1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "indvars" 32 33 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 34 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 35 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 36 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 37 STATISTIC( 38 NumSimplifiedSDiv, 39 "Number of IV signed division operations converted to unsigned division"); 40 STATISTIC( 41 NumSimplifiedSRem, 42 "Number of IV signed remainder operations converted to unsigned remainder"); 43 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 44 45 namespace { 46 /// This is a utility for simplifying induction variables 47 /// based on ScalarEvolution. It is the primary instrument of the 48 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 49 /// other loop passes that preserve SCEV. 50 class SimplifyIndvar { 51 Loop *L; 52 LoopInfo *LI; 53 ScalarEvolution *SE; 54 DominatorTree *DT; 55 const TargetTransformInfo *TTI; 56 SCEVExpander &Rewriter; 57 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 58 59 bool Changed = false; 60 61 public: 62 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 63 LoopInfo *LI, const TargetTransformInfo *TTI, 64 SCEVExpander &Rewriter, 65 SmallVectorImpl<WeakTrackingVH> &Dead) 66 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter), 67 DeadInsts(Dead) { 68 assert(LI && "IV simplification requires LoopInfo"); 69 } 70 71 bool hasChanged() const { return Changed; } 72 73 /// Iteratively perform simplification on a worklist of users of the 74 /// specified induction variable. This is the top-level driver that applies 75 /// all simplifications to users of an IV. 76 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 77 78 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 79 80 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 81 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 82 bool replaceFloatIVWithIntegerIV(Instruction *UseInst); 83 84 bool eliminateOverflowIntrinsic(WithOverflowInst *WO); 85 bool eliminateSaturatingIntrinsic(SaturatingInst *SI); 86 bool eliminateTrunc(TruncInst *TI); 87 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 88 bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand); 89 void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand); 90 void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand, 91 bool IsSigned); 92 void replaceRemWithNumerator(BinaryOperator *Rem); 93 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 94 void replaceSRemWithURem(BinaryOperator *Rem); 95 bool eliminateSDiv(BinaryOperator *SDiv); 96 bool strengthenOverflowingOperation(BinaryOperator *OBO, 97 Instruction *IVOperand); 98 bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand); 99 }; 100 } 101 102 /// Find a point in code which dominates all given instructions. We can safely 103 /// assume that, whatever fact we can prove at the found point, this fact is 104 /// also true for each of the given instructions. 105 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions, 106 DominatorTree &DT) { 107 Instruction *CommonDom = nullptr; 108 for (auto *Insn : Instructions) 109 CommonDom = 110 CommonDom ? DT.findNearestCommonDominator(CommonDom, Insn) : Insn; 111 assert(CommonDom && "Common dominator not found?"); 112 return CommonDom; 113 } 114 115 /// Fold an IV operand into its use. This removes increments of an 116 /// aligned IV when used by a instruction that ignores the low bits. 117 /// 118 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 119 /// 120 /// Return the operand of IVOperand for this induction variable if IVOperand can 121 /// be folded (in case more folding opportunities have been exposed). 122 /// Otherwise return null. 123 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 124 Value *IVSrc = nullptr; 125 const unsigned OperIdx = 0; 126 const SCEV *FoldedExpr = nullptr; 127 bool MustDropExactFlag = false; 128 switch (UseInst->getOpcode()) { 129 default: 130 return nullptr; 131 case Instruction::UDiv: 132 case Instruction::LShr: 133 // We're only interested in the case where we know something about 134 // the numerator and have a constant denominator. 135 if (IVOperand != UseInst->getOperand(OperIdx) || 136 !isa<ConstantInt>(UseInst->getOperand(1))) 137 return nullptr; 138 139 // Attempt to fold a binary operator with constant operand. 140 // e.g. ((I + 1) >> 2) => I >> 2 141 if (!isa<BinaryOperator>(IVOperand) 142 || !isa<ConstantInt>(IVOperand->getOperand(1))) 143 return nullptr; 144 145 IVSrc = IVOperand->getOperand(0); 146 // IVSrc must be the (SCEVable) IV, since the other operand is const. 147 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 148 149 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 150 if (UseInst->getOpcode() == Instruction::LShr) { 151 // Get a constant for the divisor. See createSCEV. 152 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 153 if (D->getValue().uge(BitWidth)) 154 return nullptr; 155 156 D = ConstantInt::get(UseInst->getContext(), 157 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 158 } 159 const auto *LHS = SE->getSCEV(IVSrc); 160 const auto *RHS = SE->getSCEV(D); 161 FoldedExpr = SE->getUDivExpr(LHS, RHS); 162 // We might have 'exact' flag set at this point which will no longer be 163 // correct after we make the replacement. 164 if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS)) 165 MustDropExactFlag = true; 166 } 167 // We have something that might fold it's operand. Compare SCEVs. 168 if (!SE->isSCEVable(UseInst->getType())) 169 return nullptr; 170 171 // Bypass the operand if SCEV can prove it has no effect. 172 if (SE->getSCEV(UseInst) != FoldedExpr) 173 return nullptr; 174 175 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 176 << " -> " << *UseInst << '\n'); 177 178 UseInst->setOperand(OperIdx, IVSrc); 179 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 180 181 if (MustDropExactFlag) 182 UseInst->dropPoisonGeneratingFlags(); 183 184 ++NumElimOperand; 185 Changed = true; 186 if (IVOperand->use_empty()) 187 DeadInsts.emplace_back(IVOperand); 188 return IVSrc; 189 } 190 191 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 192 Instruction *IVOperand) { 193 auto *Preheader = L->getLoopPreheader(); 194 if (!Preheader) 195 return false; 196 unsigned IVOperIdx = 0; 197 ICmpInst::Predicate Pred = ICmp->getPredicate(); 198 if (IVOperand != ICmp->getOperand(0)) { 199 // Swapped 200 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 201 IVOperIdx = 1; 202 Pred = ICmpInst::getSwappedPredicate(Pred); 203 } 204 205 // Get the SCEVs for the ICmp operands (in the specific context of the 206 // current loop) 207 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 208 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 209 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 210 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L, ICmp); 211 if (!LIP) 212 return false; 213 ICmpInst::Predicate InvariantPredicate = LIP->Pred; 214 const SCEV *InvariantLHS = LIP->LHS; 215 const SCEV *InvariantRHS = LIP->RHS; 216 217 // Do not generate something ridiculous. 218 auto *PHTerm = Preheader->getTerminator(); 219 if (Rewriter.isHighCostExpansion({ InvariantLHS, InvariantRHS }, L, 220 2 * SCEVCheapExpansionBudget, TTI, PHTerm)) 221 return false; 222 auto *NewLHS = 223 Rewriter.expandCodeFor(InvariantLHS, IVOperand->getType(), PHTerm); 224 auto *NewRHS = 225 Rewriter.expandCodeFor(InvariantRHS, IVOperand->getType(), PHTerm); 226 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 227 ICmp->setPredicate(InvariantPredicate); 228 ICmp->setOperand(0, NewLHS); 229 ICmp->setOperand(1, NewRHS); 230 return true; 231 } 232 233 /// SimplifyIVUsers helper for eliminating useless 234 /// comparisons against an induction variable. 235 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, 236 Instruction *IVOperand) { 237 unsigned IVOperIdx = 0; 238 ICmpInst::Predicate Pred = ICmp->getPredicate(); 239 ICmpInst::Predicate OriginalPred = Pred; 240 if (IVOperand != ICmp->getOperand(0)) { 241 // Swapped 242 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 243 IVOperIdx = 1; 244 Pred = ICmpInst::getSwappedPredicate(Pred); 245 } 246 247 // Get the SCEVs for the ICmp operands (in the specific context of the 248 // current loop) 249 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 250 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 251 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 252 253 // If the condition is always true or always false in the given context, 254 // replace it with a constant value. 255 SmallVector<Instruction *, 4> Users; 256 for (auto *U : ICmp->users()) 257 Users.push_back(cast<Instruction>(U)); 258 const Instruction *CtxI = findCommonDominator(Users, *DT); 259 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) { 260 SE->forgetValue(ICmp); 261 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev)); 262 DeadInsts.emplace_back(ICmp); 263 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 264 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 265 // fallthrough to end of function 266 } else if (ICmpInst::isSigned(OriginalPred) && 267 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 268 // If we were unable to make anything above, all we can is to canonicalize 269 // the comparison hoping that it will open the doors for other 270 // optimizations. If we find out that we compare two non-negative values, 271 // we turn the instruction's predicate to its unsigned version. Note that 272 // we cannot rely on Pred here unless we check if we have swapped it. 273 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 274 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 275 << '\n'); 276 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 277 } else 278 return; 279 280 ++NumElimCmp; 281 Changed = true; 282 } 283 284 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 285 // Get the SCEVs for the ICmp operands. 