, SrcLen, 890 // as the original string. 891 SrcStr.resize(N, '\0'); 892 Src = B.CreateGlobalString(SrcStr, "str"); 893 } 894 895 Type *PT = Callee->getFunctionType()->getParamType(0); 896 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both 897 // S and N are constant. 898 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 899 ConstantInt::get(DL.getIntPtrType(PT), N)); 900 mergeAttributesAndFlags(NewCI, *CI); 901 if (!RetEnd) 902 return Dst; 903 904 // stpncpy(D, S, N) returns the address of the first null in D if it writes 905 // one, otherwise D + N. 906 Value *Off = B.getInt64(std::min(SrcLen, N)); 907 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr"); 908 } 909 910 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 911 unsigned CharSize, 912 Value *Bound) { 913 Value *Src = CI->getArgOperand(0); 914 Type *CharTy = B.getIntNTy(CharSize); 915 916 if (isOnlyUsedInZeroEqualityComparison(CI) && 917 (!Bound || isKnownNonZero(Bound, DL))) { 918 // Fold strlen: 919 // strlen(x) != 0 --> *x != 0 920 // strlen(x) == 0 --> *x == 0 921 // and likewise strnlen with constant N > 0: 922 // strnlen(x, N) != 0 --> *x != 0 923 // strnlen(x, N) == 0 --> *x == 0 924 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 925 CI->getType()); 926 } 927 928 if (Bound) { 929 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 930 if (BoundCst->isZero()) 931 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 932 return ConstantInt::get(CI->getType(), 0); 933 934 if (BoundCst->isOne()) { 935 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 936 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 937 Value *ZeroChar = ConstantInt::get(CharTy, 0); 938 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 939 return B.CreateZExt(Cmp, CI->getType()); 940 } 941 } 942 } 943 944 if (uint64_t Len = GetStringLength(Src, CharSize)) { 945 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 946 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 947 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 948 if (Bound) 949 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 950 return LenC; 951 } 952 953 if (Bound) 954 // Punt for strnlen for now. 955 return nullptr; 956 957 // If s is a constant pointer pointing to a string literal, we can fold 958 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 959 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 960 // We only try to simplify strlen when the pointer s points to an array 961 // of CharSize elements. Otherwise, we would need to scale the offset x before 962 // doing the subtraction. This will make the optimization more complex, and 963 // it's not very useful because calling strlen for a pointer of other types is 964 // very uncommon. 965 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 966 // TODO: Handle subobjects. 967 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 968 return nullptr; 969 970 ConstantDataArraySlice Slice; 971 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 972 uint64_t NullTermIdx; 973 if (Slice.Array == nullptr) { 974 NullTermIdx = 0; 975 } else { 976 NullTermIdx = ~((uint64_t)0); 977 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 978 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 979 NullTermIdx = I; 980 break; 981 } 982 } 983 // If the string does not have '\0', leave it to strlen to compute 984 // its length. 985 if (NullTermIdx == ~((uint64_t)0)) 986 return nullptr; 987 } 988 989 Value *Offset = GEP->getOperand(2); 990 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 991 uint64_t ArrSize = 992 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 993 994 // If Offset is not provably in the range [0, NullTermIdx], we can still 995 // optimize if we can prove that the program has undefined behavior when 996 // Offset is outside that range. That is the case when GEP->getOperand(0) 997 // is a pointer to an object whose memory extent is NullTermIdx+1. 998 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 999 (isa<GlobalVariable>(GEP->getOperand(0)) && 1000 NullTermIdx == ArrSize - 1)) { 1001 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 1002 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 1003 Offset); 1004 } 1005 } 1006 } 1007 1008 // strlen(x?"foo":"bars") --> x ? 3 : 4 1009 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 1010 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 1011 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 1012 if (LenTrue && LenFalse) { 1013 ORE.emit([&]() { 1014 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 1015 << "folded strlen(select) to select of constants"; 1016 }); 1017 return B.CreateSelect(SI->getCondition(), 1018 ConstantInt::get(CI->getType(), LenTrue - 1), 1019 ConstantInt::get(CI->getType(), LenFalse - 1)); 1020 } 1021 } 1022 1023 return nullptr; 1024 } 1025 1026 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 1027 if (Value *V = optimizeStringLength(CI, B, 8)) 1028 return V; 1029 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1030 return nullptr; 1031 } 1032 1033 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 1034 Value *Bound = CI->getArgOperand(1); 1035 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 1036 return V; 1037 1038 if (isKnownNonZero(Bound, DL)) 1039 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1040 return nullptr; 1041 } 1042 1043 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 1044 Module &M = *CI->getModule(); 1045 unsigned WCharSize = TLI->getWCharSize(M) * 8; 1046 // We cannot perform this optimization without wchar_size metadata. 1047 if (WCharSize == 0) 1048 return nullptr; 1049 1050 return optimizeStringLength(CI, B, WCharSize); 1051 } 1052 1053 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 1054 StringRef S1, S2; 1055 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1056 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1057 1058 // strpbrk(s, "") -> nullptr 1059 // strpbrk("", s) -> nullptr 1060 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1061 return Constant::getNullValue(CI->getType()); 1062 1063 // Constant folding. 1064 if (HasS1 && HasS2) { 1065 size_t I = S1.find_first_of(S2); 1066 if (I == StringRef::npos) // No match. 1067 return Constant::getNullValue(CI->getType()); 1068 1069 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0), 1070 B.getInt64(I), "strpbrk"); 1071 } 1072 1073 // strpbrk(s, "a") -> strchr(s, 'a') 1074 if (HasS2 && S2.size() == 1) 1075 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 1076 1077 return nullptr; 1078 } 1079 1080 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 1081 Value *EndPtr = CI->getArgOperand(1); 1082 if (isa<ConstantPointerNull>(EndPtr)) { 1083 // With a null EndPtr, this function won't capture the main argument. 1084 // It would be readonly too, except that it still may write to errno. 1085 CI->addParamAttr(0, Attribute::NoCapture); 1086 } 1087 1088 return nullptr; 1089 } 1090 1091 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 1092 StringRef S1, S2; 1093 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1094 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1095 1096 // strspn(s, "") -> 0 1097 // strspn("", s) -> 0 1098 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1099 return Constant::getNullValue(CI->getType()); 1100 1101 // Constant folding. 1102 if (HasS1 && HasS2) { 1103 size_t Pos = S1.find_first_not_of(S2); 1104 if (Pos == StringRef::npos) 1105 Pos = S1.size(); 1106 return ConstantInt::get(CI->getType(), Pos); 1107 } 1108 1109 return nullptr; 1110 } 1111 1112 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 1113 StringRef S1, S2; 1114 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1115 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1116 1117 // strcspn("", s) -> 0 1118 if (HasS1 && S1.empty()) 1119 return Constant::getNullValue(CI->getType()); 1120 1121 // Constant folding. 1122 if (HasS1 && HasS2) { 1123 size_t Pos = S1.find_first_of(S2); 1124 if (Pos == StringRef::npos) 1125 Pos = S1.size(); 1126 return ConstantInt::get(CI->getType(), Pos); 1127 } 1128 1129 // strcspn(s, "") -> strlen(s) 1130 if (HasS2 && S2.empty()) 1131 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 1132 1133 return nullptr; 1134 } 1135 1136 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 1137 // fold strstr(x, x) -> x. 1138 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 1139 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 1140 1141 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 1142 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 1143 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 1144 if (!StrLen) 1145 return nullptr; 1146 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 1147 StrLen, B, DL, TLI); 1148 if (!StrNCmp) 1149 return nullptr; 1150 for (User *U : llvm::make_early_inc_range(CI->users())) { 1151 ICmpInst *Old = cast<ICmpInst>(U); 1152 Value *Cmp = 1153 B.CreateICmp(Old->getPredicate(), StrNCmp, 1154 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 1155 replaceAllUsesWith(Old, Cmp); 1156 } 1157 return CI; 1158 } 1159 1160 // See if either input string is a constant string. 1161 StringRef SearchStr, ToFindStr; 1162 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 1163 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 1164 1165 // fold strstr(x, "") -> x. 1166 if (HasStr2 && ToFindStr.empty()) 1167 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 1168 1169 // If both strings are known, constant fold it. 1170 if (HasStr1 && HasStr2) { 1171 size_t Offset = SearchStr.find(ToFindStr); 1172 1173 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 1174 return Constant::getNullValue(CI->getType()); 1175 1176 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 1177 Value *Result = castToCStr(CI->getArgOperand(0), B); 1178 Result = 1179 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 1180 return B.CreateBitCast(Result, CI->getType()); 1181 } 1182 1183 // fold strstr(x, "y") -> strchr(x, 'y'). 1184 if (HasStr2 && ToFindStr.size() == 1) { 1185 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 1186 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 1187 } 1188 1189 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 1190 return nullptr; 1191 } 1192 1193 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 1194 Value *SrcStr = CI->getArgOperand(0); 1195 Value *Size = CI->getArgOperand(2); 1196 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1197 Value *CharVal = CI->getArgOperand(1); 1198 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1199 Value *NullPtr = Constant::getNullValue(CI->getType()); 1200 1201 if (LenC) { 1202 if (LenC->isZero()) 1203 // Fold memrchr(x, y, 0) --> null. 1204 return NullPtr; 1205 1206 if (LenC->isOne()) { 1207 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 1208 // constant or otherwise. 1209 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 1210 // Slice off the character's high end bits. 1211 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1212 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 1213 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 1214 } 1215 } 1216 1217 StringRef Str; 1218 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1219 return nullptr; 1220 1221 if (Str.size() == 0) 1222 // If the array is empty fold memrchr(A, C, N) to null for any value 1223 // of C and N on the basis that the only valid value of N is zero 1224 // (otherwise the call is undefined). 1225 return NullPtr; 1226 1227 uint64_t EndOff = UINT64_MAX; 1228 if (LenC) { 1229 EndOff = LenC->getZExtValue(); 1230 if (Str.size() < EndOff) 1231 // Punt out-of-bounds accesses to sanitizers and/or libc. 1232 return nullptr; 1233 } 1234 1235 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 1236 // Fold memrchr(S, C, N) for a constant C. 1237 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 1238 if (Pos == StringRef::npos) 1239 // When the character is not in the source array fold the result 1240 // to null regardless of Size. 1241 return NullPtr; 1242 1243 if (LenC) 1244 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 1245 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 1246 1247 if (Str.find(Str[Pos]) == Pos) { 1248 // When there is just a single occurrence of C in S, i.e., the one 1249 // in Str[Pos], fold 1250 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 1251 // for nonconstant N. 1252 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1253 "memrchr.cmp"); 1254 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, 1255 B.getInt64(Pos), "memrchr.ptr_plus"); 1256 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 1257 } 1258 } 1259 1260 // Truncate the string to search at most EndOff characters. 1261 Str = Str.substr(0, EndOff); 1262 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 1263 return nullptr; 1264 1265 // If the source array consists of all equal characters, then for any 1266 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 1267 // N != 0 && *S == C ? S + N - 1 : null 1268 Type *SizeTy = Size->getType(); 1269 Type *Int8Ty = B.getInt8Ty(); 1270 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1271 // Slice off the sought character's high end bits. 1272 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1273 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 1274 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 1275 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 1276 Value *SrcPlus = 1277 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 1278 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 1279 } 1280 1281 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 1282 Value *SrcStr = CI->getArgOperand(0); 1283 Value *Size = CI->getArgOperand(2); 1284 1285 if (isKnownNonZero(Size, DL)) { 1286 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1287 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1288 return memChrToCharCompare(CI, Size, B, DL); 1289 } 1290 1291 Value *CharVal = CI->getArgOperand(1); 1292 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1293 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1294 Value *NullPtr = Constant::getNullValue(CI->getType()); 1295 1296 // memchr(x, y, 0) -> null 1297 if (LenC) { 1298 if (LenC->isZero()) 1299 return NullPtr; 1300 1301 if (LenC->isOne()) { 1302 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1303 // constant or otherwise. 