1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "indvars" 32 33 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 34 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 35 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 36 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 37 STATISTIC( 38 NumSimplifiedSDiv, 39 "Number of IV signed division operations converted to unsigned division"); 40 STATISTIC( 41 NumSimplifiedSRem, 42 "Number of IV signed remainder operations converted to unsigned remainder"); 43 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 44 45 namespace { 46 /// This is a utility for simplifying induction variables 47 /// based on ScalarEvolution. It is the primary instrument of the 48 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 49 /// other loop passes that preserve SCEV. 50 class SimplifyIndvar { 51 Loop *L; 52 LoopInfo *LI; 53 ScalarEvolution *SE; 54 DominatorTree *DT; 55 const TargetTransformInfo *TTI; 56 SCEVExpander &Rewriter; 57 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 58 59 bool Changed = false; 60 61 public: 62 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 63 LoopInfo *LI, const TargetTransformInfo *TTI, 64 SCEVExpander &Rewriter, 65 SmallVectorImpl<WeakTrackingVH> &Dead) 66 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter), 67 DeadInsts(Dead) { 68 assert(LI && "IV simplification requires LoopInfo"); 69 } 70 71 bool hasChanged() const { return Changed; } 72 73 /// Iteratively perform simplification on a worklist of users of the 74 /// specified induction variable. This is the top-level driver that applies 75 /// all simplifications to users of an IV. 76 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 77 78 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 79 80 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 81 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 82 bool replaceFloatIVWithIntegerIV(Instruction *UseInst); 83 84 bool eliminateOverflowIntrinsic(WithOverflowInst *WO); 85 bool eliminateSaturatingIntrinsic(SaturatingInst *SI); 86 bool eliminateTrunc(TruncInst *TI); 87 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 88 bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand); 89 void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand); 90 void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand, 91 bool IsSigned); 92 void replaceRemWithNumerator(BinaryOperator *Rem); 93 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 94 void replaceSRemWithURem(BinaryOperator *Rem); 95 bool eliminateSDiv(BinaryOperator *SDiv); 96 bool strengthenBinaryOp(BinaryOperator *BO, Instruction *IVOperand); 97 bool strengthenOverflowingOperation(BinaryOperator *OBO, 98 Instruction *IVOperand); 99 bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand); 100 }; 101 } 102 103 /// Find a point in code which dominates all given instructions. We can safely 104 /// assume that, whatever fact we can prove at the found point, this fact is 105 /// also true for each of the given instructions. 106 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions, 107 DominatorTree &DT) { 108 Instruction *CommonDom = nullptr; 109 for (auto *Insn : Instructions) 110 CommonDom = 111 CommonDom ? DT.findNearestCommonDominator(CommonDom, Insn) : Insn; 112 assert(CommonDom && "Common dominator not found?"); 113 return CommonDom; 114 } 115 116 /// Fold an IV operand into its use. This removes increments of an 117 /// aligned IV when used by a instruction that ignores the low bits. 118 /// 119 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 120 /// 121 /// Return the operand of IVOperand for this induction variable if IVOperand can 122 /// be folded (in case more folding opportunities have been exposed). 123 /// Otherwise return null. 124 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 125 Value *IVSrc = nullptr; 126 const unsigned OperIdx = 0; 127 const SCEV *FoldedExpr = nullptr; 128 bool MustDropExactFlag = false; 129 switch (UseInst->getOpcode()) { 130 default: 131 return nullptr; 132 case Instruction::UDiv: 133 case Instruction::LShr: 134 // We're only interested in the case where we know something about 135 // the numerator and have a constant denominator. 136 if (IVOperand != UseInst->getOperand(OperIdx) || 137 !isa<ConstantInt>(UseInst->getOperand(1))) 138 return nullptr; 139 140 // Attempt to fold a binary operator with constant operand. 141 // e.g. ((I + 1) >> 2) => I >> 2 142 if (!isa<BinaryOperator>(IVOperand) 143 || !isa<ConstantInt>(IVOperand->getOperand(1))) 144 return nullptr; 145 146 IVSrc = IVOperand->getOperand(0); 147 // IVSrc must be the (SCEVable) IV, since the other operand is const. 148 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 149 150 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 151 if (UseInst->getOpcode() == Instruction::LShr) { 152 // Get a constant for the divisor. See createSCEV. 153 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 154 if (D->getValue().uge(BitWidth)) 155 return nullptr; 156 157 D = ConstantInt::get(UseInst->getContext(), 158 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 159 } 160 const auto *LHS = SE->getSCEV(IVSrc); 161 const auto *RHS = SE->getSCEV(D); 162 FoldedExpr = SE->getUDivExpr(LHS, RHS); 163 // We might have 'exact' flag set at this point which will no longer be 164 // correct after we make the replacement. 165 if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS)) 166 MustDropExactFlag = true; 167 } 168 // We have something that might fold it's operand. Compare SCEVs. 169 if (!SE->isSCEVable(UseInst->getType())) 170 return nullptr; 171 172 // Bypass the operand if SCEV can prove it has no effect. 173 if (SE->getSCEV(UseInst) != FoldedExpr) 174 return nullptr; 175 176 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 177 << " -> " << *UseInst << '\n'); 178 179 UseInst->setOperand(OperIdx, IVSrc); 180 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 181 182 if (MustDropExactFlag) 183 UseInst->dropPoisonGeneratingFlags(); 184 185 ++NumElimOperand; 186 Changed = true; 187 if (IVOperand->use_empty()) 188 DeadInsts.emplace_back(IVOperand); 189 return IVSrc; 190 } 191 192 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 193 Instruction *IVOperand) { 194 auto *Preheader = L->getLoopPreheader(); 195 if (!Preheader) 196 return false; 197 unsigned IVOperIdx = 0; 198 ICmpInst::Predicate Pred = ICmp->getPredicate(); 199 if (IVOperand != ICmp->getOperand(0)) { 200 // Swapped 201 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 202 IVOperIdx = 1; 203 Pred = ICmpInst::getSwappedPredicate(Pred); 204 } 205 206 // Get the SCEVs for the ICmp operands (in the specific context of the 207 // current loop) 208 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 209 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 210 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 211 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L, ICmp); 212 if (!LIP) 213 return false; 214 ICmpInst::Predicate InvariantPredicate = LIP->Pred; 215 const SCEV *InvariantLHS = LIP->LHS; 216 const SCEV *InvariantRHS = LIP->RHS; 217 218 // Do not generate something ridiculous. 219 auto *PHTerm = Preheader->getTerminator(); 220 if (Rewriter.isHighCostExpansion({InvariantLHS, InvariantRHS}, L, 221 2 * SCEVCheapExpansionBudget, TTI, PHTerm) || 222 !Rewriter.isSafeToExpandAt(InvariantLHS, PHTerm) || 223 !Rewriter.isSafeToExpandAt(InvariantRHS, PHTerm)) 224 return false; 225 auto *NewLHS = 226 Rewriter.expandCodeFor(InvariantLHS, IVOperand->getType(), PHTerm); 227 auto *NewRHS = 228 Rewriter.expandCodeFor(InvariantRHS, IVOperand->getType(), PHTerm); 229 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 230 ICmp->setPredicate(InvariantPredicate); 231 ICmp->setOperand(0, NewLHS); 232 ICmp->setOperand(1, NewRHS); 233 return true; 234 } 235 236 /// SimplifyIVUsers helper for eliminating useless 237 /// comparisons against an induction variable. 238 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, 239 Instruction *IVOperand) { 240 unsigned IVOperIdx = 0; 241 ICmpInst::Predicate Pred = ICmp->getPredicate(); 242 ICmpInst::Predicate OriginalPred = Pred; 243 if (IVOperand != ICmp->getOperand(0)) { 244 // Swapped 245 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 246 IVOperIdx = 1; 247 Pred = ICmpInst::getSwappedPredicate(Pred); 248 } 249 250 // Get the SCEVs for the ICmp operands (in the specific context of the 251 // current loop) 252 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 253 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 254 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 255 256 // If the condition is always true or always false in the given context, 257 // replace it with a constant value. 258 SmallVector<Instruction *, 4> Users; 259 for (auto *U : ICmp->users()) 260 Users.push_back(cast<Instruction>(U)); 261 const Instruction *CtxI = findCommonDominator(Users, *DT); 262 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) { 263 SE->forgetValue(ICmp); 264 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev)); 265 DeadInsts.emplace_back(ICmp); 266 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 267 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 268 // fallthrough to end of function 269 } else if (ICmpInst::isSigned(OriginalPred) && 270 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 271 // If we were unable to make anything above, all we can is to canonicalize 272 // the comparison hoping that it will open the doors for other 273 // optimizations. If we find out that we compare two non-negative values, 274 // we turn the instruction's predicate to its unsigned version. Note that 275 // we cannot rely on Pred here unless we check if we have swapped it. 276 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 277 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 278 << '\n'); 279 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 280 } else 281 return; 282 283 ++NumElimCmp; 284 Changed = true; 285 } 286 287 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 288 // Get the SCEVs for the ICmp operands. 