286 auto *N = SE->getSCEV(SDiv->getOperand(0)); 287 auto *D = SE->getSCEV(SDiv->getOperand(1)); 288 289 // Simplify unnecessary loops away. 290 const Loop *L = LI->getLoopFor(SDiv->getParent()); 291 N = SE->getSCEVAtScope(N, L); 292 D = SE->getSCEVAtScope(D, L); 293 294 // Replace sdiv by udiv if both of the operands are non-negative 295 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 296 auto *UDiv = BinaryOperator::Create( 297 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 298 SDiv->getName() + ".udiv", SDiv); 299 UDiv->setIsExact(SDiv->isExact()); 300 SDiv->replaceAllUsesWith(UDiv); 301 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 302 ++NumSimplifiedSDiv; 303 Changed = true; 304 DeadInsts.push_back(SDiv); 305 return true; 306 } 307 308 return false; 309 } 310 311 // i %s n -> i %u n if i >= 0 and n >= 0 312 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 313 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 314 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 315 Rem->getName() + ".urem", Rem); 316 Rem->replaceAllUsesWith(URem); 317 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 318 ++NumSimplifiedSRem; 319 Changed = true; 320 DeadInsts.emplace_back(Rem); 321 } 322 323 // i % n --> i if i is in [0,n). 324 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 325 Rem->replaceAllUsesWith(Rem->getOperand(0)); 326 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 327 ++NumElimRem; 328 Changed = true; 329 DeadInsts.emplace_back(Rem); 330 } 331 332 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 333 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 334 auto *T = Rem->getType(); 335 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 336 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 337 SelectInst *Sel = 338 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 339 Rem->replaceAllUsesWith(Sel); 340 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 341 ++NumElimRem; 342 Changed = true; 343 DeadInsts.emplace_back(Rem); 344 } 345 346 /// SimplifyIVUsers helper for eliminating useless remainder operations 347 /// operating on an induction variable or replacing srem by urem. 348 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, 349 Instruction *IVOperand, 350 bool IsSigned) { 351 auto *NValue = Rem->getOperand(0); 352 auto *DValue = Rem->getOperand(1); 353 // We're only interested in the case where we know something about 354 // the numerator, unless it is a srem, because we want to replace srem by urem 355 // in general. 356 bool UsedAsNumerator = IVOperand == NValue; 357 if (!UsedAsNumerator && !IsSigned) 358 return; 359 360 const SCEV *N = SE->getSCEV(NValue); 361 362 // Simplify unnecessary loops away. 363 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 364 N = SE->getSCEVAtScope(N, ICmpLoop); 365 366 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 367 368 // Do not proceed if the Numerator may be negative 369 if (!IsNumeratorNonNegative) 370 return; 371 372 const SCEV *D = SE->getSCEV(DValue); 373 D = SE->getSCEVAtScope(D, ICmpLoop); 374 375 if (UsedAsNumerator) { 376 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 377 if (SE->isKnownPredicate(LT, N, D)) { 378 replaceRemWithNumerator(Rem); 379 return; 380 } 381 382 auto *T = Rem->getType(); 383 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 384 if (SE->isKnownPredicate(LT, NLessOne, D)) { 385 replaceRemWithNumeratorOrZero(Rem); 386 return; 387 } 388 } 389 390 // Try to replace SRem with URem, if both N and D are known non-negative. 391 // Since we had already check N, we only need to check D now 392 if (!IsSigned || !SE->isKnownNonNegative(D)) 393 return; 394 395 replaceSRemWithURem(Rem); 396 } 397 398 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { 399 const SCEV *LHS = SE->getSCEV(WO->getLHS()); 400 const SCEV *RHS = SE->getSCEV(WO->getRHS()); 401 if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS)) 402 return false; 403 404 // Proved no overflow, nuke the overflow check and, if possible, the overflow 405 // intrinsic as well. 406 407 BinaryOperator *NewResult = BinaryOperator::Create( 408 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO); 409 410 if (WO->isSigned()) 411 NewResult->setHasNoSignedWrap(true); 412 else 413 NewResult->setHasNoUnsignedWrap(true); 414 415 SmallVector<ExtractValueInst *, 4> ToDelete; 416 417 for (auto *U : WO->users()) { 418 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 419 if (EVI->getIndices()[0] == 1) 420 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext())); 421 else { 422 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 423 EVI->replaceAllUsesWith(NewResult); 424 } 425 ToDelete.push_back(EVI); 426 } 427 } 428 429 for (auto *EVI : ToDelete) 430 EVI->eraseFromParent(); 431 432 if (WO->use_empty()) 433 WO->eraseFromParent(); 434 435 Changed = true; 436 return true; 437 } 438 439 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { 440 const SCEV *LHS = SE->getSCEV(SI->getLHS()); 441 const SCEV *RHS = SE->getSCEV(SI->getRHS()); 442 if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS)) 443 return false; 444 445 BinaryOperator *BO = BinaryOperator::Create( 446 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI); 447 if (SI->isSigned()) 448 BO->setHasNoSignedWrap(); 449 else 450 BO->setHasNoUnsignedWrap(); 451 452 SI->replaceAllUsesWith(BO); 453 DeadInsts.emplace_back(SI); 454 Changed = true; 455 return true; 456 } 457 458 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 459 // It is always legal to replace 460 // icmp <pred> i32 trunc(iv), n 461 // with 462 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 463 // Or with 464 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 465 // Or with either of these if pred is an equality predicate. 466 // 467 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 468 // every comparison which uses trunc, it means that we can replace each of 469 // them with comparison of iv against sext/zext(n). We no longer need trunc 470 // after that. 471 // 472 // TODO: Should we do this if we can widen *some* comparisons, but not all 473 // of them? Sometimes it is enough to enable other optimizations, but the 474 // trunc instruction will stay in the loop. 475 Value *IV = TI->getOperand(0); 476 Type *IVTy = IV->getType(); 477 const SCEV *IVSCEV = SE->getSCEV(IV); 478 const SCEV *TISCEV = SE->getSCEV(TI); 479 480 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 481 // get rid of trunc 482 bool DoesSExtCollapse = false; 483 bool DoesZExtCollapse = false; 484 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 485 DoesSExtCollapse = true; 486 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 487 DoesZExtCollapse = true; 488 489 // If neither sext nor zext does collapse, it is not profitable to do any 490 // transform. Bail. 491 if (!DoesSExtCollapse && !DoesZExtCollapse) 492 return false; 493 494 // Collect users of the trunc that look like comparisons against invariants. 495 // Bail if we find something different. 496 SmallVector<ICmpInst *, 4> ICmpUsers; 497 for (auto *U : TI->users()) { 498 // We don't care about users in unreachable blocks. 499 if (isa<Instruction>(U) && 500 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 501 continue; 502 ICmpInst *ICI = dyn_cast<ICmpInst>(U); 503 if (!ICI) return false; 504 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 505 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) && 506 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0)))) 507 return false; 508 // If we cannot get rid of trunc, bail. 509 if (ICI->isSigned() && !DoesSExtCollapse) 510 return false; 511 if (ICI->isUnsigned() && !DoesZExtCollapse) 512 return false; 513 // For equality, either signed or unsigned works. 514 ICmpUsers.push_back(ICI); 515 } 516 517 auto CanUseZExt = [&](ICmpInst *ICI) { 518 // Unsigned comparison can be widened as unsigned. 519 if (ICI->isUnsigned()) 520 return true; 521 // Is it profitable to do zext? 522 if (!DoesZExtCollapse) 523 return false; 524 // For equality, we can safely zext both parts. 525 if (ICI->isEquality()) 526 return true; 527 // Otherwise we can only use zext when comparing two non-negative or two 528 // negative values. But in practice, we will never pass DoesZExtCollapse 529 // check for a negative value, because zext(trunc(x)) is non-negative. So 530 // it only make sense to check for non-negativity here. 531 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 532 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 533 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 534 }; 535 // Replace all comparisons against trunc with comparisons against IV. 536 for (auto *ICI : ICmpUsers) { 537 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0)); 538 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1); 539 Instruction *Ext = nullptr; 540 // For signed/unsigned predicate, replace the old comparison with comparison 541 // of immediate IV against sext/zext of the invariant argument. If we can 542 // use either sext or zext (i.e. we are dealing with equality predicate), 543 // then prefer zext as a more canonical form. 544 // TODO: If we see a signed comparison which can be turned into unsigned, 545 // we can do it here for canonicalization purposes. 