1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/ScalarEvolutionExpander.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/IRBuilder.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "indvars" 34 35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 39 STATISTIC( 40 NumSimplifiedSDiv, 41 "Number of IV signed division operations converted to unsigned division"); 42 STATISTIC( 43 NumSimplifiedSRem, 44 "Number of IV signed remainder operations converted to unsigned remainder"); 45 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 46 47 namespace { 48 /// This is a utility for simplifying induction variables 49 /// based on ScalarEvolution. It is the primary instrument of the 50 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 51 /// other loop passes that preserve SCEV. 52 class SimplifyIndvar { 53 Loop *L; 54 LoopInfo *LI; 55 ScalarEvolution *SE; 56 DominatorTree *DT; 57 SCEVExpander &Rewriter; 58 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 59 60 bool Changed; 61 62 public: 63 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 64 LoopInfo *LI, SCEVExpander &Rewriter, 65 SmallVectorImpl<WeakTrackingVH> &Dead) 66 : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead), 67 Changed(false) { 68 assert(LI && "IV simplification requires LoopInfo"); 69 } 70 71 bool hasChanged() const { return Changed; } 72 73 /// Iteratively perform simplification on a worklist of users of the 74 /// specified induction variable. This is the top-level driver that applies 75 /// all simplifications to users of an IV. 76 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 77 78 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 79 80 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 81 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 82 83 bool eliminateOverflowIntrinsic(WithOverflowInst *WO); 84 bool eliminateSaturatingIntrinsic(SaturatingInst *SI); 85 bool eliminateTrunc(TruncInst *TI); 86 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 87 bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand); 88 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 89 void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 90 bool IsSigned); 91 void replaceRemWithNumerator(BinaryOperator *Rem); 92 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 93 void replaceSRemWithURem(BinaryOperator *Rem); 94 bool eliminateSDiv(BinaryOperator *SDiv); 95 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); 96 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); 97 }; 98 } 99 100 /// Fold an IV operand into its use. This removes increments of an 101 /// aligned IV when used by a instruction that ignores the low bits. 102 /// 103 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 104 /// 105 /// Return the operand of IVOperand for this induction variable if IVOperand can 106 /// be folded (in case more folding opportunities have been exposed). 107 /// Otherwise return null. 108 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 109 Value *IVSrc = nullptr; 110 const unsigned OperIdx = 0; 111 const SCEV *FoldedExpr = nullptr; 112 bool MustDropExactFlag = false; 113 switch (UseInst->getOpcode()) { 114 default: 115 return nullptr; 116 case Instruction::UDiv: 117 case Instruction::LShr: 118 // We're only interested in the case where we know something about 119 // the numerator and have a constant denominator. 120 if (IVOperand != UseInst->getOperand(OperIdx) || 121 !isa<ConstantInt>(UseInst->getOperand(1))) 122 return nullptr; 123 124 // Attempt to fold a binary operator with constant operand. 125 // e.g. ((I + 1) >> 2) => I >> 2 126 if (!isa<BinaryOperator>(IVOperand) 127 || !isa<ConstantInt>(IVOperand->getOperand(1))) 128 return nullptr; 129 130 IVSrc = IVOperand->getOperand(0); 131 // IVSrc must be the (SCEVable) IV, since the other operand is const. 132 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 133 134 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 135 if (UseInst->getOpcode() == Instruction::LShr) { 136 // Get a constant for the divisor. See createSCEV. 137 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 138 if (D->getValue().uge(BitWidth)) 139 return nullptr; 140 141 D = ConstantInt::get(UseInst->getContext(), 142 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 143 } 144 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 145 // We might have 'exact' flag set at this point which will no longer be 146 // correct after we make the replacement. 147 if (UseInst->isExact() && 148 SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D))) 149 MustDropExactFlag = true; 150 } 151 // We have something that might fold it's operand. Compare SCEVs. 