1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Dominators.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Transforms/Utils/Local.h" 28 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 29 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 #define DEBUG_TYPE "indvars" 34 35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 39 STATISTIC( 40 NumSimplifiedSDiv, 41 "Number of IV signed division operations converted to unsigned division"); 42 STATISTIC( 43 NumSimplifiedSRem, 44 "Number of IV signed remainder operations converted to unsigned remainder"); 45 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 46 47 namespace { 48 /// This is a utility for simplifying induction variables 49 /// based on ScalarEvolution. It is the primary instrument of the 50 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 51 /// other loop passes that preserve SCEV. 52 class SimplifyIndvar { 53 Loop *L; 54 LoopInfo *LI; 55 ScalarEvolution *SE; 56 DominatorTree *DT; 57 const TargetTransformInfo *TTI; 58 SCEVExpander &Rewriter; 59 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 60 61 bool Changed = false; 62 63 public: 64 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 65 LoopInfo *LI, const TargetTransformInfo *TTI, 66 SCEVExpander &Rewriter, 67 SmallVectorImpl<WeakTrackingVH> &Dead) 68 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter), 69 DeadInsts(Dead) { 70 assert(LI && "IV simplification requires LoopInfo"); 71 } 72 73 bool hasChanged() const { return Changed; } 74 75 /// Iteratively perform simplification on a worklist of users of the 76 /// specified induction variable. This is the top-level driver that applies 77 /// all simplifications to users of an IV. 78 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 79 80 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 81 82 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 83 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 84 bool replaceFloatIVWithIntegerIV(Instruction *UseInst); 85 86 bool eliminateOverflowIntrinsic(WithOverflowInst *WO); 87 bool eliminateSaturatingIntrinsic(SaturatingInst *SI); 88 bool eliminateTrunc(TruncInst *TI); 89 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 90 bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand); 91 void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand); 92 void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand, 93 bool IsSigned); 94 void replaceRemWithNumerator(BinaryOperator *Rem); 95 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 96 void replaceSRemWithURem(BinaryOperator *Rem); 97 bool eliminateSDiv(BinaryOperator *SDiv); 98 bool strengthenBinaryOp(BinaryOperator *BO, Instruction *IVOperand); 99 bool strengthenOverflowingOperation(BinaryOperator *OBO, 100 Instruction *IVOperand); 101 bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand); 102 }; 103 } 104 105 /// Find a point in code which dominates all given instructions. We can safely 106 /// assume that, whatever fact we can prove at the found point, this fact is 107 /// also true for each of the given instructions. 108 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions, 109 DominatorTree &DT) { 110 Instruction *CommonDom = nullptr; 111 for (auto *Insn : Instructions) 112 CommonDom = 113 CommonDom ? DT.findNearestCommonDominator(CommonDom, Insn) : Insn; 114 assert(CommonDom && "Common dominator not found?"); 115 return CommonDom; 116 } 117 118 /// Fold an IV operand into its use. This removes increments of an 119 /// aligned IV when used by a instruction that ignores the low bits. 120 /// 121 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 122 /// 123 /// Return the operand of IVOperand for this induction variable if IVOperand can 124 /// be folded (in case more folding opportunities have been exposed). 125 /// Otherwise return null. 126 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 127 Value *IVSrc = nullptr; 128 const unsigned OperIdx = 0; 129 const SCEV *FoldedExpr = nullptr; 130 bool MustDropExactFlag = false; 131 switch (UseInst->getOpcode()) { 132 default: 133 return nullptr; 134 case Instruction::UDiv: 135 case Instruction::LShr: 136 // We're only interested in the case where we know something about 137 // the numerator and have a constant denominator. 138 if (IVOperand != UseInst->getOperand(OperIdx) || 139 !isa<ConstantInt>(UseInst->getOperand(1))) 140 return nullptr; 141 142 // Attempt to fold a binary operator with constant operand. 143 // e.g. ((I + 1) >> 2) => I >> 2 144 if (!isa<BinaryOperator>(IVOperand) 145 || !isa<ConstantInt>(IVOperand->getOperand(1))) 146 return nullptr; 147 148 IVSrc = IVOperand->getOperand(0); 149 // IVSrc must be the (SCEVable) IV, since the other operand is const. 150 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 151 152 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 153 if (UseInst->getOpcode() == Instruction::LShr) { 154 // Get a constant for the divisor. See createSCEV. 155 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 156 if (D->getValue().uge(BitWidth)) 157 return nullptr; 158 159 D = ConstantInt::get(UseInst->getContext(), 160 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 161 } 162 const auto *LHS = SE->getSCEV(IVSrc); 163 const auto *RHS = SE->getSCEV(D); 164 FoldedExpr = SE->getUDivExpr(LHS, RHS); 165 // We might have 'exact' flag set at this point which will no longer be 166 // correct after we make the replacement. 167 if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS)) 168 MustDropExactFlag = true; 169 } 170 // We have something that might fold it's operand. Compare SCEVs. 171 if (!SE->isSCEVable(UseInst->getType())) 172 return nullptr; 173 174 // Bypass the operand if SCEV can prove it has no effect. 175 if (SE->getSCEV(UseInst) != FoldedExpr) 176 return nullptr; 177 178 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 179 << " -> " << *UseInst << '\n'); 180 181 UseInst->setOperand(OperIdx, IVSrc); 182 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 183 184 if (MustDropExactFlag) 185 UseInst->dropPoisonGeneratingFlags(); 186 187 ++NumElimOperand; 188 Changed = true; 189 if (IVOperand->use_empty()) 190 DeadInsts.emplace_back(IVOperand); 191 return IVSrc; 192 } 193 194 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 195 Instruction *IVOperand) { 196 auto *Preheader = L->getLoopPreheader(); 197 if (!Preheader) 198 return false; 199 unsigned IVOperIdx = 0; 200 ICmpInst::Predicate Pred = ICmp->getPredicate(); 201 if (IVOperand != ICmp->getOperand(0)) { 202 // Swapped 203 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 204 IVOperIdx = 1; 205 Pred = ICmpInst::getSwappedPredicate(Pred); 206 } 207 208 // Get the SCEVs for the ICmp operands (in the specific context of the 209 // current loop) 210 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 211 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 212 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 213 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L, ICmp); 214 if (!LIP) 215 return false; 216 ICmpInst::Predicate InvariantPredicate = LIP->Pred; 217 const SCEV *InvariantLHS = LIP->LHS; 218 const SCEV *InvariantRHS = LIP->RHS; 219 220 // Do not generate something ridiculous. 221 auto *PHTerm = Preheader->getTerminator(); 222 if (Rewriter.isHighCostExpansion({InvariantLHS, InvariantRHS}, L, 223 2 * SCEVCheapExpansionBudget, TTI, PHTerm) || 224 !Rewriter.isSafeToExpandAt(InvariantLHS, PHTerm) || 225 !Rewriter.isSafeToExpandAt(InvariantRHS, PHTerm)) 226 return false; 227 auto *NewLHS = 228 Rewriter.expandCodeFor(InvariantLHS, IVOperand->getType(), PHTerm); 229 auto *NewRHS = 230 Rewriter.expandCodeFor(InvariantRHS, IVOperand->getType(), PHTerm); 231 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 232 ICmp->setPredicate(InvariantPredicate); 233 ICmp->setOperand(0, NewLHS); 234 ICmp->setOperand(1, NewRHS); 235 return true; 236 } 237 238 /// SimplifyIVUsers helper for eliminating useless 239 /// comparisons against an induction variable. 240 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, 241 Instruction *IVOperand) { 242 unsigned IVOperIdx = 0; 243 ICmpInst::Predicate Pred = ICmp->getPredicate(); 244 ICmpInst::Predicate OriginalPred = Pred; 245 if (IVOperand != ICmp->getOperand(0)) { 246 // Swapped 247 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 248 IVOperIdx = 1; 249 Pred = ICmpInst::getSwappedPredicate(Pred); 250 } 251 252 // Get the SCEVs for the ICmp operands (in the specific context of the 253 // current loop) 254 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 255 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 256 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 257 258 // If the condition is always true or always false in the given context, 259 // replace it with a constant value. 260 SmallVector<Instruction *, 4> Users; 261 for (auto *U : ICmp->users()) 262 Users.push_back(cast<Instruction>(U)); 263 const Instruction *CtxI = findCommonDominator(Users, *DT); 264 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) { 265 SE->forgetValue(ICmp); 266 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev)); 267 DeadInsts.emplace_back(ICmp); 268 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 269 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 270 // fallthrough to end of function 271 } else if (ICmpInst::isSigned(OriginalPred) && 272 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 273 // If we were unable to make anything above, all we can is to canonicalize 274 // the comparison hoping that it will open the doors for other 275 // optimizations. If we find out that we compare two non-negative values, 276 // we turn the instruction's predicate to its unsigned version. Note that 277 // we cannot rely on Pred here unless we check if we have swapped it. 278 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 279 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 280 << '\n'); 281 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 282 } else 283 return; 284 285 ++NumElimCmp; 286 Changed = true; 287 } 288 289 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 290 // Get the SCEVs for the ICmp operands. 