1304 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1305 // Slice off the character's high end bits. 1306 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1307 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1308 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1309 } 1310 } 1311 1312 StringRef Str; 1313 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1314 return nullptr; 1315 1316 if (CharC) { 1317 size_t Pos = Str.find(CharC->getZExtValue()); 1318 if (Pos == StringRef::npos) 1319 // When the character is not in the source array fold the result 1320 // to null regardless of Size. 1321 return NullPtr; 1322 1323 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1324 // When the constant Size is less than or equal to the character 1325 // position also fold the result to null. 1326 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1327 "memchr.cmp"); 1328 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 1329 "memchr.ptr"); 1330 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1331 } 1332 1333 if (Str.size() == 0) 1334 // If the array is empty fold memchr(A, C, N) to null for any value 1335 // of C and N on the basis that the only valid value of N is zero 1336 // (otherwise the call is undefined). 1337 return NullPtr; 1338 1339 if (LenC) 1340 Str = substr(Str, LenC->getZExtValue()); 1341 1342 size_t Pos = Str.find_first_not_of(Str[0]); 1343 if (Pos == StringRef::npos 1344 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) { 1345 // If the source array consists of at most two consecutive sequences 1346 // of the same characters, then for any C and N (whether in bounds or 1347 // not), fold memchr(S, C, N) to 1348 // N != 0 && *S == C ? S : null 1349 // or for the two sequences to: 1350 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null) 1351 // ^Sel2 ^Sel1 are denoted above. 1352 // The latter makes it also possible to fold strchr() calls with strings 1353 // of the same characters. 1354 Type *SizeTy = Size->getType(); 1355 Type *Int8Ty = B.getInt8Ty(); 1356 1357 // Slice off the sought character's high end bits. 1358 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1359 1360 Value *Sel1 = NullPtr; 1361 if (Pos != StringRef::npos) { 1362 // Handle two consecutive sequences of the same characters. 1363 Value *PosVal = ConstantInt::get(SizeTy, Pos); 1364 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]); 1365 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos); 1366 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal); 1367 Value *And = B.CreateAnd(CEqSPos, NGtPos); 1368 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal); 1369 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1"); 1370 } 1371 1372 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]); 1373 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal); 1374 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1375 Value *And = B.CreateAnd(NNeZ, CEqS0); 1376 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2"); 1377 } 1378 1379 if (!LenC) { 1380 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1381 // S is dereferenceable so it's safe to load from it and fold 1382 // memchr(S, C, N) == S to N && *S == C for any C and N. 1383 // TODO: This is safe even even for nonconstant S. 1384 return memChrToCharCompare(CI, Size, B, DL); 1385 1386 // From now on we need a constant length and constant array. 1387 return nullptr; 1388 } 1389 1390 bool OptForSize = CI->getFunction()->hasOptSize() || 1391 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 1392 PGSOQueryType::IRPass); 1393 1394 // If the char is variable but the input str and length are not we can turn 1395 // this memchr call into a simple bit field test. Of course this only works 1396 // when the return value is only checked against null. 1397 // 1398 // It would be really nice to reuse switch lowering here but we can't change 1399 // the CFG at this point. 1400 // 1401 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1402 // != 0 1403 // after bounds check. 1404 if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1405 return nullptr; 1406 1407 unsigned char Max = 1408 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1409 reinterpret_cast<const unsigned char *>(Str.end())); 1410 1411 // Make sure the bit field we're about to create fits in a register on the 1412 // target. 1413 // FIXME: On a 64 bit architecture this prevents us from using the 1414 // interesting range of alpha ascii chars. We could do better by emitting 1415 // two bitfields or shifting the range by 64 if no lower chars are used. 1416 if (!DL.fitsInLegalInteger(Max + 1)) { 1417 // Build chain of ORs 1418 // Transform: 1419 // memchr("abcd", C, 4) != nullptr 1420 // to: 1421 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0 1422 std::string SortedStr = Str.str(); 1423 llvm::sort(SortedStr); 1424 // Compute the number of of non-contiguous ranges. 1425 unsigned NonContRanges = 1; 1426 for (size_t i = 1; i < SortedStr.size(); ++i) { 1427 if (SortedStr[i] > SortedStr[i - 1] + 1) { 1428 NonContRanges++; 1429 } 1430 } 1431 1432 // Restrict this optimization to profitable cases with one or two range 1433 // checks. 1434 if (NonContRanges > 2) 1435 return nullptr; 1436 1437 SmallVector<Value *> CharCompares; 1438 for (unsigned char C : SortedStr) 1439 CharCompares.push_back( 1440 B.CreateICmpEQ(CharVal, ConstantInt::get(CharVal->getType(), C))); 1441 1442 return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType()); 1443 } 1444 1445 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1446 // creating unnecessary illegal types. 1447 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1448 1449 // Now build the bit field. 1450 APInt Bitfield(Width, 0); 1451 for (char C : Str) 1452 Bitfield.setBit((unsigned char)C); 1453 Value *BitfieldC = B.getInt(Bitfield); 1454 1455 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1456 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1457 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1458 1459 // First check that the bit field access is within bounds. 1460 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1461 "memchr.bounds"); 1462 1463 // Create code that checks if the given bit is set in the field. 1464 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1465 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1466 1467 // Finally merge both checks and cast to pointer type. The inttoptr 1468 // implicitly zexts the i1 to intptr type. 1469 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1470 CI->getType()); 1471 } 1472 1473 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 1474 // arrays LHS and RHS and nonconstant Size. 1475 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 1476 Value *Size, bool StrNCmp, 1477 IRBuilderBase &B, const DataLayout &DL) { 1478 if (LHS == RHS) // memcmp(s,s,x) -> 0 1479 return Constant::getNullValue(CI->getType()); 1480 1481 StringRef LStr, RStr; 1482 if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) || 1483 !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false)) 1484 return nullptr; 1485 1486 // If the contents of both constant arrays are known, fold a call to 1487 // memcmp(A, B, N) to 1488 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0) 1489 // where Pos is the first mismatch between A and B, determined below. 1490 1491 uint64_t Pos = 0; 1492 Value *Zero = ConstantInt::get(CI->getType(), 0); 1493 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) { 1494 if (Pos == MinSize || 1495 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) { 1496 // One array is a leading part of the other of equal or greater 1497 // size, or for strncmp, the arrays are equal strings. 1498 // Fold the result to zero. Size is assumed to be in bounds, since 1499 // otherwise the call would be undefined. 1500 return Zero; 1501 } 1502 1503 if (LStr[Pos] != RStr[Pos]) 1504 break; 1505 } 1506 1507 // Normalize the result. 1508 typedef unsigned char UChar; 1509 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1; 1510 Value *MaxSize = ConstantInt::get(Size->getType(), Pos); 1511 Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize); 1512 Value *Res = ConstantInt::get(CI->getType(), IRes); 1513 return B.CreateSelect(Cmp, Zero, Res); 1514 } 1515 1516 // Optimize a memcmp call CI with constant size Len. 1517 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1518 uint64_t Len, IRBuilderBase &B, 1519 const DataLayout &DL) { 1520 if (Len == 0) // memcmp(s1,s2,0) -> 0 1521 return Constant::getNullValue(CI->getType()); 1522 1523 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1524 if (Len == 1) { 1525 Value *LHSV = 1526 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 1527 CI->getType(), "lhsv"); 1528 Value *RHSV = 1529 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 1530 CI->getType(), "rhsv"); 1531 return B.CreateSub(LHSV, RHSV, "chardiff"); 1532 } 1533 1534 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1535 // TODO: The case where both inputs are constants does not need to be limited 1536 // to legal integers or equality comparison. See block below this. 1537 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1538 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1539 Align PrefAlignment = DL.getPrefTypeAlign(IntType); 1540 1541 // First, see if we can fold either argument to a constant. 1542 Value *LHSV = nullptr; 1543 if (auto *LHSC = dyn_cast<Constant>(LHS)) 1544 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1545 1546 Value *RHSV = nullptr; 1547 if (auto *RHSC = dyn_cast<Constant>(RHS)) 1548 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1549 1550 // Don't generate unaligned loads. If either source is constant data, 1551 // alignment doesn't matter for that source because there is no load. 1552 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1553 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1554 if (!LHSV) 1555 LHSV = B.CreateLoad(IntType, LHS, "lhsv"); 1556 if (!RHSV) 1557 RHSV = B.CreateLoad(IntType, RHS, "rhsv"); 1558 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1559 } 1560 } 1561 1562 return nullptr; 1563 } 1564 1565 // Most simplifications for memcmp also apply to bcmp. 1566 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1567 IRBuilderBase &B) { 1568 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1569 Value *Size = CI->getArgOperand(2); 1570 1571 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1572 1573 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL)) 1574 return Res; 1575 1576 // Handle constant Size. 1577 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1578 if (!LenC) 1579 return nullptr; 1580 1581 return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL); 1582 } 1583 1584 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1585 Module *M = CI->getModule(); 1586 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1587 return V; 1588 1589 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1590 // bcmp can be more efficient than memcmp because it only has to know that 1591 // there is a difference, not how different one is to the other. 1592 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1593 isOnlyUsedInZeroEqualityComparison(CI)) { 1594 Value *LHS = CI->getArgOperand(0); 1595 Value *RHS = CI->getArgOperand(1); 1596 Value *Size = CI->getArgOperand(2); 1597 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1598 } 1599 1600 return nullptr; 1601 } 1602 1603 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1604 return optimizeMemCmpBCmpCommon(CI, B); 1605 } 1606 1607 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1608 Value *Size = CI->getArgOperand(2); 1609 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1610 if (isa<IntrinsicInst>(CI)) 1611 return nullptr; 1612 1613 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1614 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1615 CI->getArgOperand(1), Align(1), Size); 1616 mergeAttributesAndFlags(NewCI, *CI); 1617 return CI->getArgOperand(0); 1618 } 1619 1620 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1621 Value *Dst = CI->getArgOperand(0); 1622 Value *Src = CI->getArgOperand(1); 1623 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1624 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1625 StringRef SrcStr; 1626 if (CI->use_empty() && Dst == Src) 1627 return Dst; 1628 // memccpy(d, s, c, 0) -> nullptr 1629 if (N) { 1630 if (N->isNullValue()) 1631 return Constant::getNullValue(CI->getType()); 1632 if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) || 1633 // TODO: Handle zeroinitializer. 1634 !StopChar) 1635 return nullptr; 1636 } else { 1637 return nullptr; 1638 } 1639 1640 // Wrap arg 'c' of type int to char 1641 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1642 if (Pos == StringRef::npos) { 1643 if (N->getZExtValue() <= SrcStr.size()) { 1644 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1645 CI->getArgOperand(3))); 1646 return Constant::getNullValue(CI->getType()); 1647 } 1648 return nullptr; 1649 } 1650 1651 Value *NewN = 1652 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1653 // memccpy -> llvm.memcpy 1654 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1655 return Pos + 1 <= N->getZExtValue() 1656 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1657 : Constant::getNullValue(CI->getType()); 1658 } 1659 1660 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1661 Value *Dst = CI->getArgOperand(0); 1662 Value *N = CI->getArgOperand(2); 1663 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1664 CallInst *NewCI = 1665 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1666 // Propagate attributes, but memcpy has no return value, so make sure that 1667 // any return attributes are compliant. 1668 // TODO: Attach return value attributes to the 1st operand to preserve them? 1669 mergeAttributesAndFlags(NewCI, *CI); 1670 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1671 } 1672 1673 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1674 Value *Size = CI->getArgOperand(2); 1675 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1676 if (isa<IntrinsicInst>(CI)) 1677 return nullptr; 1678 1679 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1680 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1681 CI->getArgOperand(1), Align(1), Size); 1682 mergeAttributesAndFlags(NewCI, *CI); 1683 return CI->getArgOperand(0); 1684 } 1685 1686 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1687 Value *Size = CI->getArgOperand(2); 1688 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1689 if (isa<IntrinsicInst>(CI)) 1690 return nullptr; 1691 1692 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1693 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1694 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1695 mergeAttributesAndFlags(NewCI, *CI); 1696 return CI->getArgOperand(0); 1697 } 1698 1699 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1700 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1701 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1702 1703 return nullptr; 1704 } 1705 1706 // When enabled, replace operator new() calls marked with a hot or cold memprof 1707 // attribute with an operator new() call that takes a __hot_cold_t parameter. 