152 if (!SE->isSCEVable(UseInst->getType())) 153 return nullptr; 154 155 // Bypass the operand if SCEV can prove it has no effect. 156 if (SE->getSCEV(UseInst) != FoldedExpr) 157 return nullptr; 158 159 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 160 << " -> " << *UseInst << '\n'); 161 162 UseInst->setOperand(OperIdx, IVSrc); 163 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 164 165 if (MustDropExactFlag) 166 UseInst->dropPoisonGeneratingFlags(); 167 168 ++NumElimOperand; 169 Changed = true; 170 if (IVOperand->use_empty()) 171 DeadInsts.emplace_back(IVOperand); 172 return IVSrc; 173 } 174 175 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 176 Value *IVOperand) { 177 unsigned IVOperIdx = 0; 178 ICmpInst::Predicate Pred = ICmp->getPredicate(); 179 if (IVOperand != ICmp->getOperand(0)) { 180 // Swapped 181 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 182 IVOperIdx = 1; 183 Pred = ICmpInst::getSwappedPredicate(Pred); 184 } 185 186 // Get the SCEVs for the ICmp operands (in the specific context of the 187 // current loop) 188 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 189 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 190 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 191 192 ICmpInst::Predicate InvariantPredicate; 193 const SCEV *InvariantLHS, *InvariantRHS; 194 195 auto *PN = dyn_cast<PHINode>(IVOperand); 196 if (!PN) 197 return false; 198 if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, 199 InvariantLHS, InvariantRHS)) 200 return false; 201 202 // Rewrite the comparison to a loop invariant comparison if it can be done 203 // cheaply, where cheaply means "we don't need to emit any new 204 // instructions". 205 206 SmallDenseMap<const SCEV*, Value*> CheapExpansions; 207 CheapExpansions[S] = ICmp->getOperand(IVOperIdx); 208 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); 209 210 // TODO: Support multiple entry loops? (We currently bail out of these in 211 // the IndVarSimplify pass) 212 if (auto *BB = L->getLoopPredecessor()) { 213 const int Idx = PN->getBasicBlockIndex(BB); 214 if (Idx >= 0) { 215 Value *Incoming = PN->getIncomingValue(Idx); 216 const SCEV *IncomingS = SE->getSCEV(Incoming); 217 CheapExpansions[IncomingS] = Incoming; 218 } 219 } 220 Value *NewLHS = CheapExpansions[InvariantLHS]; 221 Value *NewRHS = CheapExpansions[InvariantRHS]; 222 223 if (!NewLHS) 224 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS)) 225 NewLHS = ConstLHS->getValue(); 226 if (!NewRHS) 227 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS)) 228 NewRHS = ConstRHS->getValue(); 229 230 if (!NewLHS || !NewRHS) 231 // We could not find an existing value to replace either LHS or RHS. 232 // Generating new instructions has subtler tradeoffs, so avoid doing that 233 // for now. 234 return false; 235 236 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 237 ICmp->setPredicate(InvariantPredicate); 238 ICmp->setOperand(0, NewLHS); 239 ICmp->setOperand(1, NewRHS); 240 return true; 241 } 242 243 /// SimplifyIVUsers helper for eliminating useless 244 /// comparisons against an induction variable. 245 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 246 unsigned IVOperIdx = 0; 247 ICmpInst::Predicate Pred = ICmp->getPredicate(); 248 ICmpInst::Predicate OriginalPred = Pred; 249 if (IVOperand != ICmp->getOperand(0)) { 250 // Swapped 251 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 252 IVOperIdx = 1; 253 Pred = ICmpInst::getSwappedPredicate(Pred); 254 } 255 256 // Get the SCEVs for the ICmp operands (in the specific context of the 257 // current loop) 258 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 259 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 260 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 261 262 // If the condition is always true or always false, replace it with 263 // a constant value. 