xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp (revision a2464ee12761660f50d0b6f59f233949ebcacc87)
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "indvars"
34 
35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
36 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
38 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
39 STATISTIC(
40     NumSimplifiedSDiv,
41     "Number of IV signed division operations converted to unsigned division");
42 STATISTIC(
43     NumSimplifiedSRem,
44     "Number of IV signed remainder operations converted to unsigned remainder");
45 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
46 
47 namespace {
48   /// This is a utility for simplifying induction variables
49   /// based on ScalarEvolution. It is the primary instrument of the
50   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
51   /// other loop passes that preserve SCEV.
52   class SimplifyIndvar {
53     Loop             *L;
54     LoopInfo         *LI;
55     ScalarEvolution  *SE;
56     DominatorTree    *DT;
57     const TargetTransformInfo *TTI;
58     SCEVExpander     &Rewriter;
59     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
60 
61     bool Changed;
62 
63   public:
64     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
65                    LoopInfo *LI, const TargetTransformInfo *TTI,
66                    SCEVExpander &Rewriter,
67                    SmallVectorImpl<WeakTrackingVH> &Dead)
68         : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
69           DeadInsts(Dead), Changed(false) {
70       assert(LI && "IV simplification requires LoopInfo");
71     }
72 
73     bool hasChanged() const { return Changed; }
74 
75     /// Iteratively perform simplification on a worklist of users of the
76     /// specified induction variable. This is the top-level driver that applies
77     /// all simplifications to users of an IV.
78     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
79 
80     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
81 
82     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
83     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
84 
85     bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
86     bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
87     bool eliminateTrunc(TruncInst *TI);
88     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
89     bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
90     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
91     void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
92                              bool IsSigned);
93     void replaceRemWithNumerator(BinaryOperator *Rem);
94     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
95     void replaceSRemWithURem(BinaryOperator *Rem);
96     bool eliminateSDiv(BinaryOperator *SDiv);
97     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
98     bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
99   };
100 }
101 
102 /// Find a point in code which dominates all given instructions. We can safely
103 /// assume that, whatever fact we can prove at the found point, this fact is
104 /// also true for each of the given instructions.
105 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
106                                         DominatorTree &DT) {
107   Instruction *CommonDom = nullptr;
108   for (auto *Insn : Instructions)
109     if (!CommonDom || DT.dominates(Insn, CommonDom))
110       CommonDom = Insn;
111     else if (!DT.dominates(CommonDom, Insn))
112       // If there is no dominance relation, use common dominator.
113       CommonDom =
114           DT.findNearestCommonDominator(CommonDom->getParent(),
115                                         Insn->getParent())->getTerminator();
116   assert(CommonDom && "Common dominator not found?");
117   return CommonDom;
118 }
119 
120 /// Fold an IV operand into its use.  This removes increments of an
121 /// aligned IV when used by a instruction that ignores the low bits.
122 ///
123 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
124 ///
125 /// Return the operand of IVOperand for this induction variable if IVOperand can
126 /// be folded (in case more folding opportunities have been exposed).
127 /// Otherwise return null.
128 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
129   Value *IVSrc = nullptr;
130   const unsigned OperIdx = 0;
131   const SCEV *FoldedExpr = nullptr;
132   bool MustDropExactFlag = false;
133   switch (UseInst->getOpcode()) {
134   default:
135     return nullptr;
136   case Instruction::UDiv:
137   case Instruction::LShr:
138     // We're only interested in the case where we know something about
139     // the numerator and have a constant denominator.
140     if (IVOperand != UseInst->getOperand(OperIdx) ||
141         !isa<ConstantInt>(UseInst->getOperand(1)))
142       return nullptr;
143 
144     // Attempt to fold a binary operator with constant operand.
145     // e.g. ((I + 1) >> 2) => I >> 2
146     if (!isa<BinaryOperator>(IVOperand)
147         || !isa<ConstantInt>(IVOperand->getOperand(1)))
148       return nullptr;
149 
150     IVSrc = IVOperand->getOperand(0);
151     // IVSrc must be the (SCEVable) IV, since the other operand is const.
152     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
153 
154     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
155     if (UseInst->getOpcode() == Instruction::LShr) {
156       // Get a constant for the divisor. See createSCEV.
157       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
158       if (D->getValue().uge(BitWidth))
159         return nullptr;
160 
161       D = ConstantInt::get(UseInst->getContext(),
162                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
163     }
164     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
165     // We might have 'exact' flag set at this point which will no longer be
166     // correct after we make the replacement.
167     if (UseInst->isExact() &&
168         SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
169       MustDropExactFlag = true;
170   }
171   // We have something that might fold it's operand. Compare SCEVs.
172   if (!SE->isSCEVable(UseInst->getType()))
173     return nullptr;
174 
175   // Bypass the operand if SCEV can prove it has no effect.
176   if (SE->getSCEV(UseInst) != FoldedExpr)
177     return nullptr;
178 
179   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
180                     << " -> " << *UseInst << '\n');
181 
182   UseInst->setOperand(OperIdx, IVSrc);
183   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
184 
185   if (MustDropExactFlag)
186     UseInst->dropPoisonGeneratingFlags();
187 
188   ++NumElimOperand;
189   Changed = true;
190   if (IVOperand->use_empty())
191     DeadInsts.emplace_back(IVOperand);
192   return IVSrc;
193 }
194 
195 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
196                                                Value *IVOperand) {
197   unsigned IVOperIdx = 0;
198   ICmpInst::Predicate Pred = ICmp->getPredicate();
199   if (IVOperand != ICmp->getOperand(0)) {
200     // Swapped
201     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
202     IVOperIdx = 1;
203     Pred = ICmpInst::getSwappedPredicate(Pred);
204   }
205 
206   // Get the SCEVs for the ICmp operands (in the specific context of the
207   // current loop)
208   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
209   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
210   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
211 
212   auto *PN = dyn_cast<PHINode>(IVOperand);
213   if (!PN)
214     return false;
215   auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
216   if (!LIP)
217     return false;
218   ICmpInst::Predicate InvariantPredicate = LIP->Pred;
219   const SCEV *InvariantLHS = LIP->LHS;
220   const SCEV *InvariantRHS = LIP->RHS;
221 
222   // Rewrite the comparison to a loop invariant comparison if it can be done
223   // cheaply, where cheaply means "we don't need to emit any new
224   // instructions".
225 
226   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
227   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
228   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
229 
230   // TODO: Support multiple entry loops?  (We currently bail out of these in
231   // the IndVarSimplify pass)
232   if (auto *BB = L->getLoopPredecessor()) {
233     const int Idx = PN->getBasicBlockIndex(BB);
234     if (Idx >= 0) {
235       Value *Incoming = PN->getIncomingValue(Idx);
236       const SCEV *IncomingS = SE->getSCEV(Incoming);
237       CheapExpansions[IncomingS] = Incoming;
238     }
239   }
240   Value *NewLHS = CheapExpansions[InvariantLHS];
241   Value *NewRHS = CheapExpansions[InvariantRHS];
242 
243   if (!NewLHS)
244     if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
245       NewLHS = ConstLHS->getValue();
246   if (!NewRHS)
247     if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
248       NewRHS = ConstRHS->getValue();
249 
250   if (!NewLHS || !NewRHS)
251     // We could not find an existing value to replace either LHS or RHS.
252     // Generating new instructions has subtler tradeoffs, so avoid doing that
253     // for now.
254     return false;
255 
256   LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
257   ICmp->setPredicate(InvariantPredicate);
258   ICmp->setOperand(0, NewLHS);
259   ICmp->setOperand(1, NewRHS);
260   return true;
261 }
262 
263 /// SimplifyIVUsers helper for eliminating useless
264 /// comparisons against an induction variable.
265 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
266   unsigned IVOperIdx = 0;
267   ICmpInst::Predicate Pred = ICmp->getPredicate();
268   ICmpInst::Predicate OriginalPred = Pred;
269   if (IVOperand != ICmp->getOperand(0)) {
270     // Swapped
271     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
272     IVOperIdx = 1;
273     Pred = ICmpInst::getSwappedPredicate(Pred);
274   }
275 
276   // Get the SCEVs for the ICmp operands (in the specific context of the
277   // current loop)
278   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
279   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
280   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
281 
282   // If the condition is always true or always false in the given context,
283   // replace it with a constant value.