1708 // Currently this is supported by the open source version of tcmalloc, see: 1709 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h 1710 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B, 1711 LibFunc &Func) { 1712 if (!OptimizeHotColdNew) 1713 return nullptr; 1714 1715 uint8_t HotCold; 1716 if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold") 1717 HotCold = ColdNewHintValue; 1718 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot") 1719 HotCold = HotNewHintValue; 1720 else 1721 return nullptr; 1722 1723 switch (Func) { 1724 case LibFunc_Znwm: 1725 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1726 LibFunc_Znwm12__hot_cold_t, HotCold); 1727 case LibFunc_Znam: 1728 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1729 LibFunc_Znam12__hot_cold_t, HotCold); 1730 case LibFunc_ZnwmRKSt9nothrow_t: 1731 return emitHotColdNewNoThrow(CI->getArgOperand(0), CI->getArgOperand(1), B, 1732 TLI, LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, 1733 HotCold); 1734 case LibFunc_ZnamRKSt9nothrow_t: 1735 return emitHotColdNewNoThrow(CI->getArgOperand(0), CI->getArgOperand(1), B, 1736 TLI, LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, 1737 HotCold); 1738 case LibFunc_ZnwmSt11align_val_t: 1739 return emitHotColdNewAligned(CI->getArgOperand(0), CI->getArgOperand(1), B, 1740 TLI, LibFunc_ZnwmSt11align_val_t12__hot_cold_t, 1741 HotCold); 1742 case LibFunc_ZnamSt11align_val_t: 1743 return emitHotColdNewAligned(CI->getArgOperand(0), CI->getArgOperand(1), B, 1744 TLI, LibFunc_ZnamSt11align_val_t12__hot_cold_t, 1745 HotCold); 1746 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 1747 return emitHotColdNewAlignedNoThrow( 1748 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1749 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold); 1750 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 1751 return emitHotColdNewAlignedNoThrow( 1752 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1753 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold); 1754 default: 1755 return nullptr; 1756 } 1757 } 1758 1759 //===----------------------------------------------------------------------===// 1760 // Math Library Optimizations 1761 //===----------------------------------------------------------------------===// 1762 1763 // Replace a libcall \p CI with a call to intrinsic \p IID 1764 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1765 Intrinsic::ID IID) { 1766 // Propagate fast-math flags from the existing call to the new call. 1767 IRBuilderBase::FastMathFlagGuard Guard(B); 1768 B.setFastMathFlags(CI->getFastMathFlags()); 1769 1770 Module *M = CI->getModule(); 1771 Value *V = CI->getArgOperand(0); 1772 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1773 CallInst *NewCall = B.CreateCall(F, V); 1774 NewCall->takeName(CI); 1775 return copyFlags(*CI, NewCall); 1776 } 1777 1778 /// Return a variant of Val with float type. 1779 /// Currently this works in two cases: If Val is an FPExtension of a float 1780 /// value to something bigger, simply return the operand. 1781 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1782 /// loss of precision do so. 1783 static Value *valueHasFloatPrecision(Value *Val) { 1784 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1785 Value *Op = Cast->getOperand(0); 1786 if (Op->getType()->isFloatTy()) 1787 return Op; 1788 } 1789 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1790 APFloat F = Const->getValueAPF(); 1791 bool losesInfo; 1792 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1793 &losesInfo); 1794 if (!losesInfo) 1795 return ConstantFP::get(Const->getContext(), F); 1796 } 1797 return nullptr; 1798 } 1799 1800 /// Shrink double -> float functions. 1801 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1802 bool isBinary, const TargetLibraryInfo *TLI, 1803 bool isPrecise = false) { 1804 Function *CalleeFn = CI->getCalledFunction(); 1805 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1806 return nullptr; 1807 1808 // If not all the uses of the function are converted to float, then bail out. 1809 // This matters if the precision of the result is more important than the 1810 // precision of the arguments. 1811 if (isPrecise) 1812 for (User *U : CI->users()) { 1813 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1814 if (!Cast || !Cast->getType()->isFloatTy()) 1815 return nullptr; 1816 } 1817 1818 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1819 Value *V[2]; 1820 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1821 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1822 if (!V[0] || (isBinary && !V[1])) 1823 return nullptr; 1824 1825 // If call isn't an intrinsic, check that it isn't within a function with the 1826 // same name as the float version of this call, otherwise the result is an 1827 // infinite loop. For example, from MinGW-w64: 1828 // 1829 // float expf(float val) { return (float) exp((double) val); } 1830 StringRef CalleeName = CalleeFn->getName(); 1831 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1832 if (!IsIntrinsic) { 1833 StringRef CallerName = CI->getFunction()->getName(); 1834 if (!CallerName.empty() && CallerName.back() == 'f' && 1835 CallerName.size() == (CalleeName.size() + 1) && 1836 CallerName.startswith(CalleeName)) 1837 return nullptr; 1838 } 1839 1840 // Propagate the math semantics from the current function to the new function. 1841 IRBuilderBase::FastMathFlagGuard Guard(B); 1842 B.setFastMathFlags(CI->getFastMathFlags()); 1843 1844 // g((double) float) -> (double) gf(float) 1845 Value *R; 1846 if (IsIntrinsic) { 1847 Module *M = CI->getModule(); 1848 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1849 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1850 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1851 } else { 1852 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1853 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1854 CalleeAttrs) 1855 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1856 } 1857 return B.CreateFPExt(R, B.getDoubleTy()); 1858 } 1859 1860 /// Shrink double -> float for unary functions. 1861 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1862 const TargetLibraryInfo *TLI, 1863 bool isPrecise = false) { 1864 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1865 } 1866 1867 /// Shrink double -> float for binary functions. 1868 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1869 const TargetLibraryInfo *TLI, 1870 bool isPrecise = false) { 1871 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1872 } 1873 1874 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1875 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1876 if (!CI->isFast()) 1877 return nullptr; 1878 1879 // Propagate fast-math flags from the existing call to new instructions. 1880 IRBuilderBase::FastMathFlagGuard Guard(B); 1881 B.setFastMathFlags(CI->getFastMathFlags()); 1882 1883 Value *Real, *Imag; 1884 if (CI->arg_size() == 1) { 1885 Value *Op = CI->getArgOperand(0); 1886 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1887 Real = B.CreateExtractValue(Op, 0, "real"); 1888 Imag = B.CreateExtractValue(Op, 1, "imag"); 1889 } else { 1890 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1891 Real = CI->getArgOperand(0); 1892 Imag = CI->getArgOperand(1); 1893 } 1894 1895 Value *RealReal = B.CreateFMul(Real, Real); 1896 Value *ImagImag = B.CreateFMul(Imag, Imag); 1897 1898 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1899 CI->getType()); 1900 return copyFlags( 1901 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1902 } 1903 1904 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1905 IRBuilderBase &B) { 1906 if (!isa<FPMathOperator>(Call)) 1907 return nullptr; 1908 1909 IRBuilderBase::FastMathFlagGuard Guard(B); 1910 B.setFastMathFlags(Call->getFastMathFlags()); 1911 1912 // TODO: Can this be shared to also handle LLVM intrinsics? 1913 Value *X; 1914 switch (Func) { 1915 case LibFunc_sin: 1916 case LibFunc_sinf: 1917 case LibFunc_sinl: 1918 case LibFunc_tan: 1919 case LibFunc_tanf: 1920 case LibFunc_tanl: 1921 // sin(-X) --> -sin(X) 1922 // tan(-X) --> -tan(X) 1923 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1924 return B.CreateFNeg( 1925 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1926 break; 1927 case LibFunc_cos: 1928 case LibFunc_cosf: 1929 case LibFunc_cosl: 1930 // cos(-X) --> cos(X) 1931 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1932 return copyFlags(*Call, 1933 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1934 break; 1935 default: 1936 break; 1937 } 1938 return nullptr; 1939 } 1940 1941 // Return a properly extended integer (DstWidth bits wide) if the operation is 1942 // an itofp. 1943 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1944 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1945 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1946 // Make sure that the exponent fits inside an "int" of size DstWidth, 1947 // thus avoiding any range issues that FP has not. 1948 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1949 if (BitWidth < DstWidth || 1950 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1951 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1952 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1953 } 1954 1955 return nullptr; 1956 } 1957 1958 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1959 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1960 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1961 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1962 Module *M = Pow->getModule(); 1963 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1964 Module *Mod = Pow->getModule(); 1965 Type *Ty = Pow->getType(); 1966 bool Ignored; 1967 1968 // Evaluate special cases related to a nested function as the base. 1969 1970 // pow(exp(x), y) -> exp(x * y) 1971 // pow(exp2(x), y) -> exp2(x * y) 1972 // If exp{,2}() is used only once, it is better to fold two transcendental 1973 // math functions into one. If used again, exp{,2}() would still have to be 1974 // called with the original argument, then keep both original transcendental 1975 // functions. However, this transformation is only safe with fully relaxed 1976 // math semantics, since, besides rounding differences, it changes overflow 1977 // and underflow behavior quite dramatically. For example: 1978 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1979 // Whereas: 1980 // exp(1000 * 0.001) = exp(1) 1981 // TODO: Loosen the requirement for fully relaxed math semantics. 1982 // TODO: Handle exp10() when more targets have it available. 1983 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1984 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1985 LibFunc LibFn; 1986 1987 Function *CalleeFn = BaseFn->getCalledFunction(); 1988 if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) && 1989 isLibFuncEmittable(M, TLI, LibFn)) { 1990 StringRef ExpName; 1991 Intrinsic::ID ID; 1992 Value *ExpFn; 1993 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1994 1995 switch (LibFn) { 1996 default: 1997 return nullptr; 1998 case LibFunc_expf: 1999 case LibFunc_exp: 2000 case LibFunc_expl: 2001 ExpName = TLI->getName(LibFunc_exp); 2002 ID = Intrinsic::exp; 2003 LibFnFloat = LibFunc_expf; 2004 LibFnDouble = LibFunc_exp; 2005 LibFnLongDouble = LibFunc_expl; 2006 break; 2007 case LibFunc_exp2f: 2008 case LibFunc_exp2: 2009 case LibFunc_exp2l: 2010 ExpName = TLI->getName(LibFunc_exp2); 2011 ID = Intrinsic::exp2; 2012 LibFnFloat = LibFunc_exp2f; 2013 LibFnDouble = LibFunc_exp2; 2014 LibFnLongDouble = LibFunc_exp2l; 2015 break; 2016 } 2017 2018 // Create new exp{,2}() with the product as its argument. 2019 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 2020 ExpFn = BaseFn->doesNotAccessMemory() 2021 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 2022 FMul, ExpName) 2023 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 2024 LibFnLongDouble, B, 2025 BaseFn->getAttributes()); 2026 2027 // Since the new exp{,2}() is different from the original one, dead code 2028 // elimination cannot be trusted to remove it, since it may have side 2029 // effects (e.g., errno). When the only consumer for the original 2030 // exp{,2}() is pow(), then it has to be explicitly erased. 2031 substituteInParent(BaseFn, ExpFn); 2032 return ExpFn; 2033 } 2034 } 2035 2036 // Evaluate special cases related to a constant base. 2037 2038 const APFloat *BaseF; 2039 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 2040 return nullptr; 2041 2042 AttributeList NoAttrs; // Attributes are only meaningful on the original call 2043 2044 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 2045 // TODO: This does not work for vectors because there is no ldexp intrinsic. 2046 if (!Ty->isVectorTy() && match(Base, m_SpecificFP(2.0)) && 2047 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 2048 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 2049 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2050 return copyFlags(*Pow, 2051 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 2052 TLI, LibFunc_ldexp, LibFunc_ldexpf, 2053 LibFunc_ldexpl, B, NoAttrs)); 2054 } 2055 2056 // pow(2.0 ** n, x) -> exp2(n * x) 2057 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 2058 APFloat BaseR = APFloat(1.0); 2059 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 2060 BaseR = BaseR / *BaseF; 2061 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 2062 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 2063 APSInt NI(64, false); 2064 if ((IsInteger || IsReciprocal) && 2065 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 2066 APFloat::opOK && 2067 NI > 1 && NI.isPowerOf2()) { 2068 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 2069 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 2070 if (Pow->doesNotAccessMemory()) 2071 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 2072 Mod, Intrinsic::exp2, Ty), 2073 FMul, "exp2")); 2074 else 2075 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2076 LibFunc_exp2f, 2077 LibFunc_exp2l, B, NoAttrs)); 2078 } 2079 } 2080 2081 // pow(10.0, x) -> exp10(x) 2082 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 2083 if (match(Base, m_SpecificFP(10.0)) && 2084 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 2085 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 2086 LibFunc_exp10f, LibFunc_exp10l, 2087 B, NoAttrs)); 2088 2089 // pow(x, y) -> exp2(log2(x) * y) 2090 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 2091 !BaseF->isNegative()) { 2092 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 2093 // Luckily optimizePow has already handled the x == 1 case. 2094 assert(!match(Base, m_FPOne()) && 2095 "pow(1.0, y) should have been simplified earlier!"); 2096 2097 Value *Log = nullptr; 2098 if (Ty->isFloatTy()) 2099 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 2100 else if (Ty->isDoubleTy()) 2101 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 2102 2103 if (Log) { 2104 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 2105 if (Pow->doesNotAccessMemory()) 2106 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 2107 Mod, Intrinsic::exp2, Ty), 2108 FMul, "exp2")); 2109 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 2110 LibFunc_exp2l)) 2111 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2112 LibFunc_exp2f, 2113 LibFunc_exp2l, B, NoAttrs)); 2114 } 2115 } 2116 2117 return nullptr; 2118 } 2119 2120 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 2121 Module *M, IRBuilderBase &B, 2122 const TargetLibraryInfo *TLI) { 2123 // If errno is never set, then use the intrinsic for sqrt(). 