1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/ValueHandle.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/KnownBits.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 73 #include "llvm/Transforms/Utils/Local.h" 74 #include "llvm/Transforms/Utils/SSAUpdater.h" 75 #include "llvm/Transforms/Utils/ValueMapper.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <set> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "simplifycfg" 92 93 cl::opt<bool> llvm::RequireAndPreserveDomTree( 94 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 95 cl::init(false), 96 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 97 "into preserving DomTree,")); 98 99 // Chosen as 2 so as to be cheap, but still to have enough power to fold 100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 101 // To catch this, we need to fold a compare and a select, hence '2' being the 102 // minimum reasonable default. 103 static cl::opt<unsigned> PHINodeFoldingThreshold( 104 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 105 cl::desc( 106 "Control the amount of phi node folding to perform (default = 2)")); 107 108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 109 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 110 cl::desc("Control the maximal total instruction cost that we are willing " 111 "to speculatively execute to fold a 2-entry PHI node into a " 112 "select (default = 4)")); 113 114 static cl::opt<bool> DupRet( 115 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 116 cl::desc("Duplicate return instructions into unconditional branches")); 117 118 static cl::opt<bool> 119 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 120 cl::desc("Hoist common instructions up to the parent block")); 121 122 static cl::opt<bool> 123 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 124 cl::desc("Sink common instructions down to the end block")); 125 126 static cl::opt<bool> HoistCondStores( 127 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 128 cl::desc("Hoist conditional stores if an unconditional store precedes")); 129 130 static cl::opt<bool> MergeCondStores( 131 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 132 cl::desc("Hoist conditional stores even if an unconditional store does not " 133 "precede - hoist multiple conditional stores into a single " 134 "predicated store")); 135 136 static cl::opt<bool> MergeCondStoresAggressively( 137 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 138 cl::desc("When merging conditional stores, do so even if the resultant " 139 "basic blocks are unlikely to be if-converted as a result")); 140 141 static cl::opt<bool> SpeculateOneExpensiveInst( 142 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 143 cl::desc("Allow exactly one expensive instruction to be speculatively " 144 "executed")); 145 146 static cl::opt<unsigned> MaxSpeculationDepth( 147 "max-speculation-depth", cl::Hidden, cl::init(10), 148 cl::desc("Limit maximum recursion depth when calculating costs of " 149 "speculatively executed instructions")); 150 151 static cl::opt<int> 152 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 153 cl::desc("Max size of a block which is still considered " 154 "small enough to thread through")); 155 156 // Two is chosen to allow one negation and a logical combine. 157 static cl::opt<unsigned> 158 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 159 cl::init(2), 160 cl::desc("Maximum cost of combining conditions when " 161 "folding branches")); 162 163 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 164 STATISTIC(NumLinearMaps, 165 "Number of switch instructions turned into linear mapping"); 166 STATISTIC(NumLookupTables, 167 "Number of switch instructions turned into lookup tables"); 168 STATISTIC( 169 NumLookupTablesHoles, 170 "Number of switch instructions turned into lookup tables (holes checked)"); 171 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 172 STATISTIC(NumFoldValueComparisonIntoPredecessors, 173 "Number of value comparisons folded into predecessor basic blocks"); 174 STATISTIC(NumFoldBranchToCommonDest, 175 "Number of branches folded into predecessor basic block"); 176 STATISTIC( 177 NumHoistCommonCode, 178 "Number of common instruction 'blocks' hoisted up to the begin block"); 179 STATISTIC(NumHoistCommonInstrs, 180 "Number of common instructions hoisted up to the begin block"); 181 STATISTIC(NumSinkCommonCode, 182 "Number of common instruction 'blocks' sunk down to the end block"); 183 STATISTIC(NumSinkCommonInstrs, 184 "Number of common instructions sunk down to the end block"); 185 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 186 STATISTIC(NumInvokes, 187 "Number of invokes with empty resume blocks simplified into calls"); 188 189 namespace { 190 191 // The first field contains the value that the switch produces when a certain 192 // case group is selected, and the second field is a vector containing the 193 // cases composing the case group. 194 using SwitchCaseResultVectorTy = 195 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 196 197 // The first field contains the phi node that generates a result of the switch 198 // and the second field contains the value generated for a certain case in the 199 // switch for that PHI. 200 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 201 202 /// ValueEqualityComparisonCase - Represents a case of a switch. 203 struct ValueEqualityComparisonCase { 204 ConstantInt *Value; 205 BasicBlock *Dest; 206 207 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 208 : Value(Value), Dest(Dest) {} 209 210 bool operator<(ValueEqualityComparisonCase RHS) const { 211 // Comparing pointers is ok as we only rely on the order for uniquing. 212 return Value < RHS.Value; 213 } 214 215 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 216 }; 217 218 class SimplifyCFGOpt { 219 const TargetTransformInfo &TTI; 220 DomTreeUpdater *DTU; 221 const DataLayout &DL; 222 ArrayRef<WeakVH> LoopHeaders; 223 const SimplifyCFGOptions &Options; 224 bool Resimplify; 225 226 Value *isValueEqualityComparison(Instruction *TI); 227 BasicBlock *GetValueEqualityComparisonCases( 228 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 229 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 230 BasicBlock *Pred, 231 IRBuilder<> &Builder); 232 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 233 Instruction *PTI, 234 IRBuilder<> &Builder); 235 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 236 IRBuilder<> &Builder); 237 238 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 239 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 240 bool simplifySingleResume(ResumeInst *RI); 241 bool simplifyCommonResume(ResumeInst *RI); 242 bool simplifyCleanupReturn(CleanupReturnInst *RI); 243 bool simplifyUnreachable(UnreachableInst *UI); 244 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 245 bool simplifyIndirectBr(IndirectBrInst *IBI); 246 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 247 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 248 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 249 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 250 251 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 252 IRBuilder<> &Builder); 253 254 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 255 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 256 const TargetTransformInfo &TTI); 257 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 258 BasicBlock *TrueBB, BasicBlock *FalseBB, 259 uint32_t TrueWeight, uint32_t FalseWeight); 260 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 261 const DataLayout &DL); 262 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 263 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 264 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 265 266 public: 267 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 268 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 269 const SimplifyCFGOptions &Opts) 270 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 271 assert((!DTU || !DTU->hasPostDomTree()) && 272 "SimplifyCFG is not yet capable of maintaining validity of a " 273 "PostDomTree, so don't ask for it."); 274 } 275 276 bool simplifyOnce(BasicBlock *BB); 277 bool simplifyOnceImpl(BasicBlock *BB); 278 bool run(BasicBlock *BB); 279 280 // Helper to set Resimplify and return change indication. 281 bool requestResimplify() { 282 Resimplify = true; 283 return true; 284 } 285 }; 286 287 } // end anonymous namespace 288 289 /// Return true if it is safe to merge these two 290 /// terminator instructions together. 291 static bool 292 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 293 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 294 if (SI1 == SI2) 295 return false; // Can't merge with self! 296 297 // It is not safe to merge these two switch instructions if they have a common 298 // successor, and if that successor has a PHI node, and if *that* PHI node has 299 // conflicting incoming values from the two switch blocks. 300 BasicBlock *SI1BB = SI1->getParent(); 301 BasicBlock *SI2BB = SI2->getParent(); 302 303 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 304 bool Fail = false; 305 for (BasicBlock *Succ : successors(SI2BB)) 306 if (SI1Succs.count(Succ)) 307 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 308 PHINode *PN = cast<PHINode>(BBI); 309 if (PN->getIncomingValueForBlock(SI1BB) != 310 PN->getIncomingValueForBlock(SI2BB)) { 311 if (FailBlocks) 312 FailBlocks->insert(Succ); 313 Fail = true; 314 } 315 } 316 317 return !Fail; 318 } 319 320 /// Update PHI nodes in Succ to indicate that there will now be entries in it 321 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 322 /// will be the same as those coming in from ExistPred, an existing predecessor 323 /// of Succ. 324 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 325 BasicBlock *ExistPred, 326 MemorySSAUpdater *MSSAU = nullptr) { 327 for (PHINode &PN : Succ->phis()) 328 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 329 if (MSSAU) 330 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 331 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 332 } 333 334 /// Compute an abstract "cost" of speculating the given instruction, 335 /// which is assumed to be safe to speculate. TCC_Free means cheap, 336 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 337 /// expensive. 338 static unsigned ComputeSpeculationCost(const User *I, 339 const TargetTransformInfo &TTI) { 340 assert(isSafeToSpeculativelyExecute(I) && 341 "Instruction is not safe to speculatively execute!"); 342 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 343 } 344 345 /// If we have a merge point of an "if condition" as accepted above, 346 /// return true if the specified value dominates the block. We 347 /// don't handle the true generality of domination here, just a special case 348 /// which works well enough for us. 349 /// 350 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 351 /// see if V (which must be an instruction) and its recursive operands 352 /// that do not dominate BB have a combined cost lower than CostRemaining and 353 /// are non-trapping. If both are true, the instruction is inserted into the 354 /// set and true is returned. 355 /// 356 /// The cost for most non-trapping instructions is defined as 1 except for 357 /// Select whose cost is 2. 358 /// 359 /// After this function returns, CostRemaining is decreased by the cost of 360 /// V plus its non-dominating operands. If that cost is greater than 361 /// CostRemaining, false is returned and CostRemaining is undefined. 362 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 363 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 364 int &BudgetRemaining, 365 const TargetTransformInfo &TTI, 366 unsigned Depth = 0) { 367 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 368 // so limit the recursion depth. 369 // TODO: While this recursion limit does prevent pathological behavior, it 370 // would be better to track visited instructions to avoid cycles. 371 if (Depth == MaxSpeculationDepth) 372 return false; 373 374 Instruction *I = dyn_cast<Instruction>(V); 375 if (!I) { 376 // Non-instructions all dominate instructions, but not all constantexprs 377 // can be executed unconditionally. 378 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 379 if (C->canTrap()) 380 return false; 381 return true; 382 } 383 BasicBlock *PBB = I->getParent(); 384 385 // We don't want to allow weird loops that might have the "if condition" in 386 // the bottom of this block. 387 if (PBB == BB) 388 return false; 389 390 // If this instruction is defined in a block that contains an unconditional 391 // branch to BB, then it must be in the 'conditional' part of the "if 392 // statement". If not, it definitely dominates the region. 393 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 394 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 395 return true; 396 397 // If we have seen this instruction before, don't count it again. 398 if (AggressiveInsts.count(I)) 399 return true; 400 401 // Okay, it looks like the instruction IS in the "condition". Check to 402 // see if it's a cheap instruction to unconditionally compute, and if it 403 // only uses stuff defined outside of the condition. If so, hoist it out. 404 if (!isSafeToSpeculativelyExecute(I)) 405 return false; 406 407 BudgetRemaining -= ComputeSpeculationCost(I, TTI); 408 409 // Allow exactly one instruction to be speculated regardless of its cost 410 // (as long as it is safe to do so). 411 // This is intended to flatten the CFG even if the instruction is a division 412 // or other expensive operation. The speculation of an expensive instruction 413 // is expected to be undone in CodeGenPrepare if the speculation has not 414 // enabled further IR optimizations. 415 if (BudgetRemaining < 0 && 416 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 417 return false; 418 419 // Okay, we can only really hoist these out if their operands do 420 // not take us over the cost threshold. 421 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 422 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI, 423 Depth + 1)) 424 return false; 425 // Okay, it's safe to do this! Remember this instruction. 426 AggressiveInsts.insert(I); 427 return true; 428 } 429 430 /// Extract ConstantInt from value, looking through IntToPtr 431 /// and PointerNullValue. Return NULL if value is not a constant int. 432 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 433 // Normal constant int. 434 ConstantInt *CI = dyn_cast<ConstantInt>(V); 435 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 436 return CI; 437 438 // This is some kind of pointer constant. Turn it into a pointer-sized 439 // ConstantInt if possible. 440 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 441 442 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 443 if (isa<ConstantPointerNull>(V)) 444 return ConstantInt::get(PtrTy, 0); 445 446 // IntToPtr const int. 447 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 448 if (CE->getOpcode() == Instruction::IntToPtr) 449 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 450 // The constant is very likely to have the right type already. 451 if (CI->getType() == PtrTy) 452 return CI; 453 else 454 return cast<ConstantInt>( 455 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 456 } 457 return nullptr; 458 } 459 460 namespace { 461 462 /// Given a chain of or (||) or and (&&) comparison of a value against a 463 /// constant, this will try to recover the information required for a switch 464 /// structure. 465 /// It will depth-first traverse the chain of comparison, seeking for patterns 466 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 467 /// representing the different cases for the switch. 468 /// Note that if the chain is composed of '||' it will build the set of elements 469 /// that matches the comparisons (i.e. any of this value validate the chain) 470 /// while for a chain of '&&' it will build the set elements that make the test 471 /// fail. 472 struct ConstantComparesGatherer { 473 const DataLayout &DL; 474 475 /// Value found for the switch comparison 476 Value *CompValue = nullptr; 477 478 /// Extra clause to be checked before the switch 479 Value *Extra = nullptr; 480 481 /// Set of integers to match in switch 482 SmallVector<ConstantInt *, 8> Vals; 483 484 /// Number of comparisons matched in the and/or chain 485 unsigned UsedICmps = 0; 486 487 /// Construct and compute the result for the comparison instruction Cond 488 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 489 gather(Cond); 490 } 491 492 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 493 ConstantComparesGatherer & 494 operator=(const ConstantComparesGatherer &) = delete; 495 496 private: 497 /// Try to set the current value used for the comparison, it succeeds only if 498 /// it wasn't set before or if the new value is the same as the old one 499 bool setValueOnce(Value *NewVal) { 500 if (CompValue && CompValue != NewVal) 501 return false; 502 CompValue = NewVal; 503 return (CompValue != nullptr); 504 } 505 506 /// Try to match Instruction "I" as a comparison against a constant and 507 /// populates the array Vals with the set of values that match (or do not 508 /// match depending on isEQ). 509 /// Return false on failure. On success, the Value the comparison matched 510 /// against is placed in CompValue. 511 /// If CompValue is already set, the function is expected to fail if a match 512 /// is found but the value compared to is different. 513 bool matchInstruction(Instruction *I, bool isEQ) { 514 // If this is an icmp against a constant, handle this as one of the cases. 515 ICmpInst *ICI; 516 ConstantInt *C; 517 if (!((ICI = dyn_cast<ICmpInst>(I)) && 518 (C = GetConstantInt(I->getOperand(1), DL)))) { 519 return false; 520 } 521 522 Value *RHSVal; 523 const APInt *RHSC; 524 525 // Pattern match a special case 526 // (x & ~2^z) == y --> x == y || x == y|2^z 527 // This undoes a transformation done by instcombine to fuse 2 compares. 528 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 529 // It's a little bit hard to see why the following transformations are 530 // correct. Here is a CVC3 program to verify them for 64-bit values: 531 532 /* 533 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 534 x : BITVECTOR(64); 535 y : BITVECTOR(64); 536 z : BITVECTOR(64); 537 mask : BITVECTOR(64) = BVSHL(ONE, z); 538 QUERY( (y & ~mask = y) => 539 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 540 ); 541 QUERY( (y | mask = y) => 542 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 543 ); 544 */ 545 546 // Please note that each pattern must be a dual implication (<--> or 547 // iff). One directional implication can create spurious matches. If the 548 // implication is only one-way, an unsatisfiable condition on the left 549 // side can imply a satisfiable condition on the right side. Dual 550 // implication ensures that satisfiable conditions are transformed to 551 // other satisfiable conditions and unsatisfiable conditions are 552 // transformed to other unsatisfiable conditions. 553 554 // Here is a concrete example of a unsatisfiable condition on the left 555 // implying a satisfiable condition on the right: 556 // 557 // mask = (1 << z) 558 // (x & ~mask) == y --> (x == y || x == (y | mask)) 559 // 560 // Substituting y = 3, z = 0 yields: 561 // (x & -2) == 3 --> (x == 3 || x == 2) 562 563 // Pattern match a special case: 564 /* 565 QUERY( (y & ~mask = y) => 566 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 567 ); 568 */ 569 if (match(ICI->getOperand(0), 570 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 571 APInt Mask = ~*RHSC; 572 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 573 // If we already have a value for the switch, it has to match! 574 if (!setValueOnce(RHSVal)) 575 return false; 576 577 Vals.push_back(C); 578 Vals.push_back( 579 ConstantInt::get(C->getContext(), 580 C->getValue() | Mask)); 581 UsedICmps++; 582 return true; 583 } 584 } 585 586 // Pattern match a special case: 587 /* 588 QUERY( (y | mask = y) => 589 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 590 ); 591 */ 592 if (match(ICI->getOperand(0), 593 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 594 APInt Mask = *RHSC; 595 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 596 // If we already have a value for the switch, it has to match! 597 if (!setValueOnce(RHSVal)) 598 return false; 599 600 Vals.push_back(C); 601 Vals.push_back(ConstantInt::get(C->getContext(), 602 C->getValue() & ~Mask)); 603 UsedICmps++; 604 return true; 605 } 606 } 607 608 // If we already have a value for the switch, it has to match! 609 if (!setValueOnce(ICI->getOperand(0))) 610 return false; 611 612 UsedICmps++; 613 Vals.push_back(C); 614 return ICI->getOperand(0); 615 } 616 617 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 618 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 619 ICI->getPredicate(), C->getValue()); 620 621 // Shift the range if the compare is fed by an add. This is the range 622 // compare idiom as emitted by instcombine. 623 Value *CandidateVal = I->getOperand(0); 624 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 625 Span = Span.subtract(*RHSC); 626 CandidateVal = RHSVal; 627 } 628 629 // If this is an and/!= check, then we are looking to build the set of 630 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 631 // x != 0 && x != 1. 632 if (!isEQ) 633 Span = Span.inverse(); 634 635 // If there are a ton of values, we don't want to make a ginormous switch. 636 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 637 return false; 638 } 639 640 // If we already have a value for the switch, it has to match! 641 if (!setValueOnce(CandidateVal)) 642 return false; 643 644 // Add all values from the range to the set 645 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 646 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 647 648 UsedICmps++; 649 return true; 650 } 651 652 /// Given a potentially 'or'd or 'and'd together collection of icmp 653 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 654 /// the value being compared, and stick the list constants into the Vals 655 /// vector. 656 /// One "Extra" case is allowed to differ from the other. 657 void gather(Value *V) { 658 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 659 660 // Keep a stack (SmallVector for efficiency) for depth-first traversal 661 SmallVector<Value *, 8> DFT; 662 SmallPtrSet<Value *, 8> Visited; 663 664 // Initialize 665 Visited.insert(V); 666 DFT.push_back(V); 667 668 while (!DFT.empty()) { 669 V = DFT.pop_back_val(); 670 671 if (Instruction *I = dyn_cast<Instruction>(V)) { 672 // If it is a || (or && depending on isEQ), process the operands. 673 Value *Op0, *Op1; 674 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 675 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 676 if (Visited.insert(Op1).second) 677 DFT.push_back(Op1); 678 if (Visited.insert(Op0).second) 679 DFT.push_back(Op0); 680 681 continue; 682 } 683 684 // Try to match the current instruction 685 if (matchInstruction(I, isEQ)) 686 // Match succeed, continue the loop 687 continue; 688 } 689 690 // One element of the sequence of || (or &&) could not be match as a 691 // comparison against the same value as the others. 692 // We allow only one "Extra" case to be checked before the switch 693 if (!Extra) { 694 Extra = V; 695 continue; 696 } 697 // Failed to parse a proper sequence, abort now 698 CompValue = nullptr; 699 break; 700 } 701 } 702 }; 703 704 } // end anonymous namespace 705 706 static void EraseTerminatorAndDCECond(Instruction *TI, 707 MemorySSAUpdater *MSSAU = nullptr) { 708 Instruction *Cond = nullptr; 709 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 710 Cond = dyn_cast<Instruction>(SI->getCondition()); 711 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 712 if (BI->isConditional()) 713 Cond = dyn_cast<Instruction>(BI->getCondition()); 714 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 715 Cond = dyn_cast<Instruction>(IBI->getAddress()); 716 } 717 718 TI->eraseFromParent(); 719 if (Cond) 720 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 721 } 722 723 /// Return true if the specified terminator checks 724 /// to see if a value is equal to constant integer value. 725 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 726 Value *CV = nullptr; 727 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 728 // Do not permit merging of large switch instructions into their 729 // predecessors unless there is only one predecessor. 730 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 731 CV = SI->getCondition(); 732 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 733 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 734 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 735 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 736 CV = ICI->getOperand(0); 737 } 738 739 // Unwrap any lossless ptrtoint cast. 740 if (CV) { 741 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 742 Value *Ptr = PTII->getPointerOperand(); 743 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 744 CV = Ptr; 745 } 746 } 747 return CV; 748 } 749 750 /// Given a value comparison instruction, 751 /// decode all of the 'cases' that it represents and return the 'default' block. 752 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 753 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 754 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 755 Cases.reserve(SI->getNumCases()); 756 for (auto Case : SI->cases()) 757 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 758 Case.getCaseSuccessor())); 759 return SI->getDefaultDest(); 760 } 761 762 BranchInst *BI = cast<BranchInst>(TI); 763 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 764 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 765 Cases.push_back(ValueEqualityComparisonCase( 766 GetConstantInt(ICI->getOperand(1), DL), Succ)); 767 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 768 } 769 770 /// Given a vector of bb/value pairs, remove any entries 771 /// in the list that match the specified block. 772 static void 773 EliminateBlockCases(BasicBlock *BB, 774 std::vector<ValueEqualityComparisonCase> &Cases) { 775 llvm::erase_value(Cases, BB); 776 } 777 778 /// Return true if there are any keys in C1 that exist in C2 as well. 779 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 780 std::vector<ValueEqualityComparisonCase> &C2) { 781 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 782 783 // Make V1 be smaller than V2. 784 if (V1->size() > V2->size()) 785 std::swap(V1, V2); 786 787 if (V1->empty()) 788 return false; 789 if (V1->size() == 1) { 790 // Just scan V2. 791 ConstantInt *TheVal = (*V1)[0].Value; 792 for (unsigned i = 0, e = V2->size(); i != e; ++i) 793 if (TheVal == (*V2)[i].Value) 794 return true; 795 } 796 797 // Otherwise, just sort both lists and compare element by element. 798 array_pod_sort(V1->begin(), V1->end()); 799 array_pod_sort(V2->begin(), V2->end()); 800 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 801 while (i1 != e1 && i2 != e2) { 802 if ((*V1)[i1].Value == (*V2)[i2].Value) 803 return true; 804 if ((*V1)[i1].Value < (*V2)[i2].Value) 805 ++i1; 806 else 807 ++i2; 808 } 809 return false; 810 } 811 812 // Set branch weights on SwitchInst. This sets the metadata if there is at 813 // least one non-zero weight. 814 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 815 // Check that there is at least one non-zero weight. Otherwise, pass 816 // nullptr to setMetadata which will erase the existing metadata. 817 MDNode *N = nullptr; 818 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 819 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 820 SI->setMetadata(LLVMContext::MD_prof, N); 821 } 822 823 // Similar to the above, but for branch and select instructions that take 824 // exactly 2 weights. 825 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 826 uint32_t FalseWeight) { 827 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 828 // Check that there is at least one non-zero weight. Otherwise, pass 829 // nullptr to setMetadata which will erase the existing metadata. 830 MDNode *N = nullptr; 831 if (TrueWeight || FalseWeight) 832 N = MDBuilder(I->getParent()->getContext()) 833 .createBranchWeights(TrueWeight, FalseWeight); 834 I->setMetadata(LLVMContext::MD_prof, N); 835 } 836 837 /// If TI is known to be a terminator instruction and its block is known to 838 /// only have a single predecessor block, check to see if that predecessor is 839 /// also a value comparison with the same value, and if that comparison 840 /// determines the outcome of this comparison. If so, simplify TI. This does a 841 /// very limited form of jump threading. 842 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 843 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 844 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 845 if (!PredVal) 846 return false; // Not a value comparison in predecessor. 