284   SmallVector<Instruction *, 4> Users;
285   for (auto *U : ICmp->users())
286     Users.push_back(cast<Instruction>(U));
287   const Instruction *CtxI = findCommonDominator(Users, *DT);
288   if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
289     ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
290     DeadInsts.emplace_back(ICmp);
291     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
292   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
293     // fallthrough to end of function
294   } else if (ICmpInst::isSigned(OriginalPred) &&
295              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
296     // If we were unable to make anything above, all we can is to canonicalize
297     // the comparison hoping that it will open the doors for other
298     // optimizations. If we find out that we compare two non-negative values,
299     // we turn the instruction's predicate to its unsigned version. Note that
300     // we cannot rely on Pred here unless we check if we have swapped it.
301     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
302     LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
303                       << '\n');
304     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
305   } else
306     return;
307 
308   ++NumElimCmp;
309   Changed = true;
310 }
311 
312 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
313   // Get the SCEVs for the ICmp operands.
314   auto *N = SE->getSCEV(SDiv->getOperand(0));
315   auto *D = SE->getSCEV(SDiv->getOperand(1));
316 
317   // Simplify unnecessary loops away.
318   const Loop *L = LI->getLoopFor(SDiv->getParent());
319   N = SE->getSCEVAtScope(N, L);
320   D = SE->getSCEVAtScope(D, L);
321 
322   // Replace sdiv by udiv if both of the operands are non-negative
323   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
324     auto *UDiv = BinaryOperator::Create(
325         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
326         SDiv->getName() + ".udiv", SDiv);
327     UDiv->setIsExact(SDiv->isExact());
328     SDiv->replaceAllUsesWith(UDiv);
329     LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
330     ++NumSimplifiedSDiv;
331     Changed = true;
332     DeadInsts.push_back(SDiv);
333     return true;
334   }
335 
336   return false;
337 }
338 
339 // i %s n -> i %u n if i >= 0 and n >= 0
340 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
341   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
342   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
343                                       Rem->getName() + ".urem", Rem);
344   Rem->replaceAllUsesWith(URem);
345   LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
346   ++NumSimplifiedSRem;
347   Changed = true;
348   DeadInsts.emplace_back(Rem);
349 }
350 
351 // i % n  -->  i  if i is in [0,n).
352 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
353   Rem->replaceAllUsesWith(Rem->getOperand(0));
354   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
355   ++NumElimRem;
356   Changed = true;
357   DeadInsts.emplace_back(Rem);
358 }
359 
360 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
361 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
362   auto *T = Rem->getType();
363   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
364   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
365   SelectInst *Sel =
366       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
367   Rem->replaceAllUsesWith(Sel);
368   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
369   ++NumElimRem;
370   Changed = true;
371   DeadInsts.emplace_back(Rem);
372 }
373 
374 /// SimplifyIVUsers helper for eliminating useless remainder operations
375 /// operating on an induction variable or replacing srem by urem.
376 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
377                                          bool IsSigned) {
378   auto *NValue = Rem->getOperand(0);
379   auto *DValue = Rem->getOperand(1);
380   // We're only interested in the case where we know something about
381   // the numerator, unless it is a srem, because we want to replace srem by urem
382   // in general.
383   bool UsedAsNumerator = IVOperand == NValue;
384   if (!UsedAsNumerator && !IsSigned)
385     return;
386 
387   const SCEV *N = SE->getSCEV(NValue);
388 
389   // Simplify unnecessary loops away.
390   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
391   N = SE->getSCEVAtScope(N, ICmpLoop);
392 
393   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
394 
395   // Do not proceed if the Numerator may be negative
396   if (!IsNumeratorNonNegative)
397     return;
398 
399   const SCEV *D = SE->getSCEV(DValue);
400   D = SE->getSCEVAtScope(D, ICmpLoop);
401 
402   if (UsedAsNumerator) {
403     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
404     if (SE->isKnownPredicate(LT, N, D)) {
405       replaceRemWithNumerator(Rem);
406       return;
407     }
408 
409     auto *T = Rem->getType();
410     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
411     if (SE->isKnownPredicate(LT, NLessOne, D)) {
412       replaceRemWithNumeratorOrZero(Rem);
413       return;
414     }
415   }
416 
417   // Try to replace SRem with URem, if both N and D are known non-negative.
418   // Since we had already check N, we only need to check D now
419   if (!IsSigned || !SE->isKnownNonNegative(D))
420     return;
421 
422   replaceSRemWithURem(Rem);
423 }
424 
425 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
426   const SCEV *LHS = SE->getSCEV(WO->getLHS());
427   const SCEV *RHS = SE->getSCEV(WO->getRHS());
428   if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
429     return false;
430 
431   // Proved no overflow, nuke the overflow check and, if possible, the overflow
432   // intrinsic as well.
433 
434   BinaryOperator *NewResult = BinaryOperator::Create(
435       WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
436 
437   if (WO->isSigned())
438     NewResult->setHasNoSignedWrap(true);
439   else
440     NewResult->setHasNoUnsignedWrap(true);
441 
442   SmallVector<ExtractValueInst *, 4> ToDelete;
443 
444   for (auto *U : WO->users()) {
445     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
446       if (EVI->getIndices()[0] == 1)
447         EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
448       else {
449         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
450         EVI->replaceAllUsesWith(NewResult);
451       }
452       ToDelete.push_back(EVI);
453     }
454   }
455 
456   for (auto *EVI : ToDelete)
457     EVI->eraseFromParent();
458 
459   if (WO->use_empty())
460     WO->eraseFromParent();
461 
462   Changed = true;
463   return true;
464 }
465 
466 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
467   const SCEV *LHS = SE->getSCEV(SI->getLHS());
468   const SCEV *RHS = SE->getSCEV(SI->getRHS());
469   if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
470     return false;
471 
472   BinaryOperator *BO = BinaryOperator::Create(
473       SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
474   if (SI->isSigned())
475     BO->setHasNoSignedWrap();
476   else
477     BO->setHasNoUnsignedWrap();
478 
479   SI->replaceAllUsesWith(BO);
480   DeadInsts.emplace_back(SI);
481   Changed = true;
482   return true;
483 }
484 
485 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
486   // It is always legal to replace
487   //   icmp <pred> i32 trunc(iv), n
488   // with
489   //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
490   // Or with
491   //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
492   // Or with either of these if pred is an equality predicate.
493   //
494   // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
495   // every comparison which uses trunc, it means that we can replace each of
496   // them with comparison of iv against sext/zext(n). We no longer need trunc
497   // after that.
498   //
499   // TODO: Should we do this if we can widen *some* comparisons, but not all
500   // of them? Sometimes it is enough to enable other optimizations, but the
501   // trunc instruction will stay in the loop.
502   Value *IV = TI->getOperand(0);
503   Type *IVTy = IV->getType();
504   const SCEV *IVSCEV = SE->getSCEV(IV);
505   const SCEV *TISCEV = SE->getSCEV(TI);
506 
507   // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
508   // get rid of trunc
509   bool DoesSExtCollapse = false;
510   bool DoesZExtCollapse = false;
511   if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
512     DoesSExtCollapse = true;
513   if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
514     DoesZExtCollapse = true;
515 
516   // If neither sext nor zext does collapse, it is not profitable to do any
517   // transform. Bail.
518   if (!DoesSExtCollapse && !DoesZExtCollapse)
519     return false;
520 
521   // Collect users of the trunc that look like comparisons against invariants.
522   // Bail if we find something different.
523   SmallVector<ICmpInst *, 4> ICmpUsers;
524   for (auto *U : TI->users()) {
525     // We don't care about users in unreachable blocks.
526     if (isa<Instruction>(U) &&
527         !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
528       continue;
529     ICmpInst *ICI = dyn_cast<ICmpInst>(U);
530     if (!ICI) return false;
531     assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
532     if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
533         !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
534       return false;
535     // If we cannot get rid of trunc, bail.