546 ICmpInst::Predicate Pred = ICI->getPredicate(); 547 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred); 548 if (CanUseZExt(ICI)) { 549 assert(DoesZExtCollapse && "Unprofitable zext?"); 550 Ext = new ZExtInst(Op1, IVTy, "zext", ICI); 551 Pred = ICmpInst::getUnsignedPredicate(Pred); 552 } else { 553 assert(DoesSExtCollapse && "Unprofitable sext?"); 554 Ext = new SExtInst(Op1, IVTy, "sext", ICI); 555 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 556 } 557 bool Changed; 558 L->makeLoopInvariant(Ext, Changed); 559 (void)Changed; 560 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); 561 ICI->replaceAllUsesWith(NewICI); 562 DeadInsts.emplace_back(ICI); 563 } 564 565 // Trunc no longer needed. 566 TI->replaceAllUsesWith(PoisonValue::get(TI->getType())); 567 DeadInsts.emplace_back(TI); 568 return true; 569 } 570 571 /// Eliminate an operation that consumes a simple IV and has no observable 572 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 573 /// but UseInst may not be. 574 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 575 Instruction *IVOperand) { 576 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 577 eliminateIVComparison(ICmp, IVOperand); 578 return true; 579 } 580 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 581 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 582 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 583 simplifyIVRemainder(Bin, IVOperand, IsSRem); 584 return true; 585 } 586 587 if (Bin->getOpcode() == Instruction::SDiv) 588 return eliminateSDiv(Bin); 589 } 590 591 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst)) 592 if (eliminateOverflowIntrinsic(WO)) 593 return true; 594 595 if (auto *SI = dyn_cast<SaturatingInst>(UseInst)) 596 if (eliminateSaturatingIntrinsic(SI)) 597 return true; 598 599 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 600 if (eliminateTrunc(TI)) 601 return true; 602 603 if (eliminateIdentitySCEV(UseInst, IVOperand)) 604 return true; 605 606 return false; 607 } 608 609 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 610 if (auto *BB = L->getLoopPreheader()) 611 return BB->getTerminator(); 612 613 return Hint; 614 } 615 616 /// Replace the UseInst with a loop invariant expression if it is safe. 617 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 618 if (!SE->isSCEVable(I->getType())) 619 return false; 620 621 // Get the symbolic expression for this instruction. 622 const SCEV *S = SE->getSCEV(I); 623 624 if (!SE->isLoopInvariant(S, L)) 625 return false; 626 627 // Do not generate something ridiculous even if S is loop invariant. 628 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I)) 629 return false; 630 631 auto *IP = GetLoopInvariantInsertPosition(L, I); 632 633 if (!Rewriter.isSafeToExpandAt(S, IP)) { 634 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I 635 << " with non-speculable loop invariant: " << *S << '\n'); 636 return false; 637 } 638 639 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 640 641 I->replaceAllUsesWith(Invariant); 642 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 643 << " with loop invariant: " << *S << '\n'); 644 ++NumFoldedUser; 645 Changed = true; 646 DeadInsts.emplace_back(I); 647 return true; 648 } 649 650 /// Eliminate redundant type cast between integer and float. 651 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) { 652 if (UseInst->getOpcode() != CastInst::SIToFP && 653 UseInst->getOpcode() != CastInst::UIToFP) 654 return false; 655 656 Instruction *IVOperand = cast<Instruction>(UseInst->getOperand(0)); 657 // Get the symbolic expression for this instruction. 658 const SCEV *IV = SE->getSCEV(IVOperand); 659 unsigned MaskBits; 660 if (UseInst->getOpcode() == CastInst::SIToFP) 661 MaskBits = SE->getSignedRange(IV).getMinSignedBits(); 662 else 663 MaskBits = SE->getUnsignedRange(IV).getActiveBits(); 664 unsigned DestNumSigBits = UseInst->getType()->getFPMantissaWidth(); 665 if (MaskBits <= DestNumSigBits) { 666 for (User *U : UseInst->users()) { 667 // Match for fptosi/fptoui of sitofp and with same type. 668 auto *CI = dyn_cast<CastInst>(U); 669 if (!CI) 670 continue; 671 672 CastInst::CastOps Opcode = CI->getOpcode(); 673 if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI) 674 continue; 675 676 Value *Conv = nullptr; 677 if (IVOperand->getType() != CI->getType()) { 678 IRBuilder<> Builder(CI); 679 StringRef Name = IVOperand->getName(); 680 // To match InstCombine logic, we only need sext if both fptosi and 681 // sitofp are used. If one of them is unsigned, then we can use zext. 682 if (SE->getTypeSizeInBits(IVOperand->getType()) > 683 SE->getTypeSizeInBits(CI->getType())) { 684 Conv = Builder.CreateTrunc(IVOperand, CI->getType(), Name + ".trunc"); 685 } else if (Opcode == CastInst::FPToUI || 686 UseInst->getOpcode() == CastInst::UIToFP) { 687 Conv = Builder.CreateZExt(IVOperand, CI->getType(), Name + ".zext"); 688 } else { 689 Conv = Builder.CreateSExt(IVOperand, CI->getType(), Name + ".sext"); 690 } 691 } else 692 Conv = IVOperand; 693 694 CI->replaceAllUsesWith(Conv); 695 DeadInsts.push_back(CI); 696 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI 697 << " with: " << *Conv << '\n'); 698 699 ++NumFoldedUser; 700 Changed = true; 701 } 702 } 703 704 return Changed; 705 } 706 707 /// Eliminate any operation that SCEV can prove is an identity function. 708 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 709 Instruction *IVOperand) { 710 if (!SE->isSCEVable(UseInst->getType()) || 711 (UseInst->getType() != IVOperand->getType()) || 712 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 713 return false; 714 715 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 716 // dominator tree, even if X is an operand to Y. For instance, in 717 // 718 // %iv = phi i32 {0,+,1} 719 // br %cond, label %left, label %merge 720 // 721 // left: 722 // %X = add i32 %iv, 0 723 // br label %merge 724 // 725 // merge: 726 // %M = phi (%X, %iv) 727 // 728 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 729 // %M.replaceAllUsesWith(%X) would be incorrect. 730 731 if (isa<PHINode>(UseInst)) 732 // If UseInst is not a PHI node then we know that IVOperand dominates 733 // UseInst directly from the legality of SSA. 734 if (!DT || !DT->dominates(IVOperand, UseInst)) 735 return false; 736 737 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 738 return false; 739 740 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 741 742 SE->forgetValue(UseInst); 743 UseInst->replaceAllUsesWith(IVOperand); 744 ++NumElimIdentity; 745 Changed = true; 746 DeadInsts.emplace_back(UseInst); 747 return true; 748 } 749 750 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 751 /// unsigned-overflow. Returns true if anything changed, false otherwise. 752 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 753 Instruction *IVOperand) { 754 auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp( 755 cast<OverflowingBinaryOperator>(BO)); 756 757 if (!Flags) 758 return false; 759 760 BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == 761 SCEV::FlagNUW); 762 BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == 763 SCEV::FlagNSW); 764 765 // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap 766 // flags on addrecs while performing zero/sign extensions. We could call 767 // forgetValue() here to make sure those flags also propagate to any other 768 // SCEV expressions based on the addrec. However, this can have pathological 769 // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384. 770 return true; 771 } 772 773 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 774 /// information from the IV's range. Returns true if anything changed, false 775 /// otherwise. 776 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 777 Instruction *IVOperand) { 778 using namespace llvm::PatternMatch; 779 780 if (BO->getOpcode() == Instruction::Shl) { 781 bool Changed = false; 782 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 783 for (auto *U : BO->users()) { 784 const APInt *C; 785 if (match(U, 786 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 787 match(U, 788 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 789 BinaryOperator *Shr = cast<BinaryOperator>(U); 790 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 791 Shr->setIsExact(true); 792 Changed = true; 793 } 794 } 795 } 796 return Changed; 797 } 798 799 return false; 800 } 801 802 /// Add all uses of Def to the current IV's worklist. 803 static void pushIVUsers( 804 Instruction *Def, Loop *L, 805 SmallPtrSet<Instruction*,16> &Simplified, 806 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 807 808 for (User *U : Def->users()) { 809 Instruction *UI = cast<Instruction>(U); 810 811 // Avoid infinite or exponential worklist processing. 812 // Also ensure unique worklist users. 813 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 814 // self edges first. 815 if (UI == Def) 816 continue; 817 818 // Only change the current Loop, do not change the other parts (e.g. other 819 // Loops). 820 if (!L->contains(UI)) 821 continue; 822 823 // Do not push the same instruction more than once. 824 if (!Simplified.insert(UI).second) 825 continue; 826 827 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 828 } 829 } 830 831 /// Return true if this instruction generates a simple SCEV 832 /// expression in terms of that IV. 833 /// 834 /// This is similar to IVUsers' isInteresting() but processes each instruction 835 /// non-recursively when the operand is already known to be a simpleIVUser. 