xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp (revision 7877fdebeeb35fad1cbbafce22598b1bdf97c786)
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "indvars"
34 
35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
36 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
38 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
39 STATISTIC(
40     NumSimplifiedSDiv,
41     "Number of IV signed division operations converted to unsigned division");
42 STATISTIC(
43     NumSimplifiedSRem,
44     "Number of IV signed remainder operations converted to unsigned remainder");
45 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
46 
47 namespace {
48   /// This is a utility for simplifying induction variables
49   /// based on ScalarEvolution. It is the primary instrument of the
50   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
51   /// other loop passes that preserve SCEV.
52   class SimplifyIndvar {
53     Loop             *L;
54     LoopInfo         *LI;
55     ScalarEvolution  *SE;
56     DominatorTree    *DT;
57     const TargetTransformInfo *TTI;
58     SCEVExpander     &Rewriter;
59     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
60 
61     bool Changed;
62 
63   public:
64     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
65                    LoopInfo *LI, const TargetTransformInfo *TTI,
66                    SCEVExpander &Rewriter,
67                    SmallVectorImpl<WeakTrackingVH> &Dead)
68         : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
69           DeadInsts(Dead), Changed(false) {
70       assert(LI && "IV simplification requires LoopInfo");
71     }
72 
73     bool hasChanged() const { return Changed; }
74 
75     /// Iteratively perform simplification on a worklist of users of the
76     /// specified induction variable. This is the top-level driver that applies
77     /// all simplifications to users of an IV.
78     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
79 
80     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
81 
82     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
83     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
84 
85     bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
86     bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
87     bool eliminateTrunc(TruncInst *TI);
88     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
89     bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
90     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
91     void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
92                              bool IsSigned);
93     void replaceRemWithNumerator(BinaryOperator *Rem);
94     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
95     void replaceSRemWithURem(BinaryOperator *Rem);
96     bool eliminateSDiv(BinaryOperator *SDiv);
97     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
98     bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
99   };
100 }
101 
102 /// Fold an IV operand into its use.  This removes increments of an
103 /// aligned IV when used by a instruction that ignores the low bits.
104 ///
105 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
106 ///
107 /// Return the operand of IVOperand for this induction variable if IVOperand can
108 /// be folded (in case more folding opportunities have been exposed).
109 /// Otherwise return null.
110 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
111   Value *IVSrc = nullptr;
112   const unsigned OperIdx = 0;
113   const SCEV *FoldedExpr = nullptr;
114   bool MustDropExactFlag = false;
115   switch (UseInst->getOpcode()) {
116   default:
117     return nullptr;
118   case Instruction::UDiv:
119   case Instruction::LShr:
120     // We're only interested in the case where we know something about
121     // the numerator and have a constant denominator.
122     if (IVOperand != UseInst->getOperand(OperIdx) ||
123         !isa<ConstantInt>(UseInst->getOperand(1)))
124       return nullptr;
125 
126     // Attempt to fold a binary operator with constant operand.
127     // e.g. ((I + 1) >> 2) => I >> 2
128     if (!isa<BinaryOperator>(IVOperand)
129         || !isa<ConstantInt>(IVOperand->getOperand(1)))
130       return nullptr;
131 
132     IVSrc = IVOperand->getOperand(0);
133     // IVSrc must be the (SCEVable) IV, since the other operand is const.
134     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
135 
136     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
137     if (UseInst->getOpcode() == Instruction::LShr) {
138       // Get a constant for the divisor. See createSCEV.
139       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
140       if (D->getValue().uge(BitWidth))
141         return nullptr;
142 
143       D = ConstantInt::get(UseInst->getContext(),
144                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
145     }
146     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
147     // We might have 'exact' flag set at this point which will no longer be
148     // correct after we make the replacement.
149     if (UseInst->isExact() &&
150         SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
151       MustDropExactFlag = true;
152   }
153   // We have something that might fold it's operand. Compare SCEVs.
154   if (!SE->isSCEVable(UseInst->getType()))
155     return nullptr;
156 
157   // Bypass the operand if SCEV can prove it has no effect.