2124 if (NoErrno) { 2125 Function *SqrtFn = 2126 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 2127 return B.CreateCall(SqrtFn, V, "sqrt"); 2128 } 2129 2130 // Otherwise, use the libcall for sqrt(). 2131 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 2132 LibFunc_sqrtl)) 2133 // TODO: We also should check that the target can in fact lower the sqrt() 2134 // libcall. We currently have no way to ask this question, so we ask if 2135 // the target has a sqrt() libcall, which is not exactly the same. 2136 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 2137 LibFunc_sqrtl, B, Attrs); 2138 2139 return nullptr; 2140 } 2141 2142 /// Use square root in place of pow(x, +/-0.5). 2143 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 2144 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2145 Module *Mod = Pow->getModule(); 2146 Type *Ty = Pow->getType(); 2147 2148 const APFloat *ExpoF; 2149 if (!match(Expo, m_APFloat(ExpoF)) || 2150 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 2151 return nullptr; 2152 2153 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 2154 // so that requires fast-math-flags (afn or reassoc). 2155 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 2156 return nullptr; 2157 2158 // If we have a pow() library call (accesses memory) and we can't guarantee 2159 // that the base is not an infinity, give up: 2160 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 2161 // errno), but sqrt(-Inf) is required by various standards to set errno. 2162 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 2163 !isKnownNeverInfinity(Base, DL, TLI, 0, AC, Pow)) 2164 return nullptr; 2165 2166 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B, 2167 TLI); 2168 if (!Sqrt) 2169 return nullptr; 2170 2171 // Handle signed zero base by expanding to fabs(sqrt(x)). 2172 if (!Pow->hasNoSignedZeros()) { 2173 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 2174 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 2175 } 2176 2177 Sqrt = copyFlags(*Pow, Sqrt); 2178 2179 // Handle non finite base by expanding to 2180 // (x == -infinity ? +infinity : sqrt(x)). 2181 if (!Pow->hasNoInfs()) { 2182 Value *PosInf = ConstantFP::getInfinity(Ty), 2183 *NegInf = ConstantFP::getInfinity(Ty, true); 2184 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 2185 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 2186 } 2187 2188 // If the exponent is negative, then get the reciprocal. 2189 if (ExpoF->isNegative()) 2190 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 2191 2192 return Sqrt; 2193 } 2194 2195 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 2196 IRBuilderBase &B) { 2197 Value *Args[] = {Base, Expo}; 2198 Type *Types[] = {Base->getType(), Expo->getType()}; 2199 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 2200 return B.CreateCall(F, Args); 2201 } 2202 2203 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 2204 Value *Base = Pow->getArgOperand(0); 2205 Value *Expo = Pow->getArgOperand(1); 2206 Function *Callee = Pow->getCalledFunction(); 2207 StringRef Name = Callee->getName(); 2208 Type *Ty = Pow->getType(); 2209 Module *M = Pow->getModule(); 2210 bool AllowApprox = Pow->hasApproxFunc(); 2211 bool Ignored; 2212 2213 // Propagate the math semantics from the call to any created instructions. 2214 IRBuilderBase::FastMathFlagGuard Guard(B); 2215 B.setFastMathFlags(Pow->getFastMathFlags()); 2216 // Evaluate special cases related to the base. 2217 2218 // pow(1.0, x) -> 1.0 2219 if (match(Base, m_FPOne())) 2220 return Base; 2221 2222 if (Value *Exp = replacePowWithExp(Pow, B)) 2223 return Exp; 2224 2225 // Evaluate special cases related to the exponent. 2226 2227 // pow(x, -1.0) -> 1.0 / x 2228 if (match(Expo, m_SpecificFP(-1.0))) 2229 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 2230 2231 // pow(x, +/-0.0) -> 1.0 2232 if (match(Expo, m_AnyZeroFP())) 2233 return ConstantFP::get(Ty, 1.0); 2234 2235 // pow(x, 1.0) -> x 2236 if (match(Expo, m_FPOne())) 2237 return Base; 2238 2239 // pow(x, 2.0) -> x * x 2240 if (match(Expo, m_SpecificFP(2.0))) 2241 return B.CreateFMul(Base, Base, "square"); 2242 2243 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 2244 return Sqrt; 2245 2246 // If we can approximate pow: 2247 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction 2248 // pow(x, n) -> powi(x, n) if n is a constant signed integer value 2249 const APFloat *ExpoF; 2250 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 2251 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 2252 APFloat ExpoA(abs(*ExpoF)); 2253 APFloat ExpoI(*ExpoF); 2254 Value *Sqrt = nullptr; 2255 if (!ExpoA.isInteger()) { 2256 APFloat Expo2 = ExpoA; 2257 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 2258 // is no floating point exception and the result is an integer, then 2259 // ExpoA == integer + 0.5 2260 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 2261 return nullptr; 2262 2263 if (!Expo2.isInteger()) 2264 return nullptr; 2265 2266 if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) != 2267 APFloat::opInexact) 2268 return nullptr; 2269 if (!ExpoI.isInteger()) 2270 return nullptr; 2271 ExpoF = &ExpoI; 2272 2273 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M, 2274 B, TLI); 2275 if (!Sqrt) 2276 return nullptr; 2277 } 2278 2279 // 0.5 fraction is now optionally handled. 2280 // Do pow -> powi for remaining integer exponent 2281 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 2282 if (ExpoF->isInteger() && 2283 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 2284 APFloat::opOK) { 2285 Value *PowI = copyFlags( 2286 *Pow, 2287 createPowWithIntegerExponent( 2288 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 2289 M, B)); 2290 2291 if (PowI && Sqrt) 2292 return B.CreateFMul(PowI, Sqrt); 2293 2294 return PowI; 2295 } 2296 } 2297 2298 // powf(x, itofp(y)) -> powi(x, y) 2299 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 2300 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2301 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 2302 } 2303 2304 // Shrink pow() to powf() if the arguments are single precision, 2305 // unless the result is expected to be double precision. 2306 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 2307 hasFloatVersion(M, Name)) { 2308 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 2309 return Shrunk; 2310 } 2311 2312 return nullptr; 2313 } 2314 2315 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 2316 Module *M = CI->getModule(); 2317 Function *Callee = CI->getCalledFunction(); 2318 StringRef Name = Callee->getName(); 2319 Value *Ret = nullptr; 2320 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 2321 hasFloatVersion(M, Name)) 2322 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2323 2324 // Bail out for vectors because the code below only expects scalars. 2325 // TODO: This could be allowed if we had a ldexp intrinsic (D14327). 2326 Type *Ty = CI->getType(); 2327 if (Ty->isVectorTy()) 2328 return Ret; 2329 2330 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 2331 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 2332 Value *Op = CI->getArgOperand(0); 2333 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 2334 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 2335 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) { 2336 IRBuilderBase::FastMathFlagGuard Guard(B); 2337 B.setFastMathFlags(CI->getFastMathFlags()); 2338 return copyFlags( 2339 *CI, emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 2340 LibFunc_ldexp, LibFunc_ldexpf, 2341 LibFunc_ldexpl, B, AttributeList())); 2342 } 2343 } 2344 2345 return Ret; 2346 } 2347 2348 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 2349 Module *M = CI->getModule(); 2350 2351 // If we can shrink the call to a float function rather than a double 2352 // function, do that first. 2353 Function *Callee = CI->getCalledFunction(); 2354 StringRef Name = Callee->getName(); 2355 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 2356 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 2357 return Ret; 2358 2359 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 2360 // the intrinsics for improved optimization (for example, vectorization). 2361 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 2362 // From the C standard draft WG14/N1256: 2363 // "Ideally, fmax would be sensitive to the sign of zero, for example 2364 // fmax(-0.0, +0.0) would return +0; however, implementation in software 2365 // might be impractical." 2366 IRBuilderBase::FastMathFlagGuard Guard(B); 2367 FastMathFlags FMF = CI->getFastMathFlags(); 2368 FMF.setNoSignedZeros(); 2369 B.setFastMathFlags(FMF); 2370 2371 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 2372 : Intrinsic::maxnum; 2373 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 2374 return copyFlags( 2375 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 2376 } 2377 2378 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 2379 Function *LogFn = Log->getCalledFunction(); 2380 StringRef LogNm = LogFn->getName(); 2381 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 2382 Module *Mod = Log->getModule(); 2383 Type *Ty = Log->getType(); 2384 Value *Ret = nullptr; 2385 2386 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 2387 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true); 2388 2389 // The earlier call must also be 'fast' in order to do these transforms. 2390 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2391 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2392 return Ret; 2393 2394 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2395 2396 // This is only applicable to log(), log2(), log10(). 2397 if (TLI->getLibFunc(LogNm, LogLb)) 2398 switch (LogLb) { 2399 case LibFunc_logf: 2400 LogID = Intrinsic::log; 2401 ExpLb = LibFunc_expf; 2402 Exp2Lb = LibFunc_exp2f; 2403 Exp10Lb = LibFunc_exp10f; 2404 PowLb = LibFunc_powf; 2405 break; 2406 case LibFunc_log: 2407 LogID = Intrinsic::log; 2408 ExpLb = LibFunc_exp; 2409 Exp2Lb = LibFunc_exp2; 2410 Exp10Lb = LibFunc_exp10; 2411 PowLb = LibFunc_pow; 2412 break; 2413 case LibFunc_logl: 2414 LogID = Intrinsic::log; 2415 ExpLb = LibFunc_expl; 2416 Exp2Lb = LibFunc_exp2l; 2417 Exp10Lb = LibFunc_exp10l; 2418 PowLb = LibFunc_powl; 2419 break; 2420 case LibFunc_log2f: 2421 LogID = Intrinsic::log2; 2422 ExpLb = LibFunc_expf; 2423 Exp2Lb = LibFunc_exp2f; 2424 Exp10Lb = LibFunc_exp10f; 2425 PowLb = LibFunc_powf; 2426 break; 2427 case LibFunc_log2: 2428 LogID = Intrinsic::log2; 2429 ExpLb = LibFunc_exp; 2430 Exp2Lb = LibFunc_exp2; 2431 Exp10Lb = LibFunc_exp10; 2432 PowLb = LibFunc_pow; 2433 break; 2434 case LibFunc_log2l: 2435 LogID = Intrinsic::log2; 2436 ExpLb = LibFunc_expl; 2437 Exp2Lb = LibFunc_exp2l; 2438 Exp10Lb = LibFunc_exp10l; 2439 PowLb = LibFunc_powl; 2440 break; 2441 case LibFunc_log10f: 2442 LogID = Intrinsic::log10; 2443 ExpLb = LibFunc_expf; 2444 Exp2Lb = LibFunc_exp2f; 2445 Exp10Lb = LibFunc_exp10f; 2446 PowLb = LibFunc_powf; 2447 break; 2448 case LibFunc_log10: 2449 LogID = Intrinsic::log10; 2450 ExpLb = LibFunc_exp; 2451 Exp2Lb = LibFunc_exp2; 2452 Exp10Lb = LibFunc_exp10; 2453 PowLb = LibFunc_pow; 2454 break; 2455 case LibFunc_log10l: 2456 LogID = Intrinsic::log10; 2457 ExpLb = LibFunc_expl; 2458 Exp2Lb = LibFunc_exp2l; 2459 Exp10Lb = LibFunc_exp10l; 2460 PowLb = LibFunc_powl; 2461 break; 2462 default: 2463 return Ret; 2464 } 2465 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2466 LogID == Intrinsic::log10) { 2467 if (Ty->getScalarType()->isFloatTy()) { 2468 ExpLb = LibFunc_expf; 2469 Exp2Lb = LibFunc_exp2f; 2470 Exp10Lb = LibFunc_exp10f; 2471 PowLb = LibFunc_powf; 2472 } else if (Ty->getScalarType()->isDoubleTy()) { 2473 ExpLb = LibFunc_exp; 2474 Exp2Lb = LibFunc_exp2; 2475 Exp10Lb = LibFunc_exp10; 2476 PowLb = LibFunc_pow; 2477 } else 2478 return Ret; 2479 } else 2480 return Ret; 2481 2482 IRBuilderBase::FastMathFlagGuard Guard(B); 2483 B.setFastMathFlags(FastMathFlags::getFast()); 2484 2485 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2486 LibFunc ArgLb = NotLibFunc; 2487 TLI->getLibFunc(*Arg, ArgLb); 2488 2489 // log(pow(x,y)) -> y*log(x) 2490 AttributeList NoAttrs; 2491 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 2492 Value *LogX = 2493 Log->doesNotAccessMemory() 2494 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2495 Arg->getOperand(0), "log") 2496 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs); 2497 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 2498 // Since pow() may have side effects, e.g. errno, 2499 // dead code elimination may not be trusted to remove it. 2500 substituteInParent(Arg, MulY); 2501 return MulY; 2502 } 2503 2504 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2505 // TODO: There is no exp10() intrinsic yet. 2506 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2507 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2508 Constant *Eul; 2509 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2510 // FIXME: Add more precise value of e for long double. 