847 848 Value *ThisVal = isValueEqualityComparison(TI); 849 assert(ThisVal && "This isn't a value comparison!!"); 850 if (ThisVal != PredVal) 851 return false; // Different predicates. 852 853 // TODO: Preserve branch weight metadata, similarly to how 854 // FoldValueComparisonIntoPredecessors preserves it. 855 856 // Find out information about when control will move from Pred to TI's block. 857 std::vector<ValueEqualityComparisonCase> PredCases; 858 BasicBlock *PredDef = 859 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 860 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 861 862 // Find information about how control leaves this block. 863 std::vector<ValueEqualityComparisonCase> ThisCases; 864 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 865 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 866 867 // If TI's block is the default block from Pred's comparison, potentially 868 // simplify TI based on this knowledge. 869 if (PredDef == TI->getParent()) { 870 // If we are here, we know that the value is none of those cases listed in 871 // PredCases. If there are any cases in ThisCases that are in PredCases, we 872 // can simplify TI. 873 if (!ValuesOverlap(PredCases, ThisCases)) 874 return false; 875 876 if (isa<BranchInst>(TI)) { 877 // Okay, one of the successors of this condbr is dead. Convert it to a 878 // uncond br. 879 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 880 // Insert the new branch. 881 Instruction *NI = Builder.CreateBr(ThisDef); 882 (void)NI; 883 884 // Remove PHI node entries for the dead edge. 885 ThisCases[0].Dest->removePredecessor(PredDef); 886 887 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 888 << "Through successor TI: " << *TI << "Leaving: " << *NI 889 << "\n"); 890 891 EraseTerminatorAndDCECond(TI); 892 893 if (DTU) 894 DTU->applyUpdates( 895 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 896 897 return true; 898 } 899 900 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 901 // Okay, TI has cases that are statically dead, prune them away. 902 SmallPtrSet<Constant *, 16> DeadCases; 903 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 904 DeadCases.insert(PredCases[i].Value); 905 906 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 907 << "Through successor TI: " << *TI); 908 909 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 910 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 911 --i; 912 auto *Successor = i->getCaseSuccessor(); 913 ++NumPerSuccessorCases[Successor]; 914 if (DeadCases.count(i->getCaseValue())) { 915 Successor->removePredecessor(PredDef); 916 SI.removeCase(i); 917 --NumPerSuccessorCases[Successor]; 918 } 919 } 920 921 std::vector<DominatorTree::UpdateType> Updates; 922 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 923 if (I.second == 0) 924 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 925 if (DTU) 926 DTU->applyUpdates(Updates); 927 928 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 929 return true; 930 } 931 932 // Otherwise, TI's block must correspond to some matched value. Find out 933 // which value (or set of values) this is. 934 ConstantInt *TIV = nullptr; 935 BasicBlock *TIBB = TI->getParent(); 936 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 937 if (PredCases[i].Dest == TIBB) { 938 if (TIV) 939 return false; // Cannot handle multiple values coming to this block. 940 TIV = PredCases[i].Value; 941 } 942 assert(TIV && "No edge from pred to succ?"); 943 944 // Okay, we found the one constant that our value can be if we get into TI's 945 // BB. Find out which successor will unconditionally be branched to. 946 BasicBlock *TheRealDest = nullptr; 947 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 948 if (ThisCases[i].Value == TIV) { 949 TheRealDest = ThisCases[i].Dest; 950 break; 951 } 952 953 // If not handled by any explicit cases, it is handled by the default case. 954 if (!TheRealDest) 955 TheRealDest = ThisDef; 956 957 SmallSetVector<BasicBlock *, 2> RemovedSuccs; 958 959 // Remove PHI node entries for dead edges. 960 BasicBlock *CheckEdge = TheRealDest; 961 for (BasicBlock *Succ : successors(TIBB)) 962 if (Succ != CheckEdge) { 963 if (Succ != TheRealDest) 964 RemovedSuccs.insert(Succ); 965 Succ->removePredecessor(TIBB); 966 } else 967 CheckEdge = nullptr; 968 969 // Insert the new branch. 970 Instruction *NI = Builder.CreateBr(TheRealDest); 971 (void)NI; 972 973 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 974 << "Through successor TI: " << *TI << "Leaving: " << *NI 975 << "\n"); 976 977 EraseTerminatorAndDCECond(TI); 978 if (DTU) { 979 SmallVector<DominatorTree::UpdateType, 2> Updates; 980 Updates.reserve(RemovedSuccs.size()); 981 for (auto *RemovedSucc : RemovedSuccs) 982 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 983 DTU->applyUpdates(Updates); 984 } 985 return true; 986 } 987 988 namespace { 989 990 /// This class implements a stable ordering of constant 991 /// integers that does not depend on their address. This is important for 992 /// applications that sort ConstantInt's to ensure uniqueness. 993 struct ConstantIntOrdering { 994 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 995 return LHS->getValue().ult(RHS->getValue()); 996 } 997 }; 998 999 } // end anonymous namespace 1000 1001 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1002 ConstantInt *const *P2) { 1003 const ConstantInt *LHS = *P1; 1004 const ConstantInt *RHS = *P2; 1005 if (LHS == RHS) 1006 return 0; 1007 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1008 } 1009 1010 static inline bool HasBranchWeights(const Instruction *I) { 1011 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1012 if (ProfMD && ProfMD->getOperand(0)) 1013 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1014 return MDS->getString().equals("branch_weights"); 1015 1016 return false; 1017 } 1018 1019 /// Get Weights of a given terminator, the default weight is at the front 1020 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1021 /// metadata. 1022 static void GetBranchWeights(Instruction *TI, 1023 SmallVectorImpl<uint64_t> &Weights) { 1024 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1025 assert(MD); 1026 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1027 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1028 Weights.push_back(CI->getValue().getZExtValue()); 1029 } 1030 1031 // If TI is a conditional eq, the default case is the false case, 1032 // and the corresponding branch-weight data is at index 2. We swap the 1033 // default weight to be the first entry. 1034 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1035 assert(Weights.size() == 2); 1036 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1037 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1038 std::swap(Weights.front(), Weights.back()); 1039 } 1040 } 1041 1042 /// Keep halving the weights until all can fit in uint32_t. 1043 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1044 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1045 if (Max > UINT_MAX) { 1046 unsigned Offset = 32 - countLeadingZeros(Max); 1047 for (uint64_t &I : Weights) 1048 I >>= Offset; 1049 } 1050 } 1051 1052 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1053 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1054 Instruction *PTI = PredBlock->getTerminator(); 1055 1056 // If we have bonus instructions, clone them into the predecessor block. 1057 // Note that there may be multiple predecessor blocks, so we cannot move 1058 // bonus instructions to a predecessor block. 1059 for (Instruction &BonusInst : *BB) { 1060 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1061 continue; 1062 1063 Instruction *NewBonusInst = BonusInst.clone(); 1064 1065 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1066 // Unless the instruction has the same !dbg location as the original 1067 // branch, drop it. When we fold the bonus instructions we want to make 1068 // sure we reset their debug locations in order to avoid stepping on 1069 // dead code caused by folding dead branches. 1070 NewBonusInst->setDebugLoc(DebugLoc()); 1071 } 1072 1073 RemapInstruction(NewBonusInst, VMap, 1074 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1075 VMap[&BonusInst] = NewBonusInst; 1076 1077 // If we moved a load, we cannot any longer claim any knowledge about 1078 // its potential value. The previous information might have been valid 1079 // only given the branch precondition. 1080 // For an analogous reason, we must also drop all the metadata whose 1081 // semantics we don't understand. We *can* preserve !annotation, because 1082 // it is tied to the instruction itself, not the value or position. 1083 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1084 1085 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1086 NewBonusInst->takeName(&BonusInst); 1087 BonusInst.setName(NewBonusInst->getName() + ".old"); 1088 1089 // Update (liveout) uses of bonus instructions, 1090 // now that the bonus instruction has been cloned into predecessor. 1091 SSAUpdater SSAUpdate; 1092 SSAUpdate.Initialize(BonusInst.getType(), 1093 (NewBonusInst->getName() + ".merge").str()); 1094 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1095 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1096 for (Use &U : make_early_inc_range(BonusInst.uses())) 1097 SSAUpdate.RewriteUseAfterInsertions(U); 1098 } 1099 } 1100 1101 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1102 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1103 BasicBlock *BB = TI->getParent(); 1104 BasicBlock *Pred = PTI->getParent(); 1105 1106 std::vector<DominatorTree::UpdateType> Updates; 1107 1108 // Figure out which 'cases' to copy from SI to PSI. 1109 std::vector<ValueEqualityComparisonCase> BBCases; 1110 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1111 1112 std::vector<ValueEqualityComparisonCase> PredCases; 1113 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1114 1115 // Based on whether the default edge from PTI goes to BB or not, fill in 1116 // PredCases and PredDefault with the new switch cases we would like to 1117 // build. 1118 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1119 1120 // Update the branch weight metadata along the way 1121 SmallVector<uint64_t, 8> Weights; 1122 bool PredHasWeights = HasBranchWeights(PTI); 1123 bool SuccHasWeights = HasBranchWeights(TI); 1124 1125 if (PredHasWeights) { 1126 GetBranchWeights(PTI, Weights); 1127 // branch-weight metadata is inconsistent here. 1128 if (Weights.size() != 1 + PredCases.size()) 1129 PredHasWeights = SuccHasWeights = false; 1130 } else if (SuccHasWeights) 1131 // If there are no predecessor weights but there are successor weights, 1132 // populate Weights with 1, which will later be scaled to the sum of 1133 // successor's weights 1134 Weights.assign(1 + PredCases.size(), 1); 1135 1136 SmallVector<uint64_t, 8> SuccWeights; 1137 if (SuccHasWeights) { 1138 GetBranchWeights(TI, SuccWeights); 1139 // branch-weight metadata is inconsistent here. 1140 if (SuccWeights.size() != 1 + BBCases.size()) 1141 PredHasWeights = SuccHasWeights = false; 1142 } else if (PredHasWeights) 1143 SuccWeights.assign(1 + BBCases.size(), 1); 1144 1145 if (PredDefault == BB) { 1146 // If this is the default destination from PTI, only the edges in TI 1147 // that don't occur in PTI, or that branch to BB will be activated. 1148 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1149 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1150 if (PredCases[i].Dest != BB) 1151 PTIHandled.insert(PredCases[i].Value); 1152 else { 1153 // The default destination is BB, we don't need explicit targets. 1154 std::swap(PredCases[i], PredCases.back()); 1155 1156 if (PredHasWeights || SuccHasWeights) { 1157 // Increase weight for the default case. 1158 Weights[0] += Weights[i + 1]; 1159 std::swap(Weights[i + 1], Weights.back()); 1160 Weights.pop_back(); 1161 } 1162 1163 PredCases.pop_back(); 1164 --i; 1165 --e; 1166 } 1167 1168 // Reconstruct the new switch statement we will be building. 1169 if (PredDefault != BBDefault) { 1170 PredDefault->removePredecessor(Pred); 1171 if (PredDefault != BB) 1172 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1173 PredDefault = BBDefault; 1174 ++NewSuccessors[BBDefault]; 1175 } 1176 1177 unsigned CasesFromPred = Weights.size(); 1178 uint64_t ValidTotalSuccWeight = 0; 1179 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1180 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1181 PredCases.push_back(BBCases[i]); 1182 ++NewSuccessors[BBCases[i].Dest]; 1183 if (SuccHasWeights || PredHasWeights) { 1184 // The default weight is at index 0, so weight for the ith case 1185 // should be at index i+1. Scale the cases from successor by 1186 // PredDefaultWeight (Weights[0]). 1187 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1188 ValidTotalSuccWeight += SuccWeights[i + 1]; 1189 } 1190 } 1191 1192 if (SuccHasWeights || PredHasWeights) { 1193 ValidTotalSuccWeight += SuccWeights[0]; 1194 // Scale the cases from predecessor by ValidTotalSuccWeight. 1195 for (unsigned i = 1; i < CasesFromPred; ++i) 1196 Weights[i] *= ValidTotalSuccWeight; 1197 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1198 Weights[0] *= SuccWeights[0]; 1199 } 1200 } else { 1201 // If this is not the default destination from PSI, only the edges 1202 // in SI that occur in PSI with a destination of BB will be 1203 // activated. 1204 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1205 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1206 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1207 if (PredCases[i].Dest == BB) { 1208 PTIHandled.insert(PredCases[i].Value); 1209 1210 if (PredHasWeights || SuccHasWeights) { 1211 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1212 std::swap(Weights[i + 1], Weights.back()); 1213 Weights.pop_back(); 1214 } 1215 1216 std::swap(PredCases[i], PredCases.back()); 1217 PredCases.pop_back(); 1218 --i; 1219 --e; 1220 } 1221 1222 // Okay, now we know which constants were sent to BB from the 1223 // predecessor. Figure out where they will all go now. 1224 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1225 if (PTIHandled.count(BBCases[i].Value)) { 1226 // If this is one we are capable of getting... 1227 if (PredHasWeights || SuccHasWeights) 1228 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1229 PredCases.push_back(BBCases[i]); 1230 ++NewSuccessors[BBCases[i].Dest]; 1231 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1232 } 1233 1234 // If there are any constants vectored to BB that TI doesn't handle, 1235 // they must go to the default destination of TI. 1236 for (ConstantInt *I : PTIHandled) { 1237 if (PredHasWeights || SuccHasWeights) 1238 Weights.push_back(WeightsForHandled[I]); 1239 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1240 ++NewSuccessors[BBDefault]; 1241 } 1242 } 1243 1244 // Okay, at this point, we know which new successor Pred will get. Make 1245 // sure we update the number of entries in the PHI nodes for these 1246 // successors. 1247 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1248 NewSuccessors) { 1249 for (auto I : seq(0, NewSuccessor.second)) { 1250 (void)I; 1251 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1252 } 1253 if (!is_contained(successors(Pred), NewSuccessor.first)) 1254 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1255 } 1256 1257 Builder.SetInsertPoint(PTI); 1258 // Convert pointer to int before we switch. 1259 if (CV->getType()->isPointerTy()) { 1260 CV = 1261 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1262 } 1263 1264 // Now that the successors are updated, create the new Switch instruction. 1265 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1266 NewSI->setDebugLoc(PTI->getDebugLoc()); 1267 for (ValueEqualityComparisonCase &V : PredCases) 1268 NewSI->addCase(V.Value, V.Dest); 1269 1270 if (PredHasWeights || SuccHasWeights) { 1271 // Halve the weights if any of them cannot fit in an uint32_t 1272 FitWeights(Weights); 1273 1274 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1275 1276 setBranchWeights(NewSI, MDWeights); 1277 } 1278 1279 EraseTerminatorAndDCECond(PTI); 1280 1281 // Okay, last check. If BB is still a successor of PSI, then we must 1282 // have an infinite loop case. If so, add an infinitely looping block 1283 // to handle the case to preserve the behavior of the code. 1284 BasicBlock *InfLoopBlock = nullptr; 1285 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1286 if (NewSI->getSuccessor(i) == BB) { 1287 if (!InfLoopBlock) { 1288 // Insert it at the end of the function, because it's either code, 1289 // or it won't matter if it's hot. :) 1290 InfLoopBlock = 1291 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1292 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1293 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1294 } 1295 NewSI->setSuccessor(i, InfLoopBlock); 1296 } 1297 1298 if (InfLoopBlock) 1299 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1300 1301 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1302 1303 if (DTU) 1304 DTU->applyUpdates(Updates); 1305 1306 ++NumFoldValueComparisonIntoPredecessors; 1307 return true; 1308 } 1309 1310 /// The specified terminator is a value equality comparison instruction 1311 /// (either a switch or a branch on "X == c"). 1312 /// See if any of the predecessors of the terminator block are value comparisons 1313 /// on the same value. If so, and if safe to do so, fold them together. 1314 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1315 IRBuilder<> &Builder) { 1316 BasicBlock *BB = TI->getParent(); 1317 Value *CV = isValueEqualityComparison(TI); // CondVal 1318 assert(CV && "Not a comparison?"); 1319 1320 bool Changed = false; 1321 1322 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1323 while (!Preds.empty()) { 1324 BasicBlock *Pred = Preds.pop_back_val(); 1325 Instruction *PTI = Pred->getTerminator(); 1326 1327 // Don't try to fold into itself. 1328 if (Pred == BB) 1329 continue; 1330 1331 // See if the predecessor is a comparison with the same value. 1332 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1333 if (PCV != CV) 1334 continue; 1335 1336 SmallSetVector<BasicBlock *, 4> FailBlocks; 1337 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1338 for (auto *Succ : FailBlocks) { 1339 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1340 return false; 1341 } 1342 } 1343 1344 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1345 Changed = true; 1346 } 1347 return Changed; 1348 } 1349 1350 // If we would need to insert a select that uses the value of this invoke 1351 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1352 // can't hoist the invoke, as there is nowhere to put the select in this case. 1353 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1354 Instruction *I1, Instruction *I2) { 1355 for (BasicBlock *Succ : successors(BB1)) { 1356 for (const PHINode &PN : Succ->phis()) { 1357 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1358 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1359 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1360 return false; 1361 } 1362 } 1363 } 1364 return true; 1365 } 1366 1367 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1368 1369 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1370 /// in the two blocks up into the branch block. The caller of this function 1371 /// guarantees that BI's block dominates BB1 and BB2. 1372 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1373 const TargetTransformInfo &TTI) { 1374 // This does very trivial matching, with limited scanning, to find identical 1375 // instructions in the two blocks. In particular, we don't want to get into 1376 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1377 // such, we currently just scan for obviously identical instructions in an 1378 // identical order. 1379 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1380 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1381 1382 BasicBlock::iterator BB1_Itr = BB1->begin(); 1383 BasicBlock::iterator BB2_Itr = BB2->begin(); 1384 1385 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1386 // Skip debug info if it is not identical. 1387 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1388 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1389 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1390 while (isa<DbgInfoIntrinsic>(I1)) 1391 I1 = &*BB1_Itr++; 1392 while (isa<DbgInfoIntrinsic>(I2)) 1393 I2 = &*BB2_Itr++; 1394 } 1395 // FIXME: Can we define a safety predicate for CallBr? 1396 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1397 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1398 isa<CallBrInst>(I1)) 1399 return false; 1400 1401 BasicBlock *BIParent = BI->getParent(); 1402 1403 bool Changed = false; 1404 1405 auto _ = make_scope_exit([&]() { 1406 if (Changed) 1407 ++NumHoistCommonCode; 1408 }); 1409 1410 do { 1411 // If we are hoisting the terminator instruction, don't move one (making a 1412 // broken BB), instead clone it, and remove BI. 1413 if (I1->isTerminator()) 1414 goto HoistTerminator; 1415 1416 // If we're going to hoist a call, make sure that the two instructions we're 1417 // commoning/hoisting are both marked with musttail, or neither of them is 1418 // marked as such. Otherwise, we might end up in a situation where we hoist 1419 // from a block where the terminator is a `ret` to a block where the terminator 1420 // is a `br`, and `musttail` calls expect to be followed by a return. 1421 auto *C1 = dyn_cast<CallInst>(I1); 1422 auto *C2 = dyn_cast<CallInst>(I2); 1423 if (C1 && C2) 1424 if (C1->isMustTailCall() != C2->isMustTailCall()) 1425 return Changed; 1426 1427 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1428 return Changed; 1429 1430 // If any of the two call sites has nomerge attribute, stop hoisting. 1431 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1432 if (CB1->cannotMerge()) 1433 return Changed; 1434 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1435 if (CB2->cannotMerge()) 1436 return Changed; 1437 1438 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1439 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1440 // The debug location is an integral part of a debug info intrinsic 1441 // and can't be separated from it or replaced. Instead of attempting 1442 // to merge locations, simply hoist both copies of the intrinsic. 1443 BIParent->getInstList().splice(BI->getIterator(), 1444 BB1->getInstList(), I1); 1445 BIParent->getInstList().splice(BI->getIterator(), 1446 BB2->getInstList(), I2); 1447 Changed = true; 1448 } else { 1449 // For a normal instruction, we just move one to right before the branch, 1450 // then replace all uses of the other with the first. Finally, we remove 1451 // the now redundant second instruction. 1452 BIParent->getInstList().splice(BI->getIterator(), 1453 BB1->getInstList(), I1); 1454 if (!I2->use_empty()) 1455 I2->replaceAllUsesWith(I1); 1456 I1->andIRFlags(I2); 1457 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1458 LLVMContext::MD_range, 1459 LLVMContext::MD_fpmath, 1460 LLVMContext::MD_invariant_load, 1461 LLVMContext::MD_nonnull, 1462 LLVMContext::MD_invariant_group, 1463 LLVMContext::MD_align, 1464 LLVMContext::MD_dereferenceable, 1465 LLVMContext::MD_dereferenceable_or_null, 1466 LLVMContext::MD_mem_parallel_loop_access, 1467 LLVMContext::MD_access_group, 1468 LLVMContext::MD_preserve_access_index}; 1469 combineMetadata(I1, I2, KnownIDs, true); 1470 1471 // I1 and I2 are being combined into a single instruction. Its debug 1472 // location is the merged locations of the original instructions. 1473 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1474 1475 I2->eraseFromParent(); 1476 Changed = true; 1477 } 1478 ++NumHoistCommonInstrs; 1479 1480 I1 = &*BB1_Itr++; 1481 I2 = &*BB2_Itr++; 1482 // Skip debug info if it is not identical. 1483 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1484 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1485 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1486 while (isa<DbgInfoIntrinsic>(I1)) 1487 I1 = &*BB1_Itr++; 1488 while (isa<DbgInfoIntrinsic>(I2)) 1489 I2 = &*BB2_Itr++; 1490 } 1491 } while (I1->isIdenticalToWhenDefined(I2)); 1492 1493 return true; 1494 1495 HoistTerminator: 1496 // It may not be possible to hoist an invoke. 1497 // FIXME: Can we define a safety predicate for CallBr? 1498 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1499 return Changed; 1500 1501 // TODO: callbr hoisting currently disabled pending further study. 1502 if (isa<CallBrInst>(I1)) 1503 return Changed; 1504 1505 for (BasicBlock *Succ : successors(BB1)) { 1506 for (PHINode &PN : Succ->phis()) { 1507 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1508 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1509 if (BB1V == BB2V) 1510 continue; 1511 1512 // Check for passingValueIsAlwaysUndefined here because we would rather 1513 // eliminate undefined control flow then converting it to a select. 1514 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1515 passingValueIsAlwaysUndefined(BB2V, &PN)) 1516 return Changed; 1517 1518 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1519 return Changed; 1520 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1521 return Changed; 1522 } 1523 } 1524 1525 // Okay, it is safe to hoist the terminator. 1526 Instruction *NT = I1->clone(); 1527 BIParent->getInstList().insert(BI->getIterator(), NT); 1528 if (!NT->getType()->isVoidTy()) { 1529 I1->replaceAllUsesWith(NT); 1530 I2->replaceAllUsesWith(NT); 1531 NT->takeName(I1); 1532 } 1533 Changed = true; 1534 ++NumHoistCommonInstrs; 1535 1536 // Ensure terminator gets a debug location, even an unknown one, in case 1537 // it involves inlinable calls. 1538 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1539 1540 // PHIs created below will adopt NT's merged DebugLoc. 1541 IRBuilder<NoFolder> Builder(NT); 1542 1543 // Hoisting one of the terminators from our successor is a great thing. 1544 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1545 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1546 // nodes, so we insert select instruction to compute the final result. 1547 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1548 for (BasicBlock *Succ : successors(BB1)) { 1549 for (PHINode &PN : Succ->phis()) { 1550 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1551 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1552 if (BB1V == BB2V) 1553 continue; 1554 1555 // These values do not agree. Insert a select instruction before NT 1556 // that determines the right value. 1557 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1558 if (!SI) { 1559 // Propagate fast-math-flags from phi node to its replacement select. 1560 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1561 if (isa<FPMathOperator>(PN)) 1562 Builder.setFastMathFlags(PN.getFastMathFlags()); 1563 1564 SI = cast<SelectInst>( 1565 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1566 BB1V->getName() + "." + BB2V->getName(), BI)); 1567 } 1568 1569 // Make the PHI node use the select for all incoming values for BB1/BB2 1570 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1571 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1572 PN.setIncomingValue(i, SI); 1573 } 1574 } 1575 1576 SmallVector<DominatorTree::UpdateType, 4> Updates; 1577 1578 // Update any PHI nodes in our new successors. 1579 for (BasicBlock *Succ : successors(BB1)) { 1580 AddPredecessorToBlock(Succ, BIParent, BB1); 1581 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1582 } 1583 for (BasicBlock *Succ : successors(BI)) 1584 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1585 1586 EraseTerminatorAndDCECond(BI); 1587 if (DTU) 1588 DTU->applyUpdates(Updates); 1589 return Changed; 1590 } 1591 1592 // Check lifetime markers. 1593 static bool isLifeTimeMarker(const Instruction *I) { 1594 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1595 switch (II->getIntrinsicID()) { 1596 default: 1597 break; 1598 case Intrinsic::lifetime_start: 1599 case Intrinsic::lifetime_end: 1600 return true; 1601 } 1602 } 1603 return false; 1604 } 1605 1606 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1607 // into variables. 1608 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1609 int OpIdx) { 1610 return !isa<IntrinsicInst>(I); 1611 } 1612 1613 // All instructions in Insts belong to different blocks that all unconditionally 1614 // branch to a common successor. Analyze each instruction and return true if it 1615 // would be possible to sink them into their successor, creating one common 1616 // instruction instead. For every value that would be required to be provided by 1617 // PHI node (because an operand varies in each input block), add to PHIOperands. 1618 static bool canSinkInstructions( 1619 ArrayRef<Instruction *> Insts, 1620 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1621 // Prune out obviously bad instructions to move. Each instruction must have 1622 // exactly zero or one use, and we check later that use is by a single, common 1623 // PHI instruction in the successor. 1624 bool HasUse = !Insts.front()->user_empty(); 1625 for (auto *I : Insts) { 1626 // These instructions may change or break semantics if moved. 