158   if (SE->getSCEV(UseInst) != FoldedExpr)
159     return nullptr;
160 
161   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
162                     << " -> " << *UseInst << '\n');
163 
164   UseInst->setOperand(OperIdx, IVSrc);
165   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
166 
167   if (MustDropExactFlag)
168     UseInst->dropPoisonGeneratingFlags();
169 
170   ++NumElimOperand;
171   Changed = true;
172   if (IVOperand->use_empty())
173     DeadInsts.emplace_back(IVOperand);
174   return IVSrc;
175 }
176 
177 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
178                                                Value *IVOperand) {
179   unsigned IVOperIdx = 0;
180   ICmpInst::Predicate Pred = ICmp->getPredicate();
181   if (IVOperand != ICmp->getOperand(0)) {
182     // Swapped
183     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
184     IVOperIdx = 1;
185     Pred = ICmpInst::getSwappedPredicate(Pred);
186   }
187 
188   // Get the SCEVs for the ICmp operands (in the specific context of the
189   // current loop)
190   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
191   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
192   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
193 
194   ICmpInst::Predicate InvariantPredicate;
195   const SCEV *InvariantLHS, *InvariantRHS;
196 
197   auto *PN = dyn_cast<PHINode>(IVOperand);
198   if (!PN)
199     return false;
200   if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
201                                     InvariantLHS, InvariantRHS))
202     return false;
203 
204   // Rewrite the comparison to a loop invariant comparison if it can be done
205   // cheaply, where cheaply means "we don't need to emit any new
206   // instructions".
207 
208   SmallDenseMap<const SCEV*, Value*> CheapExpansions;
209   CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
210   CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
211 
212   // TODO: Support multiple entry loops?  (We currently bail out of these in
213   // the IndVarSimplify pass)
214   if (auto *BB = L->getLoopPredecessor()) {
215     const int Idx = PN->getBasicBlockIndex(BB);
216     if (Idx >= 0) {
217       Value *Incoming = PN->getIncomingValue(Idx);
218       const SCEV *IncomingS = SE->getSCEV(Incoming);
219       CheapExpansions[IncomingS] = Incoming;
220     }
221   }
222   Value *NewLHS = CheapExpansions[InvariantLHS];
223   Value *NewRHS = CheapExpansions[InvariantRHS];
224 
225   if (!NewLHS)
226     if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
227       NewLHS = ConstLHS->getValue();
228   if (!NewRHS)
229     if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
230       NewRHS = ConstRHS->getValue();
231 
232   if (!NewLHS || !NewRHS)
233     // We could not find an existing value to replace either LHS or RHS.
234     // Generating new instructions has subtler tradeoffs, so avoid doing that
235     // for now.
236     return false;
237 
238   LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
239   ICmp->setPredicate(InvariantPredicate);
240   ICmp->setOperand(0, NewLHS);
241   ICmp->setOperand(1, NewRHS);
242   return true;
243 }
244 
245 /// SimplifyIVUsers helper for eliminating useless
246 /// comparisons against an induction variable.
247 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
248   unsigned IVOperIdx = 0;
249   ICmpInst::Predicate Pred = ICmp->getPredicate();
250   ICmpInst::Predicate OriginalPred = Pred;
251   if (IVOperand != ICmp->getOperand(0)) {
252     // Swapped
253     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
254     IVOperIdx = 1;
255     Pred = ICmpInst::getSwappedPredicate(Pred);
256   }
257 
258   // Get the SCEVs for the ICmp operands (in the specific context of the
259   // current loop)
260   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
261   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
262   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
263 
264   // If the condition is always true or always false, replace it with
265   // a constant value.
266   if (SE->isKnownPredicate(Pred, S, X)) {
267     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
268     DeadInsts.emplace_back(ICmp);
269     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
270   } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
271     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
272     DeadInsts.emplace_back(ICmp);
273     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
274   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
275     // fallthrough to end of function
276   } else if (ICmpInst::isSigned(OriginalPred) &&
277              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
278     // If we were unable to make anything above, all we can is to canonicalize
279     // the comparison hoping that it will open the doors for other
280     // optimizations. If we find out that we compare two non-negative values,
281     // we turn the instruction's predicate to its unsigned version. Note that
282     // we cannot rely on Pred here unless we check if we have swapped it.
