xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyCFG.cpp (revision e8d8bef961a50d4dc22501cde4fb9fb0be1b2532)
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/ValueHandle.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/KnownBits.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/Local.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include "llvm/Transforms/Utils/ValueMapper.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <climits>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <set>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 using namespace PatternMatch;
90 
91 #define DEBUG_TYPE "simplifycfg"
92 
93 cl::opt<bool> llvm::RequireAndPreserveDomTree(
94     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
95     cl::init(false),
96     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
97              "into preserving DomTree,"));
98 
99 // Chosen as 2 so as to be cheap, but still to have enough power to fold
100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
101 // To catch this, we need to fold a compare and a select, hence '2' being the
102 // minimum reasonable default.
103 static cl::opt<unsigned> PHINodeFoldingThreshold(
104     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
105     cl::desc(
106         "Control the amount of phi node folding to perform (default = 2)"));
107 
108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
109     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
110     cl::desc("Control the maximal total instruction cost that we are willing "
111              "to speculatively execute to fold a 2-entry PHI node into a "
112              "select (default = 4)"));
113 
114 static cl::opt<bool> DupRet(
115     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
116     cl::desc("Duplicate return instructions into unconditional branches"));
117 
118 static cl::opt<bool>
119     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
120                 cl::desc("Hoist common instructions up to the parent block"));
121 
122 static cl::opt<bool>
123     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
124                cl::desc("Sink common instructions down to the end block"));
125 
126 static cl::opt<bool> HoistCondStores(
127     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
128     cl::desc("Hoist conditional stores if an unconditional store precedes"));
129 
130 static cl::opt<bool> MergeCondStores(
131     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
132     cl::desc("Hoist conditional stores even if an unconditional store does not "
133              "precede - hoist multiple conditional stores into a single "
134              "predicated store"));
135 
136 static cl::opt<bool> MergeCondStoresAggressively(
137     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
138     cl::desc("When merging conditional stores, do so even if the resultant "
139              "basic blocks are unlikely to be if-converted as a result"));
140 
141 static cl::opt<bool> SpeculateOneExpensiveInst(
142     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
143     cl::desc("Allow exactly one expensive instruction to be speculatively "
144              "executed"));
145 
146 static cl::opt<unsigned> MaxSpeculationDepth(
147     "max-speculation-depth", cl::Hidden, cl::init(10),
148     cl::desc("Limit maximum recursion depth when calculating costs of "
149              "speculatively executed instructions"));
150 
151 static cl::opt<int>
152 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
153                   cl::desc("Max size of a block which is still considered "
154                            "small enough to thread through"));
155 
156 // Two is chosen to allow one negation and a logical combine.
157 static cl::opt<unsigned>
158     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
159                         cl::init(2),
160                         cl::desc("Maximum cost of combining conditions when "
161                                  "folding branches"));
162 
163 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
164 STATISTIC(NumLinearMaps,
165           "Number of switch instructions turned into linear mapping");
166 STATISTIC(NumLookupTables,
167           "Number of switch instructions turned into lookup tables");
168 STATISTIC(
169     NumLookupTablesHoles,
170     "Number of switch instructions turned into lookup tables (holes checked)");
171 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
172 STATISTIC(NumFoldValueComparisonIntoPredecessors,
173           "Number of value comparisons folded into predecessor basic blocks");
174 STATISTIC(NumFoldBranchToCommonDest,
175           "Number of branches folded into predecessor basic block");
176 STATISTIC(
177     NumHoistCommonCode,
178     "Number of common instruction 'blocks' hoisted up to the begin block");
179 STATISTIC(NumHoistCommonInstrs,
180           "Number of common instructions hoisted up to the begin block");
181 STATISTIC(NumSinkCommonCode,
182           "Number of common instruction 'blocks' sunk down to the end block");
183 STATISTIC(NumSinkCommonInstrs,
184           "Number of common instructions sunk down to the end block");
185 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
186 STATISTIC(NumInvokes,
187           "Number of invokes with empty resume blocks simplified into calls");
188 
189 namespace {
190 
191 // The first field contains the value that the switch produces when a certain
192 // case group is selected, and the second field is a vector containing the
193 // cases composing the case group.
194 using SwitchCaseResultVectorTy =
195     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
196 
197 // The first field contains the phi node that generates a result of the switch
198 // and the second field contains the value generated for a certain case in the
199 // switch for that PHI.
200 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
201 
202 /// ValueEqualityComparisonCase - Represents a case of a switch.
203 struct ValueEqualityComparisonCase {
204   ConstantInt *Value;
205   BasicBlock *Dest;
206 
207   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
208       : Value(Value), Dest(Dest) {}
209 
210   bool operator<(ValueEqualityComparisonCase RHS) const {
211     // Comparing pointers is ok as we only rely on the order for uniquing.
212     return Value < RHS.Value;
213   }
214 
215   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
216 };
217 
218 class SimplifyCFGOpt {
219   const TargetTransformInfo &TTI;
220   DomTreeUpdater *DTU;
221   const DataLayout &DL;
222   ArrayRef<WeakVH> LoopHeaders;
223   const SimplifyCFGOptions &Options;
224   bool Resimplify;
225 
226   Value *isValueEqualityComparison(Instruction *TI);
227   BasicBlock *GetValueEqualityComparisonCases(
228       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
229   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
230                                                      BasicBlock *Pred,
231                                                      IRBuilder<> &Builder);
232   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
233                                                     Instruction *PTI,
234                                                     IRBuilder<> &Builder);
235   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
236                                            IRBuilder<> &Builder);
237 
238   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
239   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
240   bool simplifySingleResume(ResumeInst *RI);
241   bool simplifyCommonResume(ResumeInst *RI);
242   bool simplifyCleanupReturn(CleanupReturnInst *RI);
243   bool simplifyUnreachable(UnreachableInst *UI);
244   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
245   bool simplifyIndirectBr(IndirectBrInst *IBI);
246   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
247   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
248   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
249   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
250 
251   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
252                                              IRBuilder<> &Builder);
253 
254   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
255   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
256                               const TargetTransformInfo &TTI);
257   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
258                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
259                                   uint32_t TrueWeight, uint32_t FalseWeight);
260   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
261                                  const DataLayout &DL);
262   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
263   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
264   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
265 
266 public:
267   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
268                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
269                  const SimplifyCFGOptions &Opts)
270       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
271     assert((!DTU || !DTU->hasPostDomTree()) &&
272            "SimplifyCFG is not yet capable of maintaining validity of a "
273            "PostDomTree, so don't ask for it.");
274   }
275 
276   bool simplifyOnce(BasicBlock *BB);
277   bool simplifyOnceImpl(BasicBlock *BB);
278   bool run(BasicBlock *BB);
279 
280   // Helper to set Resimplify and return change indication.
281   bool requestResimplify() {
282     Resimplify = true;
283     return true;
284   }
285 };
286 
287 } // end anonymous namespace
288 
289 /// Return true if it is safe to merge these two
290 /// terminator instructions together.
291 static bool
292 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
293                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
294   if (SI1 == SI2)
295     return false; // Can't merge with self!
296 
297   // It is not safe to merge these two switch instructions if they have a common
298   // successor, and if that successor has a PHI node, and if *that* PHI node has
299   // conflicting incoming values from the two switch blocks.
300   BasicBlock *SI1BB = SI1->getParent();
301   BasicBlock *SI2BB = SI2->getParent();
302 
303   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
304   bool Fail = false;
305   for (BasicBlock *Succ : successors(SI2BB))
306     if (SI1Succs.count(Succ))
307       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
308         PHINode *PN = cast<PHINode>(BBI);
309         if (PN->getIncomingValueForBlock(SI1BB) !=
310             PN->getIncomingValueForBlock(SI2BB)) {
311           if (FailBlocks)
312             FailBlocks->insert(Succ);
313           Fail = true;
314         }
315       }
316 
317   return !Fail;
318 }
319 
320 /// Update PHI nodes in Succ to indicate that there will now be entries in it
321 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
322 /// will be the same as those coming in from ExistPred, an existing predecessor
323 /// of Succ.
324 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
325                                   BasicBlock *ExistPred,
326                                   MemorySSAUpdater *MSSAU = nullptr) {
327   for (PHINode &PN : Succ->phis())
328     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
329   if (MSSAU)
330     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
331       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
332 }
333 
334 /// Compute an abstract "cost" of speculating the given instruction,
335 /// which is assumed to be safe to speculate. TCC_Free means cheap,
336 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
337 /// expensive.
338 static unsigned ComputeSpeculationCost(const User *I,
339                                        const TargetTransformInfo &TTI) {
340   assert(isSafeToSpeculativelyExecute(I) &&
341          "Instruction is not safe to speculatively execute!");
342   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
343 }
344 
345 /// If we have a merge point of an "if condition" as accepted above,
346 /// return true if the specified value dominates the block.  We
347 /// don't handle the true generality of domination here, just a special case
348 /// which works well enough for us.
349 ///
350 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
351 /// see if V (which must be an instruction) and its recursive operands
352 /// that do not dominate BB have a combined cost lower than CostRemaining and
353 /// are non-trapping.  If both are true, the instruction is inserted into the
354 /// set and true is returned.
355 ///
356 /// The cost for most non-trapping instructions is defined as 1 except for
357 /// Select whose cost is 2.
358 ///
359 /// After this function returns, CostRemaining is decreased by the cost of
360 /// V plus its non-dominating operands.  If that cost is greater than
361 /// CostRemaining, false is returned and CostRemaining is undefined.
362 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
363                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
364                                 int &BudgetRemaining,
365                                 const TargetTransformInfo &TTI,
366                                 unsigned Depth = 0) {
367   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
368   // so limit the recursion depth.
369   // TODO: While this recursion limit does prevent pathological behavior, it
370   // would be better to track visited instructions to avoid cycles.
371   if (Depth == MaxSpeculationDepth)
372     return false;
373 
374   Instruction *I = dyn_cast<Instruction>(V);
375   if (!I) {
376     // Non-instructions all dominate instructions, but not all constantexprs
377     // can be executed unconditionally.
378     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
379       if (C->canTrap())
380         return false;
381     return true;
382   }
383   BasicBlock *PBB = I->getParent();
384 
385   // We don't want to allow weird loops that might have the "if condition" in
386   // the bottom of this block.
387   if (PBB == BB)
388     return false;
389 
390   // If this instruction is defined in a block that contains an unconditional
391   // branch to BB, then it must be in the 'conditional' part of the "if
392   // statement".  If not, it definitely dominates the region.
393   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
394   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
395     return true;
396 
397   // If we have seen this instruction before, don't count it again.
398   if (AggressiveInsts.count(I))
399     return true;
400 
401   // Okay, it looks like the instruction IS in the "condition".  Check to
402   // see if it's a cheap instruction to unconditionally compute, and if it
403   // only uses stuff defined outside of the condition.  If so, hoist it out.
404   if (!isSafeToSpeculativelyExecute(I))
405     return false;
406 
407   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
408 
409   // Allow exactly one instruction to be speculated regardless of its cost
410   // (as long as it is safe to do so).
411   // This is intended to flatten the CFG even if the instruction is a division
412   // or other expensive operation. The speculation of an expensive instruction
413   // is expected to be undone in CodeGenPrepare if the speculation has not
414   // enabled further IR optimizations.
415   if (BudgetRemaining < 0 &&
416       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
417     return false;
418 
419   // Okay, we can only really hoist these out if their operands do
420   // not take us over the cost threshold.
421   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
422     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
423                              Depth + 1))
424       return false;
425   // Okay, it's safe to do this!  Remember this instruction.
426   AggressiveInsts.insert(I);
427   return true;
428 }
429 
430 /// Extract ConstantInt from value, looking through IntToPtr
431 /// and PointerNullValue. Return NULL if value is not a constant int.
432 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
433   // Normal constant int.
434   ConstantInt *CI = dyn_cast<ConstantInt>(V);
435   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
436     return CI;
437 
438   // This is some kind of pointer constant. Turn it into a pointer-sized
439   // ConstantInt if possible.
440   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
441 
442   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
443   if (isa<ConstantPointerNull>(V))
444     return ConstantInt::get(PtrTy, 0);
445 
446   // IntToPtr const int.
447   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
448     if (CE->getOpcode() == Instruction::IntToPtr)
449       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
450         // The constant is very likely to have the right type already.
451         if (CI->getType() == PtrTy)
452           return CI;
453         else
454           return cast<ConstantInt>(
455               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
456       }
457   return nullptr;
458 }
459 
460 namespace {
461 
462 /// Given a chain of or (||) or and (&&) comparison of a value against a
463 /// constant, this will try to recover the information required for a switch
464 /// structure.
465 /// It will depth-first traverse the chain of comparison, seeking for patterns
466 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
467 /// representing the different cases for the switch.
468 /// Note that if the chain is composed of '||' it will build the set of elements
469 /// that matches the comparisons (i.e. any of this value validate the chain)
470 /// while for a chain of '&&' it will build the set elements that make the test
471 /// fail.
472 struct ConstantComparesGatherer {
473   const DataLayout &DL;
474 
475   /// Value found for the switch comparison
476   Value *CompValue = nullptr;
477 
478   /// Extra clause to be checked before the switch
479   Value *Extra = nullptr;
480 
481   /// Set of integers to match in switch
482   SmallVector<ConstantInt *, 8> Vals;
483 
484   /// Number of comparisons matched in the and/or chain
485   unsigned UsedICmps = 0;
486 
487   /// Construct and compute the result for the comparison instruction Cond
488   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
489     gather(Cond);
490   }
491 
492   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
493   ConstantComparesGatherer &
494   operator=(const ConstantComparesGatherer &) = delete;
495 
496 private:
497   /// Try to set the current value used for the comparison, it succeeds only if
498   /// it wasn't set before or if the new value is the same as the old one
499   bool setValueOnce(Value *NewVal) {
500     if (CompValue && CompValue != NewVal)
501       return false;
502     CompValue = NewVal;
503     return (CompValue != nullptr);
504   }
505 
506   /// Try to match Instruction "I" as a comparison against a constant and
507   /// populates the array Vals with the set of values that match (or do not
508   /// match depending on isEQ).
509   /// Return false on failure. On success, the Value the comparison matched
510   /// against is placed in CompValue.
511   /// If CompValue is already set, the function is expected to fail if a match
512   /// is found but the value compared to is different.
513   bool matchInstruction(Instruction *I, bool isEQ) {
514     // If this is an icmp against a constant, handle this as one of the cases.
515     ICmpInst *ICI;
516     ConstantInt *C;
517     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
518           (C = GetConstantInt(I->getOperand(1), DL)))) {
519       return false;
520     }
521 
522     Value *RHSVal;
523     const APInt *RHSC;
524 
525     // Pattern match a special case
526     // (x & ~2^z) == y --> x == y || x == y|2^z
527     // This undoes a transformation done by instcombine to fuse 2 compares.
528     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
529       // It's a little bit hard to see why the following transformations are
530       // correct. Here is a CVC3 program to verify them for 64-bit values:
531 
532       /*
533          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
534          x    : BITVECTOR(64);
535          y    : BITVECTOR(64);
536          z    : BITVECTOR(64);
537          mask : BITVECTOR(64) = BVSHL(ONE, z);
538          QUERY( (y & ~mask = y) =>
539                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
540          );
541          QUERY( (y |  mask = y) =>
542                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
543          );
544       */
545 
546       // Please note that each pattern must be a dual implication (<--> or
547       // iff). One directional implication can create spurious matches. If the
548       // implication is only one-way, an unsatisfiable condition on the left
549       // side can imply a satisfiable condition on the right side. Dual
550       // implication ensures that satisfiable conditions are transformed to
551       // other satisfiable conditions and unsatisfiable conditions are
552       // transformed to other unsatisfiable conditions.
553 
554       // Here is a concrete example of a unsatisfiable condition on the left
555       // implying a satisfiable condition on the right:
556       //
557       // mask = (1 << z)
558       // (x & ~mask) == y  --> (x == y || x == (y | mask))
559       //
560       // Substituting y = 3, z = 0 yields:
561       // (x & -2) == 3 --> (x == 3 || x == 2)
562 
563       // Pattern match a special case:
564       /*
565         QUERY( (y & ~mask = y) =>
566                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
567         );
568       */
569       if (match(ICI->getOperand(0),
570                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
571         APInt Mask = ~*RHSC;
572         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
573           // If we already have a value for the switch, it has to match!
574           if (!setValueOnce(RHSVal))
575             return false;
576 
577           Vals.push_back(C);
578           Vals.push_back(
579               ConstantInt::get(C->getContext(),
580                                C->getValue() | Mask));
581           UsedICmps++;
582           return true;
583         }
584       }
585 
586       // Pattern match a special case:
587       /*
588         QUERY( (y |  mask = y) =>
589                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
590         );
591       */
592       if (match(ICI->getOperand(0),
593                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
594         APInt Mask = *RHSC;
595         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
596           // If we already have a value for the switch, it has to match!
597           if (!setValueOnce(RHSVal))
598             return false;
599 
600           Vals.push_back(C);
601           Vals.push_back(ConstantInt::get(C->getContext(),
602                                           C->getValue() & ~Mask));
603           UsedICmps++;
604           return true;
605         }
606       }
607 
608       // If we already have a value for the switch, it has to match!
609       if (!setValueOnce(ICI->getOperand(0)))
610         return false;
611 
612       UsedICmps++;
613       Vals.push_back(C);
614       return ICI->getOperand(0);
615     }
616 
617     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
618     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
619         ICI->getPredicate(), C->getValue());
620 
621     // Shift the range if the compare is fed by an add. This is the range
622     // compare idiom as emitted by instcombine.
623     Value *CandidateVal = I->getOperand(0);
624     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
625       Span = Span.subtract(*RHSC);
626       CandidateVal = RHSVal;
627     }
628 
629     // If this is an and/!= check, then we are looking to build the set of
630     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
631     // x != 0 && x != 1.
632     if (!isEQ)
633       Span = Span.inverse();
634 
635     // If there are a ton of values, we don't want to make a ginormous switch.
636     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
637       return false;
638     }
639 
640     // If we already have a value for the switch, it has to match!
641     if (!setValueOnce(CandidateVal))
642       return false;
643 
644     // Add all values from the range to the set
645     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
646       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
647 
648     UsedICmps++;
649     return true;
650   }
651 
652   /// Given a potentially 'or'd or 'and'd together collection of icmp
653   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
654   /// the value being compared, and stick the list constants into the Vals
655   /// vector.
656   /// One "Extra" case is allowed to differ from the other.
657   void gather(Value *V) {
658     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
659 
660     // Keep a stack (SmallVector for efficiency) for depth-first traversal
661     SmallVector<Value *, 8> DFT;
662     SmallPtrSet<Value *, 8> Visited;
663 
664     // Initialize
665     Visited.insert(V);
666     DFT.push_back(V);
667 
668     while (!DFT.empty()) {
669       V = DFT.pop_back_val();
670 
671       if (Instruction *I = dyn_cast<Instruction>(V)) {
672         // If it is a || (or && depending on isEQ), process the operands.
673         Value *Op0, *Op1;
674         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
675                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
676           if (Visited.insert(Op1).second)
677             DFT.push_back(Op1);
678           if (Visited.insert(Op0).second)
679             DFT.push_back(Op0);
680 
681           continue;
682         }
683 
684         // Try to match the current instruction
685         if (matchInstruction(I, isEQ))
686           // Match succeed, continue the loop
687           continue;
688       }
689 
690       // One element of the sequence of || (or &&) could not be match as a
691       // comparison against the same value as the others.
692       // We allow only one "Extra" case to be checked before the switch
693       if (!Extra) {
694         Extra = V;
695         continue;
696       }
697       // Failed to parse a proper sequence, abort now
698       CompValue = nullptr;
699       break;
700     }
701   }
702 };
703 
704 } // end anonymous namespace
705 
706 static void EraseTerminatorAndDCECond(Instruction *TI,
707                                       MemorySSAUpdater *MSSAU = nullptr) {
708   Instruction *Cond = nullptr;
709   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
710     Cond = dyn_cast<Instruction>(SI->getCondition());
711   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
712     if (BI->isConditional())
713       Cond = dyn_cast<Instruction>(BI->getCondition());
714   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
715     Cond = dyn_cast<Instruction>(IBI->getAddress());
716   }
717 
718   TI->eraseFromParent();
719   if (Cond)
720     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
721 }
722 
723 /// Return true if the specified terminator checks
724 /// to see if a value is equal to constant integer value.
725 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
726   Value *CV = nullptr;
727   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
728     // Do not permit merging of large switch instructions into their
729     // predecessors unless there is only one predecessor.
730     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
731       CV = SI->getCondition();
732   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
733     if (BI->isConditional() && BI->getCondition()->hasOneUse())
734       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
735         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
736           CV = ICI->getOperand(0);
737       }
738 
739   // Unwrap any lossless ptrtoint cast.
740   if (CV) {
741     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
742       Value *Ptr = PTII->getPointerOperand();
743       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
744         CV = Ptr;
745     }
746   }
747   return CV;
748 }
749 
750 /// Given a value comparison instruction,
751 /// decode all of the 'cases' that it represents and return the 'default' block.
752 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
753     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
754   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
755     Cases.reserve(SI->getNumCases());
756     for (auto Case : SI->cases())
757       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
758                                                   Case.getCaseSuccessor()));
759     return SI->getDefaultDest();
760   }
761 
762   BranchInst *BI = cast<BranchInst>(TI);
763   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
764   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
765   Cases.push_back(ValueEqualityComparisonCase(
766       GetConstantInt(ICI->getOperand(1), DL), Succ));
767   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
768 }
769 
770 /// Given a vector of bb/value pairs, remove any entries
771 /// in the list that match the specified block.
772 static void
773 EliminateBlockCases(BasicBlock *BB,
774                     std::vector<ValueEqualityComparisonCase> &Cases) {
775   llvm::erase_value(Cases, BB);
776 }
777 
778 /// Return true if there are any keys in C1 that exist in C2 as well.
779 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
780                           std::vector<ValueEqualityComparisonCase> &C2) {
781   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
782 
783   // Make V1 be smaller than V2.
784   if (V1->size() > V2->size())
785     std::swap(V1, V2);
786 
787   if (V1->empty())
788     return false;
789   if (V1->size() == 1) {
790     // Just scan V2.
791     ConstantInt *TheVal = (*V1)[0].Value;
792     for (unsigned i = 0, e = V2->size(); i != e; ++i)
793       if (TheVal == (*V2)[i].Value)
794         return true;
795   }
796 
797   // Otherwise, just sort both lists and compare element by element.
798   array_pod_sort(V1->begin(), V1->end());
799   array_pod_sort(V2->begin(), V2->end());
800   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
801   while (i1 != e1 && i2 != e2) {
802     if ((*V1)[i1].Value == (*V2)[i2].Value)
803       return true;
804     if ((*V1)[i1].Value < (*V2)[i2].Value)
805       ++i1;
806     else
807       ++i2;
808   }
809   return false;
810 }
811 
812 // Set branch weights on SwitchInst. This sets the metadata if there is at
813 // least one non-zero weight.
814 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
815   // Check that there is at least one non-zero weight. Otherwise, pass
816   // nullptr to setMetadata which will erase the existing metadata.
817   MDNode *N = nullptr;
818   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
819     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
820   SI->setMetadata(LLVMContext::MD_prof, N);
821 }
822 
823 // Similar to the above, but for branch and select instructions that take
824 // exactly 2 weights.
825 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
826                              uint32_t FalseWeight) {
827   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
828   // Check that there is at least one non-zero weight. Otherwise, pass
829   // nullptr to setMetadata which will erase the existing metadata.
830   MDNode *N = nullptr;
831   if (TrueWeight || FalseWeight)
832     N = MDBuilder(I->getParent()->getContext())
833             .createBranchWeights(TrueWeight, FalseWeight);
834   I->setMetadata(LLVMContext::MD_prof, N);
835 }
836 
837 /// If TI is known to be a terminator instruction and its block is known to
838 /// only have a single predecessor block, check to see if that predecessor is
839 /// also a value comparison with the same value, and if that comparison
840 /// determines the outcome of this comparison. If so, simplify TI. This does a
841 /// very limited form of jump threading.
842 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
843     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
844   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
845   if (!PredVal)
846     return false; // Not a value comparison in predecessor.
847 
848   Value *ThisVal = isValueEqualityComparison(TI);
849   assert(ThisVal && "This isn't a value comparison!!");
850   if (ThisVal != PredVal)
851     return false; // Different predicates.
852 
853   // TODO: Preserve branch weight metadata, similarly to how
854   // FoldValueComparisonIntoPredecessors preserves it.
855 
856   // Find out information about when control will move from Pred to TI's block.
857   std::vector<ValueEqualityComparisonCase> PredCases;
858   BasicBlock *PredDef =
859       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
860   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
861 
862   // Find information about how control leaves this block.
863   std::vector<ValueEqualityComparisonCase> ThisCases;
864   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
865   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
866 
867   // If TI's block is the default block from Pred's comparison, potentially
868   // simplify TI based on this knowledge.
869   if (PredDef == TI->getParent()) {
870     // If we are here, we know that the value is none of those cases listed in
871     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
872     // can simplify TI.
873     if (!ValuesOverlap(PredCases, ThisCases))
874       return false;
875 
876     if (isa<BranchInst>(TI)) {
877       // Okay, one of the successors of this condbr is dead.  Convert it to a
878       // uncond br.
879       assert(ThisCases.size() == 1 && "Branch can only have one case!");
880       // Insert the new branch.
881       Instruction *NI = Builder.CreateBr(ThisDef);
882       (void)NI;
883 
884       // Remove PHI node entries for the dead edge.
885       ThisCases[0].Dest->removePredecessor(PredDef);
886 
887       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
888                         << "Through successor TI: " << *TI << "Leaving: " << *NI
889                         << "\n");
890 
891       EraseTerminatorAndDCECond(TI);
892 
893       if (DTU)
894         DTU->applyUpdates(
895             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
896 
897       return true;
898     }
899 
900     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
901     // Okay, TI has cases that are statically dead, prune them away.
