xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp (revision d11f81afd5a4a71d5f725950b0592ca212084780)
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "indvars"
34 
35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
36 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
38 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
39 STATISTIC(
40     NumSimplifiedSDiv,
41     "Number of IV signed division operations converted to unsigned division");
42 STATISTIC(
43     NumSimplifiedSRem,
44     "Number of IV signed remainder operations converted to unsigned remainder");
45 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
46 
47 namespace {
48   /// This is a utility for simplifying induction variables
49   /// based on ScalarEvolution. It is the primary instrument of the
50   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
51   /// other loop passes that preserve SCEV.
52   class SimplifyIndvar {
53     Loop             *L;
54     LoopInfo         *LI;
55     ScalarEvolution  *SE;
56     DominatorTree    *DT;
57     const TargetTransformInfo *TTI;
58     SCEVExpander     &Rewriter;
59     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
60 
61     bool Changed;
62 
63   public:
64     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
65                    LoopInfo *LI, const TargetTransformInfo *TTI,
66                    SCEVExpander &Rewriter,
67                    SmallVectorImpl<WeakTrackingVH> &Dead)
68         : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
69           DeadInsts(Dead), Changed(false) {
70       assert(LI && "IV simplification requires LoopInfo");
71     }
72 
73     bool hasChanged() const { return Changed; }
74 
75     /// Iteratively perform simplification on a worklist of users of the
76     /// specified induction variable. This is the top-level driver that applies
77     /// all simplifications to users of an IV.
78     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
79 
80     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
81 
82     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
83     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
84 
85     bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
86     bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
87     bool eliminateTrunc(TruncInst *TI);
88     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
89     bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
90     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
91     void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
92                              bool IsSigned);
93     void replaceRemWithNumerator(BinaryOperator *Rem);
94     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
95     void replaceSRemWithURem(BinaryOperator *Rem);
96     bool eliminateSDiv(BinaryOperator *SDiv);
97     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
98     bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
99   };
100 }
101 
102 /// Find a point in code which dominates all given instructions. We can safely
103 /// assume that, whatever fact we can prove at the found point, this fact is
104 /// also true for each of the given instructions.
105 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
106                                         DominatorTree &DT) {
107   Instruction *CommonDom = nullptr;
108   for (auto *Insn : Instructions)
109     if (!CommonDom || DT.dominates(Insn, CommonDom))
110       CommonDom = Insn;
111     else if (!DT.dominates(CommonDom, Insn))
112       // If there is no dominance relation, use common dominator.
113       CommonDom =
114           DT.findNearestCommonDominator(CommonDom->getParent(),
115                                         Insn->getParent())->getTerminator();
116   assert(CommonDom && "Common dominator not found?");
117   return CommonDom;
118 }
119 
120 /// Fold an IV operand into its use.  This removes increments of an
121 /// aligned IV when used by a instruction that ignores the low bits.
122 ///
123 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
124 ///
125 /// Return the operand of IVOperand for this induction variable if IVOperand can
126 /// be folded (in case more folding opportunities have been exposed).
127 /// Otherwise return null.
128 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
129   Value *IVSrc = nullptr;
130   const unsigned OperIdx = 0;
131   const SCEV *FoldedExpr = nullptr;
132   bool MustDropExactFlag = false;
133   switch (UseInst->getOpcode()) {
134   default:
135     return nullptr;
136   case Instruction::UDiv:
137   case Instruction::LShr:
138     // We're only interested in the case where we know something about
139     // the numerator and have a constant denominator.
140     if (IVOperand != UseInst->getOperand(OperIdx) ||
141         !isa<ConstantInt>(UseInst->getOperand(1)))
142       return nullptr;
143 
144     // Attempt to fold a binary operator with constant operand.
145     // e.g. ((I + 1) >> 2) => I >> 2
146     if (!isa<BinaryOperator>(IVOperand)
147         || !isa<ConstantInt>(IVOperand->getOperand(1)))
148       return nullptr;
149 
150     IVSrc = IVOperand->getOperand(0);
151     // IVSrc must be the (SCEVable) IV, since the other operand is const.
152     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
153 
154     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
155     if (UseInst->getOpcode() == Instruction::LShr) {
156       // Get a constant for the divisor. See createSCEV.
157       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
158       if (D->getValue().uge(BitWidth))
159         return nullptr;
160 
161       D = ConstantInt::get(UseInst->getContext(),
162                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
163     }
164     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
165     // We might have 'exact' flag set at this point which will no longer be
166     // correct after we make the replacement.
167     if (UseInst->isExact() &&
168         SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
169       MustDropExactFlag = true;
170   }
171   // We have something that might fold it's operand. Compare SCEVs.
172   if (!SE->isSCEVable(UseInst->getType()))
173     return nullptr;
174 
175   // Bypass the operand if SCEV can prove it has no effect.
176   if (SE->getSCEV(UseInst) != FoldedExpr)
177     return nullptr;
178 
179   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
180                     << " -> " << *UseInst << '\n');
181 
182   UseInst->setOperand(OperIdx, IVSrc);
183   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
184 
185   if (MustDropExactFlag)
186     UseInst->dropPoisonGeneratingFlags();
187 
188   ++NumElimOperand;
189   Changed = true;
190   if (IVOperand->use_empty())
191     DeadInsts.emplace_back(IVOperand);
192   return IVSrc;
193 }
194 
195 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
196                                                Value *IVOperand) {
197   unsigned IVOperIdx = 0;
198   ICmpInst::Predicate Pred = ICmp->getPredicate();
199   if (IVOperand != ICmp->getOperand(0)) {
200     // Swapped
201     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
202     IVOperIdx = 1;
203     Pred = ICmpInst::getSwappedPredicate(Pred);
204   }
205 
206   // Get the SCEVs for the ICmp operands (in the specific context of the
207   // current loop)
208   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
209   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
210   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
211 
212   auto *PN = dyn_cast<PHINode>(IVOperand);
213   if (!PN)
214     return false;
215   auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
216   if (!LIP)
217     return false;
218   ICmpInst::Predicate InvariantPredicate = LIP->Pred;
219   const SCEV *InvariantLHS = LIP->LHS;
220   const SCEV *InvariantRHS = LIP->RHS;
221 
222   // Rewrite the comparison to a loop invariant comparison if it can be done
223   // cheaply, where cheaply means "we don't need to emit any new
224   // instructions".
225 
226   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
227   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
228   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
229 
230   // TODO: Support multiple entry loops?  (We currently bail out of these in
231   // the IndVarSimplify pass)
232   if (auto *BB = L->getLoopPredecessor()) {
233     const int Idx = PN->getBasicBlockIndex(BB);
234     if (Idx >= 0) {
235       Value *Incoming = PN->getIncomingValue(Idx);
236       const SCEV *IncomingS = SE->getSCEV(Incoming);
237       CheapExpansions[IncomingS] = Incoming;
238     }
239   }
240   Value *NewLHS = CheapExpansions[InvariantLHS];
241   Value *NewRHS = CheapExpansions[InvariantRHS];
242 
243   if (!NewLHS)
244     if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
245       NewLHS = ConstLHS->getValue();
246   if (!NewRHS)
247     if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
248       NewRHS = ConstRHS->getValue();
249 
250   if (!NewLHS || !NewRHS)
251     // We could not find an existing value to replace either LHS or RHS.
252     // Generating new instructions has subtler tradeoffs, so avoid doing that
253     // for now.
254     return false;
255 
256   LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
257   ICmp->setPredicate(InvariantPredicate);
258   ICmp->setOperand(0, NewLHS);
259   ICmp->setOperand(1, NewRHS);
260   return true;
261 }
262 
263 /// SimplifyIVUsers helper for eliminating useless
264 /// comparisons against an induction variable.
265 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
266   unsigned IVOperIdx = 0;
267   ICmpInst::Predicate Pred = ICmp->getPredicate();
268   ICmpInst::Predicate OriginalPred = Pred;
269   if (IVOperand != ICmp->getOperand(0)) {
270     // Swapped
271     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
272     IVOperIdx = 1;
273     Pred = ICmpInst::getSwappedPredicate(Pred);
274   }
275 
276   // Get the SCEVs for the ICmp operands (in the specific context of the
277   // current loop)
278   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
279   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
280   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
281 
282   // If the condition is always true or always false in the given context,
283   // replace it with a constant value.