1627 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1628 I->getType()->isTokenTy()) 1629 return false; 1630 1631 // Conservatively return false if I is an inline-asm instruction. Sinking 1632 // and merging inline-asm instructions can potentially create arguments 1633 // that cannot satisfy the inline-asm constraints. 1634 // If the instruction has nomerge attribute, return false. 1635 if (const auto *C = dyn_cast<CallBase>(I)) 1636 if (C->isInlineAsm() || C->cannotMerge()) 1637 return false; 1638 1639 // Each instruction must have zero or one use. 1640 if (HasUse && !I->hasOneUse()) 1641 return false; 1642 if (!HasUse && !I->user_empty()) 1643 return false; 1644 } 1645 1646 const Instruction *I0 = Insts.front(); 1647 for (auto *I : Insts) 1648 if (!I->isSameOperationAs(I0)) 1649 return false; 1650 1651 // All instructions in Insts are known to be the same opcode. If they have a 1652 // use, check that the only user is a PHI or in the same block as the 1653 // instruction, because if a user is in the same block as an instruction we're 1654 // contemplating sinking, it must already be determined to be sinkable. 1655 if (HasUse) { 1656 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1657 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1658 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1659 auto *U = cast<Instruction>(*I->user_begin()); 1660 return (PNUse && 1661 PNUse->getParent() == Succ && 1662 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1663 U->getParent() == I->getParent(); 1664 })) 1665 return false; 1666 } 1667 1668 // Because SROA can't handle speculating stores of selects, try not to sink 1669 // loads, stores or lifetime markers of allocas when we'd have to create a 1670 // PHI for the address operand. Also, because it is likely that loads or 1671 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1672 // them. 1673 // This can cause code churn which can have unintended consequences down 1674 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1675 // FIXME: This is a workaround for a deficiency in SROA - see 1676 // https://llvm.org/bugs/show_bug.cgi?id=30188 1677 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1678 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1679 })) 1680 return false; 1681 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1682 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1683 })) 1684 return false; 1685 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1686 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1687 })) 1688 return false; 1689 1690 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1691 Value *Op = I0->getOperand(OI); 1692 if (Op->getType()->isTokenTy()) 1693 // Don't touch any operand of token type. 1694 return false; 1695 1696 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1697 assert(I->getNumOperands() == I0->getNumOperands()); 1698 return I->getOperand(OI) == I0->getOperand(OI); 1699 }; 1700 if (!all_of(Insts, SameAsI0)) { 1701 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1702 !canReplaceOperandWithVariable(I0, OI)) 1703 // We can't create a PHI from this GEP. 1704 return false; 1705 // Don't create indirect calls! The called value is the final operand. 1706 if (isa<CallBase>(I0) && OI == OE - 1) { 1707 // FIXME: if the call was *already* indirect, we should do this. 1708 return false; 1709 } 1710 for (auto *I : Insts) 1711 PHIOperands[I].push_back(I->getOperand(OI)); 1712 } 1713 } 1714 return true; 1715 } 1716 1717 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1718 // instruction of every block in Blocks to their common successor, commoning 1719 // into one instruction. 1720 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1721 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1722 1723 // canSinkLastInstruction returning true guarantees that every block has at 1724 // least one non-terminator instruction. 1725 SmallVector<Instruction*,4> Insts; 1726 for (auto *BB : Blocks) { 1727 Instruction *I = BB->getTerminator(); 1728 do { 1729 I = I->getPrevNode(); 1730 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1731 if (!isa<DbgInfoIntrinsic>(I)) 1732 Insts.push_back(I); 1733 } 1734 1735 // The only checking we need to do now is that all users of all instructions 1736 // are the same PHI node. canSinkLastInstruction should have checked this but 1737 // it is slightly over-aggressive - it gets confused by commutative instructions 1738 // so double-check it here. 1739 Instruction *I0 = Insts.front(); 1740 if (!I0->user_empty()) { 1741 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1742 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1743 auto *U = cast<Instruction>(*I->user_begin()); 1744 return U == PNUse; 1745 })) 1746 return false; 1747 } 1748 1749 // We don't need to do any more checking here; canSinkLastInstruction should 1750 // have done it all for us. 1751 SmallVector<Value*, 4> NewOperands; 1752 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1753 // This check is different to that in canSinkLastInstruction. There, we 1754 // cared about the global view once simplifycfg (and instcombine) have 1755 // completed - it takes into account PHIs that become trivially 1756 // simplifiable. However here we need a more local view; if an operand 1757 // differs we create a PHI and rely on instcombine to clean up the very 1758 // small mess we may make. 1759 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1760 return I->getOperand(O) != I0->getOperand(O); 1761 }); 1762 if (!NeedPHI) { 1763 NewOperands.push_back(I0->getOperand(O)); 1764 continue; 1765 } 1766 1767 // Create a new PHI in the successor block and populate it. 1768 auto *Op = I0->getOperand(O); 1769 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1770 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1771 Op->getName() + ".sink", &BBEnd->front()); 1772 for (auto *I : Insts) 1773 PN->addIncoming(I->getOperand(O), I->getParent()); 1774 NewOperands.push_back(PN); 1775 } 1776 1777 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1778 // and move it to the start of the successor block. 1779 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1780 I0->getOperandUse(O).set(NewOperands[O]); 1781 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1782 1783 // Update metadata and IR flags, and merge debug locations. 1784 for (auto *I : Insts) 1785 if (I != I0) { 1786 // The debug location for the "common" instruction is the merged locations 1787 // of all the commoned instructions. We start with the original location 1788 // of the "common" instruction and iteratively merge each location in the 1789 // loop below. 1790 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1791 // However, as N-way merge for CallInst is rare, so we use simplified API 1792 // instead of using complex API for N-way merge. 1793 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1794 combineMetadataForCSE(I0, I, true); 1795 I0->andIRFlags(I); 1796 } 1797 1798 if (!I0->user_empty()) { 1799 // canSinkLastInstruction checked that all instructions were used by 1800 // one and only one PHI node. Find that now, RAUW it to our common 1801 // instruction and nuke it. 1802 auto *PN = cast<PHINode>(*I0->user_begin()); 1803 PN->replaceAllUsesWith(I0); 1804 PN->eraseFromParent(); 1805 } 1806 1807 // Finally nuke all instructions apart from the common instruction. 1808 for (auto *I : Insts) 1809 if (I != I0) 1810 I->eraseFromParent(); 1811 1812 return true; 1813 } 1814 1815 namespace { 1816 1817 // LockstepReverseIterator - Iterates through instructions 1818 // in a set of blocks in reverse order from the first non-terminator. 1819 // For example (assume all blocks have size n): 1820 // LockstepReverseIterator I([B1, B2, B3]); 1821 // *I-- = [B1[n], B2[n], B3[n]]; 1822 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1823 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1824 // ... 1825 class LockstepReverseIterator { 1826 ArrayRef<BasicBlock*> Blocks; 1827 SmallVector<Instruction*,4> Insts; 1828 bool Fail; 1829 1830 public: 1831 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1832 reset(); 1833 } 1834 1835 void reset() { 1836 Fail = false; 1837 Insts.clear(); 1838 for (auto *BB : Blocks) { 1839 Instruction *Inst = BB->getTerminator(); 1840 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1841 Inst = Inst->getPrevNode(); 1842 if (!Inst) { 1843 // Block wasn't big enough. 1844 Fail = true; 1845 return; 1846 } 1847 Insts.push_back(Inst); 1848 } 1849 } 1850 1851 bool isValid() const { 1852 return !Fail; 1853 } 1854 1855 void operator--() { 1856 if (Fail) 1857 return; 1858 for (auto *&Inst : Insts) { 1859 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1860 Inst = Inst->getPrevNode(); 1861 // Already at beginning of block. 1862 if (!Inst) { 1863 Fail = true; 1864 return; 1865 } 1866 } 1867 } 1868 1869 ArrayRef<Instruction*> operator * () const { 1870 return Insts; 1871 } 1872 }; 1873 1874 } // end anonymous namespace 1875 1876 /// Check whether BB's predecessors end with unconditional branches. If it is 1877 /// true, sink any common code from the predecessors to BB. 1878 /// We also allow one predecessor to end with conditional branch (but no more 1879 /// than one). 1880 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1881 DomTreeUpdater *DTU) { 1882 // We support two situations: 1883 // (1) all incoming arcs are unconditional 1884 // (2) one incoming arc is conditional 1885 // 1886 // (2) is very common in switch defaults and 1887 // else-if patterns; 1888 // 1889 // if (a) f(1); 1890 // else if (b) f(2); 1891 // 1892 // produces: 1893 // 1894 // [if] 1895 // / \ 1896 // [f(1)] [if] 1897 // | | \ 1898 // | | | 1899 // | [f(2)]| 1900 // \ | / 1901 // [ end ] 1902 // 1903 // [end] has two unconditional predecessor arcs and one conditional. The 1904 // conditional refers to the implicit empty 'else' arc. This conditional 1905 // arc can also be caused by an empty default block in a switch. 1906 // 1907 // In this case, we attempt to sink code from all *unconditional* arcs. 1908 // If we can sink instructions from these arcs (determined during the scan 1909 // phase below) we insert a common successor for all unconditional arcs and 1910 // connect that to [end], to enable sinking: 1911 // 1912 // [if] 1913 // / \ 1914 // [x(1)] [if] 1915 // | | \ 1916 // | | \ 1917 // | [x(2)] | 1918 // \ / | 1919 // [sink.split] | 1920 // \ / 1921 // [ end ] 1922 // 1923 SmallVector<BasicBlock*,4> UnconditionalPreds; 1924 Instruction *Cond = nullptr; 1925 for (auto *B : predecessors(BB)) { 1926 auto *T = B->getTerminator(); 1927 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1928 UnconditionalPreds.push_back(B); 1929 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1930 Cond = T; 1931 else 1932 return false; 1933 } 1934 if (UnconditionalPreds.size() < 2) 1935 return false; 1936 1937 // We take a two-step approach to tail sinking. First we scan from the end of 1938 // each block upwards in lockstep. If the n'th instruction from the end of each 1939 // block can be sunk, those instructions are added to ValuesToSink and we 1940 // carry on. If we can sink an instruction but need to PHI-merge some operands 1941 // (because they're not identical in each instruction) we add these to 1942 // PHIOperands. 1943 unsigned ScanIdx = 0; 1944 SmallPtrSet<Value*,4> InstructionsToSink; 1945 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1946 LockstepReverseIterator LRI(UnconditionalPreds); 1947 while (LRI.isValid() && 1948 canSinkInstructions(*LRI, PHIOperands)) { 1949 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1950 << "\n"); 1951 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1952 ++ScanIdx; 1953 --LRI; 1954 } 1955 1956 // If no instructions can be sunk, early-return. 1957 if (ScanIdx == 0) 1958 return false; 1959 1960 bool Changed = false; 1961 1962 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1963 unsigned NumPHIdValues = 0; 1964 for (auto *I : *LRI) 1965 for (auto *V : PHIOperands[I]) 1966 if (InstructionsToSink.count(V) == 0) 1967 ++NumPHIdValues; 1968 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1969 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1970 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1971 NumPHIInsts++; 1972 1973 return NumPHIInsts <= 1; 1974 }; 1975 1976 if (Cond) { 1977 // Check if we would actually sink anything first! This mutates the CFG and 1978 // adds an extra block. The goal in doing this is to allow instructions that 1979 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1980 // (such as trunc, add) can be sunk and predicated already. So we check that 1981 // we're going to sink at least one non-speculatable instruction. 1982 LRI.reset(); 1983 unsigned Idx = 0; 1984 bool Profitable = false; 1985 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1986 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1987 Profitable = true; 1988 break; 1989 } 1990 --LRI; 1991 ++Idx; 1992 } 1993 if (!Profitable) 1994 return false; 1995 1996 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1997 // We have a conditional edge and we're going to sink some instructions. 1998 // Insert a new block postdominating all blocks we're going to sink from. 1999 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2000 // Edges couldn't be split. 2001 return false; 2002 Changed = true; 2003 } 2004 2005 // Now that we've analyzed all potential sinking candidates, perform the 2006 // actual sink. We iteratively sink the last non-terminator of the source 2007 // blocks into their common successor unless doing so would require too 2008 // many PHI instructions to be generated (currently only one PHI is allowed 2009 // per sunk instruction). 2010 // 2011 // We can use InstructionsToSink to discount values needing PHI-merging that will 2012 // actually be sunk in a later iteration. This allows us to be more 2013 // aggressive in what we sink. This does allow a false positive where we 2014 // sink presuming a later value will also be sunk, but stop half way through 2015 // and never actually sink it which means we produce more PHIs than intended. 2016 // This is unlikely in practice though. 2017 unsigned SinkIdx = 0; 2018 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2019 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2020 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2021 << "\n"); 2022 2023 // Because we've sunk every instruction in turn, the current instruction to 2024 // sink is always at index 0. 2025 LRI.reset(); 2026 if (!ProfitableToSinkInstruction(LRI)) { 2027 // Too many PHIs would be created. 2028 LLVM_DEBUG( 2029 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2030 break; 2031 } 2032 2033 if (!sinkLastInstruction(UnconditionalPreds)) { 2034 LLVM_DEBUG( 2035 dbgs() 2036 << "SINK: stopping here, failed to actually sink instruction!\n"); 2037 break; 2038 } 2039 2040 NumSinkCommonInstrs++; 2041 Changed = true; 2042 } 2043 if (SinkIdx != 0) 2044 ++NumSinkCommonCode; 2045 return Changed; 2046 } 2047 2048 /// Determine if we can hoist sink a sole store instruction out of a 2049 /// conditional block. 2050 /// 2051 /// We are looking for code like the following: 2052 /// BrBB: 2053 /// store i32 %add, i32* %arrayidx2 2054 /// ... // No other stores or function calls (we could be calling a memory 2055 /// ... // function). 2056 /// %cmp = icmp ult %x, %y 2057 /// br i1 %cmp, label %EndBB, label %ThenBB 2058 /// ThenBB: 2059 /// store i32 %add5, i32* %arrayidx2 2060 /// br label EndBB 2061 /// EndBB: 2062 /// ... 2063 /// We are going to transform this into: 2064 /// BrBB: 2065 /// store i32 %add, i32* %arrayidx2 2066 /// ... // 2067 /// %cmp = icmp ult %x, %y 2068 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2069 /// store i32 %add.add5, i32* %arrayidx2 2070 /// ... 2071 /// 2072 /// \return The pointer to the value of the previous store if the store can be 2073 /// hoisted into the predecessor block. 0 otherwise. 2074 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2075 BasicBlock *StoreBB, BasicBlock *EndBB) { 2076 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2077 if (!StoreToHoist) 2078 return nullptr; 2079 2080 // Volatile or atomic. 2081 if (!StoreToHoist->isSimple()) 2082 return nullptr; 2083 2084 Value *StorePtr = StoreToHoist->getPointerOperand(); 2085 2086 // Look for a store to the same pointer in BrBB. 2087 unsigned MaxNumInstToLookAt = 9; 2088 // Skip pseudo probe intrinsic calls which are not really killing any memory 2089 // accesses. 2090 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2091 if (!MaxNumInstToLookAt) 2092 break; 2093 --MaxNumInstToLookAt; 2094 2095 // Could be calling an instruction that affects memory like free(). 2096 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2097 return nullptr; 2098 2099 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2100 // Found the previous store make sure it stores to the same location. 2101 if (SI->getPointerOperand() == StorePtr) 2102 // Found the previous store, return its value operand. 2103 return SI->getValueOperand(); 2104 return nullptr; // Unknown store. 2105 } 2106 } 2107 2108 return nullptr; 2109 } 2110 2111 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2112 /// converted to selects. 2113 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2114 BasicBlock *EndBB, 2115 unsigned &SpeculatedInstructions, 2116 int &BudgetRemaining, 2117 const TargetTransformInfo &TTI) { 2118 TargetTransformInfo::TargetCostKind CostKind = 2119 BB->getParent()->hasMinSize() 2120 ? TargetTransformInfo::TCK_CodeSize 2121 : TargetTransformInfo::TCK_SizeAndLatency; 2122 2123 bool HaveRewritablePHIs = false; 2124 for (PHINode &PN : EndBB->phis()) { 2125 Value *OrigV = PN.getIncomingValueForBlock(BB); 2126 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2127 2128 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2129 // Skip PHIs which are trivial. 2130 if (ThenV == OrigV) 2131 continue; 2132 2133 BudgetRemaining -= 2134 TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2135 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2136 2137 // Don't convert to selects if we could remove undefined behavior instead. 2138 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2139 passingValueIsAlwaysUndefined(ThenV, &PN)) 2140 return false; 2141 2142 HaveRewritablePHIs = true; 2143 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2144 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2145 if (!OrigCE && !ThenCE) 2146 continue; // Known safe and cheap. 2147 2148 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2149 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2150 return false; 2151 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2152 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2153 unsigned MaxCost = 2154 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2155 if (OrigCost + ThenCost > MaxCost) 2156 return false; 2157 2158 // Account for the cost of an unfolded ConstantExpr which could end up 2159 // getting expanded into Instructions. 2160 // FIXME: This doesn't account for how many operations are combined in the 2161 // constant expression. 2162 ++SpeculatedInstructions; 2163 if (SpeculatedInstructions > 1) 2164 return false; 2165 } 2166 2167 return HaveRewritablePHIs; 2168 } 2169 2170 /// Speculate a conditional basic block flattening the CFG. 2171 /// 2172 /// Note that this is a very risky transform currently. Speculating 2173 /// instructions like this is most often not desirable. Instead, there is an MI 2174 /// pass which can do it with full awareness of the resource constraints. 2175 /// However, some cases are "obvious" and we should do directly. An example of 2176 /// this is speculating a single, reasonably cheap instruction. 2177 /// 2178 /// There is only one distinct advantage to flattening the CFG at the IR level: 2179 /// it makes very common but simplistic optimizations such as are common in 2180 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2181 /// modeling their effects with easier to reason about SSA value graphs. 2182 /// 2183 /// 2184 /// An illustration of this transform is turning this IR: 2185 /// \code 2186 /// BB: 2187 /// %cmp = icmp ult %x, %y 2188 /// br i1 %cmp, label %EndBB, label %ThenBB 2189 /// ThenBB: 2190 /// %sub = sub %x, %y 2191 /// br label BB2 2192 /// EndBB: 2193 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2194 /// ... 2195 /// \endcode 2196 /// 2197 /// Into this IR: 2198 /// \code 2199 /// BB: 2200 /// %cmp = icmp ult %x, %y 2201 /// %sub = sub %x, %y 2202 /// %cond = select i1 %cmp, 0, %sub 2203 /// ... 2204 /// \endcode 2205 /// 2206 /// \returns true if the conditional block is removed. 2207 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2208 const TargetTransformInfo &TTI) { 2209 // Be conservative for now. FP select instruction can often be expensive. 2210 Value *BrCond = BI->getCondition(); 2211 if (isa<FCmpInst>(BrCond)) 2212 return false; 2213 2214 BasicBlock *BB = BI->getParent(); 2215 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2216 int BudgetRemaining = 2217 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2218 2219 // If ThenBB is actually on the false edge of the conditional branch, remember 2220 // to swap the select operands later. 2221 bool Invert = false; 2222 if (ThenBB != BI->getSuccessor(0)) { 2223 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2224 Invert = true; 2225 } 2226 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2227 2228 // Keep a count of how many times instructions are used within ThenBB when 2229 // they are candidates for sinking into ThenBB. Specifically: 2230 // - They are defined in BB, and 2231 // - They have no side effects, and 2232 // - All of their uses are in ThenBB. 2233 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2234 2235 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2236 2237 unsigned SpeculatedInstructions = 0; 2238 Value *SpeculatedStoreValue = nullptr; 2239 StoreInst *SpeculatedStore = nullptr; 2240 for (BasicBlock::iterator BBI = ThenBB->begin(), 2241 BBE = std::prev(ThenBB->end()); 2242 BBI != BBE; ++BBI) { 2243 Instruction *I = &*BBI; 2244 // Skip debug info. 2245 if (isa<DbgInfoIntrinsic>(I)) { 2246 SpeculatedDbgIntrinsics.push_back(I); 2247 continue; 2248 } 2249 2250 // Skip pseudo probes. The consequence is we lose track of the branch 2251 // probability for ThenBB, which is fine since the optimization here takes 2252 // place regardless of the branch probability. 2253 if (isa<PseudoProbeInst>(I)) { 2254 SpeculatedDbgIntrinsics.push_back(I); 2255 continue; 2256 } 2257 2258 // Only speculatively execute a single instruction (not counting the 2259 // terminator) for now. 2260 ++SpeculatedInstructions; 2261 if (SpeculatedInstructions > 1) 2262 return false; 2263 2264 // Don't hoist the instruction if it's unsafe or expensive. 2265 if (!isSafeToSpeculativelyExecute(I) && 2266 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2267 I, BB, ThenBB, EndBB)))) 2268 return false; 2269 if (!SpeculatedStoreValue && 2270 ComputeSpeculationCost(I, TTI) > 2271 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2272 return false; 2273 2274 // Store the store speculation candidate. 2275 if (SpeculatedStoreValue) 2276 SpeculatedStore = cast<StoreInst>(I); 2277 2278 // Do not hoist the instruction if any of its operands are defined but not 2279 // used in BB. The transformation will prevent the operand from 2280 // being sunk into the use block. 2281 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2282 Instruction *OpI = dyn_cast<Instruction>(*i); 2283 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2284 continue; // Not a candidate for sinking. 2285 2286 ++SinkCandidateUseCounts[OpI]; 2287 } 2288 } 2289 2290 // Consider any sink candidates which are only used in ThenBB as costs for 2291 // speculation. Note, while we iterate over a DenseMap here, we are summing 2292 // and so iteration order isn't significant. 2293 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2294 I = SinkCandidateUseCounts.begin(), 2295 E = SinkCandidateUseCounts.end(); 2296 I != E; ++I) 2297 if (I->first->hasNUses(I->second)) { 2298 ++SpeculatedInstructions; 2299 if (SpeculatedInstructions > 1) 2300 return false; 2301 } 2302 2303 // Check that we can insert the selects and that it's not too expensive to do 2304 // so. 2305 bool Convert = SpeculatedStore != nullptr; 2306 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2307 SpeculatedInstructions, 2308 BudgetRemaining, TTI); 2309 if (!Convert || BudgetRemaining < 0) 2310 return false; 2311 2312 // If we get here, we can hoist the instruction and if-convert. 2313 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2314 2315 // Insert a select of the value of the speculated store. 2316 if (SpeculatedStoreValue) { 2317 IRBuilder<NoFolder> Builder(BI); 2318 Value *TrueV = SpeculatedStore->getValueOperand(); 2319 Value *FalseV = SpeculatedStoreValue; 2320 if (Invert) 2321 std::swap(TrueV, FalseV); 2322 Value *S = Builder.CreateSelect( 2323 BrCond, TrueV, FalseV, "spec.store.select", BI); 2324 SpeculatedStore->setOperand(0, S); 2325 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2326 SpeculatedStore->getDebugLoc()); 2327 } 2328 2329 // Metadata can be dependent on the condition we are hoisting above. 2330 // Conservatively strip all metadata on the instruction. Drop the debug loc 2331 // to avoid making it appear as if the condition is a constant, which would 2332 // be misleading while debugging. 2333 for (auto &I : *ThenBB) { 2334 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2335 I.setDebugLoc(DebugLoc()); 2336 I.dropUnknownNonDebugMetadata(); 2337 } 2338 2339 // Hoist the instructions. 2340 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2341 ThenBB->begin(), std::prev(ThenBB->end())); 2342 2343 // Insert selects and rewrite the PHI operands. 2344 IRBuilder<NoFolder> Builder(BI); 2345 for (PHINode &PN : EndBB->phis()) { 2346 unsigned OrigI = PN.getBasicBlockIndex(BB); 2347 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2348 Value *OrigV = PN.getIncomingValue(OrigI); 2349 Value *ThenV = PN.getIncomingValue(ThenI); 2350 2351 // Skip PHIs which are trivial. 2352 if (OrigV == ThenV) 2353 continue; 2354 2355 // Create a select whose true value is the speculatively executed value and 2356 // false value is the pre-existing value. Swap them if the branch 2357 // destinations were inverted. 2358 Value *TrueV = ThenV, *FalseV = OrigV; 2359 if (Invert) 2360 std::swap(TrueV, FalseV); 2361 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2362 PN.setIncomingValue(OrigI, V); 2363 PN.setIncomingValue(ThenI, V); 2364 } 2365 2366 // Remove speculated dbg intrinsics. 2367 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2368 // dbg value for the different flows and inserting it after the select. 2369 for (Instruction *I : SpeculatedDbgIntrinsics) 2370 I->eraseFromParent(); 2371 2372 ++NumSpeculations; 2373 return true; 2374 } 2375 2376 /// Return true if we can thread a branch across this block. 2377 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2378 int Size = 0; 2379 2380 for (Instruction &I : BB->instructionsWithoutDebug()) { 2381 if (Size > MaxSmallBlockSize) 2382 return false; // Don't clone large BB's. 2383 2384 // Can't fold blocks that contain noduplicate or convergent calls. 2385 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2386 if (CI->cannotDuplicate() || CI->isConvergent()) 2387 return false; 2388 2389 // We will delete Phis while threading, so Phis should not be accounted in 2390 // block's size 2391 if (!isa<PHINode>(I)) 2392 ++Size; 2393 2394 // We can only support instructions that do not define values that are 2395 // live outside of the current basic block. 2396 for (User *U : I.users()) { 2397 Instruction *UI = cast<Instruction>(U); 2398 if (UI->getParent() != BB || isa<PHINode>(UI)) 2399 return false; 2400 } 2401 2402 // Looks ok, continue checking. 2403 } 2404 2405 return true; 2406 } 2407 2408 /// If we have a conditional branch on a PHI node value that is defined in the 2409 /// same block as the branch and if any PHI entries are constants, thread edges 2410 /// corresponding to that entry to be branches to their ultimate destination. 2411 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2412 const DataLayout &DL, AssumptionCache *AC) { 2413 BasicBlock *BB = BI->getParent(); 2414 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2415 // NOTE: we currently cannot transform this case if the PHI node is used 2416 // outside of the block. 2417 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2418 return false; 2419 2420 // Degenerate case of a single entry PHI. 2421 if (PN->getNumIncomingValues() == 1) { 2422 FoldSingleEntryPHINodes(PN->getParent()); 2423 return true; 2424 } 2425 2426 // Now we know that this block has multiple preds and two succs. 2427 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2428 return false; 2429 2430 // Okay, this is a simple enough basic block. See if any phi values are 2431 // constants. 