1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/Sequence.h" 20 #include "llvm/ADT/SetOperations.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfo.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/ProfDataUtils.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/ValueMapper.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <climits> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iterator> 83 #include <map> 84 #include <optional> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, 97 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> 117 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 118 cl::desc("Hoist common instructions up to the parent block")); 119 120 static cl::opt<unsigned> 121 HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden, 122 cl::init(20), 123 cl::desc("Allow reordering across at most this many " 124 "instructions when hoisting")); 125 126 static cl::opt<bool> 127 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 128 cl::desc("Sink common instructions down to the end block")); 129 130 static cl::opt<bool> HoistCondStores( 131 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 132 cl::desc("Hoist conditional stores if an unconditional store precedes")); 133 134 static cl::opt<bool> MergeCondStores( 135 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 136 cl::desc("Hoist conditional stores even if an unconditional store does not " 137 "precede - hoist multiple conditional stores into a single " 138 "predicated store")); 139 140 static cl::opt<bool> MergeCondStoresAggressively( 141 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 142 cl::desc("When merging conditional stores, do so even if the resultant " 143 "basic blocks are unlikely to be if-converted as a result")); 144 145 static cl::opt<bool> SpeculateOneExpensiveInst( 146 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 147 cl::desc("Allow exactly one expensive instruction to be speculatively " 148 "executed")); 149 150 static cl::opt<unsigned> MaxSpeculationDepth( 151 "max-speculation-depth", cl::Hidden, cl::init(10), 152 cl::desc("Limit maximum recursion depth when calculating costs of " 153 "speculatively executed instructions")); 154 155 static cl::opt<int> 156 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 157 cl::init(10), 158 cl::desc("Max size of a block which is still considered " 159 "small enough to thread through")); 160 161 // Two is chosen to allow one negation and a logical combine. 162 static cl::opt<unsigned> 163 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 164 cl::init(2), 165 cl::desc("Maximum cost of combining conditions when " 166 "folding branches")); 167 168 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 169 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 170 cl::init(2), 171 cl::desc("Multiplier to apply to threshold when determining whether or not " 172 "to fold branch to common destination when vector operations are " 173 "present")); 174 175 static cl::opt<bool> EnableMergeCompatibleInvokes( 176 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 177 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 178 179 static cl::opt<unsigned> MaxSwitchCasesPerResult( 180 "max-switch-cases-per-result", cl::Hidden, cl::init(16), 181 cl::desc("Limit cases to analyze when converting a switch to select")); 182 183 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 184 STATISTIC(NumLinearMaps, 185 "Number of switch instructions turned into linear mapping"); 186 STATISTIC(NumLookupTables, 187 "Number of switch instructions turned into lookup tables"); 188 STATISTIC( 189 NumLookupTablesHoles, 190 "Number of switch instructions turned into lookup tables (holes checked)"); 191 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 192 STATISTIC(NumFoldValueComparisonIntoPredecessors, 193 "Number of value comparisons folded into predecessor basic blocks"); 194 STATISTIC(NumFoldBranchToCommonDest, 195 "Number of branches folded into predecessor basic block"); 196 STATISTIC( 197 NumHoistCommonCode, 198 "Number of common instruction 'blocks' hoisted up to the begin block"); 199 STATISTIC(NumHoistCommonInstrs, 200 "Number of common instructions hoisted up to the begin block"); 201 STATISTIC(NumSinkCommonCode, 202 "Number of common instruction 'blocks' sunk down to the end block"); 203 STATISTIC(NumSinkCommonInstrs, 204 "Number of common instructions sunk down to the end block"); 205 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 206 STATISTIC(NumInvokes, 207 "Number of invokes with empty resume blocks simplified into calls"); 208 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 209 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 210 211 namespace { 212 213 // The first field contains the value that the switch produces when a certain 214 // case group is selected, and the second field is a vector containing the 215 // cases composing the case group. 216 using SwitchCaseResultVectorTy = 217 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 218 219 // The first field contains the phi node that generates a result of the switch 220 // and the second field contains the value generated for a certain case in the 221 // switch for that PHI. 222 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 223 224 /// ValueEqualityComparisonCase - Represents a case of a switch. 225 struct ValueEqualityComparisonCase { 226 ConstantInt *Value; 227 BasicBlock *Dest; 228 229 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 230 : Value(Value), Dest(Dest) {} 231 232 bool operator<(ValueEqualityComparisonCase RHS) const { 233 // Comparing pointers is ok as we only rely on the order for uniquing. 234 return Value < RHS.Value; 235 } 236 237 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 238 }; 239 240 class SimplifyCFGOpt { 241 const TargetTransformInfo &TTI; 242 DomTreeUpdater *DTU; 243 const DataLayout &DL; 244 ArrayRef<WeakVH> LoopHeaders; 245 const SimplifyCFGOptions &Options; 246 bool Resimplify; 247 248 Value *isValueEqualityComparison(Instruction *TI); 249 BasicBlock *GetValueEqualityComparisonCases( 250 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 251 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 252 BasicBlock *Pred, 253 IRBuilder<> &Builder); 254 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 255 Instruction *PTI, 256 IRBuilder<> &Builder); 257 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 258 IRBuilder<> &Builder); 259 260 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 261 bool simplifySingleResume(ResumeInst *RI); 262 bool simplifyCommonResume(ResumeInst *RI); 263 bool simplifyCleanupReturn(CleanupReturnInst *RI); 264 bool simplifyUnreachable(UnreachableInst *UI); 265 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 266 bool simplifyIndirectBr(IndirectBrInst *IBI); 267 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 268 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 269 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 270 271 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 272 IRBuilder<> &Builder); 273 274 bool HoistThenElseCodeToIf(BranchInst *BI, bool EqTermsOnly); 275 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB); 276 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 277 BasicBlock *TrueBB, BasicBlock *FalseBB, 278 uint32_t TrueWeight, uint32_t FalseWeight); 279 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 280 const DataLayout &DL); 281 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 282 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 283 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 284 285 public: 286 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 287 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 288 const SimplifyCFGOptions &Opts) 289 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 290 assert((!DTU || !DTU->hasPostDomTree()) && 291 "SimplifyCFG is not yet capable of maintaining validity of a " 292 "PostDomTree, so don't ask for it."); 293 } 294 295 bool simplifyOnce(BasicBlock *BB); 296 bool run(BasicBlock *BB); 297 298 // Helper to set Resimplify and return change indication. 299 bool requestResimplify() { 300 Resimplify = true; 301 return true; 302 } 303 }; 304 305 } // end anonymous namespace 306 307 /// Return true if all the PHI nodes in the basic block \p BB 308 /// receive compatible (identical) incoming values when coming from 309 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 310 /// 311 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 312 /// is provided, and *both* of the values are present in the set, 313 /// then they are considered equal. 314 static bool IncomingValuesAreCompatible( 315 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 316 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 317 assert(IncomingBlocks.size() == 2 && 318 "Only for a pair of incoming blocks at the time!"); 319 320 // FIXME: it is okay if one of the incoming values is an `undef` value, 321 // iff the other incoming value is guaranteed to be a non-poison value. 322 // FIXME: it is okay if one of the incoming values is a `poison` value. 323 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 324 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 325 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 326 if (IV0 == IV1) 327 return true; 328 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 329 EquivalenceSet->contains(IV1)) 330 return true; 331 return false; 332 }); 333 } 334 335 /// Return true if it is safe to merge these two 336 /// terminator instructions together. 337 static bool 338 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 339 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 340 if (SI1 == SI2) 341 return false; // Can't merge with self! 342 343 // It is not safe to merge these two switch instructions if they have a common 344 // successor, and if that successor has a PHI node, and if *that* PHI node has 345 // conflicting incoming values from the two switch blocks. 346 BasicBlock *SI1BB = SI1->getParent(); 347 BasicBlock *SI2BB = SI2->getParent(); 348 349 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 350 bool Fail = false; 351 for (BasicBlock *Succ : successors(SI2BB)) { 352 if (!SI1Succs.count(Succ)) 353 continue; 354 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 355 continue; 356 Fail = true; 357 if (FailBlocks) 358 FailBlocks->insert(Succ); 359 else 360 break; 361 } 362 363 return !Fail; 364 } 365 366 /// Update PHI nodes in Succ to indicate that there will now be entries in it 367 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 368 /// will be the same as those coming in from ExistPred, an existing predecessor 369 /// of Succ. 370 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 371 BasicBlock *ExistPred, 372 MemorySSAUpdater *MSSAU = nullptr) { 373 for (PHINode &PN : Succ->phis()) 374 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 375 if (MSSAU) 376 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 377 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 378 } 379 380 /// Compute an abstract "cost" of speculating the given instruction, 381 /// which is assumed to be safe to speculate. TCC_Free means cheap, 382 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 383 /// expensive. 384 static InstructionCost computeSpeculationCost(const User *I, 385 const TargetTransformInfo &TTI) { 386 assert((!isa<Instruction>(I) || 387 isSafeToSpeculativelyExecute(cast<Instruction>(I))) && 388 "Instruction is not safe to speculatively execute!"); 389 return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency); 390 } 391 392 /// If we have a merge point of an "if condition" as accepted above, 393 /// return true if the specified value dominates the block. We 394 /// don't handle the true generality of domination here, just a special case 395 /// which works well enough for us. 396 /// 397 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 398 /// see if V (which must be an instruction) and its recursive operands 399 /// that do not dominate BB have a combined cost lower than Budget and 400 /// are non-trapping. If both are true, the instruction is inserted into the 401 /// set and true is returned. 402 /// 403 /// The cost for most non-trapping instructions is defined as 1 except for 404 /// Select whose cost is 2. 405 /// 406 /// After this function returns, Cost is increased by the cost of 407 /// V plus its non-dominating operands. If that cost is greater than 408 /// Budget, false is returned and Cost is undefined. 409 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 410 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 411 InstructionCost &Cost, 412 InstructionCost Budget, 413 const TargetTransformInfo &TTI, 414 unsigned Depth = 0) { 415 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 416 // so limit the recursion depth. 417 // TODO: While this recursion limit does prevent pathological behavior, it 418 // would be better to track visited instructions to avoid cycles. 419 if (Depth == MaxSpeculationDepth) 420 return false; 421 422 Instruction *I = dyn_cast<Instruction>(V); 423 if (!I) { 424 // Non-instructions dominate all instructions and can be executed 425 // unconditionally. 426 return true; 427 } 428 BasicBlock *PBB = I->getParent(); 429 430 // We don't want to allow weird loops that might have the "if condition" in 431 // the bottom of this block. 432 if (PBB == BB) 433 return false; 434 435 // If this instruction is defined in a block that contains an unconditional 436 // branch to BB, then it must be in the 'conditional' part of the "if 437 // statement". If not, it definitely dominates the region. 438 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 439 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 440 return true; 441 442 // If we have seen this instruction before, don't count it again. 443 if (AggressiveInsts.count(I)) 444 return true; 445 446 // Okay, it looks like the instruction IS in the "condition". Check to 447 // see if it's a cheap instruction to unconditionally compute, and if it 448 // only uses stuff defined outside of the condition. If so, hoist it out. 449 if (!isSafeToSpeculativelyExecute(I)) 450 return false; 451 452 Cost += computeSpeculationCost(I, TTI); 453 454 // Allow exactly one instruction to be speculated regardless of its cost 455 // (as long as it is safe to do so). 456 // This is intended to flatten the CFG even if the instruction is a division 457 // or other expensive operation. The speculation of an expensive instruction 458 // is expected to be undone in CodeGenPrepare if the speculation has not 459 // enabled further IR optimizations. 460 if (Cost > Budget && 461 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 462 !Cost.isValid())) 463 return false; 464 465 // Okay, we can only really hoist these out if their operands do 466 // not take us over the cost threshold. 467 for (Use &Op : I->operands()) 468 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 469 Depth + 1)) 470 return false; 471 // Okay, it's safe to do this! Remember this instruction. 472 AggressiveInsts.insert(I); 473 return true; 474 } 475 476 /// Extract ConstantInt from value, looking through IntToPtr 477 /// and PointerNullValue. Return NULL if value is not a constant int. 478 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 479 // Normal constant int. 480 ConstantInt *CI = dyn_cast<ConstantInt>(V); 481 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() || 482 DL.isNonIntegralPointerType(V->getType())) 483 return CI; 484 485 // This is some kind of pointer constant. Turn it into a pointer-sized 486 // ConstantInt if possible. 487 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 488 489 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 490 if (isa<ConstantPointerNull>(V)) 491 return ConstantInt::get(PtrTy, 0); 492 493 // IntToPtr const int. 494 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 495 if (CE->getOpcode() == Instruction::IntToPtr) 496 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 497 // The constant is very likely to have the right type already. 498 if (CI->getType() == PtrTy) 499 return CI; 500 else 501 return cast<ConstantInt>( 502 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 503 } 504 return nullptr; 505 } 506 507 namespace { 508 509 /// Given a chain of or (||) or and (&&) comparison of a value against a 510 /// constant, this will try to recover the information required for a switch 511 /// structure. 512 /// It will depth-first traverse the chain of comparison, seeking for patterns 513 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 514 /// representing the different cases for the switch. 515 /// Note that if the chain is composed of '||' it will build the set of elements 516 /// that matches the comparisons (i.e. any of this value validate the chain) 517 /// while for a chain of '&&' it will build the set elements that make the test 518 /// fail. 519 struct ConstantComparesGatherer { 520 const DataLayout &DL; 521 522 /// Value found for the switch comparison 523 Value *CompValue = nullptr; 524 525 /// Extra clause to be checked before the switch 526 Value *Extra = nullptr; 527 528 /// Set of integers to match in switch 529 SmallVector<ConstantInt *, 8> Vals; 530 531 /// Number of comparisons matched in the and/or chain 532 unsigned UsedICmps = 0; 533 534 /// Construct and compute the result for the comparison instruction Cond 535 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 536 gather(Cond); 537 } 538 539 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 540 ConstantComparesGatherer & 541 operator=(const ConstantComparesGatherer &) = delete; 542 543 private: 544 /// Try to set the current value used for the comparison, it succeeds only if 545 /// it wasn't set before or if the new value is the same as the old one 546 bool setValueOnce(Value *NewVal) { 547 if (CompValue && CompValue != NewVal) 548 return false; 549 CompValue = NewVal; 550 return (CompValue != nullptr); 551 } 552 553 /// Try to match Instruction "I" as a comparison against a constant and 554 /// populates the array Vals with the set of values that match (or do not 555 /// match depending on isEQ). 556 /// Return false on failure. On success, the Value the comparison matched 557 /// against is placed in CompValue. 558 /// If CompValue is already set, the function is expected to fail if a match 559 /// is found but the value compared to is different. 560 bool matchInstruction(Instruction *I, bool isEQ) { 561 // If this is an icmp against a constant, handle this as one of the cases. 562 ICmpInst *ICI; 563 ConstantInt *C; 564 if (!((ICI = dyn_cast<ICmpInst>(I)) && 565 (C = GetConstantInt(I->getOperand(1), DL)))) { 566 return false; 567 } 568 569 Value *RHSVal; 570 const APInt *RHSC; 571 572 // Pattern match a special case 573 // (x & ~2^z) == y --> x == y || x == y|2^z 574 // This undoes a transformation done by instcombine to fuse 2 compares. 575 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 576 // It's a little bit hard to see why the following transformations are 577 // correct. Here is a CVC3 program to verify them for 64-bit values: 578 579 /* 580 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 581 x : BITVECTOR(64); 582 y : BITVECTOR(64); 583 z : BITVECTOR(64); 584 mask : BITVECTOR(64) = BVSHL(ONE, z); 585 QUERY( (y & ~mask = y) => 586 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 587 ); 588 QUERY( (y | mask = y) => 589 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 590 ); 591 */ 592 593 // Please note that each pattern must be a dual implication (<--> or 594 // iff). One directional implication can create spurious matches. If the 595 // implication is only one-way, an unsatisfiable condition on the left 596 // side can imply a satisfiable condition on the right side. Dual 597 // implication ensures that satisfiable conditions are transformed to 598 // other satisfiable conditions and unsatisfiable conditions are 599 // transformed to other unsatisfiable conditions. 600 601 // Here is a concrete example of a unsatisfiable condition on the left 602 // implying a satisfiable condition on the right: 603 // 604 // mask = (1 << z) 605 // (x & ~mask) == y --> (x == y || x == (y | mask)) 606 // 607 // Substituting y = 3, z = 0 yields: 608 // (x & -2) == 3 --> (x == 3 || x == 2) 609 610 // Pattern match a special case: 611 /* 612 QUERY( (y & ~mask = y) => 613 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 614 ); 615 */ 616 if (match(ICI->getOperand(0), 617 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 618 APInt Mask = ~*RHSC; 619 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 620 // If we already have a value for the switch, it has to match! 621 if (!setValueOnce(RHSVal)) 622 return false; 623 624 Vals.push_back(C); 625 Vals.push_back( 626 ConstantInt::get(C->getContext(), 627 C->getValue() | Mask)); 628 UsedICmps++; 629 return true; 630 } 631 } 632 633 // Pattern match a special case: 634 /* 635 QUERY( (y | mask = y) => 636 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 637 ); 638 */ 639 if (match(ICI->getOperand(0), 640 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 641 APInt Mask = *RHSC; 642 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 643 // If we already have a value for the switch, it has to match! 644 if (!setValueOnce(RHSVal)) 645 return false; 646 647 Vals.push_back(C); 648 Vals.push_back(ConstantInt::get(C->getContext(), 649 C->getValue() & ~Mask)); 650 UsedICmps++; 651 return true; 652 } 653 } 654 655 // If we already have a value for the switch, it has to match! 656 if (!setValueOnce(ICI->getOperand(0))) 657 return false; 658 659 UsedICmps++; 660 Vals.push_back(C); 661 return ICI->getOperand(0); 662 } 663 664 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 665 ConstantRange Span = 666 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 667 668 // Shift the range if the compare is fed by an add. This is the range 669 // compare idiom as emitted by instcombine. 670 Value *CandidateVal = I->getOperand(0); 671 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 672 Span = Span.subtract(*RHSC); 673 CandidateVal = RHSVal; 674 } 675 676 // If this is an and/!= check, then we are looking to build the set of 677 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 678 // x != 0 && x != 1. 679 if (!isEQ) 680 Span = Span.inverse(); 681 682 // If there are a ton of values, we don't want to make a ginormous switch. 683 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 684 return false; 685 } 686 687 // If we already have a value for the switch, it has to match! 688 if (!setValueOnce(CandidateVal)) 689 return false; 690 691 // Add all values from the range to the set 692 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 693 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 694 695 UsedICmps++; 696 return true; 697 } 698 699 /// Given a potentially 'or'd or 'and'd together collection of icmp 700 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 701 /// the value being compared, and stick the list constants into the Vals 702 /// vector. 703 /// One "Extra" case is allowed to differ from the other. 704 void gather(Value *V) { 705 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 706 707 // Keep a stack (SmallVector for efficiency) for depth-first traversal 708 SmallVector<Value *, 8> DFT; 709 SmallPtrSet<Value *, 8> Visited; 710 711 // Initialize 712 Visited.insert(V); 713 DFT.push_back(V); 714 715 while (!DFT.empty()) { 716 V = DFT.pop_back_val(); 717 718 if (Instruction *I = dyn_cast<Instruction>(V)) { 719 // If it is a || (or && depending on isEQ), process the operands. 720 Value *Op0, *Op1; 721 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 722 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 723 if (Visited.insert(Op1).second) 724 DFT.push_back(Op1); 725 if (Visited.insert(Op0).second) 726 DFT.push_back(Op0); 727 728 continue; 729 } 730 731 // Try to match the current instruction 732 if (matchInstruction(I, isEQ)) 733 // Match succeed, continue the loop 734 continue; 735 } 736 737 // One element of the sequence of || (or &&) could not be match as a 738 // comparison against the same value as the others. 739 // We allow only one "Extra" case to be checked before the switch 740 if (!Extra) { 741 Extra = V; 742 continue; 743 } 744 // Failed to parse a proper sequence, abort now 745 CompValue = nullptr; 746 break; 747 } 748 } 749 }; 750 751 } // end anonymous namespace 752 753 static void EraseTerminatorAndDCECond(Instruction *TI, 754 MemorySSAUpdater *MSSAU = nullptr) { 755 Instruction *Cond = nullptr; 756 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 757 Cond = dyn_cast<Instruction>(SI->getCondition()); 758 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 759 if (BI->isConditional()) 760 Cond = dyn_cast<Instruction>(BI->getCondition()); 761 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 762 Cond = dyn_cast<Instruction>(IBI->getAddress()); 763 } 764 765 TI->eraseFromParent(); 766 if (Cond) 767 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 768 } 769 770 /// Return true if the specified terminator checks 771 /// to see if a value is equal to constant integer value. 772 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 773 Value *CV = nullptr; 774 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 775 // Do not permit merging of large switch instructions into their 776 // predecessors unless there is only one predecessor. 777 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 778 CV = SI->getCondition(); 779 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 780 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 781 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 782 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 783 CV = ICI->getOperand(0); 784 } 785 786 // Unwrap any lossless ptrtoint cast. 787 if (CV) { 788 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 789 Value *Ptr = PTII->getPointerOperand(); 790 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 791 CV = Ptr; 792 } 793 } 794 return CV; 795 } 796 797 /// Given a value comparison instruction, 798 /// decode all of the 'cases' that it represents and return the 'default' block. 799 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 800 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 801 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 802 Cases.reserve(SI->getNumCases()); 803 for (auto Case : SI->cases()) 804 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 805 Case.getCaseSuccessor())); 806 return SI->getDefaultDest(); 807 } 808 809 BranchInst *BI = cast<BranchInst>(TI); 810 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 811 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 812 Cases.push_back(ValueEqualityComparisonCase( 813 GetConstantInt(ICI->getOperand(1), DL), Succ)); 814 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 815 } 816 817 /// Given a vector of bb/value pairs, remove any entries 818 /// in the list that match the specified block. 819 static void 820 EliminateBlockCases(BasicBlock *BB, 821 std::vector<ValueEqualityComparisonCase> &Cases) { 822 llvm::erase_value(Cases, BB); 823 } 824 825 /// Return true if there are any keys in C1 that exist in C2 as well. 826 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 827 std::vector<ValueEqualityComparisonCase> &C2) { 828 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 829 830 // Make V1 be smaller than V2. 831 if (V1->size() > V2->size()) 832 std::swap(V1, V2); 833 834 if (V1->empty()) 835 return false; 836 if (V1->size() == 1) { 837 // Just scan V2. 838 ConstantInt *TheVal = (*V1)[0].Value; 839 for (const ValueEqualityComparisonCase &VECC : *V2) 840 if (TheVal == VECC.Value) 841 return true; 842 } 843 844 // Otherwise, just sort both lists and compare element by element. 845 array_pod_sort(V1->begin(), V1->end()); 846 array_pod_sort(V2->begin(), V2->end()); 847 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 848 while (i1 != e1 && i2 != e2) { 849 if ((*V1)[i1].Value == (*V2)[i2].Value) 850 return true; 851 if ((*V1)[i1].Value < (*V2)[i2].Value) 852 ++i1; 853 else 854 ++i2; 855 } 856 return false; 857 } 858 859 // Set branch weights on SwitchInst. This sets the metadata if there is at 860 // least one non-zero weight. 861 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 862 // Check that there is at least one non-zero weight. Otherwise, pass 863 // nullptr to setMetadata which will erase the existing metadata. 864 MDNode *N = nullptr; 865 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 866 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 867 SI->setMetadata(LLVMContext::MD_prof, N); 868 } 869 870 // Similar to the above, but for branch and select instructions that take 871 // exactly 2 weights. 872 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 873 uint32_t FalseWeight) { 874 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 875 // Check that there is at least one non-zero weight. Otherwise, pass 876 // nullptr to setMetadata which will erase the existing metadata. 877 MDNode *N = nullptr; 878 if (TrueWeight || FalseWeight) 879 N = MDBuilder(I->getParent()->getContext()) 880 .createBranchWeights(TrueWeight, FalseWeight); 881 I->setMetadata(LLVMContext::MD_prof, N); 882 } 883 884 /// If TI is known to be a terminator instruction and its block is known to 885 /// only have a single predecessor block, check to see if that predecessor is 886 /// also a value comparison with the same value, and if that comparison 887 /// determines the outcome of this comparison. If so, simplify TI. This does a 888 /// very limited form of jump threading. 889 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 890 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 891 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 892 if (!PredVal) 893 return false; // Not a value comparison in predecessor. 894 895 Value *ThisVal = isValueEqualityComparison(TI); 896 assert(ThisVal && "This isn't a value comparison!!"); 897 if (ThisVal != PredVal) 898 return false; // Different predicates. 899 900 // TODO: Preserve branch weight metadata, similarly to how 901 // FoldValueComparisonIntoPredecessors preserves it. 902 903 // Find out information about when control will move from Pred to TI's block. 904 std::vector<ValueEqualityComparisonCase> PredCases; 905 BasicBlock *PredDef = 906 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 907 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 908 909 // Find information about how control leaves this block. 910 std::vector<ValueEqualityComparisonCase> ThisCases; 911 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 912 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 913 914 // If TI's block is the default block from Pred's comparison, potentially 915 // simplify TI based on this knowledge. 916 if (PredDef == TI->getParent()) { 917 // If we are here, we know that the value is none of those cases listed in 918 // PredCases. If there are any cases in ThisCases that are in PredCases, we 919 // can simplify TI. 920 if (!ValuesOverlap(PredCases, ThisCases)) 921 return false; 922 923 if (isa<BranchInst>(TI)) { 924 // Okay, one of the successors of this condbr is dead. Convert it to a 925 // uncond br. 926 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 927 // Insert the new branch. 928 Instruction *NI = Builder.CreateBr(ThisDef); 929 (void)NI; 930 931 // Remove PHI node entries for the dead edge. 932 ThisCases[0].Dest->removePredecessor(PredDef); 933 934 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 935 << "Through successor TI: " << *TI << "Leaving: " << *NI 936 << "\n"); 937 938 EraseTerminatorAndDCECond(TI); 939 940 if (DTU) 941 DTU->applyUpdates( 942 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 943 944 return true; 945 } 946 947 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 948 // Okay, TI has cases that are statically dead, prune them away. 949 SmallPtrSet<Constant *, 16> DeadCases; 950 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 951 DeadCases.insert(PredCases[i].Value); 952 953 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 954 << "Through successor TI: " << *TI); 955 956 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 957 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 958 --i; 959 auto *Successor = i->getCaseSuccessor(); 960 if (DTU) 961 ++NumPerSuccessorCases[Successor]; 962 if (DeadCases.count(i->getCaseValue())) { 963 Successor->removePredecessor(PredDef); 964 SI.removeCase(i); 965 if (DTU) 966 --NumPerSuccessorCases[Successor]; 967 } 968 } 969 970 if (DTU) { 971 std::vector<DominatorTree::UpdateType> Updates; 972 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 973 if (I.second == 0) 974 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 975 DTU->applyUpdates(Updates); 976 } 977 978 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 979 return true; 980 } 981 982 // Otherwise, TI's block must correspond to some matched value. Find out 983 // which value (or set of values) this is. 984 ConstantInt *TIV = nullptr; 985 BasicBlock *TIBB = TI->getParent(); 986 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 987 if (PredCases[i].Dest == TIBB) { 988 if (TIV) 989 return false; // Cannot handle multiple values coming to this block. 990 TIV = PredCases[i].Value; 991 } 992 assert(TIV && "No edge from pred to succ?"); 993 994 // Okay, we found the one constant that our value can be if we get into TI's 995 // BB. Find out which successor will unconditionally be branched to. 996 BasicBlock *TheRealDest = nullptr; 997 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 998 if (ThisCases[i].Value == TIV) { 999 TheRealDest = ThisCases[i].Dest; 1000 break; 1001 } 1002 1003 // If not handled by any explicit cases, it is handled by the default case. 1004 if (!TheRealDest) 1005 TheRealDest = ThisDef; 1006 1007 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 1008 1009 // Remove PHI node entries for dead edges. 1010 BasicBlock *CheckEdge = TheRealDest; 1011 for (BasicBlock *Succ : successors(TIBB)) 1012 if (Succ != CheckEdge) { 1013 if (Succ != TheRealDest) 1014 RemovedSuccs.insert(Succ); 1015 Succ->removePredecessor(TIBB); 1016 } else 1017 CheckEdge = nullptr; 1018 1019 // Insert the new branch. 