1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "indvars" 32 33 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 34 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 35 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 36 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 37 STATISTIC( 38 NumSimplifiedSDiv, 39 "Number of IV signed division operations converted to unsigned division"); 40 STATISTIC( 41 NumSimplifiedSRem, 42 "Number of IV signed remainder operations converted to unsigned remainder"); 43 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 44 45 namespace { 46 /// This is a utility for simplifying induction variables 47 /// based on ScalarEvolution. It is the primary instrument of the 48 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 49 /// other loop passes that preserve SCEV. 50 class SimplifyIndvar { 51 Loop *L; 52 LoopInfo *LI; 53 ScalarEvolution *SE; 54 DominatorTree *DT; 55 const TargetTransformInfo *TTI; 56 SCEVExpander &Rewriter; 57 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 58 59 bool Changed = false; 60 61 public: 62 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 63 LoopInfo *LI, const TargetTransformInfo *TTI, 64 SCEVExpander &Rewriter, 65 SmallVectorImpl<WeakTrackingVH> &Dead) 66 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter), 67 DeadInsts(Dead) { 68 assert(LI && "IV simplification requires LoopInfo"); 69 } 70 71 bool hasChanged() const { return Changed; } 72 73 /// Iteratively perform simplification on a worklist of users of the 74 /// specified induction variable. This is the top-level driver that applies 75 /// all simplifications to users of an IV. 76 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 77 78 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 79 80 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 81 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 82 bool replaceFloatIVWithIntegerIV(Instruction *UseInst); 83 84 bool eliminateOverflowIntrinsic(WithOverflowInst *WO); 85 bool eliminateSaturatingIntrinsic(SaturatingInst *SI); 86 bool eliminateTrunc(TruncInst *TI); 87 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 88 bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand); 89 void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand); 90 void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand, 91 bool IsSigned); 92 void replaceRemWithNumerator(BinaryOperator *Rem); 93 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 94 void replaceSRemWithURem(BinaryOperator *Rem); 95 bool eliminateSDiv(BinaryOperator *SDiv); 96 bool strengthenOverflowingOperation(BinaryOperator *OBO, 97 Instruction *IVOperand); 98 bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand); 99 }; 100 } 101 102 /// Find a point in code which dominates all given instructions. We can safely 103 /// assume that, whatever fact we can prove at the found point, this fact is 104 /// also true for each of the given instructions. 105 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions, 106 DominatorTree &DT) { 107 Instruction *CommonDom = nullptr; 108 for (auto *Insn : Instructions) 109 if (!CommonDom || DT.dominates(Insn, CommonDom)) 110 CommonDom = Insn; 111 else if (!DT.dominates(CommonDom, Insn)) 112 // If there is no dominance relation, use common dominator. 113 CommonDom = 114 DT.findNearestCommonDominator(CommonDom->getParent(), 115 Insn->getParent())->getTerminator(); 116 assert(CommonDom && "Common dominator not found?"); 117 return CommonDom; 118 } 119 120 /// Fold an IV operand into its use. This removes increments of an 121 /// aligned IV when used by a instruction that ignores the low bits. 122 /// 123 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 124 /// 125 /// Return the operand of IVOperand for this induction variable if IVOperand can 126 /// be folded (in case more folding opportunities have been exposed). 127 /// Otherwise return null. 128 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 129 Value *IVSrc = nullptr; 130 const unsigned OperIdx = 0; 131 const SCEV *FoldedExpr = nullptr; 132 bool MustDropExactFlag = false; 133 switch (UseInst->getOpcode()) { 134 default: 135 return nullptr; 136 case Instruction::UDiv: 137 case Instruction::LShr: 138 // We're only interested in the case where we know something about 139 // the numerator and have a constant denominator. 140 if (IVOperand != UseInst->getOperand(OperIdx) || 141 !isa<ConstantInt>(UseInst->getOperand(1))) 142 return nullptr; 143 144 // Attempt to fold a binary operator with constant operand. 145 // e.g. ((I + 1) >> 2) => I >> 2 146 if (!isa<BinaryOperator>(IVOperand) 147 || !isa<ConstantInt>(IVOperand->getOperand(1))) 148 return nullptr; 149 150 IVSrc = IVOperand->getOperand(0); 151 // IVSrc must be the (SCEVable) IV, since the other operand is const. 152 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 153 154 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 155 if (UseInst->getOpcode() == Instruction::LShr) { 156 // Get a constant for the divisor. See createSCEV. 157 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 158 if (D->getValue().uge(BitWidth)) 159 return nullptr; 160 161 D = ConstantInt::get(UseInst->getContext(), 162 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 163 } 164 const auto *LHS = SE->getSCEV(IVSrc); 165 const auto *RHS = SE->getSCEV(D); 166 FoldedExpr = SE->getUDivExpr(LHS, RHS); 167 // We might have 'exact' flag set at this point which will no longer be 168 // correct after we make the replacement. 169 if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS)) 170 MustDropExactFlag = true; 171 } 172 // We have something that might fold it's operand. Compare SCEVs. 173 if (!SE->isSCEVable(UseInst->getType())) 174 return nullptr; 175 176 // Bypass the operand if SCEV can prove it has no effect. 177 if (SE->getSCEV(UseInst) != FoldedExpr) 178 return nullptr; 179 180 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 181 << " -> " << *UseInst << '\n'); 182 183 UseInst->setOperand(OperIdx, IVSrc); 184 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 185 186 if (MustDropExactFlag) 187 UseInst->dropPoisonGeneratingFlags(); 188 189 ++NumElimOperand; 190 Changed = true; 191 if (IVOperand->use_empty()) 192 DeadInsts.emplace_back(IVOperand); 193 return IVSrc; 194 } 195 196 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 197 Instruction *IVOperand) { 198 unsigned IVOperIdx = 0; 199 ICmpInst::Predicate Pred = ICmp->getPredicate(); 200 if (IVOperand != ICmp->getOperand(0)) { 201 // Swapped 202 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 203 IVOperIdx = 1; 204 Pred = ICmpInst::getSwappedPredicate(Pred); 205 } 206 207 // Get the SCEVs for the ICmp operands (in the specific context of the 208 // current loop) 209 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 210 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 211 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 212 213 auto *PN = dyn_cast<PHINode>(IVOperand); 214 if (!PN) 215 return false; 216 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L); 217 if (!LIP) 218 return false; 219 ICmpInst::Predicate InvariantPredicate = LIP->Pred; 220 const SCEV *InvariantLHS = LIP->LHS; 221 const SCEV *InvariantRHS = LIP->RHS; 222 223 // Rewrite the comparison to a loop invariant comparison if it can be done 224 // cheaply, where cheaply means "we don't need to emit any new 225 // instructions". 226 227 SmallDenseMap<const SCEV*, Value*> CheapExpansions; 228 CheapExpansions[S] = ICmp->getOperand(IVOperIdx); 229 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); 230 231 // TODO: Support multiple entry loops? (We currently bail out of these in 232 // the IndVarSimplify pass) 233 if (auto *BB = L->getLoopPredecessor()) { 234 const int Idx = PN->getBasicBlockIndex(BB); 235 if (Idx >= 0) { 236 Value *Incoming = PN->getIncomingValue(Idx); 237 const SCEV *IncomingS = SE->getSCEV(Incoming); 238 CheapExpansions[IncomingS] = Incoming; 239 } 240 } 241 Value *NewLHS = CheapExpansions[InvariantLHS]; 242 Value *NewRHS = CheapExpansions[InvariantRHS]; 243 244 if (!NewLHS) 245 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS)) 246 NewLHS = ConstLHS->getValue(); 247 if (!NewRHS) 248 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS)) 249 NewRHS = ConstRHS->getValue(); 250 251 if (!NewLHS || !NewRHS) 252 // We could not find an existing value to replace either LHS or RHS. 253 // Generating new instructions has subtler tradeoffs, so avoid doing that 254 // for now. 255 return false; 256 257 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 258 ICmp->setPredicate(InvariantPredicate); 259 ICmp->setOperand(0, NewLHS); 260 ICmp->setOperand(1, NewRHS); 261 return true; 262 } 263 264 /// SimplifyIVUsers helper for eliminating useless 265 /// comparisons against an induction variable. 266 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, 267 Instruction *IVOperand) { 268 unsigned IVOperIdx = 0; 269 ICmpInst::Predicate Pred = ICmp->getPredicate(); 270 ICmpInst::Predicate OriginalPred = Pred; 271 if (IVOperand != ICmp->getOperand(0)) { 272 // Swapped 273 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 274 IVOperIdx = 1; 275 Pred = ICmpInst::getSwappedPredicate(Pred); 276 } 277 278 // Get the SCEVs for the ICmp operands (in the specific context of the 279 // current loop) 280 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 281 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 282 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 283 284 // If the condition is always true or always false in the given context, 285 // replace it with a constant value. 