536     if (ICI->isSigned() && !DoesSExtCollapse)
537       return false;
538     if (ICI->isUnsigned() && !DoesZExtCollapse)
539       return false;
540     // For equality, either signed or unsigned works.
541     ICmpUsers.push_back(ICI);
542   }
543 
544   auto CanUseZExt = [&](ICmpInst *ICI) {
545     // Unsigned comparison can be widened as unsigned.
546     if (ICI->isUnsigned())
547       return true;
548     // Is it profitable to do zext?
549     if (!DoesZExtCollapse)
550       return false;
551     // For equality, we can safely zext both parts.
552     if (ICI->isEquality())
553       return true;
554     // Otherwise we can only use zext when comparing two non-negative or two
555     // negative values. But in practice, we will never pass DoesZExtCollapse
556     // check for a negative value, because zext(trunc(x)) is non-negative. So
557     // it only make sense to check for non-negativity here.
558     const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
559     const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
560     return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
561   };
562   // Replace all comparisons against trunc with comparisons against IV.
563   for (auto *ICI : ICmpUsers) {
564     bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
565     auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
566     Instruction *Ext = nullptr;
567     // For signed/unsigned predicate, replace the old comparison with comparison
568     // of immediate IV against sext/zext of the invariant argument. If we can
569     // use either sext or zext (i.e. we are dealing with equality predicate),
570     // then prefer zext as a more canonical form.
571     // TODO: If we see a signed comparison which can be turned into unsigned,
572     // we can do it here for canonicalization purposes.
573     ICmpInst::Predicate Pred = ICI->getPredicate();
574     if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
575     if (CanUseZExt(ICI)) {
576       assert(DoesZExtCollapse && "Unprofitable zext?");
577       Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
578       Pred = ICmpInst::getUnsignedPredicate(Pred);
579     } else {
580       assert(DoesSExtCollapse && "Unprofitable sext?");
581       Ext = new SExtInst(Op1, IVTy, "sext", ICI);
582       assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
583     }
584     bool Changed;
585     L->makeLoopInvariant(Ext, Changed);
586     (void)Changed;
587     ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
588     ICI->replaceAllUsesWith(NewICI);
589     DeadInsts.emplace_back(ICI);
590   }
591 
592   // Trunc no longer needed.
593   TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
594   DeadInsts.emplace_back(TI);
595   return true;
596 }
597 
598 /// Eliminate an operation that consumes a simple IV and has no observable
599 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
600 /// but UseInst may not be.
601 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
602                                      Instruction *IVOperand) {
603   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
604     eliminateIVComparison(ICmp, IVOperand);
605     return true;
606   }
607   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
608     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
609     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
610       simplifyIVRemainder(Bin, IVOperand, IsSRem);
611       return true;
612     }
613 
614     if (Bin->getOpcode() == Instruction::SDiv)
615       return eliminateSDiv(Bin);
616   }
617 
618   if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
619     if (eliminateOverflowIntrinsic(WO))
620       return true;
621 
622   if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
623     if (eliminateSaturatingIntrinsic(SI))
624       return true;
625 
626   if (auto *TI = dyn_cast<TruncInst>(UseInst))
627     if (eliminateTrunc(TI))
628       return true;
629 
630   if (eliminateIdentitySCEV(UseInst, IVOperand))
631     return true;
632 
633   return false;
634 }
635 
636 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
637   if (auto *BB = L->getLoopPreheader())
638     return BB->getTerminator();
639 
640   return Hint;
641 }
642 
643 /// Replace the UseInst with a loop invariant expression if it is safe.
644 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
645   if (!SE->isSCEVable(I->getType()))
646     return false;
647 
648   // Get the symbolic expression for this instruction.
649   const SCEV *S = SE->getSCEV(I);
650 
651   if (!SE->isLoopInvariant(S, L))
652     return false;
653 
654   // Do not generate something ridiculous even if S is loop invariant.
655   if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
656     return false;
657 
658   auto *IP = GetLoopInvariantInsertPosition(L, I);
659 
660   if (!isSafeToExpandAt(S, IP, *SE)) {
661     LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
662                       << " with non-speculable loop invariant: " << *S << '\n');
663     return false;
664   }
665 
666   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
667 
668   I->replaceAllUsesWith(Invariant);
669   LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
670                     << " with loop invariant: " << *S << '\n');
671   ++NumFoldedUser;
672   Changed = true;
673   DeadInsts.emplace_back(I);
674   return true;
675 }
676 
677 /// Eliminate any operation that SCEV can prove is an identity function.
678 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
679                                            Instruction *IVOperand) {
680   if (!SE->isSCEVable(UseInst->getType()) ||
681       (UseInst->getType() != IVOperand->getType()) ||
682       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
683     return false;
684 
685   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
686   // dominator tree, even if X is an operand to Y.  For instance, in
687   //
688   //     %iv = phi i32 {0,+,1}
689   //     br %cond, label %left, label %merge
690   //
691   //   left:
692   //     %X = add i32 %iv, 0
693   //     br label %merge
694   //
695   //   merge:
696   //     %M = phi (%X, %iv)
697   //
698   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
699   // %M.replaceAllUsesWith(%X) would be incorrect.
700 
701   if (isa<PHINode>(UseInst))
702     // If UseInst is not a PHI node then we know that IVOperand dominates
703     // UseInst directly from the legality of SSA.
704     if (!DT || !DT->dominates(IVOperand, UseInst))
705       return false;
706 
707   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
708     return false;
709 
710   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
711 
712   UseInst->replaceAllUsesWith(IVOperand);
713   ++NumElimIdentity;
714   Changed = true;
715   DeadInsts.emplace_back(UseInst);
716   return true;
717 }
718 
719 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
720 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
721 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
722                                                     Value *IVOperand) {
723   SCEV::NoWrapFlags Flags;
724   bool Deduced;
725   std::tie(Flags, Deduced) = SE->getStrengthenedNoWrapFlagsFromBinOp(
726       cast<OverflowingBinaryOperator>(BO));
727 
728   if (!Deduced)
729     return Deduced;
730 
731   BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNUW) ==
732                            SCEV::FlagNUW);
733   BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNSW) ==
734                          SCEV::FlagNSW);
735 
736   // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
737   // flags on addrecs while performing zero/sign extensions. We could call
738   // forgetValue() here to make sure those flags also propagate to any other
739   // SCEV expressions based on the addrec. However, this can have pathological
740   // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
741   return Deduced;
742 }
743 
744 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
745 /// information from the IV's range. Returns true if anything changed, false
746 /// otherwise.
747 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
748                                           Value *IVOperand) {
749   using namespace llvm::PatternMatch;
750 
751   if (BO->getOpcode() == Instruction::Shl) {
752     bool Changed = false;
753     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
754     for (auto *U : BO->users()) {
755       const APInt *C;
756       if (match(U,
757                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
758           match(U,
759                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
760         BinaryOperator *Shr = cast<BinaryOperator>(U);
761         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
762           Shr->setIsExact(true);
763           Changed = true;
764         }
765       }
766     }
767     return Changed;
768   }
769 
770   return false;
771 }
772 
773 /// Add all uses of Def to the current IV's worklist.
774 static void pushIVUsers(
775   Instruction *Def, Loop *L,
776   SmallPtrSet<Instruction*,16> &Simplified,
777   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
778 
779   for (User *U : Def->users()) {
780     Instruction *UI = cast<Instruction>(U);
781 
782     // Avoid infinite or exponential worklist processing.
783     // Also ensure unique worklist users.
784     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
785     // self edges first.
786     if (UI == Def)
787       continue;
788 
789     // Only change the current Loop, do not change the other parts (e.g. other
790     // Loops).
791     if (!L->contains(UI))
792       continue;
793 
794     // Do not push the same instruction more than once.
795     if (!Simplified.insert(UI).second)
796       continue;
797 
798     SimpleIVUsers.push_back(std::make_pair(UI, Def));
799   }
800 }
801 
802 /// Return true if this instruction generates a simple SCEV
803 /// expression in terms of that IV.