291 auto *N = SE->getSCEV(SDiv->getOperand(0)); 292 auto *D = SE->getSCEV(SDiv->getOperand(1)); 293 294 // Simplify unnecessary loops away. 295 const Loop *L = LI->getLoopFor(SDiv->getParent()); 296 N = SE->getSCEVAtScope(N, L); 297 D = SE->getSCEVAtScope(D, L); 298 299 // Replace sdiv by udiv if both of the operands are non-negative 300 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 301 auto *UDiv = BinaryOperator::Create( 302 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 303 SDiv->getName() + ".udiv", SDiv); 304 UDiv->setIsExact(SDiv->isExact()); 305 SDiv->replaceAllUsesWith(UDiv); 306 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 307 ++NumSimplifiedSDiv; 308 Changed = true; 309 DeadInsts.push_back(SDiv); 310 return true; 311 } 312 313 return false; 314 } 315 316 // i %s n -> i %u n if i >= 0 and n >= 0 317 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 318 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 319 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 320 Rem->getName() + ".urem", Rem); 321 Rem->replaceAllUsesWith(URem); 322 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 323 ++NumSimplifiedSRem; 324 Changed = true; 325 DeadInsts.emplace_back(Rem); 326 } 327 328 // i % n --> i if i is in [0,n). 329 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 330 Rem->replaceAllUsesWith(Rem->getOperand(0)); 331 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 332 ++NumElimRem; 333 Changed = true; 334 DeadInsts.emplace_back(Rem); 335 } 336 337 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 338 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 339 auto *T = Rem->getType(); 340 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 341 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 342 SelectInst *Sel = 343 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 344 Rem->replaceAllUsesWith(Sel); 345 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 346 ++NumElimRem; 347 Changed = true; 348 DeadInsts.emplace_back(Rem); 349 } 350 351 /// SimplifyIVUsers helper for eliminating useless remainder operations 352 /// operating on an induction variable or replacing srem by urem. 353 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, 354 Instruction *IVOperand, 355 bool IsSigned) { 356 auto *NValue = Rem->getOperand(0); 357 auto *DValue = Rem->getOperand(1); 358 // We're only interested in the case where we know something about 359 // the numerator, unless it is a srem, because we want to replace srem by urem 360 // in general. 361 bool UsedAsNumerator = IVOperand == NValue; 362 if (!UsedAsNumerator && !IsSigned) 363 return; 364 365 const SCEV *N = SE->getSCEV(NValue); 366 367 // Simplify unnecessary loops away. 368 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 369 N = SE->getSCEVAtScope(N, ICmpLoop); 370 371 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 372 373 // Do not proceed if the Numerator may be negative 374 if (!IsNumeratorNonNegative) 375 return; 376 377 const SCEV *D = SE->getSCEV(DValue); 378 D = SE->getSCEVAtScope(D, ICmpLoop); 379 380 if (UsedAsNumerator) { 381 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 382 if (SE->isKnownPredicate(LT, N, D)) { 383 replaceRemWithNumerator(Rem); 384 return; 385 } 386 387 auto *T = Rem->getType(); 388 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 389 if (SE->isKnownPredicate(LT, NLessOne, D)) { 390 replaceRemWithNumeratorOrZero(Rem); 391 return; 392 } 393 } 394 395 // Try to replace SRem with URem, if both N and D are known non-negative. 396 // Since we had already check N, we only need to check D now 397 if (!IsSigned || !SE->isKnownNonNegative(D)) 398 return; 399 400 replaceSRemWithURem(Rem); 401 } 402 403 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { 404 const SCEV *LHS = SE->getSCEV(WO->getLHS()); 405 const SCEV *RHS = SE->getSCEV(WO->getRHS()); 406 if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS)) 407 return false; 408 409 // Proved no overflow, nuke the overflow check and, if possible, the overflow 410 // intrinsic as well. 411 412 BinaryOperator *NewResult = BinaryOperator::Create( 413 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO); 414 415 if (WO->isSigned()) 416 NewResult->setHasNoSignedWrap(true); 417 else 418 NewResult->setHasNoUnsignedWrap(true); 419 420 SmallVector<ExtractValueInst *, 4> ToDelete; 421 422 for (auto *U : WO->users()) { 423 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 424 if (EVI->getIndices()[0] == 1) 425 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext())); 426 else { 427 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 428 EVI->replaceAllUsesWith(NewResult); 429 } 430 ToDelete.push_back(EVI); 431 } 432 } 433 434 for (auto *EVI : ToDelete) 435 EVI->eraseFromParent(); 436 437 if (WO->use_empty()) 438 WO->eraseFromParent(); 439 440 Changed = true; 441 return true; 442 } 443 444 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { 445 const SCEV *LHS = SE->getSCEV(SI->getLHS()); 446 const SCEV *RHS = SE->getSCEV(SI->getRHS()); 447 if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS)) 448 return false; 449 450 BinaryOperator *BO = BinaryOperator::Create( 451 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI); 452 if (SI->isSigned()) 453 BO->setHasNoSignedWrap(); 454 else 455 BO->setHasNoUnsignedWrap(); 456 457 SI->replaceAllUsesWith(BO); 458 DeadInsts.emplace_back(SI); 459 Changed = true; 460 return true; 461 } 462 463 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 464 // It is always legal to replace 465 // icmp <pred> i32 trunc(iv), n 466 // with 467 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 468 // Or with 469 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 470 // Or with either of these if pred is an equality predicate. 471 // 472 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 473 // every comparison which uses trunc, it means that we can replace each of 474 // them with comparison of iv against sext/zext(n). We no longer need trunc 475 // after that. 476 // 477 // TODO: Should we do this if we can widen *some* comparisons, but not all 478 // of them? Sometimes it is enough to enable other optimizations, but the 479 // trunc instruction will stay in the loop. 480 Value *IV = TI->getOperand(0); 481 Type *IVTy = IV->getType(); 482 const SCEV *IVSCEV = SE->getSCEV(IV); 483 const SCEV *TISCEV = SE->getSCEV(TI); 484 485 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 486 // get rid of trunc 487 bool DoesSExtCollapse = false; 488 bool DoesZExtCollapse = false; 489 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 490 DoesSExtCollapse = true; 491 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 492 DoesZExtCollapse = true; 493 494 // If neither sext nor zext does collapse, it is not profitable to do any 495 // transform. Bail. 496 if (!DoesSExtCollapse && !DoesZExtCollapse) 497 return false; 498 499 // Collect users of the trunc that look like comparisons against invariants. 500 // Bail if we find something different. 501 SmallVector<ICmpInst *, 4> ICmpUsers; 502 for (auto *U : TI->users()) { 503 // We don't care about users in unreachable blocks. 504 if (isa<Instruction>(U) && 505 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 506 continue; 507 ICmpInst *ICI = dyn_cast<ICmpInst>(U); 508 if (!ICI) return false; 509 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 510 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) && 511 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0)))) 512 return false; 513 // If we cannot get rid of trunc, bail. 514 if (ICI->isSigned() && !DoesSExtCollapse) 515 return false; 516 if (ICI->isUnsigned() && !DoesZExtCollapse) 517 return false; 518 // For equality, either signed or unsigned works. 519 ICmpUsers.push_back(ICI); 520 } 521 522 auto CanUseZExt = [&](ICmpInst *ICI) { 523 // Unsigned comparison can be widened as unsigned. 524 if (ICI->isUnsigned()) 525 return true; 526 // Is it profitable to do zext? 527 if (!DoesZExtCollapse) 528 return false; 529 // For equality, we can safely zext both parts. 530 if (ICI->isEquality()) 531 return true; 532 // Otherwise we can only use zext when comparing two non-negative or two 533 // negative values. But in practice, we will never pass DoesZExtCollapse 534 // check for a negative value, because zext(trunc(x)) is non-negative. So 535 // it only make sense to check for non-negativity here. 536 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 537 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 538 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 539 }; 540 // Replace all comparisons against trunc with comparisons against IV. 541 for (auto *ICI : ICmpUsers) { 542 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0)); 543 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1); 544 IRBuilder<> Builder(ICI); 545 Value *Ext = nullptr; 546 // For signed/unsigned predicate, replace the old comparison with comparison 547 // of immediate IV against sext/zext of the invariant argument. If we can 548 // use either sext or zext (i.e. we are dealing with equality predicate), 549 // then prefer zext as a more canonical form. 550 // TODO: If we see a signed comparison which can be turned into unsigned, 551 // we can do it here for canonicalization purposes. 