286 SmallVector<Instruction *, 4> Users; 287 for (auto *U : ICmp->users()) 288 Users.push_back(cast<Instruction>(U)); 289 const Instruction *CtxI = findCommonDominator(Users, *DT); 290 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) { 291 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev)); 292 DeadInsts.emplace_back(ICmp); 293 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 294 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 295 // fallthrough to end of function 296 } else if (ICmpInst::isSigned(OriginalPred) && 297 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 298 // If we were unable to make anything above, all we can is to canonicalize 299 // the comparison hoping that it will open the doors for other 300 // optimizations. If we find out that we compare two non-negative values, 301 // we turn the instruction's predicate to its unsigned version. Note that 302 // we cannot rely on Pred here unless we check if we have swapped it. 303 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 304 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 305 << '\n'); 306 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 307 } else 308 return; 309 310 ++NumElimCmp; 311 Changed = true; 312 } 313 314 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 315 // Get the SCEVs for the ICmp operands. 316 auto *N = SE->getSCEV(SDiv->getOperand(0)); 317 auto *D = SE->getSCEV(SDiv->getOperand(1)); 318 319 // Simplify unnecessary loops away. 320 const Loop *L = LI->getLoopFor(SDiv->getParent()); 321 N = SE->getSCEVAtScope(N, L); 322 D = SE->getSCEVAtScope(D, L); 323 324 // Replace sdiv by udiv if both of the operands are non-negative 325 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 326 auto *UDiv = BinaryOperator::Create( 327 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 328 SDiv->getName() + ".udiv", SDiv); 329 UDiv->setIsExact(SDiv->isExact()); 330 SDiv->replaceAllUsesWith(UDiv); 331 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 332 ++NumSimplifiedSDiv; 333 Changed = true; 334 DeadInsts.push_back(SDiv); 335 return true; 336 } 337 338 return false; 339 } 340 341 // i %s n -> i %u n if i >= 0 and n >= 0 342 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 343 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 344 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 345 Rem->getName() + ".urem", Rem); 346 Rem->replaceAllUsesWith(URem); 347 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 348 ++NumSimplifiedSRem; 349 Changed = true; 350 DeadInsts.emplace_back(Rem); 351 } 352 353 // i % n --> i if i is in [0,n). 354 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 355 Rem->replaceAllUsesWith(Rem->getOperand(0)); 356 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 357 ++NumElimRem; 358 Changed = true; 359 DeadInsts.emplace_back(Rem); 360 } 361 362 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 363 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 364 auto *T = Rem->getType(); 365 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 366 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 367 SelectInst *Sel = 368 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 369 Rem->replaceAllUsesWith(Sel); 370 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 371 ++NumElimRem; 372 Changed = true; 373 DeadInsts.emplace_back(Rem); 374 } 375 376 /// SimplifyIVUsers helper for eliminating useless remainder operations 377 /// operating on an induction variable or replacing srem by urem. 378 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, 379 Instruction *IVOperand, 380 bool IsSigned) { 381 auto *NValue = Rem->getOperand(0); 382 auto *DValue = Rem->getOperand(1); 383 // We're only interested in the case where we know something about 384 // the numerator, unless it is a srem, because we want to replace srem by urem 385 // in general. 386 bool UsedAsNumerator = IVOperand == NValue; 387 if (!UsedAsNumerator && !IsSigned) 388 return; 389 390 const SCEV *N = SE->getSCEV(NValue); 391 392 // Simplify unnecessary loops away. 393 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 394 N = SE->getSCEVAtScope(N, ICmpLoop); 395 396 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 397 398 // Do not proceed if the Numerator may be negative 399 if (!IsNumeratorNonNegative) 400 return; 401 402 const SCEV *D = SE->getSCEV(DValue); 403 D = SE->getSCEVAtScope(D, ICmpLoop); 404 405 if (UsedAsNumerator) { 406 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 407 if (SE->isKnownPredicate(LT, N, D)) { 408 replaceRemWithNumerator(Rem); 409 return; 410 } 411 412 auto *T = Rem->getType(); 413 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 414 if (SE->isKnownPredicate(LT, NLessOne, D)) { 415 replaceRemWithNumeratorOrZero(Rem); 416 return; 417 } 418 } 419 420 // Try to replace SRem with URem, if both N and D are known non-negative. 421 // Since we had already check N, we only need to check D now 422 if (!IsSigned || !SE->isKnownNonNegative(D)) 423 return; 424 425 replaceSRemWithURem(Rem); 426 } 427 428 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { 429 const SCEV *LHS = SE->getSCEV(WO->getLHS()); 430 const SCEV *RHS = SE->getSCEV(WO->getRHS()); 431 if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS)) 432 return false; 433 434 // Proved no overflow, nuke the overflow check and, if possible, the overflow 435 // intrinsic as well. 436 437 BinaryOperator *NewResult = BinaryOperator::Create( 438 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO); 439 440 if (WO->isSigned()) 441 NewResult->setHasNoSignedWrap(true); 442 else 443 NewResult->setHasNoUnsignedWrap(true); 444 445 SmallVector<ExtractValueInst *, 4> ToDelete; 446 447 for (auto *U : WO->users()) { 448 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 449 if (EVI->getIndices()[0] == 1) 450 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext())); 451 else { 452 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 453 EVI->replaceAllUsesWith(NewResult); 454 } 455 ToDelete.push_back(EVI); 456 } 457 } 458 459 for (auto *EVI : ToDelete) 460 EVI->eraseFromParent(); 461 462 if (WO->use_empty()) 463 WO->eraseFromParent(); 464 465 Changed = true; 466 return true; 467 } 468 469 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { 470 const SCEV *LHS = SE->getSCEV(SI->getLHS()); 471 const SCEV *RHS = SE->getSCEV(SI->getRHS()); 472 if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS)) 473 return false; 474 475 BinaryOperator *BO = BinaryOperator::Create( 476 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI); 477 if (SI->isSigned()) 478 BO->setHasNoSignedWrap(); 479 else 480 BO->setHasNoUnsignedWrap(); 481 482 SI->replaceAllUsesWith(BO); 483 DeadInsts.emplace_back(SI); 484 Changed = true; 485 return true; 486 } 487 488 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 489 // It is always legal to replace 490 // icmp <pred> i32 trunc(iv), n 491 // with 492 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 493 // Or with 494 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 495 // Or with either of these if pred is an equality predicate. 496 // 497 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 498 // every comparison which uses trunc, it means that we can replace each of 499 // them with comparison of iv against sext/zext(n). We no longer need trunc 500 // after that. 501 // 502 // TODO: Should we do this if we can widen *some* comparisons, but not all 503 // of them? Sometimes it is enough to enable other optimizations, but the 504 // trunc instruction will stay in the loop. 505 Value *IV = TI->getOperand(0); 506 Type *IVTy = IV->getType(); 507 const SCEV *IVSCEV = SE->getSCEV(IV); 508 const SCEV *TISCEV = SE->getSCEV(TI); 509 510 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 511 // get rid of trunc 512 bool DoesSExtCollapse = false; 513 bool DoesZExtCollapse = false; 514 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 515 DoesSExtCollapse = true; 516 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 517 DoesZExtCollapse = true; 518 519 // If neither sext nor zext does collapse, it is not profitable to do any 520 // transform. Bail. 521 if (!DoesSExtCollapse && !DoesZExtCollapse) 522 return false; 523 524 // Collect users of the trunc that look like comparisons against invariants. 525 // Bail if we find something different. 526 SmallVector<ICmpInst *, 4> ICmpUsers; 527 for (auto *U : TI->users()) { 528 // We don't care about users in unreachable blocks. 529 if (isa<Instruction>(U) && 530 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 531 continue; 532 ICmpInst *ICI = dyn_cast<ICmpInst>(U); 533 if (!ICI) return false; 534 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 535 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) && 536 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0)))) 537 return false; 538 // If we cannot get rid of trunc, bail. 539 if (ICI->isSigned() && !DoesSExtCollapse) 540 return false; 541 if (ICI->isUnsigned() && !DoesZExtCollapse) 542 return false; 543 // For equality, either signed or unsigned works. 544 ICmpUsers.push_back(ICI); 545 } 546 547 auto CanUseZExt = [&](ICmpInst *ICI) { 548 // Unsigned comparison can be widened as unsigned. 549 if (ICI->isUnsigned()) 550 return true; 551 // Is it profitable to do zext? 552 if (!DoesZExtCollapse) 553 return false; 554 // For equality, we can safely zext both parts. 