289 auto *N = SE->getSCEV(SDiv->getOperand(0)); 290 auto *D = SE->getSCEV(SDiv->getOperand(1)); 291 292 // Simplify unnecessary loops away. 293 const Loop *L = LI->getLoopFor(SDiv->getParent()); 294 N = SE->getSCEVAtScope(N, L); 295 D = SE->getSCEVAtScope(D, L); 296 297 // Replace sdiv by udiv if both of the operands are non-negative 298 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 299 auto *UDiv = BinaryOperator::Create( 300 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 301 SDiv->getName() + ".udiv", SDiv); 302 UDiv->setIsExact(SDiv->isExact()); 303 SDiv->replaceAllUsesWith(UDiv); 304 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 305 ++NumSimplifiedSDiv; 306 Changed = true; 307 DeadInsts.push_back(SDiv); 308 return true; 309 } 310 311 return false; 312 } 313 314 // i %s n -> i %u n if i >= 0 and n >= 0 315 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 316 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 317 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 318 Rem->getName() + ".urem", Rem); 319 Rem->replaceAllUsesWith(URem); 320 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 321 ++NumSimplifiedSRem; 322 Changed = true; 323 DeadInsts.emplace_back(Rem); 324 } 325 326 // i % n --> i if i is in [0,n). 327 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 328 Rem->replaceAllUsesWith(Rem->getOperand(0)); 329 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 330 ++NumElimRem; 331 Changed = true; 332 DeadInsts.emplace_back(Rem); 333 } 334 335 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 336 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 337 auto *T = Rem->getType(); 338 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 339 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 340 SelectInst *Sel = 341 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 342 Rem->replaceAllUsesWith(Sel); 343 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 344 ++NumElimRem; 345 Changed = true; 346 DeadInsts.emplace_back(Rem); 347 } 348 349 /// SimplifyIVUsers helper for eliminating useless remainder operations 350 /// operating on an induction variable or replacing srem by urem. 351 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, 352 Instruction *IVOperand, 353 bool IsSigned) { 354 auto *NValue = Rem->getOperand(0); 355 auto *DValue = Rem->getOperand(1); 356 // We're only interested in the case where we know something about 357 // the numerator, unless it is a srem, because we want to replace srem by urem 358 // in general. 359 bool UsedAsNumerator = IVOperand == NValue; 360 if (!UsedAsNumerator && !IsSigned) 361 return; 362 363 const SCEV *N = SE->getSCEV(NValue); 364 365 // Simplify unnecessary loops away. 366 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 367 N = SE->getSCEVAtScope(N, ICmpLoop); 368 369 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 370 371 // Do not proceed if the Numerator may be negative 372 if (!IsNumeratorNonNegative) 373 return; 374 375 const SCEV *D = SE->getSCEV(DValue); 376 D = SE->getSCEVAtScope(D, ICmpLoop); 377 378 if (UsedAsNumerator) { 379 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 380 if (SE->isKnownPredicate(LT, N, D)) { 381 replaceRemWithNumerator(Rem); 382 return; 383 } 384 385 auto *T = Rem->getType(); 386 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 387 if (SE->isKnownPredicate(LT, NLessOne, D)) { 388 replaceRemWithNumeratorOrZero(Rem); 389 return; 390 } 391 } 392 393 // Try to replace SRem with URem, if both N and D are known non-negative. 394 // Since we had already check N, we only need to check D now 395 if (!IsSigned || !SE->isKnownNonNegative(D)) 396 return; 397 398 replaceSRemWithURem(Rem); 399 } 400 401 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { 402 const SCEV *LHS = SE->getSCEV(WO->getLHS()); 403 const SCEV *RHS = SE->getSCEV(WO->getRHS()); 404 if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS)) 405 return false; 406 407 // Proved no overflow, nuke the overflow check and, if possible, the overflow 408 // intrinsic as well. 409 410 BinaryOperator *NewResult = BinaryOperator::Create( 411 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO); 412 413 if (WO->isSigned()) 414 NewResult->setHasNoSignedWrap(true); 415 else 416 NewResult->setHasNoUnsignedWrap(true); 417 418 SmallVector<ExtractValueInst *, 4> ToDelete; 419 420 for (auto *U : WO->users()) { 421 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 422 if (EVI->getIndices()[0] == 1) 423 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext())); 424 else { 425 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 426 EVI->replaceAllUsesWith(NewResult); 427 } 428 ToDelete.push_back(EVI); 429 } 430 } 431 432 for (auto *EVI : ToDelete) 433 EVI->eraseFromParent(); 434 435 if (WO->use_empty()) 436 WO->eraseFromParent(); 437 438 Changed = true; 439 return true; 440 } 441 442 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { 443 const SCEV *LHS = SE->getSCEV(SI->getLHS()); 444 const SCEV *RHS = SE->getSCEV(SI->getRHS()); 445 if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS)) 446 return false; 447 448 BinaryOperator *BO = BinaryOperator::Create( 449 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI); 450 if (SI->isSigned()) 451 BO->setHasNoSignedWrap(); 452 else 453 BO->setHasNoUnsignedWrap(); 454 455 SI->replaceAllUsesWith(BO); 456 DeadInsts.emplace_back(SI); 457 Changed = true; 458 return true; 459 } 460 461 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 462 // It is always legal to replace 463 // icmp <pred> i32 trunc(iv), n 464 // with 465 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 466 // Or with 467 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 468 // Or with either of these if pred is an equality predicate. 469 // 470 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 471 // every comparison which uses trunc, it means that we can replace each of 472 // them with comparison of iv against sext/zext(n). We no longer need trunc 473 // after that. 474 // 475 // TODO: Should we do this if we can widen *some* comparisons, but not all 476 // of them? Sometimes it is enough to enable other optimizations, but the 477 // trunc instruction will stay in the loop. 478 Value *IV = TI->getOperand(0); 479 Type *IVTy = IV->getType(); 480 const SCEV *IVSCEV = SE->getSCEV(IV); 481 const SCEV *TISCEV = SE->getSCEV(TI); 482 483 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 484 // get rid of trunc 485 bool DoesSExtCollapse = false; 486 bool DoesZExtCollapse = false; 487 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 488 DoesSExtCollapse = true; 489 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 490 DoesZExtCollapse = true; 491 492 // If neither sext nor zext does collapse, it is not profitable to do any 493 // transform. Bail. 494 if (!DoesSExtCollapse && !DoesZExtCollapse) 495 return false; 496 497 // Collect users of the trunc that look like comparisons against invariants. 498 // Bail if we find something different. 499 SmallVector<ICmpInst *, 4> ICmpUsers; 500 for (auto *U : TI->users()) { 501 // We don't care about users in unreachable blocks. 502 if (isa<Instruction>(U) && 503 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 504 continue; 505 ICmpInst *ICI = dyn_cast<ICmpInst>(U); 506 if (!ICI) return false; 507 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 508 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) && 509 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0)))) 510 return false; 511 // If we cannot get rid of trunc, bail. 512 if (ICI->isSigned() && !DoesSExtCollapse) 513 return false; 514 if (ICI->isUnsigned() && !DoesZExtCollapse) 515 return false; 516 // For equality, either signed or unsigned works. 517 ICmpUsers.push_back(ICI); 518 } 519 520 auto CanUseZExt = [&](ICmpInst *ICI) { 521 // Unsigned comparison can be widened as unsigned. 522 if (ICI->isUnsigned()) 523 return true; 524 // Is it profitable to do zext? 525 if (!DoesZExtCollapse) 526 return false; 527 // For equality, we can safely zext both parts. 528 if (ICI->isEquality()) 529 return true; 530 // Otherwise we can only use zext when comparing two non-negative or two 531 // negative values. But in practice, we will never pass DoesZExtCollapse 532 // check for a negative value, because zext(trunc(x)) is non-negative. So 533 // it only make sense to check for non-negativity here. 534 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 535 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 536 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 537 }; 538 // Replace all comparisons against trunc with comparisons against IV. 539 for (auto *ICI : ICmpUsers) { 540 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0)); 541 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1); 542 Instruction *Ext = nullptr; 543 // For signed/unsigned predicate, replace the old comparison with comparison 544 // of immediate IV against sext/zext of the invariant argument. If we can 545 // use either sext or zext (i.e. we are dealing with equality predicate), 546 // then prefer zext as a more canonical form. 547 // TODO: If we see a signed comparison which can be turned into unsigned, 548 // we can do it here for canonicalization purposes. 