2432 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2433 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2434 if (!CB || !CB->getType()->isIntegerTy(1)) 2435 continue; 2436 2437 // Okay, we now know that all edges from PredBB should be revectored to 2438 // branch to RealDest. 2439 BasicBlock *PredBB = PN->getIncomingBlock(i); 2440 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2441 2442 if (RealDest == BB) 2443 continue; // Skip self loops. 2444 // Skip if the predecessor's terminator is an indirect branch. 2445 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2446 continue; 2447 2448 SmallVector<DominatorTree::UpdateType, 3> Updates; 2449 2450 // The dest block might have PHI nodes, other predecessors and other 2451 // difficult cases. Instead of being smart about this, just insert a new 2452 // block that jumps to the destination block, effectively splitting 2453 // the edge we are about to create. 2454 BasicBlock *EdgeBB = 2455 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2456 RealDest->getParent(), RealDest); 2457 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2458 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2459 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2460 2461 // Update PHI nodes. 2462 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2463 2464 // BB may have instructions that are being threaded over. Clone these 2465 // instructions into EdgeBB. We know that there will be no uses of the 2466 // cloned instructions outside of EdgeBB. 2467 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2468 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2469 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2470 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2471 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2472 continue; 2473 } 2474 // Clone the instruction. 2475 Instruction *N = BBI->clone(); 2476 if (BBI->hasName()) 2477 N->setName(BBI->getName() + ".c"); 2478 2479 // Update operands due to translation. 2480 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2481 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2482 if (PI != TranslateMap.end()) 2483 *i = PI->second; 2484 } 2485 2486 // Check for trivial simplification. 2487 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2488 if (!BBI->use_empty()) 2489 TranslateMap[&*BBI] = V; 2490 if (!N->mayHaveSideEffects()) { 2491 N->deleteValue(); // Instruction folded away, don't need actual inst 2492 N = nullptr; 2493 } 2494 } else { 2495 if (!BBI->use_empty()) 2496 TranslateMap[&*BBI] = N; 2497 } 2498 if (N) { 2499 // Insert the new instruction into its new home. 2500 EdgeBB->getInstList().insert(InsertPt, N); 2501 2502 // Register the new instruction with the assumption cache if necessary. 2503 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2504 AC->registerAssumption(cast<IntrinsicInst>(N)); 2505 } 2506 } 2507 2508 // Loop over all of the edges from PredBB to BB, changing them to branch 2509 // to EdgeBB instead. 2510 Instruction *PredBBTI = PredBB->getTerminator(); 2511 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2512 if (PredBBTI->getSuccessor(i) == BB) { 2513 BB->removePredecessor(PredBB); 2514 PredBBTI->setSuccessor(i, EdgeBB); 2515 } 2516 2517 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2518 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2519 2520 if (DTU) 2521 DTU->applyUpdates(Updates); 2522 2523 // Recurse, simplifying any other constants. 2524 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2525 } 2526 2527 return false; 2528 } 2529 2530 /// Given a BB that starts with the specified two-entry PHI node, 2531 /// see if we can eliminate it. 2532 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2533 DomTreeUpdater *DTU, const DataLayout &DL) { 2534 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2535 // statement", which has a very simple dominance structure. Basically, we 2536 // are trying to find the condition that is being branched on, which 2537 // subsequently causes this merge to happen. We really want control 2538 // dependence information for this check, but simplifycfg can't keep it up 2539 // to date, and this catches most of the cases we care about anyway. 2540 BasicBlock *BB = PN->getParent(); 2541 2542 BasicBlock *IfTrue, *IfFalse; 2543 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2544 if (!IfCond || 2545 // Don't bother if the branch will be constant folded trivially. 2546 isa<ConstantInt>(IfCond)) 2547 return false; 2548 2549 // Okay, we found that we can merge this two-entry phi node into a select. 2550 // Doing so would require us to fold *all* two entry phi nodes in this block. 2551 // At some point this becomes non-profitable (particularly if the target 2552 // doesn't support cmov's). Only do this transformation if there are two or 2553 // fewer PHI nodes in this block. 2554 unsigned NumPhis = 0; 2555 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2556 if (NumPhis > 2) 2557 return false; 2558 2559 // Loop over the PHI's seeing if we can promote them all to select 2560 // instructions. While we are at it, keep track of the instructions 2561 // that need to be moved to the dominating block. 2562 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2563 int BudgetRemaining = 2564 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2565 2566 bool Changed = false; 2567 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2568 PHINode *PN = cast<PHINode>(II++); 2569 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2570 PN->replaceAllUsesWith(V); 2571 PN->eraseFromParent(); 2572 Changed = true; 2573 continue; 2574 } 2575 2576 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2577 BudgetRemaining, TTI) || 2578 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2579 BudgetRemaining, TTI)) 2580 return Changed; 2581 } 2582 2583 // If we folded the first phi, PN dangles at this point. Refresh it. If 2584 // we ran out of PHIs then we simplified them all. 2585 PN = dyn_cast<PHINode>(BB->begin()); 2586 if (!PN) 2587 return true; 2588 2589 // Return true if at least one of these is a 'not', and another is either 2590 // a 'not' too, or a constant. 2591 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2592 if (!match(V0, m_Not(m_Value()))) 2593 std::swap(V0, V1); 2594 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2595 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2596 }; 2597 2598 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2599 // of the incoming values is an 'not' and another one is freely invertible. 2600 // These can often be turned into switches and other things. 2601 if (PN->getType()->isIntegerTy(1) && 2602 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2603 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2604 isa<BinaryOperator>(IfCond)) && 2605 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2606 PN->getIncomingValue(1))) 2607 return Changed; 2608 2609 // If all PHI nodes are promotable, check to make sure that all instructions 2610 // in the predecessor blocks can be promoted as well. If not, we won't be able 2611 // to get rid of the control flow, so it's not worth promoting to select 2612 // instructions. 2613 BasicBlock *DomBlock = nullptr; 2614 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2615 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2616 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2617 IfBlock1 = nullptr; 2618 } else { 2619 DomBlock = *pred_begin(IfBlock1); 2620 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2621 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2622 !isa<PseudoProbeInst>(I)) { 2623 // This is not an aggressive instruction that we can promote. 2624 // Because of this, we won't be able to get rid of the control flow, so 2625 // the xform is not worth it. 2626 return Changed; 2627 } 2628 } 2629 2630 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2631 IfBlock2 = nullptr; 2632 } else { 2633 DomBlock = *pred_begin(IfBlock2); 2634 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2635 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2636 !isa<PseudoProbeInst>(I)) { 2637 // This is not an aggressive instruction that we can promote. 2638 // Because of this, we won't be able to get rid of the control flow, so 2639 // the xform is not worth it. 2640 return Changed; 2641 } 2642 } 2643 assert(DomBlock && "Failed to find root DomBlock"); 2644 2645 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2646 << " T: " << IfTrue->getName() 2647 << " F: " << IfFalse->getName() << "\n"); 2648 2649 // If we can still promote the PHI nodes after this gauntlet of tests, 2650 // do all of the PHI's now. 2651 Instruction *InsertPt = DomBlock->getTerminator(); 2652 IRBuilder<NoFolder> Builder(InsertPt); 2653 2654 // Move all 'aggressive' instructions, which are defined in the 2655 // conditional parts of the if's up to the dominating block. 2656 if (IfBlock1) 2657 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2658 if (IfBlock2) 2659 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2660 2661 // Propagate fast-math-flags from phi nodes to replacement selects. 2662 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2663 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2664 if (isa<FPMathOperator>(PN)) 2665 Builder.setFastMathFlags(PN->getFastMathFlags()); 2666 2667 // Change the PHI node into a select instruction. 2668 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2669 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2670 2671 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2672 PN->replaceAllUsesWith(Sel); 2673 Sel->takeName(PN); 2674 PN->eraseFromParent(); 2675 } 2676 2677 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2678 // has been flattened. Change DomBlock to jump directly to our new block to 2679 // avoid other simplifycfg's kicking in on the diamond. 2680 Instruction *OldTI = DomBlock->getTerminator(); 2681 Builder.SetInsertPoint(OldTI); 2682 Builder.CreateBr(BB); 2683 2684 SmallVector<DominatorTree::UpdateType, 3> Updates; 2685 if (DTU) { 2686 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2687 for (auto *Successor : successors(DomBlock)) 2688 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2689 } 2690 2691 OldTI->eraseFromParent(); 2692 if (DTU) 2693 DTU->applyUpdates(Updates); 2694 2695 return true; 2696 } 2697 2698 /// If we found a conditional branch that goes to two returning blocks, 2699 /// try to merge them together into one return, 2700 /// introducing a select if the return values disagree. 2701 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2702 IRBuilder<> &Builder) { 2703 auto *BB = BI->getParent(); 2704 assert(BI->isConditional() && "Must be a conditional branch"); 2705 BasicBlock *TrueSucc = BI->getSuccessor(0); 2706 BasicBlock *FalseSucc = BI->getSuccessor(1); 2707 // NOTE: destinations may match, this could be degenerate uncond branch. 2708 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2709 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2710 2711 // Check to ensure both blocks are empty (just a return) or optionally empty 2712 // with PHI nodes. If there are other instructions, merging would cause extra 2713 // computation on one path or the other. 2714 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2715 return false; 2716 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2717 return false; 2718 2719 Builder.SetInsertPoint(BI); 2720 // Okay, we found a branch that is going to two return nodes. If 2721 // there is no return value for this function, just change the 2722 // branch into a return. 2723 if (FalseRet->getNumOperands() == 0) { 2724 TrueSucc->removePredecessor(BB); 2725 FalseSucc->removePredecessor(BB); 2726 Builder.CreateRetVoid(); 2727 EraseTerminatorAndDCECond(BI); 2728 if (DTU) { 2729 SmallVector<DominatorTree::UpdateType, 2> Updates; 2730 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2731 if (TrueSucc != FalseSucc) 2732 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2733 DTU->applyUpdates(Updates); 2734 } 2735 return true; 2736 } 2737 2738 // Otherwise, figure out what the true and false return values are 2739 // so we can insert a new select instruction. 2740 Value *TrueValue = TrueRet->getReturnValue(); 2741 Value *FalseValue = FalseRet->getReturnValue(); 2742 2743 // Unwrap any PHI nodes in the return blocks. 2744 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2745 if (TVPN->getParent() == TrueSucc) 2746 TrueValue = TVPN->getIncomingValueForBlock(BB); 2747 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2748 if (FVPN->getParent() == FalseSucc) 2749 FalseValue = FVPN->getIncomingValueForBlock(BB); 2750 2751 // In order for this transformation to be safe, we must be able to 2752 // unconditionally execute both operands to the return. This is 2753 // normally the case, but we could have a potentially-trapping 2754 // constant expression that prevents this transformation from being 2755 // safe. 2756 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2757 if (TCV->canTrap()) 2758 return false; 2759 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2760 if (FCV->canTrap()) 2761 return false; 2762 2763 // Okay, we collected all the mapped values and checked them for sanity, and 2764 // defined to really do this transformation. First, update the CFG. 2765 TrueSucc->removePredecessor(BB); 2766 FalseSucc->removePredecessor(BB); 2767 2768 // Insert select instructions where needed. 2769 Value *BrCond = BI->getCondition(); 2770 if (TrueValue) { 2771 // Insert a select if the results differ. 2772 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2773 } else if (isa<UndefValue>(TrueValue)) { 2774 TrueValue = FalseValue; 2775 } else { 2776 TrueValue = 2777 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2778 } 2779 } 2780 2781 Value *RI = 2782 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2783 2784 (void)RI; 2785 2786 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2787 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2788 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2789 2790 EraseTerminatorAndDCECond(BI); 2791 if (DTU) { 2792 SmallVector<DominatorTree::UpdateType, 2> Updates; 2793 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2794 if (TrueSucc != FalseSucc) 2795 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2796 DTU->applyUpdates(Updates); 2797 } 2798 2799 return true; 2800 } 2801 2802 /// Return true if either PBI or BI has branch weight available, and store 2803 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2804 /// not have branch weight, use 1:1 as its weight. 2805 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2806 uint64_t &PredTrueWeight, 2807 uint64_t &PredFalseWeight, 2808 uint64_t &SuccTrueWeight, 2809 uint64_t &SuccFalseWeight) { 2810 bool PredHasWeights = 2811 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2812 bool SuccHasWeights = 2813 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2814 if (PredHasWeights || SuccHasWeights) { 2815 if (!PredHasWeights) 2816 PredTrueWeight = PredFalseWeight = 1; 2817 if (!SuccHasWeights) 2818 SuccTrueWeight = SuccFalseWeight = 1; 2819 return true; 2820 } else { 2821 return false; 2822 } 2823 } 2824 2825 // Determine if the two branches share a common destination, 2826 // and deduce a glue that we need to use to join branch's conditions 2827 // to arrive at the common destination. 2828 static Optional<std::pair<Instruction::BinaryOps, bool>> 2829 CheckIfCondBranchesShareCommonDestination(BranchInst *BI, BranchInst *PBI) { 2830 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2831 "Both blocks must end with a conditional branches."); 2832 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2833 "PredBB must be a predecessor of BB."); 2834 2835 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2836 return {{Instruction::Or, false}}; 2837 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2838 return {{Instruction::And, false}}; 2839 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2840 return {{Instruction::And, true}}; 2841 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2842 return {{Instruction::Or, true}}; 2843 return None; 2844 } 2845 2846 static bool PerformBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2847 DomTreeUpdater *DTU, 2848 MemorySSAUpdater *MSSAU) { 2849 BasicBlock *BB = BI->getParent(); 2850 BasicBlock *PredBlock = PBI->getParent(); 2851 2852 // Determine if the two branches share a common destination. 2853 Instruction::BinaryOps Opc; 2854 bool InvertPredCond; 2855 std::tie(Opc, InvertPredCond) = 2856 *CheckIfCondBranchesShareCommonDestination(BI, PBI); 2857 2858 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2859 2860 IRBuilder<> Builder(PBI); 2861 // The builder is used to create instructions to eliminate the branch in BB. 2862 // If BB's terminator has !annotation metadata, add it to the new 2863 // instructions. 2864 Builder.CollectMetadataToCopy(BB->getTerminator(), 2865 {LLVMContext::MD_annotation}); 2866 2867 // If we need to invert the condition in the pred block to match, do so now. 2868 if (InvertPredCond) { 2869 Value *NewCond = PBI->getCondition(); 2870 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2871 CmpInst *CI = cast<CmpInst>(NewCond); 2872 CI->setPredicate(CI->getInversePredicate()); 2873 } else { 2874 NewCond = 2875 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2876 } 2877 2878 PBI->setCondition(NewCond); 2879 PBI->swapSuccessors(); 2880 } 2881 2882 BasicBlock *UniqueSucc = 2883 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 2884 2885 // Before cloning instructions, notify the successor basic block that it 2886 // is about to have a new predecessor. This will update PHI nodes, 2887 // which will allow us to update live-out uses of bonus instructions. 2888 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2889 2890 // Try to update branch weights. 2891 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2892 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2893 SuccTrueWeight, SuccFalseWeight)) { 2894 SmallVector<uint64_t, 8> NewWeights; 2895 2896 if (PBI->getSuccessor(0) == BB) { 2897 // PBI: br i1 %x, BB, FalseDest 2898 // BI: br i1 %y, UniqueSucc, FalseDest 2899 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2900 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2901 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2902 // TrueWeight for PBI * FalseWeight for BI. 2903 // We assume that total weights of a BranchInst can fit into 32 bits. 2904 // Therefore, we will not have overflow using 64-bit arithmetic. 2905 NewWeights.push_back(PredFalseWeight * 2906 (SuccFalseWeight + SuccTrueWeight) + 2907 PredTrueWeight * SuccFalseWeight); 2908 } else { 2909 // PBI: br i1 %x, TrueDest, BB 2910 // BI: br i1 %y, TrueDest, UniqueSucc 2911 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2912 // FalseWeight for PBI * TrueWeight for BI. 2913 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 2914 PredFalseWeight * SuccTrueWeight); 2915 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2916 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2917 } 2918 2919 // Halve the weights if any of them cannot fit in an uint32_t 2920 FitWeights(NewWeights); 2921 2922 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 2923 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2924 2925 // TODO: If BB is reachable from all paths through PredBlock, then we 2926 // could replace PBI's branch probabilities with BI's. 2927 } else 2928 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2929 2930 // Now, update the CFG. 2931 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 2932 2933 if (DTU) 2934 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 2935 {DominatorTree::Delete, PredBlock, BB}}); 2936 2937 // If BI was a loop latch, it may have had associated loop metadata. 2938 // We need to copy it to the new latch, that is, PBI. 2939 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2940 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2941 2942 ValueToValueMapTy VMap; // maps original values to cloned values 2943 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 2944 2945 // Now that the Cond was cloned into the predecessor basic block, 2946 // or/and the two conditions together. 2947 Instruction *NewCond = cast<Instruction>(Builder.CreateBinOp( 2948 Opc, PBI->getCondition(), VMap[BI->getCondition()], "or.cond")); 2949 PBI->setCondition(NewCond); 2950 2951 // Copy any debug value intrinsics into the end of PredBlock. 2952 for (Instruction &I : *BB) { 2953 if (isa<DbgInfoIntrinsic>(I)) { 2954 Instruction *NewI = I.clone(); 2955 RemapInstruction(NewI, VMap, 2956 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2957 NewI->insertBefore(PBI); 2958 } 2959 } 2960 2961 ++NumFoldBranchToCommonDest; 2962 return true; 2963 } 2964 2965 /// If this basic block is simple enough, and if a predecessor branches to us 2966 /// and one of our successors, fold the block into the predecessor and use 2967 /// logical operations to pick the right destination. 2968 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 2969 MemorySSAUpdater *MSSAU, 2970 const TargetTransformInfo *TTI, 2971 unsigned BonusInstThreshold) { 2972 // If this block ends with an unconditional branch, 2973 // let SpeculativelyExecuteBB() deal with it. 2974 if (!BI->isConditional()) 2975 return false; 2976 2977 BasicBlock *BB = BI->getParent(); 2978 2979 const unsigned PredCount = pred_size(BB); 2980 2981 bool Changed = false; 2982 2983 TargetTransformInfo::TargetCostKind CostKind = 2984 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 2985 : TargetTransformInfo::TCK_SizeAndLatency; 2986 2987 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2988 2989 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2990 Cond->getParent() != BB || !Cond->hasOneUse()) 2991 return Changed; 2992 2993 // Only allow this transformation if computing the condition doesn't involve 2994 // too many instructions and these involved instructions can be executed 2995 // unconditionally. We denote all involved instructions except the condition 2996 // as "bonus instructions", and only allow this transformation when the 2997 // number of the bonus instructions we'll need to create when cloning into 2998 // each predecessor does not exceed a certain threshold. 2999 unsigned NumBonusInsts = 0; 3000 for (Instruction &I : *BB) { 3001 // Don't check the branch condition comparison itself. 3002 if (&I == Cond) 3003 continue; 3004 // Ignore dbg intrinsics, and the terminator. 3005 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3006 continue; 3007 // I must be safe to execute unconditionally. 3008 if (!isSafeToSpeculativelyExecute(&I)) 3009 return Changed; 3010 3011 // Account for the cost of duplicating this instruction into each 3012 // predecessor. 3013 NumBonusInsts += PredCount; 3014 // Early exits once we reach the limit. 3015 if (NumBonusInsts > BonusInstThreshold) 3016 return Changed; 3017 } 3018 3019 // Cond is known to be a compare or binary operator. Check to make sure that 3020 // neither operand is a potentially-trapping constant expression. 3021 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3022 if (CE->canTrap()) 3023 return Changed; 3024 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3025 if (CE->canTrap()) 3026 return Changed; 3027 3028 // Finally, don't infinitely unroll conditional loops. 3029 if (is_contained(successors(BB), BB)) 3030 return Changed; 3031 3032 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3033 BasicBlock *PredBlock = *PI; 3034 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3035 3036 // Check that we have two conditional branches. If there is a PHI node in 3037 // the common successor, verify that the same value flows in from both 3038 // blocks. 3039 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3040 continue; 3041 3042 // Determine if the two branches share a common destination. 3043 Instruction::BinaryOps Opc; 3044 bool InvertPredCond; 3045 if (auto Recepie = CheckIfCondBranchesShareCommonDestination(BI, PBI)) 3046 std::tie(Opc, InvertPredCond) = *Recepie; 3047 else 3048 continue; 3049 3050 // Check the cost of inserting the necessary logic before performing the 3051 // transformation. 3052 if (TTI) { 3053 Type *Ty = BI->getCondition()->getType(); 3054 unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3055 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3056 !isa<CmpInst>(PBI->getCondition()))) 3057 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3058 3059 if (Cost > BranchFoldThreshold) 3060 continue; 3061 } 3062 3063 return PerformBranchToCommonDestFolding(BI, PBI, DTU, MSSAU); 3064 } 3065 return Changed; 3066 } 3067 3068 // If there is only one store in BB1 and BB2, return it, otherwise return 3069 // nullptr. 3070 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3071 StoreInst *S = nullptr; 3072 for (auto *BB : {BB1, BB2}) { 3073 if (!BB) 3074 continue; 3075 for (auto &I : *BB) 3076 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3077 if (S) 3078 // Multiple stores seen. 3079 return nullptr; 3080 else 3081 S = SI; 3082 } 3083 } 3084 return S; 3085 } 3086 3087 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3088 Value *AlternativeV = nullptr) { 3089 // PHI is going to be a PHI node that allows the value V that is defined in 3090 // BB to be referenced in BB's only successor. 3091 // 3092 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3093 // doesn't matter to us what the other operand is (it'll never get used). We 3094 // could just create a new PHI with an undef incoming value, but that could 3095 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3096 // other PHI. So here we directly look for some PHI in BB's successor with V 3097 // as an incoming operand. If we find one, we use it, else we create a new 3098 // one. 3099 // 3100 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3101 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3102 // where OtherBB is the single other predecessor of BB's only successor. 3103 PHINode *PHI = nullptr; 3104 BasicBlock *Succ = BB->getSingleSuccessor(); 3105 3106 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3107 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3108 PHI = cast<PHINode>(I); 3109 if (!AlternativeV) 3110 break; 3111 3112 assert(Succ->hasNPredecessors(2)); 3113 auto PredI = pred_begin(Succ); 3114 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3115 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3116 break; 3117 PHI = nullptr; 3118 } 3119 if (PHI) 3120 return PHI; 3121 3122 // If V is not an instruction defined in BB, just return it. 3123 if (!AlternativeV && 3124 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3125 return V; 3126 3127 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3128 PHI->addIncoming(V, BB); 3129 for (BasicBlock *PredBB : predecessors(Succ)) 3130 if (PredBB != BB) 3131 PHI->addIncoming( 3132 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3133 return PHI; 3134 } 3135 3136 static bool mergeConditionalStoreToAddress( 3137 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3138 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3139 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3140 // For every pointer, there must be exactly two stores, one coming from 3141 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3142 // store (to any address) in PTB,PFB or QTB,QFB. 3143 // FIXME: We could relax this restriction with a bit more work and performance 3144 // testing. 3145 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3146 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3147 if (!PStore || !QStore) 3148 return false; 3149 3150 // Now check the stores are compatible. 3151 if (!QStore->isUnordered() || !PStore->isUnordered()) 3152 return false; 3153 3154 // Check that sinking the store won't cause program behavior changes. Sinking 3155 // the store out of the Q blocks won't change any behavior as we're sinking 3156 // from a block to its unconditional successor. But we're moving a store from 3157 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3158 // So we need to check that there are no aliasing loads or stores in 3159 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3160 // operations between PStore and the end of its parent block. 3161 // 3162 // The ideal way to do this is to query AliasAnalysis, but we don't 3163 // preserve AA currently so that is dangerous. Be super safe and just 3164 // check there are no other memory operations at all. 3165 for (auto &I : *QFB->getSinglePredecessor()) 3166 if (I.mayReadOrWriteMemory()) 3167 return false; 3168 for (auto &I : *QFB) 3169 if (&I != QStore && I.mayReadOrWriteMemory()) 3170 return false; 3171 if (QTB) 3172 for (auto &I : *QTB) 3173 if (&I != QStore && I.mayReadOrWriteMemory()) 3174 return false; 3175 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3176 I != E; ++I) 3177 if (&*I != PStore && I->mayReadOrWriteMemory()) 3178 return false; 3179 3180 // If we're not in aggressive mode, we only optimize if we have some 3181 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3182 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3183 if (!BB) 3184 return true; 3185 // Heuristic: if the block can be if-converted/phi-folded and the 3186 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3187 // thread this store. 