902     SmallPtrSet<Constant *, 16> DeadCases;
903     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
904       DeadCases.insert(PredCases[i].Value);
905 
906     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
907                       << "Through successor TI: " << *TI);
908 
909     SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
910     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
911       --i;
912       auto *Successor = i->getCaseSuccessor();
913       ++NumPerSuccessorCases[Successor];
914       if (DeadCases.count(i->getCaseValue())) {
915         Successor->removePredecessor(PredDef);
916         SI.removeCase(i);
917         --NumPerSuccessorCases[Successor];
918       }
919     }
920 
921     std::vector<DominatorTree::UpdateType> Updates;
922     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
923       if (I.second == 0)
924         Updates.push_back({DominatorTree::Delete, PredDef, I.first});
925     if (DTU)
926       DTU->applyUpdates(Updates);
927 
928     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
929     return true;
930   }
931 
932   // Otherwise, TI's block must correspond to some matched value.  Find out
933   // which value (or set of values) this is.
934   ConstantInt *TIV = nullptr;
935   BasicBlock *TIBB = TI->getParent();
936   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
937     if (PredCases[i].Dest == TIBB) {
938       if (TIV)
939         return false; // Cannot handle multiple values coming to this block.
940       TIV = PredCases[i].Value;
941     }
942   assert(TIV && "No edge from pred to succ?");
943 
944   // Okay, we found the one constant that our value can be if we get into TI's
945   // BB.  Find out which successor will unconditionally be branched to.
946   BasicBlock *TheRealDest = nullptr;
947   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
948     if (ThisCases[i].Value == TIV) {
949       TheRealDest = ThisCases[i].Dest;
950       break;
951     }
952 
953   // If not handled by any explicit cases, it is handled by the default case.
954   if (!TheRealDest)
955     TheRealDest = ThisDef;
956 
957   SmallSetVector<BasicBlock *, 2> RemovedSuccs;
958 
959   // Remove PHI node entries for dead edges.
960   BasicBlock *CheckEdge = TheRealDest;
961   for (BasicBlock *Succ : successors(TIBB))
962     if (Succ != CheckEdge) {
963       if (Succ != TheRealDest)
964         RemovedSuccs.insert(Succ);
965       Succ->removePredecessor(TIBB);
966     } else
967       CheckEdge = nullptr;
968 
969   // Insert the new branch.
970   Instruction *NI = Builder.CreateBr(TheRealDest);
971   (void)NI;
972 
973   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
974                     << "Through successor TI: " << *TI << "Leaving: " << *NI
975                     << "\n");
976 
977   EraseTerminatorAndDCECond(TI);
978   if (DTU) {
979     SmallVector<DominatorTree::UpdateType, 2> Updates;
980     Updates.reserve(RemovedSuccs.size());
981     for (auto *RemovedSucc : RemovedSuccs)
982       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
983     DTU->applyUpdates(Updates);
984   }
985   return true;
986 }
987 
988 namespace {
989 
990 /// This class implements a stable ordering of constant
991 /// integers that does not depend on their address.  This is important for
992 /// applications that sort ConstantInt's to ensure uniqueness.
993 struct ConstantIntOrdering {
994   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
995     return LHS->getValue().ult(RHS->getValue());
996   }
997 };
998 
999 } // end anonymous namespace
1000 
1001 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1002                                     ConstantInt *const *P2) {
1003   const ConstantInt *LHS = *P1;
1004   const ConstantInt *RHS = *P2;
1005   if (LHS == RHS)
1006     return 0;
1007   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1008 }
1009 
1010 static inline bool HasBranchWeights(const Instruction *I) {
1011   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1012   if (ProfMD && ProfMD->getOperand(0))
1013     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1014       return MDS->getString().equals("branch_weights");
1015 
1016   return false;
1017 }
1018 
1019 /// Get Weights of a given terminator, the default weight is at the front
1020 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1021 /// metadata.
1022 static void GetBranchWeights(Instruction *TI,
1023                              SmallVectorImpl<uint64_t> &Weights) {
1024   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1025   assert(MD);
1026   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1027     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1028     Weights.push_back(CI->getValue().getZExtValue());
1029   }
1030 
1031   // If TI is a conditional eq, the default case is the false case,
1032   // and the corresponding branch-weight data is at index 2. We swap the
1033   // default weight to be the first entry.
1034   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1035     assert(Weights.size() == 2);
1036     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1037     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1038       std::swap(Weights.front(), Weights.back());
1039   }
1040 }
1041 
1042 /// Keep halving the weights until all can fit in uint32_t.
1043 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1044   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1045   if (Max > UINT_MAX) {
1046     unsigned Offset = 32 - countLeadingZeros(Max);
1047     for (uint64_t &I : Weights)
1048       I >>= Offset;
1049   }
1050 }
1051 
1052 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1053     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1054   Instruction *PTI = PredBlock->getTerminator();
1055 
1056   // If we have bonus instructions, clone them into the predecessor block.
1057   // Note that there may be multiple predecessor blocks, so we cannot move
1058   // bonus instructions to a predecessor block.
1059   for (Instruction &BonusInst : *BB) {
1060     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1061       continue;
1062 
1063     Instruction *NewBonusInst = BonusInst.clone();
1064 
1065     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1066       // Unless the instruction has the same !dbg location as the original
1067       // branch, drop it. When we fold the bonus instructions we want to make
1068       // sure we reset their debug locations in order to avoid stepping on
1069       // dead code caused by folding dead branches.
1070       NewBonusInst->setDebugLoc(DebugLoc());
1071     }
1072 
1073     RemapInstruction(NewBonusInst, VMap,
1074                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1075     VMap[&BonusInst] = NewBonusInst;
1076 
1077     // If we moved a load, we cannot any longer claim any knowledge about
1078     // its potential value. The previous information might have been valid
1079     // only given the branch precondition.
1080     // For an analogous reason, we must also drop all the metadata whose
1081     // semantics we don't understand. We *can* preserve !annotation, because
1082     // it is tied to the instruction itself, not the value or position.
1083     NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
1084 
1085     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1086     NewBonusInst->takeName(&BonusInst);
1087     BonusInst.setName(NewBonusInst->getName() + ".old");
1088 
1089     // Update (liveout) uses of bonus instructions,
1090     // now that the bonus instruction has been cloned into predecessor.
1091     SSAUpdater SSAUpdate;
1092     SSAUpdate.Initialize(BonusInst.getType(),
1093                          (NewBonusInst->getName() + ".merge").str());
1094     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1095     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1096     for (Use &U : make_early_inc_range(BonusInst.uses()))
1097       SSAUpdate.RewriteUseAfterInsertions(U);
1098   }
1099 }
1100 
1101 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1102     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1103   BasicBlock *BB = TI->getParent();
1104   BasicBlock *Pred = PTI->getParent();
1105 
1106   std::vector<DominatorTree::UpdateType> Updates;
1107 
1108   // Figure out which 'cases' to copy from SI to PSI.
1109   std::vector<ValueEqualityComparisonCase> BBCases;
1110   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1111 
1112   std::vector<ValueEqualityComparisonCase> PredCases;
1113   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1114 
1115   // Based on whether the default edge from PTI goes to BB or not, fill in
1116   // PredCases and PredDefault with the new switch cases we would like to
1117   // build.
1118   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1119 
1120   // Update the branch weight metadata along the way
1121   SmallVector<uint64_t, 8> Weights;
1122   bool PredHasWeights = HasBranchWeights(PTI);
1123   bool SuccHasWeights = HasBranchWeights(TI);
1124 
1125   if (PredHasWeights) {
1126     GetBranchWeights(PTI, Weights);
1127     // branch-weight metadata is inconsistent here.
1128     if (Weights.size() != 1 + PredCases.size())
1129       PredHasWeights = SuccHasWeights = false;
1130   } else if (SuccHasWeights)
1131     // If there are no predecessor weights but there are successor weights,
1132     // populate Weights with 1, which will later be scaled to the sum of
1133     // successor's weights
1134     Weights.assign(1 + PredCases.size(), 1);
1135 
1136   SmallVector<uint64_t, 8> SuccWeights;
1137   if (SuccHasWeights) {
1138     GetBranchWeights(TI, SuccWeights);
1139     // branch-weight metadata is inconsistent here.
1140     if (SuccWeights.size() != 1 + BBCases.size())
1141       PredHasWeights = SuccHasWeights = false;
1142   } else if (PredHasWeights)
1143     SuccWeights.assign(1 + BBCases.size(), 1);
1144 
1145   if (PredDefault == BB) {
1146     // If this is the default destination from PTI, only the edges in TI
1147     // that don't occur in PTI, or that branch to BB will be activated.
1148     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1149     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1150       if (PredCases[i].Dest != BB)
1151         PTIHandled.insert(PredCases[i].Value);
1152       else {
1153         // The default destination is BB, we don't need explicit targets.
1154         std::swap(PredCases[i], PredCases.back());
1155 
1156         if (PredHasWeights || SuccHasWeights) {
1157           // Increase weight for the default case.
1158           Weights[0] += Weights[i + 1];
1159           std::swap(Weights[i + 1], Weights.back());
1160           Weights.pop_back();
1161         }
1162 
1163         PredCases.pop_back();
1164         --i;
1165         --e;
1166       }
1167 
1168     // Reconstruct the new switch statement we will be building.
1169     if (PredDefault != BBDefault) {
1170       PredDefault->removePredecessor(Pred);
1171       if (PredDefault != BB)
1172         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1173       PredDefault = BBDefault;
1174       ++NewSuccessors[BBDefault];
1175     }
1176 
1177     unsigned CasesFromPred = Weights.size();
1178     uint64_t ValidTotalSuccWeight = 0;
1179     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1180       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1181         PredCases.push_back(BBCases[i]);
1182         ++NewSuccessors[BBCases[i].Dest];
1183         if (SuccHasWeights || PredHasWeights) {
1184           // The default weight is at index 0, so weight for the ith case
1185           // should be at index i+1. Scale the cases from successor by
1186           // PredDefaultWeight (Weights[0]).
1187           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1188           ValidTotalSuccWeight += SuccWeights[i + 1];
1189         }
1190       }
1191 
1192     if (SuccHasWeights || PredHasWeights) {
1193       ValidTotalSuccWeight += SuccWeights[0];
1194       // Scale the cases from predecessor by ValidTotalSuccWeight.
1195       for (unsigned i = 1; i < CasesFromPred; ++i)
1196         Weights[i] *= ValidTotalSuccWeight;
1197       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1198       Weights[0] *= SuccWeights[0];
1199     }
1200   } else {
1201     // If this is not the default destination from PSI, only the edges
1202     // in SI that occur in PSI with a destination of BB will be
1203     // activated.
1204     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1205     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1206     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1207       if (PredCases[i].Dest == BB) {
1208         PTIHandled.insert(PredCases[i].Value);
1209 
1210         if (PredHasWeights || SuccHasWeights) {
1211           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1212           std::swap(Weights[i + 1], Weights.back());
1213           Weights.pop_back();
1214         }
1215 
1216         std::swap(PredCases[i], PredCases.back());
1217         PredCases.pop_back();
1218         --i;
1219         --e;
1220       }
1221 
1222     // Okay, now we know which constants were sent to BB from the
1223     // predecessor.  Figure out where they will all go now.
1224     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1225       if (PTIHandled.count(BBCases[i].Value)) {
1226         // If this is one we are capable of getting...
1227         if (PredHasWeights || SuccHasWeights)
1228           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1229         PredCases.push_back(BBCases[i]);
1230         ++NewSuccessors[BBCases[i].Dest];
1231         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1232       }
1233 
1234     // If there are any constants vectored to BB that TI doesn't handle,
1235     // they must go to the default destination of TI.
1236     for (ConstantInt *I : PTIHandled) {
1237       if (PredHasWeights || SuccHasWeights)
1238         Weights.push_back(WeightsForHandled[I]);
1239       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1240       ++NewSuccessors[BBDefault];
1241     }
1242   }
1243 
1244   // Okay, at this point, we know which new successor Pred will get.  Make
1245   // sure we update the number of entries in the PHI nodes for these
1246   // successors.
1247   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1248        NewSuccessors) {
1249     for (auto I : seq(0, NewSuccessor.second)) {
1250       (void)I;
1251       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1252     }
1253     if (!is_contained(successors(Pred), NewSuccessor.first))
1254       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1255   }
1256 
1257   Builder.SetInsertPoint(PTI);
1258   // Convert pointer to int before we switch.
1259   if (CV->getType()->isPointerTy()) {
1260     CV =
1261         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1262   }
1263 
1264   // Now that the successors are updated, create the new Switch instruction.
1265   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1266   NewSI->setDebugLoc(PTI->getDebugLoc());
1267   for (ValueEqualityComparisonCase &V : PredCases)
1268     NewSI->addCase(V.Value, V.Dest);
1269 
1270   if (PredHasWeights || SuccHasWeights) {
1271     // Halve the weights if any of them cannot fit in an uint32_t
1272     FitWeights(Weights);
1273 
1274     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1275 
1276     setBranchWeights(NewSI, MDWeights);
1277   }
1278 
1279   EraseTerminatorAndDCECond(PTI);
1280 
1281   // Okay, last check.  If BB is still a successor of PSI, then we must
1282   // have an infinite loop case.  If so, add an infinitely looping block
1283   // to handle the case to preserve the behavior of the code.
1284   BasicBlock *InfLoopBlock = nullptr;
1285   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1286     if (NewSI->getSuccessor(i) == BB) {
1287       if (!InfLoopBlock) {
1288         // Insert it at the end of the function, because it's either code,
1289         // or it won't matter if it's hot. :)
1290         InfLoopBlock =
1291             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1292         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1293         Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1294       }
1295       NewSI->setSuccessor(i, InfLoopBlock);
1296     }
1297 
1298   if (InfLoopBlock)
1299     Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1300 
1301   Updates.push_back({DominatorTree::Delete, Pred, BB});
1302 
1303   if (DTU)
1304     DTU->applyUpdates(Updates);
1305 
1306   ++NumFoldValueComparisonIntoPredecessors;
1307   return true;
1308 }
1309 
1310 /// The specified terminator is a value equality comparison instruction
1311 /// (either a switch or a branch on "X == c").
1312 /// See if any of the predecessors of the terminator block are value comparisons
1313 /// on the same value.  If so, and if safe to do so, fold them together.
1314 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1315                                                          IRBuilder<> &Builder) {
1316   BasicBlock *BB = TI->getParent();
1317   Value *CV = isValueEqualityComparison(TI); // CondVal
1318   assert(CV && "Not a comparison?");
1319 
1320   bool Changed = false;
1321 
1322   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1323   while (!Preds.empty()) {
1324     BasicBlock *Pred = Preds.pop_back_val();
1325     Instruction *PTI = Pred->getTerminator();
1326 
1327     // Don't try to fold into itself.
1328     if (Pred == BB)
1329       continue;
1330 
1331     // See if the predecessor is a comparison with the same value.
1332     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1333     if (PCV != CV)
1334       continue;
1335 
1336     SmallSetVector<BasicBlock *, 4> FailBlocks;
1337     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1338       for (auto *Succ : FailBlocks) {
1339         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1340           return false;
1341       }
1342     }
1343 
1344     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1345     Changed = true;
1346   }
1347   return Changed;
1348 }
1349 
1350 // If we would need to insert a select that uses the value of this invoke
1351 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1352 // can't hoist the invoke, as there is nowhere to put the select in this case.
1353 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1354                                 Instruction *I1, Instruction *I2) {
1355   for (BasicBlock *Succ : successors(BB1)) {
1356     for (const PHINode &PN : Succ->phis()) {
1357       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1358       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1359       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1360         return false;
1361       }
1362     }
1363   }
1364   return true;
1365 }
1366 
1367 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1368 
1369 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1370 /// in the two blocks up into the branch block. The caller of this function
1371 /// guarantees that BI's block dominates BB1 and BB2.
1372 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1373                                            const TargetTransformInfo &TTI) {
1374   // This does very trivial matching, with limited scanning, to find identical
1375   // instructions in the two blocks.  In particular, we don't want to get into
1376   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1377   // such, we currently just scan for obviously identical instructions in an
1378   // identical order.
1379   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1380   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1381 
1382   BasicBlock::iterator BB1_Itr = BB1->begin();
1383   BasicBlock::iterator BB2_Itr = BB2->begin();
1384 
1385   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1386   // Skip debug info if it is not identical.
1387   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1388   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1389   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1390     while (isa<DbgInfoIntrinsic>(I1))
1391       I1 = &*BB1_Itr++;
1392     while (isa<DbgInfoIntrinsic>(I2))
1393       I2 = &*BB2_Itr++;
1394   }
1395   // FIXME: Can we define a safety predicate for CallBr?
1396   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1397       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1398       isa<CallBrInst>(I1))
1399     return false;
1400 
1401   BasicBlock *BIParent = BI->getParent();
1402 
1403   bool Changed = false;
1404 
1405   auto _ = make_scope_exit([&]() {
1406     if (Changed)
1407       ++NumHoistCommonCode;
1408   });
1409 
1410   do {
1411     // If we are hoisting the terminator instruction, don't move one (making a
1412     // broken BB), instead clone it, and remove BI.
1413     if (I1->isTerminator())
1414       goto HoistTerminator;
1415 
1416     // If we're going to hoist a call, make sure that the two instructions we're
1417     // commoning/hoisting are both marked with musttail, or neither of them is
1418     // marked as such. Otherwise, we might end up in a situation where we hoist
1419     // from a block where the terminator is a `ret` to a block where the terminator
1420     // is a `br`, and `musttail` calls expect to be followed by a return.
1421     auto *C1 = dyn_cast<CallInst>(I1);
1422     auto *C2 = dyn_cast<CallInst>(I2);
1423     if (C1 && C2)
1424       if (C1->isMustTailCall() != C2->isMustTailCall())
1425         return Changed;
1426 
1427     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1428       return Changed;
1429 
1430     // If any of the two call sites has nomerge attribute, stop hoisting.
1431     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1432       if (CB1->cannotMerge())
1433         return Changed;
1434     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1435       if (CB2->cannotMerge())
1436         return Changed;
1437 
1438     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1439       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1440       // The debug location is an integral part of a debug info intrinsic
1441       // and can't be separated from it or replaced.  Instead of attempting
1442       // to merge locations, simply hoist both copies of the intrinsic.
1443       BIParent->getInstList().splice(BI->getIterator(),
1444                                      BB1->getInstList(), I1);
1445       BIParent->getInstList().splice(BI->getIterator(),
1446                                      BB2->getInstList(), I2);
1447       Changed = true;
1448     } else {
1449       // For a normal instruction, we just move one to right before the branch,
1450       // then replace all uses of the other with the first.  Finally, we remove
1451       // the now redundant second instruction.
1452       BIParent->getInstList().splice(BI->getIterator(),
1453                                      BB1->getInstList(), I1);
1454       if (!I2->use_empty())
1455         I2->replaceAllUsesWith(I1);
1456       I1->andIRFlags(I2);
1457       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1458                              LLVMContext::MD_range,
1459                              LLVMContext::MD_fpmath,
1460                              LLVMContext::MD_invariant_load,
1461                              LLVMContext::MD_nonnull,
1462                              LLVMContext::MD_invariant_group,
1463                              LLVMContext::MD_align,
1464                              LLVMContext::MD_dereferenceable,
1465                              LLVMContext::MD_dereferenceable_or_null,
1466                              LLVMContext::MD_mem_parallel_loop_access,
1467                              LLVMContext::MD_access_group,
1468                              LLVMContext::MD_preserve_access_index};
1469       combineMetadata(I1, I2, KnownIDs, true);
1470 
1471       // I1 and I2 are being combined into a single instruction.  Its debug
1472       // location is the merged locations of the original instructions.
1473       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1474 
1475       I2->eraseFromParent();
1476       Changed = true;
1477     }
1478     ++NumHoistCommonInstrs;
1479 
1480     I1 = &*BB1_Itr++;
1481     I2 = &*BB2_Itr++;
1482     // Skip debug info if it is not identical.
1483     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1484     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1485     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1486       while (isa<DbgInfoIntrinsic>(I1))
1487         I1 = &*BB1_Itr++;
1488       while (isa<DbgInfoIntrinsic>(I2))
1489         I2 = &*BB2_Itr++;
1490     }
1491   } while (I1->isIdenticalToWhenDefined(I2));
1492 
1493   return true;
1494 
1495 HoistTerminator:
1496   // It may not be possible to hoist an invoke.
1497   // FIXME: Can we define a safety predicate for CallBr?
1498   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1499     return Changed;
1500 
1501   // TODO: callbr hoisting currently disabled pending further study.
1502   if (isa<CallBrInst>(I1))
1503     return Changed;
1504 
1505   for (BasicBlock *Succ : successors(BB1)) {
1506     for (PHINode &PN : Succ->phis()) {
1507       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1508       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1509       if (BB1V == BB2V)
1510         continue;
1511 
1512       // Check for passingValueIsAlwaysUndefined here because we would rather
1513       // eliminate undefined control flow then converting it to a select.
1514       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1515           passingValueIsAlwaysUndefined(BB2V, &PN))
1516         return Changed;
1517 
1518       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1519         return Changed;
1520       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1521         return Changed;
1522     }
1523   }
1524 
1525   // Okay, it is safe to hoist the terminator.
1526   Instruction *NT = I1->clone();
1527   BIParent->getInstList().insert(BI->getIterator(), NT);
1528   if (!NT->getType()->isVoidTy()) {
1529     I1->replaceAllUsesWith(NT);
1530     I2->replaceAllUsesWith(NT);
1531     NT->takeName(I1);
1532   }
1533   Changed = true;
1534   ++NumHoistCommonInstrs;
1535 
1536   // Ensure terminator gets a debug location, even an unknown one, in case
1537   // it involves inlinable calls.
1538   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1539 
1540   // PHIs created below will adopt NT's merged DebugLoc.
1541   IRBuilder<NoFolder> Builder(NT);
1542 
1543   // Hoisting one of the terminators from our successor is a great thing.
1544   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1545   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1546   // nodes, so we insert select instruction to compute the final result.
1547   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1548   for (BasicBlock *Succ : successors(BB1)) {
1549     for (PHINode &PN : Succ->phis()) {
1550       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1551       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1552       if (BB1V == BB2V)
1553         continue;
1554 
1555       // These values do not agree.  Insert a select instruction before NT
1556       // that determines the right value.
1557       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1558       if (!SI) {
1559         // Propagate fast-math-flags from phi node to its replacement select.
1560         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1561         if (isa<FPMathOperator>(PN))
1562           Builder.setFastMathFlags(PN.getFastMathFlags());
1563 
1564         SI = cast<SelectInst>(
1565             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1566                                  BB1V->getName() + "." + BB2V->getName(), BI));
1567       }
1568 
1569       // Make the PHI node use the select for all incoming values for BB1/BB2
1570       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1571         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1572           PN.setIncomingValue(i, SI);
1573     }
1574   }
1575 
1576   SmallVector<DominatorTree::UpdateType, 4> Updates;
1577 
1578   // Update any PHI nodes in our new successors.
1579   for (BasicBlock *Succ : successors(BB1)) {
1580     AddPredecessorToBlock(Succ, BIParent, BB1);
1581     Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1582   }
1583   for (BasicBlock *Succ : successors(BI))
1584     Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1585 
1586   EraseTerminatorAndDCECond(BI);
1587   if (DTU)
1588     DTU->applyUpdates(Updates);
1589   return Changed;
1590 }
1591 
1592 // Check lifetime markers.
1593 static bool isLifeTimeMarker(const Instruction *I) {
1594   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1595     switch (II->getIntrinsicID()) {
1596     default:
1597       break;
1598     case Intrinsic::lifetime_start:
1599     case Intrinsic::lifetime_end:
1600       return true;
1601     }
1602   }
1603   return false;
1604 }
1605 
1606 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1607 // into variables.
1608 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1609                                                 int OpIdx) {
1610   return !isa<IntrinsicInst>(I);
1611 }
1612 
1613 // All instructions in Insts belong to different blocks that all unconditionally
1614 // branch to a common successor. Analyze each instruction and return true if it
1615 // would be possible to sink them into their successor, creating one common
1616 // instruction instead. For every value that would be required to be provided by
1617 // PHI node (because an operand varies in each input block), add to PHIOperands.
1618 static bool canSinkInstructions(
1619     ArrayRef<Instruction *> Insts,
1620     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1621   // Prune out obviously bad instructions to move. Each instruction must have
1622   // exactly zero or one use, and we check later that use is by a single, common
1623   // PHI instruction in the successor.
1624   bool HasUse = !Insts.front()->user_empty();
1625   for (auto *I : Insts) {
1626     // These instructions may change or break semantics if moved.
1627     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1628         I->getType()->isTokenTy())
1629       return false;
1630 
1631     // Conservatively return false if I is an inline-asm instruction. Sinking
1632     // and merging inline-asm instructions can potentially create arguments
1633     // that cannot satisfy the inline-asm constraints.
1634     // If the instruction has nomerge attribute, return false.
1635     if (const auto *C = dyn_cast<CallBase>(I))
1636       if (C->isInlineAsm() || C->cannotMerge())
1637         return false;
1638 
1639     // Each instruction must have zero or one use.
1640     if (HasUse && !I->hasOneUse())
1641       return false;
1642     if (!HasUse && !I->user_empty())
1643       return false;
1644   }
1645 
1646   const Instruction *I0 = Insts.front();
1647   for (auto *I : Insts)
1648     if (!I->isSameOperationAs(I0))
1649       return false;
1650 
1651   // All instructions in Insts are known to be the same opcode. If they have a
1652   // use, check that the only user is a PHI or in the same block as the
1653   // instruction, because if a user is in the same block as an instruction we're
1654   // contemplating sinking, it must already be determined to be sinkable.
1655   if (HasUse) {
1656     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1657     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1658     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1659           auto *U = cast<Instruction>(*I->user_begin());
1660           return (PNUse &&
1661                   PNUse->getParent() == Succ &&
1662                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1663                  U->getParent() == I->getParent();
1664         }))
1665       return false;
1666   }
1667 
1668   // Because SROA can't handle speculating stores of selects, try not to sink
1669   // loads, stores or lifetime markers of allocas when we'd have to create a
1670   // PHI for the address operand. Also, because it is likely that loads or
1671   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1672   // them.
1673   // This can cause code churn which can have unintended consequences down
1674   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1675   // FIXME: This is a workaround for a deficiency in SROA - see
1676   // https://llvm.org/bugs/show_bug.cgi?id=30188
1677   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1678         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1679       }))
1680     return false;
1681   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1682         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1683       }))
1684     return false;
1685   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1686         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1687       }))
1688     return false;
1689 
1690   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1691     Value *Op = I0->getOperand(OI);
1692     if (Op->getType()->isTokenTy())
1693       // Don't touch any operand of token type.