836 /// 837 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 838 if (!SE->isSCEVable(I->getType())) 839 return false; 840 841 // Get the symbolic expression for this instruction. 842 const SCEV *S = SE->getSCEV(I); 843 844 // Only consider affine recurrences. 845 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 846 if (AR && AR->getLoop() == L) 847 return true; 848 849 return false; 850 } 851 852 /// Iteratively perform simplification on a worklist of users 853 /// of the specified induction variable. Each successive simplification may push 854 /// more users which may themselves be candidates for simplification. 855 /// 856 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 857 /// instructions in-place during analysis. Rather than rewriting induction 858 /// variables bottom-up from their users, it transforms a chain of IVUsers 859 /// top-down, updating the IR only when it encounters a clear optimization 860 /// opportunity. 861 /// 862 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 863 /// 864 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 865 if (!SE->isSCEVable(CurrIV->getType())) 866 return; 867 868 // Instructions processed by SimplifyIndvar for CurrIV. 869 SmallPtrSet<Instruction*,16> Simplified; 870 871 // Use-def pairs if IV users waiting to be processed for CurrIV. 872 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 873 874 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 875 // called multiple times for the same LoopPhi. This is the proper thing to 876 // do for loop header phis that use each other. 877 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 878 879 while (!SimpleIVUsers.empty()) { 880 std::pair<Instruction*, Instruction*> UseOper = 881 SimpleIVUsers.pop_back_val(); 882 Instruction *UseInst = UseOper.first; 883 884 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 885 // rather than try to do some complex analysis or transformation (such as 886 // widening) basing on it. 887 // TODO: Propagate TLI and pass it here to handle more cases. 888 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 889 DeadInsts.emplace_back(UseInst); 890 continue; 891 } 892 893 // Bypass back edges to avoid extra work. 894 if (UseInst == CurrIV) continue; 895 896 // Try to replace UseInst with a loop invariant before any other 897 // simplifications. 898 if (replaceIVUserWithLoopInvariant(UseInst)) 899 continue; 900 901 Instruction *IVOperand = UseOper.second; 902 for (unsigned N = 0; IVOperand; ++N) { 903 assert(N <= Simplified.size() && "runaway iteration"); 904 (void) N; 905 906 Value *NewOper = foldIVUser(UseInst, IVOperand); 907 if (!NewOper) 908 break; // done folding 909 IVOperand = dyn_cast<Instruction>(NewOper); 910 } 911 if (!IVOperand) 912 continue; 913 914 if (eliminateIVUser(UseInst, IVOperand)) { 915 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 916 continue; 917 } 918 919 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 920 if ((isa<OverflowingBinaryOperator>(BO) && 921 strengthenOverflowingOperation(BO, IVOperand)) || 922 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { 923 // re-queue uses of the now modified binary operator and fall 924 // through to the checks that remain. 925 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 926 } 927 } 928 929 // Try to use integer induction for FPToSI of float induction directly. 930 if (replaceFloatIVWithIntegerIV(UseInst)) { 931 // Re-queue the potentially new direct uses of IVOperand. 932 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 933 continue; 934 } 935 936 CastInst *Cast = dyn_cast<CastInst>(UseInst); 937 if (V && Cast) { 938 V->visitCast(Cast); 939 continue; 940 } 941 if (isSimpleIVUser(UseInst, L, SE)) { 942 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 943 } 944 } 945 } 946 947 namespace llvm { 948 949 void IVVisitor::anchor() { } 950 951 /// Simplify instructions that use this induction variable 952 /// by using ScalarEvolution to analyze the IV's recurrence. 953 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 954 LoopInfo *LI, const TargetTransformInfo *TTI, 955 SmallVectorImpl<WeakTrackingVH> &Dead, 956 SCEVExpander &Rewriter, IVVisitor *V) { 957 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI, 958 Rewriter, Dead); 959 SIV.simplifyUsers(CurrIV, V); 960 return SIV.hasChanged(); 961 } 962 963 /// Simplify users of induction variables within this 964 /// loop. This does not actually change or add IVs. 965 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 966 LoopInfo *LI, const TargetTransformInfo *TTI, 967 SmallVectorImpl<WeakTrackingVH> &Dead) { 968 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 969 #ifndef NDEBUG 970 Rewriter.setDebugType(DEBUG_TYPE); 971 #endif 972 bool Changed = false; 973 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 974 Changed |= 975 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter); 976 } 977 return Changed; 978 } 979 980 } // namespace llvm 981 982 namespace { 983 //===----------------------------------------------------------------------===// 984 // Widen Induction Variables - Extend the width of an IV to cover its 985 // widest uses. 986 //===----------------------------------------------------------------------===// 987 988 class WidenIV { 989 // Parameters 990 PHINode *OrigPhi; 991 Type *WideType; 992 993 // Context 994 LoopInfo *LI; 995 Loop *L; 996 ScalarEvolution *SE; 997 DominatorTree *DT; 998 999 // Does the module have any calls to the llvm.experimental.guard intrinsic 1000 // at all? If not we can avoid scanning instructions looking for guards. 1001 bool HasGuards; 1002 1003 bool UsePostIncrementRanges; 1004 1005 // Statistics 1006 unsigned NumElimExt = 0; 1007 unsigned NumWidened = 0; 1008 1009 // Result 1010 PHINode *WidePhi = nullptr; 1011 Instruction *WideInc = nullptr; 1012 const SCEV *WideIncExpr = nullptr; 1013 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 1014 1015 SmallPtrSet<Instruction *,16> Widened; 1016 1017 enum class ExtendKind { Zero, Sign, Unknown }; 1018 1019 // A map tracking the kind of extension used to widen each narrow IV 1020 // and narrow IV user. 1021 // Key: pointer to a narrow IV or IV user. 1022 // Value: the kind of extension used to widen this Instruction. 1023 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 1024 1025 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 1026 1027 // A map with control-dependent ranges for post increment IV uses. The key is 1028 // a pair of IV def and a use of this def denoting the context. The value is 1029 // a ConstantRange representing possible values of the def at the given 1030 // context. 1031 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 1032 1033 std::optional<ConstantRange> getPostIncRangeInfo(Value *Def, 1034 Instruction *UseI) { 1035 DefUserPair Key(Def, UseI); 1036 auto It = PostIncRangeInfos.find(Key); 1037 return It == PostIncRangeInfos.end() 1038 ? std::optional<ConstantRange>(std::nullopt) 1039 : std::optional<ConstantRange>(It->second); 1040 } 1041 1042 void calculatePostIncRanges(PHINode *OrigPhi); 1043 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 1044 1045 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 1046 DefUserPair Key(Def, UseI); 1047 auto It = PostIncRangeInfos.find(Key); 1048 if (It == PostIncRangeInfos.end()) 1049 PostIncRangeInfos.insert({Key, R}); 1050 else 1051 It->second = R.intersectWith(It->second); 1052 } 1053 1054 public: 1055 /// Record a link in the Narrow IV def-use chain along with the WideIV that 1056 /// computes the same value as the Narrow IV def. This avoids caching Use* 1057 /// pointers. 1058 struct NarrowIVDefUse { 1059 Instruction *NarrowDef = nullptr; 1060 Instruction *NarrowUse = nullptr; 1061 Instruction *WideDef = nullptr; 1062 1063 // True if the narrow def is never negative. Tracking this information lets 1064 // us use a sign extension instead of a zero extension or vice versa, when 1065 // profitable and legal. 1066 bool NeverNegative = false; 1067 1068 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 1069 bool NeverNegative) 1070 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 1071 NeverNegative(NeverNegative) {} 1072 }; 1073 1074 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1075 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1076 bool HasGuards, bool UsePostIncrementRanges = true); 1077 1078 PHINode *createWideIV(SCEVExpander &Rewriter); 1079 1080 unsigned getNumElimExt() { return NumElimExt; }; 1081 unsigned getNumWidened() { return NumWidened; }; 1082 1083 protected: 1084 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1085 Instruction *Use); 1086 1087 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1088 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1089 const SCEVAddRecExpr *WideAR); 1090 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1091 1092 ExtendKind getExtendKind(Instruction *I); 1093 1094 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1095 1096 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1097 1098 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1099 1100 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1101 unsigned OpCode) const; 1102 1103 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1104 1105 bool widenLoopCompare(NarrowIVDefUse DU); 1106 bool widenWithVariantUse(NarrowIVDefUse DU); 1107 1108 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1109 1110 private: 1111 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 1112 }; 1113 } // namespace 1114 1115 /// Determine the insertion point for this user. By default, insert immediately 1116 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 1117 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 1118 /// common dominator for the incoming blocks. A nullptr can be returned if no 1119 /// viable location is found: it may happen if User is a PHI and Def only comes 1120 /// to this PHI from unreachable blocks. 