283     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
284     LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
285                       << '\n');
286     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
287   } else
288     return;
289 
290   ++NumElimCmp;
291   Changed = true;
292 }
293 
294 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
295   // Get the SCEVs for the ICmp operands.
296   auto *N = SE->getSCEV(SDiv->getOperand(0));
297   auto *D = SE->getSCEV(SDiv->getOperand(1));
298 
299   // Simplify unnecessary loops away.
300   const Loop *L = LI->getLoopFor(SDiv->getParent());
301   N = SE->getSCEVAtScope(N, L);
302   D = SE->getSCEVAtScope(D, L);
303 
304   // Replace sdiv by udiv if both of the operands are non-negative
305   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
306     auto *UDiv = BinaryOperator::Create(
307         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
308         SDiv->getName() + ".udiv", SDiv);
309     UDiv->setIsExact(SDiv->isExact());
310     SDiv->replaceAllUsesWith(UDiv);
311     LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
312     ++NumSimplifiedSDiv;
313     Changed = true;
314     DeadInsts.push_back(SDiv);
315     return true;
316   }
317 
318   return false;
319 }
320 
321 // i %s n -> i %u n if i >= 0 and n >= 0
322 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
323   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
324   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
325                                       Rem->getName() + ".urem", Rem);
326   Rem->replaceAllUsesWith(URem);
327   LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
328   ++NumSimplifiedSRem;
329   Changed = true;
330   DeadInsts.emplace_back(Rem);
331 }
332 
333 // i % n  -->  i  if i is in [0,n).
334 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
335   Rem->replaceAllUsesWith(Rem->getOperand(0));
336   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
337   ++NumElimRem;
338   Changed = true;
339   DeadInsts.emplace_back(Rem);
340 }
341 
342 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
343 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
344   auto *T = Rem->getType();
345   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
346   ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
347   SelectInst *Sel =
348       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
349   Rem->replaceAllUsesWith(Sel);
350   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
351   ++NumElimRem;
352   Changed = true;
353   DeadInsts.emplace_back(Rem);
354 }
355 
356 /// SimplifyIVUsers helper for eliminating useless remainder operations
357 /// operating on an induction variable or replacing srem by urem.
358 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
359                                          bool IsSigned) {
360   auto *NValue = Rem->getOperand(0);
361   auto *DValue = Rem->getOperand(1);
362   // We're only interested in the case where we know something about
363   // the numerator, unless it is a srem, because we want to replace srem by urem
364   // in general.
365   bool UsedAsNumerator = IVOperand == NValue;
366   if (!UsedAsNumerator && !IsSigned)
367     return;
368 
369   const SCEV *N = SE->getSCEV(NValue);
370 
371   // Simplify unnecessary loops away.
372   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
373   N = SE->getSCEVAtScope(N, ICmpLoop);
374 
375   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
376 
377   // Do not proceed if the Numerator may be negative
378   if (!IsNumeratorNonNegative)
379     return;
380 
381   const SCEV *D = SE->getSCEV(DValue);
382   D = SE->getSCEVAtScope(D, ICmpLoop);
383 
384   if (UsedAsNumerator) {
385     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
386     if (SE->isKnownPredicate(LT, N, D)) {
387       replaceRemWithNumerator(Rem);
388       return;
389     }
390 
391     auto *T = Rem->getType();
392     const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
393     if (SE->isKnownPredicate(LT, NLessOne, D)) {
394       replaceRemWithNumeratorOrZero(Rem);
395       return;
396     }
397   }
398 
399   // Try to replace SRem with URem, if both N and D are known non-negative.