1694       return false;
1695 
1696     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1697       assert(I->getNumOperands() == I0->getNumOperands());
1698       return I->getOperand(OI) == I0->getOperand(OI);
1699     };
1700     if (!all_of(Insts, SameAsI0)) {
1701       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1702           !canReplaceOperandWithVariable(I0, OI))
1703         // We can't create a PHI from this GEP.
1704         return false;
1705       // Don't create indirect calls! The called value is the final operand.
1706       if (isa<CallBase>(I0) && OI == OE - 1) {
1707         // FIXME: if the call was *already* indirect, we should do this.
1708         return false;
1709       }
1710       for (auto *I : Insts)
1711         PHIOperands[I].push_back(I->getOperand(OI));
1712     }
1713   }
1714   return true;
1715 }
1716 
1717 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1718 // instruction of every block in Blocks to their common successor, commoning
1719 // into one instruction.
1720 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1721   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1722 
1723   // canSinkLastInstruction returning true guarantees that every block has at
1724   // least one non-terminator instruction.
1725   SmallVector<Instruction*,4> Insts;
1726   for (auto *BB : Blocks) {
1727     Instruction *I = BB->getTerminator();
1728     do {
1729       I = I->getPrevNode();
1730     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1731     if (!isa<DbgInfoIntrinsic>(I))
1732       Insts.push_back(I);
1733   }
1734 
1735   // The only checking we need to do now is that all users of all instructions
1736   // are the same PHI node. canSinkLastInstruction should have checked this but
1737   // it is slightly over-aggressive - it gets confused by commutative instructions
1738   // so double-check it here.
1739   Instruction *I0 = Insts.front();
1740   if (!I0->user_empty()) {
1741     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1742     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1743           auto *U = cast<Instruction>(*I->user_begin());
1744           return U == PNUse;
1745         }))
1746       return false;
1747   }
1748 
1749   // We don't need to do any more checking here; canSinkLastInstruction should
1750   // have done it all for us.
1751   SmallVector<Value*, 4> NewOperands;
1752   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1753     // This check is different to that in canSinkLastInstruction. There, we
1754     // cared about the global view once simplifycfg (and instcombine) have
1755     // completed - it takes into account PHIs that become trivially
1756     // simplifiable.  However here we need a more local view; if an operand
1757     // differs we create a PHI and rely on instcombine to clean up the very
1758     // small mess we may make.
1759     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1760       return I->getOperand(O) != I0->getOperand(O);
1761     });
1762     if (!NeedPHI) {
1763       NewOperands.push_back(I0->getOperand(O));
1764       continue;
1765     }
1766 
1767     // Create a new PHI in the successor block and populate it.
1768     auto *Op = I0->getOperand(O);
1769     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1770     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1771                                Op->getName() + ".sink", &BBEnd->front());
1772     for (auto *I : Insts)
1773       PN->addIncoming(I->getOperand(O), I->getParent());
1774     NewOperands.push_back(PN);
1775   }
1776 
1777   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1778   // and move it to the start of the successor block.
1779   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1780     I0->getOperandUse(O).set(NewOperands[O]);
1781   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1782 
1783   // Update metadata and IR flags, and merge debug locations.
1784   for (auto *I : Insts)
1785     if (I != I0) {
1786       // The debug location for the "common" instruction is the merged locations
1787       // of all the commoned instructions.  We start with the original location
1788       // of the "common" instruction and iteratively merge each location in the
1789       // loop below.
1790       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1791       // However, as N-way merge for CallInst is rare, so we use simplified API
1792       // instead of using complex API for N-way merge.
1793       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1794       combineMetadataForCSE(I0, I, true);
1795       I0->andIRFlags(I);
1796     }
1797 
1798   if (!I0->user_empty()) {
1799     // canSinkLastInstruction checked that all instructions were used by
1800     // one and only one PHI node. Find that now, RAUW it to our common
1801     // instruction and nuke it.
1802     auto *PN = cast<PHINode>(*I0->user_begin());
1803     PN->replaceAllUsesWith(I0);
1804     PN->eraseFromParent();
1805   }
1806 
1807   // Finally nuke all instructions apart from the common instruction.
1808   for (auto *I : Insts)
1809     if (I != I0)
1810       I->eraseFromParent();
1811 
1812   return true;
1813 }
1814 
1815 namespace {
1816 
1817   // LockstepReverseIterator - Iterates through instructions
1818   // in a set of blocks in reverse order from the first non-terminator.
1819   // For example (assume all blocks have size n):
1820   //   LockstepReverseIterator I([B1, B2, B3]);
1821   //   *I-- = [B1[n], B2[n], B3[n]];
1822   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1823   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1824   //   ...
1825   class LockstepReverseIterator {
1826     ArrayRef<BasicBlock*> Blocks;
1827     SmallVector<Instruction*,4> Insts;
1828     bool Fail;
1829 
1830   public:
1831     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1832       reset();
1833     }
1834 
1835     void reset() {
1836       Fail = false;
1837       Insts.clear();
1838       for (auto *BB : Blocks) {
1839         Instruction *Inst = BB->getTerminator();
1840         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1841           Inst = Inst->getPrevNode();
1842         if (!Inst) {
1843           // Block wasn't big enough.
1844           Fail = true;
1845           return;
1846         }
1847         Insts.push_back(Inst);
1848       }
1849     }
1850 
1851     bool isValid() const {
1852       return !Fail;
1853     }
1854 
1855     void operator--() {
1856       if (Fail)
1857         return;
1858       for (auto *&Inst : Insts) {
1859         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1860           Inst = Inst->getPrevNode();
1861         // Already at beginning of block.
1862         if (!Inst) {
1863           Fail = true;
1864           return;
1865         }
1866       }
1867     }
1868 
1869     ArrayRef<Instruction*> operator * () const {
1870       return Insts;
1871     }
1872   };
1873 
1874 } // end anonymous namespace
1875 
1876 /// Check whether BB's predecessors end with unconditional branches. If it is
1877 /// true, sink any common code from the predecessors to BB.
1878 /// We also allow one predecessor to end with conditional branch (but no more
1879 /// than one).
1880 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1881                                            DomTreeUpdater *DTU) {
1882   // We support two situations:
1883   //   (1) all incoming arcs are unconditional
1884   //   (2) one incoming arc is conditional
1885   //
1886   // (2) is very common in switch defaults and
1887   // else-if patterns;
1888   //
1889   //   if (a) f(1);
1890   //   else if (b) f(2);
1891   //
1892   // produces:
1893   //
1894   //       [if]
1895   //      /    \
1896   //    [f(1)] [if]
1897   //      |     | \
1898   //      |     |  |
1899   //      |  [f(2)]|
1900   //       \    | /
1901   //        [ end ]
1902   //
1903   // [end] has two unconditional predecessor arcs and one conditional. The
1904   // conditional refers to the implicit empty 'else' arc. This conditional
1905   // arc can also be caused by an empty default block in a switch.
1906   //
1907   // In this case, we attempt to sink code from all *unconditional* arcs.
1908   // If we can sink instructions from these arcs (determined during the scan
1909   // phase below) we insert a common successor for all unconditional arcs and
1910   // connect that to [end], to enable sinking:
1911   //
1912   //       [if]
1913   //      /    \
1914   //    [x(1)] [if]
1915   //      |     | \
1916   //      |     |  \
1917   //      |  [x(2)] |
1918   //       \   /    |
1919   //   [sink.split] |
1920   //         \     /
1921   //         [ end ]
1922   //
1923   SmallVector<BasicBlock*,4> UnconditionalPreds;
1924   Instruction *Cond = nullptr;
1925   for (auto *B : predecessors(BB)) {
1926     auto *T = B->getTerminator();
1927     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1928       UnconditionalPreds.push_back(B);
1929     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1930       Cond = T;
1931     else
1932       return false;
1933   }
1934   if (UnconditionalPreds.size() < 2)
1935     return false;
1936 
1937   // We take a two-step approach to tail sinking. First we scan from the end of
1938   // each block upwards in lockstep. If the n'th instruction from the end of each
1939   // block can be sunk, those instructions are added to ValuesToSink and we
1940   // carry on. If we can sink an instruction but need to PHI-merge some operands
1941   // (because they're not identical in each instruction) we add these to
1942   // PHIOperands.
1943   unsigned ScanIdx = 0;
1944   SmallPtrSet<Value*,4> InstructionsToSink;
1945   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1946   LockstepReverseIterator LRI(UnconditionalPreds);
1947   while (LRI.isValid() &&
1948          canSinkInstructions(*LRI, PHIOperands)) {
1949     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1950                       << "\n");
1951     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1952     ++ScanIdx;
1953     --LRI;
1954   }
1955 
1956   // If no instructions can be sunk, early-return.
1957   if (ScanIdx == 0)
1958     return false;
1959 
1960   bool Changed = false;
1961 
1962   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1963     unsigned NumPHIdValues = 0;
1964     for (auto *I : *LRI)
1965       for (auto *V : PHIOperands[I])
1966         if (InstructionsToSink.count(V) == 0)
1967           ++NumPHIdValues;
1968     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1969     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1970     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1971         NumPHIInsts++;
1972 
1973     return NumPHIInsts <= 1;
1974   };
1975 
1976   if (Cond) {
1977     // Check if we would actually sink anything first! This mutates the CFG and
1978     // adds an extra block. The goal in doing this is to allow instructions that
1979     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1980     // (such as trunc, add) can be sunk and predicated already. So we check that
1981     // we're going to sink at least one non-speculatable instruction.
1982     LRI.reset();
1983     unsigned Idx = 0;
1984     bool Profitable = false;
1985     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1986       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1987         Profitable = true;
1988         break;
1989       }
1990       --LRI;
1991       ++Idx;
1992     }
1993     if (!Profitable)
1994       return false;
1995 
1996     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1997     // We have a conditional edge and we're going to sink some instructions.
1998     // Insert a new block postdominating all blocks we're going to sink from.
1999     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2000       // Edges couldn't be split.
2001       return false;
2002     Changed = true;
2003   }
2004 
2005   // Now that we've analyzed all potential sinking candidates, perform the
2006   // actual sink. We iteratively sink the last non-terminator of the source
2007   // blocks into their common successor unless doing so would require too
2008   // many PHI instructions to be generated (currently only one PHI is allowed
2009   // per sunk instruction).
2010   //
2011   // We can use InstructionsToSink to discount values needing PHI-merging that will
2012   // actually be sunk in a later iteration. This allows us to be more
2013   // aggressive in what we sink. This does allow a false positive where we
2014   // sink presuming a later value will also be sunk, but stop half way through
2015   // and never actually sink it which means we produce more PHIs than intended.
2016   // This is unlikely in practice though.
2017   unsigned SinkIdx = 0;
2018   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2019     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2020                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2021                       << "\n");
2022 
2023     // Because we've sunk every instruction in turn, the current instruction to
2024     // sink is always at index 0.
2025     LRI.reset();
2026     if (!ProfitableToSinkInstruction(LRI)) {
2027       // Too many PHIs would be created.
2028       LLVM_DEBUG(
2029           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2030       break;
2031     }
2032 
2033     if (!sinkLastInstruction(UnconditionalPreds)) {
2034       LLVM_DEBUG(
2035           dbgs()
2036           << "SINK: stopping here, failed to actually sink instruction!\n");
2037       break;
2038     }
2039 
2040     NumSinkCommonInstrs++;
2041     Changed = true;
2042   }
2043   if (SinkIdx != 0)
2044     ++NumSinkCommonCode;
2045   return Changed;
2046 }
2047 
2048 /// Determine if we can hoist sink a sole store instruction out of a
2049 /// conditional block.
2050 ///
2051 /// We are looking for code like the following:
2052 ///   BrBB:
2053 ///     store i32 %add, i32* %arrayidx2
2054 ///     ... // No other stores or function calls (we could be calling a memory
2055 ///     ... // function).
2056 ///     %cmp = icmp ult %x, %y
2057 ///     br i1 %cmp, label %EndBB, label %ThenBB
2058 ///   ThenBB:
2059 ///     store i32 %add5, i32* %arrayidx2
2060 ///     br label EndBB
2061 ///   EndBB:
2062 ///     ...
2063 ///   We are going to transform this into:
2064 ///   BrBB:
2065 ///     store i32 %add, i32* %arrayidx2
2066 ///     ... //
2067 ///     %cmp = icmp ult %x, %y
2068 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2069 ///     store i32 %add.add5, i32* %arrayidx2
2070 ///     ...
2071 ///
2072 /// \return The pointer to the value of the previous store if the store can be
2073 ///         hoisted into the predecessor block. 0 otherwise.
2074 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2075                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2076   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2077   if (!StoreToHoist)
2078     return nullptr;
2079 
2080   // Volatile or atomic.
2081   if (!StoreToHoist->isSimple())
2082     return nullptr;
2083 
2084   Value *StorePtr = StoreToHoist->getPointerOperand();
2085 
2086   // Look for a store to the same pointer in BrBB.
2087   unsigned MaxNumInstToLookAt = 9;
2088   // Skip pseudo probe intrinsic calls which are not really killing any memory
2089   // accesses.
2090   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2091     if (!MaxNumInstToLookAt)
2092       break;
2093     --MaxNumInstToLookAt;
2094 
2095     // Could be calling an instruction that affects memory like free().
2096     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2097       return nullptr;
2098 
2099     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2100       // Found the previous store make sure it stores to the same location.
2101       if (SI->getPointerOperand() == StorePtr)
2102         // Found the previous store, return its value operand.
2103         return SI->getValueOperand();
2104       return nullptr; // Unknown store.
2105     }
2106   }
2107 
2108   return nullptr;
2109 }
2110 
2111 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2112 /// converted to selects.
2113 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2114                                            BasicBlock *EndBB,
2115                                            unsigned &SpeculatedInstructions,
2116                                            int &BudgetRemaining,
2117                                            const TargetTransformInfo &TTI) {
2118   TargetTransformInfo::TargetCostKind CostKind =
2119     BB->getParent()->hasMinSize()
2120     ? TargetTransformInfo::TCK_CodeSize
2121     : TargetTransformInfo::TCK_SizeAndLatency;
2122 
2123   bool HaveRewritablePHIs = false;
2124   for (PHINode &PN : EndBB->phis()) {
2125     Value *OrigV = PN.getIncomingValueForBlock(BB);
2126     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2127 
2128     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2129     // Skip PHIs which are trivial.
2130     if (ThenV == OrigV)
2131       continue;
2132 
2133     BudgetRemaining -=
2134         TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2135                                CmpInst::BAD_ICMP_PREDICATE, CostKind);
2136 
2137     // Don't convert to selects if we could remove undefined behavior instead.
2138     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2139         passingValueIsAlwaysUndefined(ThenV, &PN))
2140       return false;
2141 
2142     HaveRewritablePHIs = true;
2143     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2144     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2145     if (!OrigCE && !ThenCE)
2146       continue; // Known safe and cheap.
2147 
2148     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2149         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2150       return false;
2151     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2152     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2153     unsigned MaxCost =
2154         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2155     if (OrigCost + ThenCost > MaxCost)
2156       return false;
2157 
2158     // Account for the cost of an unfolded ConstantExpr which could end up
2159     // getting expanded into Instructions.
2160     // FIXME: This doesn't account for how many operations are combined in the
2161     // constant expression.
2162     ++SpeculatedInstructions;
2163     if (SpeculatedInstructions > 1)
2164       return false;
2165   }
2166 
2167   return HaveRewritablePHIs;
2168 }
2169 
2170 /// Speculate a conditional basic block flattening the CFG.
2171 ///
2172 /// Note that this is a very risky transform currently. Speculating
2173 /// instructions like this is most often not desirable. Instead, there is an MI
2174 /// pass which can do it with full awareness of the resource constraints.
2175 /// However, some cases are "obvious" and we should do directly. An example of
2176 /// this is speculating a single, reasonably cheap instruction.
2177 ///
2178 /// There is only one distinct advantage to flattening the CFG at the IR level:
2179 /// it makes very common but simplistic optimizations such as are common in
2180 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2181 /// modeling their effects with easier to reason about SSA value graphs.
2182 ///
2183 ///
2184 /// An illustration of this transform is turning this IR:
2185 /// \code
2186 ///   BB:
2187 ///     %cmp = icmp ult %x, %y
2188 ///     br i1 %cmp, label %EndBB, label %ThenBB
2189 ///   ThenBB:
2190 ///     %sub = sub %x, %y
2191 ///     br label BB2
2192 ///   EndBB:
2193 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2194 ///     ...
2195 /// \endcode
2196 ///
2197 /// Into this IR:
2198 /// \code
2199 ///   BB:
2200 ///     %cmp = icmp ult %x, %y
2201 ///     %sub = sub %x, %y
2202 ///     %cond = select i1 %cmp, 0, %sub
2203 ///     ...
2204 /// \endcode
2205 ///
2206 /// \returns true if the conditional block is removed.
2207 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2208                                             const TargetTransformInfo &TTI) {
2209   // Be conservative for now. FP select instruction can often be expensive.
2210   Value *BrCond = BI->getCondition();
2211   if (isa<FCmpInst>(BrCond))
2212     return false;
2213 
2214   BasicBlock *BB = BI->getParent();
2215   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2216   int BudgetRemaining =
2217     PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2218 
2219   // If ThenBB is actually on the false edge of the conditional branch, remember
2220   // to swap the select operands later.
2221   bool Invert = false;
2222   if (ThenBB != BI->getSuccessor(0)) {
2223     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2224     Invert = true;
2225   }
2226   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2227 
2228   // Keep a count of how many times instructions are used within ThenBB when
2229   // they are candidates for sinking into ThenBB. Specifically:
2230   // - They are defined in BB, and
2231   // - They have no side effects, and
2232   // - All of their uses are in ThenBB.
2233   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2234 
2235   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2236 
2237   unsigned SpeculatedInstructions = 0;
2238   Value *SpeculatedStoreValue = nullptr;
2239   StoreInst *SpeculatedStore = nullptr;
2240   for (BasicBlock::iterator BBI = ThenBB->begin(),
2241                             BBE = std::prev(ThenBB->end());
2242        BBI != BBE; ++BBI) {
2243     Instruction *I = &*BBI;
2244     // Skip debug info.
2245     if (isa<DbgInfoIntrinsic>(I)) {
2246       SpeculatedDbgIntrinsics.push_back(I);
2247       continue;
2248     }
2249 
2250     // Skip pseudo probes. The consequence is we lose track of the branch
2251     // probability for ThenBB, which is fine since the optimization here takes
2252     // place regardless of the branch probability.
2253     if (isa<PseudoProbeInst>(I)) {
2254       SpeculatedDbgIntrinsics.push_back(I);
2255       continue;
2256     }
2257 
2258     // Only speculatively execute a single instruction (not counting the
2259     // terminator) for now.
2260     ++SpeculatedInstructions;
2261     if (SpeculatedInstructions > 1)
2262       return false;
2263 
2264     // Don't hoist the instruction if it's unsafe or expensive.
2265     if (!isSafeToSpeculativelyExecute(I) &&
2266         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2267                                   I, BB, ThenBB, EndBB))))
2268       return false;
2269     if (!SpeculatedStoreValue &&
2270         ComputeSpeculationCost(I, TTI) >
2271             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2272       return false;
2273 
2274     // Store the store speculation candidate.
2275     if (SpeculatedStoreValue)
2276       SpeculatedStore = cast<StoreInst>(I);
2277 
2278     // Do not hoist the instruction if any of its operands are defined but not
2279     // used in BB. The transformation will prevent the operand from
2280     // being sunk into the use block.
2281     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2282       Instruction *OpI = dyn_cast<Instruction>(*i);
2283       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2284         continue; // Not a candidate for sinking.
2285 
2286       ++SinkCandidateUseCounts[OpI];
2287     }
2288   }
2289 
2290   // Consider any sink candidates which are only used in ThenBB as costs for
2291   // speculation. Note, while we iterate over a DenseMap here, we are summing
2292   // and so iteration order isn't significant.
2293   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2294            I = SinkCandidateUseCounts.begin(),
2295            E = SinkCandidateUseCounts.end();
2296        I != E; ++I)
2297     if (I->first->hasNUses(I->second)) {
2298       ++SpeculatedInstructions;
2299       if (SpeculatedInstructions > 1)
2300         return false;
2301     }
2302 
2303   // Check that we can insert the selects and that it's not too expensive to do
2304   // so.
2305   bool Convert = SpeculatedStore != nullptr;
2306   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2307                                             SpeculatedInstructions,
2308                                             BudgetRemaining, TTI);
2309   if (!Convert || BudgetRemaining < 0)
2310     return false;
2311 
2312   // If we get here, we can hoist the instruction and if-convert.
2313   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2314 
2315   // Insert a select of the value of the speculated store.
2316   if (SpeculatedStoreValue) {
2317     IRBuilder<NoFolder> Builder(BI);
2318     Value *TrueV = SpeculatedStore->getValueOperand();
2319     Value *FalseV = SpeculatedStoreValue;
2320     if (Invert)
2321       std::swap(TrueV, FalseV);
2322     Value *S = Builder.CreateSelect(
2323         BrCond, TrueV, FalseV, "spec.store.select", BI);
2324     SpeculatedStore->setOperand(0, S);
2325     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2326                                          SpeculatedStore->getDebugLoc());
2327   }
2328 
2329   // Metadata can be dependent on the condition we are hoisting above.
2330   // Conservatively strip all metadata on the instruction. Drop the debug loc
2331   // to avoid making it appear as if the condition is a constant, which would
2332   // be misleading while debugging.
2333   for (auto &I : *ThenBB) {
2334     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2335       I.setDebugLoc(DebugLoc());
2336     I.dropUnknownNonDebugMetadata();
2337   }
2338 
2339   // Hoist the instructions.
2340   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2341                            ThenBB->begin(), std::prev(ThenBB->end()));
2342 
2343   // Insert selects and rewrite the PHI operands.
2344   IRBuilder<NoFolder> Builder(BI);
2345   for (PHINode &PN : EndBB->phis()) {
2346     unsigned OrigI = PN.getBasicBlockIndex(BB);
2347     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2348     Value *OrigV = PN.getIncomingValue(OrigI);
2349     Value *ThenV = PN.getIncomingValue(ThenI);
2350 
2351     // Skip PHIs which are trivial.
2352     if (OrigV == ThenV)
2353       continue;
2354 
2355     // Create a select whose true value is the speculatively executed value and
2356     // false value is the pre-existing value. Swap them if the branch
2357     // destinations were inverted.
2358     Value *TrueV = ThenV, *FalseV = OrigV;
2359     if (Invert)
2360       std::swap(TrueV, FalseV);
2361     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2362     PN.setIncomingValue(OrigI, V);
2363     PN.setIncomingValue(ThenI, V);
2364   }
2365 
2366   // Remove speculated dbg intrinsics.
2367   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2368   // dbg value for the different flows and inserting it after the select.
2369   for (Instruction *I : SpeculatedDbgIntrinsics)
2370     I->eraseFromParent();
2371 
2372   ++NumSpeculations;
2373   return true;
2374 }
2375 
2376 /// Return true if we can thread a branch across this block.
2377 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2378   int Size = 0;
2379 
2380   for (Instruction &I : BB->instructionsWithoutDebug()) {
2381     if (Size > MaxSmallBlockSize)
2382       return false; // Don't clone large BB's.
2383 
2384     // Can't fold blocks that contain noduplicate or convergent calls.
2385     if (CallInst *CI = dyn_cast<CallInst>(&I))
2386       if (CI->cannotDuplicate() || CI->isConvergent())
2387         return false;
2388 
2389     // We will delete Phis while threading, so Phis should not be accounted in
2390     // block's size
2391     if (!isa<PHINode>(I))
2392       ++Size;
2393 
2394     // We can only support instructions that do not define values that are
2395     // live outside of the current basic block.
2396     for (User *U : I.users()) {
2397       Instruction *UI = cast<Instruction>(U);
2398       if (UI->getParent() != BB || isa<PHINode>(UI))
2399         return false;
2400     }
2401 
2402     // Looks ok, continue checking.
2403   }
2404 
2405   return true;
2406 }
2407 
2408 /// If we have a conditional branch on a PHI node value that is defined in the
2409 /// same block as the branch and if any PHI entries are constants, thread edges
2410 /// corresponding to that entry to be branches to their ultimate destination.
2411 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2412                                 const DataLayout &DL, AssumptionCache *AC) {
2413   BasicBlock *BB = BI->getParent();
2414   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2415   // NOTE: we currently cannot transform this case if the PHI node is used
2416   // outside of the block.
2417   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2418     return false;
2419 
2420   // Degenerate case of a single entry PHI.
2421   if (PN->getNumIncomingValues() == 1) {
2422     FoldSingleEntryPHINodes(PN->getParent());
2423     return true;
2424   }
2425 
2426   // Now we know that this block has multiple preds and two succs.
2427   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2428     return false;
2429 
2430   // Okay, this is a simple enough basic block.  See if any phi values are
2431   // constants.
2432   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2433     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2434     if (!CB || !CB->getType()->isIntegerTy(1))
2435       continue;
2436 
2437     // Okay, we now know that all edges from PredBB should be revectored to
2438     // branch to RealDest.
2439     BasicBlock *PredBB = PN->getIncomingBlock(i);
2440     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2441 
2442     if (RealDest == BB)
2443       continue; // Skip self loops.
2444     // Skip if the predecessor's terminator is an indirect branch.
2445     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2446       continue;
2447 
2448     SmallVector<DominatorTree::UpdateType, 3> Updates;
2449 
2450     // The dest block might have PHI nodes, other predecessors and other
2451     // difficult cases.  Instead of being smart about this, just insert a new
2452     // block that jumps to the destination block, effectively splitting
2453     // the edge we are about to create.
2454     BasicBlock *EdgeBB =
2455         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2456                            RealDest->getParent(), RealDest);
2457     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2458     Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2459     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2460 
2461     // Update PHI nodes.
2462     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2463 
2464     // BB may have instructions that are being threaded over.  Clone these
2465     // instructions into EdgeBB.  We know that there will be no uses of the
2466     // cloned instructions outside of EdgeBB.
2467     BasicBlock::iterator InsertPt = EdgeBB->begin();
2468     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2469     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2470       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2471         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2472         continue;
2473       }
2474       // Clone the instruction.
2475       Instruction *N = BBI->clone();
2476       if (BBI->hasName())
2477         N->setName(BBI->getName() + ".c");
2478 
2479       // Update operands due to translation.