804 ///
805 /// This is similar to IVUsers' isInteresting() but processes each instruction
806 /// non-recursively when the operand is already known to be a simpleIVUser.
807 ///
808 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
809   if (!SE->isSCEVable(I->getType()))
810     return false;
811 
812   // Get the symbolic expression for this instruction.
813   const SCEV *S = SE->getSCEV(I);
814 
815   // Only consider affine recurrences.
816   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
817   if (AR && AR->getLoop() == L)
818     return true;
819 
820   return false;
821 }
822 
823 /// Iteratively perform simplification on a worklist of users
824 /// of the specified induction variable. Each successive simplification may push
825 /// more users which may themselves be candidates for simplification.
826 ///
827 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
828 /// instructions in-place during analysis. Rather than rewriting induction
829 /// variables bottom-up from their users, it transforms a chain of IVUsers
830 /// top-down, updating the IR only when it encounters a clear optimization
831 /// opportunity.
832 ///
833 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
834 ///
835 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
836   if (!SE->isSCEVable(CurrIV->getType()))
837     return;
838 
839   // Instructions processed by SimplifyIndvar for CurrIV.
840   SmallPtrSet<Instruction*,16> Simplified;
841 
842   // Use-def pairs if IV users waiting to be processed for CurrIV.
843   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
844 
845   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
846   // called multiple times for the same LoopPhi. This is the proper thing to
847   // do for loop header phis that use each other.
848   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
849 
850   while (!SimpleIVUsers.empty()) {
851     std::pair<Instruction*, Instruction*> UseOper =
852       SimpleIVUsers.pop_back_val();
853     Instruction *UseInst = UseOper.first;
854 
855     // If a user of the IndVar is trivially dead, we prefer just to mark it dead
856     // rather than try to do some complex analysis or transformation (such as
857     // widening) basing on it.
858     // TODO: Propagate TLI and pass it here to handle more cases.
859     if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
860       DeadInsts.emplace_back(UseInst);
861       continue;
862     }
863 
864     // Bypass back edges to avoid extra work.
865     if (UseInst == CurrIV) continue;
866 
867     // Try to replace UseInst with a loop invariant before any other
868     // simplifications.
869     if (replaceIVUserWithLoopInvariant(UseInst))
870       continue;
871 
872     Instruction *IVOperand = UseOper.second;
873     for (unsigned N = 0; IVOperand; ++N) {
874       assert(N <= Simplified.size() && "runaway iteration");
875 
876       Value *NewOper = foldIVUser(UseInst, IVOperand);
877       if (!NewOper)
878         break; // done folding
879       IVOperand = dyn_cast<Instruction>(NewOper);
880     }
881     if (!IVOperand)
882       continue;
883 
884     if (eliminateIVUser(UseInst, IVOperand)) {
885       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
886       continue;
887     }
888 
889     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
890       if ((isa<OverflowingBinaryOperator>(BO) &&
891            strengthenOverflowingOperation(BO, IVOperand)) ||
892           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
893         // re-queue uses of the now modified binary operator and fall
894         // through to the checks that remain.
895         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
896       }
897     }
898 
899     CastInst *Cast = dyn_cast<CastInst>(UseInst);
900     if (V && Cast) {
901       V->visitCast(Cast);
902       continue;
903     }
904     if (isSimpleIVUser(UseInst, L, SE)) {
905       pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
906     }
907   }
908 }
909 
910 namespace llvm {
911 
912 void IVVisitor::anchor() { }
913 
914 /// Simplify instructions that use this induction variable
915 /// by using ScalarEvolution to analyze the IV's recurrence.
916 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
917                        LoopInfo *LI, const TargetTransformInfo *TTI,
918                        SmallVectorImpl<WeakTrackingVH> &Dead,
919                        SCEVExpander &Rewriter, IVVisitor *V) {
920   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
921                      Rewriter, Dead);
922   SIV.simplifyUsers(CurrIV, V);
923   return SIV.hasChanged();
924 }
925 
926 /// Simplify users of induction variables within this
927 /// loop. This does not actually change or add IVs.
928 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
929                      LoopInfo *LI, const TargetTransformInfo *TTI,
930                      SmallVectorImpl<WeakTrackingVH> &Dead) {
931   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
932 #ifndef NDEBUG
933   Rewriter.setDebugType(DEBUG_TYPE);
934 #endif
935   bool Changed = false;
936   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
937     Changed |=
938         simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
939   }
940   return Changed;
941 }
942 
943 } // namespace llvm
944 
945 namespace {
946 //===----------------------------------------------------------------------===//
947 // Widen Induction Variables - Extend the width of an IV to cover its
948 // widest uses.
949 //===----------------------------------------------------------------------===//
950 
951 class WidenIV {
952   // Parameters
953   PHINode *OrigPhi;
954   Type *WideType;
955 
956   // Context
957   LoopInfo        *LI;
958   Loop            *L;
959   ScalarEvolution *SE;
960   DominatorTree   *DT;
961 
962   // Does the module have any calls to the llvm.experimental.guard intrinsic
963   // at all? If not we can avoid scanning instructions looking for guards.
964   bool HasGuards;
965 
966   bool UsePostIncrementRanges;
967 
968   // Statistics
969   unsigned NumElimExt = 0;
970   unsigned NumWidened = 0;
971 
972   // Result
973   PHINode *WidePhi = nullptr;
974   Instruction *WideInc = nullptr;
975   const SCEV *WideIncExpr = nullptr;
976   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
977 
978   SmallPtrSet<Instruction *,16> Widened;
979 
980   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
981 
982   // A map tracking the kind of extension used to widen each narrow IV
983   // and narrow IV user.
984   // Key: pointer to a narrow IV or IV user.
985   // Value: the kind of extension used to widen this Instruction.
986   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
987 
988   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
989 
990   // A map with control-dependent ranges for post increment IV uses. The key is
991   // a pair of IV def and a use of this def denoting the context. The value is
992   // a ConstantRange representing possible values of the def at the given
993   // context.
994   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
995 
996   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
997                                               Instruction *UseI) {
998     DefUserPair Key(Def, UseI);
999     auto It = PostIncRangeInfos.find(Key);
1000     return It == PostIncRangeInfos.end()
1001                ? Optional<ConstantRange>(None)
1002                : Optional<ConstantRange>(It->second);
1003   }
1004 
1005   void calculatePostIncRanges(PHINode *OrigPhi);
1006   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1007 
1008   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1009     DefUserPair Key(Def, UseI);
1010     auto It = PostIncRangeInfos.find(Key);
1011     if (It == PostIncRangeInfos.end())
1012       PostIncRangeInfos.insert({Key, R});
1013     else
1014       It->second = R.intersectWith(It->second);
1015   }
1016 
1017 public:
1018   /// Record a link in the Narrow IV def-use chain along with the WideIV that
1019   /// computes the same value as the Narrow IV def.  This avoids caching Use*
1020   /// pointers.
1021   struct NarrowIVDefUse {
1022     Instruction *NarrowDef = nullptr;
1023     Instruction *NarrowUse = nullptr;
1024     Instruction *WideDef = nullptr;
1025 
1026     // True if the narrow def is never negative.  Tracking this information lets
1027     // us use a sign extension instead of a zero extension or vice versa, when
1028     // profitable and legal.
1029     bool NeverNegative = false;
1030 
1031     NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1032                    bool NeverNegative)
1033         : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1034           NeverNegative(NeverNegative) {}
1035   };
1036 
1037   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1038           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1039           bool HasGuards, bool UsePostIncrementRanges = true);
1040 
1041   PHINode *createWideIV(SCEVExpander &Rewriter);
1042 
1043   unsigned getNumElimExt() { return NumElimExt; };
1044   unsigned getNumWidened() { return NumWidened; };
1045 
1046 protected:
1047   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1048                           Instruction *Use);
1049 
1050   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1051   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1052                                      const SCEVAddRecExpr *WideAR);
1053   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1054 
1055   ExtendKind getExtendKind(Instruction *I);
1056 
1057   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1058 
1059   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1060 
1061   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1062 
1063   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1064                               unsigned OpCode) const;
1065 
1066   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1067 
1068   bool widenLoopCompare(NarrowIVDefUse DU);
1069   bool widenWithVariantUse(NarrowIVDefUse DU);
1070 
1071   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1072 
1073 private:
1074   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1075 };
1076 } // namespace
1077 
1078 /// Determine the insertion point for this user. By default, insert immediately
1079 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1080 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1081 /// common dominator for the incoming blocks. A nullptr can be returned if no
1082 /// viable location is found: it may happen if User is a PHI and Def only comes
1083 /// to this PHI from unreachable blocks.