1020 Instruction *NI = Builder.CreateBr(TheRealDest); 1021 (void)NI; 1022 1023 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1024 << "Through successor TI: " << *TI << "Leaving: " << *NI 1025 << "\n"); 1026 1027 EraseTerminatorAndDCECond(TI); 1028 if (DTU) { 1029 SmallVector<DominatorTree::UpdateType, 2> Updates; 1030 Updates.reserve(RemovedSuccs.size()); 1031 for (auto *RemovedSucc : RemovedSuccs) 1032 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1033 DTU->applyUpdates(Updates); 1034 } 1035 return true; 1036 } 1037 1038 namespace { 1039 1040 /// This class implements a stable ordering of constant 1041 /// integers that does not depend on their address. This is important for 1042 /// applications that sort ConstantInt's to ensure uniqueness. 1043 struct ConstantIntOrdering { 1044 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1045 return LHS->getValue().ult(RHS->getValue()); 1046 } 1047 }; 1048 1049 } // end anonymous namespace 1050 1051 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1052 ConstantInt *const *P2) { 1053 const ConstantInt *LHS = *P1; 1054 const ConstantInt *RHS = *P2; 1055 if (LHS == RHS) 1056 return 0; 1057 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1058 } 1059 1060 /// Get Weights of a given terminator, the default weight is at the front 1061 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1062 /// metadata. 1063 static void GetBranchWeights(Instruction *TI, 1064 SmallVectorImpl<uint64_t> &Weights) { 1065 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1066 assert(MD); 1067 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1068 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1069 Weights.push_back(CI->getValue().getZExtValue()); 1070 } 1071 1072 // If TI is a conditional eq, the default case is the false case, 1073 // and the corresponding branch-weight data is at index 2. We swap the 1074 // default weight to be the first entry. 1075 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1076 assert(Weights.size() == 2); 1077 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1078 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1079 std::swap(Weights.front(), Weights.back()); 1080 } 1081 } 1082 1083 /// Keep halving the weights until all can fit in uint32_t. 1084 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1085 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1086 if (Max > UINT_MAX) { 1087 unsigned Offset = 32 - llvm::countl_zero(Max); 1088 for (uint64_t &I : Weights) 1089 I >>= Offset; 1090 } 1091 } 1092 1093 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1094 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1095 Instruction *PTI = PredBlock->getTerminator(); 1096 1097 // If we have bonus instructions, clone them into the predecessor block. 1098 // Note that there may be multiple predecessor blocks, so we cannot move 1099 // bonus instructions to a predecessor block. 1100 for (Instruction &BonusInst : *BB) { 1101 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1102 continue; 1103 1104 Instruction *NewBonusInst = BonusInst.clone(); 1105 1106 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1107 // Unless the instruction has the same !dbg location as the original 1108 // branch, drop it. When we fold the bonus instructions we want to make 1109 // sure we reset their debug locations in order to avoid stepping on 1110 // dead code caused by folding dead branches. 1111 NewBonusInst->setDebugLoc(DebugLoc()); 1112 } 1113 1114 RemapInstruction(NewBonusInst, VMap, 1115 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1116 VMap[&BonusInst] = NewBonusInst; 1117 1118 // If we speculated an instruction, we need to drop any metadata that may 1119 // result in undefined behavior, as the metadata might have been valid 1120 // only given the branch precondition. 1121 // Similarly strip attributes on call parameters that may cause UB in 1122 // location the call is moved to. 1123 NewBonusInst->dropUBImplyingAttrsAndMetadata(); 1124 1125 NewBonusInst->insertInto(PredBlock, PTI->getIterator()); 1126 NewBonusInst->takeName(&BonusInst); 1127 BonusInst.setName(NewBonusInst->getName() + ".old"); 1128 1129 // Update (liveout) uses of bonus instructions, 1130 // now that the bonus instruction has been cloned into predecessor. 1131 // Note that we expect to be in a block-closed SSA form for this to work! 1132 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1133 auto *UI = cast<Instruction>(U.getUser()); 1134 auto *PN = dyn_cast<PHINode>(UI); 1135 if (!PN) { 1136 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1137 "If the user is not a PHI node, then it should be in the same " 1138 "block as, and come after, the original bonus instruction."); 1139 continue; // Keep using the original bonus instruction. 1140 } 1141 // Is this the block-closed SSA form PHI node? 1142 if (PN->getIncomingBlock(U) == BB) 1143 continue; // Great, keep using the original bonus instruction. 1144 // The only other alternative is an "use" when coming from 1145 // the predecessor block - here we should refer to the cloned bonus instr. 1146 assert(PN->getIncomingBlock(U) == PredBlock && 1147 "Not in block-closed SSA form?"); 1148 U.set(NewBonusInst); 1149 } 1150 } 1151 } 1152 1153 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1154 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1155 BasicBlock *BB = TI->getParent(); 1156 BasicBlock *Pred = PTI->getParent(); 1157 1158 SmallVector<DominatorTree::UpdateType, 32> Updates; 1159 1160 // Figure out which 'cases' to copy from SI to PSI. 1161 std::vector<ValueEqualityComparisonCase> BBCases; 1162 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1163 1164 std::vector<ValueEqualityComparisonCase> PredCases; 1165 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1166 1167 // Based on whether the default edge from PTI goes to BB or not, fill in 1168 // PredCases and PredDefault with the new switch cases we would like to 1169 // build. 1170 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1171 1172 // Update the branch weight metadata along the way 1173 SmallVector<uint64_t, 8> Weights; 1174 bool PredHasWeights = hasBranchWeightMD(*PTI); 1175 bool SuccHasWeights = hasBranchWeightMD(*TI); 1176 1177 if (PredHasWeights) { 1178 GetBranchWeights(PTI, Weights); 1179 // branch-weight metadata is inconsistent here. 1180 if (Weights.size() != 1 + PredCases.size()) 1181 PredHasWeights = SuccHasWeights = false; 1182 } else if (SuccHasWeights) 1183 // If there are no predecessor weights but there are successor weights, 1184 // populate Weights with 1, which will later be scaled to the sum of 1185 // successor's weights 1186 Weights.assign(1 + PredCases.size(), 1); 1187 1188 SmallVector<uint64_t, 8> SuccWeights; 1189 if (SuccHasWeights) { 1190 GetBranchWeights(TI, SuccWeights); 1191 // branch-weight metadata is inconsistent here. 1192 if (SuccWeights.size() != 1 + BBCases.size()) 1193 PredHasWeights = SuccHasWeights = false; 1194 } else if (PredHasWeights) 1195 SuccWeights.assign(1 + BBCases.size(), 1); 1196 1197 if (PredDefault == BB) { 1198 // If this is the default destination from PTI, only the edges in TI 1199 // that don't occur in PTI, or that branch to BB will be activated. 1200 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1201 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1202 if (PredCases[i].Dest != BB) 1203 PTIHandled.insert(PredCases[i].Value); 1204 else { 1205 // The default destination is BB, we don't need explicit targets. 1206 std::swap(PredCases[i], PredCases.back()); 1207 1208 if (PredHasWeights || SuccHasWeights) { 1209 // Increase weight for the default case. 1210 Weights[0] += Weights[i + 1]; 1211 std::swap(Weights[i + 1], Weights.back()); 1212 Weights.pop_back(); 1213 } 1214 1215 PredCases.pop_back(); 1216 --i; 1217 --e; 1218 } 1219 1220 // Reconstruct the new switch statement we will be building. 1221 if (PredDefault != BBDefault) { 1222 PredDefault->removePredecessor(Pred); 1223 if (DTU && PredDefault != BB) 1224 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1225 PredDefault = BBDefault; 1226 ++NewSuccessors[BBDefault]; 1227 } 1228 1229 unsigned CasesFromPred = Weights.size(); 1230 uint64_t ValidTotalSuccWeight = 0; 1231 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1232 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1233 PredCases.push_back(BBCases[i]); 1234 ++NewSuccessors[BBCases[i].Dest]; 1235 if (SuccHasWeights || PredHasWeights) { 1236 // The default weight is at index 0, so weight for the ith case 1237 // should be at index i+1. Scale the cases from successor by 1238 // PredDefaultWeight (Weights[0]). 1239 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1240 ValidTotalSuccWeight += SuccWeights[i + 1]; 1241 } 1242 } 1243 1244 if (SuccHasWeights || PredHasWeights) { 1245 ValidTotalSuccWeight += SuccWeights[0]; 1246 // Scale the cases from predecessor by ValidTotalSuccWeight. 1247 for (unsigned i = 1; i < CasesFromPred; ++i) 1248 Weights[i] *= ValidTotalSuccWeight; 1249 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1250 Weights[0] *= SuccWeights[0]; 1251 } 1252 } else { 1253 // If this is not the default destination from PSI, only the edges 1254 // in SI that occur in PSI with a destination of BB will be 1255 // activated. 1256 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1257 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1258 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1259 if (PredCases[i].Dest == BB) { 1260 PTIHandled.insert(PredCases[i].Value); 1261 1262 if (PredHasWeights || SuccHasWeights) { 1263 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1264 std::swap(Weights[i + 1], Weights.back()); 1265 Weights.pop_back(); 1266 } 1267 1268 std::swap(PredCases[i], PredCases.back()); 1269 PredCases.pop_back(); 1270 --i; 1271 --e; 1272 } 1273 1274 // Okay, now we know which constants were sent to BB from the 1275 // predecessor. Figure out where they will all go now. 1276 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1277 if (PTIHandled.count(BBCases[i].Value)) { 1278 // If this is one we are capable of getting... 1279 if (PredHasWeights || SuccHasWeights) 1280 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1281 PredCases.push_back(BBCases[i]); 1282 ++NewSuccessors[BBCases[i].Dest]; 1283 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1284 } 1285 1286 // If there are any constants vectored to BB that TI doesn't handle, 1287 // they must go to the default destination of TI. 1288 for (ConstantInt *I : PTIHandled) { 1289 if (PredHasWeights || SuccHasWeights) 1290 Weights.push_back(WeightsForHandled[I]); 1291 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1292 ++NewSuccessors[BBDefault]; 1293 } 1294 } 1295 1296 // Okay, at this point, we know which new successor Pred will get. Make 1297 // sure we update the number of entries in the PHI nodes for these 1298 // successors. 1299 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1300 if (DTU) { 1301 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1302 Updates.reserve(Updates.size() + NewSuccessors.size()); 1303 } 1304 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1305 NewSuccessors) { 1306 for (auto I : seq(0, NewSuccessor.second)) { 1307 (void)I; 1308 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1309 } 1310 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1311 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1312 } 1313 1314 Builder.SetInsertPoint(PTI); 1315 // Convert pointer to int before we switch. 1316 if (CV->getType()->isPointerTy()) { 1317 CV = 1318 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1319 } 1320 1321 // Now that the successors are updated, create the new Switch instruction. 1322 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1323 NewSI->setDebugLoc(PTI->getDebugLoc()); 1324 for (ValueEqualityComparisonCase &V : PredCases) 1325 NewSI->addCase(V.Value, V.Dest); 1326 1327 if (PredHasWeights || SuccHasWeights) { 1328 // Halve the weights if any of them cannot fit in an uint32_t 1329 FitWeights(Weights); 1330 1331 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1332 1333 setBranchWeights(NewSI, MDWeights); 1334 } 1335 1336 EraseTerminatorAndDCECond(PTI); 1337 1338 // Okay, last check. If BB is still a successor of PSI, then we must 1339 // have an infinite loop case. If so, add an infinitely looping block 1340 // to handle the case to preserve the behavior of the code. 1341 BasicBlock *InfLoopBlock = nullptr; 1342 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1343 if (NewSI->getSuccessor(i) == BB) { 1344 if (!InfLoopBlock) { 1345 // Insert it at the end of the function, because it's either code, 1346 // or it won't matter if it's hot. :) 1347 InfLoopBlock = 1348 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1349 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1350 if (DTU) 1351 Updates.push_back( 1352 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1353 } 1354 NewSI->setSuccessor(i, InfLoopBlock); 1355 } 1356 1357 if (DTU) { 1358 if (InfLoopBlock) 1359 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1360 1361 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1362 1363 DTU->applyUpdates(Updates); 1364 } 1365 1366 ++NumFoldValueComparisonIntoPredecessors; 1367 return true; 1368 } 1369 1370 /// The specified terminator is a value equality comparison instruction 1371 /// (either a switch or a branch on "X == c"). 1372 /// See if any of the predecessors of the terminator block are value comparisons 1373 /// on the same value. If so, and if safe to do so, fold them together. 1374 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1375 IRBuilder<> &Builder) { 1376 BasicBlock *BB = TI->getParent(); 1377 Value *CV = isValueEqualityComparison(TI); // CondVal 1378 assert(CV && "Not a comparison?"); 1379 1380 bool Changed = false; 1381 1382 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1383 while (!Preds.empty()) { 1384 BasicBlock *Pred = Preds.pop_back_val(); 1385 Instruction *PTI = Pred->getTerminator(); 1386 1387 // Don't try to fold into itself. 1388 if (Pred == BB) 1389 continue; 1390 1391 // See if the predecessor is a comparison with the same value. 1392 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1393 if (PCV != CV) 1394 continue; 1395 1396 SmallSetVector<BasicBlock *, 4> FailBlocks; 1397 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1398 for (auto *Succ : FailBlocks) { 1399 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1400 return false; 1401 } 1402 } 1403 1404 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1405 Changed = true; 1406 } 1407 return Changed; 1408 } 1409 1410 // If we would need to insert a select that uses the value of this invoke 1411 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1412 // can't hoist the invoke, as there is nowhere to put the select in this case. 1413 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1414 Instruction *I1, Instruction *I2) { 1415 for (BasicBlock *Succ : successors(BB1)) { 1416 for (const PHINode &PN : Succ->phis()) { 1417 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1418 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1419 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1420 return false; 1421 } 1422 } 1423 } 1424 return true; 1425 } 1426 1427 // Get interesting characteristics of instructions that `HoistThenElseCodeToIf` 1428 // didn't hoist. They restrict what kind of instructions can be reordered 1429 // across. 1430 enum SkipFlags { 1431 SkipReadMem = 1, 1432 SkipSideEffect = 2, 1433 SkipImplicitControlFlow = 4 1434 }; 1435 1436 static unsigned skippedInstrFlags(Instruction *I) { 1437 unsigned Flags = 0; 1438 if (I->mayReadFromMemory()) 1439 Flags |= SkipReadMem; 1440 // We can't arbitrarily move around allocas, e.g. moving allocas (especially 1441 // inalloca) across stacksave/stackrestore boundaries. 1442 if (I->mayHaveSideEffects() || isa<AllocaInst>(I)) 1443 Flags |= SkipSideEffect; 1444 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 1445 Flags |= SkipImplicitControlFlow; 1446 return Flags; 1447 } 1448 1449 // Returns true if it is safe to reorder an instruction across preceding 1450 // instructions in a basic block. 1451 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) { 1452 // Don't reorder a store over a load. 1453 if ((Flags & SkipReadMem) && I->mayWriteToMemory()) 1454 return false; 1455 1456 // If we have seen an instruction with side effects, it's unsafe to reorder an 1457 // instruction which reads memory or itself has side effects. 1458 if ((Flags & SkipSideEffect) && 1459 (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I))) 1460 return false; 1461 1462 // Reordering across an instruction which does not necessarily transfer 1463 // control to the next instruction is speculation. 1464 if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I)) 1465 return false; 1466 1467 // Hoisting of llvm.deoptimize is only legal together with the next return 1468 // instruction, which this pass is not always able to do. 1469 if (auto *CB = dyn_cast<CallBase>(I)) 1470 if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize) 1471 return false; 1472 1473 // It's also unsafe/illegal to hoist an instruction above its instruction 1474 // operands 1475 BasicBlock *BB = I->getParent(); 1476 for (Value *Op : I->operands()) { 1477 if (auto *J = dyn_cast<Instruction>(Op)) 1478 if (J->getParent() == BB) 1479 return false; 1480 } 1481 1482 return true; 1483 } 1484 1485 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1486 1487 /// Helper function for HoistThenElseCodeToIf. Return true if identical 1488 /// instructions \p I1 and \p I2 can and should be hoisted. 1489 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2, 1490 const TargetTransformInfo &TTI) { 1491 // If we're going to hoist a call, make sure that the two instructions 1492 // we're commoning/hoisting are both marked with musttail, or neither of 1493 // them is marked as such. Otherwise, we might end up in a situation where 1494 // we hoist from a block where the terminator is a `ret` to a block where 1495 // the terminator is a `br`, and `musttail` calls expect to be followed by 1496 // a return. 1497 auto *C1 = dyn_cast<CallInst>(I1); 1498 auto *C2 = dyn_cast<CallInst>(I2); 1499 if (C1 && C2) 1500 if (C1->isMustTailCall() != C2->isMustTailCall()) 1501 return false; 1502 1503 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1504 return false; 1505 1506 // If any of the two call sites has nomerge or convergent attribute, stop 1507 // hoisting. 1508 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1509 if (CB1->cannotMerge() || CB1->isConvergent()) 1510 return false; 1511 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1512 if (CB2->cannotMerge() || CB2->isConvergent()) 1513 return false; 1514 1515 return true; 1516 } 1517 1518 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1519 /// in the two blocks up into the branch block. The caller of this function 1520 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1521 /// only perform hoisting in case both blocks only contain a terminator. In that 1522 /// case, only the original BI will be replaced and selects for PHIs are added. 1523 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, bool EqTermsOnly) { 1524 // This does very trivial matching, with limited scanning, to find identical 1525 // instructions in the two blocks. In particular, we don't want to get into 1526 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1527 // such, we currently just scan for obviously identical instructions in an 1528 // identical order, possibly separated by the same number of non-identical 1529 // instructions. 1530 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1531 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1532 1533 // If either of the blocks has it's address taken, then we can't do this fold, 1534 // because the code we'd hoist would no longer run when we jump into the block 1535 // by it's address. 1536 if (BB1->hasAddressTaken() || BB2->hasAddressTaken()) 1537 return false; 1538 1539 BasicBlock::iterator BB1_Itr = BB1->begin(); 1540 BasicBlock::iterator BB2_Itr = BB2->begin(); 1541 1542 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1543 // Skip debug info if it is not identical. 1544 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1545 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1546 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1547 while (isa<DbgInfoIntrinsic>(I1)) 1548 I1 = &*BB1_Itr++; 1549 while (isa<DbgInfoIntrinsic>(I2)) 1550 I2 = &*BB2_Itr++; 1551 } 1552 if (isa<PHINode>(I1)) 1553 return false; 1554 1555 BasicBlock *BIParent = BI->getParent(); 1556 1557 bool Changed = false; 1558 1559 auto _ = make_scope_exit([&]() { 1560 if (Changed) 1561 ++NumHoistCommonCode; 1562 }); 1563 1564 // Check if only hoisting terminators is allowed. This does not add new 1565 // instructions to the hoist location. 1566 if (EqTermsOnly) { 1567 // Skip any debug intrinsics, as they are free to hoist. 1568 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1569 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1570 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1571 return false; 1572 if (!I1NonDbg->isTerminator()) 1573 return false; 1574 // Now we know that we only need to hoist debug intrinsics and the 1575 // terminator. Let the loop below handle those 2 cases. 1576 } 1577 1578 // Count how many instructions were not hoisted so far. There's a limit on how 1579 // many instructions we skip, serving as a compilation time control as well as 1580 // preventing excessive increase of life ranges. 1581 unsigned NumSkipped = 0; 1582 1583 // Record any skipped instuctions that may read memory, write memory or have 1584 // side effects, or have implicit control flow. 1585 unsigned SkipFlagsBB1 = 0; 1586 unsigned SkipFlagsBB2 = 0; 1587 1588 for (;;) { 1589 // If we are hoisting the terminator instruction, don't move one (making a 1590 // broken BB), instead clone it, and remove BI. 1591 if (I1->isTerminator() || I2->isTerminator()) { 1592 // If any instructions remain in the block, we cannot hoist terminators. 1593 if (NumSkipped || !I1->isIdenticalToWhenDefined(I2)) 1594 return Changed; 1595 goto HoistTerminator; 1596 } 1597 1598 if (I1->isIdenticalToWhenDefined(I2) && 1599 // Even if the instructions are identical, it may not be safe to hoist 1600 // them if we have skipped over instructions with side effects or their 1601 // operands weren't hoisted. 1602 isSafeToHoistInstr(I1, SkipFlagsBB1) && 1603 isSafeToHoistInstr(I2, SkipFlagsBB2) && 1604 shouldHoistCommonInstructions(I1, I2, TTI)) { 1605 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1606 assert(isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1607 // The debug location is an integral part of a debug info intrinsic 1608 // and can't be separated from it or replaced. Instead of attempting 1609 // to merge locations, simply hoist both copies of the intrinsic. 1610 BIParent->splice(BI->getIterator(), BB1, I1->getIterator()); 1611 BIParent->splice(BI->getIterator(), BB2, I2->getIterator()); 1612 } else { 1613 // For a normal instruction, we just move one to right before the 1614 // branch, then replace all uses of the other with the first. Finally, 1615 // we remove the now redundant second instruction. 1616 BIParent->splice(BI->getIterator(), BB1, I1->getIterator()); 1617 if (!I2->use_empty()) 1618 I2->replaceAllUsesWith(I1); 1619 I1->andIRFlags(I2); 1620 combineMetadataForCSE(I1, I2, true); 1621 1622 // I1 and I2 are being combined into a single instruction. Its debug 1623 // location is the merged locations of the original instructions. 1624 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1625 1626 I2->eraseFromParent(); 1627 } 1628 Changed = true; 1629 ++NumHoistCommonInstrs; 1630 } else { 1631 if (NumSkipped >= HoistCommonSkipLimit) 1632 return Changed; 1633 // We are about to skip over a pair of non-identical instructions. Record 1634 // if any have characteristics that would prevent reordering instructions 1635 // across them. 1636 SkipFlagsBB1 |= skippedInstrFlags(I1); 1637 SkipFlagsBB2 |= skippedInstrFlags(I2); 1638 ++NumSkipped; 1639 } 1640 1641 I1 = &*BB1_Itr++; 1642 I2 = &*BB2_Itr++; 1643 // Skip debug info if it is not identical. 1644 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1645 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1646 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1647 while (isa<DbgInfoIntrinsic>(I1)) 1648 I1 = &*BB1_Itr++; 1649 while (isa<DbgInfoIntrinsic>(I2)) 1650 I2 = &*BB2_Itr++; 1651 } 1652 } 1653 1654 return Changed; 1655 1656 HoistTerminator: 1657 // It may not be possible to hoist an invoke. 1658 // FIXME: Can we define a safety predicate for CallBr? 1659 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1660 return Changed; 1661 1662 // TODO: callbr hoisting currently disabled pending further study. 1663 if (isa<CallBrInst>(I1)) 1664 return Changed; 1665 1666 for (BasicBlock *Succ : successors(BB1)) { 1667 for (PHINode &PN : Succ->phis()) { 1668 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1669 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1670 if (BB1V == BB2V) 1671 continue; 1672 1673 // Check for passingValueIsAlwaysUndefined here because we would rather 1674 // eliminate undefined control flow then converting it to a select. 1675 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1676 passingValueIsAlwaysUndefined(BB2V, &PN)) 1677 return Changed; 1678 } 1679 } 1680 1681 // Okay, it is safe to hoist the terminator. 1682 Instruction *NT = I1->clone(); 1683 NT->insertInto(BIParent, BI->getIterator()); 1684 if (!NT->getType()->isVoidTy()) { 1685 I1->replaceAllUsesWith(NT); 1686 I2->replaceAllUsesWith(NT); 1687 NT->takeName(I1); 1688 } 1689 Changed = true; 1690 ++NumHoistCommonInstrs; 1691 1692 // Ensure terminator gets a debug location, even an unknown one, in case 1693 // it involves inlinable calls. 1694 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1695 1696 // PHIs created below will adopt NT's merged DebugLoc. 1697 IRBuilder<NoFolder> Builder(NT); 1698 1699 // Hoisting one of the terminators from our successor is a great thing. 1700 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1701 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1702 // nodes, so we insert select instruction to compute the final result. 1703 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1704 for (BasicBlock *Succ : successors(BB1)) { 1705 for (PHINode &PN : Succ->phis()) { 1706 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1707 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1708 if (BB1V == BB2V) 1709 continue; 1710 1711 // These values do not agree. Insert a select instruction before NT 1712 // that determines the right value. 1713 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1714 if (!SI) { 1715 // Propagate fast-math-flags from phi node to its replacement select. 1716 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1717 if (isa<FPMathOperator>(PN)) 1718 Builder.setFastMathFlags(PN.getFastMathFlags()); 1719 1720 SI = cast<SelectInst>( 1721 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1722 BB1V->getName() + "." + BB2V->getName(), BI)); 1723 } 1724 1725 // Make the PHI node use the select for all incoming values for BB1/BB2 1726 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1727 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1728 PN.setIncomingValue(i, SI); 1729 } 1730 } 1731 1732 SmallVector<DominatorTree::UpdateType, 4> Updates; 1733 1734 // Update any PHI nodes in our new successors. 1735 for (BasicBlock *Succ : successors(BB1)) { 1736 AddPredecessorToBlock(Succ, BIParent, BB1); 1737 if (DTU) 1738 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1739 } 1740 1741 if (DTU) 1742 for (BasicBlock *Succ : successors(BI)) 1743 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1744 1745 EraseTerminatorAndDCECond(BI); 1746 if (DTU) 1747 DTU->applyUpdates(Updates); 1748 return Changed; 1749 } 1750 1751 // Check lifetime markers. 1752 static bool isLifeTimeMarker(const Instruction *I) { 1753 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1754 switch (II->getIntrinsicID()) { 1755 default: 1756 break; 1757 case Intrinsic::lifetime_start: 1758 case Intrinsic::lifetime_end: 1759 return true; 1760 } 1761 } 1762 return false; 1763 } 1764 1765 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1766 // into variables. 1767 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1768 int OpIdx) { 1769 return !isa<IntrinsicInst>(I); 1770 } 1771 1772 // All instructions in Insts belong to different blocks that all unconditionally 1773 // branch to a common successor. Analyze each instruction and return true if it 1774 // would be possible to sink them into their successor, creating one common 1775 // instruction instead. For every value that would be required to be provided by 1776 // PHI node (because an operand varies in each input block), add to PHIOperands. 1777 static bool canSinkInstructions( 1778 ArrayRef<Instruction *> Insts, 1779 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1780 // Prune out obviously bad instructions to move. Each instruction must have 1781 // exactly zero or one use, and we check later that use is by a single, common 1782 // PHI instruction in the successor. 1783 bool HasUse = !Insts.front()->user_empty(); 1784 for (auto *I : Insts) { 1785 // These instructions may change or break semantics if moved. 1786 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1787 I->getType()->isTokenTy()) 1788 return false; 1789 1790 // Do not try to sink an instruction in an infinite loop - it can cause 1791 // this algorithm to infinite loop. 1792 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1793 return false; 1794 1795 // Conservatively return false if I is an inline-asm instruction. Sinking 1796 // and merging inline-asm instructions can potentially create arguments 1797 // that cannot satisfy the inline-asm constraints. 1798 // If the instruction has nomerge or convergent attribute, return false. 1799 if (const auto *C = dyn_cast<CallBase>(I)) 1800 if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent()) 1801 return false; 1802 1803 // Each instruction must have zero or one use. 1804 if (HasUse && !I->hasOneUse()) 1805 return false; 1806 if (!HasUse && !I->user_empty()) 1807 return false; 1808 } 1809 1810 const Instruction *I0 = Insts.front(); 1811 for (auto *I : Insts) 1812 if (!I->isSameOperationAs(I0)) 1813 return false; 1814 1815 // All instructions in Insts are known to be the same opcode. If they have a 1816 // use, check that the only user is a PHI or in the same block as the 1817 // instruction, because if a user is in the same block as an instruction we're 1818 // contemplating sinking, it must already be determined to be sinkable. 1819 if (HasUse) { 1820 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1821 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1822 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1823 auto *U = cast<Instruction>(*I->user_begin()); 1824 return (PNUse && 1825 PNUse->getParent() == Succ && 1826 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1827 U->getParent() == I->getParent(); 1828 })) 1829 return false; 1830 } 1831 1832 // Because SROA can't handle speculating stores of selects, try not to sink 1833 // loads, stores or lifetime markers of allocas when we'd have to create a 1834 // PHI for the address operand. Also, because it is likely that loads or 1835 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1836 // them. 1837 // This can cause code churn which can have unintended consequences down 1838 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1839 // FIXME: This is a workaround for a deficiency in SROA - see 1840 // https://llvm.org/bugs/show_bug.cgi?id=30188 1841 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1842 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1843 })) 1844 return false; 1845 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1846 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1847 })) 1848 return false; 1849 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1850 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1851 })) 1852 return false; 1853 1854 // For calls to be sinkable, they must all be indirect, or have same callee. 1855 // I.e. if we have two direct calls to different callees, we don't want to 1856 // turn that into an indirect call. Likewise, if we have an indirect call, 1857 // and a direct call, we don't actually want to have a single indirect call. 1858 if (isa<CallBase>(I0)) { 1859 auto IsIndirectCall = [](const Instruction *I) { 1860 return cast<CallBase>(I)->isIndirectCall(); 1861 }; 1862 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1863 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1864 if (HaveIndirectCalls) { 1865 if (!AllCallsAreIndirect) 1866 return false; 1867 } else { 1868 // All callees must be identical. 1869 Value *Callee = nullptr; 1870 for (const Instruction *I : Insts) { 1871 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1872 if (!Callee) 1873 Callee = CurrCallee; 1874 else if (Callee != CurrCallee) 1875 return false; 1876 } 1877 } 1878 } 1879 1880 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1881 Value *Op = I0->getOperand(OI); 1882 if (Op->getType()->isTokenTy()) 1883 // Don't touch any operand of token type. 1884 return false; 1885 1886 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1887 assert(I->getNumOperands() == I0->getNumOperands()); 1888 return I->getOperand(OI) == I0->getOperand(OI); 1889 }; 1890 if (!all_of(Insts, SameAsI0)) { 1891 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1892 !canReplaceOperandWithVariable(I0, OI)) 1893 // We can't create a PHI from this GEP. 1894 return false; 1895 for (auto *I : Insts) 1896 PHIOperands[I].push_back(I->getOperand(OI)); 1897 } 1898 } 1899 return true; 1900 } 1901 1902 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1903 // instruction of every block in Blocks to their common successor, commoning 1904 // into one instruction. 