3188 int BudgetRemaining = 3189 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3190 for (auto &I : BB->instructionsWithoutDebug()) { 3191 // Consider terminator instruction to be free. 3192 if (I.isTerminator()) 3193 continue; 3194 // If this is one the stores that we want to speculate out of this BB, 3195 // then don't count it's cost, consider it to be free. 3196 if (auto *S = dyn_cast<StoreInst>(&I)) 3197 if (llvm::find(FreeStores, S)) 3198 continue; 3199 // Else, we have a white-list of instructions that we are ak speculating. 3200 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3201 return false; // Not in white-list - not worthwhile folding. 3202 // And finally, if this is a non-free instruction that we are okay 3203 // speculating, ensure that we consider the speculation budget. 3204 BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3205 if (BudgetRemaining < 0) 3206 return false; // Eagerly refuse to fold as soon as we're out of budget. 3207 } 3208 assert(BudgetRemaining >= 0 && 3209 "When we run out of budget we will eagerly return from within the " 3210 "per-instruction loop."); 3211 return true; 3212 }; 3213 3214 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3215 if (!MergeCondStoresAggressively && 3216 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3217 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3218 return false; 3219 3220 // If PostBB has more than two predecessors, we need to split it so we can 3221 // sink the store. 3222 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3223 // We know that QFB's only successor is PostBB. And QFB has a single 3224 // predecessor. If QTB exists, then its only successor is also PostBB. 3225 // If QTB does not exist, then QFB's only predecessor has a conditional 3226 // branch to QFB and PostBB. 3227 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3228 BasicBlock *NewBB = 3229 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3230 if (!NewBB) 3231 return false; 3232 PostBB = NewBB; 3233 } 3234 3235 // OK, we're going to sink the stores to PostBB. The store has to be 3236 // conditional though, so first create the predicate. 3237 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3238 ->getCondition(); 3239 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3240 ->getCondition(); 3241 3242 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3243 PStore->getParent()); 3244 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3245 QStore->getParent(), PPHI); 3246 3247 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3248 3249 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3250 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3251 3252 if (InvertPCond) 3253 PPred = QB.CreateNot(PPred); 3254 if (InvertQCond) 3255 QPred = QB.CreateNot(QPred); 3256 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3257 3258 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3259 /*Unreachable=*/false, 3260 /*BranchWeights=*/nullptr, DTU); 3261 QB.SetInsertPoint(T); 3262 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3263 AAMDNodes AAMD; 3264 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3265 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3266 SI->setAAMetadata(AAMD); 3267 // Choose the minimum alignment. If we could prove both stores execute, we 3268 // could use biggest one. In this case, though, we only know that one of the 3269 // stores executes. And we don't know it's safe to take the alignment from a 3270 // store that doesn't execute. 3271 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3272 3273 QStore->eraseFromParent(); 3274 PStore->eraseFromParent(); 3275 3276 return true; 3277 } 3278 3279 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3280 DomTreeUpdater *DTU, const DataLayout &DL, 3281 const TargetTransformInfo &TTI) { 3282 // The intention here is to find diamonds or triangles (see below) where each 3283 // conditional block contains a store to the same address. Both of these 3284 // stores are conditional, so they can't be unconditionally sunk. But it may 3285 // be profitable to speculatively sink the stores into one merged store at the 3286 // end, and predicate the merged store on the union of the two conditions of 3287 // PBI and QBI. 3288 // 3289 // This can reduce the number of stores executed if both of the conditions are 3290 // true, and can allow the blocks to become small enough to be if-converted. 3291 // This optimization will also chain, so that ladders of test-and-set 3292 // sequences can be if-converted away. 3293 // 3294 // We only deal with simple diamonds or triangles: 3295 // 3296 // PBI or PBI or a combination of the two 3297 // / \ | \ 3298 // PTB PFB | PFB 3299 // \ / | / 3300 // QBI QBI 3301 // / \ | \ 3302 // QTB QFB | QFB 3303 // \ / | / 3304 // PostBB PostBB 3305 // 3306 // We model triangles as a type of diamond with a nullptr "true" block. 3307 // Triangles are canonicalized so that the fallthrough edge is represented by 3308 // a true condition, as in the diagram above. 3309 BasicBlock *PTB = PBI->getSuccessor(0); 3310 BasicBlock *PFB = PBI->getSuccessor(1); 3311 BasicBlock *QTB = QBI->getSuccessor(0); 3312 BasicBlock *QFB = QBI->getSuccessor(1); 3313 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3314 3315 // Make sure we have a good guess for PostBB. If QTB's only successor is 3316 // QFB, then QFB is a better PostBB. 3317 if (QTB->getSingleSuccessor() == QFB) 3318 PostBB = QFB; 3319 3320 // If we couldn't find a good PostBB, stop. 3321 if (!PostBB) 3322 return false; 3323 3324 bool InvertPCond = false, InvertQCond = false; 3325 // Canonicalize fallthroughs to the true branches. 3326 if (PFB == QBI->getParent()) { 3327 std::swap(PFB, PTB); 3328 InvertPCond = true; 3329 } 3330 if (QFB == PostBB) { 3331 std::swap(QFB, QTB); 3332 InvertQCond = true; 3333 } 3334 3335 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3336 // and QFB may not. Model fallthroughs as a nullptr block. 3337 if (PTB == QBI->getParent()) 3338 PTB = nullptr; 3339 if (QTB == PostBB) 3340 QTB = nullptr; 3341 3342 // Legality bailouts. We must have at least the non-fallthrough blocks and 3343 // the post-dominating block, and the non-fallthroughs must only have one 3344 // predecessor. 3345 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3346 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3347 }; 3348 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3349 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3350 return false; 3351 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3352 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3353 return false; 3354 if (!QBI->getParent()->hasNUses(2)) 3355 return false; 3356 3357 // OK, this is a sequence of two diamonds or triangles. 3358 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3359 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3360 for (auto *BB : {PTB, PFB}) { 3361 if (!BB) 3362 continue; 3363 for (auto &I : *BB) 3364 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3365 PStoreAddresses.insert(SI->getPointerOperand()); 3366 } 3367 for (auto *BB : {QTB, QFB}) { 3368 if (!BB) 3369 continue; 3370 for (auto &I : *BB) 3371 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3372 QStoreAddresses.insert(SI->getPointerOperand()); 3373 } 3374 3375 set_intersect(PStoreAddresses, QStoreAddresses); 3376 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3377 // clear what it contains. 3378 auto &CommonAddresses = PStoreAddresses; 3379 3380 bool Changed = false; 3381 for (auto *Address : CommonAddresses) 3382 Changed |= 3383 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3384 InvertPCond, InvertQCond, DTU, DL, TTI); 3385 return Changed; 3386 } 3387 3388 /// If the previous block ended with a widenable branch, determine if reusing 3389 /// the target block is profitable and legal. This will have the effect of 3390 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3391 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3392 DomTreeUpdater *DTU) { 3393 // TODO: This can be generalized in two important ways: 3394 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3395 // values from the PBI edge. 3396 // 2) We can sink side effecting instructions into BI's fallthrough 3397 // successor provided they doesn't contribute to computation of 3398 // BI's condition. 3399 Value *CondWB, *WC; 3400 BasicBlock *IfTrueBB, *IfFalseBB; 3401 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3402 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3403 return false; 3404 if (!IfFalseBB->phis().empty()) 3405 return false; // TODO 3406 // Use lambda to lazily compute expensive condition after cheap ones. 3407 auto NoSideEffects = [](BasicBlock &BB) { 3408 return !llvm::any_of(BB, [](const Instruction &I) { 3409 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3410 }); 3411 }; 3412 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3413 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3414 NoSideEffects(*BI->getParent())) { 3415 auto *OldSuccessor = BI->getSuccessor(1); 3416 OldSuccessor->removePredecessor(BI->getParent()); 3417 BI->setSuccessor(1, IfFalseBB); 3418 if (DTU) 3419 DTU->applyUpdates( 3420 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3421 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3422 return true; 3423 } 3424 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3425 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3426 NoSideEffects(*BI->getParent())) { 3427 auto *OldSuccessor = BI->getSuccessor(0); 3428 OldSuccessor->removePredecessor(BI->getParent()); 3429 BI->setSuccessor(0, IfFalseBB); 3430 if (DTU) 3431 DTU->applyUpdates( 3432 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3433 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3434 return true; 3435 } 3436 return false; 3437 } 3438 3439 /// If we have a conditional branch as a predecessor of another block, 3440 /// this function tries to simplify it. We know 3441 /// that PBI and BI are both conditional branches, and BI is in one of the 3442 /// successor blocks of PBI - PBI branches to BI. 3443 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3444 DomTreeUpdater *DTU, 3445 const DataLayout &DL, 3446 const TargetTransformInfo &TTI) { 3447 assert(PBI->isConditional() && BI->isConditional()); 3448 BasicBlock *BB = BI->getParent(); 3449 3450 // If this block ends with a branch instruction, and if there is a 3451 // predecessor that ends on a branch of the same condition, make 3452 // this conditional branch redundant. 3453 if (PBI->getCondition() == BI->getCondition() && 3454 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3455 // Okay, the outcome of this conditional branch is statically 3456 // knowable. If this block had a single pred, handle specially. 3457 if (BB->getSinglePredecessor()) { 3458 // Turn this into a branch on constant. 3459 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3460 BI->setCondition( 3461 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3462 return true; // Nuke the branch on constant. 3463 } 3464 3465 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3466 // in the constant and simplify the block result. Subsequent passes of 3467 // simplifycfg will thread the block. 3468 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3469 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3470 PHINode *NewPN = PHINode::Create( 3471 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3472 BI->getCondition()->getName() + ".pr", &BB->front()); 3473 // Okay, we're going to insert the PHI node. Since PBI is not the only 3474 // predecessor, compute the PHI'd conditional value for all of the preds. 3475 // Any predecessor where the condition is not computable we keep symbolic. 3476 for (pred_iterator PI = PB; PI != PE; ++PI) { 3477 BasicBlock *P = *PI; 3478 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3479 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3480 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3481 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3482 NewPN->addIncoming( 3483 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3484 P); 3485 } else { 3486 NewPN->addIncoming(BI->getCondition(), P); 3487 } 3488 } 3489 3490 BI->setCondition(NewPN); 3491 return true; 3492 } 3493 } 3494 3495 // If the previous block ended with a widenable branch, determine if reusing 3496 // the target block is profitable and legal. This will have the effect of 3497 // "widening" PBI, but doesn't require us to reason about hosting safety. 3498 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3499 return true; 3500 3501 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3502 if (CE->canTrap()) 3503 return false; 3504 3505 // If both branches are conditional and both contain stores to the same 3506 // address, remove the stores from the conditionals and create a conditional 3507 // merged store at the end. 3508 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3509 return true; 3510 3511 // If this is a conditional branch in an empty block, and if any 3512 // predecessors are a conditional branch to one of our destinations, 3513 // fold the conditions into logical ops and one cond br. 3514 3515 // Ignore dbg intrinsics. 3516 if (&*BB->instructionsWithoutDebug().begin() != BI) 3517 return false; 3518 3519 int PBIOp, BIOp; 3520 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3521 PBIOp = 0; 3522 BIOp = 0; 3523 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3524 PBIOp = 0; 3525 BIOp = 1; 3526 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3527 PBIOp = 1; 3528 BIOp = 0; 3529 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3530 PBIOp = 1; 3531 BIOp = 1; 3532 } else { 3533 return false; 3534 } 3535 3536 // Check to make sure that the other destination of this branch 3537 // isn't BB itself. If so, this is an infinite loop that will 3538 // keep getting unwound. 3539 if (PBI->getSuccessor(PBIOp) == BB) 3540 return false; 3541 3542 // Do not perform this transformation if it would require 3543 // insertion of a large number of select instructions. For targets 3544 // without predication/cmovs, this is a big pessimization. 3545 3546 // Also do not perform this transformation if any phi node in the common 3547 // destination block can trap when reached by BB or PBB (PR17073). In that 3548 // case, it would be unsafe to hoist the operation into a select instruction. 3549 3550 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3551 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3552 unsigned NumPhis = 0; 3553 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3554 ++II, ++NumPhis) { 3555 if (NumPhis > 2) // Disable this xform. 3556 return false; 3557 3558 PHINode *PN = cast<PHINode>(II); 3559 Value *BIV = PN->getIncomingValueForBlock(BB); 3560 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3561 if (CE->canTrap()) 3562 return false; 3563 3564 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3565 Value *PBIV = PN->getIncomingValue(PBBIdx); 3566 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3567 if (CE->canTrap()) 3568 return false; 3569 } 3570 3571 // Finally, if everything is ok, fold the branches to logical ops. 3572 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3573 3574 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3575 << "AND: " << *BI->getParent()); 3576 3577 SmallVector<DominatorTree::UpdateType, 5> Updates; 3578 3579 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3580 // branch in it, where one edge (OtherDest) goes back to itself but the other 3581 // exits. We don't *know* that the program avoids the infinite loop 3582 // (even though that seems likely). If we do this xform naively, we'll end up 3583 // recursively unpeeling the loop. Since we know that (after the xform is 3584 // done) that the block *is* infinite if reached, we just make it an obviously 3585 // infinite loop with no cond branch. 3586 if (OtherDest == BB) { 3587 // Insert it at the end of the function, because it's either code, 3588 // or it won't matter if it's hot. :) 3589 BasicBlock *InfLoopBlock = 3590 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3591 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3592 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3593 OtherDest = InfLoopBlock; 3594 } 3595 3596 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3597 3598 // BI may have other predecessors. Because of this, we leave 3599 // it alone, but modify PBI. 3600 3601 // Make sure we get to CommonDest on True&True directions. 3602 Value *PBICond = PBI->getCondition(); 3603 IRBuilder<NoFolder> Builder(PBI); 3604 if (PBIOp) 3605 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3606 3607 Value *BICond = BI->getCondition(); 3608 if (BIOp) 3609 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3610 3611 // Merge the conditions. 3612 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3613 3614 // Modify PBI to branch on the new condition to the new dests. 3615 PBI->setCondition(Cond); 3616 PBI->setSuccessor(0, CommonDest); 3617 PBI->setSuccessor(1, OtherDest); 3618 3619 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3620 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3621 3622 if (DTU) 3623 DTU->applyUpdates(Updates); 3624 3625 // Update branch weight for PBI. 3626 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3627 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3628 bool HasWeights = 3629 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3630 SuccTrueWeight, SuccFalseWeight); 3631 if (HasWeights) { 3632 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3633 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3634 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3635 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3636 // The weight to CommonDest should be PredCommon * SuccTotal + 3637 // PredOther * SuccCommon. 3638 // The weight to OtherDest should be PredOther * SuccOther. 3639 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3640 PredOther * SuccCommon, 3641 PredOther * SuccOther}; 3642 // Halve the weights if any of them cannot fit in an uint32_t 3643 FitWeights(NewWeights); 3644 3645 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3646 } 3647 3648 // OtherDest may have phi nodes. If so, add an entry from PBI's 3649 // block that are identical to the entries for BI's block. 3650 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3651 3652 // We know that the CommonDest already had an edge from PBI to 3653 // it. If it has PHIs though, the PHIs may have different 3654 // entries for BB and PBI's BB. If so, insert a select to make 3655 // them agree. 3656 for (PHINode &PN : CommonDest->phis()) { 3657 Value *BIV = PN.getIncomingValueForBlock(BB); 3658 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3659 Value *PBIV = PN.getIncomingValue(PBBIdx); 3660 if (BIV != PBIV) { 3661 // Insert a select in PBI to pick the right value. 3662 SelectInst *NV = cast<SelectInst>( 3663 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3664 PN.setIncomingValue(PBBIdx, NV); 3665 // Although the select has the same condition as PBI, the original branch 3666 // weights for PBI do not apply to the new select because the select's 3667 // 'logical' edges are incoming edges of the phi that is eliminated, not 3668 // the outgoing edges of PBI. 3669 if (HasWeights) { 3670 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3671 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3672 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3673 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3674 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3675 // The weight to PredOtherDest should be PredOther * SuccCommon. 3676 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3677 PredOther * SuccCommon}; 3678 3679 FitWeights(NewWeights); 3680 3681 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3682 } 3683 } 3684 } 3685 3686 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3687 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3688 3689 // This basic block is probably dead. We know it has at least 3690 // one fewer predecessor. 3691 return true; 3692 } 3693 3694 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3695 // true or to FalseBB if Cond is false. 3696 // Takes care of updating the successors and removing the old terminator. 3697 // Also makes sure not to introduce new successors by assuming that edges to 3698 // non-successor TrueBBs and FalseBBs aren't reachable. 3699 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3700 Value *Cond, BasicBlock *TrueBB, 3701 BasicBlock *FalseBB, 3702 uint32_t TrueWeight, 3703 uint32_t FalseWeight) { 3704 auto *BB = OldTerm->getParent(); 3705 // Remove any superfluous successor edges from the CFG. 3706 // First, figure out which successors to preserve. 3707 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3708 // successor. 3709 BasicBlock *KeepEdge1 = TrueBB; 3710 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3711 3712 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 3713 3714 // Then remove the rest. 3715 for (BasicBlock *Succ : successors(OldTerm)) { 3716 // Make sure only to keep exactly one copy of each edge. 3717 if (Succ == KeepEdge1) 3718 KeepEdge1 = nullptr; 3719 else if (Succ == KeepEdge2) 3720 KeepEdge2 = nullptr; 3721 else { 3722 Succ->removePredecessor(BB, 3723 /*KeepOneInputPHIs=*/true); 3724 3725 if (Succ != TrueBB && Succ != FalseBB) 3726 RemovedSuccessors.insert(Succ); 3727 } 3728 } 3729 3730 IRBuilder<> Builder(OldTerm); 3731 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3732 3733 // Insert an appropriate new terminator. 3734 if (!KeepEdge1 && !KeepEdge2) { 3735 if (TrueBB == FalseBB) { 3736 // We were only looking for one successor, and it was present. 3737 // Create an unconditional branch to it. 3738 Builder.CreateBr(TrueBB); 3739 } else { 3740 // We found both of the successors we were looking for. 3741 // Create a conditional branch sharing the condition of the select. 3742 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3743 if (TrueWeight != FalseWeight) 3744 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3745 } 3746 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3747 // Neither of the selected blocks were successors, so this 3748 // terminator must be unreachable. 3749 new UnreachableInst(OldTerm->getContext(), OldTerm); 3750 } else { 3751 // One of the selected values was a successor, but the other wasn't. 3752 // Insert an unconditional branch to the one that was found; 3753 // the edge to the one that wasn't must be unreachable. 3754 if (!KeepEdge1) { 3755 // Only TrueBB was found. 3756 Builder.CreateBr(TrueBB); 3757 } else { 3758 // Only FalseBB was found. 3759 Builder.CreateBr(FalseBB); 3760 } 3761 } 3762 3763 EraseTerminatorAndDCECond(OldTerm); 3764 3765 if (DTU) { 3766 SmallVector<DominatorTree::UpdateType, 2> Updates; 3767 Updates.reserve(RemovedSuccessors.size()); 3768 for (auto *RemovedSuccessor : RemovedSuccessors) 3769 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3770 DTU->applyUpdates(Updates); 3771 } 3772 3773 return true; 3774 } 3775 3776 // Replaces 3777 // (switch (select cond, X, Y)) on constant X, Y 3778 // with a branch - conditional if X and Y lead to distinct BBs, 3779 // unconditional otherwise. 3780 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3781 SelectInst *Select) { 3782 // Check for constant integer values in the select. 3783 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3784 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3785 if (!TrueVal || !FalseVal) 3786 return false; 3787 3788 // Find the relevant condition and destinations. 3789 Value *Condition = Select->getCondition(); 3790 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3791 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3792 3793 // Get weight for TrueBB and FalseBB. 3794 uint32_t TrueWeight = 0, FalseWeight = 0; 3795 SmallVector<uint64_t, 8> Weights; 3796 bool HasWeights = HasBranchWeights(SI); 3797 if (HasWeights) { 3798 GetBranchWeights(SI, Weights); 3799 if (Weights.size() == 1 + SI->getNumCases()) { 3800 TrueWeight = 3801 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3802 FalseWeight = 3803 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3804 } 3805 } 3806 3807 // Perform the actual simplification. 3808 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3809 FalseWeight); 3810 } 3811 3812 // Replaces 3813 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3814 // blockaddress(@fn, BlockB))) 3815 // with 3816 // (br cond, BlockA, BlockB). 3817 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3818 SelectInst *SI) { 3819 // Check that both operands of the select are block addresses. 3820 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3821 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3822 if (!TBA || !FBA) 3823 return false; 3824 3825 // Extract the actual blocks. 3826 BasicBlock *TrueBB = TBA->getBasicBlock(); 3827 BasicBlock *FalseBB = FBA->getBasicBlock(); 3828 3829 // Perform the actual simplification. 3830 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3831 0); 3832 } 3833 3834 /// This is called when we find an icmp instruction 3835 /// (a seteq/setne with a constant) as the only instruction in a 3836 /// block that ends with an uncond branch. We are looking for a very specific 3837 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3838 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3839 /// default value goes to an uncond block with a seteq in it, we get something 3840 /// like: 3841 /// 3842 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3843 /// DEFAULT: 3844 /// %tmp = icmp eq i8 %A, 92 3845 /// br label %end 3846 /// end: 3847 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3848 /// 3849 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3850 /// the PHI, merging the third icmp into the switch. 3851 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3852 ICmpInst *ICI, IRBuilder<> &Builder) { 3853 BasicBlock *BB = ICI->getParent(); 3854 3855 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3856 // complex. 3857 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3858 return false; 3859 3860 Value *V = ICI->getOperand(0); 3861 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3862 3863 // The pattern we're looking for is where our only predecessor is a switch on 3864 // 'V' and this block is the default case for the switch. In this case we can 3865 // fold the compared value into the switch to simplify things. 3866 BasicBlock *Pred = BB->getSinglePredecessor(); 3867 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3868 return false; 3869 3870 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3871 if (SI->getCondition() != V) 3872 return false; 3873 3874 // If BB is reachable on a non-default case, then we simply know the value of 3875 // V in this block. Substitute it and constant fold the icmp instruction 3876 // away. 3877 if (SI->getDefaultDest() != BB) { 3878 ConstantInt *VVal = SI->findCaseDest(BB); 3879 assert(VVal && "Should have a unique destination value"); 3880 ICI->setOperand(0, VVal); 3881 3882 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3883 ICI->replaceAllUsesWith(V); 3884 ICI->eraseFromParent(); 3885 } 3886 // BB is now empty, so it is likely to simplify away. 3887 return requestResimplify(); 3888 } 3889 3890 // Ok, the block is reachable from the default dest. If the constant we're 3891 // comparing exists in one of the other edges, then we can constant fold ICI 3892 // and zap it. 3893 if (SI->findCaseValue(Cst) != SI->case_default()) { 3894 Value *V; 3895 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3896 V = ConstantInt::getFalse(BB->getContext()); 3897 else 3898 V = ConstantInt::getTrue(BB->getContext()); 3899 3900 ICI->replaceAllUsesWith(V); 3901 ICI->eraseFromParent(); 3902 // BB is now empty, so it is likely to simplify away. 3903 return requestResimplify(); 3904 } 3905 3906 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3907 // the block. 3908 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3909 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3910 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3911 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3912 return false; 3913 3914 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3915 // true in the PHI. 3916 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3917 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3918 3919 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3920 std::swap(DefaultCst, NewCst); 3921 3922 // Replace ICI (which is used by the PHI for the default value) with true or 3923 // false depending on if it is EQ or NE. 3924 ICI->replaceAllUsesWith(DefaultCst); 3925 ICI->eraseFromParent(); 3926 3927 SmallVector<DominatorTree::UpdateType, 2> Updates; 3928 3929 // Okay, the switch goes to this block on a default value. Add an edge from 3930 // the switch to the merge point on the compared value. 