2511 Eul = ConstantFP::get(Log->getType(), numbers::e); 2512 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2513 Eul = ConstantFP::get(Log->getType(), 2.0); 2514 else 2515 Eul = ConstantFP::get(Log->getType(), 10.0); 2516 Value *LogE = Log->doesNotAccessMemory() 2517 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2518 Eul, "log") 2519 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs); 2520 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2521 // Since exp() may have side effects, e.g. errno, 2522 // dead code elimination may not be trusted to remove it. 2523 substituteInParent(Arg, MulY); 2524 return MulY; 2525 } 2526 2527 return Ret; 2528 } 2529 2530 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2531 Module *M = CI->getModule(); 2532 Function *Callee = CI->getCalledFunction(); 2533 Value *Ret = nullptr; 2534 // TODO: Once we have a way (other than checking for the existince of the 2535 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2536 // condition below. 2537 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2538 (Callee->getName() == "sqrt" || 2539 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2540 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2541 2542 if (!CI->isFast()) 2543 return Ret; 2544 2545 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2546 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2547 return Ret; 2548 2549 // We're looking for a repeated factor in a multiplication tree, 2550 // so we can do this fold: sqrt(x * x) -> fabs(x); 2551 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2552 Value *Op0 = I->getOperand(0); 2553 Value *Op1 = I->getOperand(1); 2554 Value *RepeatOp = nullptr; 2555 Value *OtherOp = nullptr; 2556 if (Op0 == Op1) { 2557 // Simple match: the operands of the multiply are identical. 2558 RepeatOp = Op0; 2559 } else { 2560 // Look for a more complicated pattern: one of the operands is itself 2561 // a multiply, so search for a common factor in that multiply. 2562 // Note: We don't bother looking any deeper than this first level or for 2563 // variations of this pattern because instcombine's visitFMUL and/or the 2564 // reassociation pass should give us this form. 2565 Value *OtherMul0, *OtherMul1; 2566 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2567 // Pattern: sqrt((x * y) * z) 2568 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2569 // Matched: sqrt((x * x) * z) 2570 RepeatOp = OtherMul0; 2571 OtherOp = Op1; 2572 } 2573 } 2574 } 2575 if (!RepeatOp) 2576 return Ret; 2577 2578 // Fast math flags for any created instructions should match the sqrt 2579 // and multiply. 2580 IRBuilderBase::FastMathFlagGuard Guard(B); 2581 B.setFastMathFlags(I->getFastMathFlags()); 2582 2583 // If we found a repeated factor, hoist it out of the square root and 2584 // replace it with the fabs of that factor. 2585 Type *ArgType = I->getType(); 2586 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2587 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2588 if (OtherOp) { 2589 // If we found a non-repeated factor, we still need to get its square 2590 // root. We then multiply that by the value that was simplified out 2591 // of the square root calculation. 2592 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2593 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2594 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2595 } 2596 return copyFlags(*CI, FabsCall); 2597 } 2598 2599 // TODO: Generalize to handle any trig function and its inverse. 2600 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2601 Module *M = CI->getModule(); 2602 Function *Callee = CI->getCalledFunction(); 2603 Value *Ret = nullptr; 2604 StringRef Name = Callee->getName(); 2605 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name)) 2606 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2607 2608 Value *Op1 = CI->getArgOperand(0); 2609 auto *OpC = dyn_cast<CallInst>(Op1); 2610 if (!OpC) 2611 return Ret; 2612 2613 // Both calls must be 'fast' in order to remove them. 2614 if (!CI->isFast() || !OpC->isFast()) 2615 return Ret; 2616 2617 // tan(atan(x)) -> x 2618 // tanf(atanf(x)) -> x 2619 // tanl(atanl(x)) -> x 2620 LibFunc Func; 2621 Function *F = OpC->getCalledFunction(); 2622 if (F && TLI->getLibFunc(F->getName(), Func) && 2623 isLibFuncEmittable(M, TLI, Func) && 2624 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2625 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2626 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2627 Ret = OpC->getArgOperand(0); 2628 return Ret; 2629 } 2630 2631 static bool isTrigLibCall(CallInst *CI) { 2632 // We can only hope to do anything useful if we can ignore things like errno 2633 // and floating-point exceptions. 2634 // We already checked the prototype. 2635 return CI->doesNotThrow() && CI->doesNotAccessMemory(); 2636 } 2637 2638 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2639 bool UseFloat, Value *&Sin, Value *&Cos, 2640 Value *&SinCos, const TargetLibraryInfo *TLI) { 2641 Module *M = OrigCallee->getParent(); 2642 Type *ArgTy = Arg->getType(); 2643 Type *ResTy; 2644 StringRef Name; 2645 2646 Triple T(OrigCallee->getParent()->getTargetTriple()); 2647 if (UseFloat) { 2648 Name = "__sincospif_stret"; 2649 2650 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2651 // x86_64 can't use {float, float} since that would be returned in both 2652 // xmm0 and xmm1, which isn't what a real struct would do. 2653 ResTy = T.getArch() == Triple::x86_64 2654 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2655 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2656 } else { 2657 Name = "__sincospi_stret"; 2658 ResTy = StructType::get(ArgTy, ArgTy); 2659 } 2660 2661 if (!isLibFuncEmittable(M, TLI, Name)) 2662 return false; 2663 LibFunc TheLibFunc; 2664 TLI->getLibFunc(Name, TheLibFunc); 2665 FunctionCallee Callee = getOrInsertLibFunc( 2666 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2667 2668 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2669 // If the argument is an instruction, it must dominate all uses so put our 2670 // sincos call there. 2671 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2672 } else { 2673 // Otherwise (e.g. for a constant) the beginning of the function is as 2674 // good a place as any. 2675 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2676 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2677 } 2678 2679 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2680 2681 if (SinCos->getType()->isStructTy()) { 2682 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2683 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2684 } else { 2685 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2686 "sinpi"); 2687 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2688 "cospi"); 2689 } 2690 2691 return true; 2692 } 2693 2694 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) { 2695 // Make sure the prototype is as expected, otherwise the rest of the 2696 // function is probably invalid and likely to abort. 2697 if (!isTrigLibCall(CI)) 2698 return nullptr; 2699 2700 Value *Arg = CI->getArgOperand(0); 2701 SmallVector<CallInst *, 1> SinCalls; 2702 SmallVector<CallInst *, 1> CosCalls; 2703 SmallVector<CallInst *, 1> SinCosCalls; 2704 2705 bool IsFloat = Arg->getType()->isFloatTy(); 2706 2707 // Look for all compatible sinpi, cospi and sincospi calls with the same 2708 // argument. If there are enough (in some sense) we can make the 2709 // substitution. 2710 Function *F = CI->getFunction(); 2711 for (User *U : Arg->users()) 2712 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2713 2714 // It's only worthwhile if both sinpi and cospi are actually used. 2715 if (SinCalls.empty() || CosCalls.empty()) 2716 return nullptr; 2717 2718 Value *Sin, *Cos, *SinCos; 2719 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 2720 SinCos, TLI)) 2721 return nullptr; 2722 2723 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2724 Value *Res) { 2725 for (CallInst *C : Calls) 2726 replaceAllUsesWith(C, Res); 2727 }; 2728 2729 replaceTrigInsts(SinCalls, Sin); 2730 replaceTrigInsts(CosCalls, Cos); 2731 replaceTrigInsts(SinCosCalls, SinCos); 2732 2733 return IsSin ? Sin : Cos; 2734 } 2735 2736 void LibCallSimplifier::classifyArgUse( 2737 Value *Val, Function *F, bool IsFloat, 2738 SmallVectorImpl<CallInst *> &SinCalls, 2739 SmallVectorImpl<CallInst *> &CosCalls, 2740 SmallVectorImpl<CallInst *> &SinCosCalls) { 2741 auto *CI = dyn_cast<CallInst>(Val); 2742 if (!CI || CI->use_empty()) 2743 return; 2744 2745 // Don't consider calls in other functions. 2746 if (CI->getFunction() != F) 2747 return; 2748 2749 Module *M = CI->getModule(); 2750 Function *Callee = CI->getCalledFunction(); 2751 LibFunc Func; 2752 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 2753 !isLibFuncEmittable(M, TLI, Func) || 2754 !isTrigLibCall(CI)) 2755 return; 2756 2757 if (IsFloat) { 2758 if (Func == LibFunc_sinpif) 2759 SinCalls.push_back(CI); 2760 else if (Func == LibFunc_cospif) 2761 CosCalls.push_back(CI); 2762 else if (Func == LibFunc_sincospif_stret) 2763 SinCosCalls.push_back(CI); 2764 } else { 2765 if (Func == LibFunc_sinpi) 2766 SinCalls.push_back(CI); 2767 else if (Func == LibFunc_cospi) 2768 CosCalls.push_back(CI); 2769 else if (Func == LibFunc_sincospi_stret) 2770 SinCosCalls.push_back(CI); 2771 } 2772 } 2773 2774 //===----------------------------------------------------------------------===// 2775 // Integer Library Call Optimizations 2776 //===----------------------------------------------------------------------===// 2777 2778 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2779 // All variants of ffs return int which need not be 32 bits wide. 2780 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0 2781 Type *RetType = CI->getType(); 2782 Value *Op = CI->getArgOperand(0); 2783 Type *ArgType = Op->getType(); 2784 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2785 Intrinsic::cttz, ArgType); 2786 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2787 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2788 V = B.CreateIntCast(V, RetType, false); 2789 2790 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2791 return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0)); 2792 } 2793 2794 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2795 // All variants of fls return int which need not be 32 bits wide. 2796 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false)) 2797 Value *Op = CI->getArgOperand(0); 2798 Type *ArgType = Op->getType(); 2799 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2800 Intrinsic::ctlz, ArgType); 2801 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2802 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2803 V); 2804 return B.CreateIntCast(V, CI->getType(), false); 2805 } 2806 2807 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2808 // abs(x) -> x <s 0 ? -x : x 2809 // The negation has 'nsw' because abs of INT_MIN is undefined. 2810 Value *X = CI->getArgOperand(0); 2811 Value *IsNeg = B.CreateIsNeg(X); 2812 Value *NegX = B.CreateNSWNeg(X, "neg"); 2813 return B.CreateSelect(IsNeg, NegX, X); 2814 } 2815 2816 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2817 // isdigit(c) -> (c-'0') <u 10 2818 Value *Op = CI->getArgOperand(0); 2819 Type *ArgType = Op->getType(); 2820 Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp"); 2821 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit"); 2822 return B.CreateZExt(Op, CI->getType()); 2823 } 2824 2825 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2826 // isascii(c) -> c <u 128 2827 Value *Op = CI->getArgOperand(0); 2828 Type *ArgType = Op->getType(); 2829 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii"); 2830 return B.CreateZExt(Op, CI->getType()); 2831 } 2832 2833 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2834 // toascii(c) -> c & 0x7f 2835 return B.CreateAnd(CI->getArgOperand(0), 2836 ConstantInt::get(CI->getType(), 0x7F)); 2837 } 2838 2839 // Fold calls to atoi, atol, and atoll. 2840 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2841 CI->addParamAttr(0, Attribute::NoCapture); 2842 2843 StringRef Str; 2844 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2845 return nullptr; 2846 2847 return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B); 2848 } 2849 2850 // Fold calls to strtol, strtoll, strtoul, and strtoull. 2851 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B, 2852 bool AsSigned) { 2853 Value *EndPtr = CI->getArgOperand(1); 2854 if (isa<ConstantPointerNull>(EndPtr)) { 2855 // With a null EndPtr, this function won't capture the main argument. 2856 // It would be readonly too, except that it still may write to errno. 2857 CI->addParamAttr(0, Attribute::NoCapture); 2858 EndPtr = nullptr; 2859 } else if (!isKnownNonZero(EndPtr, DL)) 2860 return nullptr; 2861 2862 StringRef Str; 2863 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2864 return nullptr; 2865 2866 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2867 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B); 2868 } 2869 2870 return nullptr; 2871 } 2872 2873 //===----------------------------------------------------------------------===// 2874 // Formatting and IO Library Call Optimizations 2875 //===----------------------------------------------------------------------===// 2876 2877 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2878 2879 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2880 int StreamArg) { 2881 Function *Callee = CI->getCalledFunction(); 2882 // Error reporting calls should be cold, mark them as such. 2883 // This applies even to non-builtin calls: it is only a hint and applies to 2884 // functions that the frontend might not understand as builtins. 2885 2886 // This heuristic was suggested in: 2887 // Improving Static Branch Prediction in a Compiler 2888 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2889 // Proceedings of PACT'98, Oct. 1998, IEEE 2890 if (!CI->hasFnAttr(Attribute::Cold) && 2891 isReportingError(Callee, CI, StreamArg)) { 2892 CI->addFnAttr(Attribute::Cold); 2893 } 2894 2895 return nullptr; 2896 } 2897 2898 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2899 if (!Callee || !Callee->isDeclaration()) 2900 return false; 2901 2902 if (StreamArg < 0) 2903 return true; 2904 2905 // These functions might be considered cold, but only if their stream 2906 // argument is stderr. 2907 2908 if (StreamArg >= (int)CI->arg_size()) 2909 return false; 2910 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2911 if (!LI) 2912 return false; 2913 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2914 if (!GV || !GV->isDeclaration()) 2915 return false; 2916 return GV->getName() == "stderr"; 2917 } 2918 2919 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2920 // Check for a fixed format string. 2921 StringRef FormatStr; 2922 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2923 return nullptr; 2924 2925 // Empty format string -> noop. 2926 if (FormatStr.empty()) // Tolerate printf's declared void. 2927 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2928 2929 // Do not do any of the following transformations if the printf return value 2930 // is used, in general the printf return value is not compatible with either 2931 // putchar() or puts(). 