1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements induction variable simplification. It does 10 // not define any actual pass or policy, but provides a single function to 11 // simplify a loop's induction variables based on ScalarEvolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 28 29 using namespace llvm; 30 using namespace llvm::PatternMatch; 31 32 #define DEBUG_TYPE "indvars" 33 34 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 35 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 36 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); 37 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 38 STATISTIC( 39 NumSimplifiedSDiv, 40 "Number of IV signed division operations converted to unsigned division"); 41 STATISTIC( 42 NumSimplifiedSRem, 43 "Number of IV signed remainder operations converted to unsigned remainder"); 44 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 45 46 namespace { 47 /// This is a utility for simplifying induction variables 48 /// based on ScalarEvolution. It is the primary instrument of the 49 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 50 /// other loop passes that preserve SCEV. 51 class SimplifyIndvar { 52 Loop *L; 53 LoopInfo *LI; 54 ScalarEvolution *SE; 55 DominatorTree *DT; 56 const TargetTransformInfo *TTI; 57 SCEVExpander &Rewriter; 58 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 59 60 bool Changed = false; 61 62 public: 63 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, 64 LoopInfo *LI, const TargetTransformInfo *TTI, 65 SCEVExpander &Rewriter, 66 SmallVectorImpl<WeakTrackingVH> &Dead) 67 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter), 68 DeadInsts(Dead) { 69 assert(LI && "IV simplification requires LoopInfo"); 70 } 71 72 bool hasChanged() const { return Changed; } 73 74 /// Iteratively perform simplification on a worklist of users of the 75 /// specified induction variable. This is the top-level driver that applies 76 /// all simplifications to users of an IV. 77 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 78 79 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 80 81 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); 82 bool replaceIVUserWithLoopInvariant(Instruction *UseInst); 83 bool replaceFloatIVWithIntegerIV(Instruction *UseInst); 84 85 bool eliminateOverflowIntrinsic(WithOverflowInst *WO); 86 bool eliminateSaturatingIntrinsic(SaturatingInst *SI); 87 bool eliminateTrunc(TruncInst *TI); 88 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 89 bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand); 90 void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand); 91 void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand, 92 bool IsSigned); 93 void replaceRemWithNumerator(BinaryOperator *Rem); 94 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); 95 void replaceSRemWithURem(BinaryOperator *Rem); 96 bool eliminateSDiv(BinaryOperator *SDiv); 97 bool strengthenBinaryOp(BinaryOperator *BO, Instruction *IVOperand); 98 bool strengthenOverflowingOperation(BinaryOperator *OBO, 99 Instruction *IVOperand); 100 bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand); 101 }; 102 } 103 104 /// Find a point in code which dominates all given instructions. We can safely 105 /// assume that, whatever fact we can prove at the found point, this fact is 106 /// also true for each of the given instructions. 107 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions, 108 DominatorTree &DT) { 109 Instruction *CommonDom = nullptr; 110 for (auto *Insn : Instructions) 111 CommonDom = 112 CommonDom ? DT.findNearestCommonDominator(CommonDom, Insn) : Insn; 113 assert(CommonDom && "Common dominator not found?"); 114 return CommonDom; 115 } 116 117 /// Fold an IV operand into its use. This removes increments of an 118 /// aligned IV when used by a instruction that ignores the low bits. 119 /// 120 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 121 /// 122 /// Return the operand of IVOperand for this induction variable if IVOperand can 123 /// be folded (in case more folding opportunities have been exposed). 124 /// Otherwise return null. 125 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 126 Value *IVSrc = nullptr; 127 const unsigned OperIdx = 0; 128 const SCEV *FoldedExpr = nullptr; 129 bool MustDropExactFlag = false; 130 switch (UseInst->getOpcode()) { 131 default: 132 return nullptr; 133 case Instruction::UDiv: 134 case Instruction::LShr: 135 // We're only interested in the case where we know something about 136 // the numerator and have a constant denominator. 137 if (IVOperand != UseInst->getOperand(OperIdx) || 138 !isa<ConstantInt>(UseInst->getOperand(1))) 139 return nullptr; 140 141 // Attempt to fold a binary operator with constant operand. 142 // e.g. ((I + 1) >> 2) => I >> 2 143 if (!isa<BinaryOperator>(IVOperand) 144 || !isa<ConstantInt>(IVOperand->getOperand(1))) 145 return nullptr; 146 147 IVSrc = IVOperand->getOperand(0); 148 // IVSrc must be the (SCEVable) IV, since the other operand is const. 149 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 150 151 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 152 if (UseInst->getOpcode() == Instruction::LShr) { 153 // Get a constant for the divisor. See createSCEV. 154 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 155 if (D->getValue().uge(BitWidth)) 156 return nullptr; 157 158 D = ConstantInt::get(UseInst->getContext(), 159 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 160 } 161 const auto *LHS = SE->getSCEV(IVSrc); 162 const auto *RHS = SE->getSCEV(D); 163 FoldedExpr = SE->getUDivExpr(LHS, RHS); 164 // We might have 'exact' flag set at this point which will no longer be 165 // correct after we make the replacement. 166 if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS)) 167 MustDropExactFlag = true; 168 } 169 // We have something that might fold it's operand. Compare SCEVs. 170 if (!SE->isSCEVable(UseInst->getType())) 171 return nullptr; 172 173 // Bypass the operand if SCEV can prove it has no effect. 174 if (SE->getSCEV(UseInst) != FoldedExpr) 175 return nullptr; 176 177 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 178 << " -> " << *UseInst << '\n'); 179 180 UseInst->setOperand(OperIdx, IVSrc); 181 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 182 183 if (MustDropExactFlag) 184 UseInst->dropPoisonGeneratingFlags(); 185 186 ++NumElimOperand; 187 Changed = true; 188 if (IVOperand->use_empty()) 189 DeadInsts.emplace_back(IVOperand); 190 return IVSrc; 191 } 192 193 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, 194 Instruction *IVOperand) { 195 auto *Preheader = L->getLoopPreheader(); 196 if (!Preheader) 197 return false; 198 unsigned IVOperIdx = 0; 199 ICmpInst::Predicate Pred = ICmp->getPredicate(); 200 if (IVOperand != ICmp->getOperand(0)) { 201 // Swapped 202 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 203 IVOperIdx = 1; 204 Pred = ICmpInst::getSwappedPredicate(Pred); 205 } 206 207 // Get the SCEVs for the ICmp operands (in the specific context of the 208 // current loop) 209 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 210 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 211 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 212 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L, ICmp); 213 if (!LIP) 214 return false; 215 ICmpInst::Predicate InvariantPredicate = LIP->Pred; 216 const SCEV *InvariantLHS = LIP->LHS; 217 const SCEV *InvariantRHS = LIP->RHS; 218 219 // Do not generate something ridiculous. 220 auto *PHTerm = Preheader->getTerminator(); 221 if (Rewriter.isHighCostExpansion({InvariantLHS, InvariantRHS}, L, 222 2 * SCEVCheapExpansionBudget, TTI, PHTerm) || 223 !Rewriter.isSafeToExpandAt(InvariantLHS, PHTerm) || 224 !Rewriter.isSafeToExpandAt(InvariantRHS, PHTerm)) 225 return false; 226 auto *NewLHS = 227 Rewriter.expandCodeFor(InvariantLHS, IVOperand->getType(), PHTerm); 228 auto *NewRHS = 229 Rewriter.expandCodeFor(InvariantRHS, IVOperand->getType(), PHTerm); 230 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); 231 ICmp->setPredicate(InvariantPredicate); 232 ICmp->setOperand(0, NewLHS); 233 ICmp->setOperand(1, NewRHS); 234 return true; 235 } 236 237 /// SimplifyIVUsers helper for eliminating useless 238 /// comparisons against an induction variable. 239 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, 240 Instruction *IVOperand) { 241 unsigned IVOperIdx = 0; 242 ICmpInst::Predicate Pred = ICmp->getPredicate(); 243 ICmpInst::Predicate OriginalPred = Pred; 244 if (IVOperand != ICmp->getOperand(0)) { 245 // Swapped 246 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 247 IVOperIdx = 1; 248 Pred = ICmpInst::getSwappedPredicate(Pred); 249 } 250 251 // Get the SCEVs for the ICmp operands (in the specific context of the 252 // current loop) 253 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 254 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); 255 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); 256 257 // If the condition is always true or always false in the given context, 258 // replace it with a constant value. 