3931 BasicBlock *NewBB = 3932 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3933 { 3934 SwitchInstProfUpdateWrapper SIW(*SI); 3935 auto W0 = SIW.getSuccessorWeight(0); 3936 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3937 if (W0) { 3938 NewW = ((uint64_t(*W0) + 1) >> 1); 3939 SIW.setSuccessorWeight(0, *NewW); 3940 } 3941 SIW.addCase(Cst, NewBB, NewW); 3942 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 3943 } 3944 3945 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3946 Builder.SetInsertPoint(NewBB); 3947 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3948 Builder.CreateBr(SuccBlock); 3949 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 3950 PHIUse->addIncoming(NewCst, NewBB); 3951 if (DTU) 3952 DTU->applyUpdates(Updates); 3953 return true; 3954 } 3955 3956 /// The specified branch is a conditional branch. 3957 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3958 /// fold it into a switch instruction if so. 3959 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3960 IRBuilder<> &Builder, 3961 const DataLayout &DL) { 3962 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3963 if (!Cond) 3964 return false; 3965 3966 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3967 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3968 // 'setne's and'ed together, collect them. 3969 3970 // Try to gather values from a chain of and/or to be turned into a switch 3971 ConstantComparesGatherer ConstantCompare(Cond, DL); 3972 // Unpack the result 3973 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3974 Value *CompVal = ConstantCompare.CompValue; 3975 unsigned UsedICmps = ConstantCompare.UsedICmps; 3976 Value *ExtraCase = ConstantCompare.Extra; 3977 3978 // If we didn't have a multiply compared value, fail. 3979 if (!CompVal) 3980 return false; 3981 3982 // Avoid turning single icmps into a switch. 3983 if (UsedICmps <= 1) 3984 return false; 3985 3986 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 3987 3988 // There might be duplicate constants in the list, which the switch 3989 // instruction can't handle, remove them now. 3990 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3991 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3992 3993 // If Extra was used, we require at least two switch values to do the 3994 // transformation. A switch with one value is just a conditional branch. 3995 if (ExtraCase && Values.size() < 2) 3996 return false; 3997 3998 // TODO: Preserve branch weight metadata, similarly to how 3999 // FoldValueComparisonIntoPredecessors preserves it. 4000 4001 // Figure out which block is which destination. 4002 BasicBlock *DefaultBB = BI->getSuccessor(1); 4003 BasicBlock *EdgeBB = BI->getSuccessor(0); 4004 if (!TrueWhenEqual) 4005 std::swap(DefaultBB, EdgeBB); 4006 4007 BasicBlock *BB = BI->getParent(); 4008 4009 // MSAN does not like undefs as branch condition which can be introduced 4010 // with "explicit branch". 4011 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4012 return false; 4013 4014 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4015 << " cases into SWITCH. BB is:\n" 4016 << *BB); 4017 4018 SmallVector<DominatorTree::UpdateType, 2> Updates; 4019 4020 // If there are any extra values that couldn't be folded into the switch 4021 // then we evaluate them with an explicit branch first. Split the block 4022 // right before the condbr to handle it. 4023 if (ExtraCase) { 4024 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4025 /*MSSAU=*/nullptr, "switch.early.test"); 4026 4027 // Remove the uncond branch added to the old block. 4028 Instruction *OldTI = BB->getTerminator(); 4029 Builder.SetInsertPoint(OldTI); 4030 4031 if (TrueWhenEqual) 4032 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4033 else 4034 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4035 4036 OldTI->eraseFromParent(); 4037 4038 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4039 4040 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4041 // for the edge we just added. 4042 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4043 4044 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4045 << "\nEXTRABB = " << *BB); 4046 BB = NewBB; 4047 } 4048 4049 Builder.SetInsertPoint(BI); 4050 // Convert pointer to int before we switch. 4051 if (CompVal->getType()->isPointerTy()) { 4052 CompVal = Builder.CreatePtrToInt( 4053 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4054 } 4055 4056 // Create the new switch instruction now. 4057 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4058 4059 // Add all of the 'cases' to the switch instruction. 4060 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4061 New->addCase(Values[i], EdgeBB); 4062 4063 // We added edges from PI to the EdgeBB. As such, if there were any 4064 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4065 // the number of edges added. 4066 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4067 PHINode *PN = cast<PHINode>(BBI); 4068 Value *InVal = PN->getIncomingValueForBlock(BB); 4069 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4070 PN->addIncoming(InVal, BB); 4071 } 4072 4073 // Erase the old branch instruction. 4074 EraseTerminatorAndDCECond(BI); 4075 if (DTU) 4076 DTU->applyUpdates(Updates); 4077 4078 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4079 return true; 4080 } 4081 4082 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4083 if (isa<PHINode>(RI->getValue())) 4084 return simplifyCommonResume(RI); 4085 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4086 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4087 // The resume must unwind the exception that caused control to branch here. 4088 return simplifySingleResume(RI); 4089 4090 return false; 4091 } 4092 4093 // Check if cleanup block is empty 4094 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4095 for (Instruction &I : R) { 4096 auto *II = dyn_cast<IntrinsicInst>(&I); 4097 if (!II) 4098 return false; 4099 4100 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4101 switch (IntrinsicID) { 4102 case Intrinsic::dbg_declare: 4103 case Intrinsic::dbg_value: 4104 case Intrinsic::dbg_label: 4105 case Intrinsic::lifetime_end: 4106 break; 4107 default: 4108 return false; 4109 } 4110 } 4111 return true; 4112 } 4113 4114 // Simplify resume that is shared by several landing pads (phi of landing pad). 4115 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4116 BasicBlock *BB = RI->getParent(); 4117 4118 // Check that there are no other instructions except for debug and lifetime 4119 // intrinsics between the phi's and resume instruction. 4120 if (!isCleanupBlockEmpty( 4121 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4122 return false; 4123 4124 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4125 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4126 4127 // Check incoming blocks to see if any of them are trivial. 4128 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4129 Idx++) { 4130 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4131 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4132 4133 // If the block has other successors, we can not delete it because 4134 // it has other dependents. 4135 if (IncomingBB->getUniqueSuccessor() != BB) 4136 continue; 4137 4138 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4139 // Not the landing pad that caused the control to branch here. 4140 if (IncomingValue != LandingPad) 4141 continue; 4142 4143 if (isCleanupBlockEmpty( 4144 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4145 TrivialUnwindBlocks.insert(IncomingBB); 4146 } 4147 4148 // If no trivial unwind blocks, don't do any simplifications. 4149 if (TrivialUnwindBlocks.empty()) 4150 return false; 4151 4152 // Turn all invokes that unwind here into calls. 4153 for (auto *TrivialBB : TrivialUnwindBlocks) { 4154 // Blocks that will be simplified should be removed from the phi node. 4155 // Note there could be multiple edges to the resume block, and we need 4156 // to remove them all. 4157 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4158 BB->removePredecessor(TrivialBB, true); 4159 4160 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 4161 PI != PE;) { 4162 BasicBlock *Pred = *PI++; 4163 removeUnwindEdge(Pred, DTU); 4164 ++NumInvokes; 4165 } 4166 4167 // In each SimplifyCFG run, only the current processed block can be erased. 4168 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4169 // of erasing TrivialBB, we only remove the branch to the common resume 4170 // block so that we can later erase the resume block since it has no 4171 // predecessors. 4172 TrivialBB->getTerminator()->eraseFromParent(); 4173 new UnreachableInst(RI->getContext(), TrivialBB); 4174 if (DTU) 4175 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4176 } 4177 4178 // Delete the resume block if all its predecessors have been removed. 4179 if (pred_empty(BB)) { 4180 if (DTU) 4181 DTU->deleteBB(BB); 4182 else 4183 BB->eraseFromParent(); 4184 } 4185 4186 return !TrivialUnwindBlocks.empty(); 4187 } 4188 4189 // Simplify resume that is only used by a single (non-phi) landing pad. 4190 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4191 BasicBlock *BB = RI->getParent(); 4192 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4193 assert(RI->getValue() == LPInst && 4194 "Resume must unwind the exception that caused control to here"); 4195 4196 // Check that there are no other instructions except for debug intrinsics. 4197 if (!isCleanupBlockEmpty( 4198 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4199 return false; 4200 4201 // Turn all invokes that unwind here into calls and delete the basic block. 4202 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4203 BasicBlock *Pred = *PI++; 4204 removeUnwindEdge(Pred, DTU); 4205 ++NumInvokes; 4206 } 4207 4208 // The landingpad is now unreachable. Zap it. 4209 if (DTU) 4210 DTU->deleteBB(BB); 4211 else 4212 BB->eraseFromParent(); 4213 return true; 4214 } 4215 4216 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4217 // If this is a trivial cleanup pad that executes no instructions, it can be 4218 // eliminated. If the cleanup pad continues to the caller, any predecessor 4219 // that is an EH pad will be updated to continue to the caller and any 4220 // predecessor that terminates with an invoke instruction will have its invoke 4221 // instruction converted to a call instruction. If the cleanup pad being 4222 // simplified does not continue to the caller, each predecessor will be 4223 // updated to continue to the unwind destination of the cleanup pad being 4224 // simplified. 4225 BasicBlock *BB = RI->getParent(); 4226 CleanupPadInst *CPInst = RI->getCleanupPad(); 4227 if (CPInst->getParent() != BB) 4228 // This isn't an empty cleanup. 4229 return false; 4230 4231 // We cannot kill the pad if it has multiple uses. This typically arises 4232 // from unreachable basic blocks. 4233 if (!CPInst->hasOneUse()) 4234 return false; 4235 4236 // Check that there are no other instructions except for benign intrinsics. 4237 if (!isCleanupBlockEmpty( 4238 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4239 return false; 4240 4241 // If the cleanup return we are simplifying unwinds to the caller, this will 4242 // set UnwindDest to nullptr. 4243 BasicBlock *UnwindDest = RI->getUnwindDest(); 4244 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4245 4246 // We're about to remove BB from the control flow. Before we do, sink any 4247 // PHINodes into the unwind destination. Doing this before changing the 4248 // control flow avoids some potentially slow checks, since we can currently 4249 // be certain that UnwindDest and BB have no common predecessors (since they 4250 // are both EH pads). 4251 if (UnwindDest) { 4252 // First, go through the PHI nodes in UnwindDest and update any nodes that 4253 // reference the block we are removing 4254 for (BasicBlock::iterator I = UnwindDest->begin(), 4255 IE = DestEHPad->getIterator(); 4256 I != IE; ++I) { 4257 PHINode *DestPN = cast<PHINode>(I); 4258 4259 int Idx = DestPN->getBasicBlockIndex(BB); 4260 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4261 assert(Idx != -1); 4262 // This PHI node has an incoming value that corresponds to a control 4263 // path through the cleanup pad we are removing. If the incoming 4264 // value is in the cleanup pad, it must be a PHINode (because we 4265 // verified above that the block is otherwise empty). Otherwise, the 4266 // value is either a constant or a value that dominates the cleanup 4267 // pad being removed. 4268 // 4269 // Because BB and UnwindDest are both EH pads, all of their 4270 // predecessors must unwind to these blocks, and since no instruction 4271 // can have multiple unwind destinations, there will be no overlap in 4272 // incoming blocks between SrcPN and DestPN. 4273 Value *SrcVal = DestPN->getIncomingValue(Idx); 4274 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4275 4276 // Remove the entry for the block we are deleting. 4277 DestPN->removeIncomingValue(Idx, false); 4278 4279 if (SrcPN && SrcPN->getParent() == BB) { 4280 // If the incoming value was a PHI node in the cleanup pad we are 4281 // removing, we need to merge that PHI node's incoming values into 4282 // DestPN. 4283 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4284 SrcIdx != SrcE; ++SrcIdx) { 4285 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4286 SrcPN->getIncomingBlock(SrcIdx)); 4287 } 4288 } else { 4289 // Otherwise, the incoming value came from above BB and 4290 // so we can just reuse it. We must associate all of BB's 4291 // predecessors with this value. 4292 for (auto *pred : predecessors(BB)) { 4293 DestPN->addIncoming(SrcVal, pred); 4294 } 4295 } 4296 } 4297 4298 // Sink any remaining PHI nodes directly into UnwindDest. 4299 Instruction *InsertPt = DestEHPad; 4300 for (BasicBlock::iterator I = BB->begin(), 4301 IE = BB->getFirstNonPHI()->getIterator(); 4302 I != IE;) { 4303 // The iterator must be incremented here because the instructions are 4304 // being moved to another block. 4305 PHINode *PN = cast<PHINode>(I++); 4306 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4307 // If the PHI node has no uses or all of its uses are in this basic 4308 // block (meaning they are debug or lifetime intrinsics), just leave 4309 // it. It will be erased when we erase BB below. 4310 continue; 4311 4312 // Otherwise, sink this PHI node into UnwindDest. 4313 // Any predecessors to UnwindDest which are not already represented 4314 // must be back edges which inherit the value from the path through 4315 // BB. In this case, the PHI value must reference itself. 4316 for (auto *pred : predecessors(UnwindDest)) 4317 if (pred != BB) 4318 PN->addIncoming(PN, pred); 4319 PN->moveBefore(InsertPt); 4320 } 4321 } 4322 4323 std::vector<DominatorTree::UpdateType> Updates; 4324 4325 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4326 // The iterator must be updated here because we are removing this pred. 4327 BasicBlock *PredBB = *PI++; 4328 if (UnwindDest == nullptr) { 4329 if (DTU) 4330 DTU->applyUpdates(Updates); 4331 Updates.clear(); 4332 removeUnwindEdge(PredBB, DTU); 4333 ++NumInvokes; 4334 } else { 4335 Instruction *TI = PredBB->getTerminator(); 4336 TI->replaceUsesOfWith(BB, UnwindDest); 4337 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4338 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4339 } 4340 } 4341 4342 if (DTU) { 4343 DTU->applyUpdates(Updates); 4344 DTU->deleteBB(BB); 4345 } else 4346 // The cleanup pad is now unreachable. Zap it. 4347 BB->eraseFromParent(); 4348 4349 return true; 4350 } 4351 4352 // Try to merge two cleanuppads together. 4353 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4354 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4355 // with. 4356 BasicBlock *UnwindDest = RI->getUnwindDest(); 4357 if (!UnwindDest) 4358 return false; 4359 4360 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4361 // be safe to merge without code duplication. 4362 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4363 return false; 4364 4365 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4366 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4367 if (!SuccessorCleanupPad) 4368 return false; 4369 4370 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4371 // Replace any uses of the successor cleanupad with the predecessor pad 4372 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4373 // funclet bundle operands. 4374 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4375 // Remove the old cleanuppad. 4376 SuccessorCleanupPad->eraseFromParent(); 4377 // Now, we simply replace the cleanupret with a branch to the unwind 4378 // destination. 4379 BranchInst::Create(UnwindDest, RI->getParent()); 4380 RI->eraseFromParent(); 4381 4382 return true; 4383 } 4384 4385 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4386 // It is possible to transiantly have an undef cleanuppad operand because we 4387 // have deleted some, but not all, dead blocks. 4388 // Eventually, this block will be deleted. 4389 if (isa<UndefValue>(RI->getOperand(0))) 4390 return false; 4391 4392 if (mergeCleanupPad(RI)) 4393 return true; 4394 4395 if (removeEmptyCleanup(RI, DTU)) 4396 return true; 4397 4398 return false; 4399 } 4400 4401 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4402 BasicBlock *BB = RI->getParent(); 4403 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4404 return false; 4405 4406 // Find predecessors that end with branches. 4407 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4408 SmallVector<BranchInst *, 8> CondBranchPreds; 4409 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4410 BasicBlock *P = *PI; 4411 Instruction *PTI = P->getTerminator(); 4412 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4413 if (BI->isUnconditional()) 4414 UncondBranchPreds.push_back(P); 4415 else 4416 CondBranchPreds.push_back(BI); 4417 } 4418 } 4419 4420 // If we found some, do the transformation! 4421 if (!UncondBranchPreds.empty() && DupRet) { 4422 while (!UncondBranchPreds.empty()) { 4423 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4424 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4425 << "INTO UNCOND BRANCH PRED: " << *Pred); 4426 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4427 } 4428 4429 // If we eliminated all predecessors of the block, delete the block now. 4430 if (pred_empty(BB)) { 4431 // We know there are no successors, so just nuke the block. 4432 if (DTU) 4433 DTU->deleteBB(BB); 4434 else 4435 BB->eraseFromParent(); 4436 } 4437 4438 return true; 4439 } 4440 4441 // Check out all of the conditional branches going to this return 4442 // instruction. If any of them just select between returns, change the 4443 // branch itself into a select/return pair. 4444 while (!CondBranchPreds.empty()) { 4445 BranchInst *BI = CondBranchPreds.pop_back_val(); 4446 4447 // Check to see if the non-BB successor is also a return block. 4448 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4449 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4450 SimplifyCondBranchToTwoReturns(BI, Builder)) 4451 return true; 4452 } 4453 return false; 4454 } 4455 4456 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4457 BasicBlock *BB = UI->getParent(); 4458 4459 bool Changed = false; 4460 4461 // If there are any instructions immediately before the unreachable that can 4462 // be removed, do so. 4463 while (UI->getIterator() != BB->begin()) { 4464 BasicBlock::iterator BBI = UI->getIterator(); 4465 --BBI; 4466 // Do not delete instructions that can have side effects which might cause 4467 // the unreachable to not be reachable; specifically, calls and volatile 4468 // operations may have this effect. 4469 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4470 break; 4471 4472 if (BBI->mayHaveSideEffects()) { 4473 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4474 if (SI->isVolatile()) 4475 break; 4476 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4477 if (LI->isVolatile()) 4478 break; 4479 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4480 if (RMWI->isVolatile()) 4481 break; 4482 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4483 if (CXI->isVolatile()) 4484 break; 4485 } else if (isa<CatchPadInst>(BBI)) { 4486 // A catchpad may invoke exception object constructors and such, which 4487 // in some languages can be arbitrary code, so be conservative by 4488 // default. 4489 // For CoreCLR, it just involves a type test, so can be removed. 4490 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4491 EHPersonality::CoreCLR) 4492 break; 4493 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4494 !isa<LandingPadInst>(BBI)) { 4495 break; 4496 } 4497 // Note that deleting LandingPad's here is in fact okay, although it 4498 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4499 // all the predecessors of this block will be the unwind edges of Invokes, 4500 // and we can therefore guarantee this block will be erased. 4501 } 4502 4503 // Delete this instruction (any uses are guaranteed to be dead) 4504 if (!BBI->use_empty()) 4505 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4506 BBI->eraseFromParent(); 4507 Changed = true; 4508 } 4509 4510 // If the unreachable instruction is the first in the block, take a gander 4511 // at all of the predecessors of this instruction, and simplify them. 4512 if (&BB->front() != UI) 4513 return Changed; 4514 4515 std::vector<DominatorTree::UpdateType> Updates; 4516 4517 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4518 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4519 auto *Predecessor = Preds[i]; 4520 Instruction *TI = Predecessor->getTerminator(); 4521 IRBuilder<> Builder(TI); 4522 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4523 // We could either have a proper unconditional branch, 4524 // or a degenerate conditional branch with matching destinations. 4525 if (all_of(BI->successors(), 4526 [BB](auto *Successor) { return Successor == BB; })) { 4527 new UnreachableInst(TI->getContext(), TI); 4528 TI->eraseFromParent(); 4529 Changed = true; 4530 } else { 4531 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4532 Value* Cond = BI->getCondition(); 4533 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4534 "The destinations are guaranteed to be different here."); 4535 if (BI->getSuccessor(0) == BB) { 4536 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4537 Builder.CreateBr(BI->getSuccessor(1)); 4538 } else { 4539 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4540 Builder.CreateAssumption(Cond); 4541 Builder.CreateBr(BI->getSuccessor(0)); 4542 } 4543 EraseTerminatorAndDCECond(BI); 4544 Changed = true; 4545 } 4546 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4547 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4548 SwitchInstProfUpdateWrapper SU(*SI); 4549 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4550 if (i->getCaseSuccessor() != BB) { 4551 ++i; 4552 continue; 4553 } 4554 BB->removePredecessor(SU->getParent()); 4555 i = SU.removeCase(i); 4556 e = SU->case_end(); 4557 Changed = true; 4558 } 4559 // Note that the default destination can't be removed! 4560 if (SI->getDefaultDest() != BB) 4561 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4562 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4563 if (II->getUnwindDest() == BB) { 4564 if (DTU) 4565 DTU->applyUpdates(Updates); 4566 Updates.clear(); 4567 removeUnwindEdge(TI->getParent(), DTU); 4568 Changed = true; 4569 } 4570 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4571 if (CSI->getUnwindDest() == BB) { 4572 if (DTU) 4573 DTU->applyUpdates(Updates); 4574 Updates.clear(); 4575 removeUnwindEdge(TI->getParent(), DTU); 4576 Changed = true; 4577 continue; 4578 } 4579 4580 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4581 E = CSI->handler_end(); 4582 I != E; ++I) { 4583 if (*I == BB) { 4584 CSI->removeHandler(I); 4585 --I; 4586 --E; 4587 Changed = true; 4588 } 4589 } 4590 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4591 if (CSI->getNumHandlers() == 0) { 4592 if (CSI->hasUnwindDest()) { 4593 // Redirect all predecessors of the block containing CatchSwitchInst 4594 // to instead branch to the CatchSwitchInst's unwind destination. 4595 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4596 Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor, 4597 CSI->getUnwindDest()}); 4598 Updates.push_back( 4599 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor}); 4600 } 4601 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4602 } else { 4603 // Rewrite all preds to unwind to caller (or from invoke to call). 4604 if (DTU) 4605 DTU->applyUpdates(Updates); 4606 Updates.clear(); 4607 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4608 for (BasicBlock *EHPred : EHPreds) 4609 removeUnwindEdge(EHPred, DTU); 4610 } 4611 // The catchswitch is no longer reachable. 4612 new UnreachableInst(CSI->getContext(), CSI); 4613 CSI->eraseFromParent(); 4614 Changed = true; 4615 } 4616 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4617 (void)CRI; 4618 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4619 "Expected to always have an unwind to BB."); 4620 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4621 new UnreachableInst(TI->getContext(), TI); 4622 TI->eraseFromParent(); 4623 Changed = true; 4624 } 4625 } 4626 4627 if (DTU) 4628 DTU->applyUpdates(Updates); 4629 4630 // If this block is now dead, remove it. 4631 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4632 // We know there are no successors, so just nuke the block. 4633 if (DTU) 4634 DTU->deleteBB(BB); 4635 else 4636 BB->eraseFromParent(); 4637 return true; 4638 } 4639 4640 return Changed; 4641 } 4642 4643 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4644 assert(Cases.size() >= 1); 4645 4646 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4647 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4648 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4649 return false; 4650 } 4651 return true; 4652 } 4653 4654 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4655 DomTreeUpdater *DTU) { 4656 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4657 auto *BB = Switch->getParent(); 4658 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4659 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4660 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4661 Switch->setDefaultDest(&*NewDefaultBlock); 4662 if (DTU) 4663 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4664 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4665 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4666 SmallVector<DominatorTree::UpdateType, 2> Updates; 4667 for (auto *Successor : successors(NewDefaultBlock)) 4668 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4669 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4670 new UnreachableInst(Switch->getContext(), NewTerminator); 4671 EraseTerminatorAndDCECond(NewTerminator); 4672 if (DTU) 4673 DTU->applyUpdates(Updates); 4674 } 4675 4676 /// Turn a switch with two reachable destinations into an integer range 4677 /// comparison and branch. 4678 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4679 IRBuilder<> &Builder) { 4680 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4681 4682 bool HasDefault = 4683 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4684 4685 auto *BB = SI->getParent(); 4686 4687 // Partition the cases into two sets with different destinations. 4688 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4689 BasicBlock *DestB = nullptr; 4690 SmallVector<ConstantInt *, 16> CasesA; 4691 SmallVector<ConstantInt *, 16> CasesB; 4692 4693 for (auto Case : SI->cases()) { 4694 BasicBlock *Dest = Case.getCaseSuccessor(); 4695 if (!DestA) 4696 DestA = Dest; 4697 if (Dest == DestA) { 4698 CasesA.push_back(Case.getCaseValue()); 4699 continue; 4700 } 4701 if (!DestB) 4702 DestB = Dest; 4703 if (Dest == DestB) { 4704 CasesB.push_back(Case.getCaseValue()); 4705 continue; 4706 } 4707 return false; // More than two destinations. 4708 } 4709 4710 assert(DestA && DestB && 4711 "Single-destination switch should have been folded."); 4712 assert(DestA != DestB); 4713 assert(DestB != SI->getDefaultDest()); 4714 assert(!CasesB.empty() && "There must be non-default cases."); 4715 assert(!CasesA.empty() || HasDefault); 4716 4717 // Figure out if one of the sets of cases form a contiguous range. 4718 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4719 BasicBlock *ContiguousDest = nullptr; 4720 BasicBlock *OtherDest = nullptr; 4721 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4722 ContiguousCases = &CasesA; 4723 ContiguousDest = DestA; 4724 OtherDest = DestB; 4725 } else if (CasesAreContiguous(CasesB)) { 4726 ContiguousCases = &CasesB; 4727 ContiguousDest = DestB; 4728 OtherDest = DestA; 4729 } else 4730 return false; 4731 4732 // Start building the compare and branch. 