549 ICmpInst::Predicate Pred = ICI->getPredicate(); 550 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred); 551 if (CanUseZExt(ICI)) { 552 assert(DoesZExtCollapse && "Unprofitable zext?"); 553 Ext = new ZExtInst(Op1, IVTy, "zext", ICI); 554 Pred = ICmpInst::getUnsignedPredicate(Pred); 555 } else { 556 assert(DoesSExtCollapse && "Unprofitable sext?"); 557 Ext = new SExtInst(Op1, IVTy, "sext", ICI); 558 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 559 } 560 bool Changed; 561 L->makeLoopInvariant(Ext, Changed); 562 (void)Changed; 563 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); 564 ICI->replaceAllUsesWith(NewICI); 565 DeadInsts.emplace_back(ICI); 566 } 567 568 // Trunc no longer needed. 569 TI->replaceAllUsesWith(PoisonValue::get(TI->getType())); 570 DeadInsts.emplace_back(TI); 571 return true; 572 } 573 574 /// Eliminate an operation that consumes a simple IV and has no observable 575 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 576 /// but UseInst may not be. 577 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 578 Instruction *IVOperand) { 579 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 580 eliminateIVComparison(ICmp, IVOperand); 581 return true; 582 } 583 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 584 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 585 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 586 simplifyIVRemainder(Bin, IVOperand, IsSRem); 587 return true; 588 } 589 590 if (Bin->getOpcode() == Instruction::SDiv) 591 return eliminateSDiv(Bin); 592 } 593 594 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst)) 595 if (eliminateOverflowIntrinsic(WO)) 596 return true; 597 598 if (auto *SI = dyn_cast<SaturatingInst>(UseInst)) 599 if (eliminateSaturatingIntrinsic(SI)) 600 return true; 601 602 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 603 if (eliminateTrunc(TI)) 604 return true; 605 606 if (eliminateIdentitySCEV(UseInst, IVOperand)) 607 return true; 608 609 return false; 610 } 611 612 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 613 if (auto *BB = L->getLoopPreheader()) 614 return BB->getTerminator(); 615 616 return Hint; 617 } 618 619 /// Replace the UseInst with a loop invariant expression if it is safe. 620 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 621 if (!SE->isSCEVable(I->getType())) 622 return false; 623 624 // Get the symbolic expression for this instruction. 625 const SCEV *S = SE->getSCEV(I); 626 627 if (!SE->isLoopInvariant(S, L)) 628 return false; 629 630 // Do not generate something ridiculous even if S is loop invariant. 631 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I)) 632 return false; 633 634 auto *IP = GetLoopInvariantInsertPosition(L, I); 635 636 if (!Rewriter.isSafeToExpandAt(S, IP)) { 637 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I 638 << " with non-speculable loop invariant: " << *S << '\n'); 639 return false; 640 } 641 642 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 643 644 I->replaceAllUsesWith(Invariant); 645 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 646 << " with loop invariant: " << *S << '\n'); 647 ++NumFoldedUser; 648 Changed = true; 649 DeadInsts.emplace_back(I); 650 return true; 651 } 652 653 /// Eliminate redundant type cast between integer and float. 654 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) { 655 if (UseInst->getOpcode() != CastInst::SIToFP && 656 UseInst->getOpcode() != CastInst::UIToFP) 657 return false; 658 659 Instruction *IVOperand = cast<Instruction>(UseInst->getOperand(0)); 660 // Get the symbolic expression for this instruction. 661 const SCEV *IV = SE->getSCEV(IVOperand); 662 unsigned MaskBits; 663 if (UseInst->getOpcode() == CastInst::SIToFP) 664 MaskBits = SE->getSignedRange(IV).getMinSignedBits(); 665 else 666 MaskBits = SE->getUnsignedRange(IV).getActiveBits(); 667 unsigned DestNumSigBits = UseInst->getType()->getFPMantissaWidth(); 668 if (MaskBits <= DestNumSigBits) { 669 for (User *U : UseInst->users()) { 670 // Match for fptosi/fptoui of sitofp and with same type. 671 auto *CI = dyn_cast<CastInst>(U); 672 if (!CI) 673 continue; 674 675 CastInst::CastOps Opcode = CI->getOpcode(); 676 if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI) 677 continue; 678 679 Value *Conv = nullptr; 680 if (IVOperand->getType() != CI->getType()) { 681 IRBuilder<> Builder(CI); 682 StringRef Name = IVOperand->getName(); 683 // To match InstCombine logic, we only need sext if both fptosi and 684 // sitofp are used. If one of them is unsigned, then we can use zext. 685 if (SE->getTypeSizeInBits(IVOperand->getType()) > 686 SE->getTypeSizeInBits(CI->getType())) { 687 Conv = Builder.CreateTrunc(IVOperand, CI->getType(), Name + ".trunc"); 688 } else if (Opcode == CastInst::FPToUI || 689 UseInst->getOpcode() == CastInst::UIToFP) { 690 Conv = Builder.CreateZExt(IVOperand, CI->getType(), Name + ".zext"); 691 } else { 692 Conv = Builder.CreateSExt(IVOperand, CI->getType(), Name + ".sext"); 693 } 694 } else 695 Conv = IVOperand; 696 697 CI->replaceAllUsesWith(Conv); 698 DeadInsts.push_back(CI); 699 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI 700 << " with: " << *Conv << '\n'); 701 702 ++NumFoldedUser; 703 Changed = true; 704 } 705 } 706 707 return Changed; 708 } 709 710 /// Eliminate any operation that SCEV can prove is an identity function. 711 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 712 Instruction *IVOperand) { 713 if (!SE->isSCEVable(UseInst->getType()) || 714 (UseInst->getType() != IVOperand->getType()) || 715 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 716 return false; 717 718 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 719 // dominator tree, even if X is an operand to Y. For instance, in 720 // 721 // %iv = phi i32 {0,+,1} 722 // br %cond, label %left, label %merge 723 // 724 // left: 725 // %X = add i32 %iv, 0 726 // br label %merge 727 // 728 // merge: 729 // %M = phi (%X, %iv) 730 // 731 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 732 // %M.replaceAllUsesWith(%X) would be incorrect. 733 734 if (isa<PHINode>(UseInst)) 735 // If UseInst is not a PHI node then we know that IVOperand dominates 736 // UseInst directly from the legality of SSA. 737 if (!DT || !DT->dominates(IVOperand, UseInst)) 738 return false; 739 740 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 741 return false; 742 743 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 744 745 SE->forgetValue(UseInst); 746 UseInst->replaceAllUsesWith(IVOperand); 747 ++NumElimIdentity; 748 Changed = true; 749 DeadInsts.emplace_back(UseInst); 750 return true; 751 } 752 753 bool SimplifyIndvar::strengthenBinaryOp(BinaryOperator *BO, 754 Instruction *IVOperand) { 755 return (isa<OverflowingBinaryOperator>(BO) && 756 strengthenOverflowingOperation(BO, IVOperand)) || 757 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand)); 758 } 759 760 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 761 /// unsigned-overflow. Returns true if anything changed, false otherwise. 762 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 763 Instruction *IVOperand) { 764 auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp( 765 cast<OverflowingBinaryOperator>(BO)); 766 767 if (!Flags) 768 return false; 769 770 BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == 771 SCEV::FlagNUW); 772 BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == 773 SCEV::FlagNSW); 774 775 // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap 776 // flags on addrecs while performing zero/sign extensions. We could call 777 // forgetValue() here to make sure those flags also propagate to any other 778 // SCEV expressions based on the addrec. However, this can have pathological 779 // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384. 780 return true; 781 } 782 783 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 784 /// information from the IV's range. Returns true if anything changed, false 785 /// otherwise. 786 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 787 Instruction *IVOperand) { 788 using namespace llvm::PatternMatch; 789 790 if (BO->getOpcode() == Instruction::Shl) { 791 bool Changed = false; 792 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 793 for (auto *U : BO->users()) { 794 const APInt *C; 795 if (match(U, 796 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 797 match(U, 798 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 799 BinaryOperator *Shr = cast<BinaryOperator>(U); 800 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 801 Shr->setIsExact(true); 802 Changed = true; 803 } 804 } 805 } 806 return Changed; 807 } 808 809 return false; 810 } 811 812 /// Add all uses of Def to the current IV's worklist. 813 static void pushIVUsers( 814 Instruction *Def, Loop *L, 815 SmallPtrSet<Instruction*,16> &Simplified, 816 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 817 818 for (User *U : Def->users()) { 819 Instruction *UI = cast<Instruction>(U); 820 821 // Avoid infinite or exponential worklist processing. 822 // Also ensure unique worklist users. 823 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 824 // self edges first. 825 if (UI == Def) 826 continue; 827 828 // Only change the current Loop, do not change the other parts (e.g. other 829 // Loops). 