552 ICmpInst::Predicate Pred = ICI->getPredicate(); 553 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred); 554 if (CanUseZExt(ICI)) { 555 assert(DoesZExtCollapse && "Unprofitable zext?"); 556 Ext = Builder.CreateZExt(Op1, IVTy, "zext"); 557 Pred = ICmpInst::getUnsignedPredicate(Pred); 558 } else { 559 assert(DoesSExtCollapse && "Unprofitable sext?"); 560 Ext = Builder.CreateSExt(Op1, IVTy, "sext"); 561 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 562 } 563 bool Changed; 564 L->makeLoopInvariant(Ext, Changed); 565 (void)Changed; 566 auto *NewCmp = Builder.CreateICmp(Pred, IV, Ext); 567 ICI->replaceAllUsesWith(NewCmp); 568 DeadInsts.emplace_back(ICI); 569 } 570 571 // Trunc no longer needed. 572 TI->replaceAllUsesWith(PoisonValue::get(TI->getType())); 573 DeadInsts.emplace_back(TI); 574 return true; 575 } 576 577 /// Eliminate an operation that consumes a simple IV and has no observable 578 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 579 /// but UseInst may not be. 580 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 581 Instruction *IVOperand) { 582 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 583 eliminateIVComparison(ICmp, IVOperand); 584 return true; 585 } 586 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 587 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 588 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 589 simplifyIVRemainder(Bin, IVOperand, IsSRem); 590 return true; 591 } 592 593 if (Bin->getOpcode() == Instruction::SDiv) 594 return eliminateSDiv(Bin); 595 } 596 597 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst)) 598 if (eliminateOverflowIntrinsic(WO)) 599 return true; 600 601 if (auto *SI = dyn_cast<SaturatingInst>(UseInst)) 602 if (eliminateSaturatingIntrinsic(SI)) 603 return true; 604 605 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 606 if (eliminateTrunc(TI)) 607 return true; 608 609 if (eliminateIdentitySCEV(UseInst, IVOperand)) 610 return true; 611 612 return false; 613 } 614 615 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 616 if (auto *BB = L->getLoopPreheader()) 617 return BB->getTerminator(); 618 619 return Hint; 620 } 621 622 /// Replace the UseInst with a loop invariant expression if it is safe. 623 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 624 if (!SE->isSCEVable(I->getType())) 625 return false; 626 627 // Get the symbolic expression for this instruction. 628 const SCEV *S = SE->getSCEV(I); 629 630 if (!SE->isLoopInvariant(S, L)) 631 return false; 632 633 // Do not generate something ridiculous even if S is loop invariant. 634 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I)) 635 return false; 636 637 auto *IP = GetLoopInvariantInsertPosition(L, I); 638 639 if (!Rewriter.isSafeToExpandAt(S, IP)) { 640 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I 641 << " with non-speculable loop invariant: " << *S << '\n'); 642 return false; 643 } 644 645 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 646 647 I->replaceAllUsesWith(Invariant); 648 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 649 << " with loop invariant: " << *S << '\n'); 650 ++NumFoldedUser; 651 Changed = true; 652 DeadInsts.emplace_back(I); 653 return true; 654 } 655 656 /// Eliminate redundant type cast between integer and float. 657 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) { 658 if (UseInst->getOpcode() != CastInst::SIToFP && 659 UseInst->getOpcode() != CastInst::UIToFP) 660 return false; 661 662 Instruction *IVOperand = cast<Instruction>(UseInst->getOperand(0)); 663 // Get the symbolic expression for this instruction. 664 const SCEV *IV = SE->getSCEV(IVOperand); 665 int MaskBits; 666 if (UseInst->getOpcode() == CastInst::SIToFP) 667 MaskBits = (int)SE->getSignedRange(IV).getMinSignedBits(); 668 else 669 MaskBits = (int)SE->getUnsignedRange(IV).getActiveBits(); 670 int DestNumSigBits = UseInst->getType()->getFPMantissaWidth(); 671 if (MaskBits <= DestNumSigBits) { 672 for (User *U : UseInst->users()) { 673 // Match for fptosi/fptoui of sitofp and with same type. 674 auto *CI = dyn_cast<CastInst>(U); 675 if (!CI) 676 continue; 677 678 CastInst::CastOps Opcode = CI->getOpcode(); 679 if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI) 680 continue; 681 682 Value *Conv = nullptr; 683 if (IVOperand->getType() != CI->getType()) { 684 IRBuilder<> Builder(CI); 685 StringRef Name = IVOperand->getName(); 686 // To match InstCombine logic, we only need sext if both fptosi and 687 // sitofp are used. If one of them is unsigned, then we can use zext. 688 if (SE->getTypeSizeInBits(IVOperand->getType()) > 689 SE->getTypeSizeInBits(CI->getType())) { 690 Conv = Builder.CreateTrunc(IVOperand, CI->getType(), Name + ".trunc"); 691 } else if (Opcode == CastInst::FPToUI || 692 UseInst->getOpcode() == CastInst::UIToFP) { 693 Conv = Builder.CreateZExt(IVOperand, CI->getType(), Name + ".zext"); 694 } else { 695 Conv = Builder.CreateSExt(IVOperand, CI->getType(), Name + ".sext"); 696 } 697 } else 698 Conv = IVOperand; 699 700 CI->replaceAllUsesWith(Conv); 701 DeadInsts.push_back(CI); 702 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI 703 << " with: " << *Conv << '\n'); 704 705 ++NumFoldedUser; 706 Changed = true; 707 } 708 } 709 710 return Changed; 711 } 712 713 /// Eliminate any operation that SCEV can prove is an identity function. 714 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 715 Instruction *IVOperand) { 716 if (!SE->isSCEVable(UseInst->getType()) || 717 UseInst->getType() != IVOperand->getType()) 718 return false; 719 720 const SCEV *UseSCEV = SE->getSCEV(UseInst); 721 if (UseSCEV != SE->getSCEV(IVOperand)) 722 return false; 723 724 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 725 // dominator tree, even if X is an operand to Y. For instance, in 726 // 727 // %iv = phi i32 {0,+,1} 728 // br %cond, label %left, label %merge 729 // 730 // left: 731 // %X = add i32 %iv, 0 732 // br label %merge 733 // 734 // merge: 735 // %M = phi (%X, %iv) 736 // 737 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 738 // %M.replaceAllUsesWith(%X) would be incorrect. 739 740 if (isa<PHINode>(UseInst)) 741 // If UseInst is not a PHI node then we know that IVOperand dominates 742 // UseInst directly from the legality of SSA. 743 if (!DT || !DT->dominates(IVOperand, UseInst)) 744 return false; 745 746 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 747 return false; 748 749 // Make sure the operand is not more poisonous than the instruction. 750 if (!impliesPoison(IVOperand, UseInst)) { 751 SmallVector<Instruction *> DropPoisonGeneratingInsts; 752 if (!SE->canReuseInstruction(UseSCEV, IVOperand, DropPoisonGeneratingInsts)) 753 return false; 754 755 for (Instruction *I : DropPoisonGeneratingInsts) 756 I->dropPoisonGeneratingFlagsAndMetadata(); 757 } 758 759 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 760 761 SE->forgetValue(UseInst); 762 UseInst->replaceAllUsesWith(IVOperand); 763 ++NumElimIdentity; 764 Changed = true; 765 DeadInsts.emplace_back(UseInst); 766 return true; 767 } 768 769 bool SimplifyIndvar::strengthenBinaryOp(BinaryOperator *BO, 770 Instruction *IVOperand) { 771 return (isa<OverflowingBinaryOperator>(BO) && 772 strengthenOverflowingOperation(BO, IVOperand)) || 773 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand)); 774 } 775 776 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 777 /// unsigned-overflow. Returns true if anything changed, false otherwise. 778 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 779 Instruction *IVOperand) { 780 auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp( 781 cast<OverflowingBinaryOperator>(BO)); 782 783 if (!Flags) 784 return false; 785 786 BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == 787 SCEV::FlagNUW); 788 BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == 789 SCEV::FlagNSW); 790 791 // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap 792 // flags on addrecs while performing zero/sign extensions. We could call 793 // forgetValue() here to make sure those flags also propagate to any other 794 // SCEV expressions based on the addrec. However, this can have pathological 795 // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384. 796 return true; 797 } 798 799 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 800 /// information from the IV's range. Returns true if anything changed, false 801 /// otherwise. 802 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 803 Instruction *IVOperand) { 804 if (BO->getOpcode() == Instruction::Shl) { 805 bool Changed = false; 806 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 807 for (auto *U : BO->users()) { 808 const APInt *C; 809 if (match(U, 810 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 811 match(U, 812 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 813 BinaryOperator *Shr = cast<BinaryOperator>(U); 814 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 815 Shr->setIsExact(true); 816 Changed = true; 817 } 818 } 819 } 820 return Changed; 821 } 822 823 return false; 824 } 825 826 /// Add all uses of Def to the current IV's worklist. 827 static void pushIVUsers( 828 Instruction *Def, Loop *L, 829 SmallPtrSet<Instruction*,16> &Simplified, 830 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 831 832 for (User *U : Def->users()) { 833 Instruction *UI = cast<Instruction>(U); 834 835 // Avoid infinite or exponential worklist processing. 836 // Also ensure unique worklist users. 837 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 838 // self edges first. 839 if (UI == Def) 840 continue; 841 842 // Only change the current Loop, do not change the other parts (e.g. other 843 // Loops). 