264 if (SE->isKnownPredicate(Pred, S, X)) { 265 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 266 DeadInsts.emplace_back(ICmp); 267 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 268 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { 269 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 270 DeadInsts.emplace_back(ICmp); 271 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 272 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 273 // fallthrough to end of function 274 } else if (ICmpInst::isSigned(OriginalPred) && 275 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 276 // If we were unable to make anything above, all we can is to canonicalize 277 // the comparison hoping that it will open the doors for other 278 // optimizations. If we find out that we compare two non-negative values, 279 // we turn the instruction's predicate to its unsigned version. Note that 280 // we cannot rely on Pred here unless we check if we have swapped it. 281 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 282 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 283 << '\n'); 284 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 285 } else 286 return; 287 288 ++NumElimCmp; 289 Changed = true; 290 } 291 292 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 293 // Get the SCEVs for the ICmp operands. 294 auto *N = SE->getSCEV(SDiv->getOperand(0)); 295 auto *D = SE->getSCEV(SDiv->getOperand(1)); 296 297 // Simplify unnecessary loops away. 298 const Loop *L = LI->getLoopFor(SDiv->getParent()); 299 N = SE->getSCEVAtScope(N, L); 300 D = SE->getSCEVAtScope(D, L); 301 302 // Replace sdiv by udiv if both of the operands are non-negative 303 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 304 auto *UDiv = BinaryOperator::Create( 305 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 306 SDiv->getName() + ".udiv", SDiv); 307 UDiv->setIsExact(SDiv->isExact()); 308 SDiv->replaceAllUsesWith(UDiv); 309 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 310 ++NumSimplifiedSDiv; 311 Changed = true; 312 DeadInsts.push_back(SDiv); 313 return true; 314 } 315 316 return false; 317 } 318 319 // i %s n -> i %u n if i >= 0 and n >= 0 320 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 321 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 322 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 323 Rem->getName() + ".urem", Rem); 324 Rem->replaceAllUsesWith(URem); 325 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 326 ++NumSimplifiedSRem; 327 Changed = true; 328 DeadInsts.emplace_back(Rem); 329 } 330 331 // i % n --> i if i is in [0,n). 332 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 333 Rem->replaceAllUsesWith(Rem->getOperand(0)); 334 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 335 ++NumElimRem; 336 Changed = true; 337 DeadInsts.emplace_back(Rem); 338 } 339 340 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 341 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 342 auto *T = Rem->getType(); 343 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 344 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 345 SelectInst *Sel = 346 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 347 Rem->replaceAllUsesWith(Sel); 348 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 349 ++NumElimRem; 350 Changed = true; 351 DeadInsts.emplace_back(Rem); 352 } 353 354 /// SimplifyIVUsers helper for eliminating useless remainder operations 355 /// operating on an induction variable or replacing srem by urem. 356 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, 357 bool IsSigned) { 358 auto *NValue = Rem->getOperand(0); 359 auto *DValue = Rem->getOperand(1); 360 // We're only interested in the case where we know something about 361 // the numerator, unless it is a srem, because we want to replace srem by urem 362 // in general. 363 bool UsedAsNumerator = IVOperand == NValue; 364 if (!UsedAsNumerator && !IsSigned) 365 return; 366 367 const SCEV *N = SE->getSCEV(NValue); 368 369 // Simplify unnecessary loops away. 370 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 371 N = SE->getSCEVAtScope(N, ICmpLoop); 372 373 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 374 375 // Do not proceed if the Numerator may be negative 376 if (!IsNumeratorNonNegative) 377 return; 378 379 const SCEV *D = SE->getSCEV(DValue); 380 D = SE->getSCEVAtScope(D, ICmpLoop); 381 382 if (UsedAsNumerator) { 383 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 384 if (SE->isKnownPredicate(LT, N, D)) { 385 replaceRemWithNumerator(Rem); 386 return; 387 } 388 389 auto *T = Rem->getType(); 390 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 391 if (SE->isKnownPredicate(LT, NLessOne, D)) { 392 replaceRemWithNumeratorOrZero(Rem); 393 return; 394 } 395 } 396 397 // Try to replace SRem with URem, if both N and D are known non-negative. 