2480       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2481         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2482         if (PI != TranslateMap.end())
2483           *i = PI->second;
2484       }
2485 
2486       // Check for trivial simplification.
2487       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2488         if (!BBI->use_empty())
2489           TranslateMap[&*BBI] = V;
2490         if (!N->mayHaveSideEffects()) {
2491           N->deleteValue(); // Instruction folded away, don't need actual inst
2492           N = nullptr;
2493         }
2494       } else {
2495         if (!BBI->use_empty())
2496           TranslateMap[&*BBI] = N;
2497       }
2498       if (N) {
2499         // Insert the new instruction into its new home.
2500         EdgeBB->getInstList().insert(InsertPt, N);
2501 
2502         // Register the new instruction with the assumption cache if necessary.
2503         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2504           AC->registerAssumption(cast<IntrinsicInst>(N));
2505       }
2506     }
2507 
2508     // Loop over all of the edges from PredBB to BB, changing them to branch
2509     // to EdgeBB instead.
2510     Instruction *PredBBTI = PredBB->getTerminator();
2511     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2512       if (PredBBTI->getSuccessor(i) == BB) {
2513         BB->removePredecessor(PredBB);
2514         PredBBTI->setSuccessor(i, EdgeBB);
2515       }
2516 
2517     Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2518     Updates.push_back({DominatorTree::Delete, PredBB, BB});
2519 
2520     if (DTU)
2521       DTU->applyUpdates(Updates);
2522 
2523     // Recurse, simplifying any other constants.
2524     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2525   }
2526 
2527   return false;
2528 }
2529 
2530 /// Given a BB that starts with the specified two-entry PHI node,
2531 /// see if we can eliminate it.
2532 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2533                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2534   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2535   // statement", which has a very simple dominance structure.  Basically, we
2536   // are trying to find the condition that is being branched on, which
2537   // subsequently causes this merge to happen.  We really want control
2538   // dependence information for this check, but simplifycfg can't keep it up
2539   // to date, and this catches most of the cases we care about anyway.
2540   BasicBlock *BB = PN->getParent();
2541 
2542   BasicBlock *IfTrue, *IfFalse;
2543   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2544   if (!IfCond ||
2545       // Don't bother if the branch will be constant folded trivially.
2546       isa<ConstantInt>(IfCond))
2547     return false;
2548 
2549   // Okay, we found that we can merge this two-entry phi node into a select.
2550   // Doing so would require us to fold *all* two entry phi nodes in this block.
2551   // At some point this becomes non-profitable (particularly if the target
2552   // doesn't support cmov's).  Only do this transformation if there are two or
2553   // fewer PHI nodes in this block.
2554   unsigned NumPhis = 0;
2555   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2556     if (NumPhis > 2)
2557       return false;
2558 
2559   // Loop over the PHI's seeing if we can promote them all to select
2560   // instructions.  While we are at it, keep track of the instructions
2561   // that need to be moved to the dominating block.
2562   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2563   int BudgetRemaining =
2564       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2565 
2566   bool Changed = false;
2567   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2568     PHINode *PN = cast<PHINode>(II++);
2569     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2570       PN->replaceAllUsesWith(V);
2571       PN->eraseFromParent();
2572       Changed = true;
2573       continue;
2574     }
2575 
2576     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2577                              BudgetRemaining, TTI) ||
2578         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2579                              BudgetRemaining, TTI))
2580       return Changed;
2581   }
2582 
2583   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2584   // we ran out of PHIs then we simplified them all.
2585   PN = dyn_cast<PHINode>(BB->begin());
2586   if (!PN)
2587     return true;
2588 
2589   // Return true if at least one of these is a 'not', and another is either
2590   // a 'not' too, or a constant.
2591   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2592     if (!match(V0, m_Not(m_Value())))
2593       std::swap(V0, V1);
2594     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2595     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2596   };
2597 
2598   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2599   // of the incoming values is an 'not' and another one is freely invertible.
2600   // These can often be turned into switches and other things.
2601   if (PN->getType()->isIntegerTy(1) &&
2602       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2603        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2604        isa<BinaryOperator>(IfCond)) &&
2605       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2606                                  PN->getIncomingValue(1)))
2607     return Changed;
2608 
2609   // If all PHI nodes are promotable, check to make sure that all instructions
2610   // in the predecessor blocks can be promoted as well. If not, we won't be able
2611   // to get rid of the control flow, so it's not worth promoting to select
2612   // instructions.
2613   BasicBlock *DomBlock = nullptr;
2614   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2615   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2616   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2617     IfBlock1 = nullptr;
2618   } else {
2619     DomBlock = *pred_begin(IfBlock1);
2620     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2621       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2622           !isa<PseudoProbeInst>(I)) {
2623         // This is not an aggressive instruction that we can promote.
2624         // Because of this, we won't be able to get rid of the control flow, so
2625         // the xform is not worth it.
2626         return Changed;
2627       }
2628   }
2629 
2630   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2631     IfBlock2 = nullptr;
2632   } else {
2633     DomBlock = *pred_begin(IfBlock2);
2634     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2635       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2636           !isa<PseudoProbeInst>(I)) {
2637         // This is not an aggressive instruction that we can promote.
2638         // Because of this, we won't be able to get rid of the control flow, so
2639         // the xform is not worth it.
2640         return Changed;
2641       }
2642   }
2643   assert(DomBlock && "Failed to find root DomBlock");
2644 
2645   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2646                     << "  T: " << IfTrue->getName()
2647                     << "  F: " << IfFalse->getName() << "\n");
2648 
2649   // If we can still promote the PHI nodes after this gauntlet of tests,
2650   // do all of the PHI's now.
2651   Instruction *InsertPt = DomBlock->getTerminator();
2652   IRBuilder<NoFolder> Builder(InsertPt);
2653 
2654   // Move all 'aggressive' instructions, which are defined in the
2655   // conditional parts of the if's up to the dominating block.
2656   if (IfBlock1)
2657     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2658   if (IfBlock2)
2659     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2660 
2661   // Propagate fast-math-flags from phi nodes to replacement selects.
2662   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2663   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2664     if (isa<FPMathOperator>(PN))
2665       Builder.setFastMathFlags(PN->getFastMathFlags());
2666 
2667     // Change the PHI node into a select instruction.
2668     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2669     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2670 
2671     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2672     PN->replaceAllUsesWith(Sel);
2673     Sel->takeName(PN);
2674     PN->eraseFromParent();
2675   }
2676 
2677   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2678   // has been flattened.  Change DomBlock to jump directly to our new block to
2679   // avoid other simplifycfg's kicking in on the diamond.
2680   Instruction *OldTI = DomBlock->getTerminator();
2681   Builder.SetInsertPoint(OldTI);
2682   Builder.CreateBr(BB);
2683 
2684   SmallVector<DominatorTree::UpdateType, 3> Updates;
2685   if (DTU) {
2686     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2687     for (auto *Successor : successors(DomBlock))
2688       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2689   }
2690 
2691   OldTI->eraseFromParent();
2692   if (DTU)
2693     DTU->applyUpdates(Updates);
2694 
2695   return true;
2696 }
2697 
2698 /// If we found a conditional branch that goes to two returning blocks,
2699 /// try to merge them together into one return,
2700 /// introducing a select if the return values disagree.
2701 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2702                                                     IRBuilder<> &Builder) {
2703   auto *BB = BI->getParent();
2704   assert(BI->isConditional() && "Must be a conditional branch");
2705   BasicBlock *TrueSucc = BI->getSuccessor(0);
2706   BasicBlock *FalseSucc = BI->getSuccessor(1);
2707   // NOTE: destinations may match, this could be degenerate uncond branch.
2708   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2709   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2710 
2711   // Check to ensure both blocks are empty (just a return) or optionally empty
2712   // with PHI nodes.  If there are other instructions, merging would cause extra
2713   // computation on one path or the other.
2714   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2715     return false;
2716   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2717     return false;
2718 
2719   Builder.SetInsertPoint(BI);
2720   // Okay, we found a branch that is going to two return nodes.  If
2721   // there is no return value for this function, just change the
2722   // branch into a return.
2723   if (FalseRet->getNumOperands() == 0) {
2724     TrueSucc->removePredecessor(BB);
2725     FalseSucc->removePredecessor(BB);
2726     Builder.CreateRetVoid();
2727     EraseTerminatorAndDCECond(BI);
2728     if (DTU) {
2729       SmallVector<DominatorTree::UpdateType, 2> Updates;
2730       Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2731       if (TrueSucc != FalseSucc)
2732         Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2733       DTU->applyUpdates(Updates);
2734     }
2735     return true;
2736   }
2737 
2738   // Otherwise, figure out what the true and false return values are
2739   // so we can insert a new select instruction.
2740   Value *TrueValue = TrueRet->getReturnValue();
2741   Value *FalseValue = FalseRet->getReturnValue();
2742 
2743   // Unwrap any PHI nodes in the return blocks.
2744   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2745     if (TVPN->getParent() == TrueSucc)
2746       TrueValue = TVPN->getIncomingValueForBlock(BB);
2747   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2748     if (FVPN->getParent() == FalseSucc)
2749       FalseValue = FVPN->getIncomingValueForBlock(BB);
2750 
2751   // In order for this transformation to be safe, we must be able to
2752   // unconditionally execute both operands to the return.  This is
2753   // normally the case, but we could have a potentially-trapping
2754   // constant expression that prevents this transformation from being
2755   // safe.
2756   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2757     if (TCV->canTrap())
2758       return false;
2759   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2760     if (FCV->canTrap())
2761       return false;
2762 
2763   // Okay, we collected all the mapped values and checked them for sanity, and
2764   // defined to really do this transformation.  First, update the CFG.
2765   TrueSucc->removePredecessor(BB);
2766   FalseSucc->removePredecessor(BB);
2767 
2768   // Insert select instructions where needed.
2769   Value *BrCond = BI->getCondition();
2770   if (TrueValue) {
2771     // Insert a select if the results differ.
2772     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2773     } else if (isa<UndefValue>(TrueValue)) {
2774       TrueValue = FalseValue;
2775     } else {
2776       TrueValue =
2777           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2778     }
2779   }
2780 
2781   Value *RI =
2782       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2783 
2784   (void)RI;
2785 
2786   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2787                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2788                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2789 
2790   EraseTerminatorAndDCECond(BI);
2791   if (DTU) {
2792     SmallVector<DominatorTree::UpdateType, 2> Updates;
2793     Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2794     if (TrueSucc != FalseSucc)
2795       Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2796     DTU->applyUpdates(Updates);
2797   }
2798 
2799   return true;
2800 }
2801 
2802 /// Return true if either PBI or BI has branch weight available, and store
2803 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2804 /// not have branch weight, use 1:1 as its weight.
2805 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2806                                    uint64_t &PredTrueWeight,
2807                                    uint64_t &PredFalseWeight,
2808                                    uint64_t &SuccTrueWeight,
2809                                    uint64_t &SuccFalseWeight) {
2810   bool PredHasWeights =
2811       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2812   bool SuccHasWeights =
2813       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2814   if (PredHasWeights || SuccHasWeights) {
2815     if (!PredHasWeights)
2816       PredTrueWeight = PredFalseWeight = 1;
2817     if (!SuccHasWeights)
2818       SuccTrueWeight = SuccFalseWeight = 1;
2819     return true;
2820   } else {
2821     return false;
2822   }
2823 }
2824 
2825 // Determine if the two branches share a common destination,
2826 // and deduce a glue that we need to use to join branch's conditions
2827 // to arrive at the common destination.
2828 static Optional<std::pair<Instruction::BinaryOps, bool>>
2829 CheckIfCondBranchesShareCommonDestination(BranchInst *BI, BranchInst *PBI) {
2830   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2831          "Both blocks must end with a conditional branches.");
2832   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
2833          "PredBB must be a predecessor of BB.");
2834 
2835   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2836     return {{Instruction::Or, false}};
2837   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2838     return {{Instruction::And, false}};
2839   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2840     return {{Instruction::And, true}};
2841   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2842     return {{Instruction::Or, true}};
2843   return None;
2844 }
2845 
2846 static bool PerformBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
2847                                              DomTreeUpdater *DTU,
2848                                              MemorySSAUpdater *MSSAU) {
2849   BasicBlock *BB = BI->getParent();
2850   BasicBlock *PredBlock = PBI->getParent();
2851 
2852   // Determine if the two branches share a common destination.
2853   Instruction::BinaryOps Opc;
2854   bool InvertPredCond;
2855   std::tie(Opc, InvertPredCond) =
2856       *CheckIfCondBranchesShareCommonDestination(BI, PBI);
2857 
2858   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2859 
2860   IRBuilder<> Builder(PBI);
2861   // The builder is used to create instructions to eliminate the branch in BB.
2862   // If BB's terminator has !annotation metadata, add it to the new
2863   // instructions.
2864   Builder.CollectMetadataToCopy(BB->getTerminator(),
2865                                 {LLVMContext::MD_annotation});
2866 
2867   // If we need to invert the condition in the pred block to match, do so now.
2868   if (InvertPredCond) {
2869     Value *NewCond = PBI->getCondition();
2870     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2871       CmpInst *CI = cast<CmpInst>(NewCond);
2872       CI->setPredicate(CI->getInversePredicate());
2873     } else {
2874       NewCond =
2875           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2876     }
2877 
2878     PBI->setCondition(NewCond);
2879     PBI->swapSuccessors();
2880   }
2881 
2882   BasicBlock *UniqueSucc =
2883       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
2884 
2885   // Before cloning instructions, notify the successor basic block that it
2886   // is about to have a new predecessor. This will update PHI nodes,
2887   // which will allow us to update live-out uses of bonus instructions.
2888   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
2889 
2890   // Try to update branch weights.
2891   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2892   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2893                              SuccTrueWeight, SuccFalseWeight)) {
2894     SmallVector<uint64_t, 8> NewWeights;
2895 
2896     if (PBI->getSuccessor(0) == BB) {
2897       // PBI: br i1 %x, BB, FalseDest
2898       // BI:  br i1 %y, UniqueSucc, FalseDest
2899       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2900       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2901       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2902       //               TrueWeight for PBI * FalseWeight for BI.
2903       // We assume that total weights of a BranchInst can fit into 32 bits.
2904       // Therefore, we will not have overflow using 64-bit arithmetic.
2905       NewWeights.push_back(PredFalseWeight *
2906                                (SuccFalseWeight + SuccTrueWeight) +
2907                            PredTrueWeight * SuccFalseWeight);
2908     } else {
2909       // PBI: br i1 %x, TrueDest, BB
2910       // BI:  br i1 %y, TrueDest, UniqueSucc
2911       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2912       //              FalseWeight for PBI * TrueWeight for BI.
2913       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
2914                            PredFalseWeight * SuccTrueWeight);
2915       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2916       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2917     }
2918 
2919     // Halve the weights if any of them cannot fit in an uint32_t
2920     FitWeights(NewWeights);
2921 
2922     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
2923     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2924 
2925     // TODO: If BB is reachable from all paths through PredBlock, then we
2926     // could replace PBI's branch probabilities with BI's.
2927   } else
2928     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2929 
2930   // Now, update the CFG.
2931   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
2932 
2933   if (DTU)
2934     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
2935                        {DominatorTree::Delete, PredBlock, BB}});
2936 
2937   // If BI was a loop latch, it may have had associated loop metadata.
2938   // We need to copy it to the new latch, that is, PBI.
2939   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2940     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2941 
2942   ValueToValueMapTy VMap; // maps original values to cloned values
2943   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
2944 
2945   // Now that the Cond was cloned into the predecessor basic block,
2946   // or/and the two conditions together.
2947   Instruction *NewCond = cast<Instruction>(Builder.CreateBinOp(
2948       Opc, PBI->getCondition(), VMap[BI->getCondition()], "or.cond"));
2949   PBI->setCondition(NewCond);
2950 
2951   // Copy any debug value intrinsics into the end of PredBlock.
2952   for (Instruction &I : *BB) {
2953     if (isa<DbgInfoIntrinsic>(I)) {
2954       Instruction *NewI = I.clone();
2955       RemapInstruction(NewI, VMap,
2956                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2957       NewI->insertBefore(PBI);
2958     }
2959   }
2960 
2961   ++NumFoldBranchToCommonDest;
2962   return true;
2963 }
2964 
2965 /// If this basic block is simple enough, and if a predecessor branches to us
2966 /// and one of our successors, fold the block into the predecessor and use
2967 /// logical operations to pick the right destination.
2968 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
2969                                   MemorySSAUpdater *MSSAU,
2970                                   const TargetTransformInfo *TTI,
2971                                   unsigned BonusInstThreshold) {
2972   // If this block ends with an unconditional branch,
2973   // let SpeculativelyExecuteBB() deal with it.
2974   if (!BI->isConditional())
2975     return false;
2976 
2977   BasicBlock *BB = BI->getParent();
2978 
2979   const unsigned PredCount = pred_size(BB);
2980 
2981   bool Changed = false;
2982 
2983   TargetTransformInfo::TargetCostKind CostKind =
2984     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
2985                                   : TargetTransformInfo::TCK_SizeAndLatency;
2986 
2987   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2988 
2989   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2990       Cond->getParent() != BB || !Cond->hasOneUse())
2991     return Changed;
2992 
2993   // Only allow this transformation if computing the condition doesn't involve
2994   // too many instructions and these involved instructions can be executed
2995   // unconditionally. We denote all involved instructions except the condition
2996   // as "bonus instructions", and only allow this transformation when the
2997   // number of the bonus instructions we'll need to create when cloning into
2998   // each predecessor does not exceed a certain threshold.
2999   unsigned NumBonusInsts = 0;
3000   for (Instruction &I : *BB) {
3001     // Don't check the branch condition comparison itself.
3002     if (&I == Cond)
3003       continue;
3004     // Ignore dbg intrinsics, and the terminator.
3005     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3006       continue;
3007     // I must be safe to execute unconditionally.
3008     if (!isSafeToSpeculativelyExecute(&I))
3009       return Changed;
3010 
3011     // Account for the cost of duplicating this instruction into each
3012     // predecessor.
3013     NumBonusInsts += PredCount;
3014     // Early exits once we reach the limit.
3015     if (NumBonusInsts > BonusInstThreshold)
3016       return Changed;
3017   }
3018 
3019   // Cond is known to be a compare or binary operator.  Check to make sure that
3020   // neither operand is a potentially-trapping constant expression.
3021   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3022     if (CE->canTrap())
3023       return Changed;
3024   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3025     if (CE->canTrap())
3026       return Changed;
3027 
3028   // Finally, don't infinitely unroll conditional loops.
3029   if (is_contained(successors(BB), BB))
3030     return Changed;
3031 
3032   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3033     BasicBlock *PredBlock = *PI;
3034     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3035 
3036     // Check that we have two conditional branches.  If there is a PHI node in
3037     // the common successor, verify that the same value flows in from both
3038     // blocks.
3039     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3040       continue;
3041 
3042     // Determine if the two branches share a common destination.
3043     Instruction::BinaryOps Opc;
3044     bool InvertPredCond;
3045     if (auto Recepie = CheckIfCondBranchesShareCommonDestination(BI, PBI))
3046       std::tie(Opc, InvertPredCond) = *Recepie;
3047     else
3048       continue;
3049 
3050     // Check the cost of inserting the necessary logic before performing the
3051     // transformation.
3052     if (TTI) {
3053       Type *Ty = BI->getCondition()->getType();
3054       unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3055       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3056           !isa<CmpInst>(PBI->getCondition())))
3057         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3058 
3059       if (Cost > BranchFoldThreshold)
3060         continue;
3061     }
3062 
3063     return PerformBranchToCommonDestFolding(BI, PBI, DTU, MSSAU);
3064   }
3065   return Changed;
3066 }
3067 
3068 // If there is only one store in BB1 and BB2, return it, otherwise return
3069 // nullptr.
3070 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3071   StoreInst *S = nullptr;
3072   for (auto *BB : {BB1, BB2}) {
3073     if (!BB)
3074       continue;
3075     for (auto &I : *BB)
3076       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3077         if (S)
3078           // Multiple stores seen.
3079           return nullptr;
3080         else
3081           S = SI;
3082       }
3083   }
3084   return S;
3085 }
3086 
3087 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3088                                               Value *AlternativeV = nullptr) {
3089   // PHI is going to be a PHI node that allows the value V that is defined in
3090   // BB to be referenced in BB's only successor.
3091   //
3092   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3093   // doesn't matter to us what the other operand is (it'll never get used). We
3094   // could just create a new PHI with an undef incoming value, but that could
3095   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3096   // other PHI. So here we directly look for some PHI in BB's successor with V
3097   // as an incoming operand. If we find one, we use it, else we create a new
3098   // one.
3099   //
3100   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3101   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3102   // where OtherBB is the single other predecessor of BB's only successor.
3103   PHINode *PHI = nullptr;
3104   BasicBlock *Succ = BB->getSingleSuccessor();
3105 
3106   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3107     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3108       PHI = cast<PHINode>(I);
3109       if (!AlternativeV)
3110         break;
3111 
3112       assert(Succ->hasNPredecessors(2));
3113       auto PredI = pred_begin(Succ);
3114       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3115       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3116         break;
3117       PHI = nullptr;
3118     }
3119   if (PHI)
3120     return PHI;
3121 
3122   // If V is not an instruction defined in BB, just return it.
3123   if (!AlternativeV &&
3124       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3125     return V;
3126 
3127   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3128   PHI->addIncoming(V, BB);
3129   for (BasicBlock *PredBB : predecessors(Succ))
3130     if (PredBB != BB)
3131       PHI->addIncoming(
3132           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3133   return PHI;
3134 }
3135 
3136 static bool mergeConditionalStoreToAddress(
3137     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3138     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3139     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3140   // For every pointer, there must be exactly two stores, one coming from
3141   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3142   // store (to any address) in PTB,PFB or QTB,QFB.
3143   // FIXME: We could relax this restriction with a bit more work and performance
3144   // testing.
3145   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3146   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3147   if (!PStore || !QStore)
3148     return false;
3149 
3150   // Now check the stores are compatible.
3151   if (!QStore->isUnordered() || !PStore->isUnordered())
3152     return false;
3153 
3154   // Check that sinking the store won't cause program behavior changes. Sinking
3155   // the store out of the Q blocks won't change any behavior as we're sinking
3156   // from a block to its unconditional successor. But we're moving a store from
3157   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3158   // So we need to check that there are no aliasing loads or stores in
3159   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3160   // operations between PStore and the end of its parent block.
3161   //
3162   // The ideal way to do this is to query AliasAnalysis, but we don't
3163   // preserve AA currently so that is dangerous. Be super safe and just
3164   // check there are no other memory operations at all.
3165   for (auto &I : *QFB->getSinglePredecessor())
3166     if (I.mayReadOrWriteMemory())
3167       return false;
3168   for (auto &I : *QFB)
3169     if (&I != QStore && I.mayReadOrWriteMemory())
3170       return false;
3171   if (QTB)
3172     for (auto &I : *QTB)
3173       if (&I != QStore && I.mayReadOrWriteMemory())
3174         return false;
3175   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3176        I != E; ++I)
3177     if (&*I != PStore && I->mayReadOrWriteMemory())
3178       return false;
3179 
3180   // If we're not in aggressive mode, we only optimize if we have some
3181   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3182   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3183     if (!BB)
3184       return true;
3185     // Heuristic: if the block can be if-converted/phi-folded and the
3186     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3187     // thread this store.
3188     int BudgetRemaining =
3189         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3190     for (auto &I : BB->instructionsWithoutDebug()) {
3191       // Consider terminator instruction to be free.
3192       if (I.isTerminator())
3193         continue;
3194       // If this is one the stores that we want to speculate out of this BB,
3195       // then don't count it's cost, consider it to be free.
3196       if (auto *S = dyn_cast<StoreInst>(&I))
3197         if (llvm::find(FreeStores, S))
3198           continue;
3199       // Else, we have a white-list of instructions that we are ak speculating.
3200       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3201         return false; // Not in white-list - not worthwhile folding.
3202       // And finally, if this is a non-free instruction that we are okay
3203       // speculating, ensure that we consider the speculation budget.
3204       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3205       if (BudgetRemaining < 0)
3206         return false; // Eagerly refuse to fold as soon as we're out of budget.
3207     }
3208     assert(BudgetRemaining >= 0 &&
3209            "When we run out of budget we will eagerly return from within the "
3210            "per-instruction loop.");
3211     return true;
3212   };
3213 
3214   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3215   if (!MergeCondStoresAggressively &&
3216       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3217        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3218     return false;
3219 
3220   // If PostBB has more than two predecessors, we need to split it so we can
3221   // sink the store.
3222   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3223     // We know that QFB's only successor is PostBB. And QFB has a single
3224     // predecessor. If QTB exists, then its only successor is also PostBB.
3225     // If QTB does not exist, then QFB's only predecessor has a conditional
3226     // branch to QFB and PostBB.
3227     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3228     BasicBlock *NewBB =
3229         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3230     if (!NewBB)
3231       return false;
3232     PostBB = NewBB;
3233   }
3234 
3235   // OK, we're going to sink the stores to PostBB. The store has to be
3236   // conditional though, so first create the predicate.
3237   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3238                      ->getCondition();
3239   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3240                      ->getCondition();
3241 
3242   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3243                                                 PStore->getParent());
3244   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3245                                                 QStore->getParent(), PPHI);
3246 
3247   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3248 
3249   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3250   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3251 
3252   if (InvertPCond)
3253     PPred = QB.CreateNot(PPred);
3254   if (InvertQCond)
3255     QPred = QB.CreateNot(QPred);
3256   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3257 
3258   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3259                                       /*Unreachable=*/false,
3260                                       /*BranchWeights=*/nullptr, DTU);
3261   QB.SetInsertPoint(T);
3262   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3263   AAMDNodes AAMD;
3264   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3265   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3266   SI->setAAMetadata(AAMD);
3267   // Choose the minimum alignment. If we could prove both stores execute, we
3268   // could use biggest one.  In this case, though, we only know that one of the
3269   // stores executes.  And we don't know it's safe to take the alignment from a
3270   // store that doesn't execute.