830 if (!L->contains(UI)) 831 continue; 832 833 // Do not push the same instruction more than once. 834 if (!Simplified.insert(UI).second) 835 continue; 836 837 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 838 } 839 } 840 841 /// Return true if this instruction generates a simple SCEV 842 /// expression in terms of that IV. 843 /// 844 /// This is similar to IVUsers' isInteresting() but processes each instruction 845 /// non-recursively when the operand is already known to be a simpleIVUser. 846 /// 847 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 848 if (!SE->isSCEVable(I->getType())) 849 return false; 850 851 // Get the symbolic expression for this instruction. 852 const SCEV *S = SE->getSCEV(I); 853 854 // Only consider affine recurrences. 855 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 856 if (AR && AR->getLoop() == L) 857 return true; 858 859 return false; 860 } 861 862 /// Iteratively perform simplification on a worklist of users 863 /// of the specified induction variable. Each successive simplification may push 864 /// more users which may themselves be candidates for simplification. 865 /// 866 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 867 /// instructions in-place during analysis. Rather than rewriting induction 868 /// variables bottom-up from their users, it transforms a chain of IVUsers 869 /// top-down, updating the IR only when it encounters a clear optimization 870 /// opportunity. 871 /// 872 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 873 /// 874 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 875 if (!SE->isSCEVable(CurrIV->getType())) 876 return; 877 878 // Instructions processed by SimplifyIndvar for CurrIV. 879 SmallPtrSet<Instruction*,16> Simplified; 880 881 // Use-def pairs if IV users waiting to be processed for CurrIV. 882 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 883 884 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 885 // called multiple times for the same LoopPhi. This is the proper thing to 886 // do for loop header phis that use each other. 887 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 888 889 while (!SimpleIVUsers.empty()) { 890 std::pair<Instruction*, Instruction*> UseOper = 891 SimpleIVUsers.pop_back_val(); 892 Instruction *UseInst = UseOper.first; 893 894 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 895 // rather than try to do some complex analysis or transformation (such as 896 // widening) basing on it. 897 // TODO: Propagate TLI and pass it here to handle more cases. 898 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 899 DeadInsts.emplace_back(UseInst); 900 continue; 901 } 902 903 // Bypass back edges to avoid extra work. 904 if (UseInst == CurrIV) continue; 905 906 // Try to replace UseInst with a loop invariant before any other 907 // simplifications. 908 if (replaceIVUserWithLoopInvariant(UseInst)) 909 continue; 910 911 // Go further for the bitcast ''prtoint ptr to i64' 912 if (isa<PtrToIntInst>(UseInst)) 913 for (Use &U : UseInst->uses()) { 914 Instruction *User = cast<Instruction>(U.getUser()); 915 if (replaceIVUserWithLoopInvariant(User)) 916 break; // done replacing 917 } 918 919 Instruction *IVOperand = UseOper.second; 920 for (unsigned N = 0; IVOperand; ++N) { 921 assert(N <= Simplified.size() && "runaway iteration"); 922 (void) N; 923 924 Value *NewOper = foldIVUser(UseInst, IVOperand); 925 if (!NewOper) 926 break; // done folding 927 IVOperand = dyn_cast<Instruction>(NewOper); 928 } 929 if (!IVOperand) 930 continue; 931 932 if (eliminateIVUser(UseInst, IVOperand)) { 933 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 934 continue; 935 } 936 937 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 938 if (strengthenBinaryOp(BO, IVOperand)) { 939 // re-queue uses of the now modified binary operator and fall 940 // through to the checks that remain. 941 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 942 } 943 } 944 945 // Try to use integer induction for FPToSI of float induction directly. 946 if (replaceFloatIVWithIntegerIV(UseInst)) { 947 // Re-queue the potentially new direct uses of IVOperand. 948 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 949 continue; 950 } 951 952 CastInst *Cast = dyn_cast<CastInst>(UseInst); 953 if (V && Cast) { 954 V->visitCast(Cast); 955 continue; 956 } 957 if (isSimpleIVUser(UseInst, L, SE)) { 958 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 959 } 960 } 961 } 962 963 namespace llvm { 964 965 void IVVisitor::anchor() { } 966 967 /// Simplify instructions that use this induction variable 968 /// by using ScalarEvolution to analyze the IV's recurrence. 969 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 970 LoopInfo *LI, const TargetTransformInfo *TTI, 971 SmallVectorImpl<WeakTrackingVH> &Dead, 972 SCEVExpander &Rewriter, IVVisitor *V) { 973 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI, 974 Rewriter, Dead); 975 SIV.simplifyUsers(CurrIV, V); 976 return SIV.hasChanged(); 977 } 978 979 /// Simplify users of induction variables within this 980 /// loop. This does not actually change or add IVs. 981 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 982 LoopInfo *LI, const TargetTransformInfo *TTI, 983 SmallVectorImpl<WeakTrackingVH> &Dead) { 984 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 985 #ifndef NDEBUG 986 Rewriter.setDebugType(DEBUG_TYPE); 987 #endif 988 bool Changed = false; 989 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 990 Changed |= 991 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter); 992 } 993 return Changed; 994 } 995 996 } // namespace llvm 997 998 namespace { 999 //===----------------------------------------------------------------------===// 1000 // Widen Induction Variables - Extend the width of an IV to cover its 1001 // widest uses. 1002 //===----------------------------------------------------------------------===// 1003 1004 class WidenIV { 1005 // Parameters 1006 PHINode *OrigPhi; 1007 Type *WideType; 1008 1009 // Context 1010 LoopInfo *LI; 1011 Loop *L; 1012 ScalarEvolution *SE; 1013 DominatorTree *DT; 1014 1015 // Does the module have any calls to the llvm.experimental.guard intrinsic 1016 // at all? If not we can avoid scanning instructions looking for guards. 1017 bool HasGuards; 1018 1019 bool UsePostIncrementRanges; 1020 1021 // Statistics 1022 unsigned NumElimExt = 0; 1023 unsigned NumWidened = 0; 1024 1025 // Result 1026 PHINode *WidePhi = nullptr; 1027 Instruction *WideInc = nullptr; 1028 const SCEV *WideIncExpr = nullptr; 1029 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 1030 1031 SmallPtrSet<Instruction *,16> Widened; 1032 1033 enum class ExtendKind { Zero, Sign, Unknown }; 1034 1035 // A map tracking the kind of extension used to widen each narrow IV 1036 // and narrow IV user. 1037 // Key: pointer to a narrow IV or IV user. 1038 // Value: the kind of extension used to widen this Instruction. 1039 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 1040 1041 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 1042 1043 // A map with control-dependent ranges for post increment IV uses. The key is 1044 // a pair of IV def and a use of this def denoting the context. The value is 1045 // a ConstantRange representing possible values of the def at the given 1046 // context. 1047 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 1048 1049 std::optional<ConstantRange> getPostIncRangeInfo(Value *Def, 1050 Instruction *UseI) { 1051 DefUserPair Key(Def, UseI); 1052 auto It = PostIncRangeInfos.find(Key); 1053 return It == PostIncRangeInfos.end() 1054 ? std::optional<ConstantRange>(std::nullopt) 1055 : std::optional<ConstantRange>(It->second); 1056 } 1057 1058 void calculatePostIncRanges(PHINode *OrigPhi); 1059 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 1060 1061 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 1062 DefUserPair Key(Def, UseI); 1063 auto It = PostIncRangeInfos.find(Key); 1064 if (It == PostIncRangeInfos.end()) 1065 PostIncRangeInfos.insert({Key, R}); 1066 else 1067 It->second = R.intersectWith(It->second); 1068 } 1069 1070 public: 1071 /// Record a link in the Narrow IV def-use chain along with the WideIV that 1072 /// computes the same value as the Narrow IV def. This avoids caching Use* 1073 /// pointers. 1074 struct NarrowIVDefUse { 1075 Instruction *NarrowDef = nullptr; 1076 Instruction *NarrowUse = nullptr; 1077 Instruction *WideDef = nullptr; 1078 1079 // True if the narrow def is never negative. Tracking this information lets 1080 // us use a sign extension instead of a zero extension or vice versa, when 1081 // profitable and legal. 1082 bool NeverNegative = false; 1083 1084 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 1085 bool NeverNegative) 1086 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 1087 NeverNegative(NeverNegative) {} 1088 }; 1089 1090 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1091 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1092 bool HasGuards, bool UsePostIncrementRanges = true); 1093 1094 PHINode *createWideIV(SCEVExpander &Rewriter); 1095 1096 unsigned getNumElimExt() { return NumElimExt; }; 1097 unsigned getNumWidened() { return NumWidened; }; 1098 1099 protected: 1100 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1101 Instruction *Use); 1102 1103 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1104 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1105 const SCEVAddRecExpr *WideAR); 1106 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1107 1108 ExtendKind getExtendKind(Instruction *I); 1109 1110 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1111 1112 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1113 1114 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1115 1116 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1117 unsigned OpCode) const; 1118 1119 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1120 1121 bool widenLoopCompare(NarrowIVDefUse DU); 1122 bool widenWithVariantUse(NarrowIVDefUse DU); 1123 1124 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1125 1126 private: 1127 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 1128 }; 1129 } // namespace 1130 1131 /// Determine the insertion point for this user. By default, insert immediately 1132 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 1133 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 1134 /// common dominator for the incoming blocks. A nullptr can be returned if no 1135 /// viable location is found: it may happen if User is a PHI and Def only comes 1136 /// to this PHI from unreachable blocks. 