259 SmallVector<Instruction *, 4> Users; 260 for (auto *U : ICmp->users()) 261 Users.push_back(cast<Instruction>(U)); 262 const Instruction *CtxI = findCommonDominator(Users, *DT); 263 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) { 264 SE->forgetValue(ICmp); 265 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev)); 266 DeadInsts.emplace_back(ICmp); 267 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 268 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { 269 // fallthrough to end of function 270 } else if (ICmpInst::isSigned(OriginalPred) && 271 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { 272 // If we were unable to make anything above, all we can is to canonicalize 273 // the comparison hoping that it will open the doors for other 274 // optimizations. If we find out that we compare two non-negative values, 275 // we turn the instruction's predicate to its unsigned version. Note that 276 // we cannot rely on Pred here unless we check if we have swapped it. 277 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); 278 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp 279 << '\n'); 280 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); 281 } else 282 return; 283 284 ++NumElimCmp; 285 Changed = true; 286 } 287 288 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { 289 // Get the SCEVs for the ICmp operands. 290 auto *N = SE->getSCEV(SDiv->getOperand(0)); 291 auto *D = SE->getSCEV(SDiv->getOperand(1)); 292 293 // Simplify unnecessary loops away. 294 const Loop *L = LI->getLoopFor(SDiv->getParent()); 295 N = SE->getSCEVAtScope(N, L); 296 D = SE->getSCEVAtScope(D, L); 297 298 // Replace sdiv by udiv if both of the operands are non-negative 299 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { 300 auto *UDiv = BinaryOperator::Create( 301 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), 302 SDiv->getName() + ".udiv", SDiv); 303 UDiv->setIsExact(SDiv->isExact()); 304 SDiv->replaceAllUsesWith(UDiv); 305 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); 306 ++NumSimplifiedSDiv; 307 Changed = true; 308 DeadInsts.push_back(SDiv); 309 return true; 310 } 311 312 return false; 313 } 314 315 // i %s n -> i %u n if i >= 0 and n >= 0 316 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { 317 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 318 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, 319 Rem->getName() + ".urem", Rem); 320 Rem->replaceAllUsesWith(URem); 321 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); 322 ++NumSimplifiedSRem; 323 Changed = true; 324 DeadInsts.emplace_back(Rem); 325 } 326 327 // i % n --> i if i is in [0,n). 328 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { 329 Rem->replaceAllUsesWith(Rem->getOperand(0)); 330 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 331 ++NumElimRem; 332 Changed = true; 333 DeadInsts.emplace_back(Rem); 334 } 335 336 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 337 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { 338 auto *T = Rem->getType(); 339 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); 340 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); 341 SelectInst *Sel = 342 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); 343 Rem->replaceAllUsesWith(Sel); 344 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 345 ++NumElimRem; 346 Changed = true; 347 DeadInsts.emplace_back(Rem); 348 } 349 350 /// SimplifyIVUsers helper for eliminating useless remainder operations 351 /// operating on an induction variable or replacing srem by urem. 352 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, 353 Instruction *IVOperand, 354 bool IsSigned) { 355 auto *NValue = Rem->getOperand(0); 356 auto *DValue = Rem->getOperand(1); 357 // We're only interested in the case where we know something about 358 // the numerator, unless it is a srem, because we want to replace srem by urem 359 // in general. 360 bool UsedAsNumerator = IVOperand == NValue; 361 if (!UsedAsNumerator && !IsSigned) 362 return; 363 364 const SCEV *N = SE->getSCEV(NValue); 365 366 // Simplify unnecessary loops away. 367 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 368 N = SE->getSCEVAtScope(N, ICmpLoop); 369 370 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); 371 372 // Do not proceed if the Numerator may be negative 373 if (!IsNumeratorNonNegative) 374 return; 375 376 const SCEV *D = SE->getSCEV(DValue); 377 D = SE->getSCEVAtScope(D, ICmpLoop); 378 379 if (UsedAsNumerator) { 380 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 381 if (SE->isKnownPredicate(LT, N, D)) { 382 replaceRemWithNumerator(Rem); 383 return; 384 } 385 386 auto *T = Rem->getType(); 387 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); 388 if (SE->isKnownPredicate(LT, NLessOne, D)) { 389 replaceRemWithNumeratorOrZero(Rem); 390 return; 391 } 392 } 393 394 // Try to replace SRem with URem, if both N and D are known non-negative. 395 // Since we had already check N, we only need to check D now 396 if (!IsSigned || !SE->isKnownNonNegative(D)) 397 return; 398 399 replaceSRemWithURem(Rem); 400 } 401 402 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) { 403 const SCEV *LHS = SE->getSCEV(WO->getLHS()); 404 const SCEV *RHS = SE->getSCEV(WO->getRHS()); 405 if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS)) 406 return false; 407 408 // Proved no overflow, nuke the overflow check and, if possible, the overflow 409 // intrinsic as well. 410 411 BinaryOperator *NewResult = BinaryOperator::Create( 412 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO); 413 414 if (WO->isSigned()) 415 NewResult->setHasNoSignedWrap(true); 416 else 417 NewResult->setHasNoUnsignedWrap(true); 418 419 SmallVector<ExtractValueInst *, 4> ToDelete; 420 421 for (auto *U : WO->users()) { 422 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { 423 if (EVI->getIndices()[0] == 1) 424 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext())); 425 else { 426 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); 427 EVI->replaceAllUsesWith(NewResult); 428 } 429 ToDelete.push_back(EVI); 430 } 431 } 432 433 for (auto *EVI : ToDelete) 434 EVI->eraseFromParent(); 435 436 if (WO->use_empty()) 437 WO->eraseFromParent(); 438 439 Changed = true; 440 return true; 441 } 442 443 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) { 444 const SCEV *LHS = SE->getSCEV(SI->getLHS()); 445 const SCEV *RHS = SE->getSCEV(SI->getRHS()); 446 if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS)) 447 return false; 448 449 BinaryOperator *BO = BinaryOperator::Create( 450 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI); 451 if (SI->isSigned()) 452 BO->setHasNoSignedWrap(); 453 else 454 BO->setHasNoUnsignedWrap(); 455 456 SI->replaceAllUsesWith(BO); 457 DeadInsts.emplace_back(SI); 458 Changed = true; 459 return true; 460 } 461 462 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { 463 // It is always legal to replace 464 // icmp <pred> i32 trunc(iv), n 465 // with 466 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. 467 // Or with 468 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. 469 // Or with either of these if pred is an equality predicate. 470 // 471 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for 472 // every comparison which uses trunc, it means that we can replace each of 473 // them with comparison of iv against sext/zext(n). We no longer need trunc 474 // after that. 475 // 476 // TODO: Should we do this if we can widen *some* comparisons, but not all 477 // of them? Sometimes it is enough to enable other optimizations, but the 478 // trunc instruction will stay in the loop. 479 Value *IV = TI->getOperand(0); 480 Type *IVTy = IV->getType(); 481 const SCEV *IVSCEV = SE->getSCEV(IV); 482 const SCEV *TISCEV = SE->getSCEV(TI); 483 484 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can 485 // get rid of trunc 486 bool DoesSExtCollapse = false; 487 bool DoesZExtCollapse = false; 488 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) 489 DoesSExtCollapse = true; 490 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) 491 DoesZExtCollapse = true; 492 493 // If neither sext nor zext does collapse, it is not profitable to do any 494 // transform. Bail. 495 if (!DoesSExtCollapse && !DoesZExtCollapse) 496 return false; 497 498 // Collect users of the trunc that look like comparisons against invariants. 499 // Bail if we find something different. 500 SmallVector<ICmpInst *, 4> ICmpUsers; 501 for (auto *U : TI->users()) { 502 // We don't care about users in unreachable blocks. 503 if (isa<Instruction>(U) && 504 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) 505 continue; 506 ICmpInst *ICI = dyn_cast<ICmpInst>(U); 507 if (!ICI) return false; 508 assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); 509 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) && 510 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0)))) 511 return false; 512 // If we cannot get rid of trunc, bail. 513 if (ICI->isSigned() && !DoesSExtCollapse) 514 return false; 515 if (ICI->isUnsigned() && !DoesZExtCollapse) 516 return false; 517 // For equality, either signed or unsigned works. 518 ICmpUsers.push_back(ICI); 519 } 520 521 auto CanUseZExt = [&](ICmpInst *ICI) { 522 // Unsigned comparison can be widened as unsigned. 523 if (ICI->isUnsigned()) 524 return true; 525 // Is it profitable to do zext? 526 if (!DoesZExtCollapse) 527 return false; 528 // For equality, we can safely zext both parts. 529 if (ICI->isEquality()) 530 return true; 531 // Otherwise we can only use zext when comparing two non-negative or two 532 // negative values. But in practice, we will never pass DoesZExtCollapse 533 // check for a negative value, because zext(trunc(x)) is non-negative. So 534 // it only make sense to check for non-negativity here. 535 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); 536 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); 537 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); 538 }; 539 // Replace all comparisons against trunc with comparisons against IV. 540 for (auto *ICI : ICmpUsers) { 541 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0)); 542 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1); 543 IRBuilder<> Builder(ICI); 544 Value *Ext = nullptr; 545 // For signed/unsigned predicate, replace the old comparison with comparison 546 // of immediate IV against sext/zext of the invariant argument. If we can 547 // use either sext or zext (i.e. we are dealing with equality predicate), 548 // then prefer zext as a more canonical form. 549 // TODO: If we see a signed comparison which can be turned into unsigned, 550 // we can do it here for canonicalization purposes. 