1905 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1906 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1907 1908 // canSinkInstructions returning true guarantees that every block has at 1909 // least one non-terminator instruction. 1910 SmallVector<Instruction*,4> Insts; 1911 for (auto *BB : Blocks) { 1912 Instruction *I = BB->getTerminator(); 1913 do { 1914 I = I->getPrevNode(); 1915 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1916 if (!isa<DbgInfoIntrinsic>(I)) 1917 Insts.push_back(I); 1918 } 1919 1920 // The only checking we need to do now is that all users of all instructions 1921 // are the same PHI node. canSinkInstructions should have checked this but 1922 // it is slightly over-aggressive - it gets confused by commutative 1923 // instructions so double-check it here. 1924 Instruction *I0 = Insts.front(); 1925 if (!I0->user_empty()) { 1926 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1927 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1928 auto *U = cast<Instruction>(*I->user_begin()); 1929 return U == PNUse; 1930 })) 1931 return false; 1932 } 1933 1934 // We don't need to do any more checking here; canSinkInstructions should 1935 // have done it all for us. 1936 SmallVector<Value*, 4> NewOperands; 1937 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1938 // This check is different to that in canSinkInstructions. There, we 1939 // cared about the global view once simplifycfg (and instcombine) have 1940 // completed - it takes into account PHIs that become trivially 1941 // simplifiable. However here we need a more local view; if an operand 1942 // differs we create a PHI and rely on instcombine to clean up the very 1943 // small mess we may make. 1944 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1945 return I->getOperand(O) != I0->getOperand(O); 1946 }); 1947 if (!NeedPHI) { 1948 NewOperands.push_back(I0->getOperand(O)); 1949 continue; 1950 } 1951 1952 // Create a new PHI in the successor block and populate it. 1953 auto *Op = I0->getOperand(O); 1954 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1955 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1956 Op->getName() + ".sink", &BBEnd->front()); 1957 for (auto *I : Insts) 1958 PN->addIncoming(I->getOperand(O), I->getParent()); 1959 NewOperands.push_back(PN); 1960 } 1961 1962 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1963 // and move it to the start of the successor block. 1964 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1965 I0->getOperandUse(O).set(NewOperands[O]); 1966 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1967 1968 // Update metadata and IR flags, and merge debug locations. 1969 for (auto *I : Insts) 1970 if (I != I0) { 1971 // The debug location for the "common" instruction is the merged locations 1972 // of all the commoned instructions. We start with the original location 1973 // of the "common" instruction and iteratively merge each location in the 1974 // loop below. 1975 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1976 // However, as N-way merge for CallInst is rare, so we use simplified API 1977 // instead of using complex API for N-way merge. 1978 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1979 combineMetadataForCSE(I0, I, true); 1980 I0->andIRFlags(I); 1981 } 1982 1983 if (!I0->user_empty()) { 1984 // canSinkLastInstruction checked that all instructions were used by 1985 // one and only one PHI node. Find that now, RAUW it to our common 1986 // instruction and nuke it. 1987 auto *PN = cast<PHINode>(*I0->user_begin()); 1988 PN->replaceAllUsesWith(I0); 1989 PN->eraseFromParent(); 1990 } 1991 1992 // Finally nuke all instructions apart from the common instruction. 1993 for (auto *I : Insts) { 1994 if (I == I0) 1995 continue; 1996 // The remaining uses are debug users, replace those with the common inst. 1997 // In most (all?) cases this just introduces a use-before-def. 1998 assert(I->user_empty() && "Inst unexpectedly still has non-dbg users"); 1999 I->replaceAllUsesWith(I0); 2000 I->eraseFromParent(); 2001 } 2002 2003 return true; 2004 } 2005 2006 namespace { 2007 2008 // LockstepReverseIterator - Iterates through instructions 2009 // in a set of blocks in reverse order from the first non-terminator. 2010 // For example (assume all blocks have size n): 2011 // LockstepReverseIterator I([B1, B2, B3]); 2012 // *I-- = [B1[n], B2[n], B3[n]]; 2013 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 2014 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 2015 // ... 2016 class LockstepReverseIterator { 2017 ArrayRef<BasicBlock*> Blocks; 2018 SmallVector<Instruction*,4> Insts; 2019 bool Fail; 2020 2021 public: 2022 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 2023 reset(); 2024 } 2025 2026 void reset() { 2027 Fail = false; 2028 Insts.clear(); 2029 for (auto *BB : Blocks) { 2030 Instruction *Inst = BB->getTerminator(); 2031 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2032 Inst = Inst->getPrevNode(); 2033 if (!Inst) { 2034 // Block wasn't big enough. 2035 Fail = true; 2036 return; 2037 } 2038 Insts.push_back(Inst); 2039 } 2040 } 2041 2042 bool isValid() const { 2043 return !Fail; 2044 } 2045 2046 void operator--() { 2047 if (Fail) 2048 return; 2049 for (auto *&Inst : Insts) { 2050 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2051 Inst = Inst->getPrevNode(); 2052 // Already at beginning of block. 2053 if (!Inst) { 2054 Fail = true; 2055 return; 2056 } 2057 } 2058 } 2059 2060 void operator++() { 2061 if (Fail) 2062 return; 2063 for (auto *&Inst : Insts) { 2064 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2065 Inst = Inst->getNextNode(); 2066 // Already at end of block. 2067 if (!Inst) { 2068 Fail = true; 2069 return; 2070 } 2071 } 2072 } 2073 2074 ArrayRef<Instruction*> operator * () const { 2075 return Insts; 2076 } 2077 }; 2078 2079 } // end anonymous namespace 2080 2081 /// Check whether BB's predecessors end with unconditional branches. If it is 2082 /// true, sink any common code from the predecessors to BB. 2083 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 2084 DomTreeUpdater *DTU) { 2085 // We support two situations: 2086 // (1) all incoming arcs are unconditional 2087 // (2) there are non-unconditional incoming arcs 2088 // 2089 // (2) is very common in switch defaults and 2090 // else-if patterns; 2091 // 2092 // if (a) f(1); 2093 // else if (b) f(2); 2094 // 2095 // produces: 2096 // 2097 // [if] 2098 // / \ 2099 // [f(1)] [if] 2100 // | | \ 2101 // | | | 2102 // | [f(2)]| 2103 // \ | / 2104 // [ end ] 2105 // 2106 // [end] has two unconditional predecessor arcs and one conditional. The 2107 // conditional refers to the implicit empty 'else' arc. This conditional 2108 // arc can also be caused by an empty default block in a switch. 2109 // 2110 // In this case, we attempt to sink code from all *unconditional* arcs. 2111 // If we can sink instructions from these arcs (determined during the scan 2112 // phase below) we insert a common successor for all unconditional arcs and 2113 // connect that to [end], to enable sinking: 2114 // 2115 // [if] 2116 // / \ 2117 // [x(1)] [if] 2118 // | | \ 2119 // | | \ 2120 // | [x(2)] | 2121 // \ / | 2122 // [sink.split] | 2123 // \ / 2124 // [ end ] 2125 // 2126 SmallVector<BasicBlock*,4> UnconditionalPreds; 2127 bool HaveNonUnconditionalPredecessors = false; 2128 for (auto *PredBB : predecessors(BB)) { 2129 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2130 if (PredBr && PredBr->isUnconditional()) 2131 UnconditionalPreds.push_back(PredBB); 2132 else 2133 HaveNonUnconditionalPredecessors = true; 2134 } 2135 if (UnconditionalPreds.size() < 2) 2136 return false; 2137 2138 // We take a two-step approach to tail sinking. First we scan from the end of 2139 // each block upwards in lockstep. If the n'th instruction from the end of each 2140 // block can be sunk, those instructions are added to ValuesToSink and we 2141 // carry on. If we can sink an instruction but need to PHI-merge some operands 2142 // (because they're not identical in each instruction) we add these to 2143 // PHIOperands. 2144 int ScanIdx = 0; 2145 SmallPtrSet<Value*,4> InstructionsToSink; 2146 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2147 LockstepReverseIterator LRI(UnconditionalPreds); 2148 while (LRI.isValid() && 2149 canSinkInstructions(*LRI, PHIOperands)) { 2150 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2151 << "\n"); 2152 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2153 ++ScanIdx; 2154 --LRI; 2155 } 2156 2157 // If no instructions can be sunk, early-return. 2158 if (ScanIdx == 0) 2159 return false; 2160 2161 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2162 2163 if (!followedByDeoptOrUnreachable) { 2164 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2165 // actually sink before encountering instruction that is unprofitable to 2166 // sink? 2167 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2168 unsigned NumPHIdValues = 0; 2169 for (auto *I : *LRI) 2170 for (auto *V : PHIOperands[I]) { 2171 if (!InstructionsToSink.contains(V)) 2172 ++NumPHIdValues; 2173 // FIXME: this check is overly optimistic. We may end up not sinking 2174 // said instruction, due to the very same profitability check. 2175 // See @creating_too_many_phis in sink-common-code.ll. 2176 } 2177 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2178 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2179 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2180 NumPHIInsts++; 2181 2182 return NumPHIInsts <= 1; 2183 }; 2184 2185 // We've determined that we are going to sink last ScanIdx instructions, 2186 // and recorded them in InstructionsToSink. Now, some instructions may be 2187 // unprofitable to sink. But that determination depends on the instructions 2188 // that we are going to sink. 2189 2190 // First, forward scan: find the first instruction unprofitable to sink, 2191 // recording all the ones that are profitable to sink. 2192 // FIXME: would it be better, after we detect that not all are profitable. 2193 // to either record the profitable ones, or erase the unprofitable ones? 2194 // Maybe we need to choose (at runtime) the one that will touch least 2195 // instrs? 2196 LRI.reset(); 2197 int Idx = 0; 2198 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2199 while (Idx < ScanIdx) { 2200 if (!ProfitableToSinkInstruction(LRI)) { 2201 // Too many PHIs would be created. 2202 LLVM_DEBUG( 2203 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2204 break; 2205 } 2206 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2207 --LRI; 2208 ++Idx; 2209 } 2210 2211 // If no instructions can be sunk, early-return. 2212 if (Idx == 0) 2213 return false; 2214 2215 // Did we determine that (only) some instructions are unprofitable to sink? 2216 if (Idx < ScanIdx) { 2217 // Okay, some instructions are unprofitable. 2218 ScanIdx = Idx; 2219 InstructionsToSink = InstructionsProfitableToSink; 2220 2221 // But, that may make other instructions unprofitable, too. 2222 // So, do a backward scan, do any earlier instructions become 2223 // unprofitable? 2224 assert( 2225 !ProfitableToSinkInstruction(LRI) && 2226 "We already know that the last instruction is unprofitable to sink"); 2227 ++LRI; 2228 --Idx; 2229 while (Idx >= 0) { 2230 // If we detect that an instruction becomes unprofitable to sink, 2231 // all earlier instructions won't be sunk either, 2232 // so preemptively keep InstructionsProfitableToSink in sync. 2233 // FIXME: is this the most performant approach? 2234 for (auto *I : *LRI) 2235 InstructionsProfitableToSink.erase(I); 2236 if (!ProfitableToSinkInstruction(LRI)) { 2237 // Everything starting with this instruction won't be sunk. 2238 ScanIdx = Idx; 2239 InstructionsToSink = InstructionsProfitableToSink; 2240 } 2241 ++LRI; 2242 --Idx; 2243 } 2244 } 2245 2246 // If no instructions can be sunk, early-return. 2247 if (ScanIdx == 0) 2248 return false; 2249 } 2250 2251 bool Changed = false; 2252 2253 if (HaveNonUnconditionalPredecessors) { 2254 if (!followedByDeoptOrUnreachable) { 2255 // It is always legal to sink common instructions from unconditional 2256 // predecessors. However, if not all predecessors are unconditional, 2257 // this transformation might be pessimizing. So as a rule of thumb, 2258 // don't do it unless we'd sink at least one non-speculatable instruction. 2259 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2260 LRI.reset(); 2261 int Idx = 0; 2262 bool Profitable = false; 2263 while (Idx < ScanIdx) { 2264 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2265 Profitable = true; 2266 break; 2267 } 2268 --LRI; 2269 ++Idx; 2270 } 2271 if (!Profitable) 2272 return false; 2273 } 2274 2275 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2276 // We have a conditional edge and we're going to sink some instructions. 2277 // Insert a new block postdominating all blocks we're going to sink from. 2278 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2279 // Edges couldn't be split. 2280 return false; 2281 Changed = true; 2282 } 2283 2284 // Now that we've analyzed all potential sinking candidates, perform the 2285 // actual sink. We iteratively sink the last non-terminator of the source 2286 // blocks into their common successor unless doing so would require too 2287 // many PHI instructions to be generated (currently only one PHI is allowed 2288 // per sunk instruction). 2289 // 2290 // We can use InstructionsToSink to discount values needing PHI-merging that will 2291 // actually be sunk in a later iteration. This allows us to be more 2292 // aggressive in what we sink. This does allow a false positive where we 2293 // sink presuming a later value will also be sunk, but stop half way through 2294 // and never actually sink it which means we produce more PHIs than intended. 2295 // This is unlikely in practice though. 2296 int SinkIdx = 0; 2297 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2298 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2299 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2300 << "\n"); 2301 2302 // Because we've sunk every instruction in turn, the current instruction to 2303 // sink is always at index 0. 2304 LRI.reset(); 2305 2306 if (!sinkLastInstruction(UnconditionalPreds)) { 2307 LLVM_DEBUG( 2308 dbgs() 2309 << "SINK: stopping here, failed to actually sink instruction!\n"); 2310 break; 2311 } 2312 2313 NumSinkCommonInstrs++; 2314 Changed = true; 2315 } 2316 if (SinkIdx != 0) 2317 ++NumSinkCommonCode; 2318 return Changed; 2319 } 2320 2321 namespace { 2322 2323 struct CompatibleSets { 2324 using SetTy = SmallVector<InvokeInst *, 2>; 2325 2326 SmallVector<SetTy, 1> Sets; 2327 2328 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2329 2330 SetTy &getCompatibleSet(InvokeInst *II); 2331 2332 void insert(InvokeInst *II); 2333 }; 2334 2335 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2336 // Perform a linear scan over all the existing sets, see if the new `invoke` 2337 // is compatible with any particular set. Since we know that all the `invokes` 2338 // within a set are compatible, only check the first `invoke` in each set. 2339 // WARNING: at worst, this has quadratic complexity. 2340 for (CompatibleSets::SetTy &Set : Sets) { 2341 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2342 return Set; 2343 } 2344 2345 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2346 return Sets.emplace_back(); 2347 } 2348 2349 void CompatibleSets::insert(InvokeInst *II) { 2350 getCompatibleSet(II).emplace_back(II); 2351 } 2352 2353 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2354 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2355 2356 // Can we theoretically merge these `invoke`s? 2357 auto IsIllegalToMerge = [](InvokeInst *II) { 2358 return II->cannotMerge() || II->isInlineAsm(); 2359 }; 2360 if (any_of(Invokes, IsIllegalToMerge)) 2361 return false; 2362 2363 // Either both `invoke`s must be direct, 2364 // or both `invoke`s must be indirect. 2365 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2366 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2367 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2368 if (HaveIndirectCalls) { 2369 if (!AllCallsAreIndirect) 2370 return false; 2371 } else { 2372 // All callees must be identical. 2373 Value *Callee = nullptr; 2374 for (InvokeInst *II : Invokes) { 2375 Value *CurrCallee = II->getCalledOperand(); 2376 assert(CurrCallee && "There is always a called operand."); 2377 if (!Callee) 2378 Callee = CurrCallee; 2379 else if (Callee != CurrCallee) 2380 return false; 2381 } 2382 } 2383 2384 // Either both `invoke`s must not have a normal destination, 2385 // or both `invoke`s must have a normal destination, 2386 auto HasNormalDest = [](InvokeInst *II) { 2387 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2388 }; 2389 if (any_of(Invokes, HasNormalDest)) { 2390 // Do not merge `invoke` that does not have a normal destination with one 2391 // that does have a normal destination, even though doing so would be legal. 2392 if (!all_of(Invokes, HasNormalDest)) 2393 return false; 2394 2395 // All normal destinations must be identical. 2396 BasicBlock *NormalBB = nullptr; 2397 for (InvokeInst *II : Invokes) { 2398 BasicBlock *CurrNormalBB = II->getNormalDest(); 2399 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2400 if (!NormalBB) 2401 NormalBB = CurrNormalBB; 2402 else if (NormalBB != CurrNormalBB) 2403 return false; 2404 } 2405 2406 // In the normal destination, the incoming values for these two `invoke`s 2407 // must be compatible. 2408 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2409 if (!IncomingValuesAreCompatible( 2410 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2411 &EquivalenceSet)) 2412 return false; 2413 } 2414 2415 #ifndef NDEBUG 2416 // All unwind destinations must be identical. 2417 // We know that because we have started from said unwind destination. 2418 BasicBlock *UnwindBB = nullptr; 2419 for (InvokeInst *II : Invokes) { 2420 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2421 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2422 if (!UnwindBB) 2423 UnwindBB = CurrUnwindBB; 2424 else 2425 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2426 } 2427 #endif 2428 2429 // In the unwind destination, the incoming values for these two `invoke`s 2430 // must be compatible. 2431 if (!IncomingValuesAreCompatible( 2432 Invokes.front()->getUnwindDest(), 2433 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2434 return false; 2435 2436 // Ignoring arguments, these `invoke`s must be identical, 2437 // including operand bundles. 2438 const InvokeInst *II0 = Invokes.front(); 2439 for (auto *II : Invokes.drop_front()) 2440 if (!II->isSameOperationAs(II0)) 2441 return false; 2442 2443 // Can we theoretically form the data operands for the merged `invoke`? 2444 auto IsIllegalToMergeArguments = [](auto Ops) { 2445 Use &U0 = std::get<0>(Ops); 2446 Use &U1 = std::get<1>(Ops); 2447 if (U0 == U1) 2448 return false; 2449 return U0->getType()->isTokenTy() || 2450 !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()), 2451 U0.getOperandNo()); 2452 }; 2453 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2454 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2455 IsIllegalToMergeArguments)) 2456 return false; 2457 2458 return true; 2459 } 2460 2461 } // namespace 2462 2463 // Merge all invokes in the provided set, all of which are compatible 2464 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2465 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2466 DomTreeUpdater *DTU) { 2467 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2468 2469 SmallVector<DominatorTree::UpdateType, 8> Updates; 2470 if (DTU) 2471 Updates.reserve(2 + 3 * Invokes.size()); 2472 2473 bool HasNormalDest = 2474 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2475 2476 // Clone one of the invokes into a new basic block. 2477 // Since they are all compatible, it doesn't matter which invoke is cloned. 2478 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2479 InvokeInst *II0 = Invokes.front(); 2480 BasicBlock *II0BB = II0->getParent(); 2481 BasicBlock *InsertBeforeBlock = 2482 II0->getParent()->getIterator()->getNextNode(); 2483 Function *Func = II0BB->getParent(); 2484 LLVMContext &Ctx = II0->getContext(); 2485 2486 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2487 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2488 2489 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2490 // NOTE: all invokes have the same attributes, so no handling needed. 2491 MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end()); 2492 2493 if (!HasNormalDest) { 2494 // This set does not have a normal destination, 2495 // so just form a new block with unreachable terminator. 2496 BasicBlock *MergedNormalDest = BasicBlock::Create( 2497 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2498 new UnreachableInst(Ctx, MergedNormalDest); 2499 MergedInvoke->setNormalDest(MergedNormalDest); 2500 } 2501 2502 // The unwind destination, however, remainds identical for all invokes here. 2503 2504 return MergedInvoke; 2505 }(); 2506 2507 if (DTU) { 2508 // Predecessor blocks that contained these invokes will now branch to 2509 // the new block that contains the merged invoke, ... 2510 for (InvokeInst *II : Invokes) 2511 Updates.push_back( 2512 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2513 2514 // ... which has the new `unreachable` block as normal destination, 2515 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2516 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2517 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2518 SuccBBOfMergedInvoke}); 2519 2520 // Since predecessor blocks now unconditionally branch to a new block, 2521 // they no longer branch to their original successors. 2522 for (InvokeInst *II : Invokes) 2523 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2524 Updates.push_back( 2525 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2526 } 2527 2528 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2529 2530 // Form the merged operands for the merged invoke. 2531 for (Use &U : MergedInvoke->operands()) { 2532 // Only PHI together the indirect callees and data operands. 2533 if (MergedInvoke->isCallee(&U)) { 2534 if (!IsIndirectCall) 2535 continue; 2536 } else if (!MergedInvoke->isDataOperand(&U)) 2537 continue; 2538 2539 // Don't create trivial PHI's with all-identical incoming values. 2540 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2541 return II->getOperand(U.getOperandNo()) != U.get(); 2542 }); 2543 if (!NeedPHI) 2544 continue; 2545 2546 // Form a PHI out of all the data ops under this index. 2547 PHINode *PN = PHINode::Create( 2548 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke); 2549 for (InvokeInst *II : Invokes) 2550 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2551 2552 U.set(PN); 2553 } 2554 2555 // We've ensured that each PHI node has compatible (identical) incoming values 2556 // when coming from each of the `invoke`s in the current merge set, 2557 // so update the PHI nodes accordingly. 2558 for (BasicBlock *Succ : successors(MergedInvoke)) 2559 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2560 /*ExistPred=*/Invokes.front()->getParent()); 2561 2562 // And finally, replace the original `invoke`s with an unconditional branch 2563 // to the block with the merged `invoke`. Also, give that merged `invoke` 2564 // the merged debugloc of all the original `invoke`s. 2565 DILocation *MergedDebugLoc = nullptr; 2566 for (InvokeInst *II : Invokes) { 2567 // Compute the debug location common to all the original `invoke`s. 2568 if (!MergedDebugLoc) 2569 MergedDebugLoc = II->getDebugLoc(); 2570 else 2571 MergedDebugLoc = 2572 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2573 2574 // And replace the old `invoke` with an unconditionally branch 2575 // to the block with the merged `invoke`. 2576 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2577 OrigSuccBB->removePredecessor(II->getParent()); 2578 BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2579 II->replaceAllUsesWith(MergedInvoke); 2580 II->eraseFromParent(); 2581 ++NumInvokesMerged; 2582 } 2583 MergedInvoke->setDebugLoc(MergedDebugLoc); 2584 ++NumInvokeSetsFormed; 2585 2586 if (DTU) 2587 DTU->applyUpdates(Updates); 2588 } 2589 2590 /// If this block is a `landingpad` exception handling block, categorize all 2591 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2592 /// being "mergeable" together, and then merge invokes in each set together. 2593 /// 2594 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2595 /// [...] [...] 2596 /// | | 2597 /// [invoke0] [invoke1] 2598 /// / \ / \ 2599 /// [cont0] [landingpad] [cont1] 2600 /// to: 2601 /// [...] [...] 2602 /// \ / 2603 /// [invoke] 2604 /// / \ 2605 /// [cont] [landingpad] 2606 /// 2607 /// But of course we can only do that if the invokes share the `landingpad`, 2608 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2609 /// and the invoked functions are "compatible". 2610 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2611 if (!EnableMergeCompatibleInvokes) 2612 return false; 2613 2614 bool Changed = false; 2615 2616 // FIXME: generalize to all exception handling blocks? 2617 if (!BB->isLandingPad()) 2618 return Changed; 2619 2620 CompatibleSets Grouper; 2621 2622 // Record all the predecessors of this `landingpad`. As per verifier, 2623 // the only allowed predecessor is the unwind edge of an `invoke`. 2624 // We want to group "compatible" `invokes` into the same set to be merged. 2625 for (BasicBlock *PredBB : predecessors(BB)) 2626 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 2627 2628 // And now, merge `invoke`s that were grouped togeter. 2629 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 2630 if (Invokes.size() < 2) 2631 continue; 2632 Changed = true; 2633 MergeCompatibleInvokesImpl(Invokes, DTU); 2634 } 2635 2636 return Changed; 2637 } 2638 2639 namespace { 2640 /// Track ephemeral values, which should be ignored for cost-modelling 2641 /// purposes. Requires walking instructions in reverse order. 2642 class EphemeralValueTracker { 2643 SmallPtrSet<const Instruction *, 32> EphValues; 2644 2645 bool isEphemeral(const Instruction *I) { 2646 if (isa<AssumeInst>(I)) 2647 return true; 2648 return !I->mayHaveSideEffects() && !I->isTerminator() && 2649 all_of(I->users(), [&](const User *U) { 2650 return EphValues.count(cast<Instruction>(U)); 2651 }); 2652 } 2653 2654 public: 2655 bool track(const Instruction *I) { 2656 if (isEphemeral(I)) { 2657 EphValues.insert(I); 2658 return true; 2659 } 2660 return false; 2661 } 2662 2663 bool contains(const Instruction *I) const { return EphValues.contains(I); } 2664 }; 2665 } // namespace 2666 2667 /// Determine if we can hoist sink a sole store instruction out of a 2668 /// conditional block. 2669 /// 2670 /// We are looking for code like the following: 2671 /// BrBB: 2672 /// store i32 %add, i32* %arrayidx2 2673 /// ... // No other stores or function calls (we could be calling a memory 2674 /// ... // function). 2675 /// %cmp = icmp ult %x, %y 2676 /// br i1 %cmp, label %EndBB, label %ThenBB 2677 /// ThenBB: 2678 /// store i32 %add5, i32* %arrayidx2 2679 /// br label EndBB 2680 /// EndBB: 2681 /// ... 2682 /// We are going to transform this into: 2683 /// BrBB: 2684 /// store i32 %add, i32* %arrayidx2 2685 /// ... // 2686 /// %cmp = icmp ult %x, %y 2687 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2688 /// store i32 %add.add5, i32* %arrayidx2 2689 /// ... 2690 /// 2691 /// \return The pointer to the value of the previous store if the store can be 2692 /// hoisted into the predecessor block. 0 otherwise. 2693 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2694 BasicBlock *StoreBB, BasicBlock *EndBB) { 2695 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2696 if (!StoreToHoist) 2697 return nullptr; 2698 2699 // Volatile or atomic. 2700 if (!StoreToHoist->isSimple()) 2701 return nullptr; 2702 2703 Value *StorePtr = StoreToHoist->getPointerOperand(); 2704 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 2705 2706 // Look for a store to the same pointer in BrBB. 2707 unsigned MaxNumInstToLookAt = 9; 2708 // Skip pseudo probe intrinsic calls which are not really killing any memory 2709 // accesses. 2710 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2711 if (!MaxNumInstToLookAt) 2712 break; 2713 --MaxNumInstToLookAt; 2714 2715 // Could be calling an instruction that affects memory like free(). 2716 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 2717 return nullptr; 2718 2719 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2720 // Found the previous store to same location and type. Make sure it is 2721 // simple, to avoid introducing a spurious non-atomic write after an 2722 // atomic write. 2723 if (SI->getPointerOperand() == StorePtr && 2724 SI->getValueOperand()->getType() == StoreTy && SI->isSimple()) 2725 // Found the previous store, return its value operand. 2726 return SI->getValueOperand(); 2727 return nullptr; // Unknown store. 2728 } 2729 2730 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 2731 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 2732 LI->isSimple()) { 2733 // Local objects (created by an `alloca` instruction) are always 2734 // writable, so once we are past a read from a location it is valid to 2735 // also write to that same location. 2736 // If the address of the local object never escapes the function, that 2737 // means it's never concurrently read or written, hence moving the store 2738 // from under the condition will not introduce a data race. 2739 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr)); 2740 if (AI && !PointerMayBeCaptured(AI, false, true)) 2741 // Found a previous load, return it. 2742 return LI; 2743 } 2744 // The load didn't work out, but we may still find a store. 2745 } 2746 } 2747 2748 return nullptr; 2749 } 2750 2751 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2752 /// converted to selects. 2753 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2754 BasicBlock *EndBB, 2755 unsigned &SpeculatedInstructions, 2756 InstructionCost &Cost, 2757 const TargetTransformInfo &TTI) { 2758 TargetTransformInfo::TargetCostKind CostKind = 2759 BB->getParent()->hasMinSize() 2760 ? TargetTransformInfo::TCK_CodeSize 2761 : TargetTransformInfo::TCK_SizeAndLatency; 2762 2763 bool HaveRewritablePHIs = false; 2764 for (PHINode &PN : EndBB->phis()) { 2765 Value *OrigV = PN.getIncomingValueForBlock(BB); 2766 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2767 2768 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2769 // Skip PHIs which are trivial. 2770 if (ThenV == OrigV) 2771 continue; 2772 2773 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2774 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2775 2776 // Don't convert to selects if we could remove undefined behavior instead. 2777 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2778 passingValueIsAlwaysUndefined(ThenV, &PN)) 2779 return false; 2780 2781 HaveRewritablePHIs = true; 2782 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2783 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2784 if (!OrigCE && !ThenCE) 2785 continue; // Known cheap (FIXME: Maybe not true for aggregates). 2786 2787 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2788 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2789 InstructionCost MaxCost = 2790 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2791 if (OrigCost + ThenCost > MaxCost) 2792 return false; 2793 2794 // Account for the cost of an unfolded ConstantExpr which could end up 2795 // getting expanded into Instructions. 2796 // FIXME: This doesn't account for how many operations are combined in the 2797 // constant expression. 2798 ++SpeculatedInstructions; 2799 if (SpeculatedInstructions > 1) 2800 return false; 2801 } 2802 2803 return HaveRewritablePHIs; 2804 } 2805 2806 /// Speculate a conditional basic block flattening the CFG. 2807 /// 2808 /// Note that this is a very risky transform currently. Speculating 2809 /// instructions like this is most often not desirable. Instead, there is an MI 2810 /// pass which can do it with full awareness of the resource constraints. 2811 /// However, some cases are "obvious" and we should do directly. An example of 2812 /// this is speculating a single, reasonably cheap instruction. 2813 /// 2814 /// There is only one distinct advantage to flattening the CFG at the IR level: 2815 /// it makes very common but simplistic optimizations such as are common in 2816 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2817 /// modeling their effects with easier to reason about SSA value graphs. 2818 /// 2819 /// 2820 /// An illustration of this transform is turning this IR: 2821 /// \code 2822 /// BB: 2823 /// %cmp = icmp ult %x, %y 2824 /// br i1 %cmp, label %EndBB, label %ThenBB 2825 /// ThenBB: 2826 /// %sub = sub %x, %y 2827 /// br label BB2 2828 /// EndBB: 2829 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2830 /// ... 2831 /// \endcode 2832 /// 2833 /// Into this IR: 2834 /// \code 2835 /// BB: 2836 /// %cmp = icmp ult %x, %y 2837 /// %sub = sub %x, %y 2838 /// %cond = select i1 %cmp, 0, %sub 2839 /// ... 2840 /// \endcode 2841 /// 2842 /// \returns true if the conditional block is removed. 2843 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, 2844 BasicBlock *ThenBB) { 2845 if (!Options.SpeculateBlocks) 2846 return false; 2847 2848 // Be conservative for now. FP select instruction can often be expensive. 2849 Value *BrCond = BI->getCondition(); 2850 if (isa<FCmpInst>(BrCond)) 2851 return false; 2852 2853 BasicBlock *BB = BI->getParent(); 2854 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2855 InstructionCost Budget = 2856 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2857 2858 // If ThenBB is actually on the false edge of the conditional branch, remember 2859 // to swap the select operands later. 