3271   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3272 
3273   QStore->eraseFromParent();
3274   PStore->eraseFromParent();
3275 
3276   return true;
3277 }
3278 
3279 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3280                                    DomTreeUpdater *DTU, const DataLayout &DL,
3281                                    const TargetTransformInfo &TTI) {
3282   // The intention here is to find diamonds or triangles (see below) where each
3283   // conditional block contains a store to the same address. Both of these
3284   // stores are conditional, so they can't be unconditionally sunk. But it may
3285   // be profitable to speculatively sink the stores into one merged store at the
3286   // end, and predicate the merged store on the union of the two conditions of
3287   // PBI and QBI.
3288   //
3289   // This can reduce the number of stores executed if both of the conditions are
3290   // true, and can allow the blocks to become small enough to be if-converted.
3291   // This optimization will also chain, so that ladders of test-and-set
3292   // sequences can be if-converted away.
3293   //
3294   // We only deal with simple diamonds or triangles:
3295   //
3296   //     PBI       or      PBI        or a combination of the two
3297   //    /   \               | \
3298   //   PTB  PFB             |  PFB
3299   //    \   /               | /
3300   //     QBI                QBI
3301   //    /  \                | \
3302   //   QTB  QFB             |  QFB
3303   //    \  /                | /
3304   //    PostBB            PostBB
3305   //
3306   // We model triangles as a type of diamond with a nullptr "true" block.
3307   // Triangles are canonicalized so that the fallthrough edge is represented by
3308   // a true condition, as in the diagram above.
3309   BasicBlock *PTB = PBI->getSuccessor(0);
3310   BasicBlock *PFB = PBI->getSuccessor(1);
3311   BasicBlock *QTB = QBI->getSuccessor(0);
3312   BasicBlock *QFB = QBI->getSuccessor(1);
3313   BasicBlock *PostBB = QFB->getSingleSuccessor();
3314 
3315   // Make sure we have a good guess for PostBB. If QTB's only successor is
3316   // QFB, then QFB is a better PostBB.
3317   if (QTB->getSingleSuccessor() == QFB)
3318     PostBB = QFB;
3319 
3320   // If we couldn't find a good PostBB, stop.
3321   if (!PostBB)
3322     return false;
3323 
3324   bool InvertPCond = false, InvertQCond = false;
3325   // Canonicalize fallthroughs to the true branches.
3326   if (PFB == QBI->getParent()) {
3327     std::swap(PFB, PTB);
3328     InvertPCond = true;
3329   }
3330   if (QFB == PostBB) {
3331     std::swap(QFB, QTB);
3332     InvertQCond = true;
3333   }
3334 
3335   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3336   // and QFB may not. Model fallthroughs as a nullptr block.
3337   if (PTB == QBI->getParent())
3338     PTB = nullptr;
3339   if (QTB == PostBB)
3340     QTB = nullptr;
3341 
3342   // Legality bailouts. We must have at least the non-fallthrough blocks and
3343   // the post-dominating block, and the non-fallthroughs must only have one
3344   // predecessor.
3345   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3346     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3347   };
3348   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3349       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3350     return false;
3351   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3352       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3353     return false;
3354   if (!QBI->getParent()->hasNUses(2))
3355     return false;
3356 
3357   // OK, this is a sequence of two diamonds or triangles.
3358   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3359   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3360   for (auto *BB : {PTB, PFB}) {
3361     if (!BB)
3362       continue;
3363     for (auto &I : *BB)
3364       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3365         PStoreAddresses.insert(SI->getPointerOperand());
3366   }
3367   for (auto *BB : {QTB, QFB}) {
3368     if (!BB)
3369       continue;
3370     for (auto &I : *BB)
3371       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3372         QStoreAddresses.insert(SI->getPointerOperand());
3373   }
3374 
3375   set_intersect(PStoreAddresses, QStoreAddresses);
3376   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3377   // clear what it contains.
3378   auto &CommonAddresses = PStoreAddresses;
3379 
3380   bool Changed = false;
3381   for (auto *Address : CommonAddresses)
3382     Changed |=
3383         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3384                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3385   return Changed;
3386 }
3387 
3388 /// If the previous block ended with a widenable branch, determine if reusing
3389 /// the target block is profitable and legal.  This will have the effect of
3390 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3391 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3392                                            DomTreeUpdater *DTU) {
3393   // TODO: This can be generalized in two important ways:
3394   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3395   //    values from the PBI edge.
3396   // 2) We can sink side effecting instructions into BI's fallthrough
3397   //    successor provided they doesn't contribute to computation of
3398   //    BI's condition.
3399   Value *CondWB, *WC;
3400   BasicBlock *IfTrueBB, *IfFalseBB;
3401   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3402       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3403     return false;
3404   if (!IfFalseBB->phis().empty())
3405     return false; // TODO
3406   // Use lambda to lazily compute expensive condition after cheap ones.
3407   auto NoSideEffects = [](BasicBlock &BB) {
3408     return !llvm::any_of(BB, [](const Instruction &I) {
3409         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3410       });
3411   };
3412   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3413       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3414       NoSideEffects(*BI->getParent())) {
3415     auto *OldSuccessor = BI->getSuccessor(1);
3416     OldSuccessor->removePredecessor(BI->getParent());
3417     BI->setSuccessor(1, IfFalseBB);
3418     if (DTU)
3419       DTU->applyUpdates(
3420           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3421            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3422     return true;
3423   }
3424   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3425       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3426       NoSideEffects(*BI->getParent())) {
3427     auto *OldSuccessor = BI->getSuccessor(0);
3428     OldSuccessor->removePredecessor(BI->getParent());
3429     BI->setSuccessor(0, IfFalseBB);
3430     if (DTU)
3431       DTU->applyUpdates(
3432           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3433            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3434     return true;
3435   }
3436   return false;
3437 }
3438 
3439 /// If we have a conditional branch as a predecessor of another block,
3440 /// this function tries to simplify it.  We know
3441 /// that PBI and BI are both conditional branches, and BI is in one of the
3442 /// successor blocks of PBI - PBI branches to BI.
3443 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3444                                            DomTreeUpdater *DTU,
3445                                            const DataLayout &DL,
3446                                            const TargetTransformInfo &TTI) {
3447   assert(PBI->isConditional() && BI->isConditional());
3448   BasicBlock *BB = BI->getParent();
3449 
3450   // If this block ends with a branch instruction, and if there is a
3451   // predecessor that ends on a branch of the same condition, make
3452   // this conditional branch redundant.
3453   if (PBI->getCondition() == BI->getCondition() &&
3454       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3455     // Okay, the outcome of this conditional branch is statically
3456     // knowable.  If this block had a single pred, handle specially.
3457     if (BB->getSinglePredecessor()) {
3458       // Turn this into a branch on constant.
3459       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3460       BI->setCondition(
3461           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3462       return true; // Nuke the branch on constant.
3463     }
3464 
3465     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3466     // in the constant and simplify the block result.  Subsequent passes of
3467     // simplifycfg will thread the block.
3468     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3469       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3470       PHINode *NewPN = PHINode::Create(
3471           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3472           BI->getCondition()->getName() + ".pr", &BB->front());
3473       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3474       // predecessor, compute the PHI'd conditional value for all of the preds.
3475       // Any predecessor where the condition is not computable we keep symbolic.
3476       for (pred_iterator PI = PB; PI != PE; ++PI) {
3477         BasicBlock *P = *PI;
3478         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3479             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3480             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3481           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3482           NewPN->addIncoming(
3483               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3484               P);
3485         } else {
3486           NewPN->addIncoming(BI->getCondition(), P);
3487         }
3488       }
3489 
3490       BI->setCondition(NewPN);
3491       return true;
3492     }
3493   }
3494 
3495   // If the previous block ended with a widenable branch, determine if reusing
3496   // the target block is profitable and legal.  This will have the effect of
3497   // "widening" PBI, but doesn't require us to reason about hosting safety.
3498   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3499     return true;
3500 
3501   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3502     if (CE->canTrap())
3503       return false;
3504 
3505   // If both branches are conditional and both contain stores to the same
3506   // address, remove the stores from the conditionals and create a conditional
3507   // merged store at the end.
3508   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3509     return true;
3510 
3511   // If this is a conditional branch in an empty block, and if any
3512   // predecessors are a conditional branch to one of our destinations,
3513   // fold the conditions into logical ops and one cond br.
3514 
3515   // Ignore dbg intrinsics.
3516   if (&*BB->instructionsWithoutDebug().begin() != BI)
3517     return false;
3518 
3519   int PBIOp, BIOp;
3520   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3521     PBIOp = 0;
3522     BIOp = 0;
3523   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3524     PBIOp = 0;
3525     BIOp = 1;
3526   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3527     PBIOp = 1;
3528     BIOp = 0;
3529   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3530     PBIOp = 1;
3531     BIOp = 1;
3532   } else {
3533     return false;
3534   }
3535 
3536   // Check to make sure that the other destination of this branch
3537   // isn't BB itself.  If so, this is an infinite loop that will
3538   // keep getting unwound.
3539   if (PBI->getSuccessor(PBIOp) == BB)
3540     return false;
3541 
3542   // Do not perform this transformation if it would require
3543   // insertion of a large number of select instructions. For targets
3544   // without predication/cmovs, this is a big pessimization.
3545 
3546   // Also do not perform this transformation if any phi node in the common
3547   // destination block can trap when reached by BB or PBB (PR17073). In that
3548   // case, it would be unsafe to hoist the operation into a select instruction.
3549 
3550   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3551   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3552   unsigned NumPhis = 0;
3553   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3554        ++II, ++NumPhis) {
3555     if (NumPhis > 2) // Disable this xform.
3556       return false;
3557 
3558     PHINode *PN = cast<PHINode>(II);
3559     Value *BIV = PN->getIncomingValueForBlock(BB);
3560     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3561       if (CE->canTrap())
3562         return false;
3563 
3564     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3565     Value *PBIV = PN->getIncomingValue(PBBIdx);
3566     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3567       if (CE->canTrap())
3568         return false;
3569   }
3570 
3571   // Finally, if everything is ok, fold the branches to logical ops.
3572   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3573 
3574   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3575                     << "AND: " << *BI->getParent());
3576 
3577   SmallVector<DominatorTree::UpdateType, 5> Updates;
3578 
3579   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3580   // branch in it, where one edge (OtherDest) goes back to itself but the other
3581   // exits.  We don't *know* that the program avoids the infinite loop
3582   // (even though that seems likely).  If we do this xform naively, we'll end up
3583   // recursively unpeeling the loop.  Since we know that (after the xform is
3584   // done) that the block *is* infinite if reached, we just make it an obviously
3585   // infinite loop with no cond branch.
3586   if (OtherDest == BB) {
3587     // Insert it at the end of the function, because it's either code,
3588     // or it won't matter if it's hot. :)
3589     BasicBlock *InfLoopBlock =
3590         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3591     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3592     Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3593     OtherDest = InfLoopBlock;
3594   }
3595 
3596   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3597 
3598   // BI may have other predecessors.  Because of this, we leave
3599   // it alone, but modify PBI.
3600 
3601   // Make sure we get to CommonDest on True&True directions.
3602   Value *PBICond = PBI->getCondition();
3603   IRBuilder<NoFolder> Builder(PBI);
3604   if (PBIOp)
3605     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3606 
3607   Value *BICond = BI->getCondition();
3608   if (BIOp)
3609     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3610 
3611   // Merge the conditions.
3612   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3613 
3614   // Modify PBI to branch on the new condition to the new dests.
3615   PBI->setCondition(Cond);
3616   PBI->setSuccessor(0, CommonDest);
3617   PBI->setSuccessor(1, OtherDest);
3618 
3619   Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3620   Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3621 
3622   if (DTU)
3623     DTU->applyUpdates(Updates);
3624 
3625   // Update branch weight for PBI.
3626   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3627   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3628   bool HasWeights =
3629       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3630                              SuccTrueWeight, SuccFalseWeight);
3631   if (HasWeights) {
3632     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3633     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3634     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3635     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3636     // The weight to CommonDest should be PredCommon * SuccTotal +
3637     //                                    PredOther * SuccCommon.
3638     // The weight to OtherDest should be PredOther * SuccOther.
3639     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3640                                   PredOther * SuccCommon,
3641                               PredOther * SuccOther};
3642     // Halve the weights if any of them cannot fit in an uint32_t
3643     FitWeights(NewWeights);
3644 
3645     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3646   }
3647 
3648   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3649   // block that are identical to the entries for BI's block.
3650   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3651 
3652   // We know that the CommonDest already had an edge from PBI to
3653   // it.  If it has PHIs though, the PHIs may have different
3654   // entries for BB and PBI's BB.  If so, insert a select to make
3655   // them agree.
3656   for (PHINode &PN : CommonDest->phis()) {
3657     Value *BIV = PN.getIncomingValueForBlock(BB);
3658     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3659     Value *PBIV = PN.getIncomingValue(PBBIdx);
3660     if (BIV != PBIV) {
3661       // Insert a select in PBI to pick the right value.
3662       SelectInst *NV = cast<SelectInst>(
3663           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3664       PN.setIncomingValue(PBBIdx, NV);
3665       // Although the select has the same condition as PBI, the original branch
3666       // weights for PBI do not apply to the new select because the select's
3667       // 'logical' edges are incoming edges of the phi that is eliminated, not
3668       // the outgoing edges of PBI.
3669       if (HasWeights) {
3670         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3671         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3672         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3673         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3674         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3675         // The weight to PredOtherDest should be PredOther * SuccCommon.
3676         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3677                                   PredOther * SuccCommon};
3678 
3679         FitWeights(NewWeights);
3680 
3681         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3682       }
3683     }
3684   }
3685 
3686   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3687   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3688 
3689   // This basic block is probably dead.  We know it has at least
3690   // one fewer predecessor.
3691   return true;
3692 }
3693 
3694 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3695 // true or to FalseBB if Cond is false.
3696 // Takes care of updating the successors and removing the old terminator.
3697 // Also makes sure not to introduce new successors by assuming that edges to
3698 // non-successor TrueBBs and FalseBBs aren't reachable.
3699 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3700                                                 Value *Cond, BasicBlock *TrueBB,
3701                                                 BasicBlock *FalseBB,
3702                                                 uint32_t TrueWeight,
3703                                                 uint32_t FalseWeight) {
3704   auto *BB = OldTerm->getParent();
3705   // Remove any superfluous successor edges from the CFG.
3706   // First, figure out which successors to preserve.
3707   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3708   // successor.
3709   BasicBlock *KeepEdge1 = TrueBB;
3710   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3711 
3712   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
3713 
3714   // Then remove the rest.
3715   for (BasicBlock *Succ : successors(OldTerm)) {
3716     // Make sure only to keep exactly one copy of each edge.
3717     if (Succ == KeepEdge1)
3718       KeepEdge1 = nullptr;
3719     else if (Succ == KeepEdge2)
3720       KeepEdge2 = nullptr;
3721     else {
3722       Succ->removePredecessor(BB,
3723                               /*KeepOneInputPHIs=*/true);
3724 
3725       if (Succ != TrueBB && Succ != FalseBB)
3726         RemovedSuccessors.insert(Succ);
3727     }
3728   }
3729 
3730   IRBuilder<> Builder(OldTerm);
3731   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3732 
3733   // Insert an appropriate new terminator.
3734   if (!KeepEdge1 && !KeepEdge2) {
3735     if (TrueBB == FalseBB) {
3736       // We were only looking for one successor, and it was present.
3737       // Create an unconditional branch to it.
3738       Builder.CreateBr(TrueBB);
3739     } else {
3740       // We found both of the successors we were looking for.
3741       // Create a conditional branch sharing the condition of the select.
3742       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3743       if (TrueWeight != FalseWeight)
3744         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3745     }
3746   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3747     // Neither of the selected blocks were successors, so this
3748     // terminator must be unreachable.
3749     new UnreachableInst(OldTerm->getContext(), OldTerm);
3750   } else {
3751     // One of the selected values was a successor, but the other wasn't.
3752     // Insert an unconditional branch to the one that was found;
3753     // the edge to the one that wasn't must be unreachable.
3754     if (!KeepEdge1) {
3755       // Only TrueBB was found.
3756       Builder.CreateBr(TrueBB);
3757     } else {
3758       // Only FalseBB was found.
3759       Builder.CreateBr(FalseBB);
3760     }
3761   }
3762 
3763   EraseTerminatorAndDCECond(OldTerm);
3764 
3765   if (DTU) {
3766     SmallVector<DominatorTree::UpdateType, 2> Updates;
3767     Updates.reserve(RemovedSuccessors.size());
3768     for (auto *RemovedSuccessor : RemovedSuccessors)
3769       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3770     DTU->applyUpdates(Updates);
3771   }
3772 
3773   return true;
3774 }
3775 
3776 // Replaces
3777 //   (switch (select cond, X, Y)) on constant X, Y
3778 // with a branch - conditional if X and Y lead to distinct BBs,
3779 // unconditional otherwise.
3780 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3781                                             SelectInst *Select) {
3782   // Check for constant integer values in the select.
3783   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3784   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3785   if (!TrueVal || !FalseVal)
3786     return false;
3787 
3788   // Find the relevant condition and destinations.
3789   Value *Condition = Select->getCondition();
3790   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3791   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3792 
3793   // Get weight for TrueBB and FalseBB.
3794   uint32_t TrueWeight = 0, FalseWeight = 0;
3795   SmallVector<uint64_t, 8> Weights;
3796   bool HasWeights = HasBranchWeights(SI);
3797   if (HasWeights) {
3798     GetBranchWeights(SI, Weights);
3799     if (Weights.size() == 1 + SI->getNumCases()) {
3800       TrueWeight =
3801           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3802       FalseWeight =
3803           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3804     }
3805   }
3806 
3807   // Perform the actual simplification.
3808   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3809                                     FalseWeight);
3810 }
3811 
3812 // Replaces
3813 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3814 //                             blockaddress(@fn, BlockB)))
3815 // with
3816 //   (br cond, BlockA, BlockB).
3817 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3818                                                 SelectInst *SI) {
3819   // Check that both operands of the select are block addresses.
3820   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3821   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3822   if (!TBA || !FBA)
3823     return false;
3824 
3825   // Extract the actual blocks.
3826   BasicBlock *TrueBB = TBA->getBasicBlock();
3827   BasicBlock *FalseBB = FBA->getBasicBlock();
3828 
3829   // Perform the actual simplification.
3830   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3831                                     0);
3832 }
3833 
3834 /// This is called when we find an icmp instruction
3835 /// (a seteq/setne with a constant) as the only instruction in a
3836 /// block that ends with an uncond branch.  We are looking for a very specific
3837 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3838 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3839 /// default value goes to an uncond block with a seteq in it, we get something
3840 /// like:
3841 ///
3842 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3843 /// DEFAULT:
3844 ///   %tmp = icmp eq i8 %A, 92
3845 ///   br label %end
3846 /// end:
3847 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3848 ///
3849 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3850 /// the PHI, merging the third icmp into the switch.
3851 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3852     ICmpInst *ICI, IRBuilder<> &Builder) {
3853   BasicBlock *BB = ICI->getParent();
3854 
3855   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3856   // complex.
3857   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3858     return false;
3859 
3860   Value *V = ICI->getOperand(0);
3861   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3862 
3863   // The pattern we're looking for is where our only predecessor is a switch on
3864   // 'V' and this block is the default case for the switch.  In this case we can
3865   // fold the compared value into the switch to simplify things.
3866   BasicBlock *Pred = BB->getSinglePredecessor();
3867   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3868     return false;
3869 
3870   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3871   if (SI->getCondition() != V)
3872     return false;
3873 
3874   // If BB is reachable on a non-default case, then we simply know the value of
3875   // V in this block.  Substitute it and constant fold the icmp instruction
3876   // away.
3877   if (SI->getDefaultDest() != BB) {
3878     ConstantInt *VVal = SI->findCaseDest(BB);
3879     assert(VVal && "Should have a unique destination value");
3880     ICI->setOperand(0, VVal);
3881 
3882     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3883       ICI->replaceAllUsesWith(V);
3884       ICI->eraseFromParent();
3885     }
3886     // BB is now empty, so it is likely to simplify away.
3887     return requestResimplify();
3888   }
3889 
3890   // Ok, the block is reachable from the default dest.  If the constant we're
3891   // comparing exists in one of the other edges, then we can constant fold ICI
3892   // and zap it.
3893   if (SI->findCaseValue(Cst) != SI->case_default()) {
3894     Value *V;
3895     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3896       V = ConstantInt::getFalse(BB->getContext());
3897     else
3898       V = ConstantInt::getTrue(BB->getContext());
3899 
3900     ICI->replaceAllUsesWith(V);
3901     ICI->eraseFromParent();
3902     // BB is now empty, so it is likely to simplify away.
3903     return requestResimplify();
3904   }
3905 
3906   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3907   // the block.
3908   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3909   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3910   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3911       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3912     return false;
3913 
3914   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3915   // true in the PHI.
3916   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3917   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3918 
3919   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3920     std::swap(DefaultCst, NewCst);
3921 
3922   // Replace ICI (which is used by the PHI for the default value) with true or
3923   // false depending on if it is EQ or NE.
3924   ICI->replaceAllUsesWith(DefaultCst);
3925   ICI->eraseFromParent();
3926 
3927   SmallVector<DominatorTree::UpdateType, 2> Updates;
3928 
3929   // Okay, the switch goes to this block on a default value.  Add an edge from
3930   // the switch to the merge point on the compared value.
3931   BasicBlock *NewBB =
3932       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3933   {
3934     SwitchInstProfUpdateWrapper SIW(*SI);
3935     auto W0 = SIW.getSuccessorWeight(0);
3936     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3937     if (W0) {
3938       NewW = ((uint64_t(*W0) + 1) >> 1);
3939       SIW.setSuccessorWeight(0, *NewW);
3940     }
3941     SIW.addCase(Cst, NewBB, NewW);
3942     Updates.push_back({DominatorTree::Insert, Pred, NewBB});
3943   }
3944 
3945   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3946   Builder.SetInsertPoint(NewBB);
3947   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3948   Builder.CreateBr(SuccBlock);
3949   Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
3950   PHIUse->addIncoming(NewCst, NewBB);
3951   if (DTU)
3952     DTU->applyUpdates(Updates);
3953   return true;
3954 }
3955 
3956 /// The specified branch is a conditional branch.
3957 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3958 /// fold it into a switch instruction if so.
3959 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
3960                                                IRBuilder<> &Builder,
3961                                                const DataLayout &DL) {
3962   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3963   if (!Cond)
3964     return false;
3965 
3966   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3967   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3968   // 'setne's and'ed together, collect them.
3969 
3970   // Try to gather values from a chain of and/or to be turned into a switch
3971   ConstantComparesGatherer ConstantCompare(Cond, DL);
3972   // Unpack the result
3973   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3974   Value *CompVal = ConstantCompare.CompValue;
3975   unsigned UsedICmps = ConstantCompare.UsedICmps;
3976   Value *ExtraCase = ConstantCompare.Extra;
3977 
3978   // If we didn't have a multiply compared value, fail.
3979   if (!CompVal)
3980     return false;
3981 
3982   // Avoid turning single icmps into a switch.
3983   if (UsedICmps <= 1)
3984     return false;
3985 
3986   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
3987 
3988   // There might be duplicate constants in the list, which the switch
3989   // instruction can't handle, remove them now.
3990   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3991   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3992 
3993   // If Extra was used, we require at least two switch values to do the
3994   // transformation.  A switch with one value is just a conditional branch.
3995   if (ExtraCase && Values.size() < 2)
3996     return false;
3997 
3998   // TODO: Preserve branch weight metadata, similarly to how
3999   // FoldValueComparisonIntoPredecessors preserves it.
4000 
4001   // Figure out which block is which destination.
4002   BasicBlock *DefaultBB = BI->getSuccessor(1);
4003   BasicBlock *EdgeBB = BI->getSuccessor(0);
4004   if (!TrueWhenEqual)
4005     std::swap(DefaultBB, EdgeBB);
4006 
4007   BasicBlock *BB = BI->getParent();
4008 
4009   // MSAN does not like undefs as branch condition which can be introduced
4010   // with "explicit branch".
4011   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4012     return false;
4013 
4014   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4015                     << " cases into SWITCH.  BB is:\n"
4016                     << *BB);
4017 
4018   SmallVector<DominatorTree::UpdateType, 2> Updates;
4019 
4020   // If there are any extra values that couldn't be folded into the switch
4021   // then we evaluate them with an explicit branch first. Split the block
4022   // right before the condbr to handle it.
4023   if (ExtraCase) {
4024     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4025                                    /*MSSAU=*/nullptr, "switch.early.test");
4026 
4027     // Remove the uncond branch added to the old block.
4028     Instruction *OldTI = BB->getTerminator();
4029     Builder.SetInsertPoint(OldTI);
4030 
4031     if (TrueWhenEqual)
4032       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4033     else
4034       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4035 
4036     OldTI->eraseFromParent();
4037 
4038     Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4039 
4040     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4041     // for the edge we just added.
4042     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4043 
4044     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4045                       << "\nEXTRABB = " << *BB);
4046     BB = NewBB;
4047   }
4048 
4049   Builder.SetInsertPoint(BI);
4050   // Convert pointer to int before we switch.
4051   if (CompVal->getType()->isPointerTy()) {
4052     CompVal = Builder.CreatePtrToInt(
4053         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4054   }
4055 
4056   // Create the new switch instruction now.
4057   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4058 
4059   // Add all of the 'cases' to the switch instruction.
4060   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4061     New->addCase(Values[i], EdgeBB);
4062 
4063   // We added edges from PI to the EdgeBB.  As such, if there were any
4064   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4065   // the number of edges added.
4066   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4067     PHINode *PN = cast<PHINode>(BBI);
4068     Value *InVal = PN->getIncomingValueForBlock(BB);
4069     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4070       PN->addIncoming(InVal, BB);
4071   }
4072 
4073   // Erase the old branch instruction.
4074   EraseTerminatorAndDCECond(BI);
4075   if (DTU)
4076     DTU->applyUpdates(Updates);
4077 
4078   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4079   return true;
4080 }
4081 
4082 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4083   if (isa<PHINode>(RI->getValue()))
4084     return simplifyCommonResume(RI);
4085   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4086            RI->getValue() == RI->getParent()->getFirstNonPHI())
4087     // The resume must unwind the exception that caused control to branch here.