1121 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 1122 DominatorTree *DT, LoopInfo *LI) { 1123 PHINode *PHI = dyn_cast<PHINode>(User); 1124 if (!PHI) 1125 return User; 1126 1127 Instruction *InsertPt = nullptr; 1128 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 1129 if (PHI->getIncomingValue(i) != Def) 1130 continue; 1131 1132 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 1133 1134 if (!DT->isReachableFromEntry(InsertBB)) 1135 continue; 1136 1137 if (!InsertPt) { 1138 InsertPt = InsertBB->getTerminator(); 1139 continue; 1140 } 1141 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 1142 InsertPt = InsertBB->getTerminator(); 1143 } 1144 1145 // If we have skipped all inputs, it means that Def only comes to Phi from 1146 // unreachable blocks. 1147 if (!InsertPt) 1148 return nullptr; 1149 1150 auto *DefI = dyn_cast<Instruction>(Def); 1151 if (!DefI) 1152 return InsertPt; 1153 1154 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 1155 1156 auto *L = LI->getLoopFor(DefI->getParent()); 1157 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 1158 1159 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 1160 if (LI->getLoopFor(DTN->getBlock()) == L) 1161 return DTN->getBlock()->getTerminator(); 1162 1163 llvm_unreachable("DefI dominates InsertPt!"); 1164 } 1165 1166 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1167 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1168 bool HasGuards, bool UsePostIncrementRanges) 1169 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 1170 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 1171 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges), 1172 DeadInsts(DI) { 1173 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 1174 ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero; 1175 } 1176 1177 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1178 bool IsSigned, Instruction *Use) { 1179 // Set the debug location and conservative insertion point. 1180 IRBuilder<> Builder(Use); 1181 // Hoist the insertion point into loop preheaders as far as possible. 1182 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1183 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1184 L = L->getParentLoop()) 1185 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1186 1187 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1188 Builder.CreateZExt(NarrowOper, WideType); 1189 } 1190 1191 /// Instantiate a wide operation to replace a narrow operation. This only needs 1192 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1193 /// 0 for any operation we decide not to clone. 1194 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU, 1195 const SCEVAddRecExpr *WideAR) { 1196 unsigned Opcode = DU.NarrowUse->getOpcode(); 1197 switch (Opcode) { 1198 default: 1199 return nullptr; 1200 case Instruction::Add: 1201 case Instruction::Mul: 1202 case Instruction::UDiv: 1203 case Instruction::Sub: 1204 return cloneArithmeticIVUser(DU, WideAR); 1205 1206 case Instruction::And: 1207 case Instruction::Or: 1208 case Instruction::Xor: 1209 case Instruction::Shl: 1210 case Instruction::LShr: 1211 case Instruction::AShr: 1212 return cloneBitwiseIVUser(DU); 1213 } 1214 } 1215 1216 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) { 1217 Instruction *NarrowUse = DU.NarrowUse; 1218 Instruction *NarrowDef = DU.NarrowDef; 1219 Instruction *WideDef = DU.WideDef; 1220 1221 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1222 1223 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1224 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1225 // invariant and will be folded or hoisted. If it actually comes from a 1226 // widened IV, it should be removed during a future call to widenIVUse. 1227 bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign; 1228 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1229 ? WideDef 1230 : createExtendInst(NarrowUse->getOperand(0), WideType, 1231 IsSigned, NarrowUse); 1232 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1233 ? WideDef 1234 : createExtendInst(NarrowUse->getOperand(1), WideType, 1235 IsSigned, NarrowUse); 1236 1237 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1238 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1239 NarrowBO->getName()); 1240 IRBuilder<> Builder(NarrowUse); 1241 Builder.Insert(WideBO); 1242 WideBO->copyIRFlags(NarrowBO); 1243 return WideBO; 1244 } 1245 1246 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU, 1247 const SCEVAddRecExpr *WideAR) { 1248 Instruction *NarrowUse = DU.NarrowUse; 1249 Instruction *NarrowDef = DU.NarrowDef; 1250 Instruction *WideDef = DU.WideDef; 1251 1252 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1253 1254 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1255 1256 // We're trying to find X such that 1257 // 1258 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1259 // 1260 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1261 // and check using SCEV if any of them are correct. 1262 1263 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1264 // correct solution to X. 1265 auto GuessNonIVOperand = [&](bool SignExt) { 1266 const SCEV *WideLHS; 1267 const SCEV *WideRHS; 1268 1269 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1270 if (SignExt) 1271 return SE->getSignExtendExpr(S, Ty); 1272 return SE->getZeroExtendExpr(S, Ty); 1273 }; 1274 1275 if (IVOpIdx == 0) { 1276 WideLHS = SE->getSCEV(WideDef); 1277 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1278 WideRHS = GetExtend(NarrowRHS, WideType); 1279 } else { 1280 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1281 WideLHS = GetExtend(NarrowLHS, WideType); 1282 WideRHS = SE->getSCEV(WideDef); 1283 } 1284 1285 // WideUse is "WideDef `op.wide` X" as described in the comment. 1286 const SCEV *WideUse = 1287 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode()); 1288 1289 return WideUse == WideAR; 1290 }; 1291 1292 bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign; 1293 if (!GuessNonIVOperand(SignExtend)) { 1294 SignExtend = !SignExtend; 1295 if (!GuessNonIVOperand(SignExtend)) 1296 return nullptr; 1297 } 1298 1299 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1300 ? WideDef 1301 : createExtendInst(NarrowUse->getOperand(0), WideType, 1302 SignExtend, NarrowUse); 1303 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1304 ? WideDef 1305 : createExtendInst(NarrowUse->getOperand(1), WideType, 1306 SignExtend, NarrowUse); 1307 1308 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1309 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1310 NarrowBO->getName()); 1311 1312 IRBuilder<> Builder(NarrowUse); 1313 Builder.Insert(WideBO); 1314 WideBO->copyIRFlags(NarrowBO); 1315 return WideBO; 1316 } 1317 1318 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1319 auto It = ExtendKindMap.find(I); 1320 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1321 return It->second; 1322 } 1323 1324 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1325 unsigned OpCode) const { 1326 switch (OpCode) { 1327 case Instruction::Add: 1328 return SE->getAddExpr(LHS, RHS); 1329 case Instruction::Sub: 1330 return SE->getMinusSCEV(LHS, RHS); 1331 case Instruction::Mul: 1332 return SE->getMulExpr(LHS, RHS); 1333 case Instruction::UDiv: 1334 return SE->getUDivExpr(LHS, RHS); 1335 default: 1336 llvm_unreachable("Unsupported opcode."); 1337 }; 1338 } 1339 1340 /// No-wrap operations can transfer sign extension of their result to their 1341 /// operands. Generate the SCEV value for the widened operation without 1342 /// actually modifying the IR yet. If the expression after extending the 1343 /// operands is an AddRec for this loop, return the AddRec and the kind of 1344 /// extension used. 1345 WidenIV::WidenedRecTy 1346 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) { 1347 // Handle the common case of add<nsw/nuw> 1348 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1349 // Only Add/Sub/Mul instructions supported yet. 1350 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1351 OpCode != Instruction::Mul) 1352 return {nullptr, ExtendKind::Unknown}; 1353 1354 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1355 // if extending the other will lead to a recurrence. 1356 const unsigned ExtendOperIdx = 1357 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1358 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1359 1360 const SCEV *ExtendOperExpr = nullptr; 1361 const OverflowingBinaryOperator *OBO = 1362 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1363 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1364 if (ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap()) 1365 ExtendOperExpr = SE->getSignExtendExpr( 1366 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1367 else if (ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap()) 1368 ExtendOperExpr = SE->getZeroExtendExpr( 1369 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1370 else 1371 return {nullptr, ExtendKind::Unknown}; 1372 1373 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1374 // flags. This instruction may be guarded by control flow that the no-wrap 1375 // behavior depends on. Non-control-equivalent instructions can be mapped to 1376 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1377 // semantics to those operations. 