398 // Since we had already check N, we only need to check D now 399 if (!IsSigned || !SE->isKnownNonNegative(D)) 400 return; 401 402 replaceSRemWithURem(Rem); 403 } 404 405 static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp, 406 bool Signed, const SCEV *LHS, const SCEV *RHS) { 407 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 408 SCEV::NoWrapFlags, unsigned); 409 switch (BinOp) { 410 default: 411 llvm_unreachable("Unsupported binary op"); 412 case Instruction::Add: 413 Operation = &ScalarEvolution::getAddExpr; 414 break; 415 case Instruction::Sub: 416 Operation = &ScalarEvolution::getMinusSCEV; 417 break; 418 case Instruction::Mul: 419 Operation = &ScalarEvolution::getMulExpr; 420 break; 421 } 422 423 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 424 Signed ? &ScalarEvolution::getSignExtendExpr 425 : &ScalarEvolution::getZeroExtendExpr; 426 427 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 428 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 429 auto *WideTy = 430 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 431 432 const SCEV *A = 433 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), 434 WideTy, 0); 435 const SCEV *B = 436 (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), 437 (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); 438 return A == B; 439 } 440 441 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { 442 const SCEV *LHS = SE->getSCEV(WO->getLHS()); 443 const SCEV *RHS = SE->getSCEV(WO->getRHS()); 444 if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS)) 445 return false; 446 447 // Proved no overflow, nuke the overflow check and, if possible, the overflow 448 // intrinsic as well. 449 450 BinaryOperator *NewResult = BinaryOperator::Create( 451 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO); 452 453 if (WO->isSigned()) 454 NewResult->setHasNoSignedWrap(true); 455 else 456 NewResult->setHasNoUnsignedWrap(true); 457 458 SmallVector<ExtractValueInst *, 4> ToDelete; 459 460 for (auto *U : WO->users()) { 461 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 462 if (EVI->getIndices()[0] == 1) 463 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext())); 464 else { 465 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 466 EVI->replaceAllUsesWith(NewResult); 467 } 468 ToDelete.push_back(EVI); 469 } 470 } 471 472 for (auto *EVI : ToDelete) 473 EVI->eraseFromParent(); 474 475 if (WO->use_empty()) 476 WO->eraseFromParent(); 477 478 return true; 479 } 480 481 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { 482 const SCEV *LHS = SE->getSCEV(SI->getLHS()); 483 const SCEV *RHS = SE->getSCEV(SI->getRHS()); 484 if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS)) 485 return false; 486 487 BinaryOperator *BO = BinaryOperator::Create( 488 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI); 489 if (SI->isSigned()) 490 BO->setHasNoSignedWrap(); 491 else 492 BO->setHasNoUnsignedWrap(); 493 494 SI->replaceAllUsesWith(BO); 495 DeadInsts.emplace_back(SI); 496 Changed = true; 497 return true; 498 } 499 500 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 501 // It is always legal to replace 502 // icmp <pred> i32 trunc(iv), n 503 // with 504 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 505 // Or with 506 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 507 // Or with either of these if pred is an equality predicate. 508 // 509 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 510 // every comparison which uses trunc, it means that we can replace each of 511 // them with comparison of iv against sext/zext(n). We no longer need trunc 512 // after that. 513 // 514 // TODO: Should we do this if we can widen *some* comparisons, but not all 515 // of them? Sometimes it is enough to enable other optimizations, but the 516 // trunc instruction will stay in the loop. 517 Value *IV = TI->getOperand(0); 518 Type *IVTy = IV->getType(); 519 const SCEV *IVSCEV = SE->getSCEV(IV); 520 const SCEV *TISCEV = SE->getSCEV(TI); 521 522 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 523 // get rid of trunc 524 bool DoesSExtCollapse = false; 525 bool DoesZExtCollapse = false; 526 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 527 DoesSExtCollapse = true; 528 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 529 DoesZExtCollapse = true; 530 531 // If neither sext nor zext does collapse, it is not profitable to do any 532 // transform. Bail. 533 if (!DoesSExtCollapse && !DoesZExtCollapse) 534 return false; 535 536 // Collect users of the trunc that look like comparisons against invariants. 537 // Bail if we find something different. 538 SmallVector<ICmpInst *, 4> ICmpUsers; 539 for (auto *U : TI->users()) { 540 // We don't care about users in unreachable blocks. 