1084 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1085                                           DominatorTree *DT, LoopInfo *LI) {
1086   PHINode *PHI = dyn_cast<PHINode>(User);
1087   if (!PHI)
1088     return User;
1089 
1090   Instruction *InsertPt = nullptr;
1091   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1092     if (PHI->getIncomingValue(i) != Def)
1093       continue;
1094 
1095     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1096 
1097     if (!DT->isReachableFromEntry(InsertBB))
1098       continue;
1099 
1100     if (!InsertPt) {
1101       InsertPt = InsertBB->getTerminator();
1102       continue;
1103     }
1104     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1105     InsertPt = InsertBB->getTerminator();
1106   }
1107 
1108   // If we have skipped all inputs, it means that Def only comes to Phi from
1109   // unreachable blocks.
1110   if (!InsertPt)
1111     return nullptr;
1112 
1113   auto *DefI = dyn_cast<Instruction>(Def);
1114   if (!DefI)
1115     return InsertPt;
1116 
1117   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1118 
1119   auto *L = LI->getLoopFor(DefI->getParent());
1120   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1121 
1122   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1123     if (LI->getLoopFor(DTN->getBlock()) == L)
1124       return DTN->getBlock()->getTerminator();
1125 
1126   llvm_unreachable("DefI dominates InsertPt!");
1127 }
1128 
1129 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1130           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1131           bool HasGuards, bool UsePostIncrementRanges)
1132       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1133         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1134         HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1135         DeadInsts(DI) {
1136     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1137     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1138 }
1139 
1140 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1141                                  bool IsSigned, Instruction *Use) {
1142   // Set the debug location and conservative insertion point.
1143   IRBuilder<> Builder(Use);
1144   // Hoist the insertion point into loop preheaders as far as possible.
1145   for (const Loop *L = LI->getLoopFor(Use->getParent());
1146        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1147        L = L->getParentLoop())
1148     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1149 
1150   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1151                     Builder.CreateZExt(NarrowOper, WideType);
1152 }
1153 
1154 /// Instantiate a wide operation to replace a narrow operation. This only needs
1155 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1156 /// 0 for any operation we decide not to clone.
1157 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1158                                   const SCEVAddRecExpr *WideAR) {
1159   unsigned Opcode = DU.NarrowUse->getOpcode();
1160   switch (Opcode) {
1161   default:
1162     return nullptr;
1163   case Instruction::Add:
1164   case Instruction::Mul:
1165   case Instruction::UDiv:
1166   case Instruction::Sub:
1167     return cloneArithmeticIVUser(DU, WideAR);
1168 
1169   case Instruction::And:
1170   case Instruction::Or:
1171   case Instruction::Xor:
1172   case Instruction::Shl:
1173   case Instruction::LShr:
1174   case Instruction::AShr:
1175     return cloneBitwiseIVUser(DU);
1176   }
1177 }
1178 
1179 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1180   Instruction *NarrowUse = DU.NarrowUse;
1181   Instruction *NarrowDef = DU.NarrowDef;
1182   Instruction *WideDef = DU.WideDef;
1183 
1184   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1185 
1186   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1187   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1188   // invariant and will be folded or hoisted. If it actually comes from a
1189   // widened IV, it should be removed during a future call to widenIVUse.
1190   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1191   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1192                    ? WideDef
1193                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1194                                       IsSigned, NarrowUse);
1195   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1196                    ? WideDef
1197                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1198                                       IsSigned, NarrowUse);
1199 
1200   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1201   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1202                                         NarrowBO->getName());
1203   IRBuilder<> Builder(NarrowUse);
1204   Builder.Insert(WideBO);
1205   WideBO->copyIRFlags(NarrowBO);
1206   return WideBO;
1207 }
1208 
1209 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1210                                             const SCEVAddRecExpr *WideAR) {
1211   Instruction *NarrowUse = DU.NarrowUse;
1212   Instruction *NarrowDef = DU.NarrowDef;
1213   Instruction *WideDef = DU.WideDef;
1214 
1215   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1216 
1217   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1218 
1219   // We're trying to find X such that
1220   //
1221   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1222   //
1223   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1224   // and check using SCEV if any of them are correct.
1225 
1226   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1227   // correct solution to X.
1228   auto GuessNonIVOperand = [&](bool SignExt) {
1229     const SCEV *WideLHS;
1230     const SCEV *WideRHS;
1231 
1232     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1233       if (SignExt)
1234         return SE->getSignExtendExpr(S, Ty);
1235       return SE->getZeroExtendExpr(S, Ty);
1236     };
1237 
1238     if (IVOpIdx == 0) {
1239       WideLHS = SE->getSCEV(WideDef);
1240       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1241       WideRHS = GetExtend(NarrowRHS, WideType);
1242     } else {
1243       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1244       WideLHS = GetExtend(NarrowLHS, WideType);
1245       WideRHS = SE->getSCEV(WideDef);
1246     }
1247 
1248     // WideUse is "WideDef `op.wide` X" as described in the comment.
1249     const SCEV *WideUse =
1250       getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1251 
1252     return WideUse == WideAR;
1253   };
1254 
1255   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1256   if (!GuessNonIVOperand(SignExtend)) {
1257     SignExtend = !SignExtend;
1258     if (!GuessNonIVOperand(SignExtend))
1259       return nullptr;
1260   }
1261 
1262   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1263                    ? WideDef
1264                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1265                                       SignExtend, NarrowUse);
1266   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1267                    ? WideDef
1268                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1269                                       SignExtend, NarrowUse);
1270 
1271   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1272   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1273                                         NarrowBO->getName());
1274 
1275   IRBuilder<> Builder(NarrowUse);
1276   Builder.Insert(WideBO);
1277   WideBO->copyIRFlags(NarrowBO);
1278   return WideBO;
1279 }
1280 
1281 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1282   auto It = ExtendKindMap.find(I);
1283   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1284   return It->second;
1285 }
1286 
1287 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1288                                      unsigned OpCode) const {
1289   switch (OpCode) {
1290   case Instruction::Add:
1291     return SE->getAddExpr(LHS, RHS);
1292   case Instruction::Sub:
1293     return SE->getMinusSCEV(LHS, RHS);
1294   case Instruction::Mul:
1295     return SE->getMulExpr(LHS, RHS);
1296   case Instruction::UDiv:
1297     return SE->getUDivExpr(LHS, RHS);
1298   default:
1299     llvm_unreachable("Unsupported opcode.");
1300   };
1301 }
1302 
1303 /// No-wrap operations can transfer sign extension of their result to their
1304 /// operands. Generate the SCEV value for the widened operation without
1305 /// actually modifying the IR yet. If the expression after extending the
1306 /// operands is an AddRec for this loop, return the AddRec and the kind of
1307 /// extension used.
1308 WidenIV::WidenedRecTy
1309 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1310   // Handle the common case of add<nsw/nuw>
1311   const unsigned OpCode = DU.NarrowUse->getOpcode();
1312   // Only Add/Sub/Mul instructions supported yet.
1313   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1314       OpCode != Instruction::Mul)
1315     return {nullptr, Unknown};
1316 
1317   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1318   // if extending the other will lead to a recurrence.
1319   const unsigned ExtendOperIdx =
1320       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1321   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1322 
1323   const SCEV *ExtendOperExpr = nullptr;
1324   const OverflowingBinaryOperator *OBO =
1325     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1326   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1327   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1328     ExtendOperExpr = SE->getSignExtendExpr(
1329       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1330   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1331     ExtendOperExpr = SE->getZeroExtendExpr(
1332       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1333   else
1334     return {nullptr, Unknown};
1335 
1336   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1337   // flags. This instruction may be guarded by control flow that the no-wrap
1338   // behavior depends on. Non-control-equivalent instructions can be mapped to
1339   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1340   // semantics to those operations.