1137 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 1138 DominatorTree *DT, LoopInfo *LI) { 1139 PHINode *PHI = dyn_cast<PHINode>(User); 1140 if (!PHI) 1141 return User; 1142 1143 Instruction *InsertPt = nullptr; 1144 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 1145 if (PHI->getIncomingValue(i) != Def) 1146 continue; 1147 1148 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 1149 1150 if (!DT->isReachableFromEntry(InsertBB)) 1151 continue; 1152 1153 if (!InsertPt) { 1154 InsertPt = InsertBB->getTerminator(); 1155 continue; 1156 } 1157 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 1158 InsertPt = InsertBB->getTerminator(); 1159 } 1160 1161 // If we have skipped all inputs, it means that Def only comes to Phi from 1162 // unreachable blocks. 1163 if (!InsertPt) 1164 return nullptr; 1165 1166 auto *DefI = dyn_cast<Instruction>(Def); 1167 if (!DefI) 1168 return InsertPt; 1169 1170 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 1171 1172 auto *L = LI->getLoopFor(DefI->getParent()); 1173 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 1174 1175 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 1176 if (LI->getLoopFor(DTN->getBlock()) == L) 1177 return DTN->getBlock()->getTerminator(); 1178 1179 llvm_unreachable("DefI dominates InsertPt!"); 1180 } 1181 1182 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1183 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1184 bool HasGuards, bool UsePostIncrementRanges) 1185 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 1186 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 1187 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges), 1188 DeadInsts(DI) { 1189 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 1190 ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero; 1191 } 1192 1193 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1194 bool IsSigned, Instruction *Use) { 1195 // Set the debug location and conservative insertion point. 1196 IRBuilder<> Builder(Use); 1197 // Hoist the insertion point into loop preheaders as far as possible. 1198 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1199 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1200 L = L->getParentLoop()) 1201 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1202 1203 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1204 Builder.CreateZExt(NarrowOper, WideType); 1205 } 1206 1207 /// Instantiate a wide operation to replace a narrow operation. This only needs 1208 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1209 /// 0 for any operation we decide not to clone. 1210 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU, 1211 const SCEVAddRecExpr *WideAR) { 1212 unsigned Opcode = DU.NarrowUse->getOpcode(); 1213 switch (Opcode) { 1214 default: 1215 return nullptr; 1216 case Instruction::Add: 1217 case Instruction::Mul: 1218 case Instruction::UDiv: 1219 case Instruction::Sub: 1220 return cloneArithmeticIVUser(DU, WideAR); 1221 1222 case Instruction::And: 1223 case Instruction::Or: 1224 case Instruction::Xor: 1225 case Instruction::Shl: 1226 case Instruction::LShr: 1227 case Instruction::AShr: 1228 return cloneBitwiseIVUser(DU); 1229 } 1230 } 1231 1232 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) { 1233 Instruction *NarrowUse = DU.NarrowUse; 1234 Instruction *NarrowDef = DU.NarrowDef; 1235 Instruction *WideDef = DU.WideDef; 1236 1237 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1238 1239 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1240 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1241 // invariant and will be folded or hoisted. If it actually comes from a 1242 // widened IV, it should be removed during a future call to widenIVUse. 1243 bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign; 1244 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1245 ? WideDef 1246 : createExtendInst(NarrowUse->getOperand(0), WideType, 1247 IsSigned, NarrowUse); 1248 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1249 ? WideDef 1250 : createExtendInst(NarrowUse->getOperand(1), WideType, 1251 IsSigned, NarrowUse); 1252 1253 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1254 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1255 NarrowBO->getName()); 1256 IRBuilder<> Builder(NarrowUse); 1257 Builder.Insert(WideBO); 1258 WideBO->copyIRFlags(NarrowBO); 1259 return WideBO; 1260 } 1261 1262 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU, 1263 const SCEVAddRecExpr *WideAR) { 1264 Instruction *NarrowUse = DU.NarrowUse; 1265 Instruction *NarrowDef = DU.NarrowDef; 1266 Instruction *WideDef = DU.WideDef; 1267 1268 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1269 1270 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1271 1272 // We're trying to find X such that 1273 // 1274 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1275 // 1276 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1277 // and check using SCEV if any of them are correct. 1278 1279 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1280 // correct solution to X. 1281 auto GuessNonIVOperand = [&](bool SignExt) { 1282 const SCEV *WideLHS; 1283 const SCEV *WideRHS; 1284 1285 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1286 if (SignExt) 1287 return SE->getSignExtendExpr(S, Ty); 1288 return SE->getZeroExtendExpr(S, Ty); 1289 }; 1290 1291 if (IVOpIdx == 0) { 1292 WideLHS = SE->getSCEV(WideDef); 1293 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1294 WideRHS = GetExtend(NarrowRHS, WideType); 1295 } else { 1296 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1297 WideLHS = GetExtend(NarrowLHS, WideType); 1298 WideRHS = SE->getSCEV(WideDef); 1299 } 1300 1301 // WideUse is "WideDef `op.wide` X" as described in the comment. 1302 const SCEV *WideUse = 1303 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode()); 1304 1305 return WideUse == WideAR; 1306 }; 1307 1308 bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign; 1309 if (!GuessNonIVOperand(SignExtend)) { 1310 SignExtend = !SignExtend; 1311 if (!GuessNonIVOperand(SignExtend)) 1312 return nullptr; 1313 } 1314 1315 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1316 ? WideDef 1317 : createExtendInst(NarrowUse->getOperand(0), WideType, 1318 SignExtend, NarrowUse); 1319 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1320 ? WideDef 1321 : createExtendInst(NarrowUse->getOperand(1), WideType, 1322 SignExtend, NarrowUse); 1323 1324 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1325 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1326 NarrowBO->getName()); 1327 1328 IRBuilder<> Builder(NarrowUse); 1329 Builder.Insert(WideBO); 1330 WideBO->copyIRFlags(NarrowBO); 1331 return WideBO; 1332 } 1333 1334 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1335 auto It = ExtendKindMap.find(I); 1336 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1337 return It->second; 1338 } 1339 1340 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1341 unsigned OpCode) const { 1342 switch (OpCode) { 1343 case Instruction::Add: 1344 return SE->getAddExpr(LHS, RHS); 1345 case Instruction::Sub: 1346 return SE->getMinusSCEV(LHS, RHS); 1347 case Instruction::Mul: 1348 return SE->getMulExpr(LHS, RHS); 1349 case Instruction::UDiv: 1350 return SE->getUDivExpr(LHS, RHS); 1351 default: 1352 llvm_unreachable("Unsupported opcode."); 1353 }; 1354 } 1355 1356 /// No-wrap operations can transfer sign extension of their result to their 1357 /// operands. Generate the SCEV value for the widened operation without 1358 /// actually modifying the IR yet. If the expression after extending the 1359 /// operands is an AddRec for this loop, return the AddRec and the kind of 1360 /// extension used. 1361 WidenIV::WidenedRecTy 1362 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) { 1363 // Handle the common case of add<nsw/nuw> 1364 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1365 // Only Add/Sub/Mul instructions supported yet. 1366 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1367 OpCode != Instruction::Mul) 1368 return {nullptr, ExtendKind::Unknown}; 1369 1370 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1371 // if extending the other will lead to a recurrence. 