400   // Since we had already check N, we only need to check D now
401   if (!IsSigned || !SE->isKnownNonNegative(D))
402     return;
403 
404   replaceSRemWithURem(Rem);
405 }
406 
407 static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp,
408                             bool Signed, const SCEV *LHS, const SCEV *RHS) {
409   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
410                                             SCEV::NoWrapFlags, unsigned);
411   switch (BinOp) {
412   default:
413     llvm_unreachable("Unsupported binary op");
414   case Instruction::Add:
415     Operation = &ScalarEvolution::getAddExpr;
416     break;
417   case Instruction::Sub:
418     Operation = &ScalarEvolution::getMinusSCEV;
419     break;
420   case Instruction::Mul:
421     Operation = &ScalarEvolution::getMulExpr;
422     break;
423   }
424 
425   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
426       Signed ? &ScalarEvolution::getSignExtendExpr
427              : &ScalarEvolution::getZeroExtendExpr;
428 
429   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
430   auto *NarrowTy = cast<IntegerType>(LHS->getType());
431   auto *WideTy =
432     IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
433 
434   const SCEV *A =
435       (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
436                        WideTy, 0);
437   const SCEV *B =
438       (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
439                        (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
440   return A == B;
441 }
442 
443 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
444   const SCEV *LHS = SE->getSCEV(WO->getLHS());
445   const SCEV *RHS = SE->getSCEV(WO->getRHS());
446   if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
447     return false;
448 
449   // Proved no overflow, nuke the overflow check and, if possible, the overflow
450   // intrinsic as well.
451 
452   BinaryOperator *NewResult = BinaryOperator::Create(
453       WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
454 
455   if (WO->isSigned())
456     NewResult->setHasNoSignedWrap(true);
457   else
458     NewResult->setHasNoUnsignedWrap(true);
459 
460   SmallVector<ExtractValueInst *, 4> ToDelete;
461 
462   for (auto *U : WO->users()) {
463     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
464       if (EVI->getIndices()[0] == 1)
465         EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
466       else {
467         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
468         EVI->replaceAllUsesWith(NewResult);
469       }
470       ToDelete.push_back(EVI);
471     }
472   }
473 
474   for (auto *EVI : ToDelete)
475     EVI->eraseFromParent();
476 
477   if (WO->use_empty())
478     WO->eraseFromParent();
479 
480   return true;
481 }
482 
483 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
484   const SCEV *LHS = SE->getSCEV(SI->getLHS());
485   const SCEV *RHS = SE->getSCEV(SI->getRHS());
486   if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
487     return false;
488 
489   BinaryOperator *BO = BinaryOperator::Create(
490       SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
491   if (SI->isSigned())
492     BO->setHasNoSignedWrap();
493   else
494     BO->setHasNoUnsignedWrap();
495 
496   SI->replaceAllUsesWith(BO);
497   DeadInsts.emplace_back(SI);
498   Changed = true;
499   return true;
500 }
501 
502 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
503   // It is always legal to replace
504   //   icmp <pred> i32 trunc(iv), n
505   // with
506   //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
507   // Or with
508   //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
509   // Or with either of these if pred is an equality predicate.
510   //
511   // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
512   // every comparison which uses trunc, it means that we can replace each of
513   // them with comparison of iv against sext/zext(n). We no longer need trunc
514   // after that.
515   //
516   // TODO: Should we do this if we can widen *some* comparisons, but not all
517   // of them? Sometimes it is enough to enable other optimizations, but the
518   // trunc instruction will stay in the loop.
519   Value *IV = TI->getOperand(0);
520   Type *IVTy = IV->getType();
521   const SCEV *IVSCEV = SE->getSCEV(IV);
522   const SCEV *TISCEV = SE->getSCEV(TI);
523 
524   // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
525   // get rid of trunc
526   bool DoesSExtCollapse = false;
527   bool DoesZExtCollapse = false;
528   if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
529     DoesSExtCollapse = true;
530   if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
531     DoesZExtCollapse = true;
532 
533   // If neither sext nor zext does collapse, it is not profitable to do any
534   // transform. Bail.
535   if (!DoesSExtCollapse && !DoesZExtCollapse)
536     return false;
537 
538   // Collect users of the trunc that look like comparisons against invariants.
539   // Bail if we find something different.
540   SmallVector<ICmpInst *, 4> ICmpUsers;
541   for (auto *U : TI->users()) {
542     // We don't care about users in unreachable blocks.
543     if (isa<Instruction>(U) &&
544         !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
545       continue;
546     ICmpInst *ICI = dyn_cast<ICmpInst>(U);
547     if (!ICI) return false;
548     assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
549     if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
550         !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
551       return false;
552     // If we cannot get rid of trunc, bail.