555 if (ICI->isEquality()) 556 return true; 557 // Otherwise we can only use zext when comparing two non-negative or two 558 // negative values. But in practice, we will never pass DoesZExtCollapse 559 // check for a negative value, because zext(trunc(x)) is non-negative. So 560 // it only make sense to check for non-negativity here. 561 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 562 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 563 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 564 }; 565 // Replace all comparisons against trunc with comparisons against IV. 566 for (auto *ICI : ICmpUsers) { 567 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0)); 568 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1); 569 Instruction *Ext = nullptr; 570 // For signed/unsigned predicate, replace the old comparison with comparison 571 // of immediate IV against sext/zext of the invariant argument. If we can 572 // use either sext or zext (i.e. we are dealing with equality predicate), 573 // then prefer zext as a more canonical form. 574 // TODO: If we see a signed comparison which can be turned into unsigned, 575 // we can do it here for canonicalization purposes. 576 ICmpInst::Predicate Pred = ICI->getPredicate(); 577 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred); 578 if (CanUseZExt(ICI)) { 579 assert(DoesZExtCollapse && "Unprofitable zext?"); 580 Ext = new ZExtInst(Op1, IVTy, "zext", ICI); 581 Pred = ICmpInst::getUnsignedPredicate(Pred); 582 } else { 583 assert(DoesSExtCollapse && "Unprofitable sext?"); 584 Ext = new SExtInst(Op1, IVTy, "sext", ICI); 585 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 586 } 587 bool Changed; 588 L->makeLoopInvariant(Ext, Changed); 589 (void)Changed; 590 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); 591 ICI->replaceAllUsesWith(NewICI); 592 DeadInsts.emplace_back(ICI); 593 } 594 595 // Trunc no longer needed. 596 TI->replaceAllUsesWith(PoisonValue::get(TI->getType())); 597 DeadInsts.emplace_back(TI); 598 return true; 599 } 600 601 /// Eliminate an operation that consumes a simple IV and has no observable 602 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 603 /// but UseInst may not be. 604 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 605 Instruction *IVOperand) { 606 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 607 eliminateIVComparison(ICmp, IVOperand); 608 return true; 609 } 610 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 611 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 612 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 613 simplifyIVRemainder(Bin, IVOperand, IsSRem); 614 return true; 615 } 616 617 if (Bin->getOpcode() == Instruction::SDiv) 618 return eliminateSDiv(Bin); 619 } 620 621 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst)) 622 if (eliminateOverflowIntrinsic(WO)) 623 return true; 624 625 if (auto *SI = dyn_cast<SaturatingInst>(UseInst)) 626 if (eliminateSaturatingIntrinsic(SI)) 627 return true; 628 629 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 630 if (eliminateTrunc(TI)) 631 return true; 632 633 if (eliminateIdentitySCEV(UseInst, IVOperand)) 634 return true; 635 636 return false; 637 } 638 639 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 640 if (auto *BB = L->getLoopPreheader()) 641 return BB->getTerminator(); 642 643 return Hint; 644 } 645 646 /// Replace the UseInst with a loop invariant expression if it is safe. 647 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 648 if (!SE->isSCEVable(I->getType())) 649 return false; 650 651 // Get the symbolic expression for this instruction. 652 const SCEV *S = SE->getSCEV(I); 653 654 if (!SE->isLoopInvariant(S, L)) 655 return false; 656 657 // Do not generate something ridiculous even if S is loop invariant. 658 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I)) 659 return false; 660 661 auto *IP = GetLoopInvariantInsertPosition(L, I); 662 663 if (!Rewriter.isSafeToExpandAt(S, IP)) { 664 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I 665 << " with non-speculable loop invariant: " << *S << '\n'); 666 return false; 667 } 668 669 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 670 671 I->replaceAllUsesWith(Invariant); 672 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 673 << " with loop invariant: " << *S << '\n'); 674 ++NumFoldedUser; 675 Changed = true; 676 DeadInsts.emplace_back(I); 677 return true; 678 } 679 680 /// Eliminate redundant type cast between integer and float. 681 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) { 682 if (UseInst->getOpcode() != CastInst::SIToFP && 683 UseInst->getOpcode() != CastInst::UIToFP) 684 return false; 685 686 Value *IVOperand = UseInst->getOperand(0); 687 // Get the symbolic expression for this instruction. 688 const SCEV *IV = SE->getSCEV(IVOperand); 689 unsigned MaskBits; 690 if (UseInst->getOpcode() == CastInst::SIToFP) 691 MaskBits = SE->getSignedRange(IV).getMinSignedBits(); 692 else 693 MaskBits = SE->getUnsignedRange(IV).getActiveBits(); 694 unsigned DestNumSigBits = UseInst->getType()->getFPMantissaWidth(); 695 if (MaskBits <= DestNumSigBits) { 696 for (User *U : UseInst->users()) { 697 // Match for fptosi/fptoui of sitofp and with same type. 698 auto *CI = dyn_cast<CastInst>(U); 699 if (!CI || IVOperand->getType() != CI->getType()) 700 continue; 701 702 CastInst::CastOps Opcode = CI->getOpcode(); 703 if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI) 704 continue; 705 706 CI->replaceAllUsesWith(IVOperand); 707 DeadInsts.push_back(CI); 708 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI 709 << " with: " << *IVOperand << '\n'); 710 711 ++NumFoldedUser; 712 Changed = true; 713 } 714 } 715 716 return Changed; 717 } 718 719 /// Eliminate any operation that SCEV can prove is an identity function. 720 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 721 Instruction *IVOperand) { 722 if (!SE->isSCEVable(UseInst->getType()) || 723 (UseInst->getType() != IVOperand->getType()) || 724 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 725 return false; 726 727 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 728 // dominator tree, even if X is an operand to Y. For instance, in 729 // 730 // %iv = phi i32 {0,+,1} 731 // br %cond, label %left, label %merge 732 // 733 // left: 734 // %X = add i32 %iv, 0 735 // br label %merge 736 // 737 // merge: 738 // %M = phi (%X, %iv) 739 // 740 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 741 // %M.replaceAllUsesWith(%X) would be incorrect. 742 743 if (isa<PHINode>(UseInst)) 744 // If UseInst is not a PHI node then we know that IVOperand dominates 745 // UseInst directly from the legality of SSA. 746 if (!DT || !DT->dominates(IVOperand, UseInst)) 747 return false; 748 749 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 750 return false; 751 752 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 753 754 UseInst->replaceAllUsesWith(IVOperand); 755 ++NumElimIdentity; 756 Changed = true; 757 DeadInsts.emplace_back(UseInst); 758 return true; 759 } 760 761 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 762 /// unsigned-overflow. Returns true if anything changed, false otherwise. 763 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 764 Instruction *IVOperand) { 765 auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp( 766 cast<OverflowingBinaryOperator>(BO)); 767 768 if (!Flags) 769 return false; 770 771 BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == 772 SCEV::FlagNUW); 773 BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == 774 SCEV::FlagNSW); 775 776 // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap 777 // flags on addrecs while performing zero/sign extensions. We could call 778 // forgetValue() here to make sure those flags also propagate to any other 779 // SCEV expressions based on the addrec. However, this can have pathological 780 // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384. 781 return true; 782 } 783 784 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 785 /// information from the IV's range. Returns true if anything changed, false 786 /// otherwise. 787 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 788 Instruction *IVOperand) { 789 using namespace llvm::PatternMatch; 790 791 if (BO->getOpcode() == Instruction::Shl) { 792 bool Changed = false; 793 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 794 for (auto *U : BO->users()) { 795 const APInt *C; 796 if (match(U, 797 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 798 match(U, 799 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 800 BinaryOperator *Shr = cast<BinaryOperator>(U); 801 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 802 Shr->setIsExact(true); 803 Changed = true; 804 } 805 } 806 } 807 return Changed; 808 } 809 810 return false; 811 } 812 813 /// Add all uses of Def to the current IV's worklist. 814 static void pushIVUsers( 815 Instruction *Def, Loop *L, 816 SmallPtrSet<Instruction*,16> &Simplified, 817 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 818 819 for (User *U : Def->users()) { 820 Instruction *UI = cast<Instruction>(U); 821 822 // Avoid infinite or exponential worklist processing. 823 // Also ensure unique worklist users. 824 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 825 // self edges first. 826 if (UI == Def) 827 continue; 828 829 // Only change the current Loop, do not change the other parts (e.g. other 830 // Loops). 