2860 bool Invert = false; 2861 if (ThenBB != BI->getSuccessor(0)) { 2862 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2863 Invert = true; 2864 } 2865 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2866 2867 // If the branch is non-unpredictable, and is predicted to *not* branch to 2868 // the `then` block, then avoid speculating it. 2869 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) { 2870 uint64_t TWeight, FWeight; 2871 if (extractBranchWeights(*BI, TWeight, FWeight) && 2872 (TWeight + FWeight) != 0) { 2873 uint64_t EndWeight = Invert ? TWeight : FWeight; 2874 BranchProbability BIEndProb = 2875 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 2876 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 2877 if (BIEndProb >= Likely) 2878 return false; 2879 } 2880 } 2881 2882 // Keep a count of how many times instructions are used within ThenBB when 2883 // they are candidates for sinking into ThenBB. Specifically: 2884 // - They are defined in BB, and 2885 // - They have no side effects, and 2886 // - All of their uses are in ThenBB. 2887 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2888 2889 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2890 2891 unsigned SpeculatedInstructions = 0; 2892 Value *SpeculatedStoreValue = nullptr; 2893 StoreInst *SpeculatedStore = nullptr; 2894 EphemeralValueTracker EphTracker; 2895 for (Instruction &I : reverse(drop_end(*ThenBB))) { 2896 // Skip debug info. 2897 if (isa<DbgInfoIntrinsic>(I)) { 2898 SpeculatedDbgIntrinsics.push_back(&I); 2899 continue; 2900 } 2901 2902 // Skip pseudo probes. The consequence is we lose track of the branch 2903 // probability for ThenBB, which is fine since the optimization here takes 2904 // place regardless of the branch probability. 2905 if (isa<PseudoProbeInst>(I)) { 2906 // The probe should be deleted so that it will not be over-counted when 2907 // the samples collected on the non-conditional path are counted towards 2908 // the conditional path. We leave it for the counts inference algorithm to 2909 // figure out a proper count for an unknown probe. 2910 SpeculatedDbgIntrinsics.push_back(&I); 2911 continue; 2912 } 2913 2914 // Ignore ephemeral values, they will be dropped by the transform. 2915 if (EphTracker.track(&I)) 2916 continue; 2917 2918 // Only speculatively execute a single instruction (not counting the 2919 // terminator) for now. 2920 ++SpeculatedInstructions; 2921 if (SpeculatedInstructions > 1) 2922 return false; 2923 2924 // Don't hoist the instruction if it's unsafe or expensive. 2925 if (!isSafeToSpeculativelyExecute(&I) && 2926 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2927 &I, BB, ThenBB, EndBB)))) 2928 return false; 2929 if (!SpeculatedStoreValue && 2930 computeSpeculationCost(&I, TTI) > 2931 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2932 return false; 2933 2934 // Store the store speculation candidate. 2935 if (SpeculatedStoreValue) 2936 SpeculatedStore = cast<StoreInst>(&I); 2937 2938 // Do not hoist the instruction if any of its operands are defined but not 2939 // used in BB. The transformation will prevent the operand from 2940 // being sunk into the use block. 2941 for (Use &Op : I.operands()) { 2942 Instruction *OpI = dyn_cast<Instruction>(Op); 2943 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2944 continue; // Not a candidate for sinking. 2945 2946 ++SinkCandidateUseCounts[OpI]; 2947 } 2948 } 2949 2950 // Consider any sink candidates which are only used in ThenBB as costs for 2951 // speculation. Note, while we iterate over a DenseMap here, we are summing 2952 // and so iteration order isn't significant. 2953 for (const auto &[Inst, Count] : SinkCandidateUseCounts) 2954 if (Inst->hasNUses(Count)) { 2955 ++SpeculatedInstructions; 2956 if (SpeculatedInstructions > 1) 2957 return false; 2958 } 2959 2960 // Check that we can insert the selects and that it's not too expensive to do 2961 // so. 2962 bool Convert = SpeculatedStore != nullptr; 2963 InstructionCost Cost = 0; 2964 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2965 SpeculatedInstructions, 2966 Cost, TTI); 2967 if (!Convert || Cost > Budget) 2968 return false; 2969 2970 // If we get here, we can hoist the instruction and if-convert. 2971 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2972 2973 // Insert a select of the value of the speculated store. 2974 if (SpeculatedStoreValue) { 2975 IRBuilder<NoFolder> Builder(BI); 2976 Value *OrigV = SpeculatedStore->getValueOperand(); 2977 Value *TrueV = SpeculatedStore->getValueOperand(); 2978 Value *FalseV = SpeculatedStoreValue; 2979 if (Invert) 2980 std::swap(TrueV, FalseV); 2981 Value *S = Builder.CreateSelect( 2982 BrCond, TrueV, FalseV, "spec.store.select", BI); 2983 SpeculatedStore->setOperand(0, S); 2984 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2985 SpeculatedStore->getDebugLoc()); 2986 // The value stored is still conditional, but the store itself is now 2987 // unconditonally executed, so we must be sure that any linked dbg.assign 2988 // intrinsics are tracking the new stored value (the result of the 2989 // select). If we don't, and the store were to be removed by another pass 2990 // (e.g. DSE), then we'd eventually end up emitting a location describing 2991 // the conditional value, unconditionally. 2992 // 2993 // === Before this transformation === 2994 // pred: 2995 // store %one, %x.dest, !DIAssignID !1 2996 // dbg.assign %one, "x", ..., !1, ... 2997 // br %cond if.then 2998 // 2999 // if.then: 3000 // store %two, %x.dest, !DIAssignID !2 3001 // dbg.assign %two, "x", ..., !2, ... 3002 // 3003 // === After this transformation === 3004 // pred: 3005 // store %one, %x.dest, !DIAssignID !1 3006 // dbg.assign %one, "x", ..., !1 3007 /// ... 3008 // %merge = select %cond, %two, %one 3009 // store %merge, %x.dest, !DIAssignID !2 3010 // dbg.assign %merge, "x", ..., !2 3011 for (auto *DAI : at::getAssignmentMarkers(SpeculatedStore)) { 3012 if (any_of(DAI->location_ops(), [&](Value *V) { return V == OrigV; })) 3013 DAI->replaceVariableLocationOp(OrigV, S); 3014 } 3015 } 3016 3017 // Metadata can be dependent on the condition we are hoisting above. 3018 // Strip all UB-implying metadata on the instruction. Drop the debug loc 3019 // to avoid making it appear as if the condition is a constant, which would 3020 // be misleading while debugging. 3021 // Similarly strip attributes that maybe dependent on condition we are 3022 // hoisting above. 3023 for (auto &I : make_early_inc_range(*ThenBB)) { 3024 if (!SpeculatedStoreValue || &I != SpeculatedStore) { 3025 // Don't update the DILocation of dbg.assign intrinsics. 3026 if (!isa<DbgAssignIntrinsic>(&I)) 3027 I.setDebugLoc(DebugLoc()); 3028 } 3029 I.dropUBImplyingAttrsAndMetadata(); 3030 3031 // Drop ephemeral values. 3032 if (EphTracker.contains(&I)) { 3033 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 3034 I.eraseFromParent(); 3035 } 3036 } 3037 3038 // Hoist the instructions. 3039 BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(), 3040 std::prev(ThenBB->end())); 3041 3042 // Insert selects and rewrite the PHI operands. 3043 IRBuilder<NoFolder> Builder(BI); 3044 for (PHINode &PN : EndBB->phis()) { 3045 unsigned OrigI = PN.getBasicBlockIndex(BB); 3046 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 3047 Value *OrigV = PN.getIncomingValue(OrigI); 3048 Value *ThenV = PN.getIncomingValue(ThenI); 3049 3050 // Skip PHIs which are trivial. 3051 if (OrigV == ThenV) 3052 continue; 3053 3054 // Create a select whose true value is the speculatively executed value and 3055 // false value is the pre-existing value. Swap them if the branch 3056 // destinations were inverted. 3057 Value *TrueV = ThenV, *FalseV = OrigV; 3058 if (Invert) 3059 std::swap(TrueV, FalseV); 3060 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 3061 PN.setIncomingValue(OrigI, V); 3062 PN.setIncomingValue(ThenI, V); 3063 } 3064 3065 // Remove speculated dbg intrinsics. 3066 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 3067 // dbg value for the different flows and inserting it after the select. 3068 for (Instruction *I : SpeculatedDbgIntrinsics) { 3069 // We still want to know that an assignment took place so don't remove 3070 // dbg.assign intrinsics. 3071 if (!isa<DbgAssignIntrinsic>(I)) 3072 I->eraseFromParent(); 3073 } 3074 3075 ++NumSpeculations; 3076 return true; 3077 } 3078 3079 /// Return true if we can thread a branch across this block. 3080 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 3081 int Size = 0; 3082 EphemeralValueTracker EphTracker; 3083 3084 // Walk the loop in reverse so that we can identify ephemeral values properly 3085 // (values only feeding assumes). 3086 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 3087 // Can't fold blocks that contain noduplicate or convergent calls. 3088 if (CallInst *CI = dyn_cast<CallInst>(&I)) 3089 if (CI->cannotDuplicate() || CI->isConvergent()) 3090 return false; 3091 3092 // Ignore ephemeral values which are deleted during codegen. 3093 // We will delete Phis while threading, so Phis should not be accounted in 3094 // block's size. 3095 if (!EphTracker.track(&I) && !isa<PHINode>(I)) { 3096 if (Size++ > MaxSmallBlockSize) 3097 return false; // Don't clone large BB's. 3098 } 3099 3100 // We can only support instructions that do not define values that are 3101 // live outside of the current basic block. 3102 for (User *U : I.users()) { 3103 Instruction *UI = cast<Instruction>(U); 3104 if (UI->getParent() != BB || isa<PHINode>(UI)) 3105 return false; 3106 } 3107 3108 // Looks ok, continue checking. 3109 } 3110 3111 return true; 3112 } 3113 3114 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From, 3115 BasicBlock *To) { 3116 // Don't look past the block defining the value, we might get the value from 3117 // a previous loop iteration. 3118 auto *I = dyn_cast<Instruction>(V); 3119 if (I && I->getParent() == To) 3120 return nullptr; 3121 3122 // We know the value if the From block branches on it. 3123 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 3124 if (BI && BI->isConditional() && BI->getCondition() == V && 3125 BI->getSuccessor(0) != BI->getSuccessor(1)) 3126 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext()) 3127 : ConstantInt::getFalse(BI->getContext()); 3128 3129 return nullptr; 3130 } 3131 3132 /// If we have a conditional branch on something for which we know the constant 3133 /// value in predecessors (e.g. a phi node in the current block), thread edges 3134 /// from the predecessor to their ultimate destination. 3135 static std::optional<bool> 3136 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU, 3137 const DataLayout &DL, 3138 AssumptionCache *AC) { 3139 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues; 3140 BasicBlock *BB = BI->getParent(); 3141 Value *Cond = BI->getCondition(); 3142 PHINode *PN = dyn_cast<PHINode>(Cond); 3143 if (PN && PN->getParent() == BB) { 3144 // Degenerate case of a single entry PHI. 3145 if (PN->getNumIncomingValues() == 1) { 3146 FoldSingleEntryPHINodes(PN->getParent()); 3147 return true; 3148 } 3149 3150 for (Use &U : PN->incoming_values()) 3151 if (auto *CB = dyn_cast<ConstantInt>(U)) 3152 KnownValues[CB].insert(PN->getIncomingBlock(U)); 3153 } else { 3154 for (BasicBlock *Pred : predecessors(BB)) { 3155 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB)) 3156 KnownValues[CB].insert(Pred); 3157 } 3158 } 3159 3160 if (KnownValues.empty()) 3161 return false; 3162 3163 // Now we know that this block has multiple preds and two succs. 3164 // Check that the block is small enough and values defined in the block are 3165 // not used outside of it. 3166 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 3167 return false; 3168 3169 for (const auto &Pair : KnownValues) { 3170 // Okay, we now know that all edges from PredBB should be revectored to 3171 // branch to RealDest. 3172 ConstantInt *CB = Pair.first; 3173 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef(); 3174 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3175 3176 if (RealDest == BB) 3177 continue; // Skip self loops. 3178 3179 // Skip if the predecessor's terminator is an indirect branch. 3180 if (any_of(PredBBs, [](BasicBlock *PredBB) { 3181 return isa<IndirectBrInst>(PredBB->getTerminator()); 3182 })) 3183 continue; 3184 3185 LLVM_DEBUG({ 3186 dbgs() << "Condition " << *Cond << " in " << BB->getName() 3187 << " has value " << *Pair.first << " in predecessors:\n"; 3188 for (const BasicBlock *PredBB : Pair.second) 3189 dbgs() << " " << PredBB->getName() << "\n"; 3190 dbgs() << "Threading to destination " << RealDest->getName() << ".\n"; 3191 }); 3192 3193 // Split the predecessors we are threading into a new edge block. We'll 3194 // clone the instructions into this block, and then redirect it to RealDest. 3195 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU); 3196 3197 // TODO: These just exist to reduce test diff, we can drop them if we like. 3198 EdgeBB->setName(RealDest->getName() + ".critedge"); 3199 EdgeBB->moveBefore(RealDest); 3200 3201 // Update PHI nodes. 3202 AddPredecessorToBlock(RealDest, EdgeBB, BB); 3203 3204 // BB may have instructions that are being threaded over. Clone these 3205 // instructions into EdgeBB. We know that there will be no uses of the 3206 // cloned instructions outside of EdgeBB. 3207 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt(); 3208 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3209 TranslateMap[Cond] = CB; 3210 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3211 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3212 TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB); 3213 continue; 3214 } 3215 // Clone the instruction. 3216 Instruction *N = BBI->clone(); 3217 // Insert the new instruction into its new home. 3218 N->insertInto(EdgeBB, InsertPt); 3219 3220 if (BBI->hasName()) 3221 N->setName(BBI->getName() + ".c"); 3222 3223 // Update operands due to translation. 3224 for (Use &Op : N->operands()) { 3225 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3226 if (PI != TranslateMap.end()) 3227 Op = PI->second; 3228 } 3229 3230 // Check for trivial simplification. 3231 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3232 if (!BBI->use_empty()) 3233 TranslateMap[&*BBI] = V; 3234 if (!N->mayHaveSideEffects()) { 3235 N->eraseFromParent(); // Instruction folded away, don't need actual 3236 // inst 3237 N = nullptr; 3238 } 3239 } else { 3240 if (!BBI->use_empty()) 3241 TranslateMap[&*BBI] = N; 3242 } 3243 if (N) { 3244 // Register the new instruction with the assumption cache if necessary. 3245 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3246 if (AC) 3247 AC->registerAssumption(Assume); 3248 } 3249 } 3250 3251 BB->removePredecessor(EdgeBB); 3252 BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator()); 3253 EdgeBI->setSuccessor(0, RealDest); 3254 EdgeBI->setDebugLoc(BI->getDebugLoc()); 3255 3256 if (DTU) { 3257 SmallVector<DominatorTree::UpdateType, 2> Updates; 3258 Updates.push_back({DominatorTree::Delete, EdgeBB, BB}); 3259 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3260 DTU->applyUpdates(Updates); 3261 } 3262 3263 // For simplicity, we created a separate basic block for the edge. Merge 3264 // it back into the predecessor if possible. This not only avoids 3265 // unnecessary SimplifyCFG iterations, but also makes sure that we don't 3266 // bypass the check for trivial cycles above. 3267 MergeBlockIntoPredecessor(EdgeBB, DTU); 3268 3269 // Signal repeat, simplifying any other constants. 3270 return std::nullopt; 3271 } 3272 3273 return false; 3274 } 3275 3276 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI, 3277 DomTreeUpdater *DTU, 3278 const DataLayout &DL, 3279 AssumptionCache *AC) { 3280 std::optional<bool> Result; 3281 bool EverChanged = false; 3282 do { 3283 // Note that None means "we changed things, but recurse further." 3284 Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC); 3285 EverChanged |= Result == std::nullopt || *Result; 3286 } while (Result == std::nullopt); 3287 return EverChanged; 3288 } 3289 3290 /// Given a BB that starts with the specified two-entry PHI node, 3291 /// see if we can eliminate it. 3292 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3293 DomTreeUpdater *DTU, const DataLayout &DL) { 3294 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3295 // statement", which has a very simple dominance structure. Basically, we 3296 // are trying to find the condition that is being branched on, which 3297 // subsequently causes this merge to happen. We really want control 3298 // dependence information for this check, but simplifycfg can't keep it up 3299 // to date, and this catches most of the cases we care about anyway. 3300 BasicBlock *BB = PN->getParent(); 3301 3302 BasicBlock *IfTrue, *IfFalse; 3303 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3304 if (!DomBI) 3305 return false; 3306 Value *IfCond = DomBI->getCondition(); 3307 // Don't bother if the branch will be constant folded trivially. 3308 if (isa<ConstantInt>(IfCond)) 3309 return false; 3310 3311 BasicBlock *DomBlock = DomBI->getParent(); 3312 SmallVector<BasicBlock *, 2> IfBlocks; 3313 llvm::copy_if( 3314 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3315 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3316 }); 3317 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3318 "Will have either one or two blocks to speculate."); 3319 3320 // If the branch is non-unpredictable, see if we either predictably jump to 3321 // the merge bb (if we have only a single 'then' block), or if we predictably 3322 // jump to one specific 'then' block (if we have two of them). 3323 // It isn't beneficial to speculatively execute the code 3324 // from the block that we know is predictably not entered. 3325 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) { 3326 uint64_t TWeight, FWeight; 3327 if (extractBranchWeights(*DomBI, TWeight, FWeight) && 3328 (TWeight + FWeight) != 0) { 3329 BranchProbability BITrueProb = 3330 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3331 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3332 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3333 if (IfBlocks.size() == 1) { 3334 BranchProbability BIBBProb = 3335 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3336 if (BIBBProb >= Likely) 3337 return false; 3338 } else { 3339 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3340 return false; 3341 } 3342 } 3343 } 3344 3345 // Don't try to fold an unreachable block. For example, the phi node itself 3346 // can't be the candidate if-condition for a select that we want to form. 3347 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3348 if (IfCondPhiInst->getParent() == BB) 3349 return false; 3350 3351 // Okay, we found that we can merge this two-entry phi node into a select. 3352 // Doing so would require us to fold *all* two entry phi nodes in this block. 3353 // At some point this becomes non-profitable (particularly if the target 3354 // doesn't support cmov's). Only do this transformation if there are two or 3355 // fewer PHI nodes in this block. 3356 unsigned NumPhis = 0; 3357 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3358 if (NumPhis > 2) 3359 return false; 3360 3361 // Loop over the PHI's seeing if we can promote them all to select 3362 // instructions. While we are at it, keep track of the instructions 3363 // that need to be moved to the dominating block. 3364 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3365 InstructionCost Cost = 0; 3366 InstructionCost Budget = 3367 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3368 3369 bool Changed = false; 3370 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3371 PHINode *PN = cast<PHINode>(II++); 3372 if (Value *V = simplifyInstruction(PN, {DL, PN})) { 3373 PN->replaceAllUsesWith(V); 3374 PN->eraseFromParent(); 3375 Changed = true; 3376 continue; 3377 } 3378 3379 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 3380 Cost, Budget, TTI) || 3381 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 3382 Cost, Budget, TTI)) 3383 return Changed; 3384 } 3385 3386 // If we folded the first phi, PN dangles at this point. Refresh it. If 3387 // we ran out of PHIs then we simplified them all. 3388 PN = dyn_cast<PHINode>(BB->begin()); 3389 if (!PN) 3390 return true; 3391 3392 // Return true if at least one of these is a 'not', and another is either 3393 // a 'not' too, or a constant. 3394 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3395 if (!match(V0, m_Not(m_Value()))) 3396 std::swap(V0, V1); 3397 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3398 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3399 }; 3400 3401 // Don't fold i1 branches on PHIs which contain binary operators or 3402 // (possibly inverted) select form of or/ands, unless one of 3403 // the incoming values is an 'not' and another one is freely invertible. 3404 // These can often be turned into switches and other things. 3405 auto IsBinOpOrAnd = [](Value *V) { 3406 return match( 3407 V, m_CombineOr( 3408 m_BinOp(), 3409 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 3410 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 3411 }; 3412 if (PN->getType()->isIntegerTy(1) && 3413 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3414 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3415 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3416 PN->getIncomingValue(1))) 3417 return Changed; 3418 3419 // If all PHI nodes are promotable, check to make sure that all instructions 3420 // in the predecessor blocks can be promoted as well. If not, we won't be able 3421 // to get rid of the control flow, so it's not worth promoting to select 3422 // instructions. 3423 for (BasicBlock *IfBlock : IfBlocks) 3424 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3425 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3426 // This is not an aggressive instruction that we can promote. 3427 // Because of this, we won't be able to get rid of the control flow, so 3428 // the xform is not worth it. 3429 return Changed; 3430 } 3431 3432 // If either of the blocks has it's address taken, we can't do this fold. 3433 if (any_of(IfBlocks, 3434 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3435 return Changed; 3436 3437 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 3438 << " T: " << IfTrue->getName() 3439 << " F: " << IfFalse->getName() << "\n"); 3440 3441 // If we can still promote the PHI nodes after this gauntlet of tests, 3442 // do all of the PHI's now. 3443 3444 // Move all 'aggressive' instructions, which are defined in the 3445 // conditional parts of the if's up to the dominating block. 3446 for (BasicBlock *IfBlock : IfBlocks) 3447 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3448 3449 IRBuilder<NoFolder> Builder(DomBI); 3450 // Propagate fast-math-flags from phi nodes to replacement selects. 3451 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 3452 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3453 if (isa<FPMathOperator>(PN)) 3454 Builder.setFastMathFlags(PN->getFastMathFlags()); 3455 3456 // Change the PHI node into a select instruction. 3457 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3458 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3459 3460 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 3461 PN->replaceAllUsesWith(Sel); 3462 Sel->takeName(PN); 3463 PN->eraseFromParent(); 3464 } 3465 3466 // At this point, all IfBlocks are empty, so our if statement 3467 // has been flattened. Change DomBlock to jump directly to our new block to 3468 // avoid other simplifycfg's kicking in on the diamond. 3469 Builder.CreateBr(BB); 3470 3471 SmallVector<DominatorTree::UpdateType, 3> Updates; 3472 if (DTU) { 3473 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3474 for (auto *Successor : successors(DomBlock)) 3475 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3476 } 3477 3478 DomBI->eraseFromParent(); 3479 if (DTU) 3480 DTU->applyUpdates(Updates); 3481 3482 return true; 3483 } 3484 3485 static Value *createLogicalOp(IRBuilderBase &Builder, 3486 Instruction::BinaryOps Opc, Value *LHS, 3487 Value *RHS, const Twine &Name = "") { 3488 // Try to relax logical op to binary op. 3489 if (impliesPoison(RHS, LHS)) 3490 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3491 if (Opc == Instruction::And) 3492 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3493 if (Opc == Instruction::Or) 3494 return Builder.CreateLogicalOr(LHS, RHS, Name); 3495 llvm_unreachable("Invalid logical opcode"); 3496 } 3497 3498 /// Return true if either PBI or BI has branch weight available, and store 3499 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3500 /// not have branch weight, use 1:1 as its weight. 3501 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3502 uint64_t &PredTrueWeight, 3503 uint64_t &PredFalseWeight, 3504 uint64_t &SuccTrueWeight, 3505 uint64_t &SuccFalseWeight) { 3506 bool PredHasWeights = 3507 extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight); 3508 bool SuccHasWeights = 3509 extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight); 3510 if (PredHasWeights || SuccHasWeights) { 3511 if (!PredHasWeights) 3512 PredTrueWeight = PredFalseWeight = 1; 3513 if (!SuccHasWeights) 3514 SuccTrueWeight = SuccFalseWeight = 1; 3515 return true; 3516 } else { 3517 return false; 3518 } 3519 } 3520 3521 /// Determine if the two branches share a common destination and deduce a glue 3522 /// that joins the branches' conditions to arrive at the common destination if 3523 /// that would be profitable. 3524 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>> 3525 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3526 const TargetTransformInfo *TTI) { 3527 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3528 "Both blocks must end with a conditional branches."); 3529 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3530 "PredBB must be a predecessor of BB."); 3531 3532 // We have the potential to fold the conditions together, but if the 3533 // predecessor branch is predictable, we may not want to merge them. 3534 uint64_t PTWeight, PFWeight; 3535 BranchProbability PBITrueProb, Likely; 3536 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3537 extractBranchWeights(*PBI, PTWeight, PFWeight) && 3538 (PTWeight + PFWeight) != 0) { 3539 PBITrueProb = 3540 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3541 Likely = TTI->getPredictableBranchThreshold(); 3542 } 3543 3544 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3545 // Speculate the 2nd condition unless the 1st is probably true. 3546 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3547 return {{BI->getSuccessor(0), Instruction::Or, false}}; 3548 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3549 // Speculate the 2nd condition unless the 1st is probably false. 3550 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3551 return {{BI->getSuccessor(1), Instruction::And, false}}; 3552 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3553 // Speculate the 2nd condition unless the 1st is probably true. 3554 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3555 return {{BI->getSuccessor(1), Instruction::And, true}}; 3556 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3557 // Speculate the 2nd condition unless the 1st is probably false. 3558 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3559 return {{BI->getSuccessor(0), Instruction::Or, true}}; 3560 } 3561 return std::nullopt; 3562 } 3563 3564 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3565 DomTreeUpdater *DTU, 3566 MemorySSAUpdater *MSSAU, 3567 const TargetTransformInfo *TTI) { 3568 BasicBlock *BB = BI->getParent(); 3569 BasicBlock *PredBlock = PBI->getParent(); 3570 3571 // Determine if the two branches share a common destination. 3572 BasicBlock *CommonSucc; 3573 Instruction::BinaryOps Opc; 3574 bool InvertPredCond; 3575 std::tie(CommonSucc, Opc, InvertPredCond) = 3576 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3577 3578 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3579 3580 IRBuilder<> Builder(PBI); 3581 // The builder is used to create instructions to eliminate the branch in BB. 3582 // If BB's terminator has !annotation metadata, add it to the new 3583 // instructions. 3584 Builder.CollectMetadataToCopy(BB->getTerminator(), 3585 {LLVMContext::MD_annotation}); 3586 3587 // If we need to invert the condition in the pred block to match, do so now. 3588 if (InvertPredCond) { 3589 InvertBranch(PBI, Builder); 3590 } 3591 3592 BasicBlock *UniqueSucc = 3593 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3594 3595 // Before cloning instructions, notify the successor basic block that it 3596 // is about to have a new predecessor. This will update PHI nodes, 3597 // which will allow us to update live-out uses of bonus instructions. 3598 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3599 3600 // Try to update branch weights. 3601 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3602 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3603 SuccTrueWeight, SuccFalseWeight)) { 3604 SmallVector<uint64_t, 8> NewWeights; 3605 3606 if (PBI->getSuccessor(0) == BB) { 3607 // PBI: br i1 %x, BB, FalseDest 3608 // BI: br i1 %y, UniqueSucc, FalseDest 3609 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3610 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3611 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3612 // TrueWeight for PBI * FalseWeight for BI. 3613 // We assume that total weights of a BranchInst can fit into 32 bits. 3614 // Therefore, we will not have overflow using 64-bit arithmetic. 3615 NewWeights.push_back(PredFalseWeight * 3616 (SuccFalseWeight + SuccTrueWeight) + 3617 PredTrueWeight * SuccFalseWeight); 3618 } else { 3619 // PBI: br i1 %x, TrueDest, BB 3620 // BI: br i1 %y, TrueDest, UniqueSucc 3621 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3622 // FalseWeight for PBI * TrueWeight for BI. 3623 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3624 PredFalseWeight * SuccTrueWeight); 3625 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3626 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3627 } 3628 3629 // Halve the weights if any of them cannot fit in an uint32_t 3630 FitWeights(NewWeights); 3631 3632 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3633 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3634 3635 // TODO: If BB is reachable from all paths through PredBlock, then we 3636 // could replace PBI's branch probabilities with BI's. 3637 } else 3638 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3639 3640 // Now, update the CFG. 3641 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3642 3643 if (DTU) 3644 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3645 {DominatorTree::Delete, PredBlock, BB}}); 3646 3647 // If BI was a loop latch, it may have had associated loop metadata. 3648 // We need to copy it to the new latch, that is, PBI. 3649 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3650 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3651 3652 ValueToValueMapTy VMap; // maps original values to cloned values 3653 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3654 3655 // Now that the Cond was cloned into the predecessor basic block, 3656 // or/and the two conditions together. 3657 Value *BICond = VMap[BI->getCondition()]; 3658 PBI->setCondition( 3659 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3660 3661 // Copy any debug value intrinsics into the end of PredBlock. 3662 for (Instruction &I : *BB) { 3663 if (isa<DbgInfoIntrinsic>(I)) { 3664 Instruction *NewI = I.clone(); 3665 RemapInstruction(NewI, VMap, 3666 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3667 NewI->insertBefore(PBI); 3668 } 3669 } 3670 3671 ++NumFoldBranchToCommonDest; 3672 return true; 3673 } 3674 3675 /// Return if an instruction's type or any of its operands' types are a vector 3676 /// type. 3677 static bool isVectorOp(Instruction &I) { 3678 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 3679 return U->getType()->isVectorTy(); 3680 }); 3681 } 3682 3683 /// If this basic block is simple enough, and if a predecessor branches to us 3684 /// and one of our successors, fold the block into the predecessor and use 3685 /// logical operations to pick the right destination. 3686 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3687 MemorySSAUpdater *MSSAU, 3688 const TargetTransformInfo *TTI, 3689 unsigned BonusInstThreshold) { 3690 // If this block ends with an unconditional branch, 3691 // let SpeculativelyExecuteBB() deal with it. 3692 if (!BI->isConditional()) 3693 return false; 3694 3695 BasicBlock *BB = BI->getParent(); 3696 TargetTransformInfo::TargetCostKind CostKind = 3697 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3698 : TargetTransformInfo::TCK_SizeAndLatency; 3699 3700 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3701 3702 if (!Cond || 3703 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && 3704 !isa<SelectInst>(Cond)) || 3705 Cond->getParent() != BB || !Cond->hasOneUse()) 3706 return false; 3707 3708 // Finally, don't infinitely unroll conditional loops. 3709 if (is_contained(successors(BB), BB)) 3710 return false; 3711 3712 // With which predecessors will we want to deal with? 3713 SmallVector<BasicBlock *, 8> Preds; 3714 for (BasicBlock *PredBlock : predecessors(BB)) { 3715 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3716 3717 // Check that we have two conditional branches. If there is a PHI node in 3718 // the common successor, verify that the same value flows in from both 3719 // blocks. 3720 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3721 continue; 3722 3723 // Determine if the two branches share a common destination. 3724 BasicBlock *CommonSucc; 3725 Instruction::BinaryOps Opc; 3726 bool InvertPredCond; 3727 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3728 std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe; 3729 else 3730 continue; 3731 3732 // Check the cost of inserting the necessary logic before performing the 3733 // transformation. 