541 if (isa<Instruction>(U) && 542 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 543 continue; 544 ICmpInst *ICI = dyn_cast<ICmpInst>(U); 545 if (!ICI) return false; 546 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 547 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) && 548 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0)))) 549 return false; 550 // If we cannot get rid of trunc, bail. 551 if (ICI->isSigned() && !DoesSExtCollapse) 552 return false; 553 if (ICI->isUnsigned() && !DoesZExtCollapse) 554 return false; 555 // For equality, either signed or unsigned works. 556 ICmpUsers.push_back(ICI); 557 } 558 559 auto CanUseZExt = [&](ICmpInst *ICI) { 560 // Unsigned comparison can be widened as unsigned. 561 if (ICI->isUnsigned()) 562 return true; 563 // Is it profitable to do zext? 564 if (!DoesZExtCollapse) 565 return false; 566 // For equality, we can safely zext both parts. 567 if (ICI->isEquality()) 568 return true; 569 // Otherwise we can only use zext when comparing two non-negative or two 570 // negative values. But in practice, we will never pass DoesZExtCollapse 571 // check for a negative value, because zext(trunc(x)) is non-negative. So 572 // it only make sense to check for non-negativity here. 573 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 574 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 575 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 576 }; 577 // Replace all comparisons against trunc with comparisons against IV. 578 for (auto *ICI : ICmpUsers) { 579 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0)); 580 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1); 581 Instruction *Ext = nullptr; 582 // For signed/unsigned predicate, replace the old comparison with comparison 583 // of immediate IV against sext/zext of the invariant argument. If we can 584 // use either sext or zext (i.e. we are dealing with equality predicate), 585 // then prefer zext as a more canonical form. 586 // TODO: If we see a signed comparison which can be turned into unsigned, 587 // we can do it here for canonicalization purposes. 588 ICmpInst::Predicate Pred = ICI->getPredicate(); 589 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred); 590 if (CanUseZExt(ICI)) { 591 assert(DoesZExtCollapse && "Unprofitable zext?"); 592 Ext = new ZExtInst(Op1, IVTy, "zext", ICI); 593 Pred = ICmpInst::getUnsignedPredicate(Pred); 594 } else { 595 assert(DoesSExtCollapse && "Unprofitable sext?"); 596 Ext = new SExtInst(Op1, IVTy, "sext", ICI); 597 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 598 } 599 bool Changed; 600 L->makeLoopInvariant(Ext, Changed); 601 (void)Changed; 602 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); 603 ICI->replaceAllUsesWith(NewICI); 604 DeadInsts.emplace_back(ICI); 605 } 606 607 // Trunc no longer needed. 608 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 609 DeadInsts.emplace_back(TI); 610 return true; 611 } 612 613 /// Eliminate an operation that consumes a simple IV and has no observable 614 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 615 /// but UseInst may not be. 616 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 617 Instruction *IVOperand) { 618 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 619 eliminateIVComparison(ICmp, IVOperand); 620 return true; 621 } 622 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 623 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 624 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 625 simplifyIVRemainder(Bin, IVOperand, IsSRem); 626 return true; 627 } 628 629 if (Bin->getOpcode() == Instruction::SDiv) 630 return eliminateSDiv(Bin); 631 } 632 633 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst)) 634 if (eliminateOverflowIntrinsic(WO)) 635 return true; 636 637 if (auto *SI = dyn_cast<SaturatingInst>(UseInst)) 638 if (eliminateSaturatingIntrinsic(SI)) 639 return true; 640 641 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 642 if (eliminateTrunc(TI)) 643 return true; 644 645 if (eliminateIdentitySCEV(UseInst, IVOperand)) 646 return true; 647 648 return false; 649 } 650 651 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 652 if (auto *BB = L->getLoopPreheader()) 653 return BB->getTerminator(); 654 655 return Hint; 656 } 657 658 /// Replace the UseInst with a constant if possible. 659 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 660 if (!SE->isSCEVable(I->getType())) 661 return false; 662 663 // Get the symbolic expression for this instruction. 664 const SCEV *S = SE->getSCEV(I); 665 666 if (!SE->isLoopInvariant(S, L)) 667 return false; 668 669 // Do not generate something ridiculous even if S is loop invariant. 