831 if (!L->contains(UI)) 832 continue; 833 834 // Do not push the same instruction more than once. 835 if (!Simplified.insert(UI).second) 836 continue; 837 838 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 839 } 840 } 841 842 /// Return true if this instruction generates a simple SCEV 843 /// expression in terms of that IV. 844 /// 845 /// This is similar to IVUsers' isInteresting() but processes each instruction 846 /// non-recursively when the operand is already known to be a simpleIVUser. 847 /// 848 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 849 if (!SE->isSCEVable(I->getType())) 850 return false; 851 852 // Get the symbolic expression for this instruction. 853 const SCEV *S = SE->getSCEV(I); 854 855 // Only consider affine recurrences. 856 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 857 if (AR && AR->getLoop() == L) 858 return true; 859 860 return false; 861 } 862 863 /// Iteratively perform simplification on a worklist of users 864 /// of the specified induction variable. Each successive simplification may push 865 /// more users which may themselves be candidates for simplification. 866 /// 867 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 868 /// instructions in-place during analysis. Rather than rewriting induction 869 /// variables bottom-up from their users, it transforms a chain of IVUsers 870 /// top-down, updating the IR only when it encounters a clear optimization 871 /// opportunity. 872 /// 873 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 874 /// 875 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 876 if (!SE->isSCEVable(CurrIV->getType())) 877 return; 878 879 // Instructions processed by SimplifyIndvar for CurrIV. 880 SmallPtrSet<Instruction*,16> Simplified; 881 882 // Use-def pairs if IV users waiting to be processed for CurrIV. 883 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 884 885 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 886 // called multiple times for the same LoopPhi. This is the proper thing to 887 // do for loop header phis that use each other. 888 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 889 890 while (!SimpleIVUsers.empty()) { 891 std::pair<Instruction*, Instruction*> UseOper = 892 SimpleIVUsers.pop_back_val(); 893 Instruction *UseInst = UseOper.first; 894 895 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 896 // rather than try to do some complex analysis or transformation (such as 897 // widening) basing on it. 898 // TODO: Propagate TLI and pass it here to handle more cases. 899 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 900 DeadInsts.emplace_back(UseInst); 901 continue; 902 } 903 904 // Bypass back edges to avoid extra work. 905 if (UseInst == CurrIV) continue; 906 907 // Try to replace UseInst with a loop invariant before any other 908 // simplifications. 909 if (replaceIVUserWithLoopInvariant(UseInst)) 910 continue; 911 912 Instruction *IVOperand = UseOper.second; 913 for (unsigned N = 0; IVOperand; ++N) { 914 assert(N <= Simplified.size() && "runaway iteration"); 915 (void) N; 916 917 Value *NewOper = foldIVUser(UseInst, IVOperand); 918 if (!NewOper) 919 break; // done folding 920 IVOperand = dyn_cast<Instruction>(NewOper); 921 } 922 if (!IVOperand) 923 continue; 924 925 if (eliminateIVUser(UseInst, IVOperand)) { 926 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 927 continue; 928 } 929 930 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 931 if ((isa<OverflowingBinaryOperator>(BO) && 932 strengthenOverflowingOperation(BO, IVOperand)) || 933 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { 934 // re-queue uses of the now modified binary operator and fall 935 // through to the checks that remain. 936 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 937 } 938 } 939 940 // Try to use integer induction for FPToSI of float induction directly. 941 if (replaceFloatIVWithIntegerIV(UseInst)) { 942 // Re-queue the potentially new direct uses of IVOperand. 943 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 944 continue; 945 } 946 947 CastInst *Cast = dyn_cast<CastInst>(UseInst); 948 if (V && Cast) { 949 V->visitCast(Cast); 950 continue; 951 } 952 if (isSimpleIVUser(UseInst, L, SE)) { 953 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 954 } 955 } 956 } 957 958 namespace llvm { 959 960 void IVVisitor::anchor() { } 961 962 /// Simplify instructions that use this induction variable 963 /// by using ScalarEvolution to analyze the IV's recurrence. 964 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 965 LoopInfo *LI, const TargetTransformInfo *TTI, 966 SmallVectorImpl<WeakTrackingVH> &Dead, 967 SCEVExpander &Rewriter, IVVisitor *V) { 968 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI, 969 Rewriter, Dead); 970 SIV.simplifyUsers(CurrIV, V); 971 return SIV.hasChanged(); 972 } 973 974 /// Simplify users of induction variables within this 975 /// loop. This does not actually change or add IVs. 976 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 977 LoopInfo *LI, const TargetTransformInfo *TTI, 978 SmallVectorImpl<WeakTrackingVH> &Dead) { 979 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 980 #ifndef NDEBUG 981 Rewriter.setDebugType(DEBUG_TYPE); 982 #endif 983 bool Changed = false; 984 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 985 Changed |= 986 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter); 987 } 988 return Changed; 989 } 990 991 } // namespace llvm 992 993 namespace { 994 //===----------------------------------------------------------------------===// 995 // Widen Induction Variables - Extend the width of an IV to cover its 996 // widest uses. 997 //===----------------------------------------------------------------------===// 998 999 class WidenIV { 1000 // Parameters 1001 PHINode *OrigPhi; 1002 Type *WideType; 1003 1004 // Context 1005 LoopInfo *LI; 1006 Loop *L; 1007 ScalarEvolution *SE; 1008 DominatorTree *DT; 1009 1010 // Does the module have any calls to the llvm.experimental.guard intrinsic 1011 // at all? If not we can avoid scanning instructions looking for guards. 1012 bool HasGuards; 1013 1014 bool UsePostIncrementRanges; 1015 1016 // Statistics 1017 unsigned NumElimExt = 0; 1018 unsigned NumWidened = 0; 1019 1020 // Result 1021 PHINode *WidePhi = nullptr; 1022 Instruction *WideInc = nullptr; 1023 const SCEV *WideIncExpr = nullptr; 1024 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 1025 1026 SmallPtrSet<Instruction *,16> Widened; 1027 1028 enum class ExtendKind { Zero, Sign, Unknown }; 1029 1030 // A map tracking the kind of extension used to widen each narrow IV 1031 // and narrow IV user. 1032 // Key: pointer to a narrow IV or IV user. 1033 // Value: the kind of extension used to widen this Instruction. 1034 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 1035 1036 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 1037 1038 // A map with control-dependent ranges for post increment IV uses. The key is 1039 // a pair of IV def and a use of this def denoting the context. The value is 1040 // a ConstantRange representing possible values of the def at the given 1041 // context. 1042 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 1043 1044 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 1045 Instruction *UseI) { 1046 DefUserPair Key(Def, UseI); 1047 auto It = PostIncRangeInfos.find(Key); 1048 return It == PostIncRangeInfos.end() 1049 ? Optional<ConstantRange>(None) 1050 : Optional<ConstantRange>(It->second); 1051 } 1052 1053 void calculatePostIncRanges(PHINode *OrigPhi); 1054 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 1055 1056 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 1057 DefUserPair Key(Def, UseI); 1058 auto It = PostIncRangeInfos.find(Key); 1059 if (It == PostIncRangeInfos.end()) 1060 PostIncRangeInfos.insert({Key, R}); 1061 else 1062 It->second = R.intersectWith(It->second); 1063 } 1064 1065 public: 1066 /// Record a link in the Narrow IV def-use chain along with the WideIV that 1067 /// computes the same value as the Narrow IV def. This avoids caching Use* 1068 /// pointers. 1069 struct NarrowIVDefUse { 1070 Instruction *NarrowDef = nullptr; 1071 Instruction *NarrowUse = nullptr; 1072 Instruction *WideDef = nullptr; 1073 1074 // True if the narrow def is never negative. Tracking this information lets 1075 // us use a sign extension instead of a zero extension or vice versa, when 1076 // profitable and legal. 1077 bool NeverNegative = false; 1078 1079 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 1080 bool NeverNegative) 1081 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 1082 NeverNegative(NeverNegative) {} 1083 }; 1084 1085 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1086 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1087 bool HasGuards, bool UsePostIncrementRanges = true); 1088 1089 PHINode *createWideIV(SCEVExpander &Rewriter); 1090 1091 unsigned getNumElimExt() { return NumElimExt; }; 1092 unsigned getNumWidened() { return NumWidened; }; 1093 1094 protected: 1095 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1096 Instruction *Use); 1097 1098 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1099 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1100 const SCEVAddRecExpr *WideAR); 1101 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1102 1103 ExtendKind getExtendKind(Instruction *I); 1104 1105 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1106 1107 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1108 1109 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1110 1111 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1112 unsigned OpCode) const; 1113 1114 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1115 1116 bool widenLoopCompare(NarrowIVDefUse DU); 1117 bool widenWithVariantUse(NarrowIVDefUse DU); 1118 1119 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1120 1121 private: 1122 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 1123 }; 1124 } // namespace 1125 1126 /// Determine the insertion point for this user. By default, insert immediately 1127 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 1128 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 1129 /// common dominator for the incoming blocks. A nullptr can be returned if no 1130 /// viable location is found: it may happen if User is a PHI and Def only comes 1131 /// to this PHI from unreachable blocks. 