551 ICmpInst::Predicate Pred = ICI->getPredicate(); 552 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred); 553 if (CanUseZExt(ICI)) { 554 assert(DoesZExtCollapse && "Unprofitable zext?"); 555 Ext = Builder.CreateZExt(Op1, IVTy, "zext"); 556 Pred = ICmpInst::getUnsignedPredicate(Pred); 557 } else { 558 assert(DoesSExtCollapse && "Unprofitable sext?"); 559 Ext = Builder.CreateSExt(Op1, IVTy, "sext"); 560 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); 561 } 562 bool Changed; 563 L->makeLoopInvariant(Ext, Changed); 564 (void)Changed; 565 auto *NewCmp = Builder.CreateICmp(Pred, IV, Ext); 566 ICI->replaceAllUsesWith(NewCmp); 567 DeadInsts.emplace_back(ICI); 568 } 569 570 // Trunc no longer needed. 571 TI->replaceAllUsesWith(PoisonValue::get(TI->getType())); 572 DeadInsts.emplace_back(TI); 573 return true; 574 } 575 576 /// Eliminate an operation that consumes a simple IV and has no observable 577 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, 578 /// but UseInst may not be. 579 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 580 Instruction *IVOperand) { 581 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 582 eliminateIVComparison(ICmp, IVOperand); 583 return true; 584 } 585 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { 586 bool IsSRem = Bin->getOpcode() == Instruction::SRem; 587 if (IsSRem || Bin->getOpcode() == Instruction::URem) { 588 simplifyIVRemainder(Bin, IVOperand, IsSRem); 589 return true; 590 } 591 592 if (Bin->getOpcode() == Instruction::SDiv) 593 return eliminateSDiv(Bin); 594 } 595 596 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst)) 597 if (eliminateOverflowIntrinsic(WO)) 598 return true; 599 600 if (auto *SI = dyn_cast<SaturatingInst>(UseInst)) 601 if (eliminateSaturatingIntrinsic(SI)) 602 return true; 603 604 if (auto *TI = dyn_cast<TruncInst>(UseInst)) 605 if (eliminateTrunc(TI)) 606 return true; 607 608 if (eliminateIdentitySCEV(UseInst, IVOperand)) 609 return true; 610 611 return false; 612 } 613 614 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { 615 if (auto *BB = L->getLoopPreheader()) 616 return BB->getTerminator(); 617 618 return Hint; 619 } 620 621 /// Replace the UseInst with a loop invariant expression if it is safe. 622 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { 623 if (!SE->isSCEVable(I->getType())) 624 return false; 625 626 // Get the symbolic expression for this instruction. 627 const SCEV *S = SE->getSCEV(I); 628 629 if (!SE->isLoopInvariant(S, L)) 630 return false; 631 632 // Do not generate something ridiculous even if S is loop invariant. 633 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I)) 634 return false; 635 636 auto *IP = GetLoopInvariantInsertPosition(L, I); 637 638 if (!Rewriter.isSafeToExpandAt(S, IP)) { 639 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I 640 << " with non-speculable loop invariant: " << *S << '\n'); 641 return false; 642 } 643 644 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); 645 646 I->replaceAllUsesWith(Invariant); 647 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I 648 << " with loop invariant: " << *S << '\n'); 649 ++NumFoldedUser; 650 Changed = true; 651 DeadInsts.emplace_back(I); 652 return true; 653 } 654 655 /// Eliminate redundant type cast between integer and float. 656 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) { 657 if (UseInst->getOpcode() != CastInst::SIToFP && 658 UseInst->getOpcode() != CastInst::UIToFP) 659 return false; 660 661 Instruction *IVOperand = cast<Instruction>(UseInst->getOperand(0)); 662 // Get the symbolic expression for this instruction. 663 const SCEV *IV = SE->getSCEV(IVOperand); 664 int MaskBits; 665 if (UseInst->getOpcode() == CastInst::SIToFP) 666 MaskBits = (int)SE->getSignedRange(IV).getMinSignedBits(); 667 else 668 MaskBits = (int)SE->getUnsignedRange(IV).getActiveBits(); 669 int DestNumSigBits = UseInst->getType()->getFPMantissaWidth(); 670 if (MaskBits <= DestNumSigBits) { 671 for (User *U : UseInst->users()) { 672 // Match for fptosi/fptoui of sitofp and with same type. 673 auto *CI = dyn_cast<CastInst>(U); 674 if (!CI) 675 continue; 676 677 CastInst::CastOps Opcode = CI->getOpcode(); 678 if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI) 679 continue; 680 681 Value *Conv = nullptr; 682 if (IVOperand->getType() != CI->getType()) { 683 IRBuilder<> Builder(CI); 684 StringRef Name = IVOperand->getName(); 685 // To match InstCombine logic, we only need sext if both fptosi and 686 // sitofp are used. If one of them is unsigned, then we can use zext. 687 if (SE->getTypeSizeInBits(IVOperand->getType()) > 688 SE->getTypeSizeInBits(CI->getType())) { 689 Conv = Builder.CreateTrunc(IVOperand, CI->getType(), Name + ".trunc"); 690 } else if (Opcode == CastInst::FPToUI || 691 UseInst->getOpcode() == CastInst::UIToFP) { 692 Conv = Builder.CreateZExt(IVOperand, CI->getType(), Name + ".zext"); 693 } else { 694 Conv = Builder.CreateSExt(IVOperand, CI->getType(), Name + ".sext"); 695 } 696 } else 697 Conv = IVOperand; 698 699 CI->replaceAllUsesWith(Conv); 700 DeadInsts.push_back(CI); 701 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI 702 << " with: " << *Conv << '\n'); 703 704 ++NumFoldedUser; 705 Changed = true; 706 } 707 } 708 709 return Changed; 710 } 711 712 /// Eliminate any operation that SCEV can prove is an identity function. 713 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, 714 Instruction *IVOperand) { 715 if (!SE->isSCEVable(UseInst->getType()) || 716 (UseInst->getType() != IVOperand->getType()) || 717 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 718 return false; 719 720 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the 721 // dominator tree, even if X is an operand to Y. For instance, in 722 // 723 // %iv = phi i32 {0,+,1} 724 // br %cond, label %left, label %merge 725 // 726 // left: 727 // %X = add i32 %iv, 0 728 // br label %merge 729 // 730 // merge: 731 // %M = phi (%X, %iv) 732 // 733 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and 734 // %M.replaceAllUsesWith(%X) would be incorrect. 735 736 if (isa<PHINode>(UseInst)) 737 // If UseInst is not a PHI node then we know that IVOperand dominates 738 // UseInst directly from the legality of SSA. 739 if (!DT || !DT->dominates(IVOperand, UseInst)) 740 return false; 741 742 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) 743 return false; 744 745 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 746 747 SE->forgetValue(UseInst); 748 UseInst->replaceAllUsesWith(IVOperand); 749 ++NumElimIdentity; 750 Changed = true; 751 DeadInsts.emplace_back(UseInst); 752 return true; 753 } 754 755 bool SimplifyIndvar::strengthenBinaryOp(BinaryOperator *BO, 756 Instruction *IVOperand) { 757 return (isa<OverflowingBinaryOperator>(BO) && 758 strengthenOverflowingOperation(BO, IVOperand)) || 759 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand)); 760 } 761 762 /// Annotate BO with nsw / nuw if it provably does not signed-overflow / 763 /// unsigned-overflow. Returns true if anything changed, false otherwise. 764 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, 765 Instruction *IVOperand) { 766 auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp( 767 cast<OverflowingBinaryOperator>(BO)); 768 769 if (!Flags) 770 return false; 771 772 BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == 773 SCEV::FlagNUW); 774 BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == 775 SCEV::FlagNSW); 776 777 // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap 778 // flags on addrecs while performing zero/sign extensions. We could call 779 // forgetValue() here to make sure those flags also propagate to any other 780 // SCEV expressions based on the addrec. However, this can have pathological 781 // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384. 782 return true; 783 } 784 785 /// Annotate the Shr in (X << IVOperand) >> C as exact using the 786 /// information from the IV's range. Returns true if anything changed, false 787 /// otherwise. 788 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, 789 Instruction *IVOperand) { 790 if (BO->getOpcode() == Instruction::Shl) { 791 bool Changed = false; 792 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); 793 for (auto *U : BO->users()) { 794 const APInt *C; 795 if (match(U, 796 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || 797 match(U, 798 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { 799 BinaryOperator *Shr = cast<BinaryOperator>(U); 800 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { 801 Shr->setIsExact(true); 802 Changed = true; 803 } 804 } 805 } 806 return Changed; 807 } 808 809 return false; 810 } 811 812 /// Add all uses of Def to the current IV's worklist. 813 static void pushIVUsers( 814 Instruction *Def, Loop *L, 815 SmallPtrSet<Instruction*,16> &Simplified, 816 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 817 818 for (User *U : Def->users()) { 819 Instruction *UI = cast<Instruction>(U); 820 821 // Avoid infinite or exponential worklist processing. 822 // Also ensure unique worklist users. 823 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 824 // self edges first. 825 if (UI == Def) 826 continue; 827 828 // Only change the current Loop, do not change the other parts (e.g. other 829 // Loops). 