670 if (Rewriter.isHighCostExpansion(S, L, I)) 671 return false; 672 673 auto *IP = GetLoopInvariantInsertPosition(L, I); 674 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 675 676 I->replaceAllUsesWith(Invariant); 677 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 678 << " with loop invariant: " << *S << '\n'); 679 ++NumFoldedUser; 680 Changed = true; 681 DeadInsts.emplace_back(I); 682 return true; 683 } 684 685 /// Eliminate any operation that SCEV can prove is an identity function. 686 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 687 Instruction *IVOperand) { 688 if (!SE->isSCEVable(UseInst->getType()) || 689 (UseInst->getType() != IVOperand->getType()) || 690 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 691 return false; 692 693 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 694 // dominator tree, even if X is an operand to Y. For instance, in 695 // 696 // %iv = phi i32 {0,+,1} 697 // br %cond, label %left, label %merge 698 // 699 // left: 700 // %X = add i32 %iv, 0 701 // br label %merge 702 // 703 // merge: 704 // %M = phi (%X, %iv) 705 // 706 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 707 // %M.replaceAllUsesWith(%X) would be incorrect. 708 709 if (isa<PHINode>(UseInst)) 710 // If UseInst is not a PHI node then we know that IVOperand dominates 711 // UseInst directly from the legality of SSA. 712 if (!DT || !DT->dominates(IVOperand, UseInst)) 713 return false; 714 715 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 716 return false; 717 718 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 719 720 UseInst->replaceAllUsesWith(IVOperand); 721 ++NumElimIdentity; 722 Changed = true; 723 DeadInsts.emplace_back(UseInst); 724 return true; 725 } 726 727 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 728 /// unsigned-overflow. Returns true if anything changed, false otherwise. 729 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 730 Value *IVOperand) { 731 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. 732 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) 733 return false; 734 735 if (BO->getOpcode() != Instruction::Add && 736 BO->getOpcode() != Instruction::Sub && 737 BO->getOpcode() != Instruction::Mul) 738 return false; 739 740 const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); 741 const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); 742 bool Changed = false; 743 744 if (!BO->hasNoUnsignedWrap() && 745 willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) { 746 BO->setHasNoUnsignedWrap(); 747 SE->forgetValue(BO); 748 Changed = true; 749 } 750 751 if (!BO->hasNoSignedWrap() && 752 willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) { 753 BO->setHasNoSignedWrap(); 754 SE->forgetValue(BO); 755 Changed = true; 756 } 757 758 return Changed; 759 } 760 761 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 762 /// information from the IV's range. Returns true if anything changed, false 763 /// otherwise. 764 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 765 Value *IVOperand) { 766 using namespace llvm::PatternMatch; 767 768 if (BO->getOpcode() == Instruction::Shl) { 769 bool Changed = false; 770 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 771 for (auto *U : BO->users()) { 772 const APInt *C; 773 if (match(U, 774 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 775 match(U, 776 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 777 BinaryOperator *Shr = cast<BinaryOperator>(U); 778 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 779 Shr->setIsExact(true); 780 Changed = true; 781 } 782 } 783 } 784 return Changed; 785 } 786 787 return false; 788 } 789 790 /// Add all uses of Def to the current IV's worklist. 791 static void pushIVUsers( 792 Instruction *Def, Loop *L, 793 SmallPtrSet<Instruction*,16> &Simplified, 794 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 795 796 for (User *U : Def->users()) { 797 Instruction *UI = cast<Instruction>(U); 798 799 // Avoid infinite or exponential worklist processing. 800 // Also ensure unique worklist users. 801 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 802 // self edges first. 803 if (UI == Def) 804 continue; 805 806 // Only change the current Loop, do not change the other parts (e.g. other 807 // Loops). 808 if (!L->contains(UI)) 809 continue; 810 811 // Do not push the same instruction more than once. 812 if (!Simplified.insert(UI).second) 813 continue; 814 815 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 816 } 817 } 818 819 /// Return true if this instruction generates a simple SCEV 820 /// expression in terms of that IV. 821 /// 822 /// This is similar to IVUsers' isInteresting() but processes each instruction 823 /// non-recursively when the operand is already known to be a simpleIVUser. 