284   SmallVector<Instruction *, 4> Users;
285   for (auto *U : ICmp->users())
286     Users.push_back(cast<Instruction>(U));
287   const Instruction *CtxI = findCommonDominator(Users, *DT);
288   if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
289     ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
290     DeadInsts.emplace_back(ICmp);
291     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
292   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
293     // fallthrough to end of function
294   } else if (ICmpInst::isSigned(OriginalPred) &&
295              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
296     // If we were unable to make anything above, all we can is to canonicalize
297     // the comparison hoping that it will open the doors for other
298     // optimizations. If we find out that we compare two non-negative values,
299     // we turn the instruction's predicate to its unsigned version. Note that
300     // we cannot rely on Pred here unless we check if we have swapped it.
301     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
302     LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
303                       << '\n');
304     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
305   } else
306     return;
307 
308   ++NumElimCmp;
309   Changed = true;
310 }
311 
312 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
313   // Get the SCEVs for the ICmp operands.
314   auto *N = SE->getSCEV(SDiv->getOperand(0));
315   auto *D = SE->getSCEV(SDiv->getOperand(1));
316 
317   // Simplify unnecessary loops away.
318   const Loop *L = LI->getLoopFor(SDiv->getParent());
319   N = SE->getSCEVAtScope(N, L);
320   D = SE->getSCEVAtScope(D, L);
321 
322   // Replace sdiv by udiv if both of the operands are non-negative
323   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
324     auto *UDiv = BinaryOperator::Create(
325         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
326         SDiv->getName() + ".udiv", SDiv);
327     UDiv->setIsExact(SDiv->isExact());
328     SDiv->replaceAllUsesWith(UDiv);
329     LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
330     ++NumSimplifiedSDiv;
331     Changed = true;
332     DeadInsts.push_back(SDiv);
333     return true;
334   }
335 
336   return false;
337 }
338 
339 // i %s n -> i %u n if i >= 0 and n >= 0
340 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
341   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
342   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
343                                       Rem->getName() + ".urem", Rem);
344   Rem->replaceAllUsesWith(URem);
345   LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
346   ++NumSimplifiedSRem;
347   Changed = true;
348   DeadInsts.emplace_back(Rem);
349 }
350 
351 // i % n  -->  i  if i is in [0,n).
352 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
353   Rem->replaceAllUsesWith(Rem->getOperand(0));
354   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
355   ++NumElimRem;
356   Changed = true;
357   DeadInsts.emplace_back(Rem);
358 }
359 
360 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
361 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
362   auto *T = Rem->getType();
363   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
364   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
365   SelectInst *Sel =
366       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
367   Rem->replaceAllUsesWith(Sel);
368   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
369   ++NumElimRem;
370   Changed = true;
371   DeadInsts.emplace_back(Rem);
372 }
373 
374 /// SimplifyIVUsers helper for eliminating useless remainder operations
375 /// operating on an induction variable or replacing srem by urem.
376 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
377                                          bool IsSigned) {
378   auto *NValue = Rem->getOperand(0);
379   auto *DValue = Rem->getOperand(1);
380   // We're only interested in the case where we know something about
381   // the numerator, unless it is a srem, because we want to replace srem by urem
382   // in general.
383   bool UsedAsNumerator = IVOperand == NValue;
384   if (!UsedAsNumerator && !IsSigned)
385     return;
386 
387   const SCEV *N = SE->getSCEV(NValue);
388 
389   // Simplify unnecessary loops away.
390   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
391   N = SE->getSCEVAtScope(N, ICmpLoop);
392 
393   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
394 
395   // Do not proceed if the Numerator may be negative
396   if (!IsNumeratorNonNegative)
397     return;
398 
399   const SCEV *D = SE->getSCEV(DValue);
400   D = SE->getSCEVAtScope(D, ICmpLoop);
401 
402   if (UsedAsNumerator) {
403     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
404     if (SE->isKnownPredicate(LT, N, D)) {
405       replaceRemWithNumerator(Rem);
406       return;
407     }
408 
409     auto *T = Rem->getType();
410     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
411     if (SE->isKnownPredicate(LT, NLessOne, D)) {
412       replaceRemWithNumeratorOrZero(Rem);
413       return;
414     }
415   }
416 
417   // Try to replace SRem with URem, if both N and D are known non-negative.
418   // Since we had already check N, we only need to check D now
419   if (!IsSigned || !SE->isKnownNonNegative(D))
420     return;
421 
422   replaceSRemWithURem(Rem);
423 }
424 
425 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
426   const SCEV *LHS = SE->getSCEV(WO->getLHS());
427   const SCEV *RHS = SE->getSCEV(WO->getRHS());
428   if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
429     return false;
430 
431   // Proved no overflow, nuke the overflow check and, if possible, the overflow
432   // intrinsic as well.
433 
434   BinaryOperator *NewResult = BinaryOperator::Create(
435       WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
436 
437   if (WO->isSigned())
438     NewResult->setHasNoSignedWrap(true);
439   else
440     NewResult->setHasNoUnsignedWrap(true);
441 
442   SmallVector<ExtractValueInst *, 4> ToDelete;
443 
444   for (auto *U : WO->users()) {
445     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
446       if (EVI->getIndices()[0] == 1)
447         EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
448       else {
449         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
450         EVI->replaceAllUsesWith(NewResult);
451       }
452       ToDelete.push_back(EVI);
453     }
454   }
455 
456   for (auto *EVI : ToDelete)
457     EVI->eraseFromParent();
458 
459   if (WO->use_empty())
460     WO->eraseFromParent();
461 
462   Changed = true;
463   return true;
464 }
465 
466 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
467   const SCEV *LHS = SE->getSCEV(SI->getLHS());
468   const SCEV *RHS = SE->getSCEV(SI->getRHS());
469   if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
470     return false;
471 
472   BinaryOperator *BO = BinaryOperator::Create(
473       SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
474   if (SI->isSigned())
475     BO->setHasNoSignedWrap();
476   else
477     BO->setHasNoUnsignedWrap();
478 
479   SI->replaceAllUsesWith(BO);
480   DeadInsts.emplace_back(SI);
481   Changed = true;
482   return true;
483 }
484 
485 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
486   // It is always legal to replace
487   //   icmp <pred> i32 trunc(iv), n
488   // with
489   //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
490   // Or with
491   //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
492   // Or with either of these if pred is an equality predicate.
493   //
494   // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
495   // every comparison which uses trunc, it means that we can replace each of
496   // them with comparison of iv against sext/zext(n). We no longer need trunc
497   // after that.
498   //
499   // TODO: Should we do this if we can widen *some* comparisons, but not all
500   // of them? Sometimes it is enough to enable other optimizations, but the
501   // trunc instruction will stay in the loop.
502   Value *IV = TI->getOperand(0);
503   Type *IVTy = IV->getType();
504   const SCEV *IVSCEV = SE->getSCEV(IV);
505   const SCEV *TISCEV = SE->getSCEV(TI);
506 
507   // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
508   // get rid of trunc
509   bool DoesSExtCollapse = false;
510   bool DoesZExtCollapse = false;
511   if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
512     DoesSExtCollapse = true;
513   if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
514     DoesZExtCollapse = true;
515 
516   // If neither sext nor zext does collapse, it is not profitable to do any
517   // transform. Bail.
518   if (!DoesSExtCollapse && !DoesZExtCollapse)
519     return false;
520 
521   // Collect users of the trunc that look like comparisons against invariants.
522   // Bail if we find something different.
523   SmallVector<ICmpInst *, 4> ICmpUsers;
524   for (auto *U : TI->users()) {
525     // We don't care about users in unreachable blocks.
526     if (isa<Instruction>(U) &&
527         !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
528       continue;
529     ICmpInst *ICI = dyn_cast<ICmpInst>(U);
530     if (!ICI) return false;
531     assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
532     if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
533         !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
534       return false;
535     // If we cannot get rid of trunc, bail.