1132 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 1133 DominatorTree *DT, LoopInfo *LI) { 1134 PHINode *PHI = dyn_cast<PHINode>(User); 1135 if (!PHI) 1136 return User; 1137 1138 Instruction *InsertPt = nullptr; 1139 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 1140 if (PHI->getIncomingValue(i) != Def) 1141 continue; 1142 1143 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 1144 1145 if (!DT->isReachableFromEntry(InsertBB)) 1146 continue; 1147 1148 if (!InsertPt) { 1149 InsertPt = InsertBB->getTerminator(); 1150 continue; 1151 } 1152 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 1153 InsertPt = InsertBB->getTerminator(); 1154 } 1155 1156 // If we have skipped all inputs, it means that Def only comes to Phi from 1157 // unreachable blocks. 1158 if (!InsertPt) 1159 return nullptr; 1160 1161 auto *DefI = dyn_cast<Instruction>(Def); 1162 if (!DefI) 1163 return InsertPt; 1164 1165 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 1166 1167 auto *L = LI->getLoopFor(DefI->getParent()); 1168 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 1169 1170 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 1171 if (LI->getLoopFor(DTN->getBlock()) == L) 1172 return DTN->getBlock()->getTerminator(); 1173 1174 llvm_unreachable("DefI dominates InsertPt!"); 1175 } 1176 1177 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1178 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1179 bool HasGuards, bool UsePostIncrementRanges) 1180 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 1181 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 1182 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges), 1183 DeadInsts(DI) { 1184 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 1185 ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero; 1186 } 1187 1188 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1189 bool IsSigned, Instruction *Use) { 1190 // Set the debug location and conservative insertion point. 1191 IRBuilder<> Builder(Use); 1192 // Hoist the insertion point into loop preheaders as far as possible. 1193 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1194 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1195 L = L->getParentLoop()) 1196 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1197 1198 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1199 Builder.CreateZExt(NarrowOper, WideType); 1200 } 1201 1202 /// Instantiate a wide operation to replace a narrow operation. This only needs 1203 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1204 /// 0 for any operation we decide not to clone. 1205 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU, 1206 const SCEVAddRecExpr *WideAR) { 1207 unsigned Opcode = DU.NarrowUse->getOpcode(); 1208 switch (Opcode) { 1209 default: 1210 return nullptr; 1211 case Instruction::Add: 1212 case Instruction::Mul: 1213 case Instruction::UDiv: 1214 case Instruction::Sub: 1215 return cloneArithmeticIVUser(DU, WideAR); 1216 1217 case Instruction::And: 1218 case Instruction::Or: 1219 case Instruction::Xor: 1220 case Instruction::Shl: 1221 case Instruction::LShr: 1222 case Instruction::AShr: 1223 return cloneBitwiseIVUser(DU); 1224 } 1225 } 1226 1227 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) { 1228 Instruction *NarrowUse = DU.NarrowUse; 1229 Instruction *NarrowDef = DU.NarrowDef; 1230 Instruction *WideDef = DU.WideDef; 1231 1232 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1233 1234 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1235 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1236 // invariant and will be folded or hoisted. If it actually comes from a 1237 // widened IV, it should be removed during a future call to widenIVUse. 1238 bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign; 1239 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1240 ? WideDef 1241 : createExtendInst(NarrowUse->getOperand(0), WideType, 1242 IsSigned, NarrowUse); 1243 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1244 ? WideDef 1245 : createExtendInst(NarrowUse->getOperand(1), WideType, 1246 IsSigned, NarrowUse); 1247 1248 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1249 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1250 NarrowBO->getName()); 1251 IRBuilder<> Builder(NarrowUse); 1252 Builder.Insert(WideBO); 1253 WideBO->copyIRFlags(NarrowBO); 1254 return WideBO; 1255 } 1256 1257 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU, 1258 const SCEVAddRecExpr *WideAR) { 1259 Instruction *NarrowUse = DU.NarrowUse; 1260 Instruction *NarrowDef = DU.NarrowDef; 1261 Instruction *WideDef = DU.WideDef; 1262 1263 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1264 1265 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1266 1267 // We're trying to find X such that 1268 // 1269 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1270 // 1271 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1272 // and check using SCEV if any of them are correct. 1273 1274 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1275 // correct solution to X. 1276 auto GuessNonIVOperand = [&](bool SignExt) { 1277 const SCEV *WideLHS; 1278 const SCEV *WideRHS; 1279 1280 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1281 if (SignExt) 1282 return SE->getSignExtendExpr(S, Ty); 1283 return SE->getZeroExtendExpr(S, Ty); 1284 }; 1285 1286 if (IVOpIdx == 0) { 1287 WideLHS = SE->getSCEV(WideDef); 1288 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1289 WideRHS = GetExtend(NarrowRHS, WideType); 1290 } else { 1291 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1292 WideLHS = GetExtend(NarrowLHS, WideType); 1293 WideRHS = SE->getSCEV(WideDef); 1294 } 1295 1296 // WideUse is "WideDef `op.wide` X" as described in the comment. 1297 const SCEV *WideUse = 1298 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode()); 1299 1300 return WideUse == WideAR; 1301 }; 1302 1303 bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign; 1304 if (!GuessNonIVOperand(SignExtend)) { 1305 SignExtend = !SignExtend; 1306 if (!GuessNonIVOperand(SignExtend)) 1307 return nullptr; 1308 } 1309 1310 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1311 ? WideDef 1312 : createExtendInst(NarrowUse->getOperand(0), WideType, 1313 SignExtend, NarrowUse); 1314 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1315 ? WideDef 1316 : createExtendInst(NarrowUse->getOperand(1), WideType, 1317 SignExtend, NarrowUse); 1318 1319 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1320 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1321 NarrowBO->getName()); 1322 1323 IRBuilder<> Builder(NarrowUse); 1324 Builder.Insert(WideBO); 1325 WideBO->copyIRFlags(NarrowBO); 1326 return WideBO; 1327 } 1328 1329 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1330 auto It = ExtendKindMap.find(I); 1331 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1332 return It->second; 1333 } 1334 1335 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1336 unsigned OpCode) const { 1337 switch (OpCode) { 1338 case Instruction::Add: 1339 return SE->getAddExpr(LHS, RHS); 1340 case Instruction::Sub: 1341 return SE->getMinusSCEV(LHS, RHS); 1342 case Instruction::Mul: 1343 return SE->getMulExpr(LHS, RHS); 1344 case Instruction::UDiv: 1345 return SE->getUDivExpr(LHS, RHS); 1346 default: 1347 llvm_unreachable("Unsupported opcode."); 1348 }; 1349 } 1350 1351 /// No-wrap operations can transfer sign extension of their result to their 1352 /// operands. Generate the SCEV value for the widened operation without 1353 /// actually modifying the IR yet. If the expression after extending the 1354 /// operands is an AddRec for this loop, return the AddRec and the kind of 1355 /// extension used. 1356 WidenIV::WidenedRecTy 1357 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) { 1358 // Handle the common case of add<nsw/nuw> 1359 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1360 // Only Add/Sub/Mul instructions supported yet. 1361 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1362 OpCode != Instruction::Mul) 1363 return {nullptr, ExtendKind::Unknown}; 1364 1365 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1366 // if extending the other will lead to a recurrence. 1367 const unsigned ExtendOperIdx = 1368 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1369 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1370 1371 const SCEV *ExtendOperExpr = nullptr; 1372 const OverflowingBinaryOperator *OBO = 1373 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1374 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1375 if (ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap()) 1376 ExtendOperExpr = SE->getSignExtendExpr( 1377 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1378 else if (ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap()) 1379 ExtendOperExpr = SE->getZeroExtendExpr( 1380 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1381 else 1382 return {nullptr, ExtendKind::Unknown}; 1383 1384 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1385 // flags. This instruction may be guarded by control flow that the no-wrap 1386 // behavior depends on. Non-control-equivalent instructions can be mapped to 1387 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1388 // semantics to those operations. 