1341   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1342   const SCEV *rhs = ExtendOperExpr;
1343 
1344   // Let's swap operands to the initial order for the case of non-commutative
1345   // operations, like SUB. See PR21014.
1346   if (ExtendOperIdx == 0)
1347     std::swap(lhs, rhs);
1348   const SCEVAddRecExpr *AddRec =
1349       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1350 
1351   if (!AddRec || AddRec->getLoop() != L)
1352     return {nullptr, Unknown};
1353 
1354   return {AddRec, ExtKind};
1355 }
1356 
1357 /// Is this instruction potentially interesting for further simplification after
1358 /// widening it's type? In other words, can the extend be safely hoisted out of
1359 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1360 /// so, return the extended recurrence and the kind of extension used. Otherwise
1361 /// return {nullptr, Unknown}.
1362 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1363   if (!DU.NarrowUse->getType()->isIntegerTy())
1364     return {nullptr, Unknown};
1365 
1366   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1367   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1368       SE->getTypeSizeInBits(WideType)) {
1369     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1370     // index. So don't follow this use.
1371     return {nullptr, Unknown};
1372   }
1373 
1374   const SCEV *WideExpr;
1375   ExtendKind ExtKind;
1376   if (DU.NeverNegative) {
1377     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1378     if (isa<SCEVAddRecExpr>(WideExpr))
1379       ExtKind = SignExtended;
1380     else {
1381       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1382       ExtKind = ZeroExtended;
1383     }
1384   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1385     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1386     ExtKind = SignExtended;
1387   } else {
1388     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1389     ExtKind = ZeroExtended;
1390   }
1391   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1392   if (!AddRec || AddRec->getLoop() != L)
1393     return {nullptr, Unknown};
1394   return {AddRec, ExtKind};
1395 }
1396 
1397 /// This IV user cannot be widened. Replace this use of the original narrow IV
1398 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1399 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
1400                           LoopInfo *LI) {
1401   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1402   if (!InsertPt)
1403     return;
1404   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1405                     << *DU.NarrowUse << "\n");
1406   IRBuilder<> Builder(InsertPt);
1407   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1408   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1409 }
1410 
1411 /// If the narrow use is a compare instruction, then widen the compare
1412 //  (and possibly the other operand).  The extend operation is hoisted into the
1413 // loop preheader as far as possible.
1414 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1415   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1416   if (!Cmp)
1417     return false;
1418 
1419   // We can legally widen the comparison in the following two cases:
1420   //
1421   //  - The signedness of the IV extension and comparison match
1422   //
1423   //  - The narrow IV is always positive (and thus its sign extension is equal
1424   //    to its zero extension).  For instance, let's say we're zero extending
1425   //    %narrow for the following use
1426   //
1427   //      icmp slt i32 %narrow, %val   ... (A)
1428   //
1429   //    and %narrow is always positive.  Then
1430   //
1431   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1432   //          == icmp slt i32 zext(%narrow), sext(%val)
1433   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1434   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1435     return false;
1436 
1437   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1438   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1439   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1440   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1441 
1442   // Widen the compare instruction.
1443   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1444   if (!InsertPt)
1445     return false;
1446   IRBuilder<> Builder(InsertPt);
1447   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1448 
1449   // Widen the other operand of the compare, if necessary.
1450   if (CastWidth < IVWidth) {
1451     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1452     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1453   }
1454   return true;
1455 }
1456 
1457 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1458 // will not work when:
1459 //    1) SCEV traces back to an instruction inside the loop that SCEV can not
1460 // expand, eg. add %indvar, (load %addr)
1461 //    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1462 // While SCEV fails to avoid trunc, we can still try to use instruction
1463 // combining approach to prove trunc is not required. This can be further
1464 // extended with other instruction combining checks, but for now we handle the
1465 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1466 //
1467 // Src:
1468 //   %c = sub nsw %b, %indvar
1469 //   %d = sext %c to i64
1470 // Dst:
1471 //   %indvar.ext1 = sext %indvar to i64
1472 //   %m = sext %b to i64
1473 //   %d = sub nsw i64 %m, %indvar.ext1
1474 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1475 // trunc is required regardless of how %b is generated. This pattern is common
1476 // when calculating address in 64 bit architecture
1477 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1478   Instruction *NarrowUse = DU.NarrowUse;
1479   Instruction *NarrowDef = DU.NarrowDef;
1480   Instruction *WideDef = DU.WideDef;
1481 
1482   // Handle the common case of add<nsw/nuw>
1483   const unsigned OpCode = NarrowUse->getOpcode();
1484   // Only Add/Sub/Mul instructions are supported.
1485   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1486       OpCode != Instruction::Mul)
1487     return false;
1488 
1489   // The operand that is not defined by NarrowDef of DU. Let's call it the
1490   // other operand.
1491   assert((NarrowUse->getOperand(0) == NarrowDef ||
1492           NarrowUse->getOperand(1) == NarrowDef) &&
1493          "bad DU");
1494 
1495   const OverflowingBinaryOperator *OBO =
1496     cast<OverflowingBinaryOperator>(NarrowUse);
1497   ExtendKind ExtKind = getExtendKind(NarrowDef);
1498   bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
1499   bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
1500   auto AnotherOpExtKind = ExtKind;
1501 
1502   // Check that all uses are either:
1503   // - narrow def (in case of we are widening the IV increment);
1504   // - single-input LCSSA Phis;
1505   // - comparison of the chosen type;
1506   // - extend of the chosen type (raison d'etre).
1507   SmallVector<Instruction *, 4> ExtUsers;
1508   SmallVector<PHINode *, 4> LCSSAPhiUsers;
1509   SmallVector<ICmpInst *, 4> ICmpUsers;
1510   for (Use &U : NarrowUse->uses()) {
1511     Instruction *User = cast<Instruction>(U.getUser());
1512     if (User == NarrowDef)
1513       continue;
1514     if (!L->contains(User)) {
1515       auto *LCSSAPhi = cast<PHINode>(User);
1516       // Make sure there is only 1 input, so that we don't have to split
1517       // critical edges.
1518       if (LCSSAPhi->getNumOperands() != 1)
1519         return false;
1520       LCSSAPhiUsers.push_back(LCSSAPhi);
1521       continue;
1522     }
1523     if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1524       auto Pred = ICmp->getPredicate();
1525       // We have 3 types of predicates: signed, unsigned and equality
1526       // predicates. For equality, it's legal to widen icmp for either sign and
1527       // zero extend. For sign extend, we can also do so for signed predicates,
1528       // likeweise for zero extend we can widen icmp for unsigned predicates.
1529       if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred))
1530         return false;
1531       if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred))
1532         return false;
1533       ICmpUsers.push_back(ICmp);
1534       continue;
1535     }
1536     if (ExtKind == SignExtended)
1537       User = dyn_cast<SExtInst>(User);
1538     else
1539       User = dyn_cast<ZExtInst>(User);
1540     if (!User || User->getType() != WideType)
1541       return false;
1542     ExtUsers.push_back(User);
1543   }
1544   if (ExtUsers.empty()) {
1545     DeadInsts.emplace_back(NarrowUse);
1546     return true;
1547   }
1548 
1549   // We'll prove some facts that should be true in the context of ext users. If
1550   // there is no users, we are done now. If there are some, pick their common
1551   // dominator as context.
1552   const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
1553 
1554   if (!CanSignExtend && !CanZeroExtend) {
1555     // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1556     // will most likely not see it. Let's try to prove it.
1557     if (OpCode != Instruction::Add)
1558       return false;
1559     if (ExtKind != ZeroExtended)
1560       return false;
1561     const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1562     const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1563     // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1564     if (NarrowUse->getOperand(0) != NarrowDef)
1565       return false;
1566     if (!SE->isKnownNegative(RHS))
1567       return false;
1568     bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
1569                                                SE->getNegativeSCEV(RHS), CtxI);
1570     if (!ProvedSubNUW)
1571       return false;
1572     // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1573     // neg(zext(neg(op))), which is basically sext(op).