3734 if (TTI) { 3735 Type *Ty = BI->getCondition()->getType(); 3736 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3737 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3738 !isa<CmpInst>(PBI->getCondition()))) 3739 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3740 3741 if (Cost > BranchFoldThreshold) 3742 continue; 3743 } 3744 3745 // Ok, we do want to deal with this predecessor. Record it. 3746 Preds.emplace_back(PredBlock); 3747 } 3748 3749 // If there aren't any predecessors into which we can fold, 3750 // don't bother checking the cost. 3751 if (Preds.empty()) 3752 return false; 3753 3754 // Only allow this transformation if computing the condition doesn't involve 3755 // too many instructions and these involved instructions can be executed 3756 // unconditionally. We denote all involved instructions except the condition 3757 // as "bonus instructions", and only allow this transformation when the 3758 // number of the bonus instructions we'll need to create when cloning into 3759 // each predecessor does not exceed a certain threshold. 3760 unsigned NumBonusInsts = 0; 3761 bool SawVectorOp = false; 3762 const unsigned PredCount = Preds.size(); 3763 for (Instruction &I : *BB) { 3764 // Don't check the branch condition comparison itself. 3765 if (&I == Cond) 3766 continue; 3767 // Ignore dbg intrinsics, and the terminator. 3768 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3769 continue; 3770 // I must be safe to execute unconditionally. 3771 if (!isSafeToSpeculativelyExecute(&I)) 3772 return false; 3773 SawVectorOp |= isVectorOp(I); 3774 3775 // Account for the cost of duplicating this instruction into each 3776 // predecessor. Ignore free instructions. 3777 if (!TTI || TTI->getInstructionCost(&I, CostKind) != 3778 TargetTransformInfo::TCC_Free) { 3779 NumBonusInsts += PredCount; 3780 3781 // Early exits once we reach the limit. 3782 if (NumBonusInsts > 3783 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 3784 return false; 3785 } 3786 3787 auto IsBCSSAUse = [BB, &I](Use &U) { 3788 auto *UI = cast<Instruction>(U.getUser()); 3789 if (auto *PN = dyn_cast<PHINode>(UI)) 3790 return PN->getIncomingBlock(U) == BB; 3791 return UI->getParent() == BB && I.comesBefore(UI); 3792 }; 3793 3794 // Does this instruction require rewriting of uses? 3795 if (!all_of(I.uses(), IsBCSSAUse)) 3796 return false; 3797 } 3798 if (NumBonusInsts > 3799 BonusInstThreshold * 3800 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 3801 return false; 3802 3803 // Ok, we have the budget. Perform the transformation. 3804 for (BasicBlock *PredBlock : Preds) { 3805 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3806 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3807 } 3808 return false; 3809 } 3810 3811 // If there is only one store in BB1 and BB2, return it, otherwise return 3812 // nullptr. 3813 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3814 StoreInst *S = nullptr; 3815 for (auto *BB : {BB1, BB2}) { 3816 if (!BB) 3817 continue; 3818 for (auto &I : *BB) 3819 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3820 if (S) 3821 // Multiple stores seen. 3822 return nullptr; 3823 else 3824 S = SI; 3825 } 3826 } 3827 return S; 3828 } 3829 3830 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3831 Value *AlternativeV = nullptr) { 3832 // PHI is going to be a PHI node that allows the value V that is defined in 3833 // BB to be referenced in BB's only successor. 3834 // 3835 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3836 // doesn't matter to us what the other operand is (it'll never get used). We 3837 // could just create a new PHI with an undef incoming value, but that could 3838 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3839 // other PHI. So here we directly look for some PHI in BB's successor with V 3840 // as an incoming operand. If we find one, we use it, else we create a new 3841 // one. 3842 // 3843 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3844 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3845 // where OtherBB is the single other predecessor of BB's only successor. 3846 PHINode *PHI = nullptr; 3847 BasicBlock *Succ = BB->getSingleSuccessor(); 3848 3849 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3850 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3851 PHI = cast<PHINode>(I); 3852 if (!AlternativeV) 3853 break; 3854 3855 assert(Succ->hasNPredecessors(2)); 3856 auto PredI = pred_begin(Succ); 3857 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3858 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3859 break; 3860 PHI = nullptr; 3861 } 3862 if (PHI) 3863 return PHI; 3864 3865 // If V is not an instruction defined in BB, just return it. 3866 if (!AlternativeV && 3867 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3868 return V; 3869 3870 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3871 PHI->addIncoming(V, BB); 3872 for (BasicBlock *PredBB : predecessors(Succ)) 3873 if (PredBB != BB) 3874 PHI->addIncoming( 3875 AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB); 3876 return PHI; 3877 } 3878 3879 static bool mergeConditionalStoreToAddress( 3880 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3881 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3882 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3883 // For every pointer, there must be exactly two stores, one coming from 3884 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3885 // store (to any address) in PTB,PFB or QTB,QFB. 3886 // FIXME: We could relax this restriction with a bit more work and performance 3887 // testing. 3888 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3889 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3890 if (!PStore || !QStore) 3891 return false; 3892 3893 // Now check the stores are compatible. 3894 if (!QStore->isUnordered() || !PStore->isUnordered() || 3895 PStore->getValueOperand()->getType() != 3896 QStore->getValueOperand()->getType()) 3897 return false; 3898 3899 // Check that sinking the store won't cause program behavior changes. Sinking 3900 // the store out of the Q blocks won't change any behavior as we're sinking 3901 // from a block to its unconditional successor. But we're moving a store from 3902 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3903 // So we need to check that there are no aliasing loads or stores in 3904 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3905 // operations between PStore and the end of its parent block. 3906 // 3907 // The ideal way to do this is to query AliasAnalysis, but we don't 3908 // preserve AA currently so that is dangerous. Be super safe and just 3909 // check there are no other memory operations at all. 3910 for (auto &I : *QFB->getSinglePredecessor()) 3911 if (I.mayReadOrWriteMemory()) 3912 return false; 3913 for (auto &I : *QFB) 3914 if (&I != QStore && I.mayReadOrWriteMemory()) 3915 return false; 3916 if (QTB) 3917 for (auto &I : *QTB) 3918 if (&I != QStore && I.mayReadOrWriteMemory()) 3919 return false; 3920 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3921 I != E; ++I) 3922 if (&*I != PStore && I->mayReadOrWriteMemory()) 3923 return false; 3924 3925 // If we're not in aggressive mode, we only optimize if we have some 3926 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3927 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3928 if (!BB) 3929 return true; 3930 // Heuristic: if the block can be if-converted/phi-folded and the 3931 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3932 // thread this store. 3933 InstructionCost Cost = 0; 3934 InstructionCost Budget = 3935 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3936 for (auto &I : BB->instructionsWithoutDebug(false)) { 3937 // Consider terminator instruction to be free. 3938 if (I.isTerminator()) 3939 continue; 3940 // If this is one the stores that we want to speculate out of this BB, 3941 // then don't count it's cost, consider it to be free. 3942 if (auto *S = dyn_cast<StoreInst>(&I)) 3943 if (llvm::find(FreeStores, S)) 3944 continue; 3945 // Else, we have a white-list of instructions that we are ak speculating. 3946 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3947 return false; // Not in white-list - not worthwhile folding. 3948 // And finally, if this is a non-free instruction that we are okay 3949 // speculating, ensure that we consider the speculation budget. 3950 Cost += 3951 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3952 if (Cost > Budget) 3953 return false; // Eagerly refuse to fold as soon as we're out of budget. 3954 } 3955 assert(Cost <= Budget && 3956 "When we run out of budget we will eagerly return from within the " 3957 "per-instruction loop."); 3958 return true; 3959 }; 3960 3961 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3962 if (!MergeCondStoresAggressively && 3963 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3964 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3965 return false; 3966 3967 // If PostBB has more than two predecessors, we need to split it so we can 3968 // sink the store. 3969 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3970 // We know that QFB's only successor is PostBB. And QFB has a single 3971 // predecessor. If QTB exists, then its only successor is also PostBB. 3972 // If QTB does not exist, then QFB's only predecessor has a conditional 3973 // branch to QFB and PostBB. 3974 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3975 BasicBlock *NewBB = 3976 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3977 if (!NewBB) 3978 return false; 3979 PostBB = NewBB; 3980 } 3981 3982 // OK, we're going to sink the stores to PostBB. The store has to be 3983 // conditional though, so first create the predicate. 3984 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3985 ->getCondition(); 3986 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3987 ->getCondition(); 3988 3989 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3990 PStore->getParent()); 3991 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3992 QStore->getParent(), PPHI); 3993 3994 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3995 3996 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3997 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3998 3999 if (InvertPCond) 4000 PPred = QB.CreateNot(PPred); 4001 if (InvertQCond) 4002 QPred = QB.CreateNot(QPred); 4003 Value *CombinedPred = QB.CreateOr(PPred, QPred); 4004 4005 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 4006 /*Unreachable=*/false, 4007 /*BranchWeights=*/nullptr, DTU); 4008 QB.SetInsertPoint(T); 4009 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 4010 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 4011 // Choose the minimum alignment. If we could prove both stores execute, we 4012 // could use biggest one. In this case, though, we only know that one of the 4013 // stores executes. And we don't know it's safe to take the alignment from a 4014 // store that doesn't execute. 4015 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 4016 4017 QStore->eraseFromParent(); 4018 PStore->eraseFromParent(); 4019 4020 return true; 4021 } 4022 4023 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 4024 DomTreeUpdater *DTU, const DataLayout &DL, 4025 const TargetTransformInfo &TTI) { 4026 // The intention here is to find diamonds or triangles (see below) where each 4027 // conditional block contains a store to the same address. Both of these 4028 // stores are conditional, so they can't be unconditionally sunk. But it may 4029 // be profitable to speculatively sink the stores into one merged store at the 4030 // end, and predicate the merged store on the union of the two conditions of 4031 // PBI and QBI. 4032 // 4033 // This can reduce the number of stores executed if both of the conditions are 4034 // true, and can allow the blocks to become small enough to be if-converted. 4035 // This optimization will also chain, so that ladders of test-and-set 4036 // sequences can be if-converted away. 4037 // 4038 // We only deal with simple diamonds or triangles: 4039 // 4040 // PBI or PBI or a combination of the two 4041 // / \ | \ 4042 // PTB PFB | PFB 4043 // \ / | / 4044 // QBI QBI 4045 // / \ | \ 4046 // QTB QFB | QFB 4047 // \ / | / 4048 // PostBB PostBB 4049 // 4050 // We model triangles as a type of diamond with a nullptr "true" block. 4051 // Triangles are canonicalized so that the fallthrough edge is represented by 4052 // a true condition, as in the diagram above. 4053 BasicBlock *PTB = PBI->getSuccessor(0); 4054 BasicBlock *PFB = PBI->getSuccessor(1); 4055 BasicBlock *QTB = QBI->getSuccessor(0); 4056 BasicBlock *QFB = QBI->getSuccessor(1); 4057 BasicBlock *PostBB = QFB->getSingleSuccessor(); 4058 4059 // Make sure we have a good guess for PostBB. If QTB's only successor is 4060 // QFB, then QFB is a better PostBB. 4061 if (QTB->getSingleSuccessor() == QFB) 4062 PostBB = QFB; 4063 4064 // If we couldn't find a good PostBB, stop. 4065 if (!PostBB) 4066 return false; 4067 4068 bool InvertPCond = false, InvertQCond = false; 4069 // Canonicalize fallthroughs to the true branches. 4070 if (PFB == QBI->getParent()) { 4071 std::swap(PFB, PTB); 4072 InvertPCond = true; 4073 } 4074 if (QFB == PostBB) { 4075 std::swap(QFB, QTB); 4076 InvertQCond = true; 4077 } 4078 4079 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 4080 // and QFB may not. Model fallthroughs as a nullptr block. 4081 if (PTB == QBI->getParent()) 4082 PTB = nullptr; 4083 if (QTB == PostBB) 4084 QTB = nullptr; 4085 4086 // Legality bailouts. We must have at least the non-fallthrough blocks and 4087 // the post-dominating block, and the non-fallthroughs must only have one 4088 // predecessor. 4089 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 4090 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 4091 }; 4092 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 4093 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 4094 return false; 4095 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 4096 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 4097 return false; 4098 if (!QBI->getParent()->hasNUses(2)) 4099 return false; 4100 4101 // OK, this is a sequence of two diamonds or triangles. 4102 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 4103 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 4104 for (auto *BB : {PTB, PFB}) { 4105 if (!BB) 4106 continue; 4107 for (auto &I : *BB) 4108 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4109 PStoreAddresses.insert(SI->getPointerOperand()); 4110 } 4111 for (auto *BB : {QTB, QFB}) { 4112 if (!BB) 4113 continue; 4114 for (auto &I : *BB) 4115 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4116 QStoreAddresses.insert(SI->getPointerOperand()); 4117 } 4118 4119 set_intersect(PStoreAddresses, QStoreAddresses); 4120 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 4121 // clear what it contains. 4122 auto &CommonAddresses = PStoreAddresses; 4123 4124 bool Changed = false; 4125 for (auto *Address : CommonAddresses) 4126 Changed |= 4127 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 4128 InvertPCond, InvertQCond, DTU, DL, TTI); 4129 return Changed; 4130 } 4131 4132 /// If the previous block ended with a widenable branch, determine if reusing 4133 /// the target block is profitable and legal. This will have the effect of 4134 /// "widening" PBI, but doesn't require us to reason about hosting safety. 4135 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4136 DomTreeUpdater *DTU) { 4137 // TODO: This can be generalized in two important ways: 4138 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 4139 // values from the PBI edge. 4140 // 2) We can sink side effecting instructions into BI's fallthrough 4141 // successor provided they doesn't contribute to computation of 4142 // BI's condition. 4143 Value *CondWB, *WC; 4144 BasicBlock *IfTrueBB, *IfFalseBB; 4145 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 4146 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 4147 return false; 4148 if (!IfFalseBB->phis().empty()) 4149 return false; // TODO 4150 // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which 4151 // may undo the transform done here. 4152 // TODO: There might be a more fine-grained solution to this. 4153 if (!llvm::succ_empty(IfFalseBB)) 4154 return false; 4155 // Use lambda to lazily compute expensive condition after cheap ones. 4156 auto NoSideEffects = [](BasicBlock &BB) { 4157 return llvm::none_of(BB, [](const Instruction &I) { 4158 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 4159 }); 4160 }; 4161 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 4162 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 4163 NoSideEffects(*BI->getParent())) { 4164 auto *OldSuccessor = BI->getSuccessor(1); 4165 OldSuccessor->removePredecessor(BI->getParent()); 4166 BI->setSuccessor(1, IfFalseBB); 4167 if (DTU) 4168 DTU->applyUpdates( 4169 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4170 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4171 return true; 4172 } 4173 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4174 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4175 NoSideEffects(*BI->getParent())) { 4176 auto *OldSuccessor = BI->getSuccessor(0); 4177 OldSuccessor->removePredecessor(BI->getParent()); 4178 BI->setSuccessor(0, IfFalseBB); 4179 if (DTU) 4180 DTU->applyUpdates( 4181 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4182 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4183 return true; 4184 } 4185 return false; 4186 } 4187 4188 /// If we have a conditional branch as a predecessor of another block, 4189 /// this function tries to simplify it. We know 4190 /// that PBI and BI are both conditional branches, and BI is in one of the 4191 /// successor blocks of PBI - PBI branches to BI. 4192 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4193 DomTreeUpdater *DTU, 4194 const DataLayout &DL, 4195 const TargetTransformInfo &TTI) { 4196 assert(PBI->isConditional() && BI->isConditional()); 4197 BasicBlock *BB = BI->getParent(); 4198 4199 // If this block ends with a branch instruction, and if there is a 4200 // predecessor that ends on a branch of the same condition, make 4201 // this conditional branch redundant. 4202 if (PBI->getCondition() == BI->getCondition() && 4203 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4204 // Okay, the outcome of this conditional branch is statically 4205 // knowable. If this block had a single pred, handle specially, otherwise 4206 // FoldCondBranchOnValueKnownInPredecessor() will handle it. 4207 if (BB->getSinglePredecessor()) { 4208 // Turn this into a branch on constant. 4209 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4210 BI->setCondition( 4211 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4212 return true; // Nuke the branch on constant. 4213 } 4214 } 4215 4216 // If the previous block ended with a widenable branch, determine if reusing 4217 // the target block is profitable and legal. This will have the effect of 4218 // "widening" PBI, but doesn't require us to reason about hosting safety. 4219 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4220 return true; 4221 4222 // If both branches are conditional and both contain stores to the same 4223 // address, remove the stores from the conditionals and create a conditional 4224 // merged store at the end. 4225 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4226 return true; 4227 4228 // If this is a conditional branch in an empty block, and if any 4229 // predecessors are a conditional branch to one of our destinations, 4230 // fold the conditions into logical ops and one cond br. 4231 4232 // Ignore dbg intrinsics. 4233 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4234 return false; 4235 4236 int PBIOp, BIOp; 4237 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4238 PBIOp = 0; 4239 BIOp = 0; 4240 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4241 PBIOp = 0; 4242 BIOp = 1; 4243 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4244 PBIOp = 1; 4245 BIOp = 0; 4246 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4247 PBIOp = 1; 4248 BIOp = 1; 4249 } else { 4250 return false; 4251 } 4252 4253 // Check to make sure that the other destination of this branch 4254 // isn't BB itself. If so, this is an infinite loop that will 4255 // keep getting unwound. 4256 if (PBI->getSuccessor(PBIOp) == BB) 4257 return false; 4258 4259 // Do not perform this transformation if it would require 4260 // insertion of a large number of select instructions. For targets 4261 // without predication/cmovs, this is a big pessimization. 4262 4263 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4264 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4265 unsigned NumPhis = 0; 4266 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4267 ++II, ++NumPhis) { 4268 if (NumPhis > 2) // Disable this xform. 4269 return false; 4270 } 4271 4272 // Finally, if everything is ok, fold the branches to logical ops. 4273 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4274 4275 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4276 << "AND: " << *BI->getParent()); 4277 4278 SmallVector<DominatorTree::UpdateType, 5> Updates; 4279 4280 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4281 // branch in it, where one edge (OtherDest) goes back to itself but the other 4282 // exits. We don't *know* that the program avoids the infinite loop 4283 // (even though that seems likely). If we do this xform naively, we'll end up 4284 // recursively unpeeling the loop. Since we know that (after the xform is 4285 // done) that the block *is* infinite if reached, we just make it an obviously 4286 // infinite loop with no cond branch. 4287 if (OtherDest == BB) { 4288 // Insert it at the end of the function, because it's either code, 4289 // or it won't matter if it's hot. :) 4290 BasicBlock *InfLoopBlock = 4291 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4292 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4293 if (DTU) 4294 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4295 OtherDest = InfLoopBlock; 4296 } 4297 4298 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4299 4300 // BI may have other predecessors. Because of this, we leave 4301 // it alone, but modify PBI. 4302 4303 // Make sure we get to CommonDest on True&True directions. 4304 Value *PBICond = PBI->getCondition(); 4305 IRBuilder<NoFolder> Builder(PBI); 4306 if (PBIOp) 4307 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4308 4309 Value *BICond = BI->getCondition(); 4310 if (BIOp) 4311 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4312 4313 // Merge the conditions. 4314 Value *Cond = 4315 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4316 4317 // Modify PBI to branch on the new condition to the new dests. 4318 PBI->setCondition(Cond); 4319 PBI->setSuccessor(0, CommonDest); 4320 PBI->setSuccessor(1, OtherDest); 4321 4322 if (DTU) { 4323 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4324 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4325 4326 DTU->applyUpdates(Updates); 4327 } 4328 4329 // Update branch weight for PBI. 4330 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4331 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4332 bool HasWeights = 4333 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4334 SuccTrueWeight, SuccFalseWeight); 4335 if (HasWeights) { 4336 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4337 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4338 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4339 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4340 // The weight to CommonDest should be PredCommon * SuccTotal + 4341 // PredOther * SuccCommon. 4342 // The weight to OtherDest should be PredOther * SuccOther. 4343 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4344 PredOther * SuccCommon, 4345 PredOther * SuccOther}; 4346 // Halve the weights if any of them cannot fit in an uint32_t 4347 FitWeights(NewWeights); 4348 4349 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 4350 } 4351 4352 // OtherDest may have phi nodes. If so, add an entry from PBI's 4353 // block that are identical to the entries for BI's block. 4354 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4355 4356 // We know that the CommonDest already had an edge from PBI to 4357 // it. If it has PHIs though, the PHIs may have different 4358 // entries for BB and PBI's BB. If so, insert a select to make 4359 // them agree. 4360 for (PHINode &PN : CommonDest->phis()) { 4361 Value *BIV = PN.getIncomingValueForBlock(BB); 4362 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4363 Value *PBIV = PN.getIncomingValue(PBBIdx); 4364 if (BIV != PBIV) { 4365 // Insert a select in PBI to pick the right value. 4366 SelectInst *NV = cast<SelectInst>( 4367 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4368 PN.setIncomingValue(PBBIdx, NV); 4369 // Although the select has the same condition as PBI, the original branch 4370 // weights for PBI do not apply to the new select because the select's 4371 // 'logical' edges are incoming edges of the phi that is eliminated, not 4372 // the outgoing edges of PBI. 4373 if (HasWeights) { 4374 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4375 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4376 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4377 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4378 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4379 // The weight to PredOtherDest should be PredOther * SuccCommon. 4380 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4381 PredOther * SuccCommon}; 4382 4383 FitWeights(NewWeights); 4384 4385 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 4386 } 4387 } 4388 } 4389 4390 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4391 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4392 4393 // This basic block is probably dead. We know it has at least 4394 // one fewer predecessor. 4395 return true; 4396 } 4397 4398 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4399 // true or to FalseBB if Cond is false. 4400 // Takes care of updating the successors and removing the old terminator. 4401 // Also makes sure not to introduce new successors by assuming that edges to 4402 // non-successor TrueBBs and FalseBBs aren't reachable. 4403 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 4404 Value *Cond, BasicBlock *TrueBB, 4405 BasicBlock *FalseBB, 4406 uint32_t TrueWeight, 4407 uint32_t FalseWeight) { 4408 auto *BB = OldTerm->getParent(); 4409 // Remove any superfluous successor edges from the CFG. 4410 // First, figure out which successors to preserve. 4411 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4412 // successor. 4413 BasicBlock *KeepEdge1 = TrueBB; 4414 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4415 4416 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4417 4418 // Then remove the rest. 4419 for (BasicBlock *Succ : successors(OldTerm)) { 4420 // Make sure only to keep exactly one copy of each edge. 4421 if (Succ == KeepEdge1) 4422 KeepEdge1 = nullptr; 4423 else if (Succ == KeepEdge2) 4424 KeepEdge2 = nullptr; 4425 else { 4426 Succ->removePredecessor(BB, 4427 /*KeepOneInputPHIs=*/true); 4428 4429 if (Succ != TrueBB && Succ != FalseBB) 4430 RemovedSuccessors.insert(Succ); 4431 } 4432 } 4433 4434 IRBuilder<> Builder(OldTerm); 4435 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4436 4437 // Insert an appropriate new terminator. 4438 if (!KeepEdge1 && !KeepEdge2) { 4439 if (TrueBB == FalseBB) { 4440 // We were only looking for one successor, and it was present. 4441 // Create an unconditional branch to it. 4442 Builder.CreateBr(TrueBB); 4443 } else { 4444 // We found both of the successors we were looking for. 4445 // Create a conditional branch sharing the condition of the select. 4446 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4447 if (TrueWeight != FalseWeight) 4448 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4449 } 4450 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4451 // Neither of the selected blocks were successors, so this 4452 // terminator must be unreachable. 4453 new UnreachableInst(OldTerm->getContext(), OldTerm); 4454 } else { 4455 // One of the selected values was a successor, but the other wasn't. 4456 // Insert an unconditional branch to the one that was found; 4457 // the edge to the one that wasn't must be unreachable. 4458 if (!KeepEdge1) { 4459 // Only TrueBB was found. 4460 Builder.CreateBr(TrueBB); 4461 } else { 4462 // Only FalseBB was found. 4463 Builder.CreateBr(FalseBB); 4464 } 4465 } 4466 4467 EraseTerminatorAndDCECond(OldTerm); 4468 4469 if (DTU) { 4470 SmallVector<DominatorTree::UpdateType, 2> Updates; 4471 Updates.reserve(RemovedSuccessors.size()); 4472 for (auto *RemovedSuccessor : RemovedSuccessors) 4473 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4474 DTU->applyUpdates(Updates); 4475 } 4476 4477 return true; 4478 } 4479 4480 // Replaces 4481 // (switch (select cond, X, Y)) on constant X, Y 4482 // with a branch - conditional if X and Y lead to distinct BBs, 4483 // unconditional otherwise. 4484 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4485 SelectInst *Select) { 4486 // Check for constant integer values in the select. 4487 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4488 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4489 if (!TrueVal || !FalseVal) 4490 return false; 4491 4492 // Find the relevant condition and destinations. 4493 Value *Condition = Select->getCondition(); 4494 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4495 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4496 4497 // Get weight for TrueBB and FalseBB. 4498 uint32_t TrueWeight = 0, FalseWeight = 0; 4499 SmallVector<uint64_t, 8> Weights; 4500 bool HasWeights = hasBranchWeightMD(*SI); 4501 if (HasWeights) { 4502 GetBranchWeights(SI, Weights); 4503 if (Weights.size() == 1 + SI->getNumCases()) { 4504 TrueWeight = 4505 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4506 FalseWeight = 4507 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4508 } 4509 } 4510 4511 // Perform the actual simplification. 4512 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4513 FalseWeight); 4514 } 4515 4516 // Replaces 4517 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4518 // blockaddress(@fn, BlockB))) 4519 // with 4520 // (br cond, BlockA, BlockB). 4521 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4522 SelectInst *SI) { 4523 // Check that both operands of the select are block addresses. 4524 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4525 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4526 if (!TBA || !FBA) 4527 return false; 4528 4529 // Extract the actual blocks. 4530 BasicBlock *TrueBB = TBA->getBasicBlock(); 4531 BasicBlock *FalseBB = FBA->getBasicBlock(); 4532 4533 // Perform the actual simplification. 4534 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4535 0); 4536 } 4537 4538 /// This is called when we find an icmp instruction 4539 /// (a seteq/setne with a constant) as the only instruction in a 4540 /// block that ends with an uncond branch. We are looking for a very specific 4541 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4542 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4543 /// default value goes to an uncond block with a seteq in it, we get something 4544 /// like: 4545 /// 4546 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4547 /// DEFAULT: 4548 /// %tmp = icmp eq i8 %A, 92 4549 /// br label %end 4550 /// end: 4551 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4552 /// 4553 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4554 /// the PHI, merging the third icmp into the switch. 4555 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4556 ICmpInst *ICI, IRBuilder<> &Builder) { 4557 BasicBlock *BB = ICI->getParent(); 4558 4559 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4560 // complex. 4561 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4562 return false; 4563 4564 Value *V = ICI->getOperand(0); 4565 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4566 4567 // The pattern we're looking for is where our only predecessor is a switch on 4568 // 'V' and this block is the default case for the switch. In this case we can 4569 // fold the compared value into the switch to simplify things. 4570 BasicBlock *Pred = BB->getSinglePredecessor(); 4571 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4572 return false; 4573 4574 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4575 if (SI->getCondition() != V) 4576 return false; 4577 4578 // If BB is reachable on a non-default case, then we simply know the value of 4579 // V in this block. Substitute it and constant fold the icmp instruction 4580 // away. 4581 if (SI->getDefaultDest() != BB) { 4582 ConstantInt *VVal = SI->findCaseDest(BB); 4583 assert(VVal && "Should have a unique destination value"); 4584 ICI->setOperand(0, VVal); 4585 4586 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) { 4587 ICI->replaceAllUsesWith(V); 4588 ICI->eraseFromParent(); 4589 } 4590 // BB is now empty, so it is likely to simplify away. 4591 return requestResimplify(); 4592 } 4593 4594 // Ok, the block is reachable from the default dest. If the constant we're 4595 // comparing exists in one of the other edges, then we can constant fold ICI 4596 // and zap it. 4597 if (SI->findCaseValue(Cst) != SI->case_default()) { 4598 Value *V; 4599 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4600 V = ConstantInt::getFalse(BB->getContext()); 4601 else 4602 V = ConstantInt::getTrue(BB->getContext()); 4603 4604 ICI->replaceAllUsesWith(V); 4605 ICI->eraseFromParent(); 4606 // BB is now empty, so it is likely to simplify away. 4607 return requestResimplify(); 4608 } 4609 4610 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4611 // the block. 4612 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4613 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4614 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4615 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4616 return false; 4617 4618 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4619 // true in the PHI. 4620 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4621 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4622 4623 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4624 std::swap(DefaultCst, NewCst); 4625 4626 // Replace ICI (which is used by the PHI for the default value) with true or 4627 // false depending on if it is EQ or NE. 4628 ICI->replaceAllUsesWith(DefaultCst); 4629 ICI->eraseFromParent(); 4630 4631 SmallVector<DominatorTree::UpdateType, 2> Updates; 4632 4633 // Okay, the switch goes to this block on a default value. Add an edge from 4634 // the switch to the merge point on the compared value. 