553     if (ICI->isSigned() && !DoesSExtCollapse)
554       return false;
555     if (ICI->isUnsigned() && !DoesZExtCollapse)
556       return false;
557     // For equality, either signed or unsigned works.
558     ICmpUsers.push_back(ICI);
559   }
560 
561   auto CanUseZExt = [&](ICmpInst *ICI) {
562     // Unsigned comparison can be widened as unsigned.
563     if (ICI->isUnsigned())
564       return true;
565     // Is it profitable to do zext?
566     if (!DoesZExtCollapse)
567       return false;
568     // For equality, we can safely zext both parts.
569     if (ICI->isEquality())
570       return true;
571     // Otherwise we can only use zext when comparing two non-negative or two
572     // negative values. But in practice, we will never pass DoesZExtCollapse
573     // check for a negative value, because zext(trunc(x)) is non-negative. So
574     // it only make sense to check for non-negativity here.
575     const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
576     const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
577     return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
578   };
579   // Replace all comparisons against trunc with comparisons against IV.
580   for (auto *ICI : ICmpUsers) {
581     bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
582     auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
583     Instruction *Ext = nullptr;
584     // For signed/unsigned predicate, replace the old comparison with comparison
585     // of immediate IV against sext/zext of the invariant argument. If we can
586     // use either sext or zext (i.e. we are dealing with equality predicate),
587     // then prefer zext as a more canonical form.
588     // TODO: If we see a signed comparison which can be turned into unsigned,
589     // we can do it here for canonicalization purposes.
590     ICmpInst::Predicate Pred = ICI->getPredicate();
591     if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
592     if (CanUseZExt(ICI)) {
593       assert(DoesZExtCollapse && "Unprofitable zext?");
594       Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
595       Pred = ICmpInst::getUnsignedPredicate(Pred);
596     } else {
597       assert(DoesSExtCollapse && "Unprofitable sext?");
598       Ext = new SExtInst(Op1, IVTy, "sext", ICI);
599       assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
600     }
601     bool Changed;
602     L->makeLoopInvariant(Ext, Changed);
603     (void)Changed;
604     ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
605     ICI->replaceAllUsesWith(NewICI);
606     DeadInsts.emplace_back(ICI);
607   }
608 
609   // Trunc no longer needed.
610   TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
611   DeadInsts.emplace_back(TI);
612   return true;
613 }
614 
615 /// Eliminate an operation that consumes a simple IV and has no observable
616 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
617 /// but UseInst may not be.
618 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
619                                      Instruction *IVOperand) {
620   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
621     eliminateIVComparison(ICmp, IVOperand);
622     return true;
623   }
624   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
625     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
626     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
627       simplifyIVRemainder(Bin, IVOperand, IsSRem);
628       return true;
629     }
630 
631     if (Bin->getOpcode() == Instruction::SDiv)
632       return eliminateSDiv(Bin);
633   }
634 
635   if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
636     if (eliminateOverflowIntrinsic(WO))
637       return true;
638 
639   if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
640     if (eliminateSaturatingIntrinsic(SI))
641       return true;
642 
643   if (auto *TI = dyn_cast<TruncInst>(UseInst))
644     if (eliminateTrunc(TI))
645       return true;
646 
647   if (eliminateIdentitySCEV(UseInst, IVOperand))
648     return true;
649 
650   return false;
651 }
652 
653 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
654   if (auto *BB = L->getLoopPreheader())
655     return BB->getTerminator();
656 
657   return Hint;
658 }
659 
660 /// Replace the UseInst with a loop invariant expression if it is safe.
661 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
662   if (!SE->isSCEVable(I->getType()))
663     return false;
664 
665   // Get the symbolic expression for this instruction.
666   const SCEV *S = SE->getSCEV(I);
667 
668   if (!SE->isLoopInvariant(S, L))
669     return false;
670 
671   // Do not generate something ridiculous even if S is loop invariant.
672   if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
673     return false;
674 
675   auto *IP = GetLoopInvariantInsertPosition(L, I);
676 
677   if (!isSafeToExpandAt(S, IP, *SE)) {
678     LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
679                       << " with non-speculable loop invariant: " << *S << '\n');
680     return false;
681   }
682 
683   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
684 
685   I->replaceAllUsesWith(Invariant);
686   LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
687                     << " with loop invariant: " << *S << '\n');
688   ++NumFoldedUser;
689   Changed = true;
690   DeadInsts.emplace_back(I);
691   return true;
692 }
693 
694 /// Eliminate any operation that SCEV can prove is an identity function.