1372 const unsigned ExtendOperIdx = 1373 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1374 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1375 1376 const SCEV *ExtendOperExpr = nullptr; 1377 const OverflowingBinaryOperator *OBO = 1378 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1379 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1380 if (ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap()) 1381 ExtendOperExpr = SE->getSignExtendExpr( 1382 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1383 else if (ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap()) 1384 ExtendOperExpr = SE->getZeroExtendExpr( 1385 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1386 else 1387 return {nullptr, ExtendKind::Unknown}; 1388 1389 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1390 // flags. This instruction may be guarded by control flow that the no-wrap 1391 // behavior depends on. Non-control-equivalent instructions can be mapped to 1392 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1393 // semantics to those operations. 1394 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1395 const SCEV *rhs = ExtendOperExpr; 1396 1397 // Let's swap operands to the initial order for the case of non-commutative 1398 // operations, like SUB. See PR21014. 1399 if (ExtendOperIdx == 0) 1400 std::swap(lhs, rhs); 1401 const SCEVAddRecExpr *AddRec = 1402 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1403 1404 if (!AddRec || AddRec->getLoop() != L) 1405 return {nullptr, ExtendKind::Unknown}; 1406 1407 return {AddRec, ExtKind}; 1408 } 1409 1410 /// Is this instruction potentially interesting for further simplification after 1411 /// widening it's type? In other words, can the extend be safely hoisted out of 1412 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1413 /// so, return the extended recurrence and the kind of extension used. Otherwise 1414 /// return {nullptr, ExtendKind::Unknown}. 1415 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) { 1416 if (!DU.NarrowUse->getType()->isIntegerTy()) 1417 return {nullptr, ExtendKind::Unknown}; 1418 1419 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1420 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1421 SE->getTypeSizeInBits(WideType)) { 1422 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1423 // index. So don't follow this use. 1424 return {nullptr, ExtendKind::Unknown}; 1425 } 1426 1427 const SCEV *WideExpr; 1428 ExtendKind ExtKind; 1429 if (DU.NeverNegative) { 1430 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1431 if (isa<SCEVAddRecExpr>(WideExpr)) 1432 ExtKind = ExtendKind::Sign; 1433 else { 1434 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1435 ExtKind = ExtendKind::Zero; 1436 } 1437 } else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) { 1438 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1439 ExtKind = ExtendKind::Sign; 1440 } else { 1441 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1442 ExtKind = ExtendKind::Zero; 1443 } 1444 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1445 if (!AddRec || AddRec->getLoop() != L) 1446 return {nullptr, ExtendKind::Unknown}; 1447 return {AddRec, ExtKind}; 1448 } 1449 1450 /// This IV user cannot be widened. Replace this use of the original narrow IV 1451 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1452 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT, 1453 LoopInfo *LI) { 1454 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1455 if (!InsertPt) 1456 return; 1457 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1458 << *DU.NarrowUse << "\n"); 1459 IRBuilder<> Builder(InsertPt); 1460 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1461 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1462 } 1463 1464 /// If the narrow use is a compare instruction, then widen the compare 1465 // (and possibly the other operand). The extend operation is hoisted into the 1466 // loop preheader as far as possible. 1467 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) { 1468 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1469 if (!Cmp) 1470 return false; 1471 1472 // We can legally widen the comparison in the following two cases: 1473 // 1474 // - The signedness of the IV extension and comparison match 1475 // 1476 // - The narrow IV is always positive (and thus its sign extension is equal 1477 // to its zero extension). For instance, let's say we're zero extending 1478 // %narrow for the following use 1479 // 1480 // icmp slt i32 %narrow, %val ... (A) 1481 // 1482 // and %narrow is always positive. Then 1483 // 1484 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1485 // == icmp slt i32 zext(%narrow), sext(%val) 1486 bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign; 1487 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1488 return false; 1489 1490 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1491 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1492 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1493 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1494 1495 // Widen the compare instruction. 1496 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1497 if (!InsertPt) 1498 return false; 1499 IRBuilder<> Builder(InsertPt); 1500 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1501 1502 // Widen the other operand of the compare, if necessary. 1503 if (CastWidth < IVWidth) { 1504 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1505 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1506 } 1507 return true; 1508 } 1509 1510 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this 1511 // will not work when: 1512 // 1) SCEV traces back to an instruction inside the loop that SCEV can not 1513 // expand, eg. add %indvar, (load %addr) 1514 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant 1515 // While SCEV fails to avoid trunc, we can still try to use instruction 1516 // combining approach to prove trunc is not required. This can be further 1517 // extended with other instruction combining checks, but for now we handle the 1518 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext") 1519 // 1520 // Src: 1521 // %c = sub nsw %b, %indvar 1522 // %d = sext %c to i64 1523 // Dst: 1524 // %indvar.ext1 = sext %indvar to i64 1525 // %m = sext %b to i64 1526 // %d = sub nsw i64 %m, %indvar.ext1 1527 // Therefore, as long as the result of add/sub/mul is extended to wide type, no 1528 // trunc is required regardless of how %b is generated. This pattern is common 1529 // when calculating address in 64 bit architecture 1530 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) { 1531 Instruction *NarrowUse = DU.NarrowUse; 1532 Instruction *NarrowDef = DU.NarrowDef; 1533 Instruction *WideDef = DU.WideDef; 1534 1535 // Handle the common case of add<nsw/nuw> 1536 const unsigned OpCode = NarrowUse->getOpcode(); 1537 // Only Add/Sub/Mul instructions are supported. 1538 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1539 OpCode != Instruction::Mul) 1540 return false; 1541 1542 // The operand that is not defined by NarrowDef of DU. Let's call it the 1543 // other operand. 1544 assert((NarrowUse->getOperand(0) == NarrowDef || 1545 NarrowUse->getOperand(1) == NarrowDef) && 1546 "bad DU"); 1547 1548 const OverflowingBinaryOperator *OBO = 1549 cast<OverflowingBinaryOperator>(NarrowUse); 1550 ExtendKind ExtKind = getExtendKind(NarrowDef); 1551 bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap(); 1552 bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap(); 1553 auto AnotherOpExtKind = ExtKind; 1554 1555 // Check that all uses are either: 1556 // - narrow def (in case of we are widening the IV increment); 1557 // - single-input LCSSA Phis; 1558 // - comparison of the chosen type; 1559 // - extend of the chosen type (raison d'etre). 1560 SmallVector<Instruction *, 4> ExtUsers; 1561 SmallVector<PHINode *, 4> LCSSAPhiUsers; 1562 SmallVector<ICmpInst *, 4> ICmpUsers; 1563 for (Use &U : NarrowUse->uses()) { 1564 Instruction *User = cast<Instruction>(U.getUser()); 1565 if (User == NarrowDef) 1566 continue; 1567 if (!L->contains(User)) { 1568 auto *LCSSAPhi = cast<PHINode>(User); 1569 // Make sure there is only 1 input, so that we don't have to split 1570 // critical edges. 1571 if (LCSSAPhi->getNumOperands() != 1) 1572 return false; 1573 LCSSAPhiUsers.push_back(LCSSAPhi); 1574 continue; 1575 } 1576 if (auto *ICmp = dyn_cast<ICmpInst>(User)) { 1577 auto Pred = ICmp->getPredicate(); 1578 // We have 3 types of predicates: signed, unsigned and equality 1579 // predicates. For equality, it's legal to widen icmp for either sign and 1580 // zero extend. For sign extend, we can also do so for signed predicates, 1581 // likeweise for zero extend we can widen icmp for unsigned predicates. 1582 if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred)) 1583 return false; 1584 if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred)) 1585 return false; 1586 ICmpUsers.push_back(ICmp); 1587 continue; 1588 } 1589 if (ExtKind == ExtendKind::Sign) 1590 User = dyn_cast<SExtInst>(User); 1591 else 1592 User = dyn_cast<ZExtInst>(User); 1593 if (!User || User->getType() != WideType) 1594 return false; 1595 ExtUsers.push_back(User); 1596 } 1597 if (ExtUsers.empty()) { 1598 DeadInsts.emplace_back(NarrowUse); 1599 return true; 1600 } 1601 1602 // We'll prove some facts that should be true in the context of ext users. If 1603 // there is no users, we are done now. If there are some, pick their common 1604 // dominator as context. 1605 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT); 1606 1607 if (!CanSignExtend && !CanZeroExtend) { 1608 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we 1609 // will most likely not see it. Let's try to prove it. 1610 if (OpCode != Instruction::Add) 1611 return false; 1612 if (ExtKind != ExtendKind::Zero) 1613 return false; 1614 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0)); 1615 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1)); 1616 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1). 