536     if (ICI->isSigned() && !DoesSExtCollapse)
537       return false;
538     if (ICI->isUnsigned() && !DoesZExtCollapse)
539       return false;
540     // For equality, either signed or unsigned works.
541     ICmpUsers.push_back(ICI);
542   }
543 
544   auto CanUseZExt = [&](ICmpInst *ICI) {
545     // Unsigned comparison can be widened as unsigned.
546     if (ICI->isUnsigned())
547       return true;
548     // Is it profitable to do zext?
549     if (!DoesZExtCollapse)
550       return false;
551     // For equality, we can safely zext both parts.
552     if (ICI->isEquality())
553       return true;
554     // Otherwise we can only use zext when comparing two non-negative or two
555     // negative values. But in practice, we will never pass DoesZExtCollapse
556     // check for a negative value, because zext(trunc(x)) is non-negative. So
557     // it only make sense to check for non-negativity here.
558     const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
559     const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
560     return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
561   };
562   // Replace all comparisons against trunc with comparisons against IV.
563   for (auto *ICI : ICmpUsers) {
564     bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
565     auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
566     Instruction *Ext = nullptr;
567     // For signed/unsigned predicate, replace the old comparison with comparison
568     // of immediate IV against sext/zext of the invariant argument. If we can
569     // use either sext or zext (i.e. we are dealing with equality predicate),
570     // then prefer zext as a more canonical form.
571     // TODO: If we see a signed comparison which can be turned into unsigned,
572     // we can do it here for canonicalization purposes.
573     ICmpInst::Predicate Pred = ICI->getPredicate();
574     if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
575     if (CanUseZExt(ICI)) {
576       assert(DoesZExtCollapse && "Unprofitable zext?");
577       Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
578       Pred = ICmpInst::getUnsignedPredicate(Pred);
579     } else {
580       assert(DoesSExtCollapse && "Unprofitable sext?");
581       Ext = new SExtInst(Op1, IVTy, "sext", ICI);
582       assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
583     }
584     bool Changed;
585     L->makeLoopInvariant(Ext, Changed);
586     (void)Changed;
587     ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
588     ICI->replaceAllUsesWith(NewICI);
589     DeadInsts.emplace_back(ICI);
590   }
591 
592   // Trunc no longer needed.
593   TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
594   DeadInsts.emplace_back(TI);
595   return true;
596 }
597 
598 /// Eliminate an operation that consumes a simple IV and has no observable
599 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
600 /// but UseInst may not be.
601 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
602                                      Instruction *IVOperand) {
603   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
604     eliminateIVComparison(ICmp, IVOperand);
605     return true;
606   }
607   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
608     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
609     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
610       simplifyIVRemainder(Bin, IVOperand, IsSRem);
611       return true;
612     }
613 
614     if (Bin->getOpcode() == Instruction::SDiv)
615       return eliminateSDiv(Bin);
616   }
617 
618   if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
619     if (eliminateOverflowIntrinsic(WO))
620       return true;
621 
622   if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
623     if (eliminateSaturatingIntrinsic(SI))
624       return true;
625 
626   if (auto *TI = dyn_cast<TruncInst>(UseInst))
627     if (eliminateTrunc(TI))
628       return true;
629 
630   if (eliminateIdentitySCEV(UseInst, IVOperand))
631     return true;
632 
633   return false;
634 }
635 
636 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
637   if (auto *BB = L->getLoopPreheader())
638     return BB->getTerminator();
639 
640   return Hint;
641 }
642 
643 /// Replace the UseInst with a loop invariant expression if it is safe.
644 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
645   if (!SE->isSCEVable(I->getType()))
646     return false;
647 
648   // Get the symbolic expression for this instruction.
649   const SCEV *S = SE->getSCEV(I);
650 
651   if (!SE->isLoopInvariant(S, L))
652     return false;
653 
654   // Do not generate something ridiculous even if S is loop invariant.
655   if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
656     return false;
657 
658   auto *IP = GetLoopInvariantInsertPosition(L, I);
659 
660   if (!isSafeToExpandAt(S, IP, *SE)) {
661     LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
662                       << " with non-speculable loop invariant: " << *S << '\n');
663     return false;
664   }
665 
666   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
667 
668   I->replaceAllUsesWith(Invariant);
669   LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
670                     << " with loop invariant: " << *S << '\n');
671   ++NumFoldedUser;
672   Changed = true;
673   DeadInsts.emplace_back(I);
674   return true;
675 }
676 
677 /// Eliminate any operation that SCEV can prove is an identity function.
678 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
679                                            Instruction *IVOperand) {
680   if (!SE->isSCEVable(UseInst->getType()) ||
681       (UseInst->getType() != IVOperand->getType()) ||
682       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
683     return false;
684 
685   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
686   // dominator tree, even if X is an operand to Y.  For instance, in
687   //
688   //     %iv = phi i32 {0,+,1}
689   //     br %cond, label %left, label %merge
690   //
691   //   left:
692   //     %X = add i32 %iv, 0
693   //     br label %merge
694   //
695   //   merge:
696   //     %M = phi (%X, %iv)
697   //
698   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
699   // %M.replaceAllUsesWith(%X) would be incorrect.
700 
701   if (isa<PHINode>(UseInst))
702     // If UseInst is not a PHI node then we know that IVOperand dominates
703     // UseInst directly from the legality of SSA.
704     if (!DT || !DT->dominates(IVOperand, UseInst))
705       return false;
706 
707   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
708     return false;
709 
710   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
711 
712   UseInst->replaceAllUsesWith(IVOperand);
713   ++NumElimIdentity;
714   Changed = true;
715   DeadInsts.emplace_back(UseInst);
716   return true;
717 }
718 
719 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
720 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
721 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
722                                                     Value *IVOperand) {
723   SCEV::NoWrapFlags Flags;
724   bool Deduced;
725   std::tie(Flags, Deduced) = SE->getStrengthenedNoWrapFlagsFromBinOp(
726       cast<OverflowingBinaryOperator>(BO));
727 
728   if (!Deduced)
729     return Deduced;
730 
731   BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNUW) ==
732                            SCEV::FlagNUW);
733   BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNSW) ==
734                          SCEV::FlagNSW);
735 
736   // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
737   // flags on addrecs while performing zero/sign extensions. We could call
738   // forgetValue() here to make sure those flags also propagate to any other
739   // SCEV expressions based on the addrec. However, this can have pathological
740   // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
741   return Deduced;
742 }
743 
744 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
745 /// information from the IV's range. Returns true if anything changed, false
746 /// otherwise.
747 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
748                                           Value *IVOperand) {
749   using namespace llvm::PatternMatch;
750 
751   if (BO->getOpcode() == Instruction::Shl) {
752     bool Changed = false;
753     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
754     for (auto *U : BO->users()) {
755       const APInt *C;
756       if (match(U,
757                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
758           match(U,
759                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
760         BinaryOperator *Shr = cast<BinaryOperator>(U);
761         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
762           Shr->setIsExact(true);
763           Changed = true;
764         }
765       }
766     }
767     return Changed;
768   }
769 
770   return false;
771 }
772 
773 /// Add all uses of Def to the current IV's worklist.
774 static void pushIVUsers(
775   Instruction *Def, Loop *L,
776   SmallPtrSet<Instruction*,16> &Simplified,
777   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
778 
779   for (User *U : Def->users()) {
780     Instruction *UI = cast<Instruction>(U);
781 
782     // Avoid infinite or exponential worklist processing.
783     // Also ensure unique worklist users.
784     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
785     // self edges first.
786     if (UI == Def)
787       continue;
788 
789     // Only change the current Loop, do not change the other parts (e.g. other
790     // Loops).
791     if (!L->contains(UI))
792       continue;
793 
794     // Do not push the same instruction more than once.
795     if (!Simplified.insert(UI).second)
796       continue;
797 
798     SimpleIVUsers.push_back(std::make_pair(UI, Def));
799   }
800 }
801 
802 /// Return true if this instruction generates a simple SCEV
803 /// expression in terms of that IV.