695 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
696                                            Instruction *IVOperand) {
697   if (!SE->isSCEVable(UseInst->getType()) ||
698       (UseInst->getType() != IVOperand->getType()) ||
699       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
700     return false;
701 
702   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
703   // dominator tree, even if X is an operand to Y.  For instance, in
704   //
705   //     %iv = phi i32 {0,+,1}
706   //     br %cond, label %left, label %merge
707   //
708   //   left:
709   //     %X = add i32 %iv, 0
710   //     br label %merge
711   //
712   //   merge:
713   //     %M = phi (%X, %iv)
714   //
715   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
716   // %M.replaceAllUsesWith(%X) would be incorrect.
717 
718   if (isa<PHINode>(UseInst))
719     // If UseInst is not a PHI node then we know that IVOperand dominates
720     // UseInst directly from the legality of SSA.
721     if (!DT || !DT->dominates(IVOperand, UseInst))
722       return false;
723 
724   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
725     return false;
726 
727   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
728 
729   UseInst->replaceAllUsesWith(IVOperand);
730   ++NumElimIdentity;
731   Changed = true;
732   DeadInsts.emplace_back(UseInst);
733   return true;
734 }
735 
736 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
737 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
738 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
739                                                     Value *IVOperand) {
740   // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
741   if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
742     return false;
743 
744   if (BO->getOpcode() != Instruction::Add &&
745       BO->getOpcode() != Instruction::Sub &&
746       BO->getOpcode() != Instruction::Mul)
747     return false;
748 
749   const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
750   const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
751   bool Changed = false;
752 
753   if (!BO->hasNoUnsignedWrap() &&
754       willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) {
755     BO->setHasNoUnsignedWrap();
756     SE->forgetValue(BO);
757     Changed = true;
758   }
759 
760   if (!BO->hasNoSignedWrap() &&
761       willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) {
762     BO->setHasNoSignedWrap();
763     SE->forgetValue(BO);
764     Changed = true;
765   }
766 
767   return Changed;
768 }
769 
770 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
771 /// information from the IV's range. Returns true if anything changed, false
772 /// otherwise.
773 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
774                                           Value *IVOperand) {
775   using namespace llvm::PatternMatch;
776 
777   if (BO->getOpcode() == Instruction::Shl) {
778     bool Changed = false;
779     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
780     for (auto *U : BO->users()) {
781       const APInt *C;
782       if (match(U,
783                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
784           match(U,
785                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
786         BinaryOperator *Shr = cast<BinaryOperator>(U);
787         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
788           Shr->setIsExact(true);
789           Changed = true;
790         }
791       }
792     }
793     return Changed;
794   }
795 
796   return false;
797 }
798 
799 /// Add all uses of Def to the current IV's worklist.
800 static void pushIVUsers(
801   Instruction *Def, Loop *L,
802   SmallPtrSet<Instruction*,16> &Simplified,
803   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
804 
805   for (User *U : Def->users()) {
806     Instruction *UI = cast<Instruction>(U);
807 
808     // Avoid infinite or exponential worklist processing.
809     // Also ensure unique worklist users.
810     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
811     // self edges first.
812     if (UI == Def)
813       continue;
814 
815     // Only change the current Loop, do not change the other parts (e.g. other
816     // Loops).
817     if (!L->contains(UI))
818       continue;
819 
820     // Do not push the same instruction more than once.
821     if (!Simplified.insert(UI).second)
822       continue;
823 
824     SimpleIVUsers.push_back(std::make_pair(UI, Def));
825   }
826 }
827 
828 /// Return true if this instruction generates a simple SCEV
829 /// expression in terms of that IV.
830 ///
831 /// This is similar to IVUsers' isInteresting() but processes each instruction
832 /// non-recursively when the operand is already known to be a simpleIVUser.
833 ///
834 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
835   if (!SE->isSCEVable(I->getType()))
836     return false;
837 
838   // Get the symbolic expression for this instruction.