4088     return simplifySingleResume(RI);
4089 
4090   return false;
4091 }
4092 
4093 // Check if cleanup block is empty
4094 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4095   for (Instruction &I : R) {
4096     auto *II = dyn_cast<IntrinsicInst>(&I);
4097     if (!II)
4098       return false;
4099 
4100     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4101     switch (IntrinsicID) {
4102     case Intrinsic::dbg_declare:
4103     case Intrinsic::dbg_value:
4104     case Intrinsic::dbg_label:
4105     case Intrinsic::lifetime_end:
4106       break;
4107     default:
4108       return false;
4109     }
4110   }
4111   return true;
4112 }
4113 
4114 // Simplify resume that is shared by several landing pads (phi of landing pad).
4115 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4116   BasicBlock *BB = RI->getParent();
4117 
4118   // Check that there are no other instructions except for debug and lifetime
4119   // intrinsics between the phi's and resume instruction.
4120   if (!isCleanupBlockEmpty(
4121           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4122     return false;
4123 
4124   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4125   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4126 
4127   // Check incoming blocks to see if any of them are trivial.
4128   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4129        Idx++) {
4130     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4131     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4132 
4133     // If the block has other successors, we can not delete it because
4134     // it has other dependents.
4135     if (IncomingBB->getUniqueSuccessor() != BB)
4136       continue;
4137 
4138     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4139     // Not the landing pad that caused the control to branch here.
4140     if (IncomingValue != LandingPad)
4141       continue;
4142 
4143     if (isCleanupBlockEmpty(
4144             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4145       TrivialUnwindBlocks.insert(IncomingBB);
4146   }
4147 
4148   // If no trivial unwind blocks, don't do any simplifications.
4149   if (TrivialUnwindBlocks.empty())
4150     return false;
4151 
4152   // Turn all invokes that unwind here into calls.
4153   for (auto *TrivialBB : TrivialUnwindBlocks) {
4154     // Blocks that will be simplified should be removed from the phi node.
4155     // Note there could be multiple edges to the resume block, and we need
4156     // to remove them all.
4157     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4158       BB->removePredecessor(TrivialBB, true);
4159 
4160     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
4161          PI != PE;) {
4162       BasicBlock *Pred = *PI++;
4163       removeUnwindEdge(Pred, DTU);
4164       ++NumInvokes;
4165     }
4166 
4167     // In each SimplifyCFG run, only the current processed block can be erased.
4168     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4169     // of erasing TrivialBB, we only remove the branch to the common resume
4170     // block so that we can later erase the resume block since it has no
4171     // predecessors.
4172     TrivialBB->getTerminator()->eraseFromParent();
4173     new UnreachableInst(RI->getContext(), TrivialBB);
4174     if (DTU)
4175       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4176   }
4177 
4178   // Delete the resume block if all its predecessors have been removed.
4179   if (pred_empty(BB)) {
4180     if (DTU)
4181       DTU->deleteBB(BB);
4182     else
4183       BB->eraseFromParent();
4184   }
4185 
4186   return !TrivialUnwindBlocks.empty();
4187 }
4188 
4189 // Simplify resume that is only used by a single (non-phi) landing pad.
4190 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4191   BasicBlock *BB = RI->getParent();
4192   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4193   assert(RI->getValue() == LPInst &&
4194          "Resume must unwind the exception that caused control to here");
4195 
4196   // Check that there are no other instructions except for debug intrinsics.
4197   if (!isCleanupBlockEmpty(
4198           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4199     return false;
4200 
4201   // Turn all invokes that unwind here into calls and delete the basic block.
4202   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4203     BasicBlock *Pred = *PI++;
4204     removeUnwindEdge(Pred, DTU);
4205     ++NumInvokes;
4206   }
4207 
4208   // The landingpad is now unreachable.  Zap it.
4209   if (DTU)
4210     DTU->deleteBB(BB);
4211   else
4212     BB->eraseFromParent();
4213   return true;
4214 }
4215 
4216 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4217   // If this is a trivial cleanup pad that executes no instructions, it can be
4218   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4219   // that is an EH pad will be updated to continue to the caller and any
4220   // predecessor that terminates with an invoke instruction will have its invoke
4221   // instruction converted to a call instruction.  If the cleanup pad being
4222   // simplified does not continue to the caller, each predecessor will be
4223   // updated to continue to the unwind destination of the cleanup pad being
4224   // simplified.
4225   BasicBlock *BB = RI->getParent();
4226   CleanupPadInst *CPInst = RI->getCleanupPad();
4227   if (CPInst->getParent() != BB)
4228     // This isn't an empty cleanup.
4229     return false;
4230 
4231   // We cannot kill the pad if it has multiple uses.  This typically arises
4232   // from unreachable basic blocks.
4233   if (!CPInst->hasOneUse())
4234     return false;
4235 
4236   // Check that there are no other instructions except for benign intrinsics.
4237   if (!isCleanupBlockEmpty(
4238           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4239     return false;
4240 
4241   // If the cleanup return we are simplifying unwinds to the caller, this will
4242   // set UnwindDest to nullptr.
4243   BasicBlock *UnwindDest = RI->getUnwindDest();
4244   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4245 
4246   // We're about to remove BB from the control flow.  Before we do, sink any
4247   // PHINodes into the unwind destination.  Doing this before changing the
4248   // control flow avoids some potentially slow checks, since we can currently
4249   // be certain that UnwindDest and BB have no common predecessors (since they
4250   // are both EH pads).
4251   if (UnwindDest) {
4252     // First, go through the PHI nodes in UnwindDest and update any nodes that
4253     // reference the block we are removing
4254     for (BasicBlock::iterator I = UnwindDest->begin(),
4255                               IE = DestEHPad->getIterator();
4256          I != IE; ++I) {
4257       PHINode *DestPN = cast<PHINode>(I);
4258 
4259       int Idx = DestPN->getBasicBlockIndex(BB);
4260       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4261       assert(Idx != -1);
4262       // This PHI node has an incoming value that corresponds to a control
4263       // path through the cleanup pad we are removing.  If the incoming
4264       // value is in the cleanup pad, it must be a PHINode (because we
4265       // verified above that the block is otherwise empty).  Otherwise, the
4266       // value is either a constant or a value that dominates the cleanup
4267       // pad being removed.
4268       //
4269       // Because BB and UnwindDest are both EH pads, all of their
4270       // predecessors must unwind to these blocks, and since no instruction
4271       // can have multiple unwind destinations, there will be no overlap in
4272       // incoming blocks between SrcPN and DestPN.
4273       Value *SrcVal = DestPN->getIncomingValue(Idx);
4274       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4275 
4276       // Remove the entry for the block we are deleting.
4277       DestPN->removeIncomingValue(Idx, false);
4278 
4279       if (SrcPN && SrcPN->getParent() == BB) {
4280         // If the incoming value was a PHI node in the cleanup pad we are
4281         // removing, we need to merge that PHI node's incoming values into
4282         // DestPN.
4283         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4284              SrcIdx != SrcE; ++SrcIdx) {
4285           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4286                               SrcPN->getIncomingBlock(SrcIdx));
4287         }
4288       } else {
4289         // Otherwise, the incoming value came from above BB and
4290         // so we can just reuse it.  We must associate all of BB's
4291         // predecessors with this value.
4292         for (auto *pred : predecessors(BB)) {
4293           DestPN->addIncoming(SrcVal, pred);
4294         }
4295       }
4296     }
4297 
4298     // Sink any remaining PHI nodes directly into UnwindDest.
4299     Instruction *InsertPt = DestEHPad;
4300     for (BasicBlock::iterator I = BB->begin(),
4301                               IE = BB->getFirstNonPHI()->getIterator();
4302          I != IE;) {
4303       // The iterator must be incremented here because the instructions are
4304       // being moved to another block.
4305       PHINode *PN = cast<PHINode>(I++);
4306       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4307         // If the PHI node has no uses or all of its uses are in this basic
4308         // block (meaning they are debug or lifetime intrinsics), just leave
4309         // it.  It will be erased when we erase BB below.
4310         continue;
4311 
4312       // Otherwise, sink this PHI node into UnwindDest.
4313       // Any predecessors to UnwindDest which are not already represented
4314       // must be back edges which inherit the value from the path through
4315       // BB.  In this case, the PHI value must reference itself.
4316       for (auto *pred : predecessors(UnwindDest))
4317         if (pred != BB)
4318           PN->addIncoming(PN, pred);
4319       PN->moveBefore(InsertPt);
4320     }
4321   }
4322 
4323   std::vector<DominatorTree::UpdateType> Updates;
4324 
4325   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4326     // The iterator must be updated here because we are removing this pred.
4327     BasicBlock *PredBB = *PI++;
4328     if (UnwindDest == nullptr) {
4329       if (DTU)
4330         DTU->applyUpdates(Updates);
4331       Updates.clear();
4332       removeUnwindEdge(PredBB, DTU);
4333       ++NumInvokes;
4334     } else {
4335       Instruction *TI = PredBB->getTerminator();
4336       TI->replaceUsesOfWith(BB, UnwindDest);
4337       Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4338       Updates.push_back({DominatorTree::Delete, PredBB, BB});
4339     }
4340   }
4341 
4342   if (DTU) {
4343     DTU->applyUpdates(Updates);
4344     DTU->deleteBB(BB);
4345   } else
4346     // The cleanup pad is now unreachable.  Zap it.
4347     BB->eraseFromParent();
4348 
4349   return true;
4350 }
4351 
4352 // Try to merge two cleanuppads together.
4353 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4354   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4355   // with.
4356   BasicBlock *UnwindDest = RI->getUnwindDest();
4357   if (!UnwindDest)
4358     return false;
4359 
4360   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4361   // be safe to merge without code duplication.
4362   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4363     return false;
4364 
4365   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4366   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4367   if (!SuccessorCleanupPad)
4368     return false;
4369 
4370   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4371   // Replace any uses of the successor cleanupad with the predecessor pad
4372   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4373   // funclet bundle operands.
4374   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4375   // Remove the old cleanuppad.
4376   SuccessorCleanupPad->eraseFromParent();
4377   // Now, we simply replace the cleanupret with a branch to the unwind
4378   // destination.
4379   BranchInst::Create(UnwindDest, RI->getParent());
4380   RI->eraseFromParent();
4381 
4382   return true;
4383 }
4384 
4385 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4386   // It is possible to transiantly have an undef cleanuppad operand because we
4387   // have deleted some, but not all, dead blocks.
4388   // Eventually, this block will be deleted.
4389   if (isa<UndefValue>(RI->getOperand(0)))
4390     return false;
4391 
4392   if (mergeCleanupPad(RI))
4393     return true;
4394 
4395   if (removeEmptyCleanup(RI, DTU))
4396     return true;
4397 
4398   return false;
4399 }
4400 
4401 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4402   BasicBlock *BB = RI->getParent();
4403   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4404     return false;
4405 
4406   // Find predecessors that end with branches.
4407   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4408   SmallVector<BranchInst *, 8> CondBranchPreds;
4409   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4410     BasicBlock *P = *PI;
4411     Instruction *PTI = P->getTerminator();
4412     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4413       if (BI->isUnconditional())
4414         UncondBranchPreds.push_back(P);
4415       else
4416         CondBranchPreds.push_back(BI);
4417     }
4418   }
4419 
4420   // If we found some, do the transformation!
4421   if (!UncondBranchPreds.empty() && DupRet) {
4422     while (!UncondBranchPreds.empty()) {
4423       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4424       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4425                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4426       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4427     }
4428 
4429     // If we eliminated all predecessors of the block, delete the block now.
4430     if (pred_empty(BB)) {
4431       // We know there are no successors, so just nuke the block.
4432       if (DTU)
4433         DTU->deleteBB(BB);
4434       else
4435         BB->eraseFromParent();
4436     }
4437 
4438     return true;
4439   }
4440 
4441   // Check out all of the conditional branches going to this return
4442   // instruction.  If any of them just select between returns, change the
4443   // branch itself into a select/return pair.
4444   while (!CondBranchPreds.empty()) {
4445     BranchInst *BI = CondBranchPreds.pop_back_val();
4446 
4447     // Check to see if the non-BB successor is also a return block.
4448     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4449         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4450         SimplifyCondBranchToTwoReturns(BI, Builder))
4451       return true;
4452   }
4453   return false;
4454 }
4455 
4456 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4457   BasicBlock *BB = UI->getParent();
4458 
4459   bool Changed = false;
4460 
4461   // If there are any instructions immediately before the unreachable that can
4462   // be removed, do so.
4463   while (UI->getIterator() != BB->begin()) {
4464     BasicBlock::iterator BBI = UI->getIterator();
4465     --BBI;
4466     // Do not delete instructions that can have side effects which might cause
4467     // the unreachable to not be reachable; specifically, calls and volatile
4468     // operations may have this effect.
4469     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4470       break;
4471 
4472     if (BBI->mayHaveSideEffects()) {
4473       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4474         if (SI->isVolatile())
4475           break;
4476       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4477         if (LI->isVolatile())
4478           break;
4479       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4480         if (RMWI->isVolatile())
4481           break;
4482       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4483         if (CXI->isVolatile())
4484           break;
4485       } else if (isa<CatchPadInst>(BBI)) {
4486         // A catchpad may invoke exception object constructors and such, which
4487         // in some languages can be arbitrary code, so be conservative by
4488         // default.
4489         // For CoreCLR, it just involves a type test, so can be removed.
4490         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4491             EHPersonality::CoreCLR)
4492           break;
4493       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4494                  !isa<LandingPadInst>(BBI)) {
4495         break;
4496       }
4497       // Note that deleting LandingPad's here is in fact okay, although it
4498       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4499       // all the predecessors of this block will be the unwind edges of Invokes,
4500       // and we can therefore guarantee this block will be erased.
4501     }
4502 
4503     // Delete this instruction (any uses are guaranteed to be dead)
4504     if (!BBI->use_empty())
4505       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4506     BBI->eraseFromParent();
4507     Changed = true;
4508   }
4509 
4510   // If the unreachable instruction is the first in the block, take a gander
4511   // at all of the predecessors of this instruction, and simplify them.
4512   if (&BB->front() != UI)
4513     return Changed;
4514 
4515   std::vector<DominatorTree::UpdateType> Updates;
4516 
4517   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4518   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4519     auto *Predecessor = Preds[i];
4520     Instruction *TI = Predecessor->getTerminator();
4521     IRBuilder<> Builder(TI);
4522     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4523       // We could either have a proper unconditional branch,
4524       // or a degenerate conditional branch with matching destinations.
4525       if (all_of(BI->successors(),
4526                  [BB](auto *Successor) { return Successor == BB; })) {
4527         new UnreachableInst(TI->getContext(), TI);
4528         TI->eraseFromParent();
4529         Changed = true;
4530       } else {
4531         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4532         Value* Cond = BI->getCondition();
4533         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4534                "The destinations are guaranteed to be different here.");
4535         if (BI->getSuccessor(0) == BB) {
4536           Builder.CreateAssumption(Builder.CreateNot(Cond));
4537           Builder.CreateBr(BI->getSuccessor(1));
4538         } else {
4539           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4540           Builder.CreateAssumption(Cond);
4541           Builder.CreateBr(BI->getSuccessor(0));
4542         }
4543         EraseTerminatorAndDCECond(BI);
4544         Changed = true;
4545       }
4546       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4547     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4548       SwitchInstProfUpdateWrapper SU(*SI);
4549       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4550         if (i->getCaseSuccessor() != BB) {
4551           ++i;
4552           continue;
4553         }
4554         BB->removePredecessor(SU->getParent());
4555         i = SU.removeCase(i);
4556         e = SU->case_end();
4557         Changed = true;
4558       }
4559       // Note that the default destination can't be removed!
4560       if (SI->getDefaultDest() != BB)
4561         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4562     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4563       if (II->getUnwindDest() == BB) {
4564         if (DTU)
4565           DTU->applyUpdates(Updates);
4566         Updates.clear();
4567         removeUnwindEdge(TI->getParent(), DTU);
4568         Changed = true;
4569       }
4570     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4571       if (CSI->getUnwindDest() == BB) {
4572         if (DTU)
4573           DTU->applyUpdates(Updates);
4574         Updates.clear();
4575         removeUnwindEdge(TI->getParent(), DTU);
4576         Changed = true;
4577         continue;
4578       }
4579 
4580       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4581                                              E = CSI->handler_end();
4582            I != E; ++I) {
4583         if (*I == BB) {
4584           CSI->removeHandler(I);
4585           --I;
4586           --E;
4587           Changed = true;
4588         }
4589       }
4590       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4591       if (CSI->getNumHandlers() == 0) {
4592         if (CSI->hasUnwindDest()) {
4593           // Redirect all predecessors of the block containing CatchSwitchInst
4594           // to instead branch to the CatchSwitchInst's unwind destination.
4595           for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4596             Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor,
4597                                CSI->getUnwindDest()});
4598             Updates.push_back(
4599                 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor});
4600           }
4601           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4602         } else {
4603           // Rewrite all preds to unwind to caller (or from invoke to call).
4604           if (DTU)
4605             DTU->applyUpdates(Updates);
4606           Updates.clear();
4607           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4608           for (BasicBlock *EHPred : EHPreds)
4609             removeUnwindEdge(EHPred, DTU);
4610         }
4611         // The catchswitch is no longer reachable.
4612         new UnreachableInst(CSI->getContext(), CSI);
4613         CSI->eraseFromParent();
4614         Changed = true;
4615       }
4616     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4617       (void)CRI;
4618       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4619              "Expected to always have an unwind to BB.");
4620       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4621       new UnreachableInst(TI->getContext(), TI);
4622       TI->eraseFromParent();
4623       Changed = true;
4624     }
4625   }
4626 
4627   if (DTU)
4628     DTU->applyUpdates(Updates);
4629 
4630   // If this block is now dead, remove it.
4631   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4632     // We know there are no successors, so just nuke the block.
4633     if (DTU)
4634       DTU->deleteBB(BB);
4635     else
4636       BB->eraseFromParent();
4637     return true;
4638   }
4639 
4640   return Changed;
4641 }
4642 
4643 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4644   assert(Cases.size() >= 1);
4645 
4646   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4647   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4648     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4649       return false;
4650   }
4651   return true;
4652 }
4653 
4654 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4655                                            DomTreeUpdater *DTU) {
4656   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4657   auto *BB = Switch->getParent();
4658   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4659       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4660   auto *OrigDefaultBlock = Switch->getDefaultDest();
4661   Switch->setDefaultDest(&*NewDefaultBlock);
4662   if (DTU)
4663     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4664                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4665   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4666   SmallVector<DominatorTree::UpdateType, 2> Updates;
4667   for (auto *Successor : successors(NewDefaultBlock))
4668     Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4669   auto *NewTerminator = NewDefaultBlock->getTerminator();
4670   new UnreachableInst(Switch->getContext(), NewTerminator);
4671   EraseTerminatorAndDCECond(NewTerminator);
4672   if (DTU)
4673     DTU->applyUpdates(Updates);
4674 }
4675 
4676 /// Turn a switch with two reachable destinations into an integer range
4677 /// comparison and branch.
4678 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4679                                              IRBuilder<> &Builder) {
4680   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4681 
4682   bool HasDefault =
4683       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4684 
4685   auto *BB = SI->getParent();
4686 
4687   // Partition the cases into two sets with different destinations.
4688   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4689   BasicBlock *DestB = nullptr;
4690   SmallVector<ConstantInt *, 16> CasesA;
4691   SmallVector<ConstantInt *, 16> CasesB;
4692 
4693   for (auto Case : SI->cases()) {
4694     BasicBlock *Dest = Case.getCaseSuccessor();
4695     if (!DestA)
4696       DestA = Dest;
4697     if (Dest == DestA) {
4698       CasesA.push_back(Case.getCaseValue());
4699       continue;
4700     }
4701     if (!DestB)
4702       DestB = Dest;
4703     if (Dest == DestB) {
4704       CasesB.push_back(Case.getCaseValue());
4705       continue;
4706     }
4707     return false; // More than two destinations.
4708   }
4709 
4710   assert(DestA && DestB &&
4711          "Single-destination switch should have been folded.");
4712   assert(DestA != DestB);
4713   assert(DestB != SI->getDefaultDest());
4714   assert(!CasesB.empty() && "There must be non-default cases.");
4715   assert(!CasesA.empty() || HasDefault);
4716 
4717   // Figure out if one of the sets of cases form a contiguous range.
4718   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4719   BasicBlock *ContiguousDest = nullptr;
4720   BasicBlock *OtherDest = nullptr;
4721   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4722     ContiguousCases = &CasesA;
4723     ContiguousDest = DestA;
4724     OtherDest = DestB;
4725   } else if (CasesAreContiguous(CasesB)) {
4726     ContiguousCases = &CasesB;
4727     ContiguousDest = DestB;
4728     OtherDest = DestA;
4729   } else
4730     return false;
4731 
4732   // Start building the compare and branch.
4733 
4734   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4735   Constant *NumCases =
4736       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4737 
4738   Value *Sub = SI->getCondition();
4739   if (!Offset->isNullValue())
4740     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4741 
4742   Value *Cmp;
4743   // If NumCases overflowed, then all possible values jump to the successor.
4744   if (NumCases->isNullValue() && !ContiguousCases->empty())
4745     Cmp = ConstantInt::getTrue(SI->getContext());
4746   else
4747     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4748   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4749 
4750   // Update weight for the newly-created conditional branch.
4751   if (HasBranchWeights(SI)) {
4752     SmallVector<uint64_t, 8> Weights;
4753     GetBranchWeights(SI, Weights);
4754     if (Weights.size() == 1 + SI->getNumCases()) {
4755       uint64_t TrueWeight = 0;
4756       uint64_t FalseWeight = 0;
4757       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4758         if (SI->getSuccessor(I) == ContiguousDest)
4759           TrueWeight += Weights[I];
4760         else
4761           FalseWeight += Weights[I];
4762       }
4763       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4764         TrueWeight /= 2;
4765         FalseWeight /= 2;
4766       }
4767       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4768     }
4769   }
4770 
4771   // Prune obsolete incoming values off the successors' PHI nodes.
4772   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4773     unsigned PreviousEdges = ContiguousCases->size();
4774     if (ContiguousDest == SI->getDefaultDest())
4775       ++PreviousEdges;
4776     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4777       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4778   }
4779   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4780     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4781     if (OtherDest == SI->getDefaultDest())
4782       ++PreviousEdges;
4783     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4784       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4785   }
4786 
4787   // Clean up the default block - it may have phis or other instructions before
4788   // the unreachable terminator.
4789   if (!HasDefault)
4790     createUnreachableSwitchDefault(SI, DTU);
4791 
4792   auto *UnreachableDefault = SI->getDefaultDest();
4793 
4794   // Drop the switch.
4795   SI->eraseFromParent();
4796 
4797   if (!HasDefault && DTU)
4798     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4799 
4800   return true;
4801 }
4802 
4803 /// Compute masked bits for the condition of a switch
4804 /// and use it to remove dead cases.
4805 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4806                                      AssumptionCache *AC,
4807                                      const DataLayout &DL) {
4808   Value *Cond = SI->getCondition();
4809   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4810   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4811 
4812   // We can also eliminate cases by determining that their values are outside of
4813   // the limited range of the condition based on how many significant (non-sign)
4814   // bits are in the condition value.
4815   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4816   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4817 
4818   // Gather dead cases.
4819   SmallVector<ConstantInt *, 8> DeadCases;
4820   SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
4821   for (auto &Case : SI->cases()) {
4822     auto *Successor = Case.getCaseSuccessor();
4823     ++NumPerSuccessorCases[Successor];
4824     const APInt &CaseVal = Case.getCaseValue()->getValue();
4825     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4826         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4827       DeadCases.push_back(Case.getCaseValue());
4828       --NumPerSuccessorCases[Successor];
4829       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4830                         << " is dead.\n");
4831     }
4832   }
4833 
4834   // If we can prove that the cases must cover all possible values, the
4835   // default destination becomes dead and we can remove it.  If we know some
4836   // of the bits in the value, we can use that to more precisely compute the
4837   // number of possible unique case values.
4838   bool HasDefault =
4839       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4840   const unsigned NumUnknownBits =
4841       Bits - (Known.Zero | Known.One).countPopulation();
4842   assert(NumUnknownBits <= Bits);
4843   if (HasDefault && DeadCases.empty() &&
4844       NumUnknownBits < 64 /* avoid overflow */ &&
4845       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4846     createUnreachableSwitchDefault(SI, DTU);
4847     return true;
4848   }
4849 
4850   if (DeadCases.empty())
4851     return false;
4852 
4853   SwitchInstProfUpdateWrapper SIW(*SI);
4854   for (ConstantInt *DeadCase : DeadCases) {
4855     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4856     assert(CaseI != SI->case_default() &&
4857            "Case was not found. Probably mistake in DeadCases forming.");
4858     // Prune unused values from PHI nodes.
4859     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4860     SIW.removeCase(CaseI);
4861   }
4862 
4863   std::vector<DominatorTree::UpdateType> Updates;
4864   for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
4865     if (I.second == 0)
4866       Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
4867   if (DTU)
4868     DTU->applyUpdates(Updates);
4869 
4870   return true;
4871 }
4872 
4873 /// If BB would be eligible for simplification by
4874 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4875 /// by an unconditional branch), look at the phi node for BB in the successor
4876 /// block and see if the incoming value is equal to CaseValue. If so, return
4877 /// the phi node, and set PhiIndex to BB's index in the phi node.
4878 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4879                                               BasicBlock *BB, int *PhiIndex) {
4880   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4881     return nullptr; // BB must be empty to be a candidate for simplification.
4882   if (!BB->getSinglePredecessor())
4883     return nullptr; // BB must be dominated by the switch.
4884 
4885   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4886   if (!Branch || !Branch->isUnconditional())
4887     return nullptr; // Terminator must be unconditional branch.
4888 
4889   BasicBlock *Succ = Branch->getSuccessor(0);
4890 
4891   for (PHINode &PHI : Succ->phis()) {
4892     int Idx = PHI.getBasicBlockIndex(BB);
4893     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4894 
4895     Value *InValue = PHI.getIncomingValue(Idx);
4896     if (InValue != CaseValue)
4897       continue;
4898 
4899     *PhiIndex = Idx;
4900     return &PHI;
4901   }
4902 
4903   return nullptr;
4904 }
4905 
4906 /// Try to forward the condition of a switch instruction to a phi node
4907 /// dominated by the switch, if that would mean that some of the destination
4908 /// blocks of the switch can be folded away. Return true if a change is made.