2932 if (!CI->use_empty()) 2933 return nullptr; 2934 2935 Type *IntTy = CI->getType(); 2936 // printf("x") -> putchar('x'), even for "%" and "%%". 2937 if (FormatStr.size() == 1 || FormatStr == "%%") { 2938 // Convert the character to unsigned char before passing it to putchar 2939 // to avoid host-specific sign extension in the IR. Putchar converts 2940 // it to unsigned char regardless. 2941 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]); 2942 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 2943 } 2944 2945 // Try to remove call or emit putchar/puts. 2946 if (FormatStr == "%s" && CI->arg_size() > 1) { 2947 StringRef OperandStr; 2948 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2949 return nullptr; 2950 // printf("%s", "") --> NOP 2951 if (OperandStr.empty()) 2952 return (Value *)CI; 2953 // printf("%s", "a") --> putchar('a') 2954 if (OperandStr.size() == 1) { 2955 // Convert the character to unsigned char before passing it to putchar 2956 // to avoid host-specific sign extension in the IR. Putchar converts 2957 // it to unsigned char regardless. 2958 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]); 2959 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 2960 } 2961 // printf("%s", str"\n") --> puts(str) 2962 if (OperandStr.back() == '\n') { 2963 OperandStr = OperandStr.drop_back(); 2964 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2965 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2966 } 2967 return nullptr; 2968 } 2969 2970 // printf("foo\n") --> puts("foo") 2971 if (FormatStr.back() == '\n' && 2972 !FormatStr.contains('%')) { // No format characters. 2973 // Create a string literal with no \n on it. We expect the constant merge 2974 // pass to be run after this pass, to merge duplicate strings. 2975 FormatStr = FormatStr.drop_back(); 2976 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2977 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2978 } 2979 2980 // Optimize specific format strings. 2981 // printf("%c", chr) --> putchar(chr) 2982 if (FormatStr == "%c" && CI->arg_size() > 1 && 2983 CI->getArgOperand(1)->getType()->isIntegerTy()) { 2984 // Convert the argument to the type expected by putchar, i.e., int, which 2985 // need not be 32 bits wide but which is the same as printf's return type. 2986 Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false); 2987 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 2988 } 2989 2990 // printf("%s\n", str) --> puts(str) 2991 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2992 CI->getArgOperand(1)->getType()->isPointerTy()) 2993 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2994 return nullptr; 2995 } 2996 2997 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2998 2999 Module *M = CI->getModule(); 3000 Function *Callee = CI->getCalledFunction(); 3001 FunctionType *FT = Callee->getFunctionType(); 3002 if (Value *V = optimizePrintFString(CI, B)) { 3003 return V; 3004 } 3005 3006 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3007 3008 // printf(format, ...) -> iprintf(format, ...) if no floating point 3009 // arguments. 3010 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 3011 !callHasFloatingPointArgument(CI)) { 3012 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 3013 Callee->getAttributes()); 3014 CallInst *New = cast<CallInst>(CI->clone()); 3015 New->setCalledFunction(IPrintFFn); 3016 B.Insert(New); 3017 return New; 3018 } 3019 3020 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 3021 // arguments. 3022 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 3023 !callHasFP128Argument(CI)) { 3024 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 3025 Callee->getAttributes()); 3026 CallInst *New = cast<CallInst>(CI->clone()); 3027 New->setCalledFunction(SmallPrintFFn); 3028 B.Insert(New); 3029 return New; 3030 } 3031 3032 return nullptr; 3033 } 3034 3035 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 3036 IRBuilderBase &B) { 3037 // Check for a fixed format string. 3038 StringRef FormatStr; 3039 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3040 return nullptr; 3041 3042 // If we just have a format string (nothing else crazy) transform it. 3043 Value *Dest = CI->getArgOperand(0); 3044 if (CI->arg_size() == 2) { 3045 // Make sure there's no % in the constant array. We could try to handle 3046 // %% -> % in the future if we cared. 3047 if (FormatStr.contains('%')) 3048 return nullptr; // we found a format specifier, bail out. 3049 3050 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 3051 B.CreateMemCpy( 3052 Dest, Align(1), CI->getArgOperand(1), Align(1), 3053 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 3054 FormatStr.size() + 1)); // Copy the null byte. 3055 return ConstantInt::get(CI->getType(), FormatStr.size()); 3056 } 3057 3058 // The remaining optimizations require the format string to be "%s" or "%c" 3059 // and have an extra operand. 3060 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3061 return nullptr; 3062 3063 // Decode the second character of the format string. 3064 if (FormatStr[1] == 'c') { 3065 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3066 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3067 return nullptr; 3068 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 3069 Value *Ptr = castToCStr(Dest, B); 3070 B.CreateStore(V, Ptr); 3071 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3072 B.CreateStore(B.getInt8(0), Ptr); 3073 3074 return ConstantInt::get(CI->getType(), 1); 3075 } 3076 3077 if (FormatStr[1] == 's') { 3078 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 3079 // strlen(str)+1) 3080 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3081 return nullptr; 3082 3083 if (CI->use_empty()) 3084 // sprintf(dest, "%s", str) -> strcpy(dest, str) 3085 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 3086 3087 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 3088 if (SrcLen) { 3089 B.CreateMemCpy( 3090 Dest, Align(1), CI->getArgOperand(2), Align(1), 3091 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 3092 // Returns total number of characters written without null-character. 3093 return ConstantInt::get(CI->getType(), SrcLen - 1); 3094 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 3095 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 3096 // Handle mismatched pointer types (goes away with typeless pointers?). 3097 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 3098 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 3099 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 3100 return B.CreateIntCast(PtrDiff, CI->getType(), false); 3101 } 3102 3103 bool OptForSize = CI->getFunction()->hasOptSize() || 3104 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3105 PGSOQueryType::IRPass); 3106 if (OptForSize) 3107 return nullptr; 3108 3109 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 3110 if (!Len) 3111 return nullptr; 3112 Value *IncLen = 3113 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 3114 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 3115 3116 // The sprintf result is the unincremented number of bytes in the string. 3117 return B.CreateIntCast(Len, CI->getType(), false); 3118 } 3119 return nullptr; 3120 } 3121 3122 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 3123 Module *M = CI->getModule(); 3124 Function *Callee = CI->getCalledFunction(); 3125 FunctionType *FT = Callee->getFunctionType(); 3126 if (Value *V = optimizeSPrintFString(CI, B)) { 3127 return V; 3128 } 3129 3130 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 3131 3132 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 3133 // point arguments. 3134 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 3135 !callHasFloatingPointArgument(CI)) { 3136 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 3137 FT, Callee->getAttributes()); 3138 CallInst *New = cast<CallInst>(CI->clone()); 3139 New->setCalledFunction(SIPrintFFn); 3140 B.Insert(New); 3141 return New; 3142 } 3143 3144 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 3145 // floating point arguments. 3146 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 3147 !callHasFP128Argument(CI)) { 3148 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 3149 Callee->getAttributes()); 3150 CallInst *New = cast<CallInst>(CI->clone()); 3151 New->setCalledFunction(SmallSPrintFFn); 3152 B.Insert(New); 3153 return New; 3154 } 3155 3156 return nullptr; 3157 } 3158 3159 // Transform an snprintf call CI with the bound N to format the string Str 3160 // either to a call to memcpy, or to single character a store, or to nothing, 3161 // and fold the result to a constant. A nonnull StrArg refers to the string 3162 // argument being formatted. Otherwise the call is one with N < 2 and 3163 // the "%c" directive to format a single character. 3164 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg, 3165 StringRef Str, uint64_t N, 3166 IRBuilderBase &B) { 3167 assert(StrArg || (N < 2 && Str.size() == 1)); 3168 3169 unsigned IntBits = TLI->getIntSize(); 3170 uint64_t IntMax = maxIntN(IntBits); 3171 if (Str.size() > IntMax) 3172 // Bail if the string is longer than INT_MAX. POSIX requires 3173 // implementations to set errno to EOVERFLOW in this case, in 3174 // addition to when N is larger than that (checked by the caller). 3175 return nullptr; 3176 3177 Value *StrLen = ConstantInt::get(CI->getType(), Str.size()); 3178 if (N == 0) 3179 return StrLen; 3180 3181 // Set to the number of bytes to copy fron StrArg which is also 3182 // the offset of the terinating nul. 3183 uint64_t NCopy; 3184 if (N > Str.size()) 3185 // Copy the full string, including the terminating nul (which must 3186 // be present regardless of the bound). 3187 NCopy = Str.size() + 1; 3188 else 3189 NCopy = N - 1; 3190 3191 Value *DstArg = CI->getArgOperand(0); 3192 if (NCopy && StrArg) 3193 // Transform the call to lvm.memcpy(dst, fmt, N). 3194 copyFlags( 3195 *CI, 3196 B.CreateMemCpy( 3197 DstArg, Align(1), StrArg, Align(1), 3198 ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy))); 3199 3200 if (N > Str.size()) 3201 // Return early when the whole format string, including the final nul, 3202 // has been copied. 3203 return StrLen; 3204 3205 // Otherwise, when truncating the string append a terminating nul. 3206 Type *Int8Ty = B.getInt8Ty(); 3207 Value *NulOff = B.getIntN(IntBits, NCopy); 3208 Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr"); 3209 B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd); 3210 return StrLen; 3211 } 3212 3213 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 3214 IRBuilderBase &B) { 3215 // Check for size 3216 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3217 if (!Size) 3218 return nullptr; 3219 3220 uint64_t N = Size->getZExtValue(); 3221 uint64_t IntMax = maxIntN(TLI->getIntSize()); 3222 if (N > IntMax) 3223 // Bail if the bound exceeds INT_MAX. POSIX requires implementations 3224 // to set errno to EOVERFLOW in this case. 3225 return nullptr; 3226 3227 Value *DstArg = CI->getArgOperand(0); 3228 Value *FmtArg = CI->getArgOperand(2); 3229 3230 // Check for a fixed format string. 3231 StringRef FormatStr; 3232 if (!getConstantStringInfo(FmtArg, FormatStr)) 3233 return nullptr; 3234 3235 // If we just have a format string (nothing else crazy) transform it. 3236 if (CI->arg_size() == 3) { 3237 if (FormatStr.contains('%')) 3238 // Bail if the format string contains a directive and there are 3239 // no arguments. We could handle "%%" in the future. 3240 return nullptr; 3241 3242 return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B); 3243 } 3244 3245 // The remaining optimizations require the format string to be "%s" or "%c" 3246 // and have an extra operand. 3247 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4) 3248 return nullptr; 3249 3250 // Decode the second character of the format string. 3251 if (FormatStr[1] == 'c') { 3252 if (N <= 1) { 3253 // Use an arbitary string of length 1 to transform the call into 3254 // either a nul store (N == 1) or a no-op (N == 0) and fold it 3255 // to one. 3256 StringRef CharStr("*"); 3257 return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B); 3258 } 3259 3260 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3261 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 3262 return nullptr; 3263 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 3264 Value *Ptr = castToCStr(DstArg, B); 3265 B.CreateStore(V, Ptr); 3266 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3267 B.CreateStore(B.getInt8(0), Ptr); 3268 return ConstantInt::get(CI->getType(), 1); 3269 } 3270 3271 if (FormatStr[1] != 's') 3272 return nullptr; 3273 3274 Value *StrArg = CI->getArgOperand(3); 3275 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 3276 StringRef Str; 3277 if (!getConstantStringInfo(StrArg, Str)) 3278 return nullptr; 3279 3280 return emitSnPrintfMemCpy(CI, StrArg, Str, N, B); 3281 } 3282 3283 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 3284 if (Value *V = optimizeSnPrintFString(CI, B)) { 3285 return V; 3286 } 3287 3288 if (isKnownNonZero(CI->getOperand(1), DL)) 3289 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3290 return nullptr; 3291 } 3292 3293 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 3294 IRBuilderBase &B) { 3295 optimizeErrorReporting(CI, B, 0); 3296 3297 // All the optimizations depend on the format string. 3298 StringRef FormatStr; 3299 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3300 return nullptr; 3301 3302 // Do not do any of the following transformations if the fprintf return 3303 // value is used, in general the fprintf return value is not compatible 3304 // with fwrite(), fputc() or fputs(). 3305 if (!CI->use_empty()) 3306 return nullptr; 3307 3308 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 3309 if (CI->arg_size() == 2) { 3310 // Could handle %% -> % if we cared. 3311 if (FormatStr.contains('%')) 3312 return nullptr; // We found a format specifier. 3313 3314 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3315 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3316 return copyFlags( 3317 *CI, emitFWrite(CI->getArgOperand(1), 3318 ConstantInt::get(SizeTTy, FormatStr.size()), 3319 CI->getArgOperand(0), B, DL, TLI)); 3320 } 3321 3322 // The remaining optimizations require the format string to be "%s" or "%c" 3323 // and have an extra operand. 3324 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3325 return nullptr; 3326 3327 // Decode the second character of the format string. 