804 ///
805 /// This is similar to IVUsers' isInteresting() but processes each instruction
806 /// non-recursively when the operand is already known to be a simpleIVUser.
807 ///
808 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
809   if (!SE->isSCEVable(I->getType()))
810     return false;
811 
812   // Get the symbolic expression for this instruction.
813   const SCEV *S = SE->getSCEV(I);
814 
815   // Only consider affine recurrences.
816   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
817   if (AR && AR->getLoop() == L)
818     return true;
819 
820   return false;
821 }
822 
823 /// Iteratively perform simplification on a worklist of users
824 /// of the specified induction variable. Each successive simplification may push
825 /// more users which may themselves be candidates for simplification.
826 ///
827 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
828 /// instructions in-place during analysis. Rather than rewriting induction
829 /// variables bottom-up from their users, it transforms a chain of IVUsers
830 /// top-down, updating the IR only when it encounters a clear optimization
831 /// opportunity.
832 ///
833 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
834 ///
835 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
836   if (!SE->isSCEVable(CurrIV->getType()))
837     return;
838 
839   // Instructions processed by SimplifyIndvar for CurrIV.
840   SmallPtrSet<Instruction*,16> Simplified;
841 
842   // Use-def pairs if IV users waiting to be processed for CurrIV.
843   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
844 
845   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
846   // called multiple times for the same LoopPhi. This is the proper thing to
847   // do for loop header phis that use each other.
848   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
849 
850   while (!SimpleIVUsers.empty()) {
851     std::pair<Instruction*, Instruction*> UseOper =
852       SimpleIVUsers.pop_back_val();
853     Instruction *UseInst = UseOper.first;
854 
855     // If a user of the IndVar is trivially dead, we prefer just to mark it dead
856     // rather than try to do some complex analysis or transformation (such as
857     // widening) basing on it.
858     // TODO: Propagate TLI and pass it here to handle more cases.
859     if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
860       DeadInsts.emplace_back(UseInst);
861       continue;
862     }
863 
864     // Bypass back edges to avoid extra work.
865     if (UseInst == CurrIV) continue;
866 
867     // Try to replace UseInst with a loop invariant before any other
868     // simplifications.
869     if (replaceIVUserWithLoopInvariant(UseInst))
870       continue;
871 
872     Instruction *IVOperand = UseOper.second;
873     for (unsigned N = 0; IVOperand; ++N) {
874       assert(N <= Simplified.size() && "runaway iteration");
875 
876       Value *NewOper = foldIVUser(UseInst, IVOperand);
877       if (!NewOper)
878         break; // done folding
879       IVOperand = dyn_cast<Instruction>(NewOper);
880     }
881     if (!IVOperand)
882       continue;
883 
884     if (eliminateIVUser(UseInst, IVOperand)) {
885       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
886       continue;
887     }
888 
889     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
890       if ((isa<OverflowingBinaryOperator>(BO) &&
891            strengthenOverflowingOperation(BO, IVOperand)) ||
892           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
893         // re-queue uses of the now modified binary operator and fall
894         // through to the checks that remain.
895         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
896       }
897     }
898 
899     CastInst *Cast = dyn_cast<CastInst>(UseInst);
900     if (V && Cast) {
901       V->visitCast(Cast);
902       continue;
903     }
904     if (isSimpleIVUser(UseInst, L, SE)) {
905       pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
906     }
907   }
908 }
909 
910 namespace llvm {
911 
912 void IVVisitor::anchor() { }
913 
914 /// Simplify instructions that use this induction variable
915 /// by using ScalarEvolution to analyze the IV's recurrence.
916 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
917                        LoopInfo *LI, const TargetTransformInfo *TTI,
918                        SmallVectorImpl<WeakTrackingVH> &Dead,
919                        SCEVExpander &Rewriter, IVVisitor *V) {
920   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
921                      Rewriter, Dead);
922   SIV.simplifyUsers(CurrIV, V);
923   return SIV.hasChanged();
924 }
925 
926 /// Simplify users of induction variables within this
927 /// loop. This does not actually change or add IVs.
928 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
929                      LoopInfo *LI, const TargetTransformInfo *TTI,
930                      SmallVectorImpl<WeakTrackingVH> &Dead) {
931   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
932 #ifndef NDEBUG
933   Rewriter.setDebugType(DEBUG_TYPE);
934 #endif
935   bool Changed = false;
936   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
937     Changed |=
938         simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
939   }
940   return Changed;
941 }
942 
943 } // namespace llvm
944 
945 //===----------------------------------------------------------------------===//
946 // Widen Induction Variables - Extend the width of an IV to cover its
947 // widest uses.
948 //===----------------------------------------------------------------------===//
949 
950 class WidenIV {
951   // Parameters
952   PHINode *OrigPhi;
953   Type *WideType;
954 
955   // Context
956   LoopInfo        *LI;
957   Loop            *L;
958   ScalarEvolution *SE;
959   DominatorTree   *DT;
960 
961   // Does the module have any calls to the llvm.experimental.guard intrinsic
962   // at all? If not we can avoid scanning instructions looking for guards.
963   bool HasGuards;
964 
965   bool UsePostIncrementRanges;
966 
967   // Statistics
968   unsigned NumElimExt = 0;
969   unsigned NumWidened = 0;
970 
971   // Result
972   PHINode *WidePhi = nullptr;
973   Instruction *WideInc = nullptr;
974   const SCEV *WideIncExpr = nullptr;
975   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
976 
977   SmallPtrSet<Instruction *,16> Widened;
978 
979   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
980 
981   // A map tracking the kind of extension used to widen each narrow IV
982   // and narrow IV user.
983   // Key: pointer to a narrow IV or IV user.
984   // Value: the kind of extension used to widen this Instruction.
985   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
986 
987   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
988 
989   // A map with control-dependent ranges for post increment IV uses. The key is
990   // a pair of IV def and a use of this def denoting the context. The value is
991   // a ConstantRange representing possible values of the def at the given
992   // context.
993   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
994 
995   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
996                                               Instruction *UseI) {
997     DefUserPair Key(Def, UseI);
998     auto It = PostIncRangeInfos.find(Key);
999     return It == PostIncRangeInfos.end()
1000                ? Optional<ConstantRange>(None)
1001                : Optional<ConstantRange>(It->second);
1002   }
1003 
1004   void calculatePostIncRanges(PHINode *OrigPhi);
1005   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1006 
1007   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1008     DefUserPair Key(Def, UseI);
1009     auto It = PostIncRangeInfos.find(Key);
1010     if (It == PostIncRangeInfos.end())
1011       PostIncRangeInfos.insert({Key, R});
1012     else
1013       It->second = R.intersectWith(It->second);
1014   }
1015 
1016 public:
1017   /// Record a link in the Narrow IV def-use chain along with the WideIV that
1018   /// computes the same value as the Narrow IV def.  This avoids caching Use*
1019   /// pointers.
1020   struct NarrowIVDefUse {
1021     Instruction *NarrowDef = nullptr;
1022     Instruction *NarrowUse = nullptr;
1023     Instruction *WideDef = nullptr;
1024 
1025     // True if the narrow def is never negative.  Tracking this information lets
1026     // us use a sign extension instead of a zero extension or vice versa, when
1027     // profitable and legal.
1028     bool NeverNegative = false;
1029 
1030     NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1031                    bool NeverNegative)
1032         : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1033           NeverNegative(NeverNegative) {}
1034   };
1035 
1036   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1037           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1038           bool HasGuards, bool UsePostIncrementRanges = true);
1039 
1040   PHINode *createWideIV(SCEVExpander &Rewriter);
1041 
1042   unsigned getNumElimExt() { return NumElimExt; };
1043   unsigned getNumWidened() { return NumWidened; };
1044 
1045 protected:
1046   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1047                           Instruction *Use);
1048 
1049   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1050   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1051                                      const SCEVAddRecExpr *WideAR);
1052   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1053 
1054   ExtendKind getExtendKind(Instruction *I);
1055 
1056   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1057 
1058   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1059 
1060   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1061 
1062   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1063                               unsigned OpCode) const;
1064 
1065   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1066 
1067   bool widenLoopCompare(NarrowIVDefUse DU);
1068   bool widenWithVariantUse(NarrowIVDefUse DU);
1069 
1070   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1071 
1072 private:
1073   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1074 };
1075 
1076 
1077 /// Determine the insertion point for this user. By default, insert immediately
1078 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1079 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1080 /// common dominator for the incoming blocks. A nullptr can be returned if no
1081 /// viable location is found: it may happen if User is a PHI and Def only comes
1082 /// to this PHI from unreachable blocks.