844 if (!L->contains(UI)) 845 continue; 846 847 // Do not push the same instruction more than once. 848 if (!Simplified.insert(UI).second) 849 continue; 850 851 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 852 } 853 } 854 855 /// Return true if this instruction generates a simple SCEV 856 /// expression in terms of that IV. 857 /// 858 /// This is similar to IVUsers' isInteresting() but processes each instruction 859 /// non-recursively when the operand is already known to be a simpleIVUser. 860 /// 861 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 862 if (!SE->isSCEVable(I->getType())) 863 return false; 864 865 // Get the symbolic expression for this instruction. 866 const SCEV *S = SE->getSCEV(I); 867 868 // Only consider affine recurrences. 869 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 870 if (AR && AR->getLoop() == L) 871 return true; 872 873 return false; 874 } 875 876 /// Iteratively perform simplification on a worklist of users 877 /// of the specified induction variable. Each successive simplification may push 878 /// more users which may themselves be candidates for simplification. 879 /// 880 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 881 /// instructions in-place during analysis. Rather than rewriting induction 882 /// variables bottom-up from their users, it transforms a chain of IVUsers 883 /// top-down, updating the IR only when it encounters a clear optimization 884 /// opportunity. 885 /// 886 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 887 /// 888 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 889 if (!SE->isSCEVable(CurrIV->getType())) 890 return; 891 892 // Instructions processed by SimplifyIndvar for CurrIV. 893 SmallPtrSet<Instruction*,16> Simplified; 894 895 // Use-def pairs if IV users waiting to be processed for CurrIV. 896 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 897 898 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 899 // called multiple times for the same LoopPhi. This is the proper thing to 900 // do for loop header phis that use each other. 901 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 902 903 while (!SimpleIVUsers.empty()) { 904 std::pair<Instruction*, Instruction*> UseOper = 905 SimpleIVUsers.pop_back_val(); 906 Instruction *UseInst = UseOper.first; 907 908 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 909 // rather than try to do some complex analysis or transformation (such as 910 // widening) basing on it. 911 // TODO: Propagate TLI and pass it here to handle more cases. 912 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 913 DeadInsts.emplace_back(UseInst); 914 continue; 915 } 916 917 // Bypass back edges to avoid extra work. 918 if (UseInst == CurrIV) continue; 919 920 // Try to replace UseInst with a loop invariant before any other 921 // simplifications. 922 if (replaceIVUserWithLoopInvariant(UseInst)) 923 continue; 924 925 // Go further for the bitcast 'prtoint ptr to i64' or if the cast is done 926 // by truncation 927 if ((isa<PtrToIntInst>(UseInst)) || (isa<TruncInst>(UseInst))) 928 for (Use &U : UseInst->uses()) { 929 Instruction *User = cast<Instruction>(U.getUser()); 930 if (replaceIVUserWithLoopInvariant(User)) 931 break; // done replacing 932 } 933 934 Instruction *IVOperand = UseOper.second; 935 for (unsigned N = 0; IVOperand; ++N) { 936 assert(N <= Simplified.size() && "runaway iteration"); 937 (void) N; 938 939 Value *NewOper = foldIVUser(UseInst, IVOperand); 940 if (!NewOper) 941 break; // done folding 942 IVOperand = dyn_cast<Instruction>(NewOper); 943 } 944 if (!IVOperand) 945 continue; 946 947 if (eliminateIVUser(UseInst, IVOperand)) { 948 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 949 continue; 950 } 951 952 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 953 if (strengthenBinaryOp(BO, IVOperand)) { 954 // re-queue uses of the now modified binary operator and fall 955 // through to the checks that remain. 956 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 957 } 958 } 959 960 // Try to use integer induction for FPToSI of float induction directly. 961 if (replaceFloatIVWithIntegerIV(UseInst)) { 962 // Re-queue the potentially new direct uses of IVOperand. 963 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 964 continue; 965 } 966 967 CastInst *Cast = dyn_cast<CastInst>(UseInst); 968 if (V && Cast) { 969 V->visitCast(Cast); 970 continue; 971 } 972 if (isSimpleIVUser(UseInst, L, SE)) { 973 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 974 } 975 } 976 } 977 978 namespace llvm { 979 980 void IVVisitor::anchor() { } 981 982 /// Simplify instructions that use this induction variable 983 /// by using ScalarEvolution to analyze the IV's recurrence. 984 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 985 LoopInfo *LI, const TargetTransformInfo *TTI, 986 SmallVectorImpl<WeakTrackingVH> &Dead, 987 SCEVExpander &Rewriter, IVVisitor *V) { 988 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI, 989 Rewriter, Dead); 990 SIV.simplifyUsers(CurrIV, V); 991 return SIV.hasChanged(); 992 } 993 994 /// Simplify users of induction variables within this 995 /// loop. This does not actually change or add IVs. 996 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 997 LoopInfo *LI, const TargetTransformInfo *TTI, 998 SmallVectorImpl<WeakTrackingVH> &Dead) { 999 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 1000 #ifndef NDEBUG 1001 Rewriter.setDebugType(DEBUG_TYPE); 1002 #endif 1003 bool Changed = false; 1004 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1005 Changed |= 1006 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter); 1007 } 1008 return Changed; 1009 } 1010 1011 } // namespace llvm 1012 1013 namespace { 1014 //===----------------------------------------------------------------------===// 1015 // Widen Induction Variables - Extend the width of an IV to cover its 1016 // widest uses. 1017 //===----------------------------------------------------------------------===// 1018 1019 class WidenIV { 1020 // Parameters 1021 PHINode *OrigPhi; 1022 Type *WideType; 1023 1024 // Context 1025 LoopInfo *LI; 1026 Loop *L; 1027 ScalarEvolution *SE; 1028 DominatorTree *DT; 1029 1030 // Does the module have any calls to the llvm.experimental.guard intrinsic 1031 // at all? If not we can avoid scanning instructions looking for guards. 1032 bool HasGuards; 1033 1034 bool UsePostIncrementRanges; 1035 1036 // Statistics 1037 unsigned NumElimExt = 0; 1038 unsigned NumWidened = 0; 1039 1040 // Result 1041 PHINode *WidePhi = nullptr; 1042 Instruction *WideInc = nullptr; 1043 const SCEV *WideIncExpr = nullptr; 1044 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 1045 1046 SmallPtrSet<Instruction *,16> Widened; 1047 1048 enum class ExtendKind { Zero, Sign, Unknown }; 1049 1050 // A map tracking the kind of extension used to widen each narrow IV 1051 // and narrow IV user. 1052 // Key: pointer to a narrow IV or IV user. 1053 // Value: the kind of extension used to widen this Instruction. 1054 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 1055 1056 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 1057 1058 // A map with control-dependent ranges for post increment IV uses. The key is 1059 // a pair of IV def and a use of this def denoting the context. The value is 1060 // a ConstantRange representing possible values of the def at the given 1061 // context. 1062 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 1063 1064 std::optional<ConstantRange> getPostIncRangeInfo(Value *Def, 1065 Instruction *UseI) { 1066 DefUserPair Key(Def, UseI); 1067 auto It = PostIncRangeInfos.find(Key); 1068 return It == PostIncRangeInfos.end() 1069 ? std::optional<ConstantRange>(std::nullopt) 1070 : std::optional<ConstantRange>(It->second); 1071 } 1072 1073 void calculatePostIncRanges(PHINode *OrigPhi); 1074 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 1075 1076 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 1077 DefUserPair Key(Def, UseI); 1078 auto It = PostIncRangeInfos.find(Key); 1079 if (It == PostIncRangeInfos.end()) 1080 PostIncRangeInfos.insert({Key, R}); 1081 else 1082 It->second = R.intersectWith(It->second); 1083 } 1084 1085 public: 1086 /// Record a link in the Narrow IV def-use chain along with the WideIV that 1087 /// computes the same value as the Narrow IV def. This avoids caching Use* 1088 /// pointers. 1089 struct NarrowIVDefUse { 1090 Instruction *NarrowDef = nullptr; 1091 Instruction *NarrowUse = nullptr; 1092 Instruction *WideDef = nullptr; 1093 1094 // True if the narrow def is never negative. Tracking this information lets 1095 // us use a sign extension instead of a zero extension or vice versa, when 1096 // profitable and legal. 1097 bool NeverNegative = false; 1098 1099 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 1100 bool NeverNegative) 1101 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 1102 NeverNegative(NeverNegative) {} 1103 }; 1104 1105 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1106 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1107 bool HasGuards, bool UsePostIncrementRanges = true); 1108 1109 PHINode *createWideIV(SCEVExpander &Rewriter); 1110 1111 unsigned getNumElimExt() { return NumElimExt; }; 1112 unsigned getNumWidened() { return NumWidened; }; 1113 1114 protected: 1115 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1116 Instruction *Use); 1117 1118 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1119 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1120 const SCEVAddRecExpr *WideAR); 1121 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1122 1123 ExtendKind getExtendKind(Instruction *I); 1124 1125 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1126 1127 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1128 1129 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1130 1131 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1132 unsigned OpCode) const; 1133 1134 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1135 1136 bool widenLoopCompare(NarrowIVDefUse DU); 1137 bool widenWithVariantUse(NarrowIVDefUse DU); 1138 1139 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1140 1141 private: 1142 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 1143 }; 1144 } // namespace 1145 1146 /// Determine the insertion point for this user. By default, insert immediately 1147 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 1148 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 1149 /// common dominator for the incoming blocks. A nullptr can be returned if no 1150 /// viable location is found: it may happen if User is a PHI and Def only comes 1151 /// to this PHI from unreachable blocks. 