830 if (!L->contains(UI)) 831 continue; 832 833 // Do not push the same instruction more than once. 834 if (!Simplified.insert(UI).second) 835 continue; 836 837 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 838 } 839 } 840 841 /// Return true if this instruction generates a simple SCEV 842 /// expression in terms of that IV. 843 /// 844 /// This is similar to IVUsers' isInteresting() but processes each instruction 845 /// non-recursively when the operand is already known to be a simpleIVUser. 846 /// 847 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 848 if (!SE->isSCEVable(I->getType())) 849 return false; 850 851 // Get the symbolic expression for this instruction. 852 const SCEV *S = SE->getSCEV(I); 853 854 // Only consider affine recurrences. 855 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 856 if (AR && AR->getLoop() == L) 857 return true; 858 859 return false; 860 } 861 862 /// Iteratively perform simplification on a worklist of users 863 /// of the specified induction variable. Each successive simplification may push 864 /// more users which may themselves be candidates for simplification. 865 /// 866 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 867 /// instructions in-place during analysis. Rather than rewriting induction 868 /// variables bottom-up from their users, it transforms a chain of IVUsers 869 /// top-down, updating the IR only when it encounters a clear optimization 870 /// opportunity. 871 /// 872 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 873 /// 874 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 875 if (!SE->isSCEVable(CurrIV->getType())) 876 return; 877 878 // Instructions processed by SimplifyIndvar for CurrIV. 879 SmallPtrSet<Instruction*,16> Simplified; 880 881 // Use-def pairs if IV users waiting to be processed for CurrIV. 882 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 883 884 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 885 // called multiple times for the same LoopPhi. This is the proper thing to 886 // do for loop header phis that use each other. 887 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); 888 889 while (!SimpleIVUsers.empty()) { 890 std::pair<Instruction*, Instruction*> UseOper = 891 SimpleIVUsers.pop_back_val(); 892 Instruction *UseInst = UseOper.first; 893 894 // If a user of the IndVar is trivially dead, we prefer just to mark it dead 895 // rather than try to do some complex analysis or transformation (such as 896 // widening) basing on it. 897 // TODO: Propagate TLI and pass it here to handle more cases. 898 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { 899 DeadInsts.emplace_back(UseInst); 900 continue; 901 } 902 903 // Bypass back edges to avoid extra work. 904 if (UseInst == CurrIV) continue; 905 906 // Try to replace UseInst with a loop invariant before any other 907 // simplifications. 908 if (replaceIVUserWithLoopInvariant(UseInst)) 909 continue; 910 911 // Go further for the bitcast 'prtoint ptr to i64' or if the cast is done 912 // by truncation 913 if ((isa<PtrToIntInst>(UseInst)) || (isa<TruncInst>(UseInst))) 914 for (Use &U : UseInst->uses()) { 915 Instruction *User = cast<Instruction>(U.getUser()); 916 if (replaceIVUserWithLoopInvariant(User)) 917 break; // done replacing 918 } 919 920 Instruction *IVOperand = UseOper.second; 921 for (unsigned N = 0; IVOperand; ++N) { 922 assert(N <= Simplified.size() && "runaway iteration"); 923 (void) N; 924 925 Value *NewOper = foldIVUser(UseInst, IVOperand); 926 if (!NewOper) 927 break; // done folding 928 IVOperand = dyn_cast<Instruction>(NewOper); 929 } 930 if (!IVOperand) 931 continue; 932 933 if (eliminateIVUser(UseInst, IVOperand)) { 934 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 935 continue; 936 } 937 938 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { 939 if (strengthenBinaryOp(BO, IVOperand)) { 940 // re-queue uses of the now modified binary operator and fall 941 // through to the checks that remain. 942 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 943 } 944 } 945 946 // Try to use integer induction for FPToSI of float induction directly. 947 if (replaceFloatIVWithIntegerIV(UseInst)) { 948 // Re-queue the potentially new direct uses of IVOperand. 949 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); 950 continue; 951 } 952 953 CastInst *Cast = dyn_cast<CastInst>(UseInst); 954 if (V && Cast) { 955 V->visitCast(Cast); 956 continue; 957 } 958 if (isSimpleIVUser(UseInst, L, SE)) { 959 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); 960 } 961 } 962 } 963 964 namespace llvm { 965 966 void IVVisitor::anchor() { } 967 968 /// Simplify instructions that use this induction variable 969 /// by using ScalarEvolution to analyze the IV's recurrence. 970 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, 971 LoopInfo *LI, const TargetTransformInfo *TTI, 972 SmallVectorImpl<WeakTrackingVH> &Dead, 973 SCEVExpander &Rewriter, IVVisitor *V) { 974 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI, 975 Rewriter, Dead); 976 SIV.simplifyUsers(CurrIV, V); 977 return SIV.hasChanged(); 978 } 979 980 /// Simplify users of induction variables within this 981 /// loop. This does not actually change or add IVs. 982 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 983 LoopInfo *LI, const TargetTransformInfo *TTI, 984 SmallVectorImpl<WeakTrackingVH> &Dead) { 985 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); 986 #ifndef NDEBUG 987 Rewriter.setDebugType(DEBUG_TYPE); 988 #endif 989 bool Changed = false; 990 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 991 Changed |= 992 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter); 993 } 994 return Changed; 995 } 996 997 } // namespace llvm 998 999 namespace { 1000 //===----------------------------------------------------------------------===// 1001 // Widen Induction Variables - Extend the width of an IV to cover its 1002 // widest uses. 1003 //===----------------------------------------------------------------------===// 1004 1005 class WidenIV { 1006 // Parameters 1007 PHINode *OrigPhi; 1008 Type *WideType; 1009 1010 // Context 1011 LoopInfo *LI; 1012 Loop *L; 1013 ScalarEvolution *SE; 1014 DominatorTree *DT; 1015 1016 // Does the module have any calls to the llvm.experimental.guard intrinsic 1017 // at all? If not we can avoid scanning instructions looking for guards. 1018 bool HasGuards; 1019 1020 bool UsePostIncrementRanges; 1021 1022 // Statistics 1023 unsigned NumElimExt = 0; 1024 unsigned NumWidened = 0; 1025 1026 // Result 1027 PHINode *WidePhi = nullptr; 1028 Instruction *WideInc = nullptr; 1029 const SCEV *WideIncExpr = nullptr; 1030 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 1031 1032 SmallPtrSet<Instruction *,16> Widened; 1033 1034 enum class ExtendKind { Zero, Sign, Unknown }; 1035 1036 // A map tracking the kind of extension used to widen each narrow IV 1037 // and narrow IV user. 1038 // Key: pointer to a narrow IV or IV user. 1039 // Value: the kind of extension used to widen this Instruction. 1040 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 1041 1042 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 1043 1044 // A map with control-dependent ranges for post increment IV uses. The key is 1045 // a pair of IV def and a use of this def denoting the context. The value is 1046 // a ConstantRange representing possible values of the def at the given 1047 // context. 1048 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 1049 1050 std::optional<ConstantRange> getPostIncRangeInfo(Value *Def, 1051 Instruction *UseI) { 1052 DefUserPair Key(Def, UseI); 1053 auto It = PostIncRangeInfos.find(Key); 1054 return It == PostIncRangeInfos.end() 1055 ? std::optional<ConstantRange>(std::nullopt) 1056 : std::optional<ConstantRange>(It->second); 1057 } 1058 1059 void calculatePostIncRanges(PHINode *OrigPhi); 1060 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 1061 1062 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 1063 DefUserPair Key(Def, UseI); 1064 auto It = PostIncRangeInfos.find(Key); 1065 if (It == PostIncRangeInfos.end()) 1066 PostIncRangeInfos.insert({Key, R}); 1067 else 1068 It->second = R.intersectWith(It->second); 1069 } 1070 1071 public: 1072 /// Record a link in the Narrow IV def-use chain along with the WideIV that 1073 /// computes the same value as the Narrow IV def. This avoids caching Use* 1074 /// pointers. 1075 struct NarrowIVDefUse { 1076 Instruction *NarrowDef = nullptr; 1077 Instruction *NarrowUse = nullptr; 1078 Instruction *WideDef = nullptr; 1079 1080 // True if the narrow def is never negative. Tracking this information lets 1081 // us use a sign extension instead of a zero extension or vice versa, when 1082 // profitable and legal. 1083 bool NeverNegative = false; 1084 1085 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 1086 bool NeverNegative) 1087 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 1088 NeverNegative(NeverNegative) {} 1089 }; 1090 1091 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1092 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1093 bool HasGuards, bool UsePostIncrementRanges = true); 1094 1095 PHINode *createWideIV(SCEVExpander &Rewriter); 1096 1097 unsigned getNumElimExt() { return NumElimExt; }; 1098 unsigned getNumWidened() { return NumWidened; }; 1099 1100 protected: 1101 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1102 Instruction *Use); 1103 1104 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1105 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1106 const SCEVAddRecExpr *WideAR); 1107 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1108 1109 ExtendKind getExtendKind(Instruction *I); 1110 1111 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1112 1113 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1114 1115 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1116 1117 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1118 unsigned OpCode) const; 1119 1120 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1121 1122 bool widenLoopCompare(NarrowIVDefUse DU); 1123 bool widenWithVariantUse(NarrowIVDefUse DU); 1124 1125 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1126 1127 private: 1128 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 1129 }; 1130 } // namespace 1131 1132 /// Determine the insertion point for this user. By default, insert immediately 1133 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 1134 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 1135 /// common dominator for the incoming blocks. A nullptr can be returned if no 1136 /// viable location is found: it may happen if User is a PHI and Def only comes 1137 /// to this PHI from unreachable blocks. 