1389 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1390 const SCEV *rhs = ExtendOperExpr; 1391 1392 // Let's swap operands to the initial order for the case of non-commutative 1393 // operations, like SUB. See PR21014. 1394 if (ExtendOperIdx == 0) 1395 std::swap(lhs, rhs); 1396 const SCEVAddRecExpr *AddRec = 1397 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1398 1399 if (!AddRec || AddRec->getLoop() != L) 1400 return {nullptr, ExtendKind::Unknown}; 1401 1402 return {AddRec, ExtKind}; 1403 } 1404 1405 /// Is this instruction potentially interesting for further simplification after 1406 /// widening it's type? In other words, can the extend be safely hoisted out of 1407 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1408 /// so, return the extended recurrence and the kind of extension used. Otherwise 1409 /// return {nullptr, ExtendKind::Unknown}. 1410 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) { 1411 if (!DU.NarrowUse->getType()->isIntegerTy()) 1412 return {nullptr, ExtendKind::Unknown}; 1413 1414 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1415 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1416 SE->getTypeSizeInBits(WideType)) { 1417 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1418 // index. So don't follow this use. 1419 return {nullptr, ExtendKind::Unknown}; 1420 } 1421 1422 const SCEV *WideExpr; 1423 ExtendKind ExtKind; 1424 if (DU.NeverNegative) { 1425 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1426 if (isa<SCEVAddRecExpr>(WideExpr)) 1427 ExtKind = ExtendKind::Sign; 1428 else { 1429 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1430 ExtKind = ExtendKind::Zero; 1431 } 1432 } else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) { 1433 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1434 ExtKind = ExtendKind::Sign; 1435 } else { 1436 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1437 ExtKind = ExtendKind::Zero; 1438 } 1439 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1440 if (!AddRec || AddRec->getLoop() != L) 1441 return {nullptr, ExtendKind::Unknown}; 1442 return {AddRec, ExtKind}; 1443 } 1444 1445 /// This IV user cannot be widened. Replace this use of the original narrow IV 1446 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1447 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT, 1448 LoopInfo *LI) { 1449 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1450 if (!InsertPt) 1451 return; 1452 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1453 << *DU.NarrowUse << "\n"); 1454 IRBuilder<> Builder(InsertPt); 1455 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1456 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1457 } 1458 1459 /// If the narrow use is a compare instruction, then widen the compare 1460 // (and possibly the other operand). The extend operation is hoisted into the 1461 // loop preheader as far as possible. 1462 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) { 1463 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1464 if (!Cmp) 1465 return false; 1466 1467 // We can legally widen the comparison in the following two cases: 1468 // 1469 // - The signedness of the IV extension and comparison match 1470 // 1471 // - The narrow IV is always positive (and thus its sign extension is equal 1472 // to its zero extension). For instance, let's say we're zero extending 1473 // %narrow for the following use 1474 // 1475 // icmp slt i32 %narrow, %val ... (A) 1476 // 1477 // and %narrow is always positive. Then 1478 // 1479 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1480 // == icmp slt i32 zext(%narrow), sext(%val) 1481 bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign; 1482 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1483 return false; 1484 1485 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1486 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1487 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1488 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1489 1490 // Widen the compare instruction. 1491 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1492 if (!InsertPt) 1493 return false; 1494 IRBuilder<> Builder(InsertPt); 1495 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1496 1497 // Widen the other operand of the compare, if necessary. 1498 if (CastWidth < IVWidth) { 1499 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1500 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1501 } 1502 return true; 1503 } 1504 1505 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this 1506 // will not work when: 1507 // 1) SCEV traces back to an instruction inside the loop that SCEV can not 1508 // expand, eg. add %indvar, (load %addr) 1509 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant 1510 // While SCEV fails to avoid trunc, we can still try to use instruction 1511 // combining approach to prove trunc is not required. This can be further 1512 // extended with other instruction combining checks, but for now we handle the 1513 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext") 1514 // 1515 // Src: 1516 // %c = sub nsw %b, %indvar 1517 // %d = sext %c to i64 1518 // Dst: 1519 // %indvar.ext1 = sext %indvar to i64 1520 // %m = sext %b to i64 1521 // %d = sub nsw i64 %m, %indvar.ext1 1522 // Therefore, as long as the result of add/sub/mul is extended to wide type, no 1523 // trunc is required regardless of how %b is generated. This pattern is common 1524 // when calculating address in 64 bit architecture 1525 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) { 1526 Instruction *NarrowUse = DU.NarrowUse; 1527 Instruction *NarrowDef = DU.NarrowDef; 1528 Instruction *WideDef = DU.WideDef; 1529 1530 // Handle the common case of add<nsw/nuw> 1531 const unsigned OpCode = NarrowUse->getOpcode(); 1532 // Only Add/Sub/Mul instructions are supported. 1533 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1534 OpCode != Instruction::Mul) 1535 return false; 1536 1537 // The operand that is not defined by NarrowDef of DU. Let's call it the 1538 // other operand. 1539 assert((NarrowUse->getOperand(0) == NarrowDef || 1540 NarrowUse->getOperand(1) == NarrowDef) && 1541 "bad DU"); 1542 1543 const OverflowingBinaryOperator *OBO = 1544 cast<OverflowingBinaryOperator>(NarrowUse); 1545 ExtendKind ExtKind = getExtendKind(NarrowDef); 1546 bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap(); 1547 bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap(); 1548 auto AnotherOpExtKind = ExtKind; 1549 1550 // Check that all uses are either: 1551 // - narrow def (in case of we are widening the IV increment); 1552 // - single-input LCSSA Phis; 1553 // - comparison of the chosen type; 1554 // - extend of the chosen type (raison d'etre). 1555 SmallVector<Instruction *, 4> ExtUsers; 1556 SmallVector<PHINode *, 4> LCSSAPhiUsers; 1557 SmallVector<ICmpInst *, 4> ICmpUsers; 1558 for (Use &U : NarrowUse->uses()) { 1559 Instruction *User = cast<Instruction>(U.getUser()); 1560 if (User == NarrowDef) 1561 continue; 1562 if (!L->contains(User)) { 1563 auto *LCSSAPhi = cast<PHINode>(User); 1564 // Make sure there is only 1 input, so that we don't have to split 1565 // critical edges. 1566 if (LCSSAPhi->getNumOperands() != 1) 1567 return false; 1568 LCSSAPhiUsers.push_back(LCSSAPhi); 1569 continue; 1570 } 1571 if (auto *ICmp = dyn_cast<ICmpInst>(User)) { 1572 auto Pred = ICmp->getPredicate(); 1573 // We have 3 types of predicates: signed, unsigned and equality 1574 // predicates. For equality, it's legal to widen icmp for either sign and 1575 // zero extend. For sign extend, we can also do so for signed predicates, 1576 // likeweise for zero extend we can widen icmp for unsigned predicates. 1577 if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred)) 1578 return false; 1579 if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred)) 1580 return false; 1581 ICmpUsers.push_back(ICmp); 1582 continue; 1583 } 1584 if (ExtKind == ExtendKind::Sign) 1585 User = dyn_cast<SExtInst>(User); 1586 else 1587 User = dyn_cast<ZExtInst>(User); 1588 if (!User || User->getType() != WideType) 1589 return false; 1590 ExtUsers.push_back(User); 1591 } 1592 if (ExtUsers.empty()) { 1593 DeadInsts.emplace_back(NarrowUse); 1594 return true; 1595 } 1596 1597 // We'll prove some facts that should be true in the context of ext users. If 1598 // there is no users, we are done now. If there are some, pick their common 1599 // dominator as context. 1600 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT); 1601 1602 if (!CanSignExtend && !CanZeroExtend) { 1603 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we 1604 // will most likely not see it. Let's try to prove it. 1605 if (OpCode != Instruction::Add) 1606 return false; 1607 if (ExtKind != ExtendKind::Zero) 1608 return false; 1609 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0)); 1610 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1)); 1611 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1). 