1152 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 1153 DominatorTree *DT, LoopInfo *LI) { 1154 PHINode *PHI = dyn_cast<PHINode>(User); 1155 if (!PHI) 1156 return User; 1157 1158 Instruction *InsertPt = nullptr; 1159 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 1160 if (PHI->getIncomingValue(i) != Def) 1161 continue; 1162 1163 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 1164 1165 if (!DT->isReachableFromEntry(InsertBB)) 1166 continue; 1167 1168 if (!InsertPt) { 1169 InsertPt = InsertBB->getTerminator(); 1170 continue; 1171 } 1172 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 1173 InsertPt = InsertBB->getTerminator(); 1174 } 1175 1176 // If we have skipped all inputs, it means that Def only comes to Phi from 1177 // unreachable blocks. 1178 if (!InsertPt) 1179 return nullptr; 1180 1181 auto *DefI = dyn_cast<Instruction>(Def); 1182 if (!DefI) 1183 return InsertPt; 1184 1185 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 1186 1187 auto *L = LI->getLoopFor(DefI->getParent()); 1188 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 1189 1190 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 1191 if (LI->getLoopFor(DTN->getBlock()) == L) 1192 return DTN->getBlock()->getTerminator(); 1193 1194 llvm_unreachable("DefI dominates InsertPt!"); 1195 } 1196 1197 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1198 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1199 bool HasGuards, bool UsePostIncrementRanges) 1200 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 1201 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 1202 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges), 1203 DeadInsts(DI) { 1204 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 1205 ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero; 1206 } 1207 1208 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1209 bool IsSigned, Instruction *Use) { 1210 // Set the debug location and conservative insertion point. 1211 IRBuilder<> Builder(Use); 1212 // Hoist the insertion point into loop preheaders as far as possible. 1213 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1214 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1215 L = L->getParentLoop()) 1216 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1217 1218 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1219 Builder.CreateZExt(NarrowOper, WideType); 1220 } 1221 1222 /// Instantiate a wide operation to replace a narrow operation. This only needs 1223 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1224 /// 0 for any operation we decide not to clone. 1225 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU, 1226 const SCEVAddRecExpr *WideAR) { 1227 unsigned Opcode = DU.NarrowUse->getOpcode(); 1228 switch (Opcode) { 1229 default: 1230 return nullptr; 1231 case Instruction::Add: 1232 case Instruction::Mul: 1233 case Instruction::UDiv: 1234 case Instruction::Sub: 1235 return cloneArithmeticIVUser(DU, WideAR); 1236 1237 case Instruction::And: 1238 case Instruction::Or: 1239 case Instruction::Xor: 1240 case Instruction::Shl: 1241 case Instruction::LShr: 1242 case Instruction::AShr: 1243 return cloneBitwiseIVUser(DU); 1244 } 1245 } 1246 1247 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) { 1248 Instruction *NarrowUse = DU.NarrowUse; 1249 Instruction *NarrowDef = DU.NarrowDef; 1250 Instruction *WideDef = DU.WideDef; 1251 1252 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1253 1254 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1255 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1256 // invariant and will be folded or hoisted. If it actually comes from a 1257 // widened IV, it should be removed during a future call to widenIVUse. 1258 bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign; 1259 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1260 ? WideDef 1261 : createExtendInst(NarrowUse->getOperand(0), WideType, 1262 IsSigned, NarrowUse); 1263 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1264 ? WideDef 1265 : createExtendInst(NarrowUse->getOperand(1), WideType, 1266 IsSigned, NarrowUse); 1267 1268 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1269 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1270 NarrowBO->getName()); 1271 IRBuilder<> Builder(NarrowUse); 1272 Builder.Insert(WideBO); 1273 WideBO->copyIRFlags(NarrowBO); 1274 return WideBO; 1275 } 1276 1277 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU, 1278 const SCEVAddRecExpr *WideAR) { 1279 Instruction *NarrowUse = DU.NarrowUse; 1280 Instruction *NarrowDef = DU.NarrowDef; 1281 Instruction *WideDef = DU.WideDef; 1282 1283 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1284 1285 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1286 1287 // We're trying to find X such that 1288 // 1289 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1290 // 1291 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1292 // and check using SCEV if any of them are correct. 1293 1294 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1295 // correct solution to X. 1296 auto GuessNonIVOperand = [&](bool SignExt) { 1297 const SCEV *WideLHS; 1298 const SCEV *WideRHS; 1299 1300 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1301 if (SignExt) 1302 return SE->getSignExtendExpr(S, Ty); 1303 return SE->getZeroExtendExpr(S, Ty); 1304 }; 1305 1306 if (IVOpIdx == 0) { 1307 WideLHS = SE->getSCEV(WideDef); 1308 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1309 WideRHS = GetExtend(NarrowRHS, WideType); 1310 } else { 1311 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1312 WideLHS = GetExtend(NarrowLHS, WideType); 1313 WideRHS = SE->getSCEV(WideDef); 1314 } 1315 1316 // WideUse is "WideDef `op.wide` X" as described in the comment. 1317 const SCEV *WideUse = 1318 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode()); 1319 1320 return WideUse == WideAR; 1321 }; 1322 1323 bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign; 1324 if (!GuessNonIVOperand(SignExtend)) { 1325 SignExtend = !SignExtend; 1326 if (!GuessNonIVOperand(SignExtend)) 1327 return nullptr; 1328 } 1329 1330 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1331 ? WideDef 1332 : createExtendInst(NarrowUse->getOperand(0), WideType, 1333 SignExtend, NarrowUse); 1334 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1335 ? WideDef 1336 : createExtendInst(NarrowUse->getOperand(1), WideType, 1337 SignExtend, NarrowUse); 1338 1339 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1340 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1341 NarrowBO->getName()); 1342 1343 IRBuilder<> Builder(NarrowUse); 1344 Builder.Insert(WideBO); 1345 WideBO->copyIRFlags(NarrowBO); 1346 return WideBO; 1347 } 1348 1349 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1350 auto It = ExtendKindMap.find(I); 1351 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1352 return It->second; 1353 } 1354 1355 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1356 unsigned OpCode) const { 1357 switch (OpCode) { 1358 case Instruction::Add: 1359 return SE->getAddExpr(LHS, RHS); 1360 case Instruction::Sub: 1361 return SE->getMinusSCEV(LHS, RHS); 1362 case Instruction::Mul: 1363 return SE->getMulExpr(LHS, RHS); 1364 case Instruction::UDiv: 1365 return SE->getUDivExpr(LHS, RHS); 1366 default: 1367 llvm_unreachable("Unsupported opcode."); 1368 }; 1369 } 1370 1371 /// No-wrap operations can transfer sign extension of their result to their 1372 /// operands. Generate the SCEV value for the widened operation without 1373 /// actually modifying the IR yet. If the expression after extending the 1374 /// operands is an AddRec for this loop, return the AddRec and the kind of 1375 /// extension used. 1376 WidenIV::WidenedRecTy 1377 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) { 1378 // Handle the common case of add<nsw/nuw> 1379 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1380 // Only Add/Sub/Mul instructions supported yet. 1381 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1382 OpCode != Instruction::Mul) 1383 return {nullptr, ExtendKind::Unknown}; 1384 1385 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1386 // if extending the other will lead to a recurrence. 1387 const unsigned ExtendOperIdx = 1388 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1389 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1390 1391 const OverflowingBinaryOperator *OBO = 1392 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1393 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1394 if (!(ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap()) && 1395 !(ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap())) { 1396 ExtKind = ExtendKind::Unknown; 1397 1398 // For a non-negative NarrowDef, we can choose either type of 1399 // extension. We want to use the current extend kind if legal 1400 // (see above), and we only hit this code if we need to check 1401 // the opposite case. 1402 if (DU.NeverNegative) { 1403 if (OBO->hasNoSignedWrap()) { 1404 ExtKind = ExtendKind::Sign; 1405 } else if (OBO->hasNoUnsignedWrap()) { 1406 ExtKind = ExtendKind::Zero; 1407 } 1408 } 1409 } 1410 1411 const SCEV *ExtendOperExpr = 1412 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)); 1413 if (ExtKind == ExtendKind::Sign) 1414 ExtendOperExpr = SE->getSignExtendExpr(ExtendOperExpr, WideType); 1415 else if (ExtKind == ExtendKind::Zero) 1416 ExtendOperExpr = SE->getZeroExtendExpr(ExtendOperExpr, WideType); 1417 else 1418 return {nullptr, ExtendKind::Unknown}; 1419 1420 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1421 // flags. This instruction may be guarded by control flow that the no-wrap 1422 // behavior depends on. Non-control-equivalent instructions can be mapped to 1423 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1424 // semantics to those operations. 1425 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1426 const SCEV *rhs = ExtendOperExpr; 1427 1428 // Let's swap operands to the initial order for the case of non-commutative 1429 // operations, like SUB. See PR21014. 1430 if (ExtendOperIdx == 0) 1431 std::swap(lhs, rhs); 1432 const SCEVAddRecExpr *AddRec = 1433 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1434 1435 if (!AddRec || AddRec->getLoop() != L) 1436 return {nullptr, ExtendKind::Unknown}; 1437 1438 return {AddRec, ExtKind}; 1439 } 1440 1441 /// Is this instruction potentially interesting for further simplification after 1442 /// widening it's type? In other words, can the extend be safely hoisted out of 1443 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1444 /// so, return the extended recurrence and the kind of extension used. Otherwise 1445 /// return {nullptr, ExtendKind::Unknown}. 1446 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) { 1447 if (!DU.NarrowUse->getType()->isIntegerTy()) 1448 return {nullptr, ExtendKind::Unknown}; 1449 1450 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1451 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1452 SE->getTypeSizeInBits(WideType)) { 1453 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1454 // index. So don't follow this use. 1455 return {nullptr, ExtendKind::Unknown}; 1456 } 1457 1458 const SCEV *WideExpr; 1459 ExtendKind ExtKind; 1460 if (DU.NeverNegative) { 1461 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1462 if (isa<SCEVAddRecExpr>(WideExpr)) 1463 ExtKind = ExtendKind::Sign; 1464 else { 1465 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1466 ExtKind = ExtendKind::Zero; 1467 } 1468 } else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) { 1469 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1470 ExtKind = ExtendKind::Sign; 1471 } else { 1472 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1473 ExtKind = ExtendKind::Zero; 1474 } 1475 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1476 if (!AddRec || AddRec->getLoop() != L) 1477 return {nullptr, ExtendKind::Unknown}; 1478 return {AddRec, ExtKind}; 1479 } 1480 1481 /// This IV user cannot be widened. Replace this use of the original narrow IV 1482 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1483 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT, 1484 LoopInfo *LI) { 1485 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1486 if (!InsertPt) 1487 return; 1488 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1489 << *DU.NarrowUse << "\n"); 1490 IRBuilder<> Builder(InsertPt); 1491 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1492 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1493 } 1494 1495 /// If the narrow use is a compare instruction, then widen the compare 1496 // (and possibly the other operand). The extend operation is hoisted into the 1497 // loop preheader as far as possible. 1498 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) { 1499 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1500 if (!Cmp) 1501 return false; 1502 1503 // We can legally widen the comparison in the following two cases: 1504 // 1505 // - The signedness of the IV extension and comparison match 1506 // 1507 // - The narrow IV is always positive (and thus its sign extension is equal 1508 // to its zero extension). For instance, let's say we're zero extending 1509 // %narrow for the following use 1510 // 1511 // icmp slt i32 %narrow, %val ... (A) 1512 // 1513 // and %narrow is always positive. Then 1514 // 1515 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1516 // == icmp slt i32 zext(%narrow), sext(%val) 1517 bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign; 1518 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1519 return false; 1520 1521 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1522 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1523 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1524 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1525 1526 // Widen the compare instruction. 1527 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1528 1529 // Widen the other operand of the compare, if necessary. 1530 if (CastWidth < IVWidth) { 1531 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1532 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1533 } 1534 return true; 1535 } 1536 1537 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this 1538 // will not work when: 1539 // 1) SCEV traces back to an instruction inside the loop that SCEV can not 1540 // expand, eg. add %indvar, (load %addr) 1541 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant 1542 // While SCEV fails to avoid trunc, we can still try to use instruction 1543 // combining approach to prove trunc is not required. This can be further 1544 // extended with other instruction combining checks, but for now we handle the 1545 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext") 1546 // 1547 // Src: 1548 // %c = sub nsw %b, %indvar 1549 // %d = sext %c to i64 1550 // Dst: 1551 // %indvar.ext1 = sext %indvar to i64 1552 // %m = sext %b to i64 1553 // %d = sub nsw i64 %m, %indvar.ext1 1554 // Therefore, as long as the result of add/sub/mul is extended to wide type, no 1555 // trunc is required regardless of how %b is generated. This pattern is common 1556 // when calculating address in 64 bit architecture 1557 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) { 1558 Instruction *NarrowUse = DU.NarrowUse; 1559 Instruction *NarrowDef = DU.NarrowDef; 1560 Instruction *WideDef = DU.WideDef; 1561 1562 // Handle the common case of add<nsw/nuw> 1563 const unsigned OpCode = NarrowUse->getOpcode(); 1564 // Only Add/Sub/Mul instructions are supported. 1565 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1566 OpCode != Instruction::Mul) 1567 return false; 1568 1569 // The operand that is not defined by NarrowDef of DU. Let's call it the 1570 // other operand. 1571 assert((NarrowUse->getOperand(0) == NarrowDef || 1572 NarrowUse->getOperand(1) == NarrowDef) && 1573 "bad DU"); 1574 1575 const OverflowingBinaryOperator *OBO = 1576 cast<OverflowingBinaryOperator>(NarrowUse); 1577 ExtendKind ExtKind = getExtendKind(NarrowDef); 1578 bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap(); 1579 bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap(); 1580 auto AnotherOpExtKind = ExtKind; 1581 1582 // Check that all uses are either: 1583 // - narrow def (in case of we are widening the IV increment); 1584 // - single-input LCSSA Phis; 1585 // - comparison of the chosen type; 1586 // - extend of the chosen type (raison d'etre). 1587 SmallVector<Instruction *, 4> ExtUsers; 1588 SmallVector<PHINode *, 4> LCSSAPhiUsers; 1589 SmallVector<ICmpInst *, 4> ICmpUsers; 1590 for (Use &U : NarrowUse->uses()) { 1591 Instruction *User = cast<Instruction>(U.getUser()); 1592 if (User == NarrowDef) 1593 continue; 1594 if (!L->contains(User)) { 1595 auto *LCSSAPhi = cast<PHINode>(User); 1596 // Make sure there is only 1 input, so that we don't have to split 1597 // critical edges. 1598 if (LCSSAPhi->getNumOperands() != 1) 1599 return false; 1600 LCSSAPhiUsers.push_back(LCSSAPhi); 1601 continue; 1602 } 1603 if (auto *ICmp = dyn_cast<ICmpInst>(User)) { 1604 auto Pred = ICmp->getPredicate(); 1605 // We have 3 types of predicates: signed, unsigned and equality 1606 // predicates. For equality, it's legal to widen icmp for either sign and 1607 // zero extend. For sign extend, we can also do so for signed predicates, 1608 // likeweise for zero extend we can widen icmp for unsigned predicates. 1609 if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred)) 1610 return false; 1611 if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred)) 1612 return false; 1613 ICmpUsers.push_back(ICmp); 1614 continue; 1615 } 1616 if (ExtKind == ExtendKind::Sign) 1617 User = dyn_cast<SExtInst>(User); 1618 else 1619 User = dyn_cast<ZExtInst>(User); 1620 if (!User || User->getType() != WideType) 1621 return false; 1622 ExtUsers.push_back(User); 1623 } 1624 if (ExtUsers.empty()) { 1625 DeadInsts.emplace_back(NarrowUse); 1626 return true; 1627 } 1628 1629 // We'll prove some facts that should be true in the context of ext users. If 1630 // there is no users, we are done now. If there are some, pick their common 1631 // dominator as context. 1632 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT); 1633 1634 if (!CanSignExtend && !CanZeroExtend) { 1635 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we 1636 // will most likely not see it. Let's try to prove it. 1637 if (OpCode != Instruction::Add) 1638 return false; 1639 if (ExtKind != ExtendKind::Zero) 1640 return false; 1641 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0)); 1642 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1)); 1643 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1). 