4909 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4910   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4911 
4912   ForwardingNodesMap ForwardingNodes;
4913   BasicBlock *SwitchBlock = SI->getParent();
4914   bool Changed = false;
4915   for (auto &Case : SI->cases()) {
4916     ConstantInt *CaseValue = Case.getCaseValue();
4917     BasicBlock *CaseDest = Case.getCaseSuccessor();
4918 
4919     // Replace phi operands in successor blocks that are using the constant case
4920     // value rather than the switch condition variable:
4921     //   switchbb:
4922     //   switch i32 %x, label %default [
4923     //     i32 17, label %succ
4924     //   ...
4925     //   succ:
4926     //     %r = phi i32 ... [ 17, %switchbb ] ...
4927     // -->
4928     //     %r = phi i32 ... [ %x, %switchbb ] ...
4929 
4930     for (PHINode &Phi : CaseDest->phis()) {
4931       // This only works if there is exactly 1 incoming edge from the switch to
4932       // a phi. If there is >1, that means multiple cases of the switch map to 1
4933       // value in the phi, and that phi value is not the switch condition. Thus,
4934       // this transform would not make sense (the phi would be invalid because
4935       // a phi can't have different incoming values from the same block).
4936       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4937       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4938           count(Phi.blocks(), SwitchBlock) == 1) {
4939         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4940         Changed = true;
4941       }
4942     }
4943 
4944     // Collect phi nodes that are indirectly using this switch's case constants.
4945     int PhiIdx;
4946     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4947       ForwardingNodes[Phi].push_back(PhiIdx);
4948   }
4949 
4950   for (auto &ForwardingNode : ForwardingNodes) {
4951     PHINode *Phi = ForwardingNode.first;
4952     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4953     if (Indexes.size() < 2)
4954       continue;
4955 
4956     for (int Index : Indexes)
4957       Phi->setIncomingValue(Index, SI->getCondition());
4958     Changed = true;
4959   }
4960 
4961   return Changed;
4962 }
4963 
4964 /// Return true if the backend will be able to handle
4965 /// initializing an array of constants like C.
4966 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4967   if (C->isThreadDependent())
4968     return false;
4969   if (C->isDLLImportDependent())
4970     return false;
4971 
4972   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4973       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4974       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4975     return false;
4976 
4977   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4978     if (!CE->isGEPWithNoNotionalOverIndexing())
4979       return false;
4980     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4981       return false;
4982   }
4983 
4984   if (!TTI.shouldBuildLookupTablesForConstant(C))
4985     return false;
4986 
4987   return true;
4988 }
4989 
4990 /// If V is a Constant, return it. Otherwise, try to look up
4991 /// its constant value in ConstantPool, returning 0 if it's not there.
4992 static Constant *
4993 LookupConstant(Value *V,
4994                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4995   if (Constant *C = dyn_cast<Constant>(V))
4996     return C;
4997   return ConstantPool.lookup(V);
4998 }
4999 
5000 /// Try to fold instruction I into a constant. This works for
5001 /// simple instructions such as binary operations where both operands are
5002 /// constant or can be replaced by constants from the ConstantPool. Returns the
5003 /// resulting constant on success, 0 otherwise.
5004 static Constant *
5005 ConstantFold(Instruction *I, const DataLayout &DL,
5006              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5007   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5008     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5009     if (!A)
5010       return nullptr;
5011     if (A->isAllOnesValue())
5012       return LookupConstant(Select->getTrueValue(), ConstantPool);
5013     if (A->isNullValue())
5014       return LookupConstant(Select->getFalseValue(), ConstantPool);
5015     return nullptr;
5016   }
5017 
5018   SmallVector<Constant *, 4> COps;
5019   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5020     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5021       COps.push_back(A);
5022     else
5023       return nullptr;
5024   }
5025 
5026   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5027     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5028                                            COps[1], DL);
5029   }
5030 
5031   return ConstantFoldInstOperands(I, COps, DL);
5032 }
5033 
5034 /// Try to determine the resulting constant values in phi nodes
5035 /// at the common destination basic block, *CommonDest, for one of the case
5036 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5037 /// case), of a switch instruction SI.
5038 static bool
5039 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5040                BasicBlock **CommonDest,
5041                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5042                const DataLayout &DL, const TargetTransformInfo &TTI) {
5043   // The block from which we enter the common destination.
5044   BasicBlock *Pred = SI->getParent();
5045 
5046   // If CaseDest is empty except for some side-effect free instructions through
5047   // which we can constant-propagate the CaseVal, continue to its successor.
5048   SmallDenseMap<Value *, Constant *> ConstantPool;
5049   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5050   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5051     if (I.isTerminator()) {
5052       // If the terminator is a simple branch, continue to the next block.
5053       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5054         return false;
5055       Pred = CaseDest;
5056       CaseDest = I.getSuccessor(0);
5057     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5058       // Instruction is side-effect free and constant.
5059 
5060       // If the instruction has uses outside this block or a phi node slot for
5061       // the block, it is not safe to bypass the instruction since it would then
5062       // no longer dominate all its uses.
5063       for (auto &Use : I.uses()) {
5064         User *User = Use.getUser();
5065         if (Instruction *I = dyn_cast<Instruction>(User))
5066           if (I->getParent() == CaseDest)
5067             continue;
5068         if (PHINode *Phi = dyn_cast<PHINode>(User))
5069           if (Phi->getIncomingBlock(Use) == CaseDest)
5070             continue;
5071         return false;
5072       }
5073 
5074       ConstantPool.insert(std::make_pair(&I, C));
5075     } else {
5076       break;
5077     }
5078   }
5079 
5080   // If we did not have a CommonDest before, use the current one.
5081   if (!*CommonDest)
5082     *CommonDest = CaseDest;
5083   // If the destination isn't the common one, abort.
5084   if (CaseDest != *CommonDest)
5085     return false;
5086 
5087   // Get the values for this case from phi nodes in the destination block.
5088   for (PHINode &PHI : (*CommonDest)->phis()) {
5089     int Idx = PHI.getBasicBlockIndex(Pred);
5090     if (Idx == -1)
5091       continue;
5092 
5093     Constant *ConstVal =
5094         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5095     if (!ConstVal)
5096       return false;
5097 
5098     // Be conservative about which kinds of constants we support.
5099     if (!ValidLookupTableConstant(ConstVal, TTI))
5100       return false;
5101 
5102     Res.push_back(std::make_pair(&PHI, ConstVal));
5103   }
5104 
5105   return Res.size() > 0;
5106 }
5107 
5108 // Helper function used to add CaseVal to the list of cases that generate
5109 // Result. Returns the updated number of cases that generate this result.
5110 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5111                                  SwitchCaseResultVectorTy &UniqueResults,
5112                                  Constant *Result) {
5113   for (auto &I : UniqueResults) {
5114     if (I.first == Result) {
5115       I.second.push_back(CaseVal);
5116       return I.second.size();
5117     }
5118   }
5119   UniqueResults.push_back(
5120       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5121   return 1;
5122 }
5123 
5124 // Helper function that initializes a map containing
5125 // results for the PHI node of the common destination block for a switch
5126 // instruction. Returns false if multiple PHI nodes have been found or if
5127 // there is not a common destination block for the switch.
5128 static bool
5129 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5130                       SwitchCaseResultVectorTy &UniqueResults,
5131                       Constant *&DefaultResult, const DataLayout &DL,
5132                       const TargetTransformInfo &TTI,
5133                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5134   for (auto &I : SI->cases()) {
5135     ConstantInt *CaseVal = I.getCaseValue();
5136 
5137     // Resulting value at phi nodes for this case value.
5138     SwitchCaseResultsTy Results;
5139     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5140                         DL, TTI))
5141       return false;
5142 
5143     // Only one value per case is permitted.
5144     if (Results.size() > 1)
5145       return false;
5146 
5147     // Add the case->result mapping to UniqueResults.
5148     const uintptr_t NumCasesForResult =
5149         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5150 
5151     // Early out if there are too many cases for this result.
5152     if (NumCasesForResult > MaxCasesPerResult)
5153       return false;
5154 
5155     // Early out if there are too many unique results.
5156     if (UniqueResults.size() > MaxUniqueResults)
5157       return false;
5158 
5159     // Check the PHI consistency.
5160     if (!PHI)
5161       PHI = Results[0].first;
5162     else if (PHI != Results[0].first)
5163       return false;
5164   }
5165   // Find the default result value.
5166   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5167   BasicBlock *DefaultDest = SI->getDefaultDest();
5168   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5169                  DL, TTI);
5170   // If the default value is not found abort unless the default destination
5171   // is unreachable.
5172   DefaultResult =
5173       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5174   if ((!DefaultResult &&
5175        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5176     return false;
5177 
5178   return true;
5179 }
5180 
5181 // Helper function that checks if it is possible to transform a switch with only
5182 // two cases (or two cases + default) that produces a result into a select.
5183 // Example:
5184 // switch (a) {
5185 //   case 10:                %0 = icmp eq i32 %a, 10
5186 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5187 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5188 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5189 //   default:
5190 //     return 4;
5191 // }
5192 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5193                                    Constant *DefaultResult, Value *Condition,
5194                                    IRBuilder<> &Builder) {
5195   assert(ResultVector.size() == 2 &&
5196          "We should have exactly two unique results at this point");
5197   // If we are selecting between only two cases transform into a simple
5198   // select or a two-way select if default is possible.
5199   if (ResultVector[0].second.size() == 1 &&
5200       ResultVector[1].second.size() == 1) {
5201     ConstantInt *const FirstCase = ResultVector[0].second[0];
5202     ConstantInt *const SecondCase = ResultVector[1].second[0];
5203 
5204     bool DefaultCanTrigger = DefaultResult;
5205     Value *SelectValue = ResultVector[1].first;
5206     if (DefaultCanTrigger) {
5207       Value *const ValueCompare =
5208           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5209       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5210                                          DefaultResult, "switch.select");
5211     }
5212     Value *const ValueCompare =
5213         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5214     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5215                                 SelectValue, "switch.select");
5216   }
5217 
5218   return nullptr;
5219 }
5220 
5221 // Helper function to cleanup a switch instruction that has been converted into
5222 // a select, fixing up PHI nodes and basic blocks.
5223 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5224                                               Value *SelectValue,
5225                                               IRBuilder<> &Builder,
5226                                               DomTreeUpdater *DTU) {
5227   std::vector<DominatorTree::UpdateType> Updates;
5228 
5229   BasicBlock *SelectBB = SI->getParent();
5230   BasicBlock *DestBB = PHI->getParent();
5231 
5232   if (!is_contained(predecessors(DestBB), SelectBB))
5233     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5234   Builder.CreateBr(DestBB);
5235 
5236   // Remove the switch.
5237 
5238   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5239     PHI->removeIncomingValue(SelectBB);
5240   PHI->addIncoming(SelectValue, SelectBB);
5241 
5242   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5243     BasicBlock *Succ = SI->getSuccessor(i);
5244 
5245     if (Succ == DestBB)
5246       continue;
5247     Succ->removePredecessor(SelectBB);
5248     Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5249   }
5250   SI->eraseFromParent();
5251   if (DTU)
5252     DTU->applyUpdates(Updates);
5253 }
5254 
5255 /// If the switch is only used to initialize one or more
5256 /// phi nodes in a common successor block with only two different
5257 /// constant values, replace the switch with select.
5258 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5259                            DomTreeUpdater *DTU, const DataLayout &DL,
5260                            const TargetTransformInfo &TTI) {
5261   Value *const Cond = SI->getCondition();
5262   PHINode *PHI = nullptr;
5263   BasicBlock *CommonDest = nullptr;
5264   Constant *DefaultResult;
5265   SwitchCaseResultVectorTy UniqueResults;
5266   // Collect all the cases that will deliver the same value from the switch.
5267   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5268                              DL, TTI, 2, 1))
5269     return false;
5270   // Selects choose between maximum two values.
5271   if (UniqueResults.size() != 2)
5272     return false;
5273   assert(PHI != nullptr && "PHI for value select not found");
5274 
5275   Builder.SetInsertPoint(SI);
5276   Value *SelectValue =
5277       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5278   if (SelectValue) {
5279     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5280     return true;
5281   }
5282   // The switch couldn't be converted into a select.
5283   return false;
5284 }
5285 
5286 namespace {
5287 
5288 /// This class represents a lookup table that can be used to replace a switch.
5289 class SwitchLookupTable {
5290 public:
5291   /// Create a lookup table to use as a switch replacement with the contents
5292   /// of Values, using DefaultValue to fill any holes in the table.
5293   SwitchLookupTable(
5294       Module &M, uint64_t TableSize, ConstantInt *Offset,
5295       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5296       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5297 
5298   /// Build instructions with Builder to retrieve the value at
5299   /// the position given by Index in the lookup table.
5300   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5301 
5302   /// Return true if a table with TableSize elements of
5303   /// type ElementType would fit in a target-legal register.
5304   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5305                                  Type *ElementType);
5306 
5307 private:
5308   // Depending on the contents of the table, it can be represented in
5309   // different ways.
5310   enum {
5311     // For tables where each element contains the same value, we just have to
5312     // store that single value and return it for each lookup.
5313     SingleValueKind,
5314 
5315     // For tables where there is a linear relationship between table index
5316     // and values. We calculate the result with a simple multiplication
5317     // and addition instead of a table lookup.
5318     LinearMapKind,
5319 
5320     // For small tables with integer elements, we can pack them into a bitmap
5321     // that fits into a target-legal register. Values are retrieved by
5322     // shift and mask operations.
5323     BitMapKind,
5324 
5325     // The table is stored as an array of values. Values are retrieved by load
5326     // instructions from the table.
5327     ArrayKind
5328   } Kind;
5329 
5330   // For SingleValueKind, this is the single value.
5331   Constant *SingleValue = nullptr;
5332 
5333   // For BitMapKind, this is the bitmap.
5334   ConstantInt *BitMap = nullptr;
5335   IntegerType *BitMapElementTy = nullptr;
5336 
5337   // For LinearMapKind, these are the constants used to derive the value.
5338   ConstantInt *LinearOffset = nullptr;
5339   ConstantInt *LinearMultiplier = nullptr;
5340 
5341   // For ArrayKind, this is the array.
5342   GlobalVariable *Array = nullptr;
5343 };
5344 
5345 } // end anonymous namespace
5346 
5347 SwitchLookupTable::SwitchLookupTable(
5348     Module &M, uint64_t TableSize, ConstantInt *Offset,
5349     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5350     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5351   assert(Values.size() && "Can't build lookup table without values!");
5352   assert(TableSize >= Values.size() && "Can't fit values in table!");
5353 
5354   // If all values in the table are equal, this is that value.
5355   SingleValue = Values.begin()->second;
5356 
5357   Type *ValueType = Values.begin()->second->getType();
5358 
5359   // Build up the table contents.
5360   SmallVector<Constant *, 64> TableContents(TableSize);
5361   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5362     ConstantInt *CaseVal = Values[I].first;
5363     Constant *CaseRes = Values[I].second;
5364     assert(CaseRes->getType() == ValueType);
5365 
5366     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5367     TableContents[Idx] = CaseRes;
5368 
5369     if (CaseRes != SingleValue)
5370       SingleValue = nullptr;
5371   }
5372 
5373   // Fill in any holes in the table with the default result.
5374   if (Values.size() < TableSize) {
5375     assert(DefaultValue &&
5376            "Need a default value to fill the lookup table holes.");
5377     assert(DefaultValue->getType() == ValueType);
5378     for (uint64_t I = 0; I < TableSize; ++I) {
5379       if (!TableContents[I])
5380         TableContents[I] = DefaultValue;
5381     }
5382 
5383     if (DefaultValue != SingleValue)
5384       SingleValue = nullptr;
5385   }
5386 
5387   // If each element in the table contains the same value, we only need to store
5388   // that single value.
5389   if (SingleValue) {
5390     Kind = SingleValueKind;
5391     return;
5392   }
5393 
5394   // Check if we can derive the value with a linear transformation from the
5395   // table index.
5396   if (isa<IntegerType>(ValueType)) {
5397     bool LinearMappingPossible = true;
5398     APInt PrevVal;
5399     APInt DistToPrev;
5400     assert(TableSize >= 2 && "Should be a SingleValue table.");
5401     // Check if there is the same distance between two consecutive values.
5402     for (uint64_t I = 0; I < TableSize; ++I) {
5403       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5404       if (!ConstVal) {
5405         // This is an undef. We could deal with it, but undefs in lookup tables
5406         // are very seldom. It's probably not worth the additional complexity.
5407         LinearMappingPossible = false;
5408         break;
5409       }
5410       const APInt &Val = ConstVal->getValue();
5411       if (I != 0) {
5412         APInt Dist = Val - PrevVal;
5413         if (I == 1) {
5414           DistToPrev = Dist;
5415         } else if (Dist != DistToPrev) {
5416           LinearMappingPossible = false;
5417           break;
5418         }
5419       }
5420       PrevVal = Val;
5421     }
5422     if (LinearMappingPossible) {
5423       LinearOffset = cast<ConstantInt>(TableContents[0]);
5424       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5425       Kind = LinearMapKind;
5426       ++NumLinearMaps;
5427       return;
5428     }
5429   }
5430 
5431   // If the type is integer and the table fits in a register, build a bitmap.
5432   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5433     IntegerType *IT = cast<IntegerType>(ValueType);
5434     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5435     for (uint64_t I = TableSize; I > 0; --I) {
5436       TableInt <<= IT->getBitWidth();
5437       // Insert values into the bitmap. Undef values are set to zero.
5438       if (!isa<UndefValue>(TableContents[I - 1])) {
5439         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5440         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5441       }
5442     }
5443     BitMap = ConstantInt::get(M.getContext(), TableInt);
5444     BitMapElementTy = IT;
5445     Kind = BitMapKind;
5446     ++NumBitMaps;
5447     return;
5448   }
5449 
5450   // Store the table in an array.
5451   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5452   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5453 
5454   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5455                              GlobalVariable::PrivateLinkage, Initializer,
5456                              "switch.table." + FuncName);
5457   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5458   // Set the alignment to that of an array items. We will be only loading one
5459   // value out of it.
5460   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5461   Kind = ArrayKind;
5462 }
5463 
5464 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5465   switch (Kind) {
5466   case SingleValueKind:
5467     return SingleValue;
5468   case LinearMapKind: {
5469     // Derive the result value from the input value.
5470     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5471                                           false, "switch.idx.cast");
5472     if (!LinearMultiplier->isOne())
5473       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5474     if (!LinearOffset->isZero())
5475       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5476     return Result;
5477   }
5478   case BitMapKind: {
5479     // Type of the bitmap (e.g. i59).
5480     IntegerType *MapTy = BitMap->getType();
5481 
5482     // Cast Index to the same type as the bitmap.
5483     // Note: The Index is <= the number of elements in the table, so
5484     // truncating it to the width of the bitmask is safe.
5485     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5486 
5487     // Multiply the shift amount by the element width.
5488     ShiftAmt = Builder.CreateMul(
5489         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5490         "switch.shiftamt");
5491 
5492     // Shift down.
5493     Value *DownShifted =
5494         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5495     // Mask off.
5496     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5497   }
5498   case ArrayKind: {
5499     // Make sure the table index will not overflow when treated as signed.
5500     IntegerType *IT = cast<IntegerType>(Index->getType());
5501     uint64_t TableSize =
5502         Array->getInitializer()->getType()->getArrayNumElements();
5503     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5504       Index = Builder.CreateZExt(
5505           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5506           "switch.tableidx.zext");
5507 
5508     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5509     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5510                                            GEPIndices, "switch.gep");
5511     return Builder.CreateLoad(
5512         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5513         "switch.load");
5514   }
5515   }
5516   llvm_unreachable("Unknown lookup table kind!");
5517 }
5518 
5519 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5520                                            uint64_t TableSize,
5521                                            Type *ElementType) {
5522   auto *IT = dyn_cast<IntegerType>(ElementType);
5523   if (!IT)
5524     return false;
5525   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5526   // are <= 15, we could try to narrow the type.
5527 
5528   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5529   if (TableSize >= UINT_MAX / IT->getBitWidth())
5530     return false;
5531   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5532 }
5533 
5534 /// Determine whether a lookup table should be built for this switch, based on
5535 /// the number of cases, size of the table, and the types of the results.
5536 static bool
5537 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5538                        const TargetTransformInfo &TTI, const DataLayout &DL,
5539                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5540   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5541     return false; // TableSize overflowed, or mul below might overflow.
5542 
5543   bool AllTablesFitInRegister = true;
5544   bool HasIllegalType = false;
5545   for (const auto &I : ResultTypes) {
5546     Type *Ty = I.second;
5547 
5548     // Saturate this flag to true.
5549     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5550 
5551     // Saturate this flag to false.
5552     AllTablesFitInRegister =
5553         AllTablesFitInRegister &&
5554         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5555 
5556     // If both flags saturate, we're done. NOTE: This *only* works with
5557     // saturating flags, and all flags have to saturate first due to the
5558     // non-deterministic behavior of iterating over a dense map.
5559     if (HasIllegalType && !AllTablesFitInRegister)
5560       break;
5561   }
5562 
5563   // If each table would fit in a register, we should build it anyway.
5564   if (AllTablesFitInRegister)
5565     return true;
5566 
5567   // Don't build a table that doesn't fit in-register if it has illegal types.
5568   if (HasIllegalType)
5569     return false;
5570 
5571   // The table density should be at least 40%. This is the same criterion as for
5572   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5573   // FIXME: Find the best cut-off.
5574   return SI->getNumCases() * 10 >= TableSize * 4;
5575 }
5576 
5577 /// Try to reuse the switch table index compare. Following pattern:
5578 /// \code
5579 ///     if (idx < tablesize)
5580 ///        r = table[idx]; // table does not contain default_value
5581 ///     else
5582 ///        r = default_value;
5583 ///     if (r != default_value)
5584 ///        ...
5585 /// \endcode
5586 /// Is optimized to:
5587 /// \code
5588 ///     cond = idx < tablesize;
5589 ///     if (cond)
5590 ///        r = table[idx];
5591 ///     else
5592 ///        r = default_value;
5593 ///     if (cond)
5594 ///        ...
5595 /// \endcode
5596 /// Jump threading will then eliminate the second if(cond).
5597 static void reuseTableCompare(
5598     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5599     Constant *DefaultValue,
5600     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5601   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5602   if (!CmpInst)
5603     return;
5604 
5605   // We require that the compare is in the same block as the phi so that jump
5606   // threading can do its work afterwards.
5607   if (CmpInst->getParent() != PhiBlock)
5608     return;
5609 
5610   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5611   if (!CmpOp1)
5612     return;
5613 
5614   Value *RangeCmp = RangeCheckBranch->getCondition();
5615   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5616   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5617 
5618   // Check if the compare with the default value is constant true or false.
5619   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5620                                                  DefaultValue, CmpOp1, true);
5621   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5622     return;
5623 
5624   // Check if the compare with the case values is distinct from the default
5625   // compare result.
5626   for (auto ValuePair : Values) {
5627     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5628                                                 ValuePair.second, CmpOp1, true);
5629     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5630       return;
5631     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5632            "Expect true or false as compare result.");
5633   }
5634 
5635   // Check if the branch instruction dominates the phi node. It's a simple
5636   // dominance check, but sufficient for our needs.
5637   // Although this check is invariant in the calling loops, it's better to do it
5638   // at this late stage. Practically we do it at most once for a switch.
5639   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5640   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5641     BasicBlock *Pred = *PI;
5642     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5643       return;
5644   }
5645 
5646   if (DefaultConst == FalseConst) {
5647     // The compare yields the same result. We can replace it.
5648     CmpInst->replaceAllUsesWith(RangeCmp);
5649     ++NumTableCmpReuses;
5650   } else {
5651     // The compare yields the same result, just inverted. We can replace it.
5652     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5653         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5654         RangeCheckBranch);
5655     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5656     ++NumTableCmpReuses;
5657   }
5658 }
5659 
5660 /// If the switch is only used to initialize one or more phi nodes in a common
5661 /// successor block with different constant values, replace the switch with
5662 /// lookup tables.
5663 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5664                                 DomTreeUpdater *DTU, const DataLayout &DL,
5665                                 const TargetTransformInfo &TTI) {
5666   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5667 
5668   BasicBlock *BB = SI->getParent();
5669   Function *Fn = BB->getParent();
5670   // Only build lookup table when we have a target that supports it or the
5671   // attribute is not set.
5672   if (!TTI.shouldBuildLookupTables() ||
5673       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5674     return false;
5675 
5676   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5677   // split off a dense part and build a lookup table for that.
5678 
5679   // FIXME: This creates arrays of GEPs to constant strings, which means each
5680   // GEP needs a runtime relocation in PIC code. We should just build one big
5681   // string and lookup indices into that.
5682 
5683   // Ignore switches with less than three cases. Lookup tables will not make
5684   // them faster, so we don't analyze them.
5685   if (SI->getNumCases() < 3)
5686     return false;
5687 
5688   // Figure out the corresponding result for each case value and phi node in the
5689   // common destination, as well as the min and max case values.
5690   assert(!SI->cases().empty());
5691   SwitchInst::CaseIt CI = SI->case_begin();
5692   ConstantInt *MinCaseVal = CI->getCaseValue();
5693   ConstantInt *MaxCaseVal = CI->getCaseValue();
5694 
5695   BasicBlock *CommonDest = nullptr;
5696 
5697   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5698   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5699 
5700   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5701   SmallDenseMap<PHINode *, Type *> ResultTypes;
5702   SmallVector<PHINode *, 4> PHIs;
5703 
5704   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5705     ConstantInt *CaseVal = CI->getCaseValue();
5706     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5707       MinCaseVal = CaseVal;
5708     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5709       MaxCaseVal = CaseVal;
5710 
5711     // Resulting value at phi nodes for this case value.
5712     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5713     ResultsTy Results;
5714     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5715                         Results, DL, TTI))
5716       return false;
5717 
5718     // Append the result from this case to the list for each phi.
5719     for (const auto &I : Results) {
5720       PHINode *PHI = I.first;
5721       Constant *Value = I.second;
5722       if (!ResultLists.count(PHI))
5723         PHIs.push_back(PHI);
5724       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5725     }
5726   }
5727 
5728   // Keep track of the result types.
5729   for (PHINode *PHI : PHIs) {
5730     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5731   }
5732 
5733   uint64_t NumResults = ResultLists[PHIs[0]].size();
5734   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5735   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5736   bool TableHasHoles = (NumResults < TableSize);
5737 
5738   // If the table has holes, we need a constant result for the default case
5739   // or a bitmask that fits in a register.