1612 if (NarrowUse->getOperand(0) != NarrowDef) 1613 return false; 1614 if (!SE->isKnownNegative(RHS)) 1615 return false; 1616 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS, 1617 SE->getNegativeSCEV(RHS), CtxI); 1618 if (!ProvedSubNUW) 1619 return false; 1620 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as 1621 // neg(zext(neg(op))), which is basically sext(op). 1622 AnotherOpExtKind = ExtendKind::Sign; 1623 } 1624 1625 // Verifying that Defining operand is an AddRec 1626 const SCEV *Op1 = SE->getSCEV(WideDef); 1627 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1628 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1629 return false; 1630 1631 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1632 1633 // Generating a widening use instruction. 1634 Value *LHS = 1635 (NarrowUse->getOperand(0) == NarrowDef) 1636 ? WideDef 1637 : createExtendInst(NarrowUse->getOperand(0), WideType, 1638 AnotherOpExtKind == ExtendKind::Sign, NarrowUse); 1639 Value *RHS = 1640 (NarrowUse->getOperand(1) == NarrowDef) 1641 ? WideDef 1642 : createExtendInst(NarrowUse->getOperand(1), WideType, 1643 AnotherOpExtKind == ExtendKind::Sign, NarrowUse); 1644 1645 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1646 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1647 NarrowBO->getName()); 1648 IRBuilder<> Builder(NarrowUse); 1649 Builder.Insert(WideBO); 1650 WideBO->copyIRFlags(NarrowBO); 1651 ExtendKindMap[NarrowUse] = ExtKind; 1652 1653 for (Instruction *User : ExtUsers) { 1654 assert(User->getType() == WideType && "Checked before!"); 1655 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1656 << *WideBO << "\n"); 1657 ++NumElimExt; 1658 User->replaceAllUsesWith(WideBO); 1659 DeadInsts.emplace_back(User); 1660 } 1661 1662 for (PHINode *User : LCSSAPhiUsers) { 1663 assert(User->getNumOperands() == 1 && "Checked before!"); 1664 Builder.SetInsertPoint(User); 1665 auto *WidePN = 1666 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide"); 1667 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor(); 1668 assert(LoopExitingBlock && L->contains(LoopExitingBlock) && 1669 "Not a LCSSA Phi?"); 1670 WidePN->addIncoming(WideBO, LoopExitingBlock); 1671 Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt()); 1672 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType()); 1673 User->replaceAllUsesWith(TruncPN); 1674 DeadInsts.emplace_back(User); 1675 } 1676 1677 for (ICmpInst *User : ICmpUsers) { 1678 Builder.SetInsertPoint(User); 1679 auto ExtendedOp = [&](Value * V)->Value * { 1680 if (V == NarrowUse) 1681 return WideBO; 1682 if (ExtKind == ExtendKind::Zero) 1683 return Builder.CreateZExt(V, WideBO->getType()); 1684 else 1685 return Builder.CreateSExt(V, WideBO->getType()); 1686 }; 1687 auto Pred = User->getPredicate(); 1688 auto *LHS = ExtendedOp(User->getOperand(0)); 1689 auto *RHS = ExtendedOp(User->getOperand(1)); 1690 auto *WideCmp = 1691 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide"); 1692 User->replaceAllUsesWith(WideCmp); 1693 DeadInsts.emplace_back(User); 1694 } 1695 1696 return true; 1697 } 1698 1699 /// Determine whether an individual user of the narrow IV can be widened. If so, 1700 /// return the wide clone of the user. 1701 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1702 assert(ExtendKindMap.count(DU.NarrowDef) && 1703 "Should already know the kind of extension used to widen NarrowDef"); 1704 1705 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1706 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1707 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1708 // For LCSSA phis, sink the truncate outside the loop. 1709 // After SimplifyCFG most loop exit targets have a single predecessor. 1710 // Otherwise fall back to a truncate within the loop. 1711 if (UsePhi->getNumOperands() != 1) 1712 truncateIVUse(DU, DT, LI); 1713 else { 1714 // Widening the PHI requires us to insert a trunc. The logical place 1715 // for this trunc is in the same BB as the PHI. This is not possible if 1716 // the BB is terminated by a catchswitch. 1717 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1718 return nullptr; 1719 1720 PHINode *WidePhi = 1721 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1722 UsePhi); 1723 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1724 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1725 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1726 UsePhi->replaceAllUsesWith(Trunc); 1727 DeadInsts.emplace_back(UsePhi); 1728 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1729 << *WidePhi << "\n"); 1730 } 1731 return nullptr; 1732 } 1733 } 1734 1735 // This narrow use can be widened by a sext if it's non-negative or its narrow 1736 // def was widended by a sext. Same for zext. 1737 auto canWidenBySExt = [&]() { 1738 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign; 1739 }; 1740 auto canWidenByZExt = [&]() { 1741 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero; 1742 }; 1743 1744 // Our raison d'etre! Eliminate sign and zero extension. 1745 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1746 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1747 Value *NewDef = DU.WideDef; 1748 if (DU.NarrowUse->getType() != WideType) { 1749 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1750 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1751 if (CastWidth < IVWidth) { 1752 // The cast isn't as wide as the IV, so insert a Trunc. 1753 IRBuilder<> Builder(DU.NarrowUse); 1754 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1755 } 1756 else { 1757 // A wider extend was hidden behind a narrower one. This may induce 1758 // another round of IV widening in which the intermediate IV becomes 1759 // dead. It should be very rare. 1760 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1761 << " not wide enough to subsume " << *DU.NarrowUse 1762 << "\n"); 1763 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1764 NewDef = DU.NarrowUse; 1765 } 1766 } 1767 if (NewDef != DU.NarrowUse) { 1768 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1769 << " replaced by " << *DU.WideDef << "\n"); 1770 ++NumElimExt; 1771 DU.NarrowUse->replaceAllUsesWith(NewDef); 1772 DeadInsts.emplace_back(DU.NarrowUse); 1773 } 1774 // Now that the extend is gone, we want to expose it's uses for potential 1775 // further simplification. We don't need to directly inform SimplifyIVUsers 1776 // of the new users, because their parent IV will be processed later as a 1777 // new loop phi. If we preserved IVUsers analysis, we would also want to 1778 // push the uses of WideDef here. 1779 1780 // No further widening is needed. The deceased [sz]ext had done it for us. 1781 return nullptr; 1782 } 1783 1784 // Does this user itself evaluate to a recurrence after widening? 1785 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1786 if (!WideAddRec.first) 1787 WideAddRec = getWideRecurrence(DU); 1788 1789 assert((WideAddRec.first == nullptr) == 1790 (WideAddRec.second == ExtendKind::Unknown)); 1791 if (!WideAddRec.first) { 1792 // If use is a loop condition, try to promote the condition instead of 1793 // truncating the IV first. 1794 if (widenLoopCompare(DU)) 1795 return nullptr; 1796 1797 // We are here about to generate a truncate instruction that may hurt 1798 // performance because the scalar evolution expression computed earlier 1799 // in WideAddRec.first does not indicate a polynomial induction expression. 1800 // In that case, look at the operands of the use instruction to determine 1801 // if we can still widen the use instead of truncating its operand. 1802 if (widenWithVariantUse(DU)) 1803 return nullptr; 1804 1805 // This user does not evaluate to a recurrence after widening, so don't 1806 // follow it. Instead insert a Trunc to kill off the original use, 1807 // eventually isolating the original narrow IV so it can be removed. 1808 truncateIVUse(DU, DT, LI); 1809 return nullptr; 1810 } 1811 1812 // Reuse the IV increment that SCEVExpander created as long as it dominates 1813 // NarrowUse. 1814 Instruction *WideUse = nullptr; 1815 if (WideAddRec.first == WideIncExpr && 1816 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1817 WideUse = WideInc; 1818 else { 1819 WideUse = cloneIVUser(DU, WideAddRec.first); 1820 if (!WideUse) 1821 return nullptr; 1822 } 1823 // Evaluation of WideAddRec ensured that the narrow expression could be 1824 // extended outside the loop without overflow. This suggests that the wide use 1825 // evaluates to the same expression as the extended narrow use, but doesn't 1826 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1827 // where it fails, we simply throw away the newly created wide use. 1828 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1829 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1830 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1831 << "\n"); 1832 DeadInsts.emplace_back(WideUse); 1833 return nullptr; 1834 } 1835 1836 // if we reached this point then we are going to replace 1837 // DU.NarrowUse with WideUse. Reattach DbgValue then. 1838 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); 1839 1840 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1841 // Returning WideUse pushes it on the worklist. 1842 return WideUse; 1843 } 1844 1845 /// Add eligible users of NarrowDef to NarrowIVUsers. 1846 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1847 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1848 bool NonNegativeDef = 1849 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1850 SE->getZero(NarrowSCEV->getType())); 1851 for (User *U : NarrowDef->users()) { 1852 Instruction *NarrowUser = cast<Instruction>(U); 1853 1854 // Handle data flow merges and bizarre phi cycles. 