4635 BasicBlock *NewBB = 4636 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4637 { 4638 SwitchInstProfUpdateWrapper SIW(*SI); 4639 auto W0 = SIW.getSuccessorWeight(0); 4640 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4641 if (W0) { 4642 NewW = ((uint64_t(*W0) + 1) >> 1); 4643 SIW.setSuccessorWeight(0, *NewW); 4644 } 4645 SIW.addCase(Cst, NewBB, NewW); 4646 if (DTU) 4647 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4648 } 4649 4650 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4651 Builder.SetInsertPoint(NewBB); 4652 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4653 Builder.CreateBr(SuccBlock); 4654 PHIUse->addIncoming(NewCst, NewBB); 4655 if (DTU) { 4656 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4657 DTU->applyUpdates(Updates); 4658 } 4659 return true; 4660 } 4661 4662 /// The specified branch is a conditional branch. 4663 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4664 /// fold it into a switch instruction if so. 4665 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4666 IRBuilder<> &Builder, 4667 const DataLayout &DL) { 4668 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4669 if (!Cond) 4670 return false; 4671 4672 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4673 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4674 // 'setne's and'ed together, collect them. 4675 4676 // Try to gather values from a chain of and/or to be turned into a switch 4677 ConstantComparesGatherer ConstantCompare(Cond, DL); 4678 // Unpack the result 4679 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4680 Value *CompVal = ConstantCompare.CompValue; 4681 unsigned UsedICmps = ConstantCompare.UsedICmps; 4682 Value *ExtraCase = ConstantCompare.Extra; 4683 4684 // If we didn't have a multiply compared value, fail. 4685 if (!CompVal) 4686 return false; 4687 4688 // Avoid turning single icmps into a switch. 4689 if (UsedICmps <= 1) 4690 return false; 4691 4692 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4693 4694 // There might be duplicate constants in the list, which the switch 4695 // instruction can't handle, remove them now. 4696 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4697 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4698 4699 // If Extra was used, we require at least two switch values to do the 4700 // transformation. A switch with one value is just a conditional branch. 4701 if (ExtraCase && Values.size() < 2) 4702 return false; 4703 4704 // TODO: Preserve branch weight metadata, similarly to how 4705 // FoldValueComparisonIntoPredecessors preserves it. 4706 4707 // Figure out which block is which destination. 4708 BasicBlock *DefaultBB = BI->getSuccessor(1); 4709 BasicBlock *EdgeBB = BI->getSuccessor(0); 4710 if (!TrueWhenEqual) 4711 std::swap(DefaultBB, EdgeBB); 4712 4713 BasicBlock *BB = BI->getParent(); 4714 4715 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4716 << " cases into SWITCH. BB is:\n" 4717 << *BB); 4718 4719 SmallVector<DominatorTree::UpdateType, 2> Updates; 4720 4721 // If there are any extra values that couldn't be folded into the switch 4722 // then we evaluate them with an explicit branch first. Split the block 4723 // right before the condbr to handle it. 4724 if (ExtraCase) { 4725 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4726 /*MSSAU=*/nullptr, "switch.early.test"); 4727 4728 // Remove the uncond branch added to the old block. 4729 Instruction *OldTI = BB->getTerminator(); 4730 Builder.SetInsertPoint(OldTI); 4731 4732 // There can be an unintended UB if extra values are Poison. Before the 4733 // transformation, extra values may not be evaluated according to the 4734 // condition, and it will not raise UB. But after transformation, we are 4735 // evaluating extra values before checking the condition, and it will raise 4736 // UB. It can be solved by adding freeze instruction to extra values. 4737 AssumptionCache *AC = Options.AC; 4738 4739 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 4740 ExtraCase = Builder.CreateFreeze(ExtraCase); 4741 4742 if (TrueWhenEqual) 4743 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4744 else 4745 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4746 4747 OldTI->eraseFromParent(); 4748 4749 if (DTU) 4750 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4751 4752 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4753 // for the edge we just added. 4754 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4755 4756 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4757 << "\nEXTRABB = " << *BB); 4758 BB = NewBB; 4759 } 4760 4761 Builder.SetInsertPoint(BI); 4762 // Convert pointer to int before we switch. 4763 if (CompVal->getType()->isPointerTy()) { 4764 CompVal = Builder.CreatePtrToInt( 4765 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4766 } 4767 4768 // Create the new switch instruction now. 4769 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4770 4771 // Add all of the 'cases' to the switch instruction. 4772 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4773 New->addCase(Values[i], EdgeBB); 4774 4775 // We added edges from PI to the EdgeBB. As such, if there were any 4776 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4777 // the number of edges added. 4778 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4779 PHINode *PN = cast<PHINode>(BBI); 4780 Value *InVal = PN->getIncomingValueForBlock(BB); 4781 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4782 PN->addIncoming(InVal, BB); 4783 } 4784 4785 // Erase the old branch instruction. 4786 EraseTerminatorAndDCECond(BI); 4787 if (DTU) 4788 DTU->applyUpdates(Updates); 4789 4790 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4791 return true; 4792 } 4793 4794 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4795 if (isa<PHINode>(RI->getValue())) 4796 return simplifyCommonResume(RI); 4797 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4798 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4799 // The resume must unwind the exception that caused control to branch here. 4800 return simplifySingleResume(RI); 4801 4802 return false; 4803 } 4804 4805 // Check if cleanup block is empty 4806 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4807 for (Instruction &I : R) { 4808 auto *II = dyn_cast<IntrinsicInst>(&I); 4809 if (!II) 4810 return false; 4811 4812 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4813 switch (IntrinsicID) { 4814 case Intrinsic::dbg_declare: 4815 case Intrinsic::dbg_value: 4816 case Intrinsic::dbg_label: 4817 case Intrinsic::lifetime_end: 4818 break; 4819 default: 4820 return false; 4821 } 4822 } 4823 return true; 4824 } 4825 4826 // Simplify resume that is shared by several landing pads (phi of landing pad). 4827 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4828 BasicBlock *BB = RI->getParent(); 4829 4830 // Check that there are no other instructions except for debug and lifetime 4831 // intrinsics between the phi's and resume instruction. 4832 if (!isCleanupBlockEmpty( 4833 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4834 return false; 4835 4836 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4837 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4838 4839 // Check incoming blocks to see if any of them are trivial. 4840 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4841 Idx++) { 4842 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4843 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4844 4845 // If the block has other successors, we can not delete it because 4846 // it has other dependents. 4847 if (IncomingBB->getUniqueSuccessor() != BB) 4848 continue; 4849 4850 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4851 // Not the landing pad that caused the control to branch here. 4852 if (IncomingValue != LandingPad) 4853 continue; 4854 4855 if (isCleanupBlockEmpty( 4856 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4857 TrivialUnwindBlocks.insert(IncomingBB); 4858 } 4859 4860 // If no trivial unwind blocks, don't do any simplifications. 4861 if (TrivialUnwindBlocks.empty()) 4862 return false; 4863 4864 // Turn all invokes that unwind here into calls. 4865 for (auto *TrivialBB : TrivialUnwindBlocks) { 4866 // Blocks that will be simplified should be removed from the phi node. 4867 // Note there could be multiple edges to the resume block, and we need 4868 // to remove them all. 4869 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4870 BB->removePredecessor(TrivialBB, true); 4871 4872 for (BasicBlock *Pred : 4873 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4874 removeUnwindEdge(Pred, DTU); 4875 ++NumInvokes; 4876 } 4877 4878 // In each SimplifyCFG run, only the current processed block can be erased. 4879 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4880 // of erasing TrivialBB, we only remove the branch to the common resume 4881 // block so that we can later erase the resume block since it has no 4882 // predecessors. 4883 TrivialBB->getTerminator()->eraseFromParent(); 4884 new UnreachableInst(RI->getContext(), TrivialBB); 4885 if (DTU) 4886 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4887 } 4888 4889 // Delete the resume block if all its predecessors have been removed. 4890 if (pred_empty(BB)) 4891 DeleteDeadBlock(BB, DTU); 4892 4893 return !TrivialUnwindBlocks.empty(); 4894 } 4895 4896 // Simplify resume that is only used by a single (non-phi) landing pad. 4897 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4898 BasicBlock *BB = RI->getParent(); 4899 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4900 assert(RI->getValue() == LPInst && 4901 "Resume must unwind the exception that caused control to here"); 4902 4903 // Check that there are no other instructions except for debug intrinsics. 4904 if (!isCleanupBlockEmpty( 4905 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4906 return false; 4907 4908 // Turn all invokes that unwind here into calls and delete the basic block. 4909 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4910 removeUnwindEdge(Pred, DTU); 4911 ++NumInvokes; 4912 } 4913 4914 // The landingpad is now unreachable. Zap it. 4915 DeleteDeadBlock(BB, DTU); 4916 return true; 4917 } 4918 4919 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4920 // If this is a trivial cleanup pad that executes no instructions, it can be 4921 // eliminated. If the cleanup pad continues to the caller, any predecessor 4922 // that is an EH pad will be updated to continue to the caller and any 4923 // predecessor that terminates with an invoke instruction will have its invoke 4924 // instruction converted to a call instruction. If the cleanup pad being 4925 // simplified does not continue to the caller, each predecessor will be 4926 // updated to continue to the unwind destination of the cleanup pad being 4927 // simplified. 4928 BasicBlock *BB = RI->getParent(); 4929 CleanupPadInst *CPInst = RI->getCleanupPad(); 4930 if (CPInst->getParent() != BB) 4931 // This isn't an empty cleanup. 4932 return false; 4933 4934 // We cannot kill the pad if it has multiple uses. This typically arises 4935 // from unreachable basic blocks. 4936 if (!CPInst->hasOneUse()) 4937 return false; 4938 4939 // Check that there are no other instructions except for benign intrinsics. 4940 if (!isCleanupBlockEmpty( 4941 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4942 return false; 4943 4944 // If the cleanup return we are simplifying unwinds to the caller, this will 4945 // set UnwindDest to nullptr. 4946 BasicBlock *UnwindDest = RI->getUnwindDest(); 4947 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4948 4949 // We're about to remove BB from the control flow. Before we do, sink any 4950 // PHINodes into the unwind destination. Doing this before changing the 4951 // control flow avoids some potentially slow checks, since we can currently 4952 // be certain that UnwindDest and BB have no common predecessors (since they 4953 // are both EH pads). 4954 if (UnwindDest) { 4955 // First, go through the PHI nodes in UnwindDest and update any nodes that 4956 // reference the block we are removing 4957 for (PHINode &DestPN : UnwindDest->phis()) { 4958 int Idx = DestPN.getBasicBlockIndex(BB); 4959 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4960 assert(Idx != -1); 4961 // This PHI node has an incoming value that corresponds to a control 4962 // path through the cleanup pad we are removing. If the incoming 4963 // value is in the cleanup pad, it must be a PHINode (because we 4964 // verified above that the block is otherwise empty). Otherwise, the 4965 // value is either a constant or a value that dominates the cleanup 4966 // pad being removed. 4967 // 4968 // Because BB and UnwindDest are both EH pads, all of their 4969 // predecessors must unwind to these blocks, and since no instruction 4970 // can have multiple unwind destinations, there will be no overlap in 4971 // incoming blocks between SrcPN and DestPN. 4972 Value *SrcVal = DestPN.getIncomingValue(Idx); 4973 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4974 4975 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4976 for (auto *Pred : predecessors(BB)) { 4977 Value *Incoming = 4978 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4979 DestPN.addIncoming(Incoming, Pred); 4980 } 4981 } 4982 4983 // Sink any remaining PHI nodes directly into UnwindDest. 4984 Instruction *InsertPt = DestEHPad; 4985 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4986 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4987 // If the PHI node has no uses or all of its uses are in this basic 4988 // block (meaning they are debug or lifetime intrinsics), just leave 4989 // it. It will be erased when we erase BB below. 4990 continue; 4991 4992 // Otherwise, sink this PHI node into UnwindDest. 4993 // Any predecessors to UnwindDest which are not already represented 4994 // must be back edges which inherit the value from the path through 4995 // BB. In this case, the PHI value must reference itself. 4996 for (auto *pred : predecessors(UnwindDest)) 4997 if (pred != BB) 4998 PN.addIncoming(&PN, pred); 4999 PN.moveBefore(InsertPt); 5000 // Also, add a dummy incoming value for the original BB itself, 5001 // so that the PHI is well-formed until we drop said predecessor. 5002 PN.addIncoming(PoisonValue::get(PN.getType()), BB); 5003 } 5004 } 5005 5006 std::vector<DominatorTree::UpdateType> Updates; 5007 5008 // We use make_early_inc_range here because we will remove all predecessors. 5009 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 5010 if (UnwindDest == nullptr) { 5011 if (DTU) { 5012 DTU->applyUpdates(Updates); 5013 Updates.clear(); 5014 } 5015 removeUnwindEdge(PredBB, DTU); 5016 ++NumInvokes; 5017 } else { 5018 BB->removePredecessor(PredBB); 5019 Instruction *TI = PredBB->getTerminator(); 5020 TI->replaceUsesOfWith(BB, UnwindDest); 5021 if (DTU) { 5022 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 5023 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 5024 } 5025 } 5026 } 5027 5028 if (DTU) 5029 DTU->applyUpdates(Updates); 5030 5031 DeleteDeadBlock(BB, DTU); 5032 5033 return true; 5034 } 5035 5036 // Try to merge two cleanuppads together. 5037 static bool mergeCleanupPad(CleanupReturnInst *RI) { 5038 // Skip any cleanuprets which unwind to caller, there is nothing to merge 5039 // with. 5040 BasicBlock *UnwindDest = RI->getUnwindDest(); 5041 if (!UnwindDest) 5042 return false; 5043 5044 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 5045 // be safe to merge without code duplication. 5046 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 5047 return false; 5048 5049 // Verify that our cleanuppad's unwind destination is another cleanuppad. 5050 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 5051 if (!SuccessorCleanupPad) 5052 return false; 5053 5054 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 5055 // Replace any uses of the successor cleanupad with the predecessor pad 5056 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 5057 // funclet bundle operands. 5058 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 5059 // Remove the old cleanuppad. 5060 SuccessorCleanupPad->eraseFromParent(); 5061 // Now, we simply replace the cleanupret with a branch to the unwind 5062 // destination. 5063 BranchInst::Create(UnwindDest, RI->getParent()); 5064 RI->eraseFromParent(); 5065 5066 return true; 5067 } 5068 5069 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 5070 // It is possible to transiantly have an undef cleanuppad operand because we 5071 // have deleted some, but not all, dead blocks. 5072 // Eventually, this block will be deleted. 5073 if (isa<UndefValue>(RI->getOperand(0))) 5074 return false; 5075 5076 if (mergeCleanupPad(RI)) 5077 return true; 5078 5079 if (removeEmptyCleanup(RI, DTU)) 5080 return true; 5081 5082 return false; 5083 } 5084 5085 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 5086 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 5087 BasicBlock *BB = UI->getParent(); 5088 5089 bool Changed = false; 5090 5091 // If there are any instructions immediately before the unreachable that can 5092 // be removed, do so. 5093 while (UI->getIterator() != BB->begin()) { 5094 BasicBlock::iterator BBI = UI->getIterator(); 5095 --BBI; 5096 5097 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 5098 break; // Can not drop any more instructions. We're done here. 5099 // Otherwise, this instruction can be freely erased, 5100 // even if it is not side-effect free. 5101 5102 // Note that deleting EH's here is in fact okay, although it involves a bit 5103 // of subtle reasoning. If this inst is an EH, all the predecessors of this 5104 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 5105 // and we can therefore guarantee this block will be erased. 5106 5107 // Delete this instruction (any uses are guaranteed to be dead) 5108 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 5109 BBI->eraseFromParent(); 5110 Changed = true; 5111 } 5112 5113 // If the unreachable instruction is the first in the block, take a gander 5114 // at all of the predecessors of this instruction, and simplify them. 5115 if (&BB->front() != UI) 5116 return Changed; 5117 5118 std::vector<DominatorTree::UpdateType> Updates; 5119 5120 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5121 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 5122 auto *Predecessor = Preds[i]; 5123 Instruction *TI = Predecessor->getTerminator(); 5124 IRBuilder<> Builder(TI); 5125 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5126 // We could either have a proper unconditional branch, 5127 // or a degenerate conditional branch with matching destinations. 5128 if (all_of(BI->successors(), 5129 [BB](auto *Successor) { return Successor == BB; })) { 5130 new UnreachableInst(TI->getContext(), TI); 5131 TI->eraseFromParent(); 5132 Changed = true; 5133 } else { 5134 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5135 Value* Cond = BI->getCondition(); 5136 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5137 "The destinations are guaranteed to be different here."); 5138 CallInst *Assumption; 5139 if (BI->getSuccessor(0) == BB) { 5140 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 5141 Builder.CreateBr(BI->getSuccessor(1)); 5142 } else { 5143 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5144 Assumption = Builder.CreateAssumption(Cond); 5145 Builder.CreateBr(BI->getSuccessor(0)); 5146 } 5147 if (Options.AC) 5148 Options.AC->registerAssumption(cast<AssumeInst>(Assumption)); 5149 5150 EraseTerminatorAndDCECond(BI); 5151 Changed = true; 5152 } 5153 if (DTU) 5154 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5155 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5156 SwitchInstProfUpdateWrapper SU(*SI); 5157 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5158 if (i->getCaseSuccessor() != BB) { 5159 ++i; 5160 continue; 5161 } 5162 BB->removePredecessor(SU->getParent()); 5163 i = SU.removeCase(i); 5164 e = SU->case_end(); 5165 Changed = true; 5166 } 5167 // Note that the default destination can't be removed! 5168 if (DTU && SI->getDefaultDest() != BB) 5169 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5170 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5171 if (II->getUnwindDest() == BB) { 5172 if (DTU) { 5173 DTU->applyUpdates(Updates); 5174 Updates.clear(); 5175 } 5176 auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU)); 5177 if (!CI->doesNotThrow()) 5178 CI->setDoesNotThrow(); 5179 Changed = true; 5180 } 5181 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5182 if (CSI->getUnwindDest() == BB) { 5183 if (DTU) { 5184 DTU->applyUpdates(Updates); 5185 Updates.clear(); 5186 } 5187 removeUnwindEdge(TI->getParent(), DTU); 5188 Changed = true; 5189 continue; 5190 } 5191 5192 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5193 E = CSI->handler_end(); 5194 I != E; ++I) { 5195 if (*I == BB) { 5196 CSI->removeHandler(I); 5197 --I; 5198 --E; 5199 Changed = true; 5200 } 5201 } 5202 if (DTU) 5203 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5204 if (CSI->getNumHandlers() == 0) { 5205 if (CSI->hasUnwindDest()) { 5206 // Redirect all predecessors of the block containing CatchSwitchInst 5207 // to instead branch to the CatchSwitchInst's unwind destination. 5208 if (DTU) { 5209 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5210 Updates.push_back({DominatorTree::Insert, 5211 PredecessorOfPredecessor, 5212 CSI->getUnwindDest()}); 5213 Updates.push_back({DominatorTree::Delete, 5214 PredecessorOfPredecessor, Predecessor}); 5215 } 5216 } 5217 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5218 } else { 5219 // Rewrite all preds to unwind to caller (or from invoke to call). 5220 if (DTU) { 5221 DTU->applyUpdates(Updates); 5222 Updates.clear(); 5223 } 5224 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5225 for (BasicBlock *EHPred : EHPreds) 5226 removeUnwindEdge(EHPred, DTU); 5227 } 5228 // The catchswitch is no longer reachable. 5229 new UnreachableInst(CSI->getContext(), CSI); 5230 CSI->eraseFromParent(); 5231 Changed = true; 5232 } 5233 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5234 (void)CRI; 5235 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5236 "Expected to always have an unwind to BB."); 5237 if (DTU) 5238 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5239 new UnreachableInst(TI->getContext(), TI); 5240 TI->eraseFromParent(); 5241 Changed = true; 5242 } 5243 } 5244 5245 if (DTU) 5246 DTU->applyUpdates(Updates); 5247 5248 // If this block is now dead, remove it. 5249 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5250 DeleteDeadBlock(BB, DTU); 5251 return true; 5252 } 5253 5254 return Changed; 5255 } 5256 5257 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5258 assert(Cases.size() >= 1); 5259 5260 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 5261 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5262 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5263 return false; 5264 } 5265 return true; 5266 } 5267 5268 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5269 DomTreeUpdater *DTU) { 5270 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5271 auto *BB = Switch->getParent(); 5272 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5273 OrigDefaultBlock->removePredecessor(BB); 5274 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5275 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5276 OrigDefaultBlock); 5277 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5278 Switch->setDefaultDest(&*NewDefaultBlock); 5279 if (DTU) { 5280 SmallVector<DominatorTree::UpdateType, 2> Updates; 5281 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5282 if (!is_contained(successors(BB), OrigDefaultBlock)) 5283 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5284 DTU->applyUpdates(Updates); 5285 } 5286 } 5287 5288 /// Turn a switch into an integer range comparison and branch. 5289 /// Switches with more than 2 destinations are ignored. 5290 /// Switches with 1 destination are also ignored. 5291 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 5292 IRBuilder<> &Builder) { 5293 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5294 5295 bool HasDefault = 5296 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5297 5298 auto *BB = SI->getParent(); 5299 5300 // Partition the cases into two sets with different destinations. 5301 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5302 BasicBlock *DestB = nullptr; 5303 SmallVector<ConstantInt *, 16> CasesA; 5304 SmallVector<ConstantInt *, 16> CasesB; 5305 5306 for (auto Case : SI->cases()) { 5307 BasicBlock *Dest = Case.getCaseSuccessor(); 5308 if (!DestA) 5309 DestA = Dest; 5310 if (Dest == DestA) { 5311 CasesA.push_back(Case.getCaseValue()); 5312 continue; 5313 } 5314 if (!DestB) 5315 DestB = Dest; 5316 if (Dest == DestB) { 5317 CasesB.push_back(Case.getCaseValue()); 5318 continue; 5319 } 5320 return false; // More than two destinations. 5321 } 5322 if (!DestB) 5323 return false; // All destinations are the same and the default is unreachable 5324 5325 assert(DestA && DestB && 5326 "Single-destination switch should have been folded."); 5327 assert(DestA != DestB); 5328 assert(DestB != SI->getDefaultDest()); 5329 assert(!CasesB.empty() && "There must be non-default cases."); 5330 assert(!CasesA.empty() || HasDefault); 5331 5332 // Figure out if one of the sets of cases form a contiguous range. 5333 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5334 BasicBlock *ContiguousDest = nullptr; 5335 BasicBlock *OtherDest = nullptr; 5336 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 5337 ContiguousCases = &CasesA; 5338 ContiguousDest = DestA; 5339 OtherDest = DestB; 5340 } else if (CasesAreContiguous(CasesB)) { 5341 ContiguousCases = &CasesB; 5342 ContiguousDest = DestB; 5343 OtherDest = DestA; 5344 } else 5345 return false; 5346 5347 // Start building the compare and branch. 5348 5349 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5350 Constant *NumCases = 5351 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5352 5353 Value *Sub = SI->getCondition(); 5354 if (!Offset->isNullValue()) 5355 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5356 5357 Value *Cmp; 5358 // If NumCases overflowed, then all possible values jump to the successor. 5359 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5360 Cmp = ConstantInt::getTrue(SI->getContext()); 5361 else 5362 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5363 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5364 5365 // Update weight for the newly-created conditional branch. 5366 if (hasBranchWeightMD(*SI)) { 5367 SmallVector<uint64_t, 8> Weights; 5368 GetBranchWeights(SI, Weights); 5369 if (Weights.size() == 1 + SI->getNumCases()) { 5370 uint64_t TrueWeight = 0; 5371 uint64_t FalseWeight = 0; 5372 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5373 if (SI->getSuccessor(I) == ContiguousDest) 5374 TrueWeight += Weights[I]; 5375 else 5376 FalseWeight += Weights[I]; 5377 } 5378 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5379 TrueWeight /= 2; 5380 FalseWeight /= 2; 5381 } 5382 setBranchWeights(NewBI, TrueWeight, FalseWeight); 5383 } 5384 } 5385 5386 // Prune obsolete incoming values off the successors' PHI nodes. 5387 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5388 unsigned PreviousEdges = ContiguousCases->size(); 5389 if (ContiguousDest == SI->getDefaultDest()) 5390 ++PreviousEdges; 5391 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5392 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5393 } 5394 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5395 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5396 if (OtherDest == SI->getDefaultDest()) 5397 ++PreviousEdges; 5398 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5399 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5400 } 5401 5402 // Clean up the default block - it may have phis or other instructions before 5403 // the unreachable terminator. 5404 if (!HasDefault) 5405 createUnreachableSwitchDefault(SI, DTU); 5406 5407 auto *UnreachableDefault = SI->getDefaultDest(); 5408 5409 // Drop the switch. 5410 SI->eraseFromParent(); 5411 5412 if (!HasDefault && DTU) 5413 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5414 5415 return true; 5416 } 5417 5418 /// Compute masked bits for the condition of a switch 5419 /// and use it to remove dead cases. 5420 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5421 AssumptionCache *AC, 5422 const DataLayout &DL) { 5423 Value *Cond = SI->getCondition(); 5424 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5425 5426 // We can also eliminate cases by determining that their values are outside of 5427 // the limited range of the condition based on how many significant (non-sign) 5428 // bits are in the condition value. 5429 unsigned MaxSignificantBitsInCond = 5430 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5431 5432 // Gather dead cases. 5433 SmallVector<ConstantInt *, 8> DeadCases; 5434 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5435 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5436 for (const auto &Case : SI->cases()) { 5437 auto *Successor = Case.getCaseSuccessor(); 5438 if (DTU) { 5439 if (!NumPerSuccessorCases.count(Successor)) 5440 UniqueSuccessors.push_back(Successor); 5441 ++NumPerSuccessorCases[Successor]; 5442 } 5443 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5444 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5445 (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) { 5446 DeadCases.push_back(Case.getCaseValue()); 5447 if (DTU) 5448 --NumPerSuccessorCases[Successor]; 5449 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5450 << " is dead.\n"); 5451 } 5452 } 5453 5454 // If we can prove that the cases must cover all possible values, the 5455 // default destination becomes dead and we can remove it. If we know some 5456 // of the bits in the value, we can use that to more precisely compute the 5457 // number of possible unique case values. 5458 bool HasDefault = 5459 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5460 const unsigned NumUnknownBits = 5461 Known.getBitWidth() - (Known.Zero | Known.One).popcount(); 5462 assert(NumUnknownBits <= Known.getBitWidth()); 5463 if (HasDefault && DeadCases.empty() && 5464 NumUnknownBits < 64 /* avoid overflow */ && 5465 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5466 createUnreachableSwitchDefault(SI, DTU); 5467 return true; 5468 } 5469 5470 if (DeadCases.empty()) 5471 return false; 5472 5473 SwitchInstProfUpdateWrapper SIW(*SI); 5474 for (ConstantInt *DeadCase : DeadCases) { 5475 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5476 assert(CaseI != SI->case_default() && 5477 "Case was not found. Probably mistake in DeadCases forming."); 5478 // Prune unused values from PHI nodes. 5479 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5480 SIW.removeCase(CaseI); 5481 } 5482 5483 if (DTU) { 5484 std::vector<DominatorTree::UpdateType> Updates; 5485 for (auto *Successor : UniqueSuccessors) 5486 if (NumPerSuccessorCases[Successor] == 0) 5487 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5488 DTU->applyUpdates(Updates); 5489 } 5490 5491 return true; 5492 } 5493 5494 /// If BB would be eligible for simplification by 5495 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5496 /// by an unconditional branch), look at the phi node for BB in the successor 5497 /// block and see if the incoming value is equal to CaseValue. If so, return 5498 /// the phi node, and set PhiIndex to BB's index in the phi node. 5499 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5500 BasicBlock *BB, int *PhiIndex) { 5501 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5502 return nullptr; // BB must be empty to be a candidate for simplification. 5503 if (!BB->getSinglePredecessor()) 5504 return nullptr; // BB must be dominated by the switch. 5505 5506 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5507 if (!Branch || !Branch->isUnconditional()) 5508 return nullptr; // Terminator must be unconditional branch. 5509 5510 BasicBlock *Succ = Branch->getSuccessor(0); 5511 5512 for (PHINode &PHI : Succ->phis()) { 5513 int Idx = PHI.getBasicBlockIndex(BB); 5514 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5515 5516 Value *InValue = PHI.getIncomingValue(Idx); 5517 if (InValue != CaseValue) 5518 continue; 5519 5520 *PhiIndex = Idx; 5521 return &PHI; 5522 } 5523 5524 return nullptr; 5525 } 5526 5527 /// Try to forward the condition of a switch instruction to a phi node 5528 /// dominated by the switch, if that would mean that some of the destination 5529 /// blocks of the switch can be folded away. Return true if a change is made. 5530 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5531 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5532 5533 ForwardingNodesMap ForwardingNodes; 5534 BasicBlock *SwitchBlock = SI->getParent(); 5535 bool Changed = false; 5536 for (const auto &Case : SI->cases()) { 5537 ConstantInt *CaseValue = Case.getCaseValue(); 5538 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5539 5540 // Replace phi operands in successor blocks that are using the constant case 5541 // value rather than the switch condition variable: 5542 // switchbb: 5543 // switch i32 %x, label %default [ 5544 // i32 17, label %succ 5545 // ... 5546 // succ: 5547 // %r = phi i32 ... [ 17, %switchbb ] ... 5548 // --> 5549 // %r = phi i32 ... [ %x, %switchbb ] ... 5550 5551 for (PHINode &Phi : CaseDest->phis()) { 5552 // This only works if there is exactly 1 incoming edge from the switch to 5553 // a phi. If there is >1, that means multiple cases of the switch map to 1 5554 // value in the phi, and that phi value is not the switch condition. Thus, 5555 // this transform would not make sense (the phi would be invalid because 5556 // a phi can't have different incoming values from the same block). 