1083 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1084                                           DominatorTree *DT, LoopInfo *LI) {
1085   PHINode *PHI = dyn_cast<PHINode>(User);
1086   if (!PHI)
1087     return User;
1088 
1089   Instruction *InsertPt = nullptr;
1090   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1091     if (PHI->getIncomingValue(i) != Def)
1092       continue;
1093 
1094     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1095 
1096     if (!DT->isReachableFromEntry(InsertBB))
1097       continue;
1098 
1099     if (!InsertPt) {
1100       InsertPt = InsertBB->getTerminator();
1101       continue;
1102     }
1103     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1104     InsertPt = InsertBB->getTerminator();
1105   }
1106 
1107   // If we have skipped all inputs, it means that Def only comes to Phi from
1108   // unreachable blocks.
1109   if (!InsertPt)
1110     return nullptr;
1111 
1112   auto *DefI = dyn_cast<Instruction>(Def);
1113   if (!DefI)
1114     return InsertPt;
1115 
1116   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1117 
1118   auto *L = LI->getLoopFor(DefI->getParent());
1119   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1120 
1121   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1122     if (LI->getLoopFor(DTN->getBlock()) == L)
1123       return DTN->getBlock()->getTerminator();
1124 
1125   llvm_unreachable("DefI dominates InsertPt!");
1126 }
1127 
1128 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1129           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1130           bool HasGuards, bool UsePostIncrementRanges)
1131       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1132         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1133         HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1134         DeadInsts(DI) {
1135     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1136     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1137 }
1138 
1139 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1140                                  bool IsSigned, Instruction *Use) {
1141   // Set the debug location and conservative insertion point.
1142   IRBuilder<> Builder(Use);
1143   // Hoist the insertion point into loop preheaders as far as possible.
1144   for (const Loop *L = LI->getLoopFor(Use->getParent());
1145        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1146        L = L->getParentLoop())
1147     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1148 
1149   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1150                     Builder.CreateZExt(NarrowOper, WideType);
1151 }
1152 
1153 /// Instantiate a wide operation to replace a narrow operation. This only needs
1154 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1155 /// 0 for any operation we decide not to clone.
1156 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1157                                   const SCEVAddRecExpr *WideAR) {
1158   unsigned Opcode = DU.NarrowUse->getOpcode();
1159   switch (Opcode) {
1160   default:
1161     return nullptr;
1162   case Instruction::Add:
1163   case Instruction::Mul:
1164   case Instruction::UDiv:
1165   case Instruction::Sub:
1166     return cloneArithmeticIVUser(DU, WideAR);
1167 
1168   case Instruction::And:
1169   case Instruction::Or:
1170   case Instruction::Xor:
1171   case Instruction::Shl:
1172   case Instruction::LShr:
1173   case Instruction::AShr:
1174     return cloneBitwiseIVUser(DU);
1175   }
1176 }
1177 
1178 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1179   Instruction *NarrowUse = DU.NarrowUse;
1180   Instruction *NarrowDef = DU.NarrowDef;
1181   Instruction *WideDef = DU.WideDef;
1182 
1183   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1184 
1185   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1186   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1187   // invariant and will be folded or hoisted. If it actually comes from a
1188   // widened IV, it should be removed during a future call to widenIVUse.
1189   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1190   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1191                    ? WideDef
1192                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1193                                       IsSigned, NarrowUse);
1194   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1195                    ? WideDef
1196                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1197                                       IsSigned, NarrowUse);
1198 
1199   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1200   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1201                                         NarrowBO->getName());
1202   IRBuilder<> Builder(NarrowUse);
1203   Builder.Insert(WideBO);
1204   WideBO->copyIRFlags(NarrowBO);
1205   return WideBO;
1206 }
1207 
1208 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1209                                             const SCEVAddRecExpr *WideAR) {
1210   Instruction *NarrowUse = DU.NarrowUse;
1211   Instruction *NarrowDef = DU.NarrowDef;
1212   Instruction *WideDef = DU.WideDef;
1213 
1214   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1215 
1216   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1217 
1218   // We're trying to find X such that
1219   //
1220   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1221   //
1222   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1223   // and check using SCEV if any of them are correct.
1224 
1225   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1226   // correct solution to X.
1227   auto GuessNonIVOperand = [&](bool SignExt) {
1228     const SCEV *WideLHS;
1229     const SCEV *WideRHS;
1230 
1231     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1232       if (SignExt)
1233         return SE->getSignExtendExpr(S, Ty);
1234       return SE->getZeroExtendExpr(S, Ty);
1235     };
1236 
1237     if (IVOpIdx == 0) {
1238       WideLHS = SE->getSCEV(WideDef);
1239       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1240       WideRHS = GetExtend(NarrowRHS, WideType);
1241     } else {
1242       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1243       WideLHS = GetExtend(NarrowLHS, WideType);
1244       WideRHS = SE->getSCEV(WideDef);
1245     }
1246 
1247     // WideUse is "WideDef `op.wide` X" as described in the comment.
1248     const SCEV *WideUse =
1249       getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1250 
1251     return WideUse == WideAR;
1252   };
1253 
1254   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1255   if (!GuessNonIVOperand(SignExtend)) {
1256     SignExtend = !SignExtend;
1257     if (!GuessNonIVOperand(SignExtend))
1258       return nullptr;
1259   }
1260 
1261   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1262                    ? WideDef
1263                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1264                                       SignExtend, NarrowUse);
1265   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1266                    ? WideDef
1267                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1268                                       SignExtend, NarrowUse);
1269 
1270   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1271   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1272                                         NarrowBO->getName());
1273 
1274   IRBuilder<> Builder(NarrowUse);
1275   Builder.Insert(WideBO);
1276   WideBO->copyIRFlags(NarrowBO);
1277   return WideBO;
1278 }
1279 
1280 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1281   auto It = ExtendKindMap.find(I);
1282   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1283   return It->second;
1284 }
1285 
1286 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1287                                      unsigned OpCode) const {
1288   switch (OpCode) {
1289   case Instruction::Add:
1290     return SE->getAddExpr(LHS, RHS);
1291   case Instruction::Sub:
1292     return SE->getMinusSCEV(LHS, RHS);
1293   case Instruction::Mul:
1294     return SE->getMulExpr(LHS, RHS);
1295   case Instruction::UDiv:
1296     return SE->getUDivExpr(LHS, RHS);
1297   default:
1298     llvm_unreachable("Unsupported opcode.");
1299   };
1300 }
1301 
1302 /// No-wrap operations can transfer sign extension of their result to their
1303 /// operands. Generate the SCEV value for the widened operation without
1304 /// actually modifying the IR yet. If the expression after extending the
1305 /// operands is an AddRec for this loop, return the AddRec and the kind of
1306 /// extension used.
1307 WidenIV::WidenedRecTy
1308 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1309   // Handle the common case of add<nsw/nuw>
1310   const unsigned OpCode = DU.NarrowUse->getOpcode();
1311   // Only Add/Sub/Mul instructions supported yet.
1312   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1313       OpCode != Instruction::Mul)
1314     return {nullptr, Unknown};
1315 
1316   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1317   // if extending the other will lead to a recurrence.
1318   const unsigned ExtendOperIdx =
1319       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1320   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1321 
1322   const SCEV *ExtendOperExpr = nullptr;
1323   const OverflowingBinaryOperator *OBO =
1324     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1325   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1326   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1327     ExtendOperExpr = SE->getSignExtendExpr(
1328       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1329   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1330     ExtendOperExpr = SE->getZeroExtendExpr(
1331       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1332   else
1333     return {nullptr, Unknown};
1334 
1335   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1336   // flags. This instruction may be guarded by control flow that the no-wrap
1337   // behavior depends on. Non-control-equivalent instructions can be mapped to
1338   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1339   // semantics to those operations.