3328 if (FormatStr[1] == 'c') { 3329 // fprintf(F, "%c", chr) --> fputc((int)chr, F) 3330 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3331 return nullptr; 3332 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3333 Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true, 3334 "chari"); 3335 return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI)); 3336 } 3337 3338 if (FormatStr[1] == 's') { 3339 // fprintf(F, "%s", str) --> fputs(str, F) 3340 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3341 return nullptr; 3342 return copyFlags( 3343 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 3344 } 3345 return nullptr; 3346 } 3347 3348 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 3349 Module *M = CI->getModule(); 3350 Function *Callee = CI->getCalledFunction(); 3351 FunctionType *FT = Callee->getFunctionType(); 3352 if (Value *V = optimizeFPrintFString(CI, B)) { 3353 return V; 3354 } 3355 3356 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 3357 // floating point arguments. 3358 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 3359 !callHasFloatingPointArgument(CI)) { 3360 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 3361 FT, Callee->getAttributes()); 3362 CallInst *New = cast<CallInst>(CI->clone()); 3363 New->setCalledFunction(FIPrintFFn); 3364 B.Insert(New); 3365 return New; 3366 } 3367 3368 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 3369 // 128-bit floating point arguments. 3370 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 3371 !callHasFP128Argument(CI)) { 3372 auto SmallFPrintFFn = 3373 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 3374 Callee->getAttributes()); 3375 CallInst *New = cast<CallInst>(CI->clone()); 3376 New->setCalledFunction(SmallFPrintFFn); 3377 B.Insert(New); 3378 return New; 3379 } 3380 3381 return nullptr; 3382 } 3383 3384 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 3385 optimizeErrorReporting(CI, B, 3); 3386 3387 // Get the element size and count. 3388 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3389 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 3390 if (SizeC && CountC) { 3391 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 3392 3393 // If this is writing zero records, remove the call (it's a noop). 3394 if (Bytes == 0) 3395 return ConstantInt::get(CI->getType(), 0); 3396 3397 // If this is writing one byte, turn it into fputc. 3398 // This optimisation is only valid, if the return value is unused. 3399 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 3400 Value *Char = B.CreateLoad(B.getInt8Ty(), 3401 castToCStr(CI->getArgOperand(0), B), "char"); 3402 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3403 Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari"); 3404 Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI); 3405 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 3406 } 3407 } 3408 3409 return nullptr; 3410 } 3411 3412 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 3413 optimizeErrorReporting(CI, B, 1); 3414 3415 // Don't rewrite fputs to fwrite when optimising for size because fwrite 3416 // requires more arguments and thus extra MOVs are required. 3417 bool OptForSize = CI->getFunction()->hasOptSize() || 3418 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3419 PGSOQueryType::IRPass); 3420 if (OptForSize) 3421 return nullptr; 3422 3423 // We can't optimize if return value is used. 3424 if (!CI->use_empty()) 3425 return nullptr; 3426 3427 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 3428 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 3429 if (!Len) 3430 return nullptr; 3431 3432 // Known to have no uses (see above). 3433 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3434 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3435 return copyFlags( 3436 *CI, 3437 emitFWrite(CI->getArgOperand(0), 3438 ConstantInt::get(SizeTTy, Len - 1), 3439 CI->getArgOperand(1), B, DL, TLI)); 3440 } 3441 3442 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 3443 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3444 if (!CI->use_empty()) 3445 return nullptr; 3446 3447 // Check for a constant string. 3448 // puts("") -> putchar('\n') 3449 StringRef Str; 3450 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) { 3451 // putchar takes an argument of the same type as puts returns, i.e., 3452 // int, which need not be 32 bits wide. 3453 Type *IntTy = CI->getType(); 3454 return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI)); 3455 } 3456 3457 return nullptr; 3458 } 3459 3460 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 3461 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 3462 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 3463 CI->getArgOperand(0), Align(1), 3464 CI->getArgOperand(2))); 3465 } 3466 3467 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 3468 SmallString<20> FloatFuncName = FuncName; 3469 FloatFuncName += 'f'; 3470 return isLibFuncEmittable(M, TLI, FloatFuncName); 3471 } 3472 3473 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 3474 IRBuilderBase &Builder) { 3475 Module *M = CI->getModule(); 3476 LibFunc Func; 3477 Function *Callee = CI->getCalledFunction(); 3478 // Check for string/memory library functions. 3479 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3480 // Make sure we never change the calling convention. 3481 assert( 3482 (ignoreCallingConv(Func) || 3483 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3484 "Optimizing string/memory libcall would change the calling convention"); 3485 switch (Func) { 3486 case LibFunc_strcat: 3487 return optimizeStrCat(CI, Builder); 3488 case LibFunc_strncat: 3489 return optimizeStrNCat(CI, Builder); 3490 case LibFunc_strchr: 3491 return optimizeStrChr(CI, Builder); 3492 case LibFunc_strrchr: 3493 return optimizeStrRChr(CI, Builder); 3494 case LibFunc_strcmp: 3495 return optimizeStrCmp(CI, Builder); 3496 case LibFunc_strncmp: 3497 return optimizeStrNCmp(CI, Builder); 3498 case LibFunc_strcpy: 3499 return optimizeStrCpy(CI, Builder); 3500 case LibFunc_stpcpy: 3501 return optimizeStpCpy(CI, Builder); 3502 case LibFunc_strlcpy: 3503 return optimizeStrLCpy(CI, Builder); 3504 case LibFunc_stpncpy: 3505 return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder); 3506 case LibFunc_strncpy: 3507 return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder); 3508 case LibFunc_strlen: 3509 return optimizeStrLen(CI, Builder); 3510 case LibFunc_strnlen: 3511 return optimizeStrNLen(CI, Builder); 3512 case LibFunc_strpbrk: 3513 return optimizeStrPBrk(CI, Builder); 3514 case LibFunc_strndup: 3515 return optimizeStrNDup(CI, Builder); 3516 case LibFunc_strtol: 3517 case LibFunc_strtod: 3518 case LibFunc_strtof: 3519 case LibFunc_strtoul: 3520 case LibFunc_strtoll: 3521 case LibFunc_strtold: 3522 case LibFunc_strtoull: 3523 return optimizeStrTo(CI, Builder); 3524 case LibFunc_strspn: 3525 return optimizeStrSpn(CI, Builder); 3526 case LibFunc_strcspn: 3527 return optimizeStrCSpn(CI, Builder); 3528 case LibFunc_strstr: 3529 return optimizeStrStr(CI, Builder); 3530 case LibFunc_memchr: 3531 return optimizeMemChr(CI, Builder); 3532 case LibFunc_memrchr: 3533 return optimizeMemRChr(CI, Builder); 3534 case LibFunc_bcmp: 3535 return optimizeBCmp(CI, Builder); 3536 case LibFunc_memcmp: 3537 return optimizeMemCmp(CI, Builder); 3538 case LibFunc_memcpy: 3539 return optimizeMemCpy(CI, Builder); 3540 case LibFunc_memccpy: 3541 return optimizeMemCCpy(CI, Builder); 3542 case LibFunc_mempcpy: 3543 return optimizeMemPCpy(CI, Builder); 3544 case LibFunc_memmove: 3545 return optimizeMemMove(CI, Builder); 3546 case LibFunc_memset: 3547 return optimizeMemSet(CI, Builder); 3548 case LibFunc_realloc: 3549 return optimizeRealloc(CI, Builder); 3550 case LibFunc_wcslen: 3551 return optimizeWcslen(CI, Builder); 3552 case LibFunc_bcopy: 3553 return optimizeBCopy(CI, Builder); 3554 case LibFunc_Znwm: 3555 case LibFunc_ZnwmRKSt9nothrow_t: 3556 case LibFunc_ZnwmSt11align_val_t: 3557 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 3558 case LibFunc_Znam: 3559 case LibFunc_ZnamRKSt9nothrow_t: 3560 case LibFunc_ZnamSt11align_val_t: 3561 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 3562 return optimizeNew(CI, Builder, Func); 3563 default: 3564 break; 3565 } 3566 } 3567 return nullptr; 3568 } 3569 3570 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3571 LibFunc Func, 3572 IRBuilderBase &Builder) { 3573 const Module *M = CI->getModule(); 3574 3575 // Don't optimize calls that require strict floating point semantics. 3576 if (CI->isStrictFP()) 3577 return nullptr; 3578 3579 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 3580 return V; 3581 3582 switch (Func) { 3583 case LibFunc_sinpif: 3584 case LibFunc_sinpi: 3585 return optimizeSinCosPi(CI, /*IsSin*/true, Builder); 3586 case LibFunc_cospif: 3587 case LibFunc_cospi: 3588 return optimizeSinCosPi(CI, /*IsSin*/false, Builder); 3589 case LibFunc_powf: 3590 case LibFunc_pow: 3591 case LibFunc_powl: 3592 return optimizePow(CI, Builder); 3593 case LibFunc_exp2l: 3594 case LibFunc_exp2: 3595 case LibFunc_exp2f: 3596 return optimizeExp2(CI, Builder); 3597 case LibFunc_fabsf: 3598 case LibFunc_fabs: 3599 case LibFunc_fabsl: 3600 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3601 case LibFunc_sqrtf: 3602 case LibFunc_sqrt: 3603 case LibFunc_sqrtl: 3604 return optimizeSqrt(CI, Builder); 3605 case LibFunc_logf: 3606 case LibFunc_log: 3607 case LibFunc_logl: 3608 case LibFunc_log10f: 3609 case LibFunc_log10: 3610 case LibFunc_log10l: 3611 case LibFunc_log1pf: 3612 case LibFunc_log1p: 3613 case LibFunc_log1pl: 3614 case LibFunc_log2f: 3615 case LibFunc_log2: 3616 case LibFunc_log2l: 3617 case LibFunc_logbf: 3618 case LibFunc_logb: 3619 case LibFunc_logbl: 3620 return optimizeLog(CI, Builder); 3621 case LibFunc_tan: 3622 case LibFunc_tanf: 3623 case LibFunc_tanl: 3624 return optimizeTan(CI, Builder); 3625 case LibFunc_ceil: 3626 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3627 case LibFunc_floor: 3628 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3629 case LibFunc_round: 3630 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3631 case LibFunc_roundeven: 3632 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3633 case LibFunc_nearbyint: 3634 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3635 case LibFunc_rint: 3636 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3637 case LibFunc_trunc: 3638 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3639 case LibFunc_acos: 3640 case LibFunc_acosh: 3641 case LibFunc_asin: 3642 case LibFunc_asinh: 3643 case LibFunc_atan: 3644 case LibFunc_atanh: 3645 case LibFunc_cbrt: 3646 case LibFunc_cosh: 3647 case LibFunc_exp: 3648 case LibFunc_exp10: 3649 case LibFunc_expm1: 3650 case LibFunc_cos: 3651 case LibFunc_sin: 3652 case LibFunc_sinh: 3653 case LibFunc_tanh: 3654 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 3655 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 3656 return nullptr; 3657 case LibFunc_copysign: 3658 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 3659 return optimizeBinaryDoubleFP(CI, Builder, TLI); 3660 return nullptr; 3661 case LibFunc_fminf: 3662 case LibFunc_fmin: 3663 case LibFunc_fminl: 3664 case LibFunc_fmaxf: 3665 case LibFunc_fmax: 3666 case LibFunc_fmaxl: 3667 return optimizeFMinFMax(CI, Builder); 3668 case LibFunc_cabs: 3669 case LibFunc_cabsf: 3670 case LibFunc_cabsl: 3671 return optimizeCAbs(CI, Builder); 3672 default: 3673 return nullptr; 3674 } 3675 } 3676 3677 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3678 Module *M = CI->getModule(); 3679 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3680 3681 // TODO: Split out the code below that operates on FP calls so that 3682 // we can all non-FP calls with the StrictFP attribute to be 3683 // optimized. 3684 if (CI->isNoBuiltin()) 3685 return nullptr; 3686 3687 LibFunc Func; 3688 Function *Callee = CI->getCalledFunction(); 3689 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3690 3691 SmallVector<OperandBundleDef, 2> OpBundles; 3692 CI->getOperandBundlesAsDefs(OpBundles); 3693 3694 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3695 Builder.setDefaultOperandBundles(OpBundles); 3696 3697 // Command-line parameter overrides instruction attribute. 3698 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3699 // used by the intrinsic optimizations. 3700 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3701 UnsafeFPShrink = EnableUnsafeFPShrink; 3702 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3703 UnsafeFPShrink = true; 3704 3705 // First, check for intrinsics. 3706 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3707 if (!IsCallingConvC) 3708 return nullptr; 3709 // The FP intrinsics have corresponding constrained versions so we don't 3710 // need to check for the StrictFP attribute here. 3711 switch (II->getIntrinsicID()) { 3712 case Intrinsic::pow: 3713 return optimizePow(CI, Builder); 3714 case Intrinsic::exp2: 3715 return optimizeExp2(CI, Builder); 3716 case Intrinsic::log: 3717 case Intrinsic::log2: 3718 case Intrinsic::log10: 3719 return optimizeLog(CI, Builder); 3720 case Intrinsic::sqrt: 3721 return optimizeSqrt(CI, Builder); 3722 case Intrinsic::memset: 3723 return optimizeMemSet(CI, Builder); 3724 case Intrinsic::memcpy: 3725 return optimizeMemCpy(CI, Builder); 3726 case Intrinsic::memmove: 3727 return optimizeMemMove(CI, Builder); 3728 default: 3729 return nullptr; 3730 } 3731 } 3732 3733 // Also try to simplify calls to fortified library functions. 3734 if (Value *SimplifiedFortifiedCI = 3735 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3736 // Try to further simplify the result. 3737 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3738 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3739 // Ensure that SimplifiedCI's uses are complete, since some calls have 3740 // their uses analyzed. 3741 replaceAllUsesWith(CI, SimplifiedCI); 3742 3743 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3744 // we might replace later on. 3745 IRBuilderBase::InsertPointGuard Guard(Builder); 3746 Builder.SetInsertPoint(SimplifiedCI); 3747 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3748 // If we were able to further simplify, remove the now redundant call. 3749 substituteInParent(SimplifiedCI, V); 3750 return V; 3751 } 3752 } 3753 return SimplifiedFortifiedCI; 3754 } 3755 3756 // Then check for known library functions. 3757 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3758 // We never change the calling convention. 