1574     AnotherOpExtKind = SignExtended;
1575   }
1576 
1577   // Verifying that Defining operand is an AddRec
1578   const SCEV *Op1 = SE->getSCEV(WideDef);
1579   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1580   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1581     return false;
1582 
1583   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1584 
1585   // Generating a widening use instruction.
1586   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1587                    ? WideDef
1588                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1589                                       AnotherOpExtKind, NarrowUse);
1590   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1591                    ? WideDef
1592                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1593                                       AnotherOpExtKind, NarrowUse);
1594 
1595   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1596   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1597                                         NarrowBO->getName());
1598   IRBuilder<> Builder(NarrowUse);
1599   Builder.Insert(WideBO);
1600   WideBO->copyIRFlags(NarrowBO);
1601   ExtendKindMap[NarrowUse] = ExtKind;
1602 
1603   for (Instruction *User : ExtUsers) {
1604     assert(User->getType() == WideType && "Checked before!");
1605     LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1606                       << *WideBO << "\n");
1607     ++NumElimExt;
1608     User->replaceAllUsesWith(WideBO);
1609     DeadInsts.emplace_back(User);
1610   }
1611 
1612   for (PHINode *User : LCSSAPhiUsers) {
1613     assert(User->getNumOperands() == 1 && "Checked before!");
1614     Builder.SetInsertPoint(User);
1615     auto *WidePN =
1616         Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1617     BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1618     assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1619            "Not a LCSSA Phi?");
1620     WidePN->addIncoming(WideBO, LoopExitingBlock);
1621     Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
1622     auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1623     User->replaceAllUsesWith(TruncPN);
1624     DeadInsts.emplace_back(User);
1625   }
1626 
1627   for (ICmpInst *User : ICmpUsers) {
1628     Builder.SetInsertPoint(User);
1629     auto ExtendedOp = [&](Value * V)->Value * {
1630       if (V == NarrowUse)
1631         return WideBO;
1632       if (ExtKind == ZeroExtended)
1633         return Builder.CreateZExt(V, WideBO->getType());
1634       else
1635         return Builder.CreateSExt(V, WideBO->getType());
1636     };
1637     auto Pred = User->getPredicate();
1638     auto *LHS = ExtendedOp(User->getOperand(0));
1639     auto *RHS = ExtendedOp(User->getOperand(1));
1640     auto *WideCmp =
1641         Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1642     User->replaceAllUsesWith(WideCmp);
1643     DeadInsts.emplace_back(User);
1644   }
1645 
1646   return true;
1647 }
1648 
1649 /// Determine whether an individual user of the narrow IV can be widened. If so,
1650 /// return the wide clone of the user.
1651 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1652   assert(ExtendKindMap.count(DU.NarrowDef) &&
1653          "Should already know the kind of extension used to widen NarrowDef");
1654 
1655   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1656   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1657     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1658       // For LCSSA phis, sink the truncate outside the loop.
1659       // After SimplifyCFG most loop exit targets have a single predecessor.
1660       // Otherwise fall back to a truncate within the loop.
1661       if (UsePhi->getNumOperands() != 1)
1662         truncateIVUse(DU, DT, LI);
1663       else {
1664         // Widening the PHI requires us to insert a trunc.  The logical place
1665         // for this trunc is in the same BB as the PHI.  This is not possible if
1666         // the BB is terminated by a catchswitch.
1667         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1668           return nullptr;
1669 
1670         PHINode *WidePhi =
1671           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1672                           UsePhi);
1673         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1674         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1675         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1676         UsePhi->replaceAllUsesWith(Trunc);
1677         DeadInsts.emplace_back(UsePhi);
1678         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1679                           << *WidePhi << "\n");
1680       }
1681       return nullptr;
1682     }
1683   }
1684 
1685   // This narrow use can be widened by a sext if it's non-negative or its narrow
1686   // def was widended by a sext. Same for zext.
1687   auto canWidenBySExt = [&]() {
1688     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1689   };
1690   auto canWidenByZExt = [&]() {
1691     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1692   };
1693 
1694   // Our raison d'etre! Eliminate sign and zero extension.
1695   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1696       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1697     Value *NewDef = DU.WideDef;
1698     if (DU.NarrowUse->getType() != WideType) {
1699       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1700       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1701       if (CastWidth < IVWidth) {
1702         // The cast isn't as wide as the IV, so insert a Trunc.
1703         IRBuilder<> Builder(DU.NarrowUse);
1704         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1705       }
1706       else {
1707         // A wider extend was hidden behind a narrower one. This may induce
1708         // another round of IV widening in which the intermediate IV becomes
1709         // dead. It should be very rare.
1710         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1711                           << " not wide enough to subsume " << *DU.NarrowUse
1712                           << "\n");
1713         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1714         NewDef = DU.NarrowUse;
1715       }
1716     }
1717     if (NewDef != DU.NarrowUse) {
1718       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1719                         << " replaced by " << *DU.WideDef << "\n");
1720       ++NumElimExt;
1721       DU.NarrowUse->replaceAllUsesWith(NewDef);
1722       DeadInsts.emplace_back(DU.NarrowUse);
1723     }
1724     // Now that the extend is gone, we want to expose it's uses for potential
1725     // further simplification. We don't need to directly inform SimplifyIVUsers
1726     // of the new users, because their parent IV will be processed later as a
1727     // new loop phi. If we preserved IVUsers analysis, we would also want to
1728     // push the uses of WideDef here.
1729 
1730     // No further widening is needed. The deceased [sz]ext had done it for us.
1731     return nullptr;
1732   }
1733 
1734   // Does this user itself evaluate to a recurrence after widening?
1735   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1736   if (!WideAddRec.first)
1737     WideAddRec = getWideRecurrence(DU);
1738 
1739   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1740   if (!WideAddRec.first) {
1741     // If use is a loop condition, try to promote the condition instead of
1742     // truncating the IV first.
1743     if (widenLoopCompare(DU))
1744       return nullptr;
1745 
1746     // We are here about to generate a truncate instruction that may hurt
1747     // performance because the scalar evolution expression computed earlier
1748     // in WideAddRec.first does not indicate a polynomial induction expression.
1749     // In that case, look at the operands of the use instruction to determine
1750     // if we can still widen the use instead of truncating its operand.
1751     if (widenWithVariantUse(DU))
1752       return nullptr;
1753 
1754     // This user does not evaluate to a recurrence after widening, so don't
1755     // follow it. Instead insert a Trunc to kill off the original use,
1756     // eventually isolating the original narrow IV so it can be removed.
1757     truncateIVUse(DU, DT, LI);
1758     return nullptr;
1759   }
1760   // Assume block terminators cannot evaluate to a recurrence. We can't to
1761   // insert a Trunc after a terminator if there happens to be a critical edge.
1762   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1763          "SCEV is not expected to evaluate a block terminator");
1764 
1765   // Reuse the IV increment that SCEVExpander created as long as it dominates
1766   // NarrowUse.
1767   Instruction *WideUse = nullptr;
1768   if (WideAddRec.first == WideIncExpr &&
1769       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1770     WideUse = WideInc;
1771   else {
1772     WideUse = cloneIVUser(DU, WideAddRec.first);
1773     if (!WideUse)
1774       return nullptr;
1775   }
1776   // Evaluation of WideAddRec ensured that the narrow expression could be
1777   // extended outside the loop without overflow. This suggests that the wide use
1778   // evaluates to the same expression as the extended narrow use, but doesn't
1779   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1780   // where it fails, we simply throw away the newly created wide use.
1781   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1782     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1783                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1784                       << "\n");
1785     DeadInsts.emplace_back(WideUse);
1786     return nullptr;
1787   }
1788 
1789   // if we reached this point then we are going to replace
1790   // DU.NarrowUse with WideUse. Reattach DbgValue then.
1791   replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1792 
1793   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1794   // Returning WideUse pushes it on the worklist.