1644 if (NarrowUse->getOperand(0) != NarrowDef) 1645 return false; 1646 if (!SE->isKnownNegative(RHS)) 1647 return false; 1648 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS, 1649 SE->getNegativeSCEV(RHS), CtxI); 1650 if (!ProvedSubNUW) 1651 return false; 1652 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as 1653 // neg(zext(neg(op))), which is basically sext(op). 1654 AnotherOpExtKind = ExtendKind::Sign; 1655 } 1656 1657 // Verifying that Defining operand is an AddRec 1658 const SCEV *Op1 = SE->getSCEV(WideDef); 1659 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1660 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1661 return false; 1662 1663 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1664 1665 // Generating a widening use instruction. 1666 Value *LHS = 1667 (NarrowUse->getOperand(0) == NarrowDef) 1668 ? WideDef 1669 : createExtendInst(NarrowUse->getOperand(0), WideType, 1670 AnotherOpExtKind == ExtendKind::Sign, NarrowUse); 1671 Value *RHS = 1672 (NarrowUse->getOperand(1) == NarrowDef) 1673 ? WideDef 1674 : createExtendInst(NarrowUse->getOperand(1), WideType, 1675 AnotherOpExtKind == ExtendKind::Sign, NarrowUse); 1676 1677 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1678 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1679 NarrowBO->getName()); 1680 IRBuilder<> Builder(NarrowUse); 1681 Builder.Insert(WideBO); 1682 WideBO->copyIRFlags(NarrowBO); 1683 ExtendKindMap[NarrowUse] = ExtKind; 1684 1685 for (Instruction *User : ExtUsers) { 1686 assert(User->getType() == WideType && "Checked before!"); 1687 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1688 << *WideBO << "\n"); 1689 ++NumElimExt; 1690 User->replaceAllUsesWith(WideBO); 1691 DeadInsts.emplace_back(User); 1692 } 1693 1694 for (PHINode *User : LCSSAPhiUsers) { 1695 assert(User->getNumOperands() == 1 && "Checked before!"); 1696 Builder.SetInsertPoint(User); 1697 auto *WidePN = 1698 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide"); 1699 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor(); 1700 assert(LoopExitingBlock && L->contains(LoopExitingBlock) && 1701 "Not a LCSSA Phi?"); 1702 WidePN->addIncoming(WideBO, LoopExitingBlock); 1703 Builder.SetInsertPoint(User->getParent(), 1704 User->getParent()->getFirstInsertionPt()); 1705 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType()); 1706 User->replaceAllUsesWith(TruncPN); 1707 DeadInsts.emplace_back(User); 1708 } 1709 1710 for (ICmpInst *User : ICmpUsers) { 1711 Builder.SetInsertPoint(User); 1712 auto ExtendedOp = [&](Value * V)->Value * { 1713 if (V == NarrowUse) 1714 return WideBO; 1715 if (ExtKind == ExtendKind::Zero) 1716 return Builder.CreateZExt(V, WideBO->getType()); 1717 else 1718 return Builder.CreateSExt(V, WideBO->getType()); 1719 }; 1720 auto Pred = User->getPredicate(); 1721 auto *LHS = ExtendedOp(User->getOperand(0)); 1722 auto *RHS = ExtendedOp(User->getOperand(1)); 1723 auto *WideCmp = 1724 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide"); 1725 User->replaceAllUsesWith(WideCmp); 1726 DeadInsts.emplace_back(User); 1727 } 1728 1729 return true; 1730 } 1731 1732 /// Determine whether an individual user of the narrow IV can be widened. If so, 1733 /// return the wide clone of the user. 1734 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1735 assert(ExtendKindMap.count(DU.NarrowDef) && 1736 "Should already know the kind of extension used to widen NarrowDef"); 1737 1738 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1739 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1740 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1741 // For LCSSA phis, sink the truncate outside the loop. 1742 // After SimplifyCFG most loop exit targets have a single predecessor. 1743 // Otherwise fall back to a truncate within the loop. 1744 if (UsePhi->getNumOperands() != 1) 1745 truncateIVUse(DU, DT, LI); 1746 else { 1747 // Widening the PHI requires us to insert a trunc. The logical place 1748 // for this trunc is in the same BB as the PHI. This is not possible if 1749 // the BB is terminated by a catchswitch. 1750 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1751 return nullptr; 1752 1753 PHINode *WidePhi = 1754 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1755 UsePhi); 1756 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1757 BasicBlock *WidePhiBB = WidePhi->getParent(); 1758 IRBuilder<> Builder(WidePhiBB, WidePhiBB->getFirstInsertionPt()); 1759 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1760 UsePhi->replaceAllUsesWith(Trunc); 1761 DeadInsts.emplace_back(UsePhi); 1762 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1763 << *WidePhi << "\n"); 1764 } 1765 return nullptr; 1766 } 1767 } 1768 1769 // This narrow use can be widened by a sext if it's non-negative or its narrow 1770 // def was widened by a sext. Same for zext. 1771 auto canWidenBySExt = [&]() { 1772 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign; 1773 }; 1774 auto canWidenByZExt = [&]() { 1775 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero; 1776 }; 1777 1778 // Our raison d'etre! Eliminate sign and zero extension. 1779 if ((match(DU.NarrowUse, m_SExtLike(m_Value())) && canWidenBySExt()) || 1780 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1781 Value *NewDef = DU.WideDef; 1782 if (DU.NarrowUse->getType() != WideType) { 1783 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1784 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1785 if (CastWidth < IVWidth) { 1786 // The cast isn't as wide as the IV, so insert a Trunc. 1787 IRBuilder<> Builder(DU.NarrowUse); 1788 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1789 } 1790 else { 1791 // A wider extend was hidden behind a narrower one. This may induce 1792 // another round of IV widening in which the intermediate IV becomes 1793 // dead. It should be very rare. 1794 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1795 << " not wide enough to subsume " << *DU.NarrowUse 1796 << "\n"); 1797 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1798 NewDef = DU.NarrowUse; 1799 } 1800 } 1801 if (NewDef != DU.NarrowUse) { 1802 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1803 << " replaced by " << *DU.WideDef << "\n"); 1804 ++NumElimExt; 1805 DU.NarrowUse->replaceAllUsesWith(NewDef); 1806 DeadInsts.emplace_back(DU.NarrowUse); 1807 } 1808 // Now that the extend is gone, we want to expose it's uses for potential 1809 // further simplification. We don't need to directly inform SimplifyIVUsers 1810 // of the new users, because their parent IV will be processed later as a 1811 // new loop phi. If we preserved IVUsers analysis, we would also want to 1812 // push the uses of WideDef here. 1813 1814 // No further widening is needed. The deceased [sz]ext had done it for us. 1815 return nullptr; 1816 } 1817 1818 auto tryAddRecExpansion = [&]() -> Instruction* { 1819 // Does this user itself evaluate to a recurrence after widening? 1820 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1821 if (!WideAddRec.first) 1822 WideAddRec = getWideRecurrence(DU); 1823 assert((WideAddRec.first == nullptr) == 1824 (WideAddRec.second == ExtendKind::Unknown)); 1825 if (!WideAddRec.first) 1826 return nullptr; 1827 1828 // Reuse the IV increment that SCEVExpander created as long as it dominates 1829 // NarrowUse. 1830 Instruction *WideUse = nullptr; 1831 if (WideAddRec.first == WideIncExpr && 1832 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1833 WideUse = WideInc; 1834 else { 1835 WideUse = cloneIVUser(DU, WideAddRec.first); 1836 if (!WideUse) 1837 return nullptr; 1838 } 1839 // Evaluation of WideAddRec ensured that the narrow expression could be 1840 // extended outside the loop without overflow. This suggests that the wide use 1841 // evaluates to the same expression as the extended narrow use, but doesn't 1842 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1843 // where it fails, we simply throw away the newly created wide use. 1844 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1845 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1846 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1847 << "\n"); 1848 DeadInsts.emplace_back(WideUse); 1849 return nullptr; 1850 }; 1851 1852 // if we reached this point then we are going to replace 1853 // DU.NarrowUse with WideUse. Reattach DbgValue then. 1854 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); 1855 1856 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1857 // Returning WideUse pushes it on the worklist. 1858 return WideUse; 1859 }; 1860 1861 if (auto *I = tryAddRecExpansion()) 1862 return I; 1863 1864 // If use is a loop condition, try to promote the condition instead of 1865 // truncating the IV first. 1866 if (widenLoopCompare(DU)) 1867 return nullptr; 1868 1869 // We are here about to generate a truncate instruction that may hurt 1870 // performance because the scalar evolution expression computed earlier 1871 // in WideAddRec.first does not indicate a polynomial induction expression. 1872 // In that case, look at the operands of the use instruction to determine 1873 // if we can still widen the use instead of truncating its operand. 1874 if (widenWithVariantUse(DU)) 1875 return nullptr; 1876 1877 // This user does not evaluate to a recurrence after widening, so don't 1878 // follow it. Instead insert a Trunc to kill off the original use, 1879 // eventually isolating the original narrow IV so it can be removed. 1880 truncateIVUse(DU, DT, LI); 1881 return nullptr; 1882 } 1883 1884 /// Add eligible users of NarrowDef to NarrowIVUsers. 