1378 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1379 const SCEV *rhs = ExtendOperExpr; 1380 1381 // Let's swap operands to the initial order for the case of non-commutative 1382 // operations, like SUB. See PR21014. 1383 if (ExtendOperIdx == 0) 1384 std::swap(lhs, rhs); 1385 const SCEVAddRecExpr *AddRec = 1386 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1387 1388 if (!AddRec || AddRec->getLoop() != L) 1389 return {nullptr, ExtendKind::Unknown}; 1390 1391 return {AddRec, ExtKind}; 1392 } 1393 1394 /// Is this instruction potentially interesting for further simplification after 1395 /// widening it's type? In other words, can the extend be safely hoisted out of 1396 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1397 /// so, return the extended recurrence and the kind of extension used. Otherwise 1398 /// return {nullptr, ExtendKind::Unknown}. 1399 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) { 1400 if (!DU.NarrowUse->getType()->isIntegerTy()) 1401 return {nullptr, ExtendKind::Unknown}; 1402 1403 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1404 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1405 SE->getTypeSizeInBits(WideType)) { 1406 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1407 // index. So don't follow this use. 1408 return {nullptr, ExtendKind::Unknown}; 1409 } 1410 1411 const SCEV *WideExpr; 1412 ExtendKind ExtKind; 1413 if (DU.NeverNegative) { 1414 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1415 if (isa<SCEVAddRecExpr>(WideExpr)) 1416 ExtKind = ExtendKind::Sign; 1417 else { 1418 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1419 ExtKind = ExtendKind::Zero; 1420 } 1421 } else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) { 1422 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1423 ExtKind = ExtendKind::Sign; 1424 } else { 1425 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1426 ExtKind = ExtendKind::Zero; 1427 } 1428 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1429 if (!AddRec || AddRec->getLoop() != L) 1430 return {nullptr, ExtendKind::Unknown}; 1431 return {AddRec, ExtKind}; 1432 } 1433 1434 /// This IV user cannot be widened. Replace this use of the original narrow IV 1435 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1436 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT, 1437 LoopInfo *LI) { 1438 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1439 if (!InsertPt) 1440 return; 1441 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1442 << *DU.NarrowUse << "\n"); 1443 IRBuilder<> Builder(InsertPt); 1444 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1445 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1446 } 1447 1448 /// If the narrow use is a compare instruction, then widen the compare 1449 // (and possibly the other operand). The extend operation is hoisted into the 1450 // loop preheader as far as possible. 1451 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) { 1452 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1453 if (!Cmp) 1454 return false; 1455 1456 // We can legally widen the comparison in the following two cases: 1457 // 1458 // - The signedness of the IV extension and comparison match 1459 // 1460 // - The narrow IV is always positive (and thus its sign extension is equal 1461 // to its zero extension). For instance, let's say we're zero extending 1462 // %narrow for the following use 1463 // 1464 // icmp slt i32 %narrow, %val ... (A) 1465 // 1466 // and %narrow is always positive. Then 1467 // 1468 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1469 // == icmp slt i32 zext(%narrow), sext(%val) 1470 bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign; 1471 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1472 return false; 1473 1474 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1475 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1476 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1477 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1478 1479 // Widen the compare instruction. 1480 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1481 if (!InsertPt) 1482 return false; 1483 IRBuilder<> Builder(InsertPt); 1484 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1485 1486 // Widen the other operand of the compare, if necessary. 1487 if (CastWidth < IVWidth) { 1488 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1489 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1490 } 1491 return true; 1492 } 1493 1494 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this 1495 // will not work when: 1496 // 1) SCEV traces back to an instruction inside the loop that SCEV can not 1497 // expand, eg. add %indvar, (load %addr) 1498 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant 1499 // While SCEV fails to avoid trunc, we can still try to use instruction 1500 // combining approach to prove trunc is not required. This can be further 1501 // extended with other instruction combining checks, but for now we handle the 1502 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext") 1503 // 1504 // Src: 1505 // %c = sub nsw %b, %indvar 1506 // %d = sext %c to i64 1507 // Dst: 1508 // %indvar.ext1 = sext %indvar to i64 1509 // %m = sext %b to i64 1510 // %d = sub nsw i64 %m, %indvar.ext1 1511 // Therefore, as long as the result of add/sub/mul is extended to wide type, no 1512 // trunc is required regardless of how %b is generated. This pattern is common 1513 // when calculating address in 64 bit architecture 1514 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) { 1515 Instruction *NarrowUse = DU.NarrowUse; 1516 Instruction *NarrowDef = DU.NarrowDef; 1517 Instruction *WideDef = DU.WideDef; 1518 1519 // Handle the common case of add<nsw/nuw> 1520 const unsigned OpCode = NarrowUse->getOpcode(); 1521 // Only Add/Sub/Mul instructions are supported. 1522 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1523 OpCode != Instruction::Mul) 1524 return false; 1525 1526 // The operand that is not defined by NarrowDef of DU. Let's call it the 1527 // other operand. 1528 assert((NarrowUse->getOperand(0) == NarrowDef || 1529 NarrowUse->getOperand(1) == NarrowDef) && 1530 "bad DU"); 1531 1532 const OverflowingBinaryOperator *OBO = 1533 cast<OverflowingBinaryOperator>(NarrowUse); 1534 ExtendKind ExtKind = getExtendKind(NarrowDef); 1535 bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap(); 1536 bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap(); 1537 auto AnotherOpExtKind = ExtKind; 1538 1539 // Check that all uses are either: 1540 // - narrow def (in case of we are widening the IV increment); 1541 // - single-input LCSSA Phis; 1542 // - comparison of the chosen type; 1543 // - extend of the chosen type (raison d'etre). 1544 SmallVector<Instruction *, 4> ExtUsers; 1545 SmallVector<PHINode *, 4> LCSSAPhiUsers; 1546 SmallVector<ICmpInst *, 4> ICmpUsers; 1547 for (Use &U : NarrowUse->uses()) { 1548 Instruction *User = cast<Instruction>(U.getUser()); 1549 if (User == NarrowDef) 1550 continue; 1551 if (!L->contains(User)) { 1552 auto *LCSSAPhi = cast<PHINode>(User); 1553 // Make sure there is only 1 input, so that we don't have to split 1554 // critical edges. 1555 if (LCSSAPhi->getNumOperands() != 1) 1556 return false; 1557 LCSSAPhiUsers.push_back(LCSSAPhi); 1558 continue; 1559 } 1560 if (auto *ICmp = dyn_cast<ICmpInst>(User)) { 1561 auto Pred = ICmp->getPredicate(); 1562 // We have 3 types of predicates: signed, unsigned and equality 1563 // predicates. For equality, it's legal to widen icmp for either sign and 1564 // zero extend. For sign extend, we can also do so for signed predicates, 1565 // likeweise for zero extend we can widen icmp for unsigned predicates. 1566 if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred)) 1567 return false; 1568 if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred)) 1569 return false; 1570 ICmpUsers.push_back(ICmp); 1571 continue; 1572 } 1573 if (ExtKind == ExtendKind::Sign) 1574 User = dyn_cast<SExtInst>(User); 1575 else 1576 User = dyn_cast<ZExtInst>(User); 1577 if (!User || User->getType() != WideType) 1578 return false; 1579 ExtUsers.push_back(User); 1580 } 1581 if (ExtUsers.empty()) { 1582 DeadInsts.emplace_back(NarrowUse); 1583 return true; 1584 } 1585 1586 // We'll prove some facts that should be true in the context of ext users. If 1587 // there is no users, we are done now. If there are some, pick their common 1588 // dominator as context. 1589 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT); 1590 1591 if (!CanSignExtend && !CanZeroExtend) { 1592 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we 1593 // will most likely not see it. Let's try to prove it. 1594 if (OpCode != Instruction::Add) 1595 return false; 1596 if (ExtKind != ExtendKind::Zero) 1597 return false; 1598 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0)); 1599 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1)); 1600 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1). 