1795   return WideUse;
1796 }
1797 
1798 /// Add eligible users of NarrowDef to NarrowIVUsers.
1799 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1800   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1801   bool NonNegativeDef =
1802       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1803                            SE->getZero(NarrowSCEV->getType()));
1804   for (User *U : NarrowDef->users()) {
1805     Instruction *NarrowUser = cast<Instruction>(U);
1806 
1807     // Handle data flow merges and bizarre phi cycles.
1808     if (!Widened.insert(NarrowUser).second)
1809       continue;
1810 
1811     bool NonNegativeUse = false;
1812     if (!NonNegativeDef) {
1813       // We might have a control-dependent range information for this context.
1814       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1815         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1816     }
1817 
1818     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1819                                NonNegativeDef || NonNegativeUse);
1820   }
1821 }
1822 
1823 /// Process a single induction variable. First use the SCEVExpander to create a
1824 /// wide induction variable that evaluates to the same recurrence as the
1825 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1826 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1827 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1828 ///
1829 /// It would be simpler to delete uses as they are processed, but we must avoid
1830 /// invalidating SCEV expressions.
1831 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1832   // Is this phi an induction variable?
1833   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1834   if (!AddRec)
1835     return nullptr;
1836 
1837   // Widen the induction variable expression.
1838   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1839                                ? SE->getSignExtendExpr(AddRec, WideType)
1840                                : SE->getZeroExtendExpr(AddRec, WideType);
1841 
1842   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1843          "Expect the new IV expression to preserve its type");
1844 
1845   // Can the IV be extended outside the loop without overflow?
1846   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1847   if (!AddRec || AddRec->getLoop() != L)
1848     return nullptr;
1849 
1850   // An AddRec must have loop-invariant operands. Since this AddRec is
1851   // materialized by a loop header phi, the expression cannot have any post-loop
1852   // operands, so they must dominate the loop header.
1853   assert(
1854       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1855       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1856       "Loop header phi recurrence inputs do not dominate the loop");
1857 
1858   // Iterate over IV uses (including transitive ones) looking for IV increments
1859   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1860   // the increment calculate control-dependent range information basing on
1861   // dominating conditions inside of the loop (e.g. a range check inside of the
1862   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1863   //
1864   // Control-dependent range information is later used to prove that a narrow
1865   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1866   // this on demand because when pushNarrowIVUsers needs this information some
1867   // of the dominating conditions might be already widened.
1868   if (UsePostIncrementRanges)
1869     calculatePostIncRanges(OrigPhi);
1870 
1871   // The rewriter provides a value for the desired IV expression. This may
1872   // either find an existing phi or materialize a new one. Either way, we
1873   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1874   // of the phi-SCC dominates the loop entry.
1875   Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
1876   Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
1877   // If the wide phi is not a phi node, for example a cast node, like bitcast,
1878   // inttoptr, ptrtoint, just skip for now.
1879   if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
1880     // if the cast node is an inserted instruction without any user, we should
1881     // remove it to make sure the pass don't touch the function as we can not
1882     // wide the phi.
1883     if (ExpandInst->hasNUses(0) &&
1884         Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
1885       DeadInsts.emplace_back(ExpandInst);
1886     return nullptr;
1887   }
1888 
1889   // Remembering the WideIV increment generated by SCEVExpander allows
1890   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1891   // employ a general reuse mechanism because the call above is the only call to
1892   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1893   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1894     WideInc =
1895       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1896     WideIncExpr = SE->getSCEV(WideInc);
1897     // Propagate the debug location associated with the original loop increment
1898     // to the new (widened) increment.
1899     auto *OrigInc =
1900       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1901     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1902   }
1903 
1904   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1905   ++NumWidened;
1906 
1907   // Traverse the def-use chain using a worklist starting at the original IV.
1908   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1909 
1910   Widened.insert(OrigPhi);
1911   pushNarrowIVUsers(OrigPhi, WidePhi);
1912 
1913   while (!NarrowIVUsers.empty()) {
1914     WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1915 
1916     // Process a def-use edge. This may replace the use, so don't hold a
1917     // use_iterator across it.
1918     Instruction *WideUse = widenIVUse(DU, Rewriter);
1919 
1920     // Follow all def-use edges from the previous narrow use.
1921     if (WideUse)
1922       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1923 
1924     // widenIVUse may have removed the def-use edge.
1925     if (DU.NarrowDef->use_empty())
1926       DeadInsts.emplace_back(DU.NarrowDef);
1927   }
1928 
1929   // Attach any debug information to the new PHI.
1930   replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
1931 
1932   return WidePhi;
1933 }
1934 
1935 /// Calculates control-dependent range for the given def at the given context
1936 /// by looking at dominating conditions inside of the loop
1937 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1938                                     Instruction *NarrowUser) {
1939   using namespace llvm::PatternMatch;
1940 
1941   Value *NarrowDefLHS;
1942   const APInt *NarrowDefRHS;
1943   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1944                                  m_APInt(NarrowDefRHS))) ||
1945       !NarrowDefRHS->isNonNegative())
1946     return;
1947 
1948   auto UpdateRangeFromCondition = [&] (Value *Condition,
1949                                        bool TrueDest) {
1950     CmpInst::Predicate Pred;
1951     Value *CmpRHS;
1952     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1953                                  m_Value(CmpRHS))))
1954       return;
1955 
1956     CmpInst::Predicate P =
1957             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1958 
1959     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1960     auto CmpConstrainedLHSRange =
1961             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1962     auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
1963         *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
1964 
1965     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1966   };
1967 
1968   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1969     if (!HasGuards)
1970       return;
1971 
1972     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1973                                      Ctx->getParent()->rend())) {
1974       Value *C = nullptr;
1975       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1976         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1977     }
1978   };
1979 
1980   UpdateRangeFromGuards(NarrowUser);
1981 
1982   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1983   // If NarrowUserBB is statically unreachable asking dominator queries may
1984   // yield surprising results. (e.g. the block may not have a dom tree node)
1985   if (!DT->isReachableFromEntry(NarrowUserBB))
1986     return;
1987 
1988   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1989        L->contains(DTB->getBlock());
1990        DTB = DTB->getIDom()) {
1991     auto *BB = DTB->getBlock();
1992     auto *TI = BB->getTerminator();
1993     UpdateRangeFromGuards(TI);
1994 
1995     auto *BI = dyn_cast<BranchInst>(TI);
1996     if (!BI || !BI->isConditional())
1997       continue;
1998 
1999     auto *TrueSuccessor = BI->getSuccessor(0);
2000     auto *FalseSuccessor = BI->getSuccessor(1);
2001 
2002     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2003       return BBE.isSingleEdge() &&
2004              DT->dominates(BBE, NarrowUser->getParent());
2005     };
2006 
2007     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2008       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2009 
2010     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2011       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2012   }
2013 }
2014 
2015 /// Calculates PostIncRangeInfos map for the given IV
2016 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2017   SmallPtrSet<Instruction *, 16> Visited;
2018   SmallVector<Instruction *, 6> Worklist;
2019   Worklist.push_back(OrigPhi);
2020   Visited.insert(OrigPhi);
2021 
2022   while (!Worklist.empty()) {
2023     Instruction *NarrowDef = Worklist.pop_back_val();
2024 
2025     for (Use &U : NarrowDef->uses()) {
2026       auto *NarrowUser = cast<Instruction>(U.getUser());
2027 
2028       // Don't go looking outside the current loop.
2029       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2030       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2031         continue;
2032 
2033       if (!Visited.insert(NarrowUser).second)
2034         continue;
2035 
2036       Worklist.push_back(NarrowUser);
2037 
2038       calculatePostIncRange(NarrowDef, NarrowUser);
2039     }
2040   }
2041 }
2042 
2043 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2044     LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2045     DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2046     unsigned &NumElimExt, unsigned &NumWidened,
2047     bool HasGuards, bool UsePostIncrementRanges) {
2048   WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2049   PHINode *WidePHI = Widener.createWideIV(Rewriter);
2050   NumElimExt = Widener.getNumElimExt();
2051   NumWidened = Widener.getNumWidened();
2052   return WidePHI;
2053 }
2054