1138 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 1139 DominatorTree *DT, LoopInfo *LI) { 1140 PHINode *PHI = dyn_cast<PHINode>(User); 1141 if (!PHI) 1142 return User; 1143 1144 Instruction *InsertPt = nullptr; 1145 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 1146 if (PHI->getIncomingValue(i) != Def) 1147 continue; 1148 1149 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 1150 1151 if (!DT->isReachableFromEntry(InsertBB)) 1152 continue; 1153 1154 if (!InsertPt) { 1155 InsertPt = InsertBB->getTerminator(); 1156 continue; 1157 } 1158 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 1159 InsertPt = InsertBB->getTerminator(); 1160 } 1161 1162 // If we have skipped all inputs, it means that Def only comes to Phi from 1163 // unreachable blocks. 1164 if (!InsertPt) 1165 return nullptr; 1166 1167 auto *DefI = dyn_cast<Instruction>(Def); 1168 if (!DefI) 1169 return InsertPt; 1170 1171 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 1172 1173 auto *L = LI->getLoopFor(DefI->getParent()); 1174 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 1175 1176 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 1177 if (LI->getLoopFor(DTN->getBlock()) == L) 1178 return DTN->getBlock()->getTerminator(); 1179 1180 llvm_unreachable("DefI dominates InsertPt!"); 1181 } 1182 1183 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 1184 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 1185 bool HasGuards, bool UsePostIncrementRanges) 1186 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 1187 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 1188 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges), 1189 DeadInsts(DI) { 1190 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 1191 ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero; 1192 } 1193 1194 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1195 bool IsSigned, Instruction *Use) { 1196 // Set the debug location and conservative insertion point. 1197 IRBuilder<> Builder(Use); 1198 // Hoist the insertion point into loop preheaders as far as possible. 1199 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1200 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1201 L = L->getParentLoop()) 1202 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1203 1204 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1205 Builder.CreateZExt(NarrowOper, WideType); 1206 } 1207 1208 /// Instantiate a wide operation to replace a narrow operation. This only needs 1209 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1210 /// 0 for any operation we decide not to clone. 1211 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU, 1212 const SCEVAddRecExpr *WideAR) { 1213 unsigned Opcode = DU.NarrowUse->getOpcode(); 1214 switch (Opcode) { 1215 default: 1216 return nullptr; 1217 case Instruction::Add: 1218 case Instruction::Mul: 1219 case Instruction::UDiv: 1220 case Instruction::Sub: 1221 return cloneArithmeticIVUser(DU, WideAR); 1222 1223 case Instruction::And: 1224 case Instruction::Or: 1225 case Instruction::Xor: 1226 case Instruction::Shl: 1227 case Instruction::LShr: 1228 case Instruction::AShr: 1229 return cloneBitwiseIVUser(DU); 1230 } 1231 } 1232 1233 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) { 1234 Instruction *NarrowUse = DU.NarrowUse; 1235 Instruction *NarrowDef = DU.NarrowDef; 1236 Instruction *WideDef = DU.WideDef; 1237 1238 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1239 1240 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1241 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1242 // invariant and will be folded or hoisted. If it actually comes from a 1243 // widened IV, it should be removed during a future call to widenIVUse. 1244 bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign; 1245 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1246 ? WideDef 1247 : createExtendInst(NarrowUse->getOperand(0), WideType, 1248 IsSigned, NarrowUse); 1249 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1250 ? WideDef 1251 : createExtendInst(NarrowUse->getOperand(1), WideType, 1252 IsSigned, NarrowUse); 1253 1254 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1255 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1256 NarrowBO->getName()); 1257 IRBuilder<> Builder(NarrowUse); 1258 Builder.Insert(WideBO); 1259 WideBO->copyIRFlags(NarrowBO); 1260 return WideBO; 1261 } 1262 1263 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU, 1264 const SCEVAddRecExpr *WideAR) { 1265 Instruction *NarrowUse = DU.NarrowUse; 1266 Instruction *NarrowDef = DU.NarrowDef; 1267 Instruction *WideDef = DU.WideDef; 1268 1269 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1270 1271 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1272 1273 // We're trying to find X such that 1274 // 1275 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1276 // 1277 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1278 // and check using SCEV if any of them are correct. 1279 1280 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1281 // correct solution to X. 1282 auto GuessNonIVOperand = [&](bool SignExt) { 1283 const SCEV *WideLHS; 1284 const SCEV *WideRHS; 1285 1286 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1287 if (SignExt) 1288 return SE->getSignExtendExpr(S, Ty); 1289 return SE->getZeroExtendExpr(S, Ty); 1290 }; 1291 1292 if (IVOpIdx == 0) { 1293 WideLHS = SE->getSCEV(WideDef); 1294 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1295 WideRHS = GetExtend(NarrowRHS, WideType); 1296 } else { 1297 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1298 WideLHS = GetExtend(NarrowLHS, WideType); 1299 WideRHS = SE->getSCEV(WideDef); 1300 } 1301 1302 // WideUse is "WideDef `op.wide` X" as described in the comment. 1303 const SCEV *WideUse = 1304 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode()); 1305 1306 return WideUse == WideAR; 1307 }; 1308 1309 bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign; 1310 if (!GuessNonIVOperand(SignExtend)) { 1311 SignExtend = !SignExtend; 1312 if (!GuessNonIVOperand(SignExtend)) 1313 return nullptr; 1314 } 1315 1316 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1317 ? WideDef 1318 : createExtendInst(NarrowUse->getOperand(0), WideType, 1319 SignExtend, NarrowUse); 1320 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1321 ? WideDef 1322 : createExtendInst(NarrowUse->getOperand(1), WideType, 1323 SignExtend, NarrowUse); 1324 1325 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1326 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1327 NarrowBO->getName()); 1328 1329 IRBuilder<> Builder(NarrowUse); 1330 Builder.Insert(WideBO); 1331 WideBO->copyIRFlags(NarrowBO); 1332 return WideBO; 1333 } 1334 1335 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1336 auto It = ExtendKindMap.find(I); 1337 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1338 return It->second; 1339 } 1340 1341 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1342 unsigned OpCode) const { 1343 switch (OpCode) { 1344 case Instruction::Add: 1345 return SE->getAddExpr(LHS, RHS); 1346 case Instruction::Sub: 1347 return SE->getMinusSCEV(LHS, RHS); 1348 case Instruction::Mul: 1349 return SE->getMulExpr(LHS, RHS); 1350 case Instruction::UDiv: 1351 return SE->getUDivExpr(LHS, RHS); 1352 default: 1353 llvm_unreachable("Unsupported opcode."); 1354 }; 1355 } 1356 1357 /// No-wrap operations can transfer sign extension of their result to their 1358 /// operands. Generate the SCEV value for the widened operation without 1359 /// actually modifying the IR yet. If the expression after extending the 1360 /// operands is an AddRec for this loop, return the AddRec and the kind of 1361 /// extension used. 1362 WidenIV::WidenedRecTy 1363 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) { 1364 // Handle the common case of add<nsw/nuw> 1365 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1366 // Only Add/Sub/Mul instructions supported yet. 1367 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1368 OpCode != Instruction::Mul) 1369 return {nullptr, ExtendKind::Unknown}; 1370 1371 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1372 // if extending the other will lead to a recurrence. 1373 const unsigned ExtendOperIdx = 1374 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1375 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1376 1377 const OverflowingBinaryOperator *OBO = 1378 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1379 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1380 if (!(ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap()) && 1381 !(ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap())) { 1382 ExtKind = ExtendKind::Unknown; 1383 1384 // For a non-negative NarrowDef, we can choose either type of 1385 // extension. We want to use the current extend kind if legal 1386 // (see above), and we only hit this code if we need to check 1387 // the opposite case. 1388 if (DU.NeverNegative) { 1389 if (OBO->hasNoSignedWrap()) { 1390 ExtKind = ExtendKind::Sign; 1391 } else if (OBO->hasNoUnsignedWrap()) { 1392 ExtKind = ExtendKind::Zero; 1393 } 1394 } 1395 } 1396 1397 const SCEV *ExtendOperExpr = 1398 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)); 1399 if (ExtKind == ExtendKind::Sign) 1400 ExtendOperExpr = SE->getSignExtendExpr(ExtendOperExpr, WideType); 1401 else if (ExtKind == ExtendKind::Zero) 1402 ExtendOperExpr = SE->getZeroExtendExpr(ExtendOperExpr, WideType); 1403 else 1404 return {nullptr, ExtendKind::Unknown}; 1405 1406 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1407 // flags. This instruction may be guarded by control flow that the no-wrap 1408 // behavior depends on. Non-control-equivalent instructions can be mapped to 1409 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1410 // semantics to those operations. 1411 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1412 const SCEV *rhs = ExtendOperExpr; 1413 1414 // Let's swap operands to the initial order for the case of non-commutative 1415 // operations, like SUB. See PR21014. 1416 if (ExtendOperIdx == 0) 1417 std::swap(lhs, rhs); 1418 const SCEVAddRecExpr *AddRec = 1419 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1420 1421 if (!AddRec || AddRec->getLoop() != L) 1422 return {nullptr, ExtendKind::Unknown}; 1423 1424 return {AddRec, ExtKind}; 1425 } 1426 1427 /// Is this instruction potentially interesting for further simplification after 1428 /// widening it's type? In other words, can the extend be safely hoisted out of 1429 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1430 /// so, return the extended recurrence and the kind of extension used. Otherwise 1431 /// return {nullptr, ExtendKind::Unknown}. 1432 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) { 1433 if (!DU.NarrowUse->getType()->isIntegerTy()) 1434 return {nullptr, ExtendKind::Unknown}; 1435 1436 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1437 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1438 SE->getTypeSizeInBits(WideType)) { 1439 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1440 // index. So don't follow this use. 1441 return {nullptr, ExtendKind::Unknown}; 1442 } 1443 1444 const SCEV *WideExpr; 1445 ExtendKind ExtKind; 1446 if (DU.NeverNegative) { 1447 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1448 if (isa<SCEVAddRecExpr>(WideExpr)) 1449 ExtKind = ExtendKind::Sign; 1450 else { 1451 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1452 ExtKind = ExtendKind::Zero; 1453 } 1454 } else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) { 1455 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1456 ExtKind = ExtendKind::Sign; 1457 } else { 1458 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1459 ExtKind = ExtendKind::Zero; 1460 } 1461 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1462 if (!AddRec || AddRec->getLoop() != L) 1463 return {nullptr, ExtendKind::Unknown}; 1464 return {AddRec, ExtKind}; 1465 } 1466 1467 /// This IV user cannot be widened. Replace this use of the original narrow IV 1468 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1469 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT, 1470 LoopInfo *LI) { 1471 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1472 if (!InsertPt) 1473 return; 1474 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1475 << *DU.NarrowUse << "\n"); 1476 IRBuilder<> Builder(InsertPt); 1477 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1478 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1479 } 1480 1481 /// If the narrow use is a compare instruction, then widen the compare 1482 // (and possibly the other operand). The extend operation is hoisted into the 1483 // loop preheader as far as possible. 1484 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) { 1485 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1486 if (!Cmp) 1487 return false; 1488 1489 // We can legally widen the comparison in the following two cases: 1490 // 1491 // - The signedness of the IV extension and comparison match 1492 // 1493 // - The narrow IV is always positive (and thus its sign extension is equal 1494 // to its zero extension). For instance, let's say we're zero extending 1495 // %narrow for the following use 1496 // 1497 // icmp slt i32 %narrow, %val ... (A) 1498 // 1499 // and %narrow is always positive. Then 1500 // 1501 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1502 // == icmp slt i32 zext(%narrow), sext(%val) 1503 bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign; 1504 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1505 return false; 1506 1507 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1508 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1509 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1510 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1511 1512 // Widen the compare instruction. 1513 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1514 1515 // Widen the other operand of the compare, if necessary. 1516 if (CastWidth < IVWidth) { 1517 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1518 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1519 } 1520 return true; 1521 } 1522 1523 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this 1524 // will not work when: 1525 // 1) SCEV traces back to an instruction inside the loop that SCEV can not 1526 // expand, eg. add %indvar, (load %addr) 1527 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant 1528 // While SCEV fails to avoid trunc, we can still try to use instruction 1529 // combining approach to prove trunc is not required. This can be further 1530 // extended with other instruction combining checks, but for now we handle the 1531 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext") 1532 // 1533 // Src: 1534 // %c = sub nsw %b, %indvar 1535 // %d = sext %c to i64 1536 // Dst: 1537 // %indvar.ext1 = sext %indvar to i64 1538 // %m = sext %b to i64 1539 // %d = sub nsw i64 %m, %indvar.ext1 1540 // Therefore, as long as the result of add/sub/mul is extended to wide type, no 1541 // trunc is required regardless of how %b is generated. This pattern is common 1542 // when calculating address in 64 bit architecture 1543 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) { 1544 Instruction *NarrowUse = DU.NarrowUse; 1545 Instruction *NarrowDef = DU.NarrowDef; 1546 Instruction *WideDef = DU.WideDef; 1547 1548 // Handle the common case of add<nsw/nuw> 1549 const unsigned OpCode = NarrowUse->getOpcode(); 1550 // Only Add/Sub/Mul instructions are supported. 1551 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1552 OpCode != Instruction::Mul) 1553 return false; 1554 1555 // The operand that is not defined by NarrowDef of DU. Let's call it the 1556 // other operand. 1557 assert((NarrowUse->getOperand(0) == NarrowDef || 1558 NarrowUse->getOperand(1) == NarrowDef) && 1559 "bad DU"); 1560 1561 const OverflowingBinaryOperator *OBO = 1562 cast<OverflowingBinaryOperator>(NarrowUse); 1563 ExtendKind ExtKind = getExtendKind(NarrowDef); 1564 bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap(); 1565 bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap(); 1566 auto AnotherOpExtKind = ExtKind; 1567 1568 // Check that all uses are either: 1569 // - narrow def (in case of we are widening the IV increment); 1570 // - single-input LCSSA Phis; 1571 // - comparison of the chosen type; 1572 // - extend of the chosen type (raison d'etre). 1573 SmallVector<Instruction *, 4> ExtUsers; 1574 SmallVector<PHINode *, 4> LCSSAPhiUsers; 1575 SmallVector<ICmpInst *, 4> ICmpUsers; 1576 for (Use &U : NarrowUse->uses()) { 1577 Instruction *User = cast<Instruction>(U.getUser()); 1578 if (User == NarrowDef) 1579 continue; 1580 if (!L->contains(User)) { 1581 auto *LCSSAPhi = cast<PHINode>(User); 1582 // Make sure there is only 1 input, so that we don't have to split 1583 // critical edges. 1584 if (LCSSAPhi->getNumOperands() != 1) 1585 return false; 1586 LCSSAPhiUsers.push_back(LCSSAPhi); 1587 continue; 1588 } 1589 if (auto *ICmp = dyn_cast<ICmpInst>(User)) { 1590 auto Pred = ICmp->getPredicate(); 1591 // We have 3 types of predicates: signed, unsigned and equality 1592 // predicates. For equality, it's legal to widen icmp for either sign and 1593 // zero extend. For sign extend, we can also do so for signed predicates, 1594 // likeweise for zero extend we can widen icmp for unsigned predicates. 1595 if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred)) 1596 return false; 1597 if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred)) 1598 return false; 1599 ICmpUsers.push_back(ICmp); 1600 continue; 1601 } 1602 if (ExtKind == ExtendKind::Sign) 1603 User = dyn_cast<SExtInst>(User); 1604 else 1605 User = dyn_cast<ZExtInst>(User); 1606 if (!User || User->getType() != WideType) 1607 return false; 1608 ExtUsers.push_back(User); 1609 } 1610 if (ExtUsers.empty()) { 1611 DeadInsts.emplace_back(NarrowUse); 1612 return true; 1613 } 1614 1615 // We'll prove some facts that should be true in the context of ext users. If 1616 // there is no users, we are done now. If there are some, pick their common 1617 // dominator as context. 1618 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT); 1619 1620 if (!CanSignExtend && !CanZeroExtend) { 1621 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we 1622 // will most likely not see it. Let's try to prove it. 1623 if (OpCode != Instruction::Add) 1624 return false; 1625 if (ExtKind != ExtendKind::Zero) 1626 return false; 1627 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0)); 1628 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1)); 1629 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1). 