1601 if (NarrowUse->getOperand(0) != NarrowDef) 1602 return false; 1603 if (!SE->isKnownNegative(RHS)) 1604 return false; 1605 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS, 1606 SE->getNegativeSCEV(RHS), CtxI); 1607 if (!ProvedSubNUW) 1608 return false; 1609 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as 1610 // neg(zext(neg(op))), which is basically sext(op). 1611 AnotherOpExtKind = ExtendKind::Sign; 1612 } 1613 1614 // Verifying that Defining operand is an AddRec 1615 const SCEV *Op1 = SE->getSCEV(WideDef); 1616 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1617 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1618 return false; 1619 1620 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1621 1622 // Generating a widening use instruction. 1623 Value *LHS = 1624 (NarrowUse->getOperand(0) == NarrowDef) 1625 ? WideDef 1626 : createExtendInst(NarrowUse->getOperand(0), WideType, 1627 AnotherOpExtKind == ExtendKind::Sign, NarrowUse); 1628 Value *RHS = 1629 (NarrowUse->getOperand(1) == NarrowDef) 1630 ? WideDef 1631 : createExtendInst(NarrowUse->getOperand(1), WideType, 1632 AnotherOpExtKind == ExtendKind::Sign, NarrowUse); 1633 1634 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1635 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1636 NarrowBO->getName()); 1637 IRBuilder<> Builder(NarrowUse); 1638 Builder.Insert(WideBO); 1639 WideBO->copyIRFlags(NarrowBO); 1640 ExtendKindMap[NarrowUse] = ExtKind; 1641 1642 for (Instruction *User : ExtUsers) { 1643 assert(User->getType() == WideType && "Checked before!"); 1644 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1645 << *WideBO << "\n"); 1646 ++NumElimExt; 1647 User->replaceAllUsesWith(WideBO); 1648 DeadInsts.emplace_back(User); 1649 } 1650 1651 for (PHINode *User : LCSSAPhiUsers) { 1652 assert(User->getNumOperands() == 1 && "Checked before!"); 1653 Builder.SetInsertPoint(User); 1654 auto *WidePN = 1655 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide"); 1656 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor(); 1657 assert(LoopExitingBlock && L->contains(LoopExitingBlock) && 1658 "Not a LCSSA Phi?"); 1659 WidePN->addIncoming(WideBO, LoopExitingBlock); 1660 Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt()); 1661 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType()); 1662 User->replaceAllUsesWith(TruncPN); 1663 DeadInsts.emplace_back(User); 1664 } 1665 1666 for (ICmpInst *User : ICmpUsers) { 1667 Builder.SetInsertPoint(User); 1668 auto ExtendedOp = [&](Value * V)->Value * { 1669 if (V == NarrowUse) 1670 return WideBO; 1671 if (ExtKind == ExtendKind::Zero) 1672 return Builder.CreateZExt(V, WideBO->getType()); 1673 else 1674 return Builder.CreateSExt(V, WideBO->getType()); 1675 }; 1676 auto Pred = User->getPredicate(); 1677 auto *LHS = ExtendedOp(User->getOperand(0)); 1678 auto *RHS = ExtendedOp(User->getOperand(1)); 1679 auto *WideCmp = 1680 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide"); 1681 User->replaceAllUsesWith(WideCmp); 1682 DeadInsts.emplace_back(User); 1683 } 1684 1685 return true; 1686 } 1687 1688 /// Determine whether an individual user of the narrow IV can be widened. If so, 1689 /// return the wide clone of the user. 1690 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1691 assert(ExtendKindMap.count(DU.NarrowDef) && 1692 "Should already know the kind of extension used to widen NarrowDef"); 1693 1694 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1695 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1696 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1697 // For LCSSA phis, sink the truncate outside the loop. 1698 // After SimplifyCFG most loop exit targets have a single predecessor. 1699 // Otherwise fall back to a truncate within the loop. 1700 if (UsePhi->getNumOperands() != 1) 1701 truncateIVUse(DU, DT, LI); 1702 else { 1703 // Widening the PHI requires us to insert a trunc. The logical place 1704 // for this trunc is in the same BB as the PHI. This is not possible if 1705 // the BB is terminated by a catchswitch. 1706 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1707 return nullptr; 1708 1709 PHINode *WidePhi = 1710 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1711 UsePhi); 1712 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1713 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1714 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1715 UsePhi->replaceAllUsesWith(Trunc); 1716 DeadInsts.emplace_back(UsePhi); 1717 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1718 << *WidePhi << "\n"); 1719 } 1720 return nullptr; 1721 } 1722 } 1723 1724 // This narrow use can be widened by a sext if it's non-negative or its narrow 1725 // def was widended by a sext. Same for zext. 1726 auto canWidenBySExt = [&]() { 1727 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign; 1728 }; 1729 auto canWidenByZExt = [&]() { 1730 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero; 1731 }; 1732 1733 // Our raison d'etre! Eliminate sign and zero extension. 1734 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1735 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1736 Value *NewDef = DU.WideDef; 1737 if (DU.NarrowUse->getType() != WideType) { 1738 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1739 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1740 if (CastWidth < IVWidth) { 1741 // The cast isn't as wide as the IV, so insert a Trunc. 1742 IRBuilder<> Builder(DU.NarrowUse); 1743 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1744 } 1745 else { 1746 // A wider extend was hidden behind a narrower one. This may induce 1747 // another round of IV widening in which the intermediate IV becomes 1748 // dead. It should be very rare. 1749 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1750 << " not wide enough to subsume " << *DU.NarrowUse 1751 << "\n"); 1752 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1753 NewDef = DU.NarrowUse; 1754 } 1755 } 1756 if (NewDef != DU.NarrowUse) { 1757 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1758 << " replaced by " << *DU.WideDef << "\n"); 1759 ++NumElimExt; 1760 DU.NarrowUse->replaceAllUsesWith(NewDef); 1761 DeadInsts.emplace_back(DU.NarrowUse); 1762 } 1763 // Now that the extend is gone, we want to expose it's uses for potential 1764 // further simplification. We don't need to directly inform SimplifyIVUsers 1765 // of the new users, because their parent IV will be processed later as a 1766 // new loop phi. If we preserved IVUsers analysis, we would also want to 1767 // push the uses of WideDef here. 1768 1769 // No further widening is needed. The deceased [sz]ext had done it for us. 1770 return nullptr; 1771 } 1772 1773 // Does this user itself evaluate to a recurrence after widening? 1774 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1775 if (!WideAddRec.first) 1776 WideAddRec = getWideRecurrence(DU); 1777 1778 assert((WideAddRec.first == nullptr) == 1779 (WideAddRec.second == ExtendKind::Unknown)); 1780 if (!WideAddRec.first) { 1781 // If use is a loop condition, try to promote the condition instead of 1782 // truncating the IV first. 1783 if (widenLoopCompare(DU)) 1784 return nullptr; 1785 1786 // We are here about to generate a truncate instruction that may hurt 1787 // performance because the scalar evolution expression computed earlier 1788 // in WideAddRec.first does not indicate a polynomial induction expression. 1789 // In that case, look at the operands of the use instruction to determine 1790 // if we can still widen the use instead of truncating its operand. 1791 if (widenWithVariantUse(DU)) 1792 return nullptr; 1793 1794 // This user does not evaluate to a recurrence after widening, so don't 1795 // follow it. Instead insert a Trunc to kill off the original use, 1796 // eventually isolating the original narrow IV so it can be removed. 1797 truncateIVUse(DU, DT, LI); 1798 return nullptr; 1799 } 1800 1801 // Reuse the IV increment that SCEVExpander created as long as it dominates 1802 // NarrowUse. 1803 Instruction *WideUse = nullptr; 1804 if (WideAddRec.first == WideIncExpr && 1805 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1806 WideUse = WideInc; 1807 else { 1808 WideUse = cloneIVUser(DU, WideAddRec.first); 1809 if (!WideUse) 1810 return nullptr; 1811 } 1812 // Evaluation of WideAddRec ensured that the narrow expression could be 1813 // extended outside the loop without overflow. This suggests that the wide use 1814 // evaluates to the same expression as the extended narrow use, but doesn't 1815 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1816 // where it fails, we simply throw away the newly created wide use. 1817 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1818 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1819 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1820 << "\n"); 1821 DeadInsts.emplace_back(WideUse); 1822 return nullptr; 1823 } 1824 1825 // if we reached this point then we are going to replace 1826 // DU.NarrowUse with WideUse. Reattach DbgValue then. 1827 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); 1828 1829 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1830 // Returning WideUse pushes it on the worklist. 1831 return WideUse; 1832 } 1833 1834 /// Add eligible users of NarrowDef to NarrowIVUsers. 1835 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1836 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1837 bool NonNegativeDef = 1838 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1839 SE->getZero(NarrowSCEV->getType())); 1840 for (User *U : NarrowDef->users()) { 1841 Instruction *NarrowUser = cast<Instruction>(U); 1842 1843 // Handle data flow merges and bizarre phi cycles. 