1340   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1341   const SCEV *rhs = ExtendOperExpr;
1342 
1343   // Let's swap operands to the initial order for the case of non-commutative
1344   // operations, like SUB. See PR21014.
1345   if (ExtendOperIdx == 0)
1346     std::swap(lhs, rhs);
1347   const SCEVAddRecExpr *AddRec =
1348       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1349 
1350   if (!AddRec || AddRec->getLoop() != L)
1351     return {nullptr, Unknown};
1352 
1353   return {AddRec, ExtKind};
1354 }
1355 
1356 /// Is this instruction potentially interesting for further simplification after
1357 /// widening it's type? In other words, can the extend be safely hoisted out of
1358 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1359 /// so, return the extended recurrence and the kind of extension used. Otherwise
1360 /// return {nullptr, Unknown}.
1361 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1362   if (!DU.NarrowUse->getType()->isIntegerTy())
1363     return {nullptr, Unknown};
1364 
1365   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1366   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1367       SE->getTypeSizeInBits(WideType)) {
1368     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1369     // index. So don't follow this use.
1370     return {nullptr, Unknown};
1371   }
1372 
1373   const SCEV *WideExpr;
1374   ExtendKind ExtKind;
1375   if (DU.NeverNegative) {
1376     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1377     if (isa<SCEVAddRecExpr>(WideExpr))
1378       ExtKind = SignExtended;
1379     else {
1380       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1381       ExtKind = ZeroExtended;
1382     }
1383   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1384     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1385     ExtKind = SignExtended;
1386   } else {
1387     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1388     ExtKind = ZeroExtended;
1389   }
1390   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1391   if (!AddRec || AddRec->getLoop() != L)
1392     return {nullptr, Unknown};
1393   return {AddRec, ExtKind};
1394 }
1395 
1396 /// This IV user cannot be widened. Replace this use of the original narrow IV
1397 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1398 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
1399                           LoopInfo *LI) {
1400   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1401   if (!InsertPt)
1402     return;
1403   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1404                     << *DU.NarrowUse << "\n");
1405   IRBuilder<> Builder(InsertPt);
1406   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1407   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1408 }
1409 
1410 /// If the narrow use is a compare instruction, then widen the compare
1411 //  (and possibly the other operand).  The extend operation is hoisted into the
1412 // loop preheader as far as possible.
1413 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1414   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1415   if (!Cmp)
1416     return false;
1417 
1418   // We can legally widen the comparison in the following two cases:
1419   //
1420   //  - The signedness of the IV extension and comparison match
1421   //
1422   //  - The narrow IV is always positive (and thus its sign extension is equal
1423   //    to its zero extension).  For instance, let's say we're zero extending
1424   //    %narrow for the following use
1425   //
1426   //      icmp slt i32 %narrow, %val   ... (A)
1427   //
1428   //    and %narrow is always positive.  Then
1429   //
1430   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1431   //          == icmp slt i32 zext(%narrow), sext(%val)
1432   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1433   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1434     return false;
1435 
1436   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1437   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1438   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1439   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1440 
1441   // Widen the compare instruction.
1442   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1443   if (!InsertPt)
1444     return false;
1445   IRBuilder<> Builder(InsertPt);
1446   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1447 
1448   // Widen the other operand of the compare, if necessary.
1449   if (CastWidth < IVWidth) {
1450     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1451     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1452   }
1453   return true;
1454 }
1455 
1456 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1457 // will not work when:
1458 //    1) SCEV traces back to an instruction inside the loop that SCEV can not
1459 // expand, eg. add %indvar, (load %addr)
1460 //    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1461 // While SCEV fails to avoid trunc, we can still try to use instruction
1462 // combining approach to prove trunc is not required. This can be further
1463 // extended with other instruction combining checks, but for now we handle the
1464 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1465 //
1466 // Src:
1467 //   %c = sub nsw %b, %indvar
1468 //   %d = sext %c to i64
1469 // Dst:
1470 //   %indvar.ext1 = sext %indvar to i64
1471 //   %m = sext %b to i64
1472 //   %d = sub nsw i64 %m, %indvar.ext1
1473 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1474 // trunc is required regardless of how %b is generated. This pattern is common
1475 // when calculating address in 64 bit architecture
1476 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1477   Instruction *NarrowUse = DU.NarrowUse;
1478   Instruction *NarrowDef = DU.NarrowDef;
1479   Instruction *WideDef = DU.WideDef;
1480 
1481   // Handle the common case of add<nsw/nuw>
1482   const unsigned OpCode = NarrowUse->getOpcode();
1483   // Only Add/Sub/Mul instructions are supported.
1484   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1485       OpCode != Instruction::Mul)
1486     return false;
1487 
1488   // The operand that is not defined by NarrowDef of DU. Let's call it the
1489   // other operand.
1490   assert((NarrowUse->getOperand(0) == NarrowDef ||
1491           NarrowUse->getOperand(1) == NarrowDef) &&
1492          "bad DU");
1493 
1494   const OverflowingBinaryOperator *OBO =
1495     cast<OverflowingBinaryOperator>(NarrowUse);
1496   ExtendKind ExtKind = getExtendKind(NarrowDef);
1497   bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
1498   bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
1499   auto AnotherOpExtKind = ExtKind;
1500 
1501   // Check that all uses are either:
1502   // - narrow def (in case of we are widening the IV increment);
1503   // - single-input LCSSA Phis;
1504   // - comparison of the chosen type;
1505   // - extend of the chosen type (raison d'etre).
1506   SmallVector<Instruction *, 4> ExtUsers;
1507   SmallVector<PHINode *, 4> LCSSAPhiUsers;
1508   SmallVector<ICmpInst *, 4> ICmpUsers;
1509   for (Use &U : NarrowUse->uses()) {
1510     Instruction *User = cast<Instruction>(U.getUser());
1511     if (User == NarrowDef)
1512       continue;
1513     if (!L->contains(User)) {
1514       auto *LCSSAPhi = cast<PHINode>(User);
1515       // Make sure there is only 1 input, so that we don't have to split
1516       // critical edges.
1517       if (LCSSAPhi->getNumOperands() != 1)
1518         return false;
1519       LCSSAPhiUsers.push_back(LCSSAPhi);
1520       continue;
1521     }
1522     if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1523       auto Pred = ICmp->getPredicate();
1524       // We have 3 types of predicates: signed, unsigned and equality
1525       // predicates. For equality, it's legal to widen icmp for either sign and
1526       // zero extend. For sign extend, we can also do so for signed predicates,
1527       // likeweise for zero extend we can widen icmp for unsigned predicates.
1528       if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred))
1529         return false;
1530       if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred))
1531         return false;
1532       ICmpUsers.push_back(ICmp);
1533       continue;
1534     }
1535     if (ExtKind == SignExtended)
1536       User = dyn_cast<SExtInst>(User);
1537     else
1538       User = dyn_cast<ZExtInst>(User);
1539     if (!User || User->getType() != WideType)
1540       return false;
1541     ExtUsers.push_back(User);
1542   }
1543   if (ExtUsers.empty()) {
1544     DeadInsts.emplace_back(NarrowUse);
1545     return true;
1546   }
1547 
1548   // We'll prove some facts that should be true in the context of ext users. If
1549   // there is no users, we are done now. If there are some, pick their common
1550   // dominator as context.
1551   const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
1552 
1553   if (!CanSignExtend && !CanZeroExtend) {
1554     // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1555     // will most likely not see it. Let's try to prove it.
1556     if (OpCode != Instruction::Add)
1557       return false;
1558     if (ExtKind != ZeroExtended)
1559       return false;
1560     const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1561     const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1562     // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1563     if (NarrowUse->getOperand(0) != NarrowDef)
1564       return false;
1565     if (!SE->isKnownNegative(RHS))
1566       return false;
1567     bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
1568                                                SE->getNegativeSCEV(RHS), CtxI);
1569     if (!ProvedSubNUW)
1570       return false;
1571     // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1572     // neg(zext(neg(op))), which is basically sext(op).