4733 4734 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4735 Constant *NumCases = 4736 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4737 4738 Value *Sub = SI->getCondition(); 4739 if (!Offset->isNullValue()) 4740 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4741 4742 Value *Cmp; 4743 // If NumCases overflowed, then all possible values jump to the successor. 4744 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4745 Cmp = ConstantInt::getTrue(SI->getContext()); 4746 else 4747 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4748 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4749 4750 // Update weight for the newly-created conditional branch. 4751 if (HasBranchWeights(SI)) { 4752 SmallVector<uint64_t, 8> Weights; 4753 GetBranchWeights(SI, Weights); 4754 if (Weights.size() == 1 + SI->getNumCases()) { 4755 uint64_t TrueWeight = 0; 4756 uint64_t FalseWeight = 0; 4757 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4758 if (SI->getSuccessor(I) == ContiguousDest) 4759 TrueWeight += Weights[I]; 4760 else 4761 FalseWeight += Weights[I]; 4762 } 4763 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4764 TrueWeight /= 2; 4765 FalseWeight /= 2; 4766 } 4767 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4768 } 4769 } 4770 4771 // Prune obsolete incoming values off the successors' PHI nodes. 4772 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4773 unsigned PreviousEdges = ContiguousCases->size(); 4774 if (ContiguousDest == SI->getDefaultDest()) 4775 ++PreviousEdges; 4776 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4777 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4778 } 4779 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4780 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4781 if (OtherDest == SI->getDefaultDest()) 4782 ++PreviousEdges; 4783 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4784 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4785 } 4786 4787 // Clean up the default block - it may have phis or other instructions before 4788 // the unreachable terminator. 4789 if (!HasDefault) 4790 createUnreachableSwitchDefault(SI, DTU); 4791 4792 auto *UnreachableDefault = SI->getDefaultDest(); 4793 4794 // Drop the switch. 4795 SI->eraseFromParent(); 4796 4797 if (!HasDefault && DTU) 4798 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4799 4800 return true; 4801 } 4802 4803 /// Compute masked bits for the condition of a switch 4804 /// and use it to remove dead cases. 4805 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4806 AssumptionCache *AC, 4807 const DataLayout &DL) { 4808 Value *Cond = SI->getCondition(); 4809 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4810 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4811 4812 // We can also eliminate cases by determining that their values are outside of 4813 // the limited range of the condition based on how many significant (non-sign) 4814 // bits are in the condition value. 4815 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4816 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4817 4818 // Gather dead cases. 4819 SmallVector<ConstantInt *, 8> DeadCases; 4820 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 4821 for (auto &Case : SI->cases()) { 4822 auto *Successor = Case.getCaseSuccessor(); 4823 ++NumPerSuccessorCases[Successor]; 4824 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4825 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4826 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4827 DeadCases.push_back(Case.getCaseValue()); 4828 --NumPerSuccessorCases[Successor]; 4829 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4830 << " is dead.\n"); 4831 } 4832 } 4833 4834 // If we can prove that the cases must cover all possible values, the 4835 // default destination becomes dead and we can remove it. If we know some 4836 // of the bits in the value, we can use that to more precisely compute the 4837 // number of possible unique case values. 4838 bool HasDefault = 4839 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4840 const unsigned NumUnknownBits = 4841 Bits - (Known.Zero | Known.One).countPopulation(); 4842 assert(NumUnknownBits <= Bits); 4843 if (HasDefault && DeadCases.empty() && 4844 NumUnknownBits < 64 /* avoid overflow */ && 4845 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4846 createUnreachableSwitchDefault(SI, DTU); 4847 return true; 4848 } 4849 4850 if (DeadCases.empty()) 4851 return false; 4852 4853 SwitchInstProfUpdateWrapper SIW(*SI); 4854 for (ConstantInt *DeadCase : DeadCases) { 4855 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4856 assert(CaseI != SI->case_default() && 4857 "Case was not found. Probably mistake in DeadCases forming."); 4858 // Prune unused values from PHI nodes. 4859 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4860 SIW.removeCase(CaseI); 4861 } 4862 4863 std::vector<DominatorTree::UpdateType> Updates; 4864 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4865 if (I.second == 0) 4866 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4867 if (DTU) 4868 DTU->applyUpdates(Updates); 4869 4870 return true; 4871 } 4872 4873 /// If BB would be eligible for simplification by 4874 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4875 /// by an unconditional branch), look at the phi node for BB in the successor 4876 /// block and see if the incoming value is equal to CaseValue. If so, return 4877 /// the phi node, and set PhiIndex to BB's index in the phi node. 4878 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4879 BasicBlock *BB, int *PhiIndex) { 4880 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4881 return nullptr; // BB must be empty to be a candidate for simplification. 4882 if (!BB->getSinglePredecessor()) 4883 return nullptr; // BB must be dominated by the switch. 4884 4885 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4886 if (!Branch || !Branch->isUnconditional()) 4887 return nullptr; // Terminator must be unconditional branch. 4888 4889 BasicBlock *Succ = Branch->getSuccessor(0); 4890 4891 for (PHINode &PHI : Succ->phis()) { 4892 int Idx = PHI.getBasicBlockIndex(BB); 4893 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4894 4895 Value *InValue = PHI.getIncomingValue(Idx); 4896 if (InValue != CaseValue) 4897 continue; 4898 4899 *PhiIndex = Idx; 4900 return &PHI; 4901 } 4902 4903 return nullptr; 4904 } 4905 4906 /// Try to forward the condition of a switch instruction to a phi node 4907 /// dominated by the switch, if that would mean that some of the destination 4908 /// blocks of the switch can be folded away. Return true if a change is made. 4909 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4910 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4911 4912 ForwardingNodesMap ForwardingNodes; 4913 BasicBlock *SwitchBlock = SI->getParent(); 4914 bool Changed = false; 4915 for (auto &Case : SI->cases()) { 4916 ConstantInt *CaseValue = Case.getCaseValue(); 4917 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4918 4919 // Replace phi operands in successor blocks that are using the constant case 4920 // value rather than the switch condition variable: 4921 // switchbb: 4922 // switch i32 %x, label %default [ 4923 // i32 17, label %succ 4924 // ... 4925 // succ: 4926 // %r = phi i32 ... [ 17, %switchbb ] ... 4927 // --> 4928 // %r = phi i32 ... [ %x, %switchbb ] ... 4929 4930 for (PHINode &Phi : CaseDest->phis()) { 4931 // This only works if there is exactly 1 incoming edge from the switch to 4932 // a phi. If there is >1, that means multiple cases of the switch map to 1 4933 // value in the phi, and that phi value is not the switch condition. Thus, 4934 // this transform would not make sense (the phi would be invalid because 4935 // a phi can't have different incoming values from the same block). 4936 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4937 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4938 count(Phi.blocks(), SwitchBlock) == 1) { 4939 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4940 Changed = true; 4941 } 4942 } 4943 4944 // Collect phi nodes that are indirectly using this switch's case constants. 4945 int PhiIdx; 4946 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4947 ForwardingNodes[Phi].push_back(PhiIdx); 4948 } 4949 4950 for (auto &ForwardingNode : ForwardingNodes) { 4951 PHINode *Phi = ForwardingNode.first; 4952 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4953 if (Indexes.size() < 2) 4954 continue; 4955 4956 for (int Index : Indexes) 4957 Phi->setIncomingValue(Index, SI->getCondition()); 4958 Changed = true; 4959 } 4960 4961 return Changed; 4962 } 4963 4964 /// Return true if the backend will be able to handle 4965 /// initializing an array of constants like C. 4966 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4967 if (C->isThreadDependent()) 4968 return false; 4969 if (C->isDLLImportDependent()) 4970 return false; 4971 4972 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4973 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4974 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4975 return false; 4976 4977 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4978 if (!CE->isGEPWithNoNotionalOverIndexing()) 4979 return false; 4980 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4981 return false; 4982 } 4983 4984 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4985 return false; 4986 4987 return true; 4988 } 4989 4990 /// If V is a Constant, return it. Otherwise, try to look up 4991 /// its constant value in ConstantPool, returning 0 if it's not there. 4992 static Constant * 4993 LookupConstant(Value *V, 4994 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4995 if (Constant *C = dyn_cast<Constant>(V)) 4996 return C; 4997 return ConstantPool.lookup(V); 4998 } 4999 5000 /// Try to fold instruction I into a constant. This works for 5001 /// simple instructions such as binary operations where both operands are 5002 /// constant or can be replaced by constants from the ConstantPool. Returns the 5003 /// resulting constant on success, 0 otherwise. 5004 static Constant * 5005 ConstantFold(Instruction *I, const DataLayout &DL, 5006 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5007 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5008 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5009 if (!A) 5010 return nullptr; 5011 if (A->isAllOnesValue()) 5012 return LookupConstant(Select->getTrueValue(), ConstantPool); 5013 if (A->isNullValue()) 5014 return LookupConstant(Select->getFalseValue(), ConstantPool); 5015 return nullptr; 5016 } 5017 5018 SmallVector<Constant *, 4> COps; 5019 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5020 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5021 COps.push_back(A); 5022 else 5023 return nullptr; 5024 } 5025 5026 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5027 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5028 COps[1], DL); 5029 } 5030 5031 return ConstantFoldInstOperands(I, COps, DL); 5032 } 5033 5034 /// Try to determine the resulting constant values in phi nodes 5035 /// at the common destination basic block, *CommonDest, for one of the case 5036 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5037 /// case), of a switch instruction SI. 5038 static bool 5039 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5040 BasicBlock **CommonDest, 5041 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5042 const DataLayout &DL, const TargetTransformInfo &TTI) { 5043 // The block from which we enter the common destination. 5044 BasicBlock *Pred = SI->getParent(); 5045 5046 // If CaseDest is empty except for some side-effect free instructions through 5047 // which we can constant-propagate the CaseVal, continue to its successor. 5048 SmallDenseMap<Value *, Constant *> ConstantPool; 5049 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5050 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5051 if (I.isTerminator()) { 5052 // If the terminator is a simple branch, continue to the next block. 5053 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5054 return false; 5055 Pred = CaseDest; 5056 CaseDest = I.getSuccessor(0); 5057 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5058 // Instruction is side-effect free and constant. 5059 5060 // If the instruction has uses outside this block or a phi node slot for 5061 // the block, it is not safe to bypass the instruction since it would then 5062 // no longer dominate all its uses. 5063 for (auto &Use : I.uses()) { 5064 User *User = Use.getUser(); 5065 if (Instruction *I = dyn_cast<Instruction>(User)) 5066 if (I->getParent() == CaseDest) 5067 continue; 5068 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5069 if (Phi->getIncomingBlock(Use) == CaseDest) 5070 continue; 5071 return false; 5072 } 5073 5074 ConstantPool.insert(std::make_pair(&I, C)); 5075 } else { 5076 break; 5077 } 5078 } 5079 5080 // If we did not have a CommonDest before, use the current one. 5081 if (!*CommonDest) 5082 *CommonDest = CaseDest; 5083 // If the destination isn't the common one, abort. 5084 if (CaseDest != *CommonDest) 5085 return false; 5086 5087 // Get the values for this case from phi nodes in the destination block. 5088 for (PHINode &PHI : (*CommonDest)->phis()) { 5089 int Idx = PHI.getBasicBlockIndex(Pred); 5090 if (Idx == -1) 5091 continue; 5092 5093 Constant *ConstVal = 5094 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5095 if (!ConstVal) 5096 return false; 5097 5098 // Be conservative about which kinds of constants we support. 5099 if (!ValidLookupTableConstant(ConstVal, TTI)) 5100 return false; 5101 5102 Res.push_back(std::make_pair(&PHI, ConstVal)); 5103 } 5104 5105 return Res.size() > 0; 5106 } 5107 5108 // Helper function used to add CaseVal to the list of cases that generate 5109 // Result. Returns the updated number of cases that generate this result. 5110 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5111 SwitchCaseResultVectorTy &UniqueResults, 5112 Constant *Result) { 5113 for (auto &I : UniqueResults) { 5114 if (I.first == Result) { 5115 I.second.push_back(CaseVal); 5116 return I.second.size(); 5117 } 5118 } 5119 UniqueResults.push_back( 5120 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5121 return 1; 5122 } 5123 5124 // Helper function that initializes a map containing 5125 // results for the PHI node of the common destination block for a switch 5126 // instruction. Returns false if multiple PHI nodes have been found or if 5127 // there is not a common destination block for the switch. 5128 static bool 5129 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5130 SwitchCaseResultVectorTy &UniqueResults, 5131 Constant *&DefaultResult, const DataLayout &DL, 5132 const TargetTransformInfo &TTI, 5133 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5134 for (auto &I : SI->cases()) { 5135 ConstantInt *CaseVal = I.getCaseValue(); 5136 5137 // Resulting value at phi nodes for this case value. 5138 SwitchCaseResultsTy Results; 5139 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5140 DL, TTI)) 5141 return false; 5142 5143 // Only one value per case is permitted. 5144 if (Results.size() > 1) 5145 return false; 5146 5147 // Add the case->result mapping to UniqueResults. 5148 const uintptr_t NumCasesForResult = 5149 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5150 5151 // Early out if there are too many cases for this result. 5152 if (NumCasesForResult > MaxCasesPerResult) 5153 return false; 5154 5155 // Early out if there are too many unique results. 5156 if (UniqueResults.size() > MaxUniqueResults) 5157 return false; 5158 5159 // Check the PHI consistency. 5160 if (!PHI) 5161 PHI = Results[0].first; 5162 else if (PHI != Results[0].first) 5163 return false; 5164 } 5165 // Find the default result value. 5166 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5167 BasicBlock *DefaultDest = SI->getDefaultDest(); 5168 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5169 DL, TTI); 5170 // If the default value is not found abort unless the default destination 5171 // is unreachable. 5172 DefaultResult = 5173 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5174 if ((!DefaultResult && 5175 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5176 return false; 5177 5178 return true; 5179 } 5180 5181 // Helper function that checks if it is possible to transform a switch with only 5182 // two cases (or two cases + default) that produces a result into a select. 5183 // Example: 5184 // switch (a) { 5185 // case 10: %0 = icmp eq i32 %a, 10 5186 // return 10; %1 = select i1 %0, i32 10, i32 4 5187 // case 20: ----> %2 = icmp eq i32 %a, 20 5188 // return 2; %3 = select i1 %2, i32 2, i32 %1 5189 // default: 5190 // return 4; 5191 // } 5192 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5193 Constant *DefaultResult, Value *Condition, 5194 IRBuilder<> &Builder) { 5195 assert(ResultVector.size() == 2 && 5196 "We should have exactly two unique results at this point"); 5197 // If we are selecting between only two cases transform into a simple 5198 // select or a two-way select if default is possible. 5199 if (ResultVector[0].second.size() == 1 && 5200 ResultVector[1].second.size() == 1) { 5201 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5202 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5203 5204 bool DefaultCanTrigger = DefaultResult; 5205 Value *SelectValue = ResultVector[1].first; 5206 if (DefaultCanTrigger) { 5207 Value *const ValueCompare = 5208 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5209 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5210 DefaultResult, "switch.select"); 5211 } 5212 Value *const ValueCompare = 5213 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5214 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5215 SelectValue, "switch.select"); 5216 } 5217 5218 return nullptr; 5219 } 5220 5221 // Helper function to cleanup a switch instruction that has been converted into 5222 // a select, fixing up PHI nodes and basic blocks. 5223 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5224 Value *SelectValue, 5225 IRBuilder<> &Builder, 5226 DomTreeUpdater *DTU) { 5227 std::vector<DominatorTree::UpdateType> Updates; 5228 5229 BasicBlock *SelectBB = SI->getParent(); 5230 BasicBlock *DestBB = PHI->getParent(); 5231 5232 if (!is_contained(predecessors(DestBB), SelectBB)) 5233 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5234 Builder.CreateBr(DestBB); 5235 5236 // Remove the switch. 5237 5238 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5239 PHI->removeIncomingValue(SelectBB); 5240 PHI->addIncoming(SelectValue, SelectBB); 5241 5242 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5243 BasicBlock *Succ = SI->getSuccessor(i); 5244 5245 if (Succ == DestBB) 5246 continue; 5247 Succ->removePredecessor(SelectBB); 5248 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5249 } 5250 SI->eraseFromParent(); 5251 if (DTU) 5252 DTU->applyUpdates(Updates); 5253 } 5254 5255 /// If the switch is only used to initialize one or more 5256 /// phi nodes in a common successor block with only two different 5257 /// constant values, replace the switch with select. 5258 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5259 DomTreeUpdater *DTU, const DataLayout &DL, 5260 const TargetTransformInfo &TTI) { 5261 Value *const Cond = SI->getCondition(); 5262 PHINode *PHI = nullptr; 5263 BasicBlock *CommonDest = nullptr; 5264 Constant *DefaultResult; 5265 SwitchCaseResultVectorTy UniqueResults; 5266 // Collect all the cases that will deliver the same value from the switch. 5267 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5268 DL, TTI, 2, 1)) 5269 return false; 5270 // Selects choose between maximum two values. 5271 if (UniqueResults.size() != 2) 5272 return false; 5273 assert(PHI != nullptr && "PHI for value select not found"); 5274 5275 Builder.SetInsertPoint(SI); 5276 Value *SelectValue = 5277 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5278 if (SelectValue) { 5279 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5280 return true; 5281 } 5282 // The switch couldn't be converted into a select. 5283 return false; 5284 } 5285 5286 namespace { 5287 5288 /// This class represents a lookup table that can be used to replace a switch. 5289 class SwitchLookupTable { 5290 public: 5291 /// Create a lookup table to use as a switch replacement with the contents 5292 /// of Values, using DefaultValue to fill any holes in the table. 5293 SwitchLookupTable( 5294 Module &M, uint64_t TableSize, ConstantInt *Offset, 5295 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5296 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5297 5298 /// Build instructions with Builder to retrieve the value at 5299 /// the position given by Index in the lookup table. 5300 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5301 5302 /// Return true if a table with TableSize elements of 5303 /// type ElementType would fit in a target-legal register. 5304 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5305 Type *ElementType); 5306 5307 private: 5308 // Depending on the contents of the table, it can be represented in 5309 // different ways. 5310 enum { 5311 // For tables where each element contains the same value, we just have to 5312 // store that single value and return it for each lookup. 5313 SingleValueKind, 5314 5315 // For tables where there is a linear relationship between table index 5316 // and values. We calculate the result with a simple multiplication 5317 // and addition instead of a table lookup. 5318 LinearMapKind, 5319 5320 // For small tables with integer elements, we can pack them into a bitmap 5321 // that fits into a target-legal register. Values are retrieved by 5322 // shift and mask operations. 5323 BitMapKind, 5324 5325 // The table is stored as an array of values. Values are retrieved by load 5326 // instructions from the table. 5327 ArrayKind 5328 } Kind; 5329 5330 // For SingleValueKind, this is the single value. 5331 Constant *SingleValue = nullptr; 5332 5333 // For BitMapKind, this is the bitmap. 5334 ConstantInt *BitMap = nullptr; 5335 IntegerType *BitMapElementTy = nullptr; 5336 5337 // For LinearMapKind, these are the constants used to derive the value. 5338 ConstantInt *LinearOffset = nullptr; 5339 ConstantInt *LinearMultiplier = nullptr; 5340 5341 // For ArrayKind, this is the array. 5342 GlobalVariable *Array = nullptr; 5343 }; 5344 5345 } // end anonymous namespace 5346 5347 SwitchLookupTable::SwitchLookupTable( 5348 Module &M, uint64_t TableSize, ConstantInt *Offset, 5349 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5350 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5351 assert(Values.size() && "Can't build lookup table without values!"); 5352 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5353 5354 // If all values in the table are equal, this is that value. 5355 SingleValue = Values.begin()->second; 5356 5357 Type *ValueType = Values.begin()->second->getType(); 5358 5359 // Build up the table contents. 5360 SmallVector<Constant *, 64> TableContents(TableSize); 5361 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5362 ConstantInt *CaseVal = Values[I].first; 5363 Constant *CaseRes = Values[I].second; 5364 assert(CaseRes->getType() == ValueType); 5365 5366 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5367 TableContents[Idx] = CaseRes; 5368 5369 if (CaseRes != SingleValue) 5370 SingleValue = nullptr; 5371 } 5372 5373 // Fill in any holes in the table with the default result. 5374 if (Values.size() < TableSize) { 5375 assert(DefaultValue && 5376 "Need a default value to fill the lookup table holes."); 5377 assert(DefaultValue->getType() == ValueType); 5378 for (uint64_t I = 0; I < TableSize; ++I) { 5379 if (!TableContents[I]) 5380 TableContents[I] = DefaultValue; 5381 } 5382 5383 if (DefaultValue != SingleValue) 5384 SingleValue = nullptr; 5385 } 5386 5387 // If each element in the table contains the same value, we only need to store 5388 // that single value. 5389 if (SingleValue) { 5390 Kind = SingleValueKind; 5391 return; 5392 } 5393 5394 // Check if we can derive the value with a linear transformation from the 5395 // table index. 5396 if (isa<IntegerType>(ValueType)) { 5397 bool LinearMappingPossible = true; 5398 APInt PrevVal; 5399 APInt DistToPrev; 5400 assert(TableSize >= 2 && "Should be a SingleValue table."); 5401 // Check if there is the same distance between two consecutive values. 5402 for (uint64_t I = 0; I < TableSize; ++I) { 5403 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5404 if (!ConstVal) { 5405 // This is an undef. We could deal with it, but undefs in lookup tables 5406 // are very seldom. It's probably not worth the additional complexity. 5407 LinearMappingPossible = false; 5408 break; 5409 } 5410 const APInt &Val = ConstVal->getValue(); 5411 if (I != 0) { 5412 APInt Dist = Val - PrevVal; 5413 if (I == 1) { 5414 DistToPrev = Dist; 5415 } else if (Dist != DistToPrev) { 5416 LinearMappingPossible = false; 5417 break; 5418 } 5419 } 5420 PrevVal = Val; 5421 } 5422 if (LinearMappingPossible) { 5423 LinearOffset = cast<ConstantInt>(TableContents[0]); 5424 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5425 Kind = LinearMapKind; 5426 ++NumLinearMaps; 5427 return; 5428 } 5429 } 5430 5431 // If the type is integer and the table fits in a register, build a bitmap. 5432 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5433 IntegerType *IT = cast<IntegerType>(ValueType); 5434 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5435 for (uint64_t I = TableSize; I > 0; --I) { 5436 TableInt <<= IT->getBitWidth(); 5437 // Insert values into the bitmap. Undef values are set to zero. 5438 if (!isa<UndefValue>(TableContents[I - 1])) { 5439 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5440 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5441 } 5442 } 5443 BitMap = ConstantInt::get(M.getContext(), TableInt); 5444 BitMapElementTy = IT; 5445 Kind = BitMapKind; 5446 ++NumBitMaps; 5447 return; 5448 } 5449 5450 // Store the table in an array. 5451 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5452 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5453 5454 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5455 GlobalVariable::PrivateLinkage, Initializer, 5456 "switch.table." + FuncName); 5457 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5458 // Set the alignment to that of an array items. We will be only loading one 5459 // value out of it. 5460 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5461 Kind = ArrayKind; 5462 } 5463 5464 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5465 switch (Kind) { 5466 case SingleValueKind: 5467 return SingleValue; 5468 case LinearMapKind: { 5469 // Derive the result value from the input value. 5470 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5471 false, "switch.idx.cast"); 5472 if (!LinearMultiplier->isOne()) 5473 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5474 if (!LinearOffset->isZero()) 5475 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5476 return Result; 5477 } 5478 case BitMapKind: { 5479 // Type of the bitmap (e.g. i59). 5480 IntegerType *MapTy = BitMap->getType(); 5481 5482 // Cast Index to the same type as the bitmap. 5483 // Note: The Index is <= the number of elements in the table, so 5484 // truncating it to the width of the bitmask is safe. 5485 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5486 5487 // Multiply the shift amount by the element width. 5488 ShiftAmt = Builder.CreateMul( 5489 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5490 "switch.shiftamt"); 5491 5492 // Shift down. 5493 Value *DownShifted = 5494 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5495 // Mask off. 5496 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5497 } 5498 case ArrayKind: { 5499 // Make sure the table index will not overflow when treated as signed. 5500 IntegerType *IT = cast<IntegerType>(Index->getType()); 5501 uint64_t TableSize = 5502 Array->getInitializer()->getType()->getArrayNumElements(); 5503 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5504 Index = Builder.CreateZExt( 5505 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5506 "switch.tableidx.zext"); 5507 5508 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5509 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5510 GEPIndices, "switch.gep"); 5511 return Builder.CreateLoad( 5512 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5513 "switch.load"); 5514 } 5515 } 5516 llvm_unreachable("Unknown lookup table kind!"); 5517 } 5518 5519 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5520 uint64_t TableSize, 5521 Type *ElementType) { 5522 auto *IT = dyn_cast<IntegerType>(ElementType); 5523 if (!IT) 5524 return false; 5525 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5526 // are <= 15, we could try to narrow the type. 5527 5528 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5529 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5530 return false; 5531 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5532 } 5533 5534 /// Determine whether a lookup table should be built for this switch, based on 5535 /// the number of cases, size of the table, and the types of the results. 