1844 if (!Widened.insert(NarrowUser).second) 1845 continue; 1846 1847 bool NonNegativeUse = false; 1848 if (!NonNegativeDef) { 1849 // We might have a control-dependent range information for this context. 1850 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1851 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1852 } 1853 1854 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1855 NonNegativeDef || NonNegativeUse); 1856 } 1857 } 1858 1859 /// Process a single induction variable. First use the SCEVExpander to create a 1860 /// wide induction variable that evaluates to the same recurrence as the 1861 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1862 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1863 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1864 /// 1865 /// It would be simpler to delete uses as they are processed, but we must avoid 1866 /// invalidating SCEV expressions. 1867 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1868 // Is this phi an induction variable? 1869 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1870 if (!AddRec) 1871 return nullptr; 1872 1873 // Widen the induction variable expression. 1874 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign 1875 ? SE->getSignExtendExpr(AddRec, WideType) 1876 : SE->getZeroExtendExpr(AddRec, WideType); 1877 1878 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1879 "Expect the new IV expression to preserve its type"); 1880 1881 // Can the IV be extended outside the loop without overflow? 1882 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1883 if (!AddRec || AddRec->getLoop() != L) 1884 return nullptr; 1885 1886 // An AddRec must have loop-invariant operands. Since this AddRec is 1887 // materialized by a loop header phi, the expression cannot have any post-loop 1888 // operands, so they must dominate the loop header. 1889 assert( 1890 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1891 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1892 "Loop header phi recurrence inputs do not dominate the loop"); 1893 1894 // Iterate over IV uses (including transitive ones) looking for IV increments 1895 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1896 // the increment calculate control-dependent range information basing on 1897 // dominating conditions inside of the loop (e.g. a range check inside of the 1898 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1899 // 1900 // Control-dependent range information is later used to prove that a narrow 1901 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1902 // this on demand because when pushNarrowIVUsers needs this information some 1903 // of the dominating conditions might be already widened. 1904 if (UsePostIncrementRanges) 1905 calculatePostIncRanges(OrigPhi); 1906 1907 // The rewriter provides a value for the desired IV expression. This may 1908 // either find an existing phi or materialize a new one. Either way, we 1909 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1910 // of the phi-SCC dominates the loop entry. 1911 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1912 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt); 1913 // If the wide phi is not a phi node, for example a cast node, like bitcast, 1914 // inttoptr, ptrtoint, just skip for now. 1915 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) { 1916 // if the cast node is an inserted instruction without any user, we should 1917 // remove it to make sure the pass don't touch the function as we can not 1918 // wide the phi. 1919 if (ExpandInst->hasNUses(0) && 1920 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst))) 1921 DeadInsts.emplace_back(ExpandInst); 1922 return nullptr; 1923 } 1924 1925 // Remembering the WideIV increment generated by SCEVExpander allows 1926 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1927 // employ a general reuse mechanism because the call above is the only call to 1928 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1929 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1930 WideInc = 1931 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1932 WideIncExpr = SE->getSCEV(WideInc); 1933 // Propagate the debug location associated with the original loop increment 1934 // to the new (widened) increment. 1935 auto *OrigInc = 1936 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1937 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1938 } 1939 1940 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1941 ++NumWidened; 1942 1943 // Traverse the def-use chain using a worklist starting at the original IV. 1944 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1945 1946 Widened.insert(OrigPhi); 1947 pushNarrowIVUsers(OrigPhi, WidePhi); 1948 1949 while (!NarrowIVUsers.empty()) { 1950 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1951 1952 // Process a def-use edge. This may replace the use, so don't hold a 1953 // use_iterator across it. 1954 Instruction *WideUse = widenIVUse(DU, Rewriter); 1955 1956 // Follow all def-use edges from the previous narrow use. 1957 if (WideUse) 1958 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1959 1960 // widenIVUse may have removed the def-use edge. 1961 if (DU.NarrowDef->use_empty()) 1962 DeadInsts.emplace_back(DU.NarrowDef); 1963 } 1964 1965 // Attach any debug information to the new PHI. 1966 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT); 1967 1968 return WidePhi; 1969 } 1970 1971 /// Calculates control-dependent range for the given def at the given context 1972 /// by looking at dominating conditions inside of the loop 1973 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1974 Instruction *NarrowUser) { 1975 using namespace llvm::PatternMatch; 1976 1977 Value *NarrowDefLHS; 1978 const APInt *NarrowDefRHS; 1979 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1980 m_APInt(NarrowDefRHS))) || 1981 !NarrowDefRHS->isNonNegative()) 1982 return; 1983 1984 auto UpdateRangeFromCondition = [&] (Value *Condition, 1985 bool TrueDest) { 1986 CmpInst::Predicate Pred; 1987 Value *CmpRHS; 1988 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1989 m_Value(CmpRHS)))) 1990 return; 1991 1992 CmpInst::Predicate P = 1993 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1994 1995 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1996 auto CmpConstrainedLHSRange = 1997 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1998 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( 1999 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap); 2000 2001 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 2002 }; 2003 2004 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 2005 if (!HasGuards) 2006 return; 2007 2008 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 2009 Ctx->getParent()->rend())) { 2010 Value *C = nullptr; 2011 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 2012 UpdateRangeFromCondition(C, /*TrueDest=*/true); 2013 } 2014 }; 2015 2016 UpdateRangeFromGuards(NarrowUser); 2017 2018 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 2019 // If NarrowUserBB is statically unreachable asking dominator queries may 2020 // yield surprising results. (e.g. the block may not have a dom tree node) 2021 if (!DT->isReachableFromEntry(NarrowUserBB)) 2022 return; 2023 2024 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 2025 L->contains(DTB->getBlock()); 2026 DTB = DTB->getIDom()) { 2027 auto *BB = DTB->getBlock(); 2028 auto *TI = BB->getTerminator(); 2029 UpdateRangeFromGuards(TI); 2030 2031 auto *BI = dyn_cast<BranchInst>(TI); 2032 if (!BI || !BI->isConditional()) 2033 continue; 2034 2035 auto *TrueSuccessor = BI->getSuccessor(0); 2036 auto *FalseSuccessor = BI->getSuccessor(1); 2037 2038 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 2039 return BBE.isSingleEdge() && 2040 DT->dominates(BBE, NarrowUser->getParent()); 2041 }; 2042 2043 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 2044 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 2045 2046 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 2047 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 2048 } 2049 } 2050 2051 /// Calculates PostIncRangeInfos map for the given IV 2052 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 2053 SmallPtrSet<Instruction *, 16> Visited; 2054 SmallVector<Instruction *, 6> Worklist; 2055 Worklist.push_back(OrigPhi); 2056 Visited.insert(OrigPhi); 2057 2058 while (!Worklist.empty()) { 2059 Instruction *NarrowDef = Worklist.pop_back_val(); 2060 2061 for (Use &U : NarrowDef->uses()) { 2062 auto *NarrowUser = cast<Instruction>(U.getUser()); 2063 2064 // Don't go looking outside the current loop. 2065 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 2066 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 2067 continue; 2068 2069 if (!Visited.insert(NarrowUser).second) 2070 continue; 2071 2072 Worklist.push_back(NarrowUser); 2073 2074 calculatePostIncRange(NarrowDef, NarrowUser); 2075 } 2076 } 2077 } 2078 2079 PHINode *llvm::createWideIV(const WideIVInfo &WI, 2080 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, 2081 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2082 unsigned &NumElimExt, unsigned &NumWidened, 2083 bool HasGuards, bool UsePostIncrementRanges) { 2084 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges); 2085 PHINode *WidePHI = Widener.createWideIV(Rewriter); 2086 NumElimExt = Widener.getNumElimExt(); 2087 NumWidened = Widener.getNumWidened(); 2088 return WidePHI; 2089 } 2090