1573     AnotherOpExtKind = SignExtended;
1574   }
1575 
1576   // Verifying that Defining operand is an AddRec
1577   const SCEV *Op1 = SE->getSCEV(WideDef);
1578   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1579   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1580     return false;
1581 
1582   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1583 
1584   // Generating a widening use instruction.
1585   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1586                    ? WideDef
1587                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1588                                       AnotherOpExtKind, NarrowUse);
1589   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1590                    ? WideDef
1591                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1592                                       AnotherOpExtKind, NarrowUse);
1593 
1594   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1595   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1596                                         NarrowBO->getName());
1597   IRBuilder<> Builder(NarrowUse);
1598   Builder.Insert(WideBO);
1599   WideBO->copyIRFlags(NarrowBO);
1600   ExtendKindMap[NarrowUse] = ExtKind;
1601 
1602   for (Instruction *User : ExtUsers) {
1603     assert(User->getType() == WideType && "Checked before!");
1604     LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1605                       << *WideBO << "\n");
1606     ++NumElimExt;
1607     User->replaceAllUsesWith(WideBO);
1608     DeadInsts.emplace_back(User);
1609   }
1610 
1611   for (PHINode *User : LCSSAPhiUsers) {
1612     assert(User->getNumOperands() == 1 && "Checked before!");
1613     Builder.SetInsertPoint(User);
1614     auto *WidePN =
1615         Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1616     BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1617     assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1618            "Not a LCSSA Phi?");
1619     WidePN->addIncoming(WideBO, LoopExitingBlock);
1620     Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
1621     auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1622     User->replaceAllUsesWith(TruncPN);
1623     DeadInsts.emplace_back(User);
1624   }
1625 
1626   for (ICmpInst *User : ICmpUsers) {
1627     Builder.SetInsertPoint(User);
1628     auto ExtendedOp = [&](Value * V)->Value * {
1629       if (V == NarrowUse)
1630         return WideBO;
1631       if (ExtKind == ZeroExtended)
1632         return Builder.CreateZExt(V, WideBO->getType());
1633       else
1634         return Builder.CreateSExt(V, WideBO->getType());
1635     };
1636     auto Pred = User->getPredicate();
1637     auto *LHS = ExtendedOp(User->getOperand(0));
1638     auto *RHS = ExtendedOp(User->getOperand(1));
1639     auto *WideCmp =
1640         Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1641     User->replaceAllUsesWith(WideCmp);
1642     DeadInsts.emplace_back(User);
1643   }
1644 
1645   return true;
1646 }
1647 
1648 /// Determine whether an individual user of the narrow IV can be widened. If so,
1649 /// return the wide clone of the user.
1650 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1651   assert(ExtendKindMap.count(DU.NarrowDef) &&
1652          "Should already know the kind of extension used to widen NarrowDef");
1653 
1654   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1655   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1656     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1657       // For LCSSA phis, sink the truncate outside the loop.
1658       // After SimplifyCFG most loop exit targets have a single predecessor.
1659       // Otherwise fall back to a truncate within the loop.
1660       if (UsePhi->getNumOperands() != 1)
1661         truncateIVUse(DU, DT, LI);
1662       else {
1663         // Widening the PHI requires us to insert a trunc.  The logical place
1664         // for this trunc is in the same BB as the PHI.  This is not possible if
1665         // the BB is terminated by a catchswitch.
1666         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1667           return nullptr;
1668 
1669         PHINode *WidePhi =
1670           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1671                           UsePhi);
1672         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1673         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1674         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1675         UsePhi->replaceAllUsesWith(Trunc);
1676         DeadInsts.emplace_back(UsePhi);
1677         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1678                           << *WidePhi << "\n");
1679       }
1680       return nullptr;
1681     }
1682   }
1683 
1684   // This narrow use can be widened by a sext if it's non-negative or its narrow
1685   // def was widended by a sext. Same for zext.
1686   auto canWidenBySExt = [&]() {
1687     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1688   };
1689   auto canWidenByZExt = [&]() {
1690     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1691   };
1692 
1693   // Our raison d'etre! Eliminate sign and zero extension.
1694   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1695       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1696     Value *NewDef = DU.WideDef;
1697     if (DU.NarrowUse->getType() != WideType) {
1698       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1699       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1700       if (CastWidth < IVWidth) {
1701         // The cast isn't as wide as the IV, so insert a Trunc.
1702         IRBuilder<> Builder(DU.NarrowUse);
1703         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1704       }
1705       else {
1706         // A wider extend was hidden behind a narrower one. This may induce
1707         // another round of IV widening in which the intermediate IV becomes
1708         // dead. It should be very rare.
1709         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1710                           << " not wide enough to subsume " << *DU.NarrowUse
1711                           << "\n");
1712         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1713         NewDef = DU.NarrowUse;
1714       }
1715     }
1716     if (NewDef != DU.NarrowUse) {
1717       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1718                         << " replaced by " << *DU.WideDef << "\n");
1719       ++NumElimExt;
1720       DU.NarrowUse->replaceAllUsesWith(NewDef);
1721       DeadInsts.emplace_back(DU.NarrowUse);
1722     }
1723     // Now that the extend is gone, we want to expose it's uses for potential
1724     // further simplification. We don't need to directly inform SimplifyIVUsers
1725     // of the new users, because their parent IV will be processed later as a
1726     // new loop phi. If we preserved IVUsers analysis, we would also want to
1727     // push the uses of WideDef here.
1728 
1729     // No further widening is needed. The deceased [sz]ext had done it for us.
1730     return nullptr;
1731   }
1732 
1733   // Does this user itself evaluate to a recurrence after widening?
1734   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1735   if (!WideAddRec.first)
1736     WideAddRec = getWideRecurrence(DU);
1737 
1738   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1739   if (!WideAddRec.first) {
1740     // If use is a loop condition, try to promote the condition instead of
1741     // truncating the IV first.
1742     if (widenLoopCompare(DU))
1743       return nullptr;
1744 
1745     // We are here about to generate a truncate instruction that may hurt
1746     // performance because the scalar evolution expression computed earlier
1747     // in WideAddRec.first does not indicate a polynomial induction expression.
1748     // In that case, look at the operands of the use instruction to determine
1749     // if we can still widen the use instead of truncating its operand.
1750     if (widenWithVariantUse(DU))
1751       return nullptr;
1752 
1753     // This user does not evaluate to a recurrence after widening, so don't
1754     // follow it. Instead insert a Trunc to kill off the original use,
1755     // eventually isolating the original narrow IV so it can be removed.
1756     truncateIVUse(DU, DT, LI);
1757     return nullptr;
1758   }
1759   // Assume block terminators cannot evaluate to a recurrence. We can't to
1760   // insert a Trunc after a terminator if there happens to be a critical edge.
1761   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1762          "SCEV is not expected to evaluate a block terminator");
1763 
1764   // Reuse the IV increment that SCEVExpander created as long as it dominates
1765   // NarrowUse.
1766   Instruction *WideUse = nullptr;
1767   if (WideAddRec.first == WideIncExpr &&
1768       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1769     WideUse = WideInc;
1770   else {
1771     WideUse = cloneIVUser(DU, WideAddRec.first);
1772     if (!WideUse)
1773       return nullptr;
1774   }
1775   // Evaluation of WideAddRec ensured that the narrow expression could be
1776   // extended outside the loop without overflow. This suggests that the wide use
1777   // evaluates to the same expression as the extended narrow use, but doesn't
1778   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1779   // where it fails, we simply throw away the newly created wide use.
1780   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1781     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1782                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1783                       << "\n");
1784     DeadInsts.emplace_back(WideUse);
1785     return nullptr;
1786   }
1787 
1788   // if we reached this point then we are going to replace
1789   // DU.NarrowUse with WideUse. Reattach DbgValue then.
1790   replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1791 
1792   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1793   // Returning WideUse pushes it on the worklist.