1630 if (NarrowUse->getOperand(0) != NarrowDef) 1631 return false; 1632 if (!SE->isKnownNegative(RHS)) 1633 return false; 1634 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS, 1635 SE->getNegativeSCEV(RHS), CtxI); 1636 if (!ProvedSubNUW) 1637 return false; 1638 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as 1639 // neg(zext(neg(op))), which is basically sext(op). 1640 AnotherOpExtKind = ExtendKind::Sign; 1641 } 1642 1643 // Verifying that Defining operand is an AddRec 1644 const SCEV *Op1 = SE->getSCEV(WideDef); 1645 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1646 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1647 return false; 1648 1649 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1650 1651 // Generating a widening use instruction. 1652 Value *LHS = 1653 (NarrowUse->getOperand(0) == NarrowDef) 1654 ? WideDef 1655 : createExtendInst(NarrowUse->getOperand(0), WideType, 1656 AnotherOpExtKind == ExtendKind::Sign, NarrowUse); 1657 Value *RHS = 1658 (NarrowUse->getOperand(1) == NarrowDef) 1659 ? WideDef 1660 : createExtendInst(NarrowUse->getOperand(1), WideType, 1661 AnotherOpExtKind == ExtendKind::Sign, NarrowUse); 1662 1663 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1664 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1665 NarrowBO->getName()); 1666 IRBuilder<> Builder(NarrowUse); 1667 Builder.Insert(WideBO); 1668 WideBO->copyIRFlags(NarrowBO); 1669 ExtendKindMap[NarrowUse] = ExtKind; 1670 1671 for (Instruction *User : ExtUsers) { 1672 assert(User->getType() == WideType && "Checked before!"); 1673 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1674 << *WideBO << "\n"); 1675 ++NumElimExt; 1676 User->replaceAllUsesWith(WideBO); 1677 DeadInsts.emplace_back(User); 1678 } 1679 1680 for (PHINode *User : LCSSAPhiUsers) { 1681 assert(User->getNumOperands() == 1 && "Checked before!"); 1682 Builder.SetInsertPoint(User); 1683 auto *WidePN = 1684 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide"); 1685 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor(); 1686 assert(LoopExitingBlock && L->contains(LoopExitingBlock) && 1687 "Not a LCSSA Phi?"); 1688 WidePN->addIncoming(WideBO, LoopExitingBlock); 1689 Builder.SetInsertPoint(User->getParent(), 1690 User->getParent()->getFirstInsertionPt()); 1691 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType()); 1692 User->replaceAllUsesWith(TruncPN); 1693 DeadInsts.emplace_back(User); 1694 } 1695 1696 for (ICmpInst *User : ICmpUsers) { 1697 Builder.SetInsertPoint(User); 1698 auto ExtendedOp = [&](Value * V)->Value * { 1699 if (V == NarrowUse) 1700 return WideBO; 1701 if (ExtKind == ExtendKind::Zero) 1702 return Builder.CreateZExt(V, WideBO->getType()); 1703 else 1704 return Builder.CreateSExt(V, WideBO->getType()); 1705 }; 1706 auto Pred = User->getPredicate(); 1707 auto *LHS = ExtendedOp(User->getOperand(0)); 1708 auto *RHS = ExtendedOp(User->getOperand(1)); 1709 auto *WideCmp = 1710 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide"); 1711 User->replaceAllUsesWith(WideCmp); 1712 DeadInsts.emplace_back(User); 1713 } 1714 1715 return true; 1716 } 1717 1718 /// Determine whether an individual user of the narrow IV can be widened. If so, 1719 /// return the wide clone of the user. 1720 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1721 assert(ExtendKindMap.count(DU.NarrowDef) && 1722 "Should already know the kind of extension used to widen NarrowDef"); 1723 1724 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1725 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1726 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1727 // For LCSSA phis, sink the truncate outside the loop. 1728 // After SimplifyCFG most loop exit targets have a single predecessor. 1729 // Otherwise fall back to a truncate within the loop. 1730 if (UsePhi->getNumOperands() != 1) 1731 truncateIVUse(DU, DT, LI); 1732 else { 1733 // Widening the PHI requires us to insert a trunc. The logical place 1734 // for this trunc is in the same BB as the PHI. This is not possible if 1735 // the BB is terminated by a catchswitch. 1736 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1737 return nullptr; 1738 1739 PHINode *WidePhi = 1740 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1741 UsePhi); 1742 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1743 BasicBlock *WidePhiBB = WidePhi->getParent(); 1744 IRBuilder<> Builder(WidePhiBB, WidePhiBB->getFirstInsertionPt()); 1745 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1746 UsePhi->replaceAllUsesWith(Trunc); 1747 DeadInsts.emplace_back(UsePhi); 1748 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1749 << *WidePhi << "\n"); 1750 } 1751 return nullptr; 1752 } 1753 } 1754 1755 // This narrow use can be widened by a sext if it's non-negative or its narrow 1756 // def was widended by a sext. Same for zext. 1757 auto canWidenBySExt = [&]() { 1758 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign; 1759 }; 1760 auto canWidenByZExt = [&]() { 1761 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero; 1762 }; 1763 1764 // Our raison d'etre! Eliminate sign and zero extension. 1765 if ((match(DU.NarrowUse, m_SExtLike(m_Value())) && canWidenBySExt()) || 1766 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1767 Value *NewDef = DU.WideDef; 1768 if (DU.NarrowUse->getType() != WideType) { 1769 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1770 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1771 if (CastWidth < IVWidth) { 1772 // The cast isn't as wide as the IV, so insert a Trunc. 1773 IRBuilder<> Builder(DU.NarrowUse); 1774 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1775 } 1776 else { 1777 // A wider extend was hidden behind a narrower one. This may induce 1778 // another round of IV widening in which the intermediate IV becomes 1779 // dead. It should be very rare. 1780 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1781 << " not wide enough to subsume " << *DU.NarrowUse 1782 << "\n"); 1783 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1784 NewDef = DU.NarrowUse; 1785 } 1786 } 1787 if (NewDef != DU.NarrowUse) { 1788 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1789 << " replaced by " << *DU.WideDef << "\n"); 1790 ++NumElimExt; 1791 DU.NarrowUse->replaceAllUsesWith(NewDef); 1792 DeadInsts.emplace_back(DU.NarrowUse); 1793 } 1794 // Now that the extend is gone, we want to expose it's uses for potential 1795 // further simplification. We don't need to directly inform SimplifyIVUsers 1796 // of the new users, because their parent IV will be processed later as a 1797 // new loop phi. If we preserved IVUsers analysis, we would also want to 1798 // push the uses of WideDef here. 1799 1800 // No further widening is needed. The deceased [sz]ext had done it for us. 1801 return nullptr; 1802 } 1803 1804 auto tryAddRecExpansion = [&]() -> Instruction* { 1805 // Does this user itself evaluate to a recurrence after widening? 1806 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1807 if (!WideAddRec.first) 1808 WideAddRec = getWideRecurrence(DU); 1809 assert((WideAddRec.first == nullptr) == 1810 (WideAddRec.second == ExtendKind::Unknown)); 1811 if (!WideAddRec.first) 1812 return nullptr; 1813 1814 // Reuse the IV increment that SCEVExpander created as long as it dominates 1815 // NarrowUse. 1816 Instruction *WideUse = nullptr; 1817 if (WideAddRec.first == WideIncExpr && 1818 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1819 WideUse = WideInc; 1820 else { 1821 WideUse = cloneIVUser(DU, WideAddRec.first); 1822 if (!WideUse) 1823 return nullptr; 1824 } 1825 // Evaluation of WideAddRec ensured that the narrow expression could be 1826 // extended outside the loop without overflow. This suggests that the wide use 1827 // evaluates to the same expression as the extended narrow use, but doesn't 1828 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1829 // where it fails, we simply throw away the newly created wide use. 1830 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1831 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1832 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1833 << "\n"); 1834 DeadInsts.emplace_back(WideUse); 1835 return nullptr; 1836 }; 1837 1838 // if we reached this point then we are going to replace 1839 // DU.NarrowUse with WideUse. Reattach DbgValue then. 1840 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); 1841 1842 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1843 // Returning WideUse pushes it on the worklist. 1844 return WideUse; 1845 }; 1846 1847 if (auto *I = tryAddRecExpansion()) 1848 return I; 1849 1850 // If use is a loop condition, try to promote the condition instead of 1851 // truncating the IV first. 1852 if (widenLoopCompare(DU)) 1853 return nullptr; 1854 1855 // We are here about to generate a truncate instruction that may hurt 1856 // performance because the scalar evolution expression computed earlier 1857 // in WideAddRec.first does not indicate a polynomial induction expression. 1858 // In that case, look at the operands of the use instruction to determine 1859 // if we can still widen the use instead of truncating its operand. 1860 if (widenWithVariantUse(DU)) 1861 return nullptr; 1862 1863 // This user does not evaluate to a recurrence after widening, so don't 1864 // follow it. Instead insert a Trunc to kill off the original use, 1865 // eventually isolating the original narrow IV so it can be removed. 1866 truncateIVUse(DU, DT, LI); 1867 return nullptr; 1868 } 1869 1870 /// Add eligible users of NarrowDef to NarrowIVUsers. 