1885 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1886 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1887 bool NonNegativeDef = 1888 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1889 SE->getZero(NarrowSCEV->getType())); 1890 for (User *U : NarrowDef->users()) { 1891 Instruction *NarrowUser = cast<Instruction>(U); 1892 1893 // Handle data flow merges and bizarre phi cycles. 1894 if (!Widened.insert(NarrowUser).second) 1895 continue; 1896 1897 bool NonNegativeUse = false; 1898 if (!NonNegativeDef) { 1899 // We might have a control-dependent range information for this context. 1900 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1901 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1902 } 1903 1904 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1905 NonNegativeDef || NonNegativeUse); 1906 } 1907 } 1908 1909 /// Process a single induction variable. First use the SCEVExpander to create a 1910 /// wide induction variable that evaluates to the same recurrence as the 1911 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1912 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1913 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1914 /// 1915 /// It would be simpler to delete uses as they are processed, but we must avoid 1916 /// invalidating SCEV expressions. 1917 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1918 // Is this phi an induction variable? 1919 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1920 if (!AddRec) 1921 return nullptr; 1922 1923 // Widen the induction variable expression. 1924 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign 1925 ? SE->getSignExtendExpr(AddRec, WideType) 1926 : SE->getZeroExtendExpr(AddRec, WideType); 1927 1928 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1929 "Expect the new IV expression to preserve its type"); 1930 1931 // Can the IV be extended outside the loop without overflow? 1932 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1933 if (!AddRec || AddRec->getLoop() != L) 1934 return nullptr; 1935 1936 // An AddRec must have loop-invariant operands. Since this AddRec is 1937 // materialized by a loop header phi, the expression cannot have any post-loop 1938 // operands, so they must dominate the loop header. 1939 assert( 1940 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1941 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1942 "Loop header phi recurrence inputs do not dominate the loop"); 1943 1944 // Iterate over IV uses (including transitive ones) looking for IV increments 1945 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1946 // the increment calculate control-dependent range information basing on 1947 // dominating conditions inside of the loop (e.g. a range check inside of the 1948 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1949 // 1950 // Control-dependent range information is later used to prove that a narrow 1951 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1952 // this on demand because when pushNarrowIVUsers needs this information some 1953 // of the dominating conditions might be already widened. 1954 if (UsePostIncrementRanges) 1955 calculatePostIncRanges(OrigPhi); 1956 1957 // The rewriter provides a value for the desired IV expression. This may 1958 // either find an existing phi or materialize a new one. Either way, we 1959 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1960 // of the phi-SCC dominates the loop entry. 1961 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1962 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt); 1963 // If the wide phi is not a phi node, for example a cast node, like bitcast, 1964 // inttoptr, ptrtoint, just skip for now. 1965 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) { 1966 // if the cast node is an inserted instruction without any user, we should 1967 // remove it to make sure the pass don't touch the function as we can not 1968 // wide the phi. 1969 if (ExpandInst->hasNUses(0) && 1970 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst))) 1971 DeadInsts.emplace_back(ExpandInst); 1972 return nullptr; 1973 } 1974 1975 // Remembering the WideIV increment generated by SCEVExpander allows 1976 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1977 // employ a general reuse mechanism because the call above is the only call to 1978 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1979 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1980 WideInc = 1981 dyn_cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1982 if (WideInc) { 1983 WideIncExpr = SE->getSCEV(WideInc); 1984 // Propagate the debug location associated with the original loop 1985 // increment to the new (widened) increment. 1986 auto *OrigInc = 1987 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1988 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1989 } 1990 } 1991 1992 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1993 ++NumWidened; 1994 1995 // Traverse the def-use chain using a worklist starting at the original IV. 1996 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1997 1998 Widened.insert(OrigPhi); 1999 pushNarrowIVUsers(OrigPhi, WidePhi); 2000 2001 while (!NarrowIVUsers.empty()) { 2002 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 2003 2004 // Process a def-use edge. This may replace the use, so don't hold a 2005 // use_iterator across it. 2006 Instruction *WideUse = widenIVUse(DU, Rewriter); 2007 2008 // Follow all def-use edges from the previous narrow use. 2009 if (WideUse) 2010 pushNarrowIVUsers(DU.NarrowUse, WideUse); 2011 2012 // widenIVUse may have removed the def-use edge. 2013 if (DU.NarrowDef->use_empty()) 2014 DeadInsts.emplace_back(DU.NarrowDef); 2015 } 2016 2017 // Attach any debug information to the new PHI. 2018 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT); 2019 2020 return WidePhi; 2021 } 2022 2023 /// Calculates control-dependent range for the given def at the given context 2024 /// by looking at dominating conditions inside of the loop 2025 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 2026 Instruction *NarrowUser) { 2027 Value *NarrowDefLHS; 2028 const APInt *NarrowDefRHS; 2029 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 2030 m_APInt(NarrowDefRHS))) || 2031 !NarrowDefRHS->isNonNegative()) 2032 return; 2033 2034 auto UpdateRangeFromCondition = [&] (Value *Condition, 2035 bool TrueDest) { 2036 CmpInst::Predicate Pred; 2037 Value *CmpRHS; 2038 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 2039 m_Value(CmpRHS)))) 2040 return; 2041 2042 CmpInst::Predicate P = 2043 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 2044 2045 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 2046 auto CmpConstrainedLHSRange = 2047 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 2048 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( 2049 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap); 2050 2051 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 2052 }; 2053 2054 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 2055 if (!HasGuards) 2056 return; 2057 2058 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 2059 Ctx->getParent()->rend())) { 2060 Value *C = nullptr; 2061 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 2062 UpdateRangeFromCondition(C, /*TrueDest=*/true); 2063 } 2064 }; 2065 2066 UpdateRangeFromGuards(NarrowUser); 2067 2068 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 2069 // If NarrowUserBB is statically unreachable asking dominator queries may 2070 // yield surprising results. (e.g. the block may not have a dom tree node) 2071 if (!DT->isReachableFromEntry(NarrowUserBB)) 2072 return; 2073 2074 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 2075 L->contains(DTB->getBlock()); 2076 DTB = DTB->getIDom()) { 2077 auto *BB = DTB->getBlock(); 2078 auto *TI = BB->getTerminator(); 2079 UpdateRangeFromGuards(TI); 2080 2081 auto *BI = dyn_cast<BranchInst>(TI); 2082 if (!BI || !BI->isConditional()) 2083 continue; 2084 2085 auto *TrueSuccessor = BI->getSuccessor(0); 2086 auto *FalseSuccessor = BI->getSuccessor(1); 2087 2088 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 2089 return BBE.isSingleEdge() && 2090 DT->dominates(BBE, NarrowUser->getParent()); 2091 }; 2092 2093 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 2094 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 2095 2096 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 2097 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 2098 } 2099 } 2100 2101 /// Calculates PostIncRangeInfos map for the given IV 2102 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 2103 SmallPtrSet<Instruction *, 16> Visited; 2104 SmallVector<Instruction *, 6> Worklist; 2105 Worklist.push_back(OrigPhi); 2106 Visited.insert(OrigPhi); 2107 2108 while (!Worklist.empty()) { 2109 Instruction *NarrowDef = Worklist.pop_back_val(); 2110 2111 for (Use &U : NarrowDef->uses()) { 2112 auto *NarrowUser = cast<Instruction>(U.getUser()); 2113 2114 // Don't go looking outside the current loop. 2115 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 2116 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 2117 continue; 2118 2119 if (!Visited.insert(NarrowUser).second) 2120 continue; 2121 2122 Worklist.push_back(NarrowUser); 2123 2124 calculatePostIncRange(NarrowDef, NarrowUser); 2125 } 2126 } 2127 } 2128 2129 PHINode *llvm::createWideIV(const WideIVInfo &WI, 2130 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, 2131 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2132 unsigned &NumElimExt, unsigned &NumWidened, 2133 bool HasGuards, bool UsePostIncrementRanges) { 2134 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges); 2135 PHINode *WidePHI = Widener.createWideIV(Rewriter); 2136 NumElimExt = Widener.getNumElimExt(); 2137 NumWidened = Widener.getNumWidened(); 2138 return WidePHI; 2139 } 2140