1617 if (NarrowUse->getOperand(0) != NarrowDef) 1618 return false; 1619 if (!SE->isKnownNegative(RHS)) 1620 return false; 1621 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS, 1622 SE->getNegativeSCEV(RHS), CtxI); 1623 if (!ProvedSubNUW) 1624 return false; 1625 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as 1626 // neg(zext(neg(op))), which is basically sext(op). 1627 AnotherOpExtKind = ExtendKind::Sign; 1628 } 1629 1630 // Verifying that Defining operand is an AddRec 1631 const SCEV *Op1 = SE->getSCEV(WideDef); 1632 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1633 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1634 return false; 1635 1636 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1637 1638 // Generating a widening use instruction. 1639 Value *LHS = 1640 (NarrowUse->getOperand(0) == NarrowDef) 1641 ? WideDef 1642 : createExtendInst(NarrowUse->getOperand(0), WideType, 1643 AnotherOpExtKind == ExtendKind::Sign, NarrowUse); 1644 Value *RHS = 1645 (NarrowUse->getOperand(1) == NarrowDef) 1646 ? WideDef 1647 : createExtendInst(NarrowUse->getOperand(1), WideType, 1648 AnotherOpExtKind == ExtendKind::Sign, NarrowUse); 1649 1650 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1651 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1652 NarrowBO->getName()); 1653 IRBuilder<> Builder(NarrowUse); 1654 Builder.Insert(WideBO); 1655 WideBO->copyIRFlags(NarrowBO); 1656 ExtendKindMap[NarrowUse] = ExtKind; 1657 1658 for (Instruction *User : ExtUsers) { 1659 assert(User->getType() == WideType && "Checked before!"); 1660 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1661 << *WideBO << "\n"); 1662 ++NumElimExt; 1663 User->replaceAllUsesWith(WideBO); 1664 DeadInsts.emplace_back(User); 1665 } 1666 1667 for (PHINode *User : LCSSAPhiUsers) { 1668 assert(User->getNumOperands() == 1 && "Checked before!"); 1669 Builder.SetInsertPoint(User); 1670 auto *WidePN = 1671 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide"); 1672 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor(); 1673 assert(LoopExitingBlock && L->contains(LoopExitingBlock) && 1674 "Not a LCSSA Phi?"); 1675 WidePN->addIncoming(WideBO, LoopExitingBlock); 1676 Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt()); 1677 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType()); 1678 User->replaceAllUsesWith(TruncPN); 1679 DeadInsts.emplace_back(User); 1680 } 1681 1682 for (ICmpInst *User : ICmpUsers) { 1683 Builder.SetInsertPoint(User); 1684 auto ExtendedOp = [&](Value * V)->Value * { 1685 if (V == NarrowUse) 1686 return WideBO; 1687 if (ExtKind == ExtendKind::Zero) 1688 return Builder.CreateZExt(V, WideBO->getType()); 1689 else 1690 return Builder.CreateSExt(V, WideBO->getType()); 1691 }; 1692 auto Pred = User->getPredicate(); 1693 auto *LHS = ExtendedOp(User->getOperand(0)); 1694 auto *RHS = ExtendedOp(User->getOperand(1)); 1695 auto *WideCmp = 1696 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide"); 1697 User->replaceAllUsesWith(WideCmp); 1698 DeadInsts.emplace_back(User); 1699 } 1700 1701 return true; 1702 } 1703 1704 /// Determine whether an individual user of the narrow IV can be widened. If so, 1705 /// return the wide clone of the user. 1706 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1707 assert(ExtendKindMap.count(DU.NarrowDef) && 1708 "Should already know the kind of extension used to widen NarrowDef"); 1709 1710 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1711 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1712 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1713 // For LCSSA phis, sink the truncate outside the loop. 1714 // After SimplifyCFG most loop exit targets have a single predecessor. 1715 // Otherwise fall back to a truncate within the loop. 1716 if (UsePhi->getNumOperands() != 1) 1717 truncateIVUse(DU, DT, LI); 1718 else { 1719 // Widening the PHI requires us to insert a trunc. The logical place 1720 // for this trunc is in the same BB as the PHI. This is not possible if 1721 // the BB is terminated by a catchswitch. 1722 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1723 return nullptr; 1724 1725 PHINode *WidePhi = 1726 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1727 UsePhi); 1728 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1729 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1730 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1731 UsePhi->replaceAllUsesWith(Trunc); 1732 DeadInsts.emplace_back(UsePhi); 1733 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1734 << *WidePhi << "\n"); 1735 } 1736 return nullptr; 1737 } 1738 } 1739 1740 // This narrow use can be widened by a sext if it's non-negative or its narrow 1741 // def was widended by a sext. Same for zext. 1742 auto canWidenBySExt = [&]() { 1743 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign; 1744 }; 1745 auto canWidenByZExt = [&]() { 1746 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero; 1747 }; 1748 1749 // Our raison d'etre! Eliminate sign and zero extension. 1750 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1751 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1752 Value *NewDef = DU.WideDef; 1753 if (DU.NarrowUse->getType() != WideType) { 1754 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1755 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1756 if (CastWidth < IVWidth) { 1757 // The cast isn't as wide as the IV, so insert a Trunc. 1758 IRBuilder<> Builder(DU.NarrowUse); 1759 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1760 } 1761 else { 1762 // A wider extend was hidden behind a narrower one. This may induce 1763 // another round of IV widening in which the intermediate IV becomes 1764 // dead. It should be very rare. 1765 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1766 << " not wide enough to subsume " << *DU.NarrowUse 1767 << "\n"); 1768 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1769 NewDef = DU.NarrowUse; 1770 } 1771 } 1772 if (NewDef != DU.NarrowUse) { 1773 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1774 << " replaced by " << *DU.WideDef << "\n"); 1775 ++NumElimExt; 1776 DU.NarrowUse->replaceAllUsesWith(NewDef); 1777 DeadInsts.emplace_back(DU.NarrowUse); 1778 } 1779 // Now that the extend is gone, we want to expose it's uses for potential 1780 // further simplification. We don't need to directly inform SimplifyIVUsers 1781 // of the new users, because their parent IV will be processed later as a 1782 // new loop phi. If we preserved IVUsers analysis, we would also want to 1783 // push the uses of WideDef here. 1784 1785 // No further widening is needed. The deceased [sz]ext had done it for us. 1786 return nullptr; 1787 } 1788 1789 // Does this user itself evaluate to a recurrence after widening? 1790 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1791 if (!WideAddRec.first) 1792 WideAddRec = getWideRecurrence(DU); 1793 1794 assert((WideAddRec.first == nullptr) == 1795 (WideAddRec.second == ExtendKind::Unknown)); 1796 if (!WideAddRec.first) { 1797 // If use is a loop condition, try to promote the condition instead of 1798 // truncating the IV first. 1799 if (widenLoopCompare(DU)) 1800 return nullptr; 1801 1802 // We are here about to generate a truncate instruction that may hurt 1803 // performance because the scalar evolution expression computed earlier 1804 // in WideAddRec.first does not indicate a polynomial induction expression. 1805 // In that case, look at the operands of the use instruction to determine 1806 // if we can still widen the use instead of truncating its operand. 1807 if (widenWithVariantUse(DU)) 1808 return nullptr; 1809 1810 // This user does not evaluate to a recurrence after widening, so don't 1811 // follow it. Instead insert a Trunc to kill off the original use, 1812 // eventually isolating the original narrow IV so it can be removed. 1813 truncateIVUse(DU, DT, LI); 1814 return nullptr; 1815 } 1816 1817 // Reuse the IV increment that SCEVExpander created as long as it dominates 1818 // NarrowUse. 1819 Instruction *WideUse = nullptr; 1820 if (WideAddRec.first == WideIncExpr && 1821 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1822 WideUse = WideInc; 1823 else { 1824 WideUse = cloneIVUser(DU, WideAddRec.first); 1825 if (!WideUse) 1826 return nullptr; 1827 } 1828 // Evaluation of WideAddRec ensured that the narrow expression could be 1829 // extended outside the loop without overflow. This suggests that the wide use 1830 // evaluates to the same expression as the extended narrow use, but doesn't 1831 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1832 // where it fails, we simply throw away the newly created wide use. 1833 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1834 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1835 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1836 << "\n"); 1837 DeadInsts.emplace_back(WideUse); 1838 return nullptr; 1839 } 1840 1841 // if we reached this point then we are going to replace 1842 // DU.NarrowUse with WideUse. Reattach DbgValue then. 1843 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); 1844 1845 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1846 // Returning WideUse pushes it on the worklist. 1847 return WideUse; 1848 } 1849 1850 /// Add eligible users of NarrowDef to NarrowIVUsers. 1851 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1852 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1853 bool NonNegativeDef = 1854 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1855 SE->getZero(NarrowSCEV->getType())); 1856 for (User *U : NarrowDef->users()) { 1857 Instruction *NarrowUser = cast<Instruction>(U); 1858 1859 // Handle data flow merges and bizarre phi cycles. 