824 /// 825 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 826 if (!SE->isSCEVable(I->getType())) 827 return false; 828 829 // Get the symbolic expression for this instruction. 830 const SCEV *S = SE->getSCEV(I); 831 832 // Only consider affine recurrences. 833 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 834 if (AR && AR->getLoop() == L) 835 return true; 836 837 return false; 838 } 839 840 /// Iteratively perform simplification on a worklist of users 841 /// of the specified induction variable. Each successive simplification may push 842 /// more users which may themselves be candidates for simplification. 843 /// 844 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 845 /// instructions in-place during analysis. Rather than rewriting induction 846 /// variables bottom-up from their users, it transforms a chain of IVUsers 847 /// top-down, updating the IR only when it encounters a clear optimization 848 /// opportunity. 849 /// 850 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 851 /// 852 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 853 if (!SE->isSCEVable(CurrIV->getType())) 854 return; 855 856 // Instructions processed by SimplifyIndvar for CurrIV. 857 SmallPtrSet<Instruction*,16> Simplified; 858 859 // Use-def pairs if IV users waiting to be processed for CurrIV. 860 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 861 862 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 863 // called multiple times for the same LoopPhi. This is the proper thing to 864 // do for loop header phis that use each other. 865 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 866 867 while (!SimpleIVUsers.empty()) { 868 std::pair<Instruction*, Instruction*> UseOper = 869 SimpleIVUsers.pop_back_val(); 870 Instruction *UseInst = UseOper.first; 871 872 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 873 // rather than try to do some complex analysis or transformation (such as 874 // widening) basing on it. 875 // TODO: Propagate TLI and pass it here to handle more cases. 876 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 877 DeadInsts.emplace_back(UseInst); 878 continue; 879 } 880 881 // Bypass back edges to avoid extra work. 882 if (UseInst == CurrIV) continue; 883 884 // Try to replace UseInst with a loop invariant before any other 885 // simplifications. 886 if (replaceIVUserWithLoopInvariant(UseInst)) 887 continue; 888 889 Instruction *IVOperand = UseOper.second; 890 for (unsigned N = 0; IVOperand; ++N) { 891 assert(N <= Simplified.size() && "runaway iteration"); 892 893 Value *NewOper = foldIVUser(UseInst, IVOperand); 894 if (!NewOper) 895 break; // done folding 896 IVOperand = dyn_cast<Instruction>(NewOper); 897 } 898 if (!IVOperand) 899 continue; 900 901 if (eliminateIVUser(UseInst, IVOperand)) { 902 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 903 continue; 904 } 905 906 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 907 if ((isa<OverflowingBinaryOperator>(BO) && 908 strengthenOverflowingOperation(BO, IVOperand)) || 909 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { 910 // re-queue uses of the now modified binary operator and fall 911 // through to the checks that remain. 912 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 913 } 914 } 915 916 CastInst *Cast = dyn_cast<CastInst>(UseInst); 917 if (V && Cast) { 918 V->visitCast(Cast); 919 continue; 920 } 921 if (isSimpleIVUser(UseInst, L, SE)) { 922 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 923 } 924 } 925 } 926 927 namespace llvm { 928 929 void IVVisitor::anchor() { } 930 931 /// Simplify instructions that use this induction variable 932 /// by using ScalarEvolution to analyze the IV's recurrence. 933 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 934 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead, 935 SCEVExpander &Rewriter, IVVisitor *V) { 936 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter, 937 Dead); 938 SIV.simplifyUsers(CurrIV, V); 939 return SIV.hasChanged(); 940 } 941 942 /// Simplify users of induction variables within this 943 /// loop. This does not actually change or add IVs. 944 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 945 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) { 946 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 947 #ifndef NDEBUG 948 Rewriter.setDebugType(DEBUG_TYPE); 949 #endif 950 bool Changed = false; 951 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 952 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter); 953 } 954 return Changed; 955 } 956 957 } // namespace llvm 958