839   const SCEV *S = SE->getSCEV(I);
840 
841   // Only consider affine recurrences.
842   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
843   if (AR && AR->getLoop() == L)
844     return true;
845 
846   return false;
847 }
848 
849 /// Iteratively perform simplification on a worklist of users
850 /// of the specified induction variable. Each successive simplification may push
851 /// more users which may themselves be candidates for simplification.
852 ///
853 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
854 /// instructions in-place during analysis. Rather than rewriting induction
855 /// variables bottom-up from their users, it transforms a chain of IVUsers
856 /// top-down, updating the IR only when it encounters a clear optimization
857 /// opportunity.
858 ///
859 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
860 ///
861 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
862   if (!SE->isSCEVable(CurrIV->getType()))
863     return;
864 
865   // Instructions processed by SimplifyIndvar for CurrIV.
866   SmallPtrSet<Instruction*,16> Simplified;
867 
868   // Use-def pairs if IV users waiting to be processed for CurrIV.
869   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
870 
871   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
872   // called multiple times for the same LoopPhi. This is the proper thing to
873   // do for loop header phis that use each other.
874   pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
875 
876   while (!SimpleIVUsers.empty()) {
877     std::pair<Instruction*, Instruction*> UseOper =
878       SimpleIVUsers.pop_back_val();
879     Instruction *UseInst = UseOper.first;
880 
881     // If a user of the IndVar is trivially dead, we prefer just to mark it dead
882     // rather than try to do some complex analysis or transformation (such as
883     // widening) basing on it.
884     // TODO: Propagate TLI and pass it here to handle more cases.
885     if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
886       DeadInsts.emplace_back(UseInst);
887       continue;
888     }
889 
890     // Bypass back edges to avoid extra work.
891     if (UseInst == CurrIV) continue;
892 
893     // Try to replace UseInst with a loop invariant before any other
894     // simplifications.
895     if (replaceIVUserWithLoopInvariant(UseInst))
896       continue;
897 
898     Instruction *IVOperand = UseOper.second;
899     for (unsigned N = 0; IVOperand; ++N) {
900       assert(N <= Simplified.size() && "runaway iteration");
901 
902       Value *NewOper = foldIVUser(UseInst, IVOperand);
903       if (!NewOper)
904         break; // done folding
905       IVOperand = dyn_cast<Instruction>(NewOper);
906     }
907     if (!IVOperand)
908       continue;
909 
910     if (eliminateIVUser(UseInst, IVOperand)) {
911       pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
912       continue;
913     }
914 
915     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
916       if ((isa<OverflowingBinaryOperator>(BO) &&
917            strengthenOverflowingOperation(BO, IVOperand)) ||
918           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
919         // re-queue uses of the now modified binary operator and fall
920         // through to the checks that remain.
921         pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
922       }
923     }
924 
925     CastInst *Cast = dyn_cast<CastInst>(UseInst);
926     if (V && Cast) {
927       V->visitCast(Cast);
928       continue;
929     }
930     if (isSimpleIVUser(UseInst, L, SE)) {
931       pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
932     }
933   }
934 }
935 
936 namespace llvm {
937 
938 void IVVisitor::anchor() { }
939 
940 /// Simplify instructions that use this induction variable
941 /// by using ScalarEvolution to analyze the IV's recurrence.
942 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
943                        LoopInfo *LI, const TargetTransformInfo *TTI,
944                        SmallVectorImpl<WeakTrackingVH> &Dead,
945                        SCEVExpander &Rewriter, IVVisitor *V) {
946   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
947                      Rewriter, Dead);
948   SIV.simplifyUsers(CurrIV, V);
949   return SIV.hasChanged();
950 }
951 
952 /// Simplify users of induction variables within this
953 /// loop. This does not actually change or add IVs.
954 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
955                      LoopInfo *LI, const TargetTransformInfo *TTI,
956                      SmallVectorImpl<WeakTrackingVH> &Dead) {
957   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
958 #ifndef NDEBUG
959   Rewriter.setDebugType(DEBUG_TYPE);
960 #endif
961   bool Changed = false;
962   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
963     Changed |=
964         simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
965   }
966   return Changed;
967 }
968 
969 } // namespace llvm
970