1860 if (!Widened.insert(NarrowUser).second) 1861 continue; 1862 1863 bool NonNegativeUse = false; 1864 if (!NonNegativeDef) { 1865 // We might have a control-dependent range information for this context. 1866 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1867 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1868 } 1869 1870 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1871 NonNegativeDef || NonNegativeUse); 1872 } 1873 } 1874 1875 /// Process a single induction variable. First use the SCEVExpander to create a 1876 /// wide induction variable that evaluates to the same recurrence as the 1877 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1878 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1879 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1880 /// 1881 /// It would be simpler to delete uses as they are processed, but we must avoid 1882 /// invalidating SCEV expressions. 1883 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1884 // Is this phi an induction variable? 1885 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1886 if (!AddRec) 1887 return nullptr; 1888 1889 // Widen the induction variable expression. 1890 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign 1891 ? SE->getSignExtendExpr(AddRec, WideType) 1892 : SE->getZeroExtendExpr(AddRec, WideType); 1893 1894 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1895 "Expect the new IV expression to preserve its type"); 1896 1897 // Can the IV be extended outside the loop without overflow? 1898 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1899 if (!AddRec || AddRec->getLoop() != L) 1900 return nullptr; 1901 1902 // An AddRec must have loop-invariant operands. Since this AddRec is 1903 // materialized by a loop header phi, the expression cannot have any post-loop 1904 // operands, so they must dominate the loop header. 1905 assert( 1906 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1907 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1908 "Loop header phi recurrence inputs do not dominate the loop"); 1909 1910 // Iterate over IV uses (including transitive ones) looking for IV increments 1911 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1912 // the increment calculate control-dependent range information basing on 1913 // dominating conditions inside of the loop (e.g. a range check inside of the 1914 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1915 // 1916 // Control-dependent range information is later used to prove that a narrow 1917 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1918 // this on demand because when pushNarrowIVUsers needs this information some 1919 // of the dominating conditions might be already widened. 1920 if (UsePostIncrementRanges) 1921 calculatePostIncRanges(OrigPhi); 1922 1923 // The rewriter provides a value for the desired IV expression. This may 1924 // either find an existing phi or materialize a new one. Either way, we 1925 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1926 // of the phi-SCC dominates the loop entry. 1927 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1928 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt); 1929 // If the wide phi is not a phi node, for example a cast node, like bitcast, 1930 // inttoptr, ptrtoint, just skip for now. 1931 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) { 1932 // if the cast node is an inserted instruction without any user, we should 1933 // remove it to make sure the pass don't touch the function as we can not 1934 // wide the phi. 1935 if (ExpandInst->hasNUses(0) && 1936 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst))) 1937 DeadInsts.emplace_back(ExpandInst); 1938 return nullptr; 1939 } 1940 1941 // Remembering the WideIV increment generated by SCEVExpander allows 1942 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1943 // employ a general reuse mechanism because the call above is the only call to 1944 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1945 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1946 WideInc = 1947 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1948 WideIncExpr = SE->getSCEV(WideInc); 1949 // Propagate the debug location associated with the original loop increment 1950 // to the new (widened) increment. 1951 auto *OrigInc = 1952 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1953 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1954 } 1955 1956 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1957 ++NumWidened; 1958 1959 // Traverse the def-use chain using a worklist starting at the original IV. 1960 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1961 1962 Widened.insert(OrigPhi); 1963 pushNarrowIVUsers(OrigPhi, WidePhi); 1964 1965 while (!NarrowIVUsers.empty()) { 1966 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1967 1968 // Process a def-use edge. This may replace the use, so don't hold a 1969 // use_iterator across it. 1970 Instruction *WideUse = widenIVUse(DU, Rewriter); 1971 1972 // Follow all def-use edges from the previous narrow use. 1973 if (WideUse) 1974 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1975 1976 // widenIVUse may have removed the def-use edge. 1977 if (DU.NarrowDef->use_empty()) 1978 DeadInsts.emplace_back(DU.NarrowDef); 1979 } 1980 1981 // Attach any debug information to the new PHI. 1982 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT); 1983 1984 return WidePhi; 1985 } 1986 1987 /// Calculates control-dependent range for the given def at the given context 1988 /// by looking at dominating conditions inside of the loop 1989 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1990 Instruction *NarrowUser) { 1991 using namespace llvm::PatternMatch; 1992 1993 Value *NarrowDefLHS; 1994 const APInt *NarrowDefRHS; 1995 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1996 m_APInt(NarrowDefRHS))) || 1997 !NarrowDefRHS->isNonNegative()) 1998 return; 1999 2000 auto UpdateRangeFromCondition = [&] (Value *Condition, 2001 bool TrueDest) { 2002 CmpInst::Predicate Pred; 2003 Value *CmpRHS; 2004 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 2005 m_Value(CmpRHS)))) 2006 return; 2007 2008 CmpInst::Predicate P = 2009 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 2010 2011 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 2012 auto CmpConstrainedLHSRange = 2013 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 2014 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( 2015 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap); 2016 2017 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 2018 }; 2019 2020 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 2021 if (!HasGuards) 2022 return; 2023 2024 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 2025 Ctx->getParent()->rend())) { 2026 Value *C = nullptr; 2027 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 2028 UpdateRangeFromCondition(C, /*TrueDest=*/true); 2029 } 2030 }; 2031 2032 UpdateRangeFromGuards(NarrowUser); 2033 2034 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 2035 // If NarrowUserBB is statically unreachable asking dominator queries may 2036 // yield surprising results. (e.g. the block may not have a dom tree node) 2037 if (!DT->isReachableFromEntry(NarrowUserBB)) 2038 return; 2039 2040 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 2041 L->contains(DTB->getBlock()); 2042 DTB = DTB->getIDom()) { 2043 auto *BB = DTB->getBlock(); 2044 auto *TI = BB->getTerminator(); 2045 UpdateRangeFromGuards(TI); 2046 2047 auto *BI = dyn_cast<BranchInst>(TI); 2048 if (!BI || !BI->isConditional()) 2049 continue; 2050 2051 auto *TrueSuccessor = BI->getSuccessor(0); 2052 auto *FalseSuccessor = BI->getSuccessor(1); 2053 2054 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 2055 return BBE.isSingleEdge() && 2056 DT->dominates(BBE, NarrowUser->getParent()); 2057 }; 2058 2059 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 2060 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 2061 2062 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 2063 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 2064 } 2065 } 2066 2067 /// Calculates PostIncRangeInfos map for the given IV 2068 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 2069 SmallPtrSet<Instruction *, 16> Visited; 2070 SmallVector<Instruction *, 6> Worklist; 2071 Worklist.push_back(OrigPhi); 2072 Visited.insert(OrigPhi); 2073 2074 while (!Worklist.empty()) { 2075 Instruction *NarrowDef = Worklist.pop_back_val(); 2076 2077 for (Use &U : NarrowDef->uses()) { 2078 auto *NarrowUser = cast<Instruction>(U.getUser()); 2079 2080 // Don't go looking outside the current loop. 2081 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 2082 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 2083 continue; 2084 2085 if (!Visited.insert(NarrowUser).second) 2086 continue; 2087 2088 Worklist.push_back(NarrowUser); 2089 2090 calculatePostIncRange(NarrowDef, NarrowUser); 2091 } 2092 } 2093 } 2094 2095 PHINode *llvm::createWideIV(const WideIVInfo &WI, 2096 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, 2097 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2098 unsigned &NumElimExt, unsigned &NumWidened, 2099 bool HasGuards, bool UsePostIncrementRanges) { 2100 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges); 2101 PHINode *WidePHI = Widener.createWideIV(Rewriter); 2102 NumElimExt = Widener.getNumElimExt(); 2103 NumWidened = Widener.getNumWidened(); 2104 return WidePHI; 2105 } 2106