1794   return WideUse;
1795 }
1796 
1797 /// Add eligible users of NarrowDef to NarrowIVUsers.
1798 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1799   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1800   bool NonNegativeDef =
1801       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1802                            SE->getZero(NarrowSCEV->getType()));
1803   for (User *U : NarrowDef->users()) {
1804     Instruction *NarrowUser = cast<Instruction>(U);
1805 
1806     // Handle data flow merges and bizarre phi cycles.
1807     if (!Widened.insert(NarrowUser).second)
1808       continue;
1809 
1810     bool NonNegativeUse = false;
1811     if (!NonNegativeDef) {
1812       // We might have a control-dependent range information for this context.
1813       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1814         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1815     }
1816 
1817     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1818                                NonNegativeDef || NonNegativeUse);
1819   }
1820 }
1821 
1822 /// Process a single induction variable. First use the SCEVExpander to create a
1823 /// wide induction variable that evaluates to the same recurrence as the
1824 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1825 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1826 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1827 ///
1828 /// It would be simpler to delete uses as they are processed, but we must avoid
1829 /// invalidating SCEV expressions.
1830 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1831   // Is this phi an induction variable?
1832   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1833   if (!AddRec)
1834     return nullptr;
1835 
1836   // Widen the induction variable expression.
1837   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1838                                ? SE->getSignExtendExpr(AddRec, WideType)
1839                                : SE->getZeroExtendExpr(AddRec, WideType);
1840 
1841   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1842          "Expect the new IV expression to preserve its type");
1843 
1844   // Can the IV be extended outside the loop without overflow?
1845   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1846   if (!AddRec || AddRec->getLoop() != L)
1847     return nullptr;
1848 
1849   // An AddRec must have loop-invariant operands. Since this AddRec is
1850   // materialized by a loop header phi, the expression cannot have any post-loop
1851   // operands, so they must dominate the loop header.
1852   assert(
1853       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1854       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1855       "Loop header phi recurrence inputs do not dominate the loop");
1856 
1857   // Iterate over IV uses (including transitive ones) looking for IV increments
1858   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1859   // the increment calculate control-dependent range information basing on
1860   // dominating conditions inside of the loop (e.g. a range check inside of the
1861   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1862   //
1863   // Control-dependent range information is later used to prove that a narrow
1864   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1865   // this on demand because when pushNarrowIVUsers needs this information some
1866   // of the dominating conditions might be already widened.
1867   if (UsePostIncrementRanges)
1868     calculatePostIncRanges(OrigPhi);
1869 
1870   // The rewriter provides a value for the desired IV expression. This may
1871   // either find an existing phi or materialize a new one. Either way, we
1872   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1873   // of the phi-SCC dominates the loop entry.
1874   Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
1875   Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
1876   // If the wide phi is not a phi node, for example a cast node, like bitcast,
1877   // inttoptr, ptrtoint, just skip for now.
1878   if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
1879     // if the cast node is an inserted instruction without any user, we should
1880     // remove it to make sure the pass don't touch the function as we can not
1881     // wide the phi.
1882     if (ExpandInst->hasNUses(0) &&
1883         Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
1884       DeadInsts.emplace_back(ExpandInst);
1885     return nullptr;
1886   }
1887 
1888   // Remembering the WideIV increment generated by SCEVExpander allows
1889   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1890   // employ a general reuse mechanism because the call above is the only call to
1891   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1892   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1893     WideInc =
1894       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1895     WideIncExpr = SE->getSCEV(WideInc);
1896     // Propagate the debug location associated with the original loop increment
1897     // to the new (widened) increment.
1898     auto *OrigInc =
1899       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1900     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1901   }
1902 
1903   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1904   ++NumWidened;
1905 
1906   // Traverse the def-use chain using a worklist starting at the original IV.
1907   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1908 
1909   Widened.insert(OrigPhi);
1910   pushNarrowIVUsers(OrigPhi, WidePhi);
1911 
1912   while (!NarrowIVUsers.empty()) {
1913     WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1914 
1915     // Process a def-use edge. This may replace the use, so don't hold a
1916     // use_iterator across it.
1917     Instruction *WideUse = widenIVUse(DU, Rewriter);
1918 
1919     // Follow all def-use edges from the previous narrow use.
1920     if (WideUse)
1921       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1922 
1923     // widenIVUse may have removed the def-use edge.
1924     if (DU.NarrowDef->use_empty())
1925       DeadInsts.emplace_back(DU.NarrowDef);
1926   }
1927 
1928   // Attach any debug information to the new PHI.
1929   replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
1930 
1931   return WidePhi;
1932 }
1933 
1934 /// Calculates control-dependent range for the given def at the given context
1935 /// by looking at dominating conditions inside of the loop
1936 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1937                                     Instruction *NarrowUser) {
1938   using namespace llvm::PatternMatch;
1939 
1940   Value *NarrowDefLHS;
1941   const APInt *NarrowDefRHS;
1942   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1943                                  m_APInt(NarrowDefRHS))) ||
1944       !NarrowDefRHS->isNonNegative())
1945     return;
1946 
1947   auto UpdateRangeFromCondition = [&] (Value *Condition,
1948                                        bool TrueDest) {
1949     CmpInst::Predicate Pred;
1950     Value *CmpRHS;
1951     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1952                                  m_Value(CmpRHS))))
1953       return;
1954 
1955     CmpInst::Predicate P =
1956             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1957 
1958     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1959     auto CmpConstrainedLHSRange =
1960             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1961     auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
1962         *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
1963 
1964     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1965   };
1966 
1967   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1968     if (!HasGuards)
1969       return;
1970 
1971     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1972                                      Ctx->getParent()->rend())) {
1973       Value *C = nullptr;
1974       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1975         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1976     }
1977   };
1978 
1979   UpdateRangeFromGuards(NarrowUser);
1980 
1981   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1982   // If NarrowUserBB is statically unreachable asking dominator queries may
1983   // yield surprising results. (e.g. the block may not have a dom tree node)
1984   if (!DT->isReachableFromEntry(NarrowUserBB))
1985     return;
1986 
1987   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1988        L->contains(DTB->getBlock());
1989        DTB = DTB->getIDom()) {
1990     auto *BB = DTB->getBlock();
1991     auto *TI = BB->getTerminator();
1992     UpdateRangeFromGuards(TI);
1993 
1994     auto *BI = dyn_cast<BranchInst>(TI);
1995     if (!BI || !BI->isConditional())
1996       continue;
1997 
1998     auto *TrueSuccessor = BI->getSuccessor(0);
1999     auto *FalseSuccessor = BI->getSuccessor(1);
2000 
2001     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2002       return BBE.isSingleEdge() &&
2003              DT->dominates(BBE, NarrowUser->getParent());
2004     };
2005 
2006     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2007       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2008 
2009     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2010       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2011   }
2012 }
2013 
2014 /// Calculates PostIncRangeInfos map for the given IV
2015 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2016   SmallPtrSet<Instruction *, 16> Visited;
2017   SmallVector<Instruction *, 6> Worklist;
2018   Worklist.push_back(OrigPhi);
2019   Visited.insert(OrigPhi);
2020 
2021   while (!Worklist.empty()) {
2022     Instruction *NarrowDef = Worklist.pop_back_val();
2023 
2024     for (Use &U : NarrowDef->uses()) {
2025       auto *NarrowUser = cast<Instruction>(U.getUser());
2026 
2027       // Don't go looking outside the current loop.
2028       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2029       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2030         continue;
2031 
2032       if (!Visited.insert(NarrowUser).second)
2033         continue;
2034 
2035       Worklist.push_back(NarrowUser);
2036 
2037       calculatePostIncRange(NarrowDef, NarrowUser);
2038     }
2039   }
2040 }
2041 
2042 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2043     LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2044     DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2045     unsigned &NumElimExt, unsigned &NumWidened,
2046     bool HasGuards, bool UsePostIncrementRanges) {
2047   WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2048   PHINode *WidePHI = Widener.createWideIV(Rewriter);
2049   NumElimExt = Widener.getNumElimExt();
2050   NumWidened = Widener.getNumWidened();
2051   return WidePHI;
2052 }
2053