5740   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5741   bool HasDefaultResults =
5742       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5743                      DefaultResultsList, DL, TTI);
5744 
5745   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5746   if (NeedMask) {
5747     // As an extra penalty for the validity test we require more cases.
5748     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5749       return false;
5750     if (!DL.fitsInLegalInteger(TableSize))
5751       return false;
5752   }
5753 
5754   for (const auto &I : DefaultResultsList) {
5755     PHINode *PHI = I.first;
5756     Constant *Result = I.second;
5757     DefaultResults[PHI] = Result;
5758   }
5759 
5760   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5761     return false;
5762 
5763   std::vector<DominatorTree::UpdateType> Updates;
5764 
5765   // Create the BB that does the lookups.
5766   Module &Mod = *CommonDest->getParent()->getParent();
5767   BasicBlock *LookupBB = BasicBlock::Create(
5768       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5769 
5770   // Compute the table index value.
5771   Builder.SetInsertPoint(SI);
5772   Value *TableIndex;
5773   if (MinCaseVal->isNullValue())
5774     TableIndex = SI->getCondition();
5775   else
5776     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5777                                    "switch.tableidx");
5778 
5779   // Compute the maximum table size representable by the integer type we are
5780   // switching upon.
5781   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5782   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5783   assert(MaxTableSize >= TableSize &&
5784          "It is impossible for a switch to have more entries than the max "
5785          "representable value of its input integer type's size.");
5786 
5787   // If the default destination is unreachable, or if the lookup table covers
5788   // all values of the conditional variable, branch directly to the lookup table
5789   // BB. Otherwise, check that the condition is within the case range.
5790   const bool DefaultIsReachable =
5791       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5792   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5793   BranchInst *RangeCheckBranch = nullptr;
5794 
5795   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5796     Builder.CreateBr(LookupBB);
5797     Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5798     // Note: We call removeProdecessor later since we need to be able to get the
5799     // PHI value for the default case in case we're using a bit mask.
5800   } else {
5801     Value *Cmp = Builder.CreateICmpULT(
5802         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5803     RangeCheckBranch =
5804         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5805     Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5806   }
5807 
5808   // Populate the BB that does the lookups.
5809   Builder.SetInsertPoint(LookupBB);
5810 
5811   if (NeedMask) {
5812     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5813     // re-purposed to do the hole check, and we create a new LookupBB.
5814     BasicBlock *MaskBB = LookupBB;
5815     MaskBB->setName("switch.hole_check");
5816     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5817                                   CommonDest->getParent(), CommonDest);
5818 
5819     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5820     // unnecessary illegal types.
5821     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5822     APInt MaskInt(TableSizePowOf2, 0);
5823     APInt One(TableSizePowOf2, 1);
5824     // Build bitmask; fill in a 1 bit for every case.
5825     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5826     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5827       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5828                          .getLimitedValue();
5829       MaskInt |= One << Idx;
5830     }
5831     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5832 
5833     // Get the TableIndex'th bit of the bitmask.
5834     // If this bit is 0 (meaning hole) jump to the default destination,
5835     // else continue with table lookup.
5836     IntegerType *MapTy = TableMask->getType();
5837     Value *MaskIndex =
5838         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5839     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5840     Value *LoBit = Builder.CreateTrunc(
5841         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5842     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5843     Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
5844     Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
5845     Builder.SetInsertPoint(LookupBB);
5846     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
5847   }
5848 
5849   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5850     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5851     // do not delete PHINodes here.
5852     SI->getDefaultDest()->removePredecessor(BB,
5853                                             /*KeepOneInputPHIs=*/true);
5854     Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
5855   }
5856 
5857   bool ReturnedEarly = false;
5858   for (PHINode *PHI : PHIs) {
5859     const ResultListTy &ResultList = ResultLists[PHI];
5860 
5861     // If using a bitmask, use any value to fill the lookup table holes.
5862     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5863     StringRef FuncName = Fn->getName();
5864     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5865                             FuncName);
5866 
5867     Value *Result = Table.BuildLookup(TableIndex, Builder);
5868 
5869     // If the result is used to return immediately from the function, we want to
5870     // do that right here.
5871     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5872         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5873       Builder.CreateRet(Result);
5874       ReturnedEarly = true;
5875       break;
5876     }
5877 
5878     // Do a small peephole optimization: re-use the switch table compare if
5879     // possible.
5880     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5881       BasicBlock *PhiBlock = PHI->getParent();
5882       // Search for compare instructions which use the phi.
5883       for (auto *User : PHI->users()) {
5884         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5885       }
5886     }
5887 
5888     PHI->addIncoming(Result, LookupBB);
5889   }
5890 
5891   if (!ReturnedEarly) {
5892     Builder.CreateBr(CommonDest);
5893     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
5894   }
5895 
5896   // Remove the switch.
5897   SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
5898   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5899     BasicBlock *Succ = SI->getSuccessor(i);
5900 
5901     if (Succ == SI->getDefaultDest())
5902       continue;
5903     Succ->removePredecessor(BB);
5904     RemovedSuccessors.insert(Succ);
5905   }
5906   SI->eraseFromParent();
5907 
5908   if (DTU) {
5909     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
5910       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
5911     DTU->applyUpdates(Updates);
5912   }
5913 
5914   ++NumLookupTables;
5915   if (NeedMask)
5916     ++NumLookupTablesHoles;
5917   return true;
5918 }
5919 
5920 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5921   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5922   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5923   uint64_t Range = Diff + 1;
5924   uint64_t NumCases = Values.size();
5925   // 40% is the default density for building a jump table in optsize/minsize mode.
5926   uint64_t MinDensity = 40;
5927 
5928   return NumCases * 100 >= Range * MinDensity;
5929 }
5930 
5931 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5932 /// of cases.
5933 ///
5934 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5935 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5936 ///
5937 /// This converts a sparse switch into a dense switch which allows better
5938 /// lowering and could also allow transforming into a lookup table.
5939 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5940                               const DataLayout &DL,
5941                               const TargetTransformInfo &TTI) {
5942   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5943   if (CondTy->getIntegerBitWidth() > 64 ||
5944       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5945     return false;
5946   // Only bother with this optimization if there are more than 3 switch cases;
5947   // SDAG will only bother creating jump tables for 4 or more cases.
5948   if (SI->getNumCases() < 4)
5949     return false;
5950 
5951   // This transform is agnostic to the signedness of the input or case values. We
5952   // can treat the case values as signed or unsigned. We can optimize more common
5953   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5954   // as signed.
5955   SmallVector<int64_t,4> Values;
5956   for (auto &C : SI->cases())
5957     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5958   llvm::sort(Values);
5959 
5960   // If the switch is already dense, there's nothing useful to do here.
5961   if (isSwitchDense(Values))
5962     return false;
5963 
5964   // First, transform the values such that they start at zero and ascend.
5965   int64_t Base = Values[0];
5966   for (auto &V : Values)
5967     V -= (uint64_t)(Base);
5968 
5969   // Now we have signed numbers that have been shifted so that, given enough
5970   // precision, there are no negative values. Since the rest of the transform
5971   // is bitwise only, we switch now to an unsigned representation.
5972 
5973   // This transform can be done speculatively because it is so cheap - it
5974   // results in a single rotate operation being inserted.
5975   // FIXME: It's possible that optimizing a switch on powers of two might also
5976   // be beneficial - flag values are often powers of two and we could use a CLZ
5977   // as the key function.
5978 
5979   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5980   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5981   // less than 64.
5982   unsigned Shift = 64;
5983   for (auto &V : Values)
5984     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5985   assert(Shift < 64);
5986   if (Shift > 0)
5987     for (auto &V : Values)
5988       V = (int64_t)((uint64_t)V >> Shift);
5989 
5990   if (!isSwitchDense(Values))
5991     // Transform didn't create a dense switch.
5992     return false;
5993 
5994   // The obvious transform is to shift the switch condition right and emit a
5995   // check that the condition actually cleanly divided by GCD, i.e.
5996   //   C & (1 << Shift - 1) == 0
5997   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5998   //
5999   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6000   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6001   // are nonzero then the switch condition will be very large and will hit the
6002   // default case.
6003 
6004   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6005   Builder.SetInsertPoint(SI);
6006   auto *ShiftC = ConstantInt::get(Ty, Shift);
6007   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6008   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6009   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6010   auto *Rot = Builder.CreateOr(LShr, Shl);
6011   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6012 
6013   for (auto Case : SI->cases()) {
6014     auto *Orig = Case.getCaseValue();
6015     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6016     Case.setValue(
6017         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6018   }
6019   return true;
6020 }
6021 
6022 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6023   BasicBlock *BB = SI->getParent();
6024 
6025   if (isValueEqualityComparison(SI)) {
6026     // If we only have one predecessor, and if it is a branch on this value,
6027     // see if that predecessor totally determines the outcome of this switch.
6028     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6029       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6030         return requestResimplify();
6031 
6032     Value *Cond = SI->getCondition();
6033     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6034       if (SimplifySwitchOnSelect(SI, Select))
6035         return requestResimplify();
6036 
6037     // If the block only contains the switch, see if we can fold the block
6038     // away into any preds.
6039     if (SI == &*BB->instructionsWithoutDebug().begin())
6040       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6041         return requestResimplify();
6042   }
6043 
6044   // Try to transform the switch into an icmp and a branch.
6045   if (TurnSwitchRangeIntoICmp(SI, Builder))
6046     return requestResimplify();
6047 
6048   // Remove unreachable cases.
6049   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6050     return requestResimplify();
6051 
6052   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6053     return requestResimplify();
6054 
6055   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6056     return requestResimplify();
6057 
6058   // The conversion from switch to lookup tables results in difficult-to-analyze
6059   // code and makes pruning branches much harder. This is a problem if the
6060   // switch expression itself can still be restricted as a result of inlining or
6061   // CVP. Therefore, only apply this transformation during late stages of the
6062   // optimisation pipeline.
6063   if (Options.ConvertSwitchToLookupTable &&
6064       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6065     return requestResimplify();
6066 
6067   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6068     return requestResimplify();
6069 
6070   return false;
6071 }
6072 
6073 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6074   BasicBlock *BB = IBI->getParent();
6075   bool Changed = false;
6076 
6077   // Eliminate redundant destinations.
6078   SmallPtrSet<Value *, 8> Succs;
6079   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6080   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6081     BasicBlock *Dest = IBI->getDestination(i);
6082     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6083       if (!Dest->hasAddressTaken())
6084         RemovedSuccs.insert(Dest);
6085       Dest->removePredecessor(BB);
6086       IBI->removeDestination(i);
6087       --i;
6088       --e;
6089       Changed = true;
6090     }
6091   }
6092 
6093   if (DTU) {
6094     std::vector<DominatorTree::UpdateType> Updates;
6095     Updates.reserve(RemovedSuccs.size());
6096     for (auto *RemovedSucc : RemovedSuccs)
6097       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6098     DTU->applyUpdates(Updates);
6099   }
6100 
6101   if (IBI->getNumDestinations() == 0) {
6102     // If the indirectbr has no successors, change it to unreachable.
6103     new UnreachableInst(IBI->getContext(), IBI);
6104     EraseTerminatorAndDCECond(IBI);
6105     return true;
6106   }
6107 
6108   if (IBI->getNumDestinations() == 1) {
6109     // If the indirectbr has one successor, change it to a direct branch.
6110     BranchInst::Create(IBI->getDestination(0), IBI);
6111     EraseTerminatorAndDCECond(IBI);
6112     return true;
6113   }
6114 
6115   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6116     if (SimplifyIndirectBrOnSelect(IBI, SI))
6117       return requestResimplify();
6118   }
6119   return Changed;
6120 }
6121 
6122 /// Given an block with only a single landing pad and a unconditional branch
6123 /// try to find another basic block which this one can be merged with.  This
6124 /// handles cases where we have multiple invokes with unique landing pads, but
6125 /// a shared handler.
6126 ///
6127 /// We specifically choose to not worry about merging non-empty blocks
6128 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6129 /// practice, the optimizer produces empty landing pad blocks quite frequently
6130 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6131 /// sinking in this file)
6132 ///
6133 /// This is primarily a code size optimization.  We need to avoid performing
6134 /// any transform which might inhibit optimization (such as our ability to
6135 /// specialize a particular handler via tail commoning).  We do this by not
6136 /// merging any blocks which require us to introduce a phi.  Since the same
6137 /// values are flowing through both blocks, we don't lose any ability to
6138 /// specialize.  If anything, we make such specialization more likely.
6139 ///
6140 /// TODO - This transformation could remove entries from a phi in the target
6141 /// block when the inputs in the phi are the same for the two blocks being
6142 /// merged.  In some cases, this could result in removal of the PHI entirely.
6143 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6144                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6145   auto Succ = BB->getUniqueSuccessor();
6146   assert(Succ);
6147   // If there's a phi in the successor block, we'd likely have to introduce
6148   // a phi into the merged landing pad block.
6149   if (isa<PHINode>(*Succ->begin()))
6150     return false;
6151 
6152   for (BasicBlock *OtherPred : predecessors(Succ)) {
6153     if (BB == OtherPred)
6154       continue;
6155     BasicBlock::iterator I = OtherPred->begin();
6156     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6157     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6158       continue;
6159     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6160       ;
6161     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6162     if (!BI2 || !BI2->isIdenticalTo(BI))
6163       continue;
6164 
6165     std::vector<DominatorTree::UpdateType> Updates;
6166 
6167     // We've found an identical block.  Update our predecessors to take that
6168     // path instead and make ourselves dead.
6169     SmallPtrSet<BasicBlock *, 16> Preds;
6170     Preds.insert(pred_begin(BB), pred_end(BB));
6171     for (BasicBlock *Pred : Preds) {
6172       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6173       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6174              "unexpected successor");
6175       II->setUnwindDest(OtherPred);
6176       Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6177       Updates.push_back({DominatorTree::Delete, Pred, BB});
6178     }
6179 
6180     // The debug info in OtherPred doesn't cover the merged control flow that
6181     // used to go through BB.  We need to delete it or update it.
6182     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6183       Instruction &Inst = *I;
6184       I++;
6185       if (isa<DbgInfoIntrinsic>(Inst))
6186         Inst.eraseFromParent();
6187     }
6188 
6189     SmallPtrSet<BasicBlock *, 16> Succs;
6190     Succs.insert(succ_begin(BB), succ_end(BB));
6191     for (BasicBlock *Succ : Succs) {
6192       Succ->removePredecessor(BB);
6193       Updates.push_back({DominatorTree::Delete, BB, Succ});
6194     }
6195 
6196     IRBuilder<> Builder(BI);
6197     Builder.CreateUnreachable();
6198     BI->eraseFromParent();
6199     if (DTU)
6200       DTU->applyUpdates(Updates);
6201     return true;
6202   }
6203   return false;
6204 }
6205 
6206 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6207   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6208                                    : simplifyCondBranch(Branch, Builder);
6209 }
6210 
6211 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6212                                           IRBuilder<> &Builder) {
6213   BasicBlock *BB = BI->getParent();
6214   BasicBlock *Succ = BI->getSuccessor(0);
6215 
6216   // If the Terminator is the only non-phi instruction, simplify the block.
6217   // If LoopHeader is provided, check if the block or its successor is a loop
6218   // header. (This is for early invocations before loop simplify and
6219   // vectorization to keep canonical loop forms for nested loops. These blocks
6220   // can be eliminated when the pass is invoked later in the back-end.)
6221   // Note that if BB has only one predecessor then we do not introduce new
6222   // backedge, so we can eliminate BB.
6223   bool NeedCanonicalLoop =
6224       Options.NeedCanonicalLoop &&
6225       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6226        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6227   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
6228   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6229       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6230     return true;
6231 
6232   // If the only instruction in the block is a seteq/setne comparison against a
6233   // constant, try to simplify the block.
6234   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6235     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6236       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6237         ;
6238       if (I->isTerminator() &&
6239           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6240         return true;
6241     }
6242 
6243   // See if we can merge an empty landing pad block with another which is
6244   // equivalent.
6245   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6246     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6247       ;
6248     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6249       return true;
6250   }
6251 
6252   // If this basic block is ONLY a compare and a branch, and if a predecessor
6253   // branches to us and our successor, fold the comparison into the
6254   // predecessor and use logical operations to update the incoming value
6255   // for PHI nodes in common successor.
6256   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6257                              Options.BonusInstThreshold))
6258     return requestResimplify();
6259   return false;
6260 }
6261 
6262 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6263   BasicBlock *PredPred = nullptr;
6264   for (auto *P : predecessors(BB)) {
6265     BasicBlock *PPred = P->getSinglePredecessor();
6266     if (!PPred || (PredPred && PredPred != PPred))
6267       return nullptr;
6268     PredPred = PPred;
6269   }
6270   return PredPred;
6271 }
6272 
6273 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6274   BasicBlock *BB = BI->getParent();
6275   if (!Options.SimplifyCondBranch)
6276     return false;
6277 
6278   // Conditional branch
6279   if (isValueEqualityComparison(BI)) {
6280     // If we only have one predecessor, and if it is a branch on this value,
6281     // see if that predecessor totally determines the outcome of this
6282     // switch.
6283     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6284       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6285         return requestResimplify();
6286 
6287     // This block must be empty, except for the setcond inst, if it exists.
6288     // Ignore dbg intrinsics.
6289     auto I = BB->instructionsWithoutDebug().begin();
6290     if (&*I == BI) {
6291       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6292         return requestResimplify();
6293     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6294       ++I;
6295       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6296         return requestResimplify();
6297     }
6298   }
6299 
6300   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6301   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6302     return true;
6303 
6304   // If this basic block has dominating predecessor blocks and the dominating
6305   // blocks' conditions imply BI's condition, we know the direction of BI.
6306   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6307   if (Imp) {
6308     // Turn this into a branch on constant.
6309     auto *OldCond = BI->getCondition();
6310     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6311                              : ConstantInt::getFalse(BB->getContext());
6312     BI->setCondition(TorF);
6313     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6314     return requestResimplify();
6315   }
6316 
6317   // If this basic block is ONLY a compare and a branch, and if a predecessor
6318   // branches to us and one of our successors, fold the comparison into the
6319   // predecessor and use logical operations to pick the right destination.
6320   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6321                              Options.BonusInstThreshold))
6322     return requestResimplify();
6323 
6324   // We have a conditional branch to two blocks that are only reachable
6325   // from BI.  We know that the condbr dominates the two blocks, so see if
6326   // there is any identical code in the "then" and "else" blocks.  If so, we
6327   // can hoist it up to the branching block.
6328   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6329     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6330       if (HoistCommon && Options.HoistCommonInsts)
6331         if (HoistThenElseCodeToIf(BI, TTI))
6332           return requestResimplify();
6333     } else {
6334       // If Successor #1 has multiple preds, we may be able to conditionally
6335       // execute Successor #0 if it branches to Successor #1.
6336       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6337       if (Succ0TI->getNumSuccessors() == 1 &&
6338           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6339         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6340           return requestResimplify();
6341     }
6342   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6343     // If Successor #0 has multiple preds, we may be able to conditionally
6344     // execute Successor #1 if it branches to Successor #0.
6345     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6346     if (Succ1TI->getNumSuccessors() == 1 &&
6347         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6348       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6349         return requestResimplify();
6350   }
6351 
6352   // If this is a branch on a phi node in the current block, thread control
6353   // through this block if any PHI node entries are constants.
6354   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6355     if (PN->getParent() == BI->getParent())
6356       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6357         return requestResimplify();
6358 
6359   // Scan predecessor blocks for conditional branches.
6360   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6361     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6362       if (PBI != BI && PBI->isConditional())
6363         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6364           return requestResimplify();
6365 
6366   // Look for diamond patterns.
6367   if (MergeCondStores)
6368     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6369       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6370         if (PBI != BI && PBI->isConditional())
6371           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6372             return requestResimplify();
6373 
6374   return false;
6375 }
6376 
6377 /// Check if passing a value to an instruction will cause undefined behavior.
6378 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6379   Constant *C = dyn_cast<Constant>(V);
6380   if (!C)
6381     return false;
6382 
6383   if (I->use_empty())
6384     return false;
6385 
6386   if (C->isNullValue() || isa<UndefValue>(C)) {
6387     // Only look at the first use, avoid hurting compile time with long uselists
6388     User *Use = *I->user_begin();
6389 
6390     // Now make sure that there are no instructions in between that can alter
6391     // control flow (eg. calls)
6392     for (BasicBlock::iterator
6393              i = ++BasicBlock::iterator(I),
6394              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6395          i != UI; ++i)
6396       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6397         return false;
6398 
6399     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6400     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6401       if (GEP->getPointerOperand() == I) {
6402         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6403           PtrValueMayBeModified = true;
6404         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6405       }
6406 
6407     // Look through bitcasts.
6408     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6409       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6410 
6411     // Load from null is undefined.
6412     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6413       if (!LI->isVolatile())
6414         return !NullPointerIsDefined(LI->getFunction(),
6415                                      LI->getPointerAddressSpace());
6416 
6417     // Store to null is undefined.
6418     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6419       if (!SI->isVolatile())
6420         return (!NullPointerIsDefined(SI->getFunction(),
6421                                       SI->getPointerAddressSpace())) &&
6422                SI->getPointerOperand() == I;
6423 
6424     if (auto *CB = dyn_cast<CallBase>(Use)) {
6425       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6426         return false;
6427       // A call to null is undefined.
6428       if (CB->getCalledOperand() == I)
6429         return true;
6430 
6431       if (C->isNullValue()) {
6432         for (const llvm::Use &Arg : CB->args())
6433           if (Arg == I) {
6434             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6435             if (CB->paramHasAttr(ArgIdx, Attribute::NonNull) &&
6436                 CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) {
6437               // Passing null to a nonnnull+noundef argument is undefined.
6438               return !PtrValueMayBeModified;
6439             }
6440           }
6441       } else if (isa<UndefValue>(C)) {
6442         // Passing undef to a noundef argument is undefined.
6443         for (const llvm::Use &Arg : CB->args())
6444           if (Arg == I) {
6445             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6446             if (CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) {
6447               // Passing undef to a noundef argument is undefined.
6448               return true;
6449             }
6450           }
6451       }
6452     }
6453   }
6454   return false;
6455 }
6456 
6457 /// If BB has an incoming value that will always trigger undefined behavior
6458 /// (eg. null pointer dereference), remove the branch leading here.
6459 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6460                                               DomTreeUpdater *DTU) {
6461   for (PHINode &PHI : BB->phis())
6462     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6463       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6464         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6465         Instruction *T = Predecessor->getTerminator();
6466         IRBuilder<> Builder(T);
6467         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6468           BB->removePredecessor(Predecessor);
6469           // Turn uncoditional branches into unreachables and remove the dead
6470           // destination from conditional branches.
6471           if (BI->isUnconditional())
6472             Builder.CreateUnreachable();
6473           else
6474             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6475                                                        : BI->getSuccessor(0));
6476           BI->eraseFromParent();
6477           if (DTU)
6478             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6479           return true;
6480         }
6481         // TODO: SwitchInst.
6482       }
6483 
6484   return false;
6485 }
6486 
6487 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6488   bool Changed = false;
6489 
6490   assert(BB && BB->getParent() && "Block not embedded in function!");
6491   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6492 
6493   // Remove basic blocks that have no predecessors (except the entry block)...
6494   // or that just have themself as a predecessor.  These are unreachable.
6495   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6496       BB->getSinglePredecessor() == BB) {
6497     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6498     DeleteDeadBlock(BB, DTU);
6499     return true;
6500   }
6501 
6502   // Check to see if we can constant propagate this terminator instruction
6503   // away...
6504   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6505                                     /*TLI=*/nullptr, DTU);
6506 
6507   // Check for and eliminate duplicate PHI nodes in this block.
6508   Changed |= EliminateDuplicatePHINodes(BB);
6509 
6510   // Check for and remove branches that will always cause undefined behavior.
6511   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6512 
6513   // Merge basic blocks into their predecessor if there is only one distinct
6514   // pred, and if there is only one distinct successor of the predecessor, and
6515   // if there are no PHI nodes.
6516   if (MergeBlockIntoPredecessor(BB, DTU))
6517     return true;
6518 
6519   if (SinkCommon && Options.SinkCommonInsts)
6520     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6521 
6522   IRBuilder<> Builder(BB);
6523 
6524   if (Options.FoldTwoEntryPHINode) {
6525     // If there is a trivial two-entry PHI node in this basic block, and we can
6526     // eliminate it, do so now.
6527     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6528       if (PN->getNumIncomingValues() == 2)
6529         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6530   }
6531 
6532   Instruction *Terminator = BB->getTerminator();
6533   Builder.SetInsertPoint(Terminator);
6534   switch (Terminator->getOpcode()) {
6535   case Instruction::Br:
6536     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6537     break;
6538   case Instruction::Ret:
6539     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6540     break;
6541   case Instruction::Resume:
6542     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6543     break;
6544   case Instruction::CleanupRet:
6545     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6546     break;
6547   case Instruction::Switch:
6548     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6549     break;
6550   case Instruction::Unreachable:
6551     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6552     break;
6553   case Instruction::IndirectBr:
6554     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6555     break;
6556   }
6557 
6558   return Changed;
6559 }
6560 
6561 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6562   bool Changed = simplifyOnceImpl(BB);
6563 
6564   assert((!RequireAndPreserveDomTree ||
6565           (DTU &&
6566            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6567          "Failed to maintain validity of domtree!");
6568 
6569   return Changed;
6570 }
6571 
6572 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6573   assert((!RequireAndPreserveDomTree ||
6574           (DTU &&
6575            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6576          "Original domtree is invalid?");
6577 
6578   bool Changed = false;
6579 
6580   // Repeated simplify BB as long as resimplification is requested.
6581   do {
6582     Resimplify = false;
6583 
6584     // Perform one round of simplifcation. Resimplify flag will be set if
6585     // another iteration is requested.
6586     Changed |= simplifyOnce(BB);
6587   } while (Resimplify);
6588 
6589   return Changed;
6590 }
6591 
6592 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6593                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6594                        ArrayRef<WeakVH> LoopHeaders) {
6595   return SimplifyCFGOpt(TTI, RequireAndPreserveDomTree ? DTU : nullptr,
6596                         BB->getModule()->getDataLayout(), LoopHeaders, Options)
6597       .run(BB);
6598 }
6599