1871 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1872 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1873 bool NonNegativeDef = 1874 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1875 SE->getZero(NarrowSCEV->getType())); 1876 for (User *U : NarrowDef->users()) { 1877 Instruction *NarrowUser = cast<Instruction>(U); 1878 1879 // Handle data flow merges and bizarre phi cycles. 1880 if (!Widened.insert(NarrowUser).second) 1881 continue; 1882 1883 bool NonNegativeUse = false; 1884 if (!NonNegativeDef) { 1885 // We might have a control-dependent range information for this context. 1886 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1887 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1888 } 1889 1890 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1891 NonNegativeDef || NonNegativeUse); 1892 } 1893 } 1894 1895 /// Process a single induction variable. First use the SCEVExpander to create a 1896 /// wide induction variable that evaluates to the same recurrence as the 1897 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1898 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1899 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1900 /// 1901 /// It would be simpler to delete uses as they are processed, but we must avoid 1902 /// invalidating SCEV expressions. 1903 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1904 // Is this phi an induction variable? 1905 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1906 if (!AddRec) 1907 return nullptr; 1908 1909 // Widen the induction variable expression. 1910 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign 1911 ? SE->getSignExtendExpr(AddRec, WideType) 1912 : SE->getZeroExtendExpr(AddRec, WideType); 1913 1914 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1915 "Expect the new IV expression to preserve its type"); 1916 1917 // Can the IV be extended outside the loop without overflow? 1918 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1919 if (!AddRec || AddRec->getLoop() != L) 1920 return nullptr; 1921 1922 // An AddRec must have loop-invariant operands. Since this AddRec is 1923 // materialized by a loop header phi, the expression cannot have any post-loop 1924 // operands, so they must dominate the loop header. 1925 assert( 1926 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1927 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1928 "Loop header phi recurrence inputs do not dominate the loop"); 1929 1930 // Iterate over IV uses (including transitive ones) looking for IV increments 1931 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1932 // the increment calculate control-dependent range information basing on 1933 // dominating conditions inside of the loop (e.g. a range check inside of the 1934 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1935 // 1936 // Control-dependent range information is later used to prove that a narrow 1937 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1938 // this on demand because when pushNarrowIVUsers needs this information some 1939 // of the dominating conditions might be already widened. 1940 if (UsePostIncrementRanges) 1941 calculatePostIncRanges(OrigPhi); 1942 1943 // The rewriter provides a value for the desired IV expression. This may 1944 // either find an existing phi or materialize a new one. Either way, we 1945 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1946 // of the phi-SCC dominates the loop entry. 1947 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1948 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt); 1949 // If the wide phi is not a phi node, for example a cast node, like bitcast, 1950 // inttoptr, ptrtoint, just skip for now. 1951 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) { 1952 // if the cast node is an inserted instruction without any user, we should 1953 // remove it to make sure the pass don't touch the function as we can not 1954 // wide the phi. 1955 if (ExpandInst->hasNUses(0) && 1956 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst))) 1957 DeadInsts.emplace_back(ExpandInst); 1958 return nullptr; 1959 } 1960 1961 // Remembering the WideIV increment generated by SCEVExpander allows 1962 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1963 // employ a general reuse mechanism because the call above is the only call to 1964 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1965 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1966 WideInc = 1967 dyn_cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1968 if (WideInc) { 1969 WideIncExpr = SE->getSCEV(WideInc); 1970 // Propagate the debug location associated with the original loop 1971 // increment to the new (widened) increment. 1972 auto *OrigInc = 1973 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1974 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1975 } 1976 } 1977 1978 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1979 ++NumWidened; 1980 1981 // Traverse the def-use chain using a worklist starting at the original IV. 1982 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1983 1984 Widened.insert(OrigPhi); 1985 pushNarrowIVUsers(OrigPhi, WidePhi); 1986 1987 while (!NarrowIVUsers.empty()) { 1988 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1989 1990 // Process a def-use edge. This may replace the use, so don't hold a 1991 // use_iterator across it. 1992 Instruction *WideUse = widenIVUse(DU, Rewriter); 1993 1994 // Follow all def-use edges from the previous narrow use. 1995 if (WideUse) 1996 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1997 1998 // widenIVUse may have removed the def-use edge. 1999 if (DU.NarrowDef->use_empty()) 2000 DeadInsts.emplace_back(DU.NarrowDef); 2001 } 2002 2003 // Attach any debug information to the new PHI. 2004 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT); 2005 2006 return WidePhi; 2007 } 2008 2009 /// Calculates control-dependent range for the given def at the given context 2010 /// by looking at dominating conditions inside of the loop 2011 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 2012 Instruction *NarrowUser) { 2013 Value *NarrowDefLHS; 2014 const APInt *NarrowDefRHS; 2015 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 2016 m_APInt(NarrowDefRHS))) || 2017 !NarrowDefRHS->isNonNegative()) 2018 return; 2019 2020 auto UpdateRangeFromCondition = [&] (Value *Condition, 2021 bool TrueDest) { 2022 CmpInst::Predicate Pred; 2023 Value *CmpRHS; 2024 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 2025 m_Value(CmpRHS)))) 2026 return; 2027 2028 CmpInst::Predicate P = 2029 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 2030 2031 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 2032 auto CmpConstrainedLHSRange = 2033 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 2034 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap( 2035 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap); 2036 2037 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 2038 }; 2039 2040 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 2041 if (!HasGuards) 2042 return; 2043 2044 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 2045 Ctx->getParent()->rend())) { 2046 Value *C = nullptr; 2047 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 2048 UpdateRangeFromCondition(C, /*TrueDest=*/true); 2049 } 2050 }; 2051 2052 UpdateRangeFromGuards(NarrowUser); 2053 2054 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 2055 // If NarrowUserBB is statically unreachable asking dominator queries may 2056 // yield surprising results. (e.g. the block may not have a dom tree node) 2057 if (!DT->isReachableFromEntry(NarrowUserBB)) 2058 return; 2059 2060 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 2061 L->contains(DTB->getBlock()); 2062 DTB = DTB->getIDom()) { 2063 auto *BB = DTB->getBlock(); 2064 auto *TI = BB->getTerminator(); 2065 UpdateRangeFromGuards(TI); 2066 2067 auto *BI = dyn_cast<BranchInst>(TI); 2068 if (!BI || !BI->isConditional()) 2069 continue; 2070 2071 auto *TrueSuccessor = BI->getSuccessor(0); 2072 auto *FalseSuccessor = BI->getSuccessor(1); 2073 2074 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 2075 return BBE.isSingleEdge() && 2076 DT->dominates(BBE, NarrowUser->getParent()); 2077 }; 2078 2079 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 2080 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 2081 2082 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 2083 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 2084 } 2085 } 2086 2087 /// Calculates PostIncRangeInfos map for the given IV 2088 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 2089 SmallPtrSet<Instruction *, 16> Visited; 2090 SmallVector<Instruction *, 6> Worklist; 2091 Worklist.push_back(OrigPhi); 2092 Visited.insert(OrigPhi); 2093 2094 while (!Worklist.empty()) { 2095 Instruction *NarrowDef = Worklist.pop_back_val(); 2096 2097 for (Use &U : NarrowDef->uses()) { 2098 auto *NarrowUser = cast<Instruction>(U.getUser()); 2099 2100 // Don't go looking outside the current loop. 2101 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 2102 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 2103 continue; 2104 2105 if (!Visited.insert(NarrowUser).second) 2106 continue; 2107 2108 Worklist.push_back(NarrowUser); 2109 2110 calculatePostIncRange(NarrowDef, NarrowUser); 2111 } 2112 } 2113 } 2114 2115 PHINode *llvm::createWideIV(const WideIVInfo &WI, 2116 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter, 2117 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2118 unsigned &NumElimExt, unsigned &NumWidened, 2119 bool HasGuards, bool UsePostIncrementRanges) { 2120 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges); 2121 PHINode *WidePHI = Widener.createWideIV(Rewriter); 2122 NumElimExt = Widener.getNumElimExt(); 2123 NumWidened = Widener.getNumWidened(); 2124 return WidePHI; 2125 } 2126