5557 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5558 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5559 count(Phi.blocks(), SwitchBlock) == 1) { 5560 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5561 Changed = true; 5562 } 5563 } 5564 5565 // Collect phi nodes that are indirectly using this switch's case constants. 5566 int PhiIdx; 5567 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5568 ForwardingNodes[Phi].push_back(PhiIdx); 5569 } 5570 5571 for (auto &ForwardingNode : ForwardingNodes) { 5572 PHINode *Phi = ForwardingNode.first; 5573 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5574 if (Indexes.size() < 2) 5575 continue; 5576 5577 for (int Index : Indexes) 5578 Phi->setIncomingValue(Index, SI->getCondition()); 5579 Changed = true; 5580 } 5581 5582 return Changed; 5583 } 5584 5585 /// Return true if the backend will be able to handle 5586 /// initializing an array of constants like C. 5587 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5588 if (C->isThreadDependent()) 5589 return false; 5590 if (C->isDLLImportDependent()) 5591 return false; 5592 5593 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5594 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5595 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5596 return false; 5597 5598 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5599 // Pointer casts and in-bounds GEPs will not prohibit the backend from 5600 // materializing the array of constants. 5601 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 5602 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI)) 5603 return false; 5604 } 5605 5606 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5607 return false; 5608 5609 return true; 5610 } 5611 5612 /// If V is a Constant, return it. Otherwise, try to look up 5613 /// its constant value in ConstantPool, returning 0 if it's not there. 5614 static Constant * 5615 LookupConstant(Value *V, 5616 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5617 if (Constant *C = dyn_cast<Constant>(V)) 5618 return C; 5619 return ConstantPool.lookup(V); 5620 } 5621 5622 /// Try to fold instruction I into a constant. This works for 5623 /// simple instructions such as binary operations where both operands are 5624 /// constant or can be replaced by constants from the ConstantPool. Returns the 5625 /// resulting constant on success, 0 otherwise. 5626 static Constant * 5627 ConstantFold(Instruction *I, const DataLayout &DL, 5628 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5629 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5630 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5631 if (!A) 5632 return nullptr; 5633 if (A->isAllOnesValue()) 5634 return LookupConstant(Select->getTrueValue(), ConstantPool); 5635 if (A->isNullValue()) 5636 return LookupConstant(Select->getFalseValue(), ConstantPool); 5637 return nullptr; 5638 } 5639 5640 SmallVector<Constant *, 4> COps; 5641 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5642 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5643 COps.push_back(A); 5644 else 5645 return nullptr; 5646 } 5647 5648 return ConstantFoldInstOperands(I, COps, DL); 5649 } 5650 5651 /// Try to determine the resulting constant values in phi nodes 5652 /// at the common destination basic block, *CommonDest, for one of the case 5653 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5654 /// case), of a switch instruction SI. 5655 static bool 5656 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5657 BasicBlock **CommonDest, 5658 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5659 const DataLayout &DL, const TargetTransformInfo &TTI) { 5660 // The block from which we enter the common destination. 5661 BasicBlock *Pred = SI->getParent(); 5662 5663 // If CaseDest is empty except for some side-effect free instructions through 5664 // which we can constant-propagate the CaseVal, continue to its successor. 5665 SmallDenseMap<Value *, Constant *> ConstantPool; 5666 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5667 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 5668 if (I.isTerminator()) { 5669 // If the terminator is a simple branch, continue to the next block. 5670 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5671 return false; 5672 Pred = CaseDest; 5673 CaseDest = I.getSuccessor(0); 5674 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5675 // Instruction is side-effect free and constant. 5676 5677 // If the instruction has uses outside this block or a phi node slot for 5678 // the block, it is not safe to bypass the instruction since it would then 5679 // no longer dominate all its uses. 5680 for (auto &Use : I.uses()) { 5681 User *User = Use.getUser(); 5682 if (Instruction *I = dyn_cast<Instruction>(User)) 5683 if (I->getParent() == CaseDest) 5684 continue; 5685 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5686 if (Phi->getIncomingBlock(Use) == CaseDest) 5687 continue; 5688 return false; 5689 } 5690 5691 ConstantPool.insert(std::make_pair(&I, C)); 5692 } else { 5693 break; 5694 } 5695 } 5696 5697 // If we did not have a CommonDest before, use the current one. 5698 if (!*CommonDest) 5699 *CommonDest = CaseDest; 5700 // If the destination isn't the common one, abort. 5701 if (CaseDest != *CommonDest) 5702 return false; 5703 5704 // Get the values for this case from phi nodes in the destination block. 5705 for (PHINode &PHI : (*CommonDest)->phis()) { 5706 int Idx = PHI.getBasicBlockIndex(Pred); 5707 if (Idx == -1) 5708 continue; 5709 5710 Constant *ConstVal = 5711 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5712 if (!ConstVal) 5713 return false; 5714 5715 // Be conservative about which kinds of constants we support. 5716 if (!ValidLookupTableConstant(ConstVal, TTI)) 5717 return false; 5718 5719 Res.push_back(std::make_pair(&PHI, ConstVal)); 5720 } 5721 5722 return Res.size() > 0; 5723 } 5724 5725 // Helper function used to add CaseVal to the list of cases that generate 5726 // Result. Returns the updated number of cases that generate this result. 5727 static size_t mapCaseToResult(ConstantInt *CaseVal, 5728 SwitchCaseResultVectorTy &UniqueResults, 5729 Constant *Result) { 5730 for (auto &I : UniqueResults) { 5731 if (I.first == Result) { 5732 I.second.push_back(CaseVal); 5733 return I.second.size(); 5734 } 5735 } 5736 UniqueResults.push_back( 5737 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5738 return 1; 5739 } 5740 5741 // Helper function that initializes a map containing 5742 // results for the PHI node of the common destination block for a switch 5743 // instruction. Returns false if multiple PHI nodes have been found or if 5744 // there is not a common destination block for the switch. 5745 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 5746 BasicBlock *&CommonDest, 5747 SwitchCaseResultVectorTy &UniqueResults, 5748 Constant *&DefaultResult, 5749 const DataLayout &DL, 5750 const TargetTransformInfo &TTI, 5751 uintptr_t MaxUniqueResults) { 5752 for (const auto &I : SI->cases()) { 5753 ConstantInt *CaseVal = I.getCaseValue(); 5754 5755 // Resulting value at phi nodes for this case value. 5756 SwitchCaseResultsTy Results; 5757 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5758 DL, TTI)) 5759 return false; 5760 5761 // Only one value per case is permitted. 5762 if (Results.size() > 1) 5763 return false; 5764 5765 // Add the case->result mapping to UniqueResults. 5766 const size_t NumCasesForResult = 5767 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5768 5769 // Early out if there are too many cases for this result. 5770 if (NumCasesForResult > MaxSwitchCasesPerResult) 5771 return false; 5772 5773 // Early out if there are too many unique results. 5774 if (UniqueResults.size() > MaxUniqueResults) 5775 return false; 5776 5777 // Check the PHI consistency. 5778 if (!PHI) 5779 PHI = Results[0].first; 5780 else if (PHI != Results[0].first) 5781 return false; 5782 } 5783 // Find the default result value. 5784 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5785 BasicBlock *DefaultDest = SI->getDefaultDest(); 5786 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5787 DL, TTI); 5788 // If the default value is not found abort unless the default destination 5789 // is unreachable. 5790 DefaultResult = 5791 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5792 if ((!DefaultResult && 5793 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5794 return false; 5795 5796 return true; 5797 } 5798 5799 // Helper function that checks if it is possible to transform a switch with only 5800 // two cases (or two cases + default) that produces a result into a select. 5801 // TODO: Handle switches with more than 2 cases that map to the same result. 5802 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector, 5803 Constant *DefaultResult, Value *Condition, 5804 IRBuilder<> &Builder) { 5805 // If we are selecting between only two cases transform into a simple 5806 // select or a two-way select if default is possible. 5807 // Example: 5808 // switch (a) { %0 = icmp eq i32 %a, 10 5809 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4 5810 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20 5811 // default: return 4; %3 = select i1 %2, i32 2, i32 %1 5812 // } 5813 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5814 ResultVector[1].second.size() == 1) { 5815 ConstantInt *FirstCase = ResultVector[0].second[0]; 5816 ConstantInt *SecondCase = ResultVector[1].second[0]; 5817 Value *SelectValue = ResultVector[1].first; 5818 if (DefaultResult) { 5819 Value *ValueCompare = 5820 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5821 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5822 DefaultResult, "switch.select"); 5823 } 5824 Value *ValueCompare = 5825 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5826 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5827 SelectValue, "switch.select"); 5828 } 5829 5830 // Handle the degenerate case where two cases have the same result value. 5831 if (ResultVector.size() == 1 && DefaultResult) { 5832 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second; 5833 unsigned CaseCount = CaseValues.size(); 5834 // n bits group cases map to the same result: 5835 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default 5836 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default 5837 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default 5838 if (isPowerOf2_32(CaseCount)) { 5839 ConstantInt *MinCaseVal = CaseValues[0]; 5840 // Find mininal value. 5841 for (auto *Case : CaseValues) 5842 if (Case->getValue().slt(MinCaseVal->getValue())) 5843 MinCaseVal = Case; 5844 5845 // Mark the bits case number touched. 5846 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth()); 5847 for (auto *Case : CaseValues) 5848 BitMask |= (Case->getValue() - MinCaseVal->getValue()); 5849 5850 // Check if cases with the same result can cover all number 5851 // in touched bits. 5852 if (BitMask.popcount() == Log2_32(CaseCount)) { 5853 if (!MinCaseVal->isNullValue()) 5854 Condition = Builder.CreateSub(Condition, MinCaseVal); 5855 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and"); 5856 Value *Cmp = Builder.CreateICmpEQ( 5857 And, Constant::getNullValue(And->getType()), "switch.selectcmp"); 5858 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5859 } 5860 } 5861 5862 // Handle the degenerate case where two cases have the same value. 5863 if (CaseValues.size() == 2) { 5864 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0], 5865 "switch.selectcmp.case1"); 5866 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1], 5867 "switch.selectcmp.case2"); 5868 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5869 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5870 } 5871 } 5872 5873 return nullptr; 5874 } 5875 5876 // Helper function to cleanup a switch instruction that has been converted into 5877 // a select, fixing up PHI nodes and basic blocks. 5878 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI, 5879 Value *SelectValue, 5880 IRBuilder<> &Builder, 5881 DomTreeUpdater *DTU) { 5882 std::vector<DominatorTree::UpdateType> Updates; 5883 5884 BasicBlock *SelectBB = SI->getParent(); 5885 BasicBlock *DestBB = PHI->getParent(); 5886 5887 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5888 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5889 Builder.CreateBr(DestBB); 5890 5891 // Remove the switch. 5892 5893 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5894 PHI->removeIncomingValue(SelectBB); 5895 PHI->addIncoming(SelectValue, SelectBB); 5896 5897 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5898 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5899 BasicBlock *Succ = SI->getSuccessor(i); 5900 5901 if (Succ == DestBB) 5902 continue; 5903 Succ->removePredecessor(SelectBB); 5904 if (DTU && RemovedSuccessors.insert(Succ).second) 5905 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5906 } 5907 SI->eraseFromParent(); 5908 if (DTU) 5909 DTU->applyUpdates(Updates); 5910 } 5911 5912 /// If a switch is only used to initialize one or more phi nodes in a common 5913 /// successor block with only two different constant values, try to replace the 5914 /// switch with a select. Returns true if the fold was made. 5915 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5916 DomTreeUpdater *DTU, const DataLayout &DL, 5917 const TargetTransformInfo &TTI) { 5918 Value *const Cond = SI->getCondition(); 5919 PHINode *PHI = nullptr; 5920 BasicBlock *CommonDest = nullptr; 5921 Constant *DefaultResult; 5922 SwitchCaseResultVectorTy UniqueResults; 5923 // Collect all the cases that will deliver the same value from the switch. 5924 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5925 DL, TTI, /*MaxUniqueResults*/ 2)) 5926 return false; 5927 5928 assert(PHI != nullptr && "PHI for value select not found"); 5929 Builder.SetInsertPoint(SI); 5930 Value *SelectValue = 5931 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder); 5932 if (!SelectValue) 5933 return false; 5934 5935 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU); 5936 return true; 5937 } 5938 5939 namespace { 5940 5941 /// This class represents a lookup table that can be used to replace a switch. 5942 class SwitchLookupTable { 5943 public: 5944 /// Create a lookup table to use as a switch replacement with the contents 5945 /// of Values, using DefaultValue to fill any holes in the table. 5946 SwitchLookupTable( 5947 Module &M, uint64_t TableSize, ConstantInt *Offset, 5948 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5949 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5950 5951 /// Build instructions with Builder to retrieve the value at 5952 /// the position given by Index in the lookup table. 5953 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5954 5955 /// Return true if a table with TableSize elements of 5956 /// type ElementType would fit in a target-legal register. 5957 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5958 Type *ElementType); 5959 5960 private: 5961 // Depending on the contents of the table, it can be represented in 5962 // different ways. 5963 enum { 5964 // For tables where each element contains the same value, we just have to 5965 // store that single value and return it for each lookup. 5966 SingleValueKind, 5967 5968 // For tables where there is a linear relationship between table index 5969 // and values. We calculate the result with a simple multiplication 5970 // and addition instead of a table lookup. 5971 LinearMapKind, 5972 5973 // For small tables with integer elements, we can pack them into a bitmap 5974 // that fits into a target-legal register. Values are retrieved by 5975 // shift and mask operations. 5976 BitMapKind, 5977 5978 // The table is stored as an array of values. Values are retrieved by load 5979 // instructions from the table. 5980 ArrayKind 5981 } Kind; 5982 5983 // For SingleValueKind, this is the single value. 5984 Constant *SingleValue = nullptr; 5985 5986 // For BitMapKind, this is the bitmap. 5987 ConstantInt *BitMap = nullptr; 5988 IntegerType *BitMapElementTy = nullptr; 5989 5990 // For LinearMapKind, these are the constants used to derive the value. 5991 ConstantInt *LinearOffset = nullptr; 5992 ConstantInt *LinearMultiplier = nullptr; 5993 bool LinearMapValWrapped = false; 5994 5995 // For ArrayKind, this is the array. 5996 GlobalVariable *Array = nullptr; 5997 }; 5998 5999 } // end anonymous namespace 6000 6001 SwitchLookupTable::SwitchLookupTable( 6002 Module &M, uint64_t TableSize, ConstantInt *Offset, 6003 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6004 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 6005 assert(Values.size() && "Can't build lookup table without values!"); 6006 assert(TableSize >= Values.size() && "Can't fit values in table!"); 6007 6008 // If all values in the table are equal, this is that value. 6009 SingleValue = Values.begin()->second; 6010 6011 Type *ValueType = Values.begin()->second->getType(); 6012 6013 // Build up the table contents. 6014 SmallVector<Constant *, 64> TableContents(TableSize); 6015 for (size_t I = 0, E = Values.size(); I != E; ++I) { 6016 ConstantInt *CaseVal = Values[I].first; 6017 Constant *CaseRes = Values[I].second; 6018 assert(CaseRes->getType() == ValueType); 6019 6020 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 6021 TableContents[Idx] = CaseRes; 6022 6023 if (CaseRes != SingleValue) 6024 SingleValue = nullptr; 6025 } 6026 6027 // Fill in any holes in the table with the default result. 6028 if (Values.size() < TableSize) { 6029 assert(DefaultValue && 6030 "Need a default value to fill the lookup table holes."); 6031 assert(DefaultValue->getType() == ValueType); 6032 for (uint64_t I = 0; I < TableSize; ++I) { 6033 if (!TableContents[I]) 6034 TableContents[I] = DefaultValue; 6035 } 6036 6037 if (DefaultValue != SingleValue) 6038 SingleValue = nullptr; 6039 } 6040 6041 // If each element in the table contains the same value, we only need to store 6042 // that single value. 6043 if (SingleValue) { 6044 Kind = SingleValueKind; 6045 return; 6046 } 6047 6048 // Check if we can derive the value with a linear transformation from the 6049 // table index. 6050 if (isa<IntegerType>(ValueType)) { 6051 bool LinearMappingPossible = true; 6052 APInt PrevVal; 6053 APInt DistToPrev; 6054 // When linear map is monotonic and signed overflow doesn't happen on 6055 // maximum index, we can attach nsw on Add and Mul. 6056 bool NonMonotonic = false; 6057 assert(TableSize >= 2 && "Should be a SingleValue table."); 6058 // Check if there is the same distance between two consecutive values. 6059 for (uint64_t I = 0; I < TableSize; ++I) { 6060 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 6061 if (!ConstVal) { 6062 // This is an undef. We could deal with it, but undefs in lookup tables 6063 // are very seldom. It's probably not worth the additional complexity. 6064 LinearMappingPossible = false; 6065 break; 6066 } 6067 const APInt &Val = ConstVal->getValue(); 6068 if (I != 0) { 6069 APInt Dist = Val - PrevVal; 6070 if (I == 1) { 6071 DistToPrev = Dist; 6072 } else if (Dist != DistToPrev) { 6073 LinearMappingPossible = false; 6074 break; 6075 } 6076 NonMonotonic |= 6077 Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal); 6078 } 6079 PrevVal = Val; 6080 } 6081 if (LinearMappingPossible) { 6082 LinearOffset = cast<ConstantInt>(TableContents[0]); 6083 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 6084 bool MayWrap = false; 6085 APInt M = LinearMultiplier->getValue(); 6086 (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap); 6087 LinearMapValWrapped = NonMonotonic || MayWrap; 6088 Kind = LinearMapKind; 6089 ++NumLinearMaps; 6090 return; 6091 } 6092 } 6093 6094 // If the type is integer and the table fits in a register, build a bitmap. 6095 if (WouldFitInRegister(DL, TableSize, ValueType)) { 6096 IntegerType *IT = cast<IntegerType>(ValueType); 6097 APInt TableInt(TableSize * IT->getBitWidth(), 0); 6098 for (uint64_t I = TableSize; I > 0; --I) { 6099 TableInt <<= IT->getBitWidth(); 6100 // Insert values into the bitmap. Undef values are set to zero. 6101 if (!isa<UndefValue>(TableContents[I - 1])) { 6102 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 6103 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 6104 } 6105 } 6106 BitMap = ConstantInt::get(M.getContext(), TableInt); 6107 BitMapElementTy = IT; 6108 Kind = BitMapKind; 6109 ++NumBitMaps; 6110 return; 6111 } 6112 6113 // Store the table in an array. 6114 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 6115 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 6116 6117 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 6118 GlobalVariable::PrivateLinkage, Initializer, 6119 "switch.table." + FuncName); 6120 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 6121 // Set the alignment to that of an array items. We will be only loading one 6122 // value out of it. 6123 Array->setAlignment(DL.getPrefTypeAlign(ValueType)); 6124 Kind = ArrayKind; 6125 } 6126 6127 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 6128 switch (Kind) { 6129 case SingleValueKind: 6130 return SingleValue; 6131 case LinearMapKind: { 6132 // Derive the result value from the input value. 6133 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 6134 false, "switch.idx.cast"); 6135 if (!LinearMultiplier->isOne()) 6136 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult", 6137 /*HasNUW = */ false, 6138 /*HasNSW = */ !LinearMapValWrapped); 6139 6140 if (!LinearOffset->isZero()) 6141 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset", 6142 /*HasNUW = */ false, 6143 /*HasNSW = */ !LinearMapValWrapped); 6144 return Result; 6145 } 6146 case BitMapKind: { 6147 // Type of the bitmap (e.g. i59). 6148 IntegerType *MapTy = BitMap->getType(); 6149 6150 // Cast Index to the same type as the bitmap. 6151 // Note: The Index is <= the number of elements in the table, so 6152 // truncating it to the width of the bitmask is safe. 6153 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 6154 6155 // Multiply the shift amount by the element width. NUW/NSW can always be 6156 // set, because WouldFitInRegister guarantees Index * ShiftAmt is in 6157 // BitMap's bit width. 6158 ShiftAmt = Builder.CreateMul( 6159 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 6160 "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true); 6161 6162 // Shift down. 6163 Value *DownShifted = 6164 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 6165 // Mask off. 6166 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6167 } 6168 case ArrayKind: { 6169 // Make sure the table index will not overflow when treated as signed. 6170 IntegerType *IT = cast<IntegerType>(Index->getType()); 6171 uint64_t TableSize = 6172 Array->getInitializer()->getType()->getArrayNumElements(); 6173 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u))) 6174 Index = Builder.CreateZExt( 6175 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6176 "switch.tableidx.zext"); 6177 6178 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6179 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6180 GEPIndices, "switch.gep"); 6181 return Builder.CreateLoad( 6182 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6183 "switch.load"); 6184 } 6185 } 6186 llvm_unreachable("Unknown lookup table kind!"); 6187 } 6188 6189 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 6190 uint64_t TableSize, 6191 Type *ElementType) { 6192 auto *IT = dyn_cast<IntegerType>(ElementType); 6193 if (!IT) 6194 return false; 6195 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6196 // are <= 15, we could try to narrow the type. 6197 6198 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6199 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6200 return false; 6201 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6202 } 6203 6204 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6205 const DataLayout &DL) { 6206 // Allow any legal type. 6207 if (TTI.isTypeLegal(Ty)) 6208 return true; 6209 6210 auto *IT = dyn_cast<IntegerType>(Ty); 6211 if (!IT) 6212 return false; 6213 6214 // Also allow power of 2 integer types that have at least 8 bits and fit in 6215 // a register. These types are common in frontend languages and targets 6216 // usually support loads of these types. 6217 // TODO: We could relax this to any integer that fits in a register and rely 6218 // on ABI alignment and padding in the table to allow the load to be widened. 6219 // Or we could widen the constants and truncate the load. 6220 unsigned BitWidth = IT->getBitWidth(); 6221 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6222 DL.fitsInLegalInteger(IT->getBitWidth()); 6223 } 6224 6225 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) { 6226 // 40% is the default density for building a jump table in optsize/minsize 6227 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this 6228 // function was based on. 6229 const uint64_t MinDensity = 40; 6230 6231 if (CaseRange >= UINT64_MAX / 100) 6232 return false; // Avoid multiplication overflows below. 6233 6234 return NumCases * 100 >= CaseRange * MinDensity; 6235 } 6236 6237 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6238 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6239 uint64_t Range = Diff + 1; 6240 if (Range < Diff) 6241 return false; // Overflow. 6242 6243 return isSwitchDense(Values.size(), Range); 6244 } 6245 6246 /// Determine whether a lookup table should be built for this switch, based on 6247 /// the number of cases, size of the table, and the types of the results. 6248 // TODO: We could support larger than legal types by limiting based on the 6249 // number of loads required and/or table size. If the constants are small we 6250 // could use smaller table entries and extend after the load. 6251 static bool 6252 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6253 const TargetTransformInfo &TTI, const DataLayout &DL, 6254 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6255 if (SI->getNumCases() > TableSize) 6256 return false; // TableSize overflowed. 6257 6258 bool AllTablesFitInRegister = true; 6259 bool HasIllegalType = false; 6260 for (const auto &I : ResultTypes) { 6261 Type *Ty = I.second; 6262 6263 // Saturate this flag to true. 6264 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6265 6266 // Saturate this flag to false. 6267 AllTablesFitInRegister = 6268 AllTablesFitInRegister && 6269 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 6270 6271 // If both flags saturate, we're done. NOTE: This *only* works with 6272 // saturating flags, and all flags have to saturate first due to the 6273 // non-deterministic behavior of iterating over a dense map. 6274 if (HasIllegalType && !AllTablesFitInRegister) 6275 break; 6276 } 6277 6278 // If each table would fit in a register, we should build it anyway. 6279 if (AllTablesFitInRegister) 6280 return true; 6281 6282 // Don't build a table that doesn't fit in-register if it has illegal types. 6283 if (HasIllegalType) 6284 return false; 6285 6286 return isSwitchDense(SI->getNumCases(), TableSize); 6287 } 6288 6289 static bool ShouldUseSwitchConditionAsTableIndex( 6290 ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal, 6291 bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes, 6292 const DataLayout &DL, const TargetTransformInfo &TTI) { 6293 if (MinCaseVal.isNullValue()) 6294 return true; 6295 if (MinCaseVal.isNegative() || 6296 MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() || 6297 !HasDefaultResults) 6298 return false; 6299 return all_of(ResultTypes, [&](const auto &KV) { 6300 return SwitchLookupTable::WouldFitInRegister( 6301 DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */, 6302 KV.second /* ResultType */); 6303 }); 6304 } 6305 6306 /// Try to reuse the switch table index compare. Following pattern: 6307 /// \code 6308 /// if (idx < tablesize) 6309 /// r = table[idx]; // table does not contain default_value 6310 /// else 6311 /// r = default_value; 6312 /// if (r != default_value) 6313 /// ... 6314 /// \endcode 6315 /// Is optimized to: 6316 /// \code 6317 /// cond = idx < tablesize; 6318 /// if (cond) 6319 /// r = table[idx]; 6320 /// else 6321 /// r = default_value; 6322 /// if (cond) 6323 /// ... 6324 /// \endcode 6325 /// Jump threading will then eliminate the second if(cond). 6326 static void reuseTableCompare( 6327 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6328 Constant *DefaultValue, 6329 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6330 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6331 if (!CmpInst) 6332 return; 6333 6334 // We require that the compare is in the same block as the phi so that jump 6335 // threading can do its work afterwards. 6336 if (CmpInst->getParent() != PhiBlock) 6337 return; 6338 6339 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6340 if (!CmpOp1) 6341 return; 6342 6343 Value *RangeCmp = RangeCheckBranch->getCondition(); 6344 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6345 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6346 6347 // Check if the compare with the default value is constant true or false. 6348 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6349 DefaultValue, CmpOp1, true); 6350 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6351 return; 6352 6353 // Check if the compare with the case values is distinct from the default 6354 // compare result. 6355 for (auto ValuePair : Values) { 6356 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6357 ValuePair.second, CmpOp1, true); 6358 if (!CaseConst || CaseConst == DefaultConst || 6359 (CaseConst != TrueConst && CaseConst != FalseConst)) 6360 return; 6361 } 6362 6363 // Check if the branch instruction dominates the phi node. It's a simple 6364 // dominance check, but sufficient for our needs. 6365 // Although this check is invariant in the calling loops, it's better to do it 6366 // at this late stage. Practically we do it at most once for a switch. 6367 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6368 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6369 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6370 return; 6371 } 6372 6373 if (DefaultConst == FalseConst) { 6374 // The compare yields the same result. We can replace it. 6375 CmpInst->replaceAllUsesWith(RangeCmp); 6376 ++NumTableCmpReuses; 6377 } else { 6378 // The compare yields the same result, just inverted. We can replace it. 6379 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6380 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6381 RangeCheckBranch); 6382 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6383 ++NumTableCmpReuses; 6384 } 6385 } 6386 6387 /// If the switch is only used to initialize one or more phi nodes in a common 6388 /// successor block with different constant values, replace the switch with 6389 /// lookup tables. 6390 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6391 DomTreeUpdater *DTU, const DataLayout &DL, 6392 const TargetTransformInfo &TTI) { 6393 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6394 6395 BasicBlock *BB = SI->getParent(); 6396 Function *Fn = BB->getParent(); 6397 // Only build lookup table when we have a target that supports it or the 6398 // attribute is not set. 6399 if (!TTI.shouldBuildLookupTables() || 6400 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6401 return false; 6402 6403 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6404 // split off a dense part and build a lookup table for that. 6405 6406 // FIXME: This creates arrays of GEPs to constant strings, which means each 6407 // GEP needs a runtime relocation in PIC code. We should just build one big 6408 // string and lookup indices into that. 6409 6410 // Ignore switches with less than three cases. Lookup tables will not make 6411 // them faster, so we don't analyze them. 6412 if (SI->getNumCases() < 3) 6413 return false; 6414 6415 // Figure out the corresponding result for each case value and phi node in the 6416 // common destination, as well as the min and max case values. 6417 assert(!SI->cases().empty()); 6418 SwitchInst::CaseIt CI = SI->case_begin(); 6419 ConstantInt *MinCaseVal = CI->getCaseValue(); 6420 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6421 6422 BasicBlock *CommonDest = nullptr; 6423 6424 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6425 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6426 6427 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6428 SmallDenseMap<PHINode *, Type *> ResultTypes; 6429 SmallVector<PHINode *, 4> PHIs; 6430 6431 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6432 ConstantInt *CaseVal = CI->getCaseValue(); 6433 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6434 MinCaseVal = CaseVal; 6435 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6436 MaxCaseVal = CaseVal; 6437 6438 // Resulting value at phi nodes for this case value. 6439 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6440 ResultsTy Results; 6441 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6442 Results, DL, TTI)) 6443 return false; 6444 6445 // Append the result from this case to the list for each phi. 6446 for (const auto &I : Results) { 6447 PHINode *PHI = I.first; 6448 Constant *Value = I.second; 6449 if (!ResultLists.count(PHI)) 6450 PHIs.push_back(PHI); 6451 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6452 } 6453 } 6454 6455 // Keep track of the result types. 6456 for (PHINode *PHI : PHIs) { 6457 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6458 } 6459 6460 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6461 6462 // If the table has holes, we need a constant result for the default case 6463 // or a bitmask that fits in a register. 