1855 if (!Widened.insert(NarrowUser).second) 1856 continue; 1857 1858 bool NonNegativeUse = false; 1859 if (!NonNegativeDef) { 1860 // We might have a control-dependent range information for this context. 1861 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1862 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1863 } 1864 1865 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1866 NonNegativeDef || NonNegativeUse); 1867 } 1868 } 1869 1870 /// Process a single induction variable. First use the SCEVExpander to create a 1871 /// wide induction variable that evaluates to the same recurrence as the 1872 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1873 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1874 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1875 /// 1876 /// It would be simpler to delete uses as they are processed, but we must avoid 1877 /// invalidating SCEV expressions. 1878 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1879 // Is this phi an induction variable? 1880 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1881 if (!AddRec) 1882 return nullptr; 1883 1884 // Widen the induction variable expression. 1885 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign 1886 ? SE->getSignExtendExpr(AddRec, WideType) 1887 : SE->getZeroExtendExpr(AddRec, WideType); 1888 1889 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1890 "Expect the new IV expression to preserve its type"); 1891 1892 // Can the IV be extended outside the loop without overflow? 1893 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1894 if (!AddRec || AddRec->getLoop() != L) 1895 return nullptr; 1896 1897 // An AddRec must have loop-invariant operands. Since this AddRec is 1898 // materialized by a loop header phi, the expression cannot have any post-loop 1899 // operands, so they must dominate the loop header. 1900 assert( 1901 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1902 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1903 "Loop header phi recurrence inputs do not dominate the loop"); 1904 1905 // Iterate over IV uses (including transitive ones) looking for IV increments 1906 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1907 // the increment calculate control-dependent range information basing on 1908 // dominating conditions inside of the loop (e.g. a range check inside of the 1909 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1910 // 1911 // Control-dependent range information is later used to prove that a narrow 1912 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1913 // this on demand because when pushNarrowIVUsers needs this information some 1914 // of the dominating conditions might be already widened. 1915 if (UsePostIncrementRanges) 1916 calculatePostIncRanges(OrigPhi); 1917 1918 // The rewriter provides a value for the desired IV expression. This may 1919 // either find an existing phi or materialize a new one. Either way, we 1920 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1921 // of the phi-SCC dominates the loop entry. 1922 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1923 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt); 1924 // If the wide phi is not a phi node, for example a cast node, like bitcast, 1925 // inttoptr, ptrtoint, just skip for now. 1926 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) { 1927 // if the cast node is an inserted instruction without any user, we should 1928 // remove it to make sure the pass don't touch the function as we can not 1929 // wide the phi. 1930 if (ExpandInst->hasNUses(0) && 1931 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst))) 1932 DeadInsts.emplace_back(ExpandInst); 1933 return nullptr; 1934 } 1935 1936 // Remembering the WideIV increment generated by SCEVExpander allows 1937 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1938 // employ a general reuse mechanism because the call above is the only call to 1939 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1940 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1941 WideInc = 1942 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1943 WideIncExpr = SE->getSCEV(WideInc); 1944 // Propagate the debug location associated with the original loop increment 1945 // to the new (widened) increment. 1946 auto *OrigInc = 1947 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1948 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1949 } 1950 1951 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1952 ++NumWidened; 1953 1954 // Traverse the def-use chain using a worklist starting at the original IV. 1955 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1956 1957 Widened.insert(OrigPhi); 1958 pushNarrowIVUsers(OrigPhi, WidePhi); 1959 1960 while (!NarrowIVUsers.empty()) { 1961 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1962 1963 // Process a def-use edge. This may replace the use, so don't hold a 1964 // use_iterator across it. 1965 Instruction *WideUse = widenIVUse(DU, Rewriter); 1966 1967 // Follow all def-use edges from the previous narrow use. 1968 if (WideUse) 1969 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1970 1971 // widenIVUse may have removed the def-use edge. 1972 if (DU.NarrowDef->use_empty()) 1973 DeadInsts.emplace_back(DU.NarrowDef); 1974 } 1975 1976 // Attach any debug information to the new PHI. 1977 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT); 1978 1979 return WidePhi; 1980 } 1981 1982 /// Calculates control-dependent range for the given def at the given context 1983 /// by looking at dominating conditions inside of the loop 1984 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1985 Instruction *NarrowUser) { 1986 using namespace llvm::PatternMatch; 1987 1988 Value *NarrowDefLHS; 1989 const APInt *NarrowDefRHS; 1990 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1991 m_APInt(NarrowDefRHS))) || 1992 !NarrowDefRHS->isNonNegative()) 1993 return; 1994 1995 auto UpdateRangeFromCondition = [&] (Value *Condition, 1996 bool TrueDest) { 1997 CmpInst::Predicate Pred; 1998 Value *CmpRHS; 1999 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 2000 m_Value(CmpRHS)))) 2001 return; 2002 2003 CmpInst::Predicate P = 2004 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 2005 2006 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 2007 auto CmpConstrainedLHSRange = 2008 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 2009 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( 2010 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap); 2011 2012 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 2013 }; 2014 2015 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 2016 if (!HasGuards) 2017 return; 2018 2019 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 2020 Ctx->getParent()->rend())) { 2021 Value *C = nullptr; 2022 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 2023 UpdateRangeFromCondition(C, /*TrueDest=*/true); 2024 } 2025 }; 2026 2027 UpdateRangeFromGuards(NarrowUser); 2028 2029 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 2030 // If NarrowUserBB is statically unreachable asking dominator queries may 2031 // yield surprising results. (e.g. the block may not have a dom tree node) 2032 if (!DT->isReachableFromEntry(NarrowUserBB)) 2033 return; 2034 2035 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 2036 L->contains(DTB->getBlock()); 2037 DTB = DTB->getIDom()) { 2038 auto *BB = DTB->getBlock(); 2039 auto *TI = BB->getTerminator(); 2040 UpdateRangeFromGuards(TI); 2041 2042 auto *BI = dyn_cast<BranchInst>(TI); 2043 if (!BI || !BI->isConditional()) 2044 continue; 2045 2046 auto *TrueSuccessor = BI->getSuccessor(0); 2047 auto *FalseSuccessor = BI->getSuccessor(1); 2048 2049 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 2050 return BBE.isSingleEdge() && 2051 DT->dominates(BBE, NarrowUser->getParent()); 2052 }; 2053 2054 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 2055 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 2056 2057 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 2058 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 2059 } 2060 } 2061 2062 /// Calculates PostIncRangeInfos map for the given IV 2063 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 2064 SmallPtrSet<Instruction *, 16> Visited; 2065 SmallVector<Instruction *, 6> Worklist; 2066 Worklist.push_back(OrigPhi); 2067 Visited.insert(OrigPhi); 2068 2069 while (!Worklist.empty()) { 2070 Instruction *NarrowDef = Worklist.pop_back_val(); 2071 2072 for (Use &U : NarrowDef->uses()) { 2073 auto *NarrowUser = cast<Instruction>(U.getUser()); 2074 2075 // Don't go looking outside the current loop. 2076 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 2077 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 2078 continue; 2079 2080 if (!Visited.insert(NarrowUser).second) 2081 continue; 2082 2083 Worklist.push_back(NarrowUser); 2084 2085 calculatePostIncRange(NarrowDef, NarrowUser); 2086 } 2087 } 2088 } 2089 2090 PHINode *llvm::createWideIV(const WideIVInfo &WI, 2091 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, 2092 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2093 unsigned &NumElimExt, unsigned &NumWidened, 2094 bool HasGuards, bool UsePostIncrementRanges) { 2095 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges); 2096 PHINode *WidePHI = Widener.createWideIV(Rewriter); 2097 NumElimExt = Widener.getNumElimExt(); 2098 NumWidened = Widener.getNumWidened(); 2099 return WidePHI; 2100 } 2101