5536 static bool 5537 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5538 const TargetTransformInfo &TTI, const DataLayout &DL, 5539 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5540 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5541 return false; // TableSize overflowed, or mul below might overflow. 5542 5543 bool AllTablesFitInRegister = true; 5544 bool HasIllegalType = false; 5545 for (const auto &I : ResultTypes) { 5546 Type *Ty = I.second; 5547 5548 // Saturate this flag to true. 5549 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5550 5551 // Saturate this flag to false. 5552 AllTablesFitInRegister = 5553 AllTablesFitInRegister && 5554 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5555 5556 // If both flags saturate, we're done. NOTE: This *only* works with 5557 // saturating flags, and all flags have to saturate first due to the 5558 // non-deterministic behavior of iterating over a dense map. 5559 if (HasIllegalType && !AllTablesFitInRegister) 5560 break; 5561 } 5562 5563 // If each table would fit in a register, we should build it anyway. 5564 if (AllTablesFitInRegister) 5565 return true; 5566 5567 // Don't build a table that doesn't fit in-register if it has illegal types. 5568 if (HasIllegalType) 5569 return false; 5570 5571 // The table density should be at least 40%. This is the same criterion as for 5572 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5573 // FIXME: Find the best cut-off. 5574 return SI->getNumCases() * 10 >= TableSize * 4; 5575 } 5576 5577 /// Try to reuse the switch table index compare. Following pattern: 5578 /// \code 5579 /// if (idx < tablesize) 5580 /// r = table[idx]; // table does not contain default_value 5581 /// else 5582 /// r = default_value; 5583 /// if (r != default_value) 5584 /// ... 5585 /// \endcode 5586 /// Is optimized to: 5587 /// \code 5588 /// cond = idx < tablesize; 5589 /// if (cond) 5590 /// r = table[idx]; 5591 /// else 5592 /// r = default_value; 5593 /// if (cond) 5594 /// ... 5595 /// \endcode 5596 /// Jump threading will then eliminate the second if(cond). 5597 static void reuseTableCompare( 5598 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5599 Constant *DefaultValue, 5600 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5601 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5602 if (!CmpInst) 5603 return; 5604 5605 // We require that the compare is in the same block as the phi so that jump 5606 // threading can do its work afterwards. 5607 if (CmpInst->getParent() != PhiBlock) 5608 return; 5609 5610 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5611 if (!CmpOp1) 5612 return; 5613 5614 Value *RangeCmp = RangeCheckBranch->getCondition(); 5615 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5616 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5617 5618 // Check if the compare with the default value is constant true or false. 5619 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5620 DefaultValue, CmpOp1, true); 5621 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5622 return; 5623 5624 // Check if the compare with the case values is distinct from the default 5625 // compare result. 5626 for (auto ValuePair : Values) { 5627 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5628 ValuePair.second, CmpOp1, true); 5629 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5630 return; 5631 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5632 "Expect true or false as compare result."); 5633 } 5634 5635 // Check if the branch instruction dominates the phi node. It's a simple 5636 // dominance check, but sufficient for our needs. 5637 // Although this check is invariant in the calling loops, it's better to do it 5638 // at this late stage. Practically we do it at most once for a switch. 5639 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5640 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5641 BasicBlock *Pred = *PI; 5642 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5643 return; 5644 } 5645 5646 if (DefaultConst == FalseConst) { 5647 // The compare yields the same result. We can replace it. 5648 CmpInst->replaceAllUsesWith(RangeCmp); 5649 ++NumTableCmpReuses; 5650 } else { 5651 // The compare yields the same result, just inverted. We can replace it. 5652 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5653 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5654 RangeCheckBranch); 5655 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5656 ++NumTableCmpReuses; 5657 } 5658 } 5659 5660 /// If the switch is only used to initialize one or more phi nodes in a common 5661 /// successor block with different constant values, replace the switch with 5662 /// lookup tables. 5663 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5664 DomTreeUpdater *DTU, const DataLayout &DL, 5665 const TargetTransformInfo &TTI) { 5666 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5667 5668 BasicBlock *BB = SI->getParent(); 5669 Function *Fn = BB->getParent(); 5670 // Only build lookup table when we have a target that supports it or the 5671 // attribute is not set. 5672 if (!TTI.shouldBuildLookupTables() || 5673 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5674 return false; 5675 5676 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5677 // split off a dense part and build a lookup table for that. 5678 5679 // FIXME: This creates arrays of GEPs to constant strings, which means each 5680 // GEP needs a runtime relocation in PIC code. We should just build one big 5681 // string and lookup indices into that. 5682 5683 // Ignore switches with less than three cases. Lookup tables will not make 5684 // them faster, so we don't analyze them. 5685 if (SI->getNumCases() < 3) 5686 return false; 5687 5688 // Figure out the corresponding result for each case value and phi node in the 5689 // common destination, as well as the min and max case values. 5690 assert(!SI->cases().empty()); 5691 SwitchInst::CaseIt CI = SI->case_begin(); 5692 ConstantInt *MinCaseVal = CI->getCaseValue(); 5693 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5694 5695 BasicBlock *CommonDest = nullptr; 5696 5697 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5698 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5699 5700 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5701 SmallDenseMap<PHINode *, Type *> ResultTypes; 5702 SmallVector<PHINode *, 4> PHIs; 5703 5704 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5705 ConstantInt *CaseVal = CI->getCaseValue(); 5706 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5707 MinCaseVal = CaseVal; 5708 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5709 MaxCaseVal = CaseVal; 5710 5711 // Resulting value at phi nodes for this case value. 5712 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5713 ResultsTy Results; 5714 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5715 Results, DL, TTI)) 5716 return false; 5717 5718 // Append the result from this case to the list for each phi. 5719 for (const auto &I : Results) { 5720 PHINode *PHI = I.first; 5721 Constant *Value = I.second; 5722 if (!ResultLists.count(PHI)) 5723 PHIs.push_back(PHI); 5724 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5725 } 5726 } 5727 5728 // Keep track of the result types. 5729 for (PHINode *PHI : PHIs) { 5730 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5731 } 5732 5733 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5734 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5735 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5736 bool TableHasHoles = (NumResults < TableSize); 5737 5738 // If the table has holes, we need a constant result for the default case 5739 // or a bitmask that fits in a register. 5740 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5741 bool HasDefaultResults = 5742 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5743 DefaultResultsList, DL, TTI); 5744 5745 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5746 if (NeedMask) { 5747 // As an extra penalty for the validity test we require more cases. 5748 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5749 return false; 5750 if (!DL.fitsInLegalInteger(TableSize)) 5751 return false; 5752 } 5753 5754 for (const auto &I : DefaultResultsList) { 5755 PHINode *PHI = I.first; 5756 Constant *Result = I.second; 5757 DefaultResults[PHI] = Result; 5758 } 5759 5760 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5761 return false; 5762 5763 std::vector<DominatorTree::UpdateType> Updates; 5764 5765 // Create the BB that does the lookups. 5766 Module &Mod = *CommonDest->getParent()->getParent(); 5767 BasicBlock *LookupBB = BasicBlock::Create( 5768 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5769 5770 // Compute the table index value. 5771 Builder.SetInsertPoint(SI); 5772 Value *TableIndex; 5773 if (MinCaseVal->isNullValue()) 5774 TableIndex = SI->getCondition(); 5775 else 5776 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5777 "switch.tableidx"); 5778 5779 // Compute the maximum table size representable by the integer type we are 5780 // switching upon. 5781 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5782 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5783 assert(MaxTableSize >= TableSize && 5784 "It is impossible for a switch to have more entries than the max " 5785 "representable value of its input integer type's size."); 5786 5787 // If the default destination is unreachable, or if the lookup table covers 5788 // all values of the conditional variable, branch directly to the lookup table 5789 // BB. Otherwise, check that the condition is within the case range. 5790 const bool DefaultIsReachable = 5791 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5792 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5793 BranchInst *RangeCheckBranch = nullptr; 5794 5795 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5796 Builder.CreateBr(LookupBB); 5797 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5798 // Note: We call removeProdecessor later since we need to be able to get the 5799 // PHI value for the default case in case we're using a bit mask. 5800 } else { 5801 Value *Cmp = Builder.CreateICmpULT( 5802 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5803 RangeCheckBranch = 5804 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5805 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5806 } 5807 5808 // Populate the BB that does the lookups. 5809 Builder.SetInsertPoint(LookupBB); 5810 5811 if (NeedMask) { 5812 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5813 // re-purposed to do the hole check, and we create a new LookupBB. 5814 BasicBlock *MaskBB = LookupBB; 5815 MaskBB->setName("switch.hole_check"); 5816 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5817 CommonDest->getParent(), CommonDest); 5818 5819 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5820 // unnecessary illegal types. 5821 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5822 APInt MaskInt(TableSizePowOf2, 0); 5823 APInt One(TableSizePowOf2, 1); 5824 // Build bitmask; fill in a 1 bit for every case. 5825 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5826 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5827 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5828 .getLimitedValue(); 5829 MaskInt |= One << Idx; 5830 } 5831 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5832 5833 // Get the TableIndex'th bit of the bitmask. 5834 // If this bit is 0 (meaning hole) jump to the default destination, 5835 // else continue with table lookup. 5836 IntegerType *MapTy = TableMask->getType(); 5837 Value *MaskIndex = 5838 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5839 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5840 Value *LoBit = Builder.CreateTrunc( 5841 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5842 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5843 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5844 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5845 Builder.SetInsertPoint(LookupBB); 5846 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5847 } 5848 5849 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5850 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5851 // do not delete PHINodes here. 5852 SI->getDefaultDest()->removePredecessor(BB, 5853 /*KeepOneInputPHIs=*/true); 5854 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5855 } 5856 5857 bool ReturnedEarly = false; 5858 for (PHINode *PHI : PHIs) { 5859 const ResultListTy &ResultList = ResultLists[PHI]; 5860 5861 // If using a bitmask, use any value to fill the lookup table holes. 5862 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5863 StringRef FuncName = Fn->getName(); 5864 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5865 FuncName); 5866 5867 Value *Result = Table.BuildLookup(TableIndex, Builder); 5868 5869 // If the result is used to return immediately from the function, we want to 5870 // do that right here. 5871 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5872 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5873 Builder.CreateRet(Result); 5874 ReturnedEarly = true; 5875 break; 5876 } 5877 5878 // Do a small peephole optimization: re-use the switch table compare if 5879 // possible. 5880 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5881 BasicBlock *PhiBlock = PHI->getParent(); 5882 // Search for compare instructions which use the phi. 5883 for (auto *User : PHI->users()) { 5884 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5885 } 5886 } 5887 5888 PHI->addIncoming(Result, LookupBB); 5889 } 5890 5891 if (!ReturnedEarly) { 5892 Builder.CreateBr(CommonDest); 5893 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 5894 } 5895 5896 // Remove the switch. 5897 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 5898 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5899 BasicBlock *Succ = SI->getSuccessor(i); 5900 5901 if (Succ == SI->getDefaultDest()) 5902 continue; 5903 Succ->removePredecessor(BB); 5904 RemovedSuccessors.insert(Succ); 5905 } 5906 SI->eraseFromParent(); 5907 5908 if (DTU) { 5909 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 5910 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 5911 DTU->applyUpdates(Updates); 5912 } 5913 5914 ++NumLookupTables; 5915 if (NeedMask) 5916 ++NumLookupTablesHoles; 5917 return true; 5918 } 5919 5920 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5921 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5922 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5923 uint64_t Range = Diff + 1; 5924 uint64_t NumCases = Values.size(); 5925 // 40% is the default density for building a jump table in optsize/minsize mode. 5926 uint64_t MinDensity = 40; 5927 5928 return NumCases * 100 >= Range * MinDensity; 5929 } 5930 5931 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5932 /// of cases. 5933 /// 5934 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5935 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5936 /// 5937 /// This converts a sparse switch into a dense switch which allows better 5938 /// lowering and could also allow transforming into a lookup table. 5939 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5940 const DataLayout &DL, 5941 const TargetTransformInfo &TTI) { 5942 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5943 if (CondTy->getIntegerBitWidth() > 64 || 5944 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5945 return false; 5946 // Only bother with this optimization if there are more than 3 switch cases; 5947 // SDAG will only bother creating jump tables for 4 or more cases. 5948 if (SI->getNumCases() < 4) 5949 return false; 5950 5951 // This transform is agnostic to the signedness of the input or case values. We 5952 // can treat the case values as signed or unsigned. We can optimize more common 5953 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5954 // as signed. 5955 SmallVector<int64_t,4> Values; 5956 for (auto &C : SI->cases()) 5957 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5958 llvm::sort(Values); 5959 5960 // If the switch is already dense, there's nothing useful to do here. 5961 if (isSwitchDense(Values)) 5962 return false; 5963 5964 // First, transform the values such that they start at zero and ascend. 5965 int64_t Base = Values[0]; 5966 for (auto &V : Values) 5967 V -= (uint64_t)(Base); 5968 5969 // Now we have signed numbers that have been shifted so that, given enough 5970 // precision, there are no negative values. Since the rest of the transform 5971 // is bitwise only, we switch now to an unsigned representation. 5972 5973 // This transform can be done speculatively because it is so cheap - it 5974 // results in a single rotate operation being inserted. 5975 // FIXME: It's possible that optimizing a switch on powers of two might also 5976 // be beneficial - flag values are often powers of two and we could use a CLZ 5977 // as the key function. 5978 5979 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5980 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5981 // less than 64. 5982 unsigned Shift = 64; 5983 for (auto &V : Values) 5984 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5985 assert(Shift < 64); 5986 if (Shift > 0) 5987 for (auto &V : Values) 5988 V = (int64_t)((uint64_t)V >> Shift); 5989 5990 if (!isSwitchDense(Values)) 5991 // Transform didn't create a dense switch. 5992 return false; 5993 5994 // The obvious transform is to shift the switch condition right and emit a 5995 // check that the condition actually cleanly divided by GCD, i.e. 5996 // C & (1 << Shift - 1) == 0 5997 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5998 // 5999 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6000 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6001 // are nonzero then the switch condition will be very large and will hit the 6002 // default case. 6003 6004 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6005 Builder.SetInsertPoint(SI); 6006 auto *ShiftC = ConstantInt::get(Ty, Shift); 6007 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6008 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6009 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6010 auto *Rot = Builder.CreateOr(LShr, Shl); 6011 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6012 6013 for (auto Case : SI->cases()) { 6014 auto *Orig = Case.getCaseValue(); 6015 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6016 Case.setValue( 6017 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6018 } 6019 return true; 6020 } 6021 6022 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6023 BasicBlock *BB = SI->getParent(); 6024 6025 if (isValueEqualityComparison(SI)) { 6026 // If we only have one predecessor, and if it is a branch on this value, 6027 // see if that predecessor totally determines the outcome of this switch. 6028 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6029 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6030 return requestResimplify(); 6031 6032 Value *Cond = SI->getCondition(); 6033 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6034 if (SimplifySwitchOnSelect(SI, Select)) 6035 return requestResimplify(); 6036 6037 // If the block only contains the switch, see if we can fold the block 6038 // away into any preds. 6039 if (SI == &*BB->instructionsWithoutDebug().begin()) 6040 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6041 return requestResimplify(); 6042 } 6043 6044 // Try to transform the switch into an icmp and a branch. 6045 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6046 return requestResimplify(); 6047 6048 // Remove unreachable cases. 6049 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6050 return requestResimplify(); 6051 6052 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6053 return requestResimplify(); 6054 6055 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6056 return requestResimplify(); 6057 6058 // The conversion from switch to lookup tables results in difficult-to-analyze 6059 // code and makes pruning branches much harder. This is a problem if the 6060 // switch expression itself can still be restricted as a result of inlining or 6061 // CVP. Therefore, only apply this transformation during late stages of the 6062 // optimisation pipeline. 6063 if (Options.ConvertSwitchToLookupTable && 6064 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6065 return requestResimplify(); 6066 6067 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6068 return requestResimplify(); 6069 6070 return false; 6071 } 6072 6073 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6074 BasicBlock *BB = IBI->getParent(); 6075 bool Changed = false; 6076 6077 // Eliminate redundant destinations. 6078 SmallPtrSet<Value *, 8> Succs; 6079 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6080 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6081 BasicBlock *Dest = IBI->getDestination(i); 6082 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6083 if (!Dest->hasAddressTaken()) 6084 RemovedSuccs.insert(Dest); 6085 Dest->removePredecessor(BB); 6086 IBI->removeDestination(i); 6087 --i; 6088 --e; 6089 Changed = true; 6090 } 6091 } 6092 6093 if (DTU) { 6094 std::vector<DominatorTree::UpdateType> Updates; 6095 Updates.reserve(RemovedSuccs.size()); 6096 for (auto *RemovedSucc : RemovedSuccs) 6097 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6098 DTU->applyUpdates(Updates); 6099 } 6100 6101 if (IBI->getNumDestinations() == 0) { 6102 // If the indirectbr has no successors, change it to unreachable. 6103 new UnreachableInst(IBI->getContext(), IBI); 6104 EraseTerminatorAndDCECond(IBI); 6105 return true; 6106 } 6107 6108 if (IBI->getNumDestinations() == 1) { 6109 // If the indirectbr has one successor, change it to a direct branch. 6110 BranchInst::Create(IBI->getDestination(0), IBI); 6111 EraseTerminatorAndDCECond(IBI); 6112 return true; 6113 } 6114 6115 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6116 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6117 return requestResimplify(); 6118 } 6119 return Changed; 6120 } 6121 6122 /// Given an block with only a single landing pad and a unconditional branch 6123 /// try to find another basic block which this one can be merged with. This 6124 /// handles cases where we have multiple invokes with unique landing pads, but 6125 /// a shared handler. 6126 /// 6127 /// We specifically choose to not worry about merging non-empty blocks 6128 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6129 /// practice, the optimizer produces empty landing pad blocks quite frequently 6130 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6131 /// sinking in this file) 6132 /// 6133 /// This is primarily a code size optimization. We need to avoid performing 6134 /// any transform which might inhibit optimization (such as our ability to 6135 /// specialize a particular handler via tail commoning). We do this by not 6136 /// merging any blocks which require us to introduce a phi. Since the same 6137 /// values are flowing through both blocks, we don't lose any ability to 6138 /// specialize. If anything, we make such specialization more likely. 6139 /// 6140 /// TODO - This transformation could remove entries from a phi in the target 6141 /// block when the inputs in the phi are the same for the two blocks being 6142 /// merged. In some cases, this could result in removal of the PHI entirely. 6143 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6144 BasicBlock *BB, DomTreeUpdater *DTU) { 6145 auto Succ = BB->getUniqueSuccessor(); 6146 assert(Succ); 6147 // If there's a phi in the successor block, we'd likely have to introduce 6148 // a phi into the merged landing pad block. 6149 if (isa<PHINode>(*Succ->begin())) 6150 return false; 6151 6152 for (BasicBlock *OtherPred : predecessors(Succ)) { 6153 if (BB == OtherPred) 6154 continue; 6155 BasicBlock::iterator I = OtherPred->begin(); 6156 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6157 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6158 continue; 6159 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6160 ; 6161 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6162 if (!BI2 || !BI2->isIdenticalTo(BI)) 6163 continue; 6164 6165 std::vector<DominatorTree::UpdateType> Updates; 6166 6167 // We've found an identical block. Update our predecessors to take that 6168 // path instead and make ourselves dead. 6169 SmallPtrSet<BasicBlock *, 16> Preds; 6170 Preds.insert(pred_begin(BB), pred_end(BB)); 6171 for (BasicBlock *Pred : Preds) { 6172 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6173 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6174 "unexpected successor"); 6175 II->setUnwindDest(OtherPred); 6176 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6177 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6178 } 6179 6180 // The debug info in OtherPred doesn't cover the merged control flow that 6181 // used to go through BB. We need to delete it or update it. 6182 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6183 Instruction &Inst = *I; 6184 I++; 6185 if (isa<DbgInfoIntrinsic>(Inst)) 6186 Inst.eraseFromParent(); 6187 } 6188 6189 SmallPtrSet<BasicBlock *, 16> Succs; 6190 Succs.insert(succ_begin(BB), succ_end(BB)); 6191 for (BasicBlock *Succ : Succs) { 6192 Succ->removePredecessor(BB); 6193 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6194 } 6195 6196 IRBuilder<> Builder(BI); 6197 Builder.CreateUnreachable(); 6198 BI->eraseFromParent(); 6199 if (DTU) 6200 DTU->applyUpdates(Updates); 6201 return true; 6202 } 6203 return false; 6204 } 6205 6206 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6207 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6208 : simplifyCondBranch(Branch, Builder); 6209 } 6210 6211 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6212 IRBuilder<> &Builder) { 6213 BasicBlock *BB = BI->getParent(); 6214 BasicBlock *Succ = BI->getSuccessor(0); 6215 6216 // If the Terminator is the only non-phi instruction, simplify the block. 6217 // If LoopHeader is provided, check if the block or its successor is a loop 6218 // header. (This is for early invocations before loop simplify and 6219 // vectorization to keep canonical loop forms for nested loops. These blocks 6220 // can be eliminated when the pass is invoked later in the back-end.) 6221 // Note that if BB has only one predecessor then we do not introduce new 6222 // backedge, so we can eliminate BB. 6223 bool NeedCanonicalLoop = 6224 Options.NeedCanonicalLoop && 6225 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6226 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6227 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 6228 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6229 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6230 return true; 6231 6232 // If the only instruction in the block is a seteq/setne comparison against a 6233 // constant, try to simplify the block. 6234 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6235 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6236 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6237 ; 6238 if (I->isTerminator() && 6239 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6240 return true; 6241 } 6242 6243 // See if we can merge an empty landing pad block with another which is 6244 // equivalent. 6245 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6246 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6247 ; 6248 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6249 return true; 6250 } 6251 6252 // If this basic block is ONLY a compare and a branch, and if a predecessor 6253 // branches to us and our successor, fold the comparison into the 6254 // predecessor and use logical operations to update the incoming value 6255 // for PHI nodes in common successor. 6256 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6257 Options.BonusInstThreshold)) 6258 return requestResimplify(); 6259 return false; 6260 } 6261 6262 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6263 BasicBlock *PredPred = nullptr; 6264 for (auto *P : predecessors(BB)) { 6265 BasicBlock *PPred = P->getSinglePredecessor(); 6266 if (!PPred || (PredPred && PredPred != PPred)) 6267 return nullptr; 6268 PredPred = PPred; 6269 } 6270 return PredPred; 6271 } 6272 6273 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6274 BasicBlock *BB = BI->getParent(); 6275 if (!Options.SimplifyCondBranch) 6276 return false; 6277 6278 // Conditional branch 6279 if (isValueEqualityComparison(BI)) { 6280 // If we only have one predecessor, and if it is a branch on this value, 6281 // see if that predecessor totally determines the outcome of this 6282 // switch. 6283 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6284 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6285 return requestResimplify(); 6286 6287 // This block must be empty, except for the setcond inst, if it exists. 6288 // Ignore dbg