3759 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3760 return nullptr; 3761 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3762 return V; 3763 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3764 return V; 3765 switch (Func) { 3766 case LibFunc_ffs: 3767 case LibFunc_ffsl: 3768 case LibFunc_ffsll: 3769 return optimizeFFS(CI, Builder); 3770 case LibFunc_fls: 3771 case LibFunc_flsl: 3772 case LibFunc_flsll: 3773 return optimizeFls(CI, Builder); 3774 case LibFunc_abs: 3775 case LibFunc_labs: 3776 case LibFunc_llabs: 3777 return optimizeAbs(CI, Builder); 3778 case LibFunc_isdigit: 3779 return optimizeIsDigit(CI, Builder); 3780 case LibFunc_isascii: 3781 return optimizeIsAscii(CI, Builder); 3782 case LibFunc_toascii: 3783 return optimizeToAscii(CI, Builder); 3784 case LibFunc_atoi: 3785 case LibFunc_atol: 3786 case LibFunc_atoll: 3787 return optimizeAtoi(CI, Builder); 3788 case LibFunc_strtol: 3789 case LibFunc_strtoll: 3790 return optimizeStrToInt(CI, Builder, /*AsSigned=*/true); 3791 case LibFunc_strtoul: 3792 case LibFunc_strtoull: 3793 return optimizeStrToInt(CI, Builder, /*AsSigned=*/false); 3794 case LibFunc_printf: 3795 return optimizePrintF(CI, Builder); 3796 case LibFunc_sprintf: 3797 return optimizeSPrintF(CI, Builder); 3798 case LibFunc_snprintf: 3799 return optimizeSnPrintF(CI, Builder); 3800 case LibFunc_fprintf: 3801 return optimizeFPrintF(CI, Builder); 3802 case LibFunc_fwrite: 3803 return optimizeFWrite(CI, Builder); 3804 case LibFunc_fputs: 3805 return optimizeFPuts(CI, Builder); 3806 case LibFunc_puts: 3807 return optimizePuts(CI, Builder); 3808 case LibFunc_perror: 3809 return optimizeErrorReporting(CI, Builder); 3810 case LibFunc_vfprintf: 3811 case LibFunc_fiprintf: 3812 return optimizeErrorReporting(CI, Builder, 0); 3813 default: 3814 return nullptr; 3815 } 3816 } 3817 return nullptr; 3818 } 3819 3820 LibCallSimplifier::LibCallSimplifier( 3821 const DataLayout &DL, const TargetLibraryInfo *TLI, AssumptionCache *AC, 3822 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 3823 ProfileSummaryInfo *PSI, 3824 function_ref<void(Instruction *, Value *)> Replacer, 3825 function_ref<void(Instruction *)> Eraser) 3826 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), AC(AC), ORE(ORE), BFI(BFI), 3827 PSI(PSI), Replacer(Replacer), Eraser(Eraser) {} 3828 3829 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3830 // Indirect through the replacer used in this instance. 3831 Replacer(I, With); 3832 } 3833 3834 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3835 Eraser(I); 3836 } 3837 3838 // TODO: 3839 // Additional cases that we need to add to this file: 3840 // 3841 // cbrt: 3842 // * cbrt(expN(X)) -> expN(x/3) 3843 // * cbrt(sqrt(x)) -> pow(x,1/6) 3844 // * cbrt(cbrt(x)) -> pow(x,1/9) 3845 // 3846 // exp, expf, expl: 3847 // * exp(log(x)) -> x 3848 // 3849 // log, logf, logl: 3850 // * log(exp(x)) -> x 3851 // * log(exp(y)) -> y*log(e) 3852 // * log(exp10(y)) -> y*log(10) 3853 // * log(sqrt(x)) -> 0.5*log(x) 3854 // 3855 // pow, powf, powl: 3856 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3857 // * pow(pow(x,y),z)-> pow(x,y*z) 3858 // 3859 // signbit: 3860 // * signbit(cnst) -> cnst' 3861 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3862 // 3863 // sqrt, sqrtf, sqrtl: 3864 // * sqrt(expN(x)) -> expN(x*0.5) 3865 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3866 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3867 // 3868 3869 //===----------------------------------------------------------------------===// 3870 // Fortified Library Call Optimizations 3871 //===----------------------------------------------------------------------===// 3872 3873 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable( 3874 CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp, 3875 std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) { 3876 // If this function takes a flag argument, the implementation may use it to 3877 // perform extra checks. Don't fold into the non-checking variant. 3878 if (FlagOp) { 3879 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3880 if (!Flag || !Flag->isZero()) 3881 return false; 3882 } 3883 3884 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3885 return true; 3886 3887 if (ConstantInt *ObjSizeCI = 3888 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3889 if (ObjSizeCI->isMinusOne()) 3890 return true; 3891 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3892 if (OnlyLowerUnknownSize) 3893 return false; 3894 if (StrOp) { 3895 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3896 // If the length is 0 we don't know how long it is and so we can't 3897 // remove the check. 3898 if (Len) 3899 annotateDereferenceableBytes(CI, *StrOp, Len); 3900 else 3901 return false; 3902 return ObjSizeCI->getZExtValue() >= Len; 3903 } 3904 3905 if (SizeOp) { 3906 if (ConstantInt *SizeCI = 3907 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3908 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3909 } 3910 } 3911 return false; 3912 } 3913 3914 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3915 IRBuilderBase &B) { 3916 if (isFortifiedCallFoldable(CI, 3, 2)) { 3917 CallInst *NewCI = 3918 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3919 Align(1), CI->getArgOperand(2)); 3920 mergeAttributesAndFlags(NewCI, *CI); 3921 return CI->getArgOperand(0); 3922 } 3923 return nullptr; 3924 } 3925 3926 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3927 IRBuilderBase &B) { 3928 if (isFortifiedCallFoldable(CI, 3, 2)) { 3929 CallInst *NewCI = 3930 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3931 Align(1), CI->getArgOperand(2)); 3932 mergeAttributesAndFlags(NewCI, *CI); 3933 return CI->getArgOperand(0); 3934 } 3935 return nullptr; 3936 } 3937 3938 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3939 IRBuilderBase &B) { 3940 if (isFortifiedCallFoldable(CI, 3, 2)) { 3941 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3942 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3943 CI->getArgOperand(2), Align(1)); 3944 mergeAttributesAndFlags(NewCI, *CI); 3945 return CI->getArgOperand(0); 3946 } 3947 return nullptr; 3948 } 3949 3950 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3951 IRBuilderBase &B) { 3952 const DataLayout &DL = CI->getModule()->getDataLayout(); 3953 if (isFortifiedCallFoldable(CI, 3, 2)) 3954 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3955 CI->getArgOperand(2), B, DL, TLI)) { 3956 return mergeAttributesAndFlags(cast<CallInst>(Call), *CI); 3957 } 3958 return nullptr; 3959 } 3960 3961 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3962 IRBuilderBase &B, 3963 LibFunc Func) { 3964 const DataLayout &DL = CI->getModule()->getDataLayout(); 3965 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3966 *ObjSize = CI->getArgOperand(2); 3967 3968 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3969 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3970 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3971 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3972 } 3973 3974 // If a) we don't have any length information, or b) we know this will 3975 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3976 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3977 // TODO: It might be nice to get a maximum length out of the possible 3978 // string lengths for varying. 3979 if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) { 3980 if (Func == LibFunc_strcpy_chk) 3981 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3982 else 3983 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3984 } 3985 3986 if (OnlyLowerUnknownSize) 3987 return nullptr; 3988 3989 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3990 uint64_t Len = GetStringLength(Src); 3991 if (Len) 3992 annotateDereferenceableBytes(CI, 1, Len); 3993 else 3994 return nullptr; 3995 3996 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3997 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3998 Value *LenV = ConstantInt::get(SizeTTy, Len); 3999 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 4000 // If the function was an __stpcpy_chk, and we were able to fold it into 4001 // a __memcpy_chk, we still need to return the correct end pointer. 4002 if (Ret && Func == LibFunc_stpcpy_chk) 4003 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, 4004 ConstantInt::get(SizeTTy, Len - 1)); 4005 return copyFlags(*CI, cast<CallInst>(Ret)); 4006 } 4007 4008 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 4009 IRBuilderBase &B) { 4010 if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0)) 4011 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 4012 CI->getModule()->getDataLayout(), TLI)); 4013 return nullptr; 4014 } 4015 4016 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 4017 IRBuilderBase &B, 4018 LibFunc Func) { 4019 if (isFortifiedCallFoldable(CI, 3, 2)) { 4020 if (Func == LibFunc_strncpy_chk) 4021 return copyFlags(*CI, 4022 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4023 CI->getArgOperand(2), B, TLI)); 4024 else 4025 return copyFlags(*CI, 4026 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4027 CI->getArgOperand(2), B, TLI)); 4028 } 4029 4030 return nullptr; 4031 } 4032 4033 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 4034 IRBuilderBase &B) { 4035 if (isFortifiedCallFoldable(CI, 4, 3)) 4036 return copyFlags( 4037 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4038 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 4039 4040 return nullptr; 4041 } 4042 4043 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 4044 IRBuilderBase &B) { 4045 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) { 4046 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 4047 return copyFlags(*CI, 4048 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4049 CI->getArgOperand(4), VariadicArgs, B, TLI)); 4050 } 4051 4052 return nullptr; 4053 } 4054 4055 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 4056 IRBuilderBase &B) { 4057 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) { 4058 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 4059 return copyFlags(*CI, 4060 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4061 VariadicArgs, B, TLI)); 4062 } 4063 4064 return nullptr; 4065 } 4066 4067 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 4068 IRBuilderBase &B) { 4069 if (isFortifiedCallFoldable(CI, 2)) 4070 return copyFlags( 4071 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 4072 4073 return nullptr; 4074 } 4075 4076 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 4077 IRBuilderBase &B) { 4078 if (isFortifiedCallFoldable(CI, 3)) 4079 return copyFlags(*CI, 4080 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 4081 CI->getArgOperand(2), B, TLI)); 4082 4083 return nullptr; 4084 } 4085 4086 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 4087 IRBuilderBase &B) { 4088 if (isFortifiedCallFoldable(CI, 3)) 4089 return copyFlags(*CI, 4090 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 4091 CI->getArgOperand(2), B, TLI)); 4092 4093 return nullptr; 4094 } 4095 4096 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 4097 IRBuilderBase &B) { 4098 if (isFortifiedCallFoldable(CI, 3)) 4099 return copyFlags(*CI, 4100 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4101 CI->getArgOperand(2), B, TLI)); 4102 4103 return nullptr; 4104 } 4105 4106 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 4107 IRBuilderBase &B) { 4108 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) 4109 return copyFlags( 4110 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4111 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 4112 4113 return nullptr; 4114 } 4115 4116 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 4117 IRBuilderBase &B) { 4118 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) 4119 return copyFlags(*CI, 4120 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4121 CI->getArgOperand(4), B, TLI)); 4122 4123 return nullptr; 4124 } 4125 4126 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 4127 IRBuilderBase &Builder) { 4128 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 4129 // Some clang users checked for _chk libcall availability using: 4130 // __has_builtin(__builtin___memcpy_chk) 4131 // When compiling with -fno-builtin, this is always true. 4132 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 4133 // end up with fortified libcalls, which isn't acceptable in a freestanding 4134 // environment which only provides their non-fortified counterparts. 4135 // 4136 // Until we change clang and/or teach external users to check for availability 4137 // differently, disregard the "nobuiltin" attribute and TLI::has. 4138 // 4139 // PR23093. 4140 4141 LibFunc Func; 4142 Function *Callee = CI->getCalledFunction(); 4143 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 4144 4145 SmallVector<OperandBundleDef, 2> OpBundles; 4146 CI->getOperandBundlesAsDefs(OpBundles); 4147 4148 IRBuilderBase::OperandBundlesGuard Guard(Builder); 4149 Builder.setDefaultOperandBundles(OpBundles); 4150 4151 // First, check that this is a known library functions and that the prototype 4152 // is correct. 4153 if (!TLI->getLibFunc(*Callee, Func)) 4154 return nullptr; 4155 4156 // We never change the calling convention. 4157 if (!ignoreCallingConv(Func) && !IsCallingConvC) 4158 return nullptr; 4159 4160 switch (Func) { 4161 case LibFunc_memcpy_chk: 4162 return optimizeMemCpyChk(CI, Builder); 4163 case LibFunc_mempcpy_chk: 4164 return optimizeMemPCpyChk(CI, Builder); 4165 case LibFunc_memmove_chk: 4166 return optimizeMemMoveChk(CI, Builder); 4167 case LibFunc_memset_chk: 4168 return optimizeMemSetChk(CI, Builder); 4169 case LibFunc_stpcpy_chk: 4170 case LibFunc_strcpy_chk: 4171 return optimizeStrpCpyChk(CI, Builder, Func); 4172 case LibFunc_strlen_chk: 4173 return optimizeStrLenChk(CI, Builder); 4174 case LibFunc_stpncpy_chk: 4175 case LibFunc_strncpy_chk: 4176 return optimizeStrpNCpyChk(CI, Builder, Func); 4177 case LibFunc_memccpy_chk: 4178 return optimizeMemCCpyChk(CI, Builder); 4179 case LibFunc_snprintf_chk: 4180 return optimizeSNPrintfChk(CI, Builder); 4181 case LibFunc_sprintf_chk: 4182 return optimizeSPrintfChk(CI, Builder); 4183 case LibFunc_strcat_chk: 4184 return optimizeStrCatChk(CI, Builder); 4185 case LibFunc_strlcat_chk: 4186 return optimizeStrLCat(CI, Builder); 4187 case LibFunc_strncat_chk: 4188 return optimizeStrNCatChk(CI, Builder); 4189 case LibFunc_strlcpy_chk: 4190 return optimizeStrLCpyChk(CI, Builder); 4191 case LibFunc_vsnprintf_chk: 4192 return optimizeVSNPrintfChk(CI, Builder); 4193 case LibFunc_vsprintf_chk: 4194 return optimizeVSPrintfChk(CI, Builder); 4195 default: 4196 break; 4197 } 4198 return nullptr; 4199 } 4200 4201 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 4202 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 4203 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 4204