6464 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6465 bool HasDefaultResults = 6466 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6467 DefaultResultsList, DL, TTI); 6468 6469 for (const auto &I : DefaultResultsList) { 6470 PHINode *PHI = I.first; 6471 Constant *Result = I.second; 6472 DefaultResults[PHI] = Result; 6473 } 6474 6475 bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex( 6476 *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI); 6477 uint64_t TableSize; 6478 if (UseSwitchConditionAsTableIndex) 6479 TableSize = MaxCaseVal->getLimitedValue() + 1; 6480 else 6481 TableSize = 6482 (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1; 6483 6484 bool TableHasHoles = (NumResults < TableSize); 6485 bool NeedMask = (TableHasHoles && !HasDefaultResults); 6486 if (NeedMask) { 6487 // As an extra penalty for the validity test we require more cases. 6488 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 6489 return false; 6490 if (!DL.fitsInLegalInteger(TableSize)) 6491 return false; 6492 } 6493 6494 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 6495 return false; 6496 6497 std::vector<DominatorTree::UpdateType> Updates; 6498 6499 // Compute the maximum table size representable by the integer type we are 6500 // switching upon. 6501 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6502 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6503 assert(MaxTableSize >= TableSize && 6504 "It is impossible for a switch to have more entries than the max " 6505 "representable value of its input integer type's size."); 6506 6507 // If the default destination is unreachable, or if the lookup table covers 6508 // all values of the conditional variable, branch directly to the lookup table 6509 // BB. Otherwise, check that the condition is within the case range. 6510 const bool DefaultIsReachable = 6511 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6512 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6513 6514 // Create the BB that does the lookups. 6515 Module &Mod = *CommonDest->getParent()->getParent(); 6516 BasicBlock *LookupBB = BasicBlock::Create( 6517 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6518 6519 // Compute the table index value. 6520 Builder.SetInsertPoint(SI); 6521 Value *TableIndex; 6522 ConstantInt *TableIndexOffset; 6523 if (UseSwitchConditionAsTableIndex) { 6524 TableIndexOffset = ConstantInt::get(MaxCaseVal->getType(), 0); 6525 TableIndex = SI->getCondition(); 6526 } else { 6527 TableIndexOffset = MinCaseVal; 6528 // If the default is unreachable, all case values are s>= MinCaseVal. Then 6529 // we can try to attach nsw. 6530 bool MayWrap = true; 6531 if (!DefaultIsReachable) { 6532 APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap); 6533 (void)Res; 6534 } 6535 6536 TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset, 6537 "switch.tableidx", /*HasNUW =*/false, 6538 /*HasNSW =*/!MayWrap); 6539 } 6540 6541 BranchInst *RangeCheckBranch = nullptr; 6542 6543 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6544 Builder.CreateBr(LookupBB); 6545 if (DTU) 6546 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6547 // Note: We call removeProdecessor later since we need to be able to get the 6548 // PHI value for the default case in case we're using a bit mask. 6549 } else { 6550 Value *Cmp = Builder.CreateICmpULT( 6551 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6552 RangeCheckBranch = 6553 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6554 if (DTU) 6555 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6556 } 6557 6558 // Populate the BB that does the lookups. 6559 Builder.SetInsertPoint(LookupBB); 6560 6561 if (NeedMask) { 6562 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6563 // re-purposed to do the hole check, and we create a new LookupBB. 6564 BasicBlock *MaskBB = LookupBB; 6565 MaskBB->setName("switch.hole_check"); 6566 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6567 CommonDest->getParent(), CommonDest); 6568 6569 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6570 // unnecessary illegal types. 6571 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6572 APInt MaskInt(TableSizePowOf2, 0); 6573 APInt One(TableSizePowOf2, 1); 6574 // Build bitmask; fill in a 1 bit for every case. 6575 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6576 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6577 uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue()) 6578 .getLimitedValue(); 6579 MaskInt |= One << Idx; 6580 } 6581 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6582 6583 // Get the TableIndex'th bit of the bitmask. 6584 // If this bit is 0 (meaning hole) jump to the default destination, 6585 // else continue with table lookup. 6586 IntegerType *MapTy = TableMask->getType(); 6587 Value *MaskIndex = 6588 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6589 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6590 Value *LoBit = Builder.CreateTrunc( 6591 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6592 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6593 if (DTU) { 6594 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6595 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6596 } 6597 Builder.SetInsertPoint(LookupBB); 6598 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6599 } 6600 6601 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6602 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6603 // do not delete PHINodes here. 6604 SI->getDefaultDest()->removePredecessor(BB, 6605 /*KeepOneInputPHIs=*/true); 6606 if (DTU) 6607 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6608 } 6609 6610 for (PHINode *PHI : PHIs) { 6611 const ResultListTy &ResultList = ResultLists[PHI]; 6612 6613 // If using a bitmask, use any value to fill the lookup table holes. 6614 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6615 StringRef FuncName = Fn->getName(); 6616 SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV, 6617 DL, FuncName); 6618 6619 Value *Result = Table.BuildLookup(TableIndex, Builder); 6620 6621 // Do a small peephole optimization: re-use the switch table compare if 6622 // possible. 6623 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6624 BasicBlock *PhiBlock = PHI->getParent(); 6625 // Search for compare instructions which use the phi. 6626 for (auto *User : PHI->users()) { 6627 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6628 } 6629 } 6630 6631 PHI->addIncoming(Result, LookupBB); 6632 } 6633 6634 Builder.CreateBr(CommonDest); 6635 if (DTU) 6636 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6637 6638 // Remove the switch. 6639 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6640 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6641 BasicBlock *Succ = SI->getSuccessor(i); 6642 6643 if (Succ == SI->getDefaultDest()) 6644 continue; 6645 Succ->removePredecessor(BB); 6646 if (DTU && RemovedSuccessors.insert(Succ).second) 6647 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6648 } 6649 SI->eraseFromParent(); 6650 6651 if (DTU) 6652 DTU->applyUpdates(Updates); 6653 6654 ++NumLookupTables; 6655 if (NeedMask) 6656 ++NumLookupTablesHoles; 6657 return true; 6658 } 6659 6660 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6661 /// of cases. 6662 /// 6663 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6664 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6665 /// 6666 /// This converts a sparse switch into a dense switch which allows better 6667 /// lowering and could also allow transforming into a lookup table. 6668 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6669 const DataLayout &DL, 6670 const TargetTransformInfo &TTI) { 6671 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6672 if (CondTy->getIntegerBitWidth() > 64 || 6673 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6674 return false; 6675 // Only bother with this optimization if there are more than 3 switch cases; 6676 // SDAG will only bother creating jump tables for 4 or more cases. 6677 if (SI->getNumCases() < 4) 6678 return false; 6679 6680 // This transform is agnostic to the signedness of the input or case values. We 6681 // can treat the case values as signed or unsigned. We can optimize more common 6682 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6683 // as signed. 6684 SmallVector<int64_t,4> Values; 6685 for (const auto &C : SI->cases()) 6686 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6687 llvm::sort(Values); 6688 6689 // If the switch is already dense, there's nothing useful to do here. 6690 if (isSwitchDense(Values)) 6691 return false; 6692 6693 // First, transform the values such that they start at zero and ascend. 6694 int64_t Base = Values[0]; 6695 for (auto &V : Values) 6696 V -= (uint64_t)(Base); 6697 6698 // Now we have signed numbers that have been shifted so that, given enough 6699 // precision, there are no negative values. Since the rest of the transform 6700 // is bitwise only, we switch now to an unsigned representation. 6701 6702 // This transform can be done speculatively because it is so cheap - it 6703 // results in a single rotate operation being inserted. 6704 // FIXME: It's possible that optimizing a switch on powers of two might also 6705 // be beneficial - flag values are often powers of two and we could use a CLZ 6706 // as the key function. 6707 6708 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6709 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6710 // less than 64. 6711 unsigned Shift = 64; 6712 for (auto &V : Values) 6713 Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V)); 6714 assert(Shift < 64); 6715 if (Shift > 0) 6716 for (auto &V : Values) 6717 V = (int64_t)((uint64_t)V >> Shift); 6718 6719 if (!isSwitchDense(Values)) 6720 // Transform didn't create a dense switch. 6721 return false; 6722 6723 // The obvious transform is to shift the switch condition right and emit a 6724 // check that the condition actually cleanly divided by GCD, i.e. 6725 // C & (1 << Shift - 1) == 0 6726 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6727 // 6728 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6729 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6730 // are nonzero then the switch condition will be very large and will hit the 6731 // default case. 6732 6733 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6734 Builder.SetInsertPoint(SI); 6735 auto *ShiftC = ConstantInt::get(Ty, Shift); 6736 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6737 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6738 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6739 auto *Rot = Builder.CreateOr(LShr, Shl); 6740 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6741 6742 for (auto Case : SI->cases()) { 6743 auto *Orig = Case.getCaseValue(); 6744 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6745 Case.setValue( 6746 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6747 } 6748 return true; 6749 } 6750 6751 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6752 BasicBlock *BB = SI->getParent(); 6753 6754 if (isValueEqualityComparison(SI)) { 6755 // If we only have one predecessor, and if it is a branch on this value, 6756 // see if that predecessor totally determines the outcome of this switch. 6757 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6758 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6759 return requestResimplify(); 6760 6761 Value *Cond = SI->getCondition(); 6762 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6763 if (SimplifySwitchOnSelect(SI, Select)) 6764 return requestResimplify(); 6765 6766 // If the block only contains the switch, see if we can fold the block 6767 // away into any preds. 6768 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 6769 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6770 return requestResimplify(); 6771 } 6772 6773 // Try to transform the switch into an icmp and a branch. 6774 // The conversion from switch to comparison may lose information on 6775 // impossible switch values, so disable it early in the pipeline. 6776 if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder)) 6777 return requestResimplify(); 6778 6779 // Remove unreachable cases. 6780 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6781 return requestResimplify(); 6782 6783 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI)) 6784 return requestResimplify(); 6785 6786 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6787 return requestResimplify(); 6788 6789 // The conversion from switch to lookup tables results in difficult-to-analyze 6790 // code and makes pruning branches much harder. This is a problem if the 6791 // switch expression itself can still be restricted as a result of inlining or 6792 // CVP. Therefore, only apply this transformation during late stages of the 6793 // optimisation pipeline. 6794 if (Options.ConvertSwitchToLookupTable && 6795 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6796 return requestResimplify(); 6797 6798 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6799 return requestResimplify(); 6800 6801 return false; 6802 } 6803 6804 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6805 BasicBlock *BB = IBI->getParent(); 6806 bool Changed = false; 6807 6808 // Eliminate redundant destinations. 6809 SmallPtrSet<Value *, 8> Succs; 6810 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6811 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6812 BasicBlock *Dest = IBI->getDestination(i); 6813 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6814 if (!Dest->hasAddressTaken()) 6815 RemovedSuccs.insert(Dest); 6816 Dest->removePredecessor(BB); 6817 IBI->removeDestination(i); 6818 --i; 6819 --e; 6820 Changed = true; 6821 } 6822 } 6823 6824 if (DTU) { 6825 std::vector<DominatorTree::UpdateType> Updates; 6826 Updates.reserve(RemovedSuccs.size()); 6827 for (auto *RemovedSucc : RemovedSuccs) 6828 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6829 DTU->applyUpdates(Updates); 6830 } 6831 6832 if (IBI->getNumDestinations() == 0) { 6833 // If the indirectbr has no successors, change it to unreachable. 6834 new UnreachableInst(IBI->getContext(), IBI); 6835 EraseTerminatorAndDCECond(IBI); 6836 return true; 6837 } 6838 6839 if (IBI->getNumDestinations() == 1) { 6840 // If the indirectbr has one successor, change it to a direct branch. 6841 BranchInst::Create(IBI->getDestination(0), IBI); 6842 EraseTerminatorAndDCECond(IBI); 6843 return true; 6844 } 6845 6846 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6847 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6848 return requestResimplify(); 6849 } 6850 return Changed; 6851 } 6852 6853 /// Given an block with only a single landing pad and a unconditional branch 6854 /// try to find another basic block which this one can be merged with. This 6855 /// handles cases where we have multiple invokes with unique landing pads, but 6856 /// a shared handler. 6857 /// 6858 /// We specifically choose to not worry about merging non-empty blocks 6859 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6860 /// practice, the optimizer produces empty landing pad blocks quite frequently 6861 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6862 /// sinking in this file) 6863 /// 6864 /// This is primarily a code size optimization. We need to avoid performing 6865 /// any transform which might inhibit optimization (such as our ability to 6866 /// specialize a particular handler via tail commoning). We do this by not 6867 /// merging any blocks which require us to introduce a phi. Since the same 6868 /// values are flowing through both blocks, we don't lose any ability to 6869 /// specialize. If anything, we make such specialization more likely. 6870 /// 6871 /// TODO - This transformation could remove entries from a phi in the target 6872 /// block when the inputs in the phi are the same for the two blocks being 6873 /// merged. In some cases, this could result in removal of the PHI entirely. 6874 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6875 BasicBlock *BB, DomTreeUpdater *DTU) { 6876 auto Succ = BB->getUniqueSuccessor(); 6877 assert(Succ); 6878 // If there's a phi in the successor block, we'd likely have to introduce 6879 // a phi into the merged landing pad block. 6880 if (isa<PHINode>(*Succ->begin())) 6881 return false; 6882 6883 for (BasicBlock *OtherPred : predecessors(Succ)) { 6884 if (BB == OtherPred) 6885 continue; 6886 BasicBlock::iterator I = OtherPred->begin(); 6887 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6888 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6889 continue; 6890 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6891 ; 6892 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6893 if (!BI2 || !BI2->isIdenticalTo(BI)) 6894 continue; 6895 6896 std::vector<DominatorTree::UpdateType> Updates; 6897 6898 // We've found an identical block. Update our predecessors to take that 6899 // path instead and make ourselves dead. 6900 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 6901 for (BasicBlock *Pred : UniquePreds) { 6902 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6903 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6904 "unexpected successor"); 6905 II->setUnwindDest(OtherPred); 6906 if (DTU) { 6907 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6908 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6909 } 6910 } 6911 6912 // The debug info in OtherPred doesn't cover the merged control flow that 6913 // used to go through BB. We need to delete it or update it. 6914 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 6915 if (isa<DbgInfoIntrinsic>(Inst)) 6916 Inst.eraseFromParent(); 6917 6918 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 6919 for (BasicBlock *Succ : UniqueSuccs) { 6920 Succ->removePredecessor(BB); 6921 if (DTU) 6922 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6923 } 6924 6925 IRBuilder<> Builder(BI); 6926 Builder.CreateUnreachable(); 6927 BI->eraseFromParent(); 6928 if (DTU) 6929 DTU->applyUpdates(Updates); 6930 return true; 6931 } 6932 return false; 6933 } 6934 6935 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6936 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6937 : simplifyCondBranch(Branch, Builder); 6938 } 6939 6940 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6941 IRBuilder<> &Builder) { 6942 BasicBlock *BB = BI->getParent(); 6943 BasicBlock *Succ = BI->getSuccessor(0); 6944 6945 // If the Terminator is the only non-phi instruction, simplify the block. 6946 // If LoopHeader is provided, check if the block or its successor is a loop 6947 // header. (This is for early invocations before loop simplify and 6948 // vectorization to keep canonical loop forms for nested loops. These blocks 6949 // can be eliminated when the pass is invoked later in the back-end.) 6950 // Note that if BB has only one predecessor then we do not introduce new 6951 // backedge, so we can eliminate BB. 6952 bool NeedCanonicalLoop = 6953 Options.NeedCanonicalLoop && 6954 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6955 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6956 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6957 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6958 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6959 return true; 6960 6961 // If the only instruction in the block is a seteq/setne comparison against a 6962 // constant, try to simplify the block. 6963 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6964 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6965 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6966 ; 6967 if (I->isTerminator() && 6968 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6969 return true; 6970 } 6971 6972 // See if we can merge an empty landing pad block with another which is 6973 // equivalent. 6974 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6975 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6976 ; 6977 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6978 return true; 6979 } 6980 6981 // If this basic block is ONLY a compare and a branch, and if a predecessor 6982 // branches to us and our successor, fold the comparison into the 6983 // predecessor and use logical operations to update the incoming value 6984 // for PHI nodes in common successor. 6985 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6986 Options.BonusInstThreshold)) 6987 return requestResimplify(); 6988 return false; 6989 } 6990 6991 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6992 BasicBlock *PredPred = nullptr; 6993 for (auto *P : predecessors(BB)) { 6994 BasicBlock *PPred = P->getSinglePredecessor(); 6995 if (!PPred || (PredPred && PredPred != PPred)) 6996 return nullptr; 6997 PredPred = PPred; 6998 } 6999 return PredPred; 7000 } 7001 7002 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 7003 assert( 7004 !isa<ConstantInt>(BI->getCondition()) && 7005 BI->getSuccessor(0) != BI->getSuccessor(1) && 7006 "Tautological conditional branch should have been eliminated already."); 7007 7008 BasicBlock *BB = BI->getParent(); 7009 if (!Options.SimplifyCondBranch || 7010 BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing)) 7011 return false; 7012 7013 // Conditional branch 7014 if (isValueEqualityComparison(BI)) { 7015 // If we only have one predecessor, and if it is a branch on this value, 7016 // see if that predecessor totally determines the outcome of this 7017 // switch. 7018 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 7019 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 7020 return requestResimplify(); 7021 7022 // This block must be empty, except for the setcond inst, if it exists. 7023 // Ignore dbg and pseudo intrinsics. 7024 auto I = BB->instructionsWithoutDebug(true).begin(); 7025 if (&*I == BI) { 7026 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 7027 return requestResimplify(); 7028 } else if (&*I == cast<Instruction>(BI->getCondition())) { 7029 ++I; 7030 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 7031 return requestResimplify(); 7032 } 7033 } 7034 7035 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 7036 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 7037 return true; 7038 7039 // If this basic block has dominating predecessor blocks and the dominating 7040 // blocks' conditions imply BI's condition, we know the direction of BI. 7041 std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 7042 if (Imp) { 7043 // Turn this into a branch on constant. 7044 auto *OldCond = BI->getCondition(); 7045 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 7046 : ConstantInt::getFalse(BB->getContext()); 7047 BI->setCondition(TorF); 7048 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 7049 return requestResimplify(); 7050 } 7051 7052 // If this basic block is ONLY a compare and a branch, and if a predecessor 7053 // branches to us and one of our successors, fold the comparison into the 7054 // predecessor and use logical operations to pick the right destination. 7055 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 7056 Options.BonusInstThreshold)) 7057 return requestResimplify(); 7058 7059 // We have a conditional branch to two blocks that are only reachable 7060 // from BI. We know that the condbr dominates the two blocks, so see if 7061 // there is any identical code in the "then" and "else" blocks. If so, we 7062 // can hoist it up to the branching block. 7063 if (BI->getSuccessor(0)->getSinglePredecessor()) { 7064 if (BI->getSuccessor(1)->getSinglePredecessor()) { 7065 if (HoistCommon && HoistThenElseCodeToIf(BI, !Options.HoistCommonInsts)) 7066 return requestResimplify(); 7067 } else { 7068 // If Successor #1 has multiple preds, we may be able to conditionally 7069 // execute Successor #0 if it branches to Successor #1. 7070 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 7071 if (Succ0TI->getNumSuccessors() == 1 && 7072 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 7073 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 7074 return requestResimplify(); 7075 } 7076 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 7077 // If Successor #0 has multiple preds, we may be able to conditionally 7078 // execute Successor #1 if it branches to Successor #0. 7079 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 7080 if (Succ1TI->getNumSuccessors() == 1 && 7081 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 7082 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 7083 return requestResimplify(); 7084 } 7085 7086 // If this is a branch on something for which we know the constant value in 7087 // predecessors (e.g. a phi node in the current block), thread control 7088 // through this block. 7089 if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC)) 7090 return requestResimplify(); 7091 7092 // Scan predecessor blocks for conditional branches. 7093 for (BasicBlock *Pred : predecessors(BB)) 7094 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 7095 if (PBI != BI && PBI->isConditional()) 7096 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 7097 return requestResimplify(); 7098 7099 // Look for diamond patterns. 7100 if (MergeCondStores) 7101 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 7102 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 7103 if (PBI != BI && PBI->isConditional()) 7104 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 7105 return requestResimplify(); 7106 7107 return false; 7108 } 7109 7110 /// Check if passing a value to an instruction will cause undefined behavior. 7111 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 7112 Constant *C = dyn_cast<Constant>(V); 7113 if (!C) 7114 return false; 7115 7116 if (I->use_empty()) 7117 return false; 7118 7119 if (C->isNullValue() || isa<UndefValue>(C)) { 7120 // Only look at the first use, avoid hurting compile time with long uselists 7121 auto *Use = cast<Instruction>(*I->user_begin()); 7122 // Bail out if Use is not in the same BB as I or Use == I or Use comes 7123 // before I in the block. The latter two can be the case if Use is a PHI 7124 // node. 7125 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 7126 return false; 7127 7128 // Now make sure that there are no instructions in between that can alter 7129 // control flow (eg. calls) 7130 auto InstrRange = 7131 make_range(std::next(I->getIterator()), Use->getIterator()); 7132 if (any_of(InstrRange, [](Instruction &I) { 7133 return !isGuaranteedToTransferExecutionToSuccessor(&I); 7134 })) 7135 return false; 7136 7137 // Look through GEPs. A load from a GEP derived from NULL is still undefined 7138 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 7139 if (GEP->getPointerOperand() == I) { 7140 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 7141 PtrValueMayBeModified = true; 7142 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 7143 } 7144 7145 // Look through bitcasts. 7146 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 7147 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 7148 7149 // Load from null is undefined. 7150 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 7151 if (!LI->isVolatile()) 7152 return !NullPointerIsDefined(LI->getFunction(), 7153 LI->getPointerAddressSpace()); 7154 7155 // Store to null is undefined. 7156 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 7157 if (!SI->isVolatile()) 7158 return (!NullPointerIsDefined(SI->getFunction(), 7159 SI->getPointerAddressSpace())) && 7160 SI->getPointerOperand() == I; 7161 7162 if (auto *CB = dyn_cast<CallBase>(Use)) { 7163 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 7164 return false; 7165 // A call to null is undefined. 7166 if (CB->getCalledOperand() == I) 7167 return true; 7168 7169 if (C->isNullValue()) { 7170 for (const llvm::Use &Arg : CB->args()) 7171 if (Arg == I) { 7172 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7173 if (CB->isPassingUndefUB(ArgIdx) && 7174 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 7175 // Passing null to a nonnnull+noundef argument is undefined. 7176 return !PtrValueMayBeModified; 7177 } 7178 } 7179 } else if (isa<UndefValue>(C)) { 7180 // Passing undef to a noundef argument is undefined. 7181 for (const llvm::Use &Arg : CB->args()) 7182 if (Arg == I) { 7183 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7184 if (CB->isPassingUndefUB(ArgIdx)) { 7185 // Passing undef to a noundef argument is undefined. 7186 return true; 7187 } 7188 } 7189 } 7190 } 7191 } 7192 return false; 7193 } 7194 7195 /// If BB has an incoming value that will always trigger undefined behavior 7196 /// (eg. null pointer dereference), remove the branch leading here. 7197 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 7198 DomTreeUpdater *DTU, 7199 AssumptionCache *AC) { 7200 for (PHINode &PHI : BB->phis()) 7201 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 7202 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 7203 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 7204 Instruction *T = Predecessor->getTerminator(); 7205 IRBuilder<> Builder(T); 7206 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 7207 BB->removePredecessor(Predecessor); 7208 // Turn unconditional branches into unreachables and remove the dead 7209 // destination from conditional branches. 7210 if (BI->isUnconditional()) 7211 Builder.CreateUnreachable(); 7212 else { 7213 // Preserve guarding condition in assume, because it might not be 7214 // inferrable from any dominating condition. 7215 Value *Cond = BI->getCondition(); 7216 CallInst *Assumption; 7217 if (BI->getSuccessor(0) == BB) 7218 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 7219 else 7220 Assumption = Builder.CreateAssumption(Cond); 7221 if (AC) 7222 AC->registerAssumption(cast<AssumeInst>(Assumption)); 7223 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 7224 : BI->getSuccessor(0)); 7225 } 7226 BI->eraseFromParent(); 7227 if (DTU) 7228 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 7229 return true; 7230 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 7231 // Redirect all branches leading to UB into 7232 // a newly created unreachable block. 7233 BasicBlock *Unreachable = BasicBlock::Create( 7234 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 7235 Builder.SetInsertPoint(Unreachable); 7236 // The new block contains only one instruction: Unreachable 7237 Builder.CreateUnreachable(); 7238 for (const auto &Case : SI->cases()) 7239 if (Case.getCaseSuccessor() == BB) { 7240 BB->removePredecessor(Predecessor); 7241 Case.setSuccessor(Unreachable); 7242 } 7243 if (SI->getDefaultDest() == BB) { 7244 BB->removePredecessor(Predecessor); 7245 SI->setDefaultDest(Unreachable); 7246 } 7247 7248 if (DTU) 7249 DTU->applyUpdates( 7250 { { DominatorTree::Insert, Predecessor, Unreachable }, 7251 { DominatorTree::Delete, Predecessor, BB } }); 7252 return true; 7253 } 7254 } 7255 7256 return false; 7257 } 7258 7259 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 7260 bool Changed = false; 7261 7262 assert(BB && BB->getParent() && "Block not embedded in function!"); 7263 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 7264 7265 // Remove basic blocks that have no predecessors (except the entry block)... 7266 // or that just have themself as a predecessor. These are unreachable. 7267 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 7268 BB->getSinglePredecessor() == BB) { 7269 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 7270 DeleteDeadBlock(BB, DTU); 7271 return true; 7272 } 7273 7274 // Check to see if we can constant propagate this terminator instruction 7275 // away... 7276 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 7277 /*TLI=*/nullptr, DTU); 7278 7279 // Check for and eliminate duplicate PHI nodes in this block. 7280 Changed |= EliminateDuplicatePHINodes(BB); 7281 7282 // Check for and remove branches that will always cause undefined behavior. 7283 if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC)) 7284 return requestResimplify(); 7285 7286 // Merge basic blocks into their predecessor if there is only one distinct 7287 // pred, and if there is only one distinct successor of the predecessor, and 7288 // if there are no PHI nodes. 7289 if (MergeBlockIntoPredecessor(BB, DTU)) 7290 return true; 7291 7292 if (SinkCommon && Options.SinkCommonInsts) 7293 if (SinkCommonCodeFromPredecessors(BB, DTU) || 7294 MergeCompatibleInvokes(BB, DTU)) { 7295 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 7296 // so we may now how duplicate PHI's. 7297 // Let's rerun EliminateDuplicatePHINodes() first, 7298 // before FoldTwoEntryPHINode() potentially converts them into select's, 7299 // after which we'd need a whole EarlyCSE pass run to cleanup them. 7300 return true; 7301 } 7302 7303 IRBuilder<> Builder(BB); 7304 7305 if (Options.SpeculateBlocks && 7306 !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) { 7307 // If there is a trivial two-entry PHI node in this basic block, and we can 7308 // eliminate it, do so now. 7309 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 7310 if (PN->getNumIncomingValues() == 2) 7311 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL)) 7312 return true; 7313 } 7314 7315 Instruction *Terminator = BB->getTerminator(); 7316 Builder.SetInsertPoint(Terminator); 7317 switch (Terminator->getOpcode()) { 7318 case Instruction::Br: 7319 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 7320 break; 7321 case Instruction::Resume: 7322 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 7323 break; 7324 case Instruction::CleanupRet: 7325 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 7326 break; 7327 case Instruction::Switch: 7328 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 7329 break; 7330 case Instruction::Unreachable: 7331 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 7332 break; 7333 case Instruction::IndirectBr: 7334 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 7335 break; 7336 } 7337 7338 return Changed; 7339 } 7340 7341 bool SimplifyCFGOpt::run(BasicBlock *BB) { 7342 bool Changed = false; 7343 7344 // Repeated simplify BB as long as resimplification is requested. 7345 do { 7346 Resimplify = false; 7347 7348 // Perform one round of simplifcation. Resimplify flag will be set if 7349 // another iteration is requested. 7350 Changed |= simplifyOnce(BB); 7351 } while (Resimplify); 7352 7353 return Changed; 7354 } 7355 7356 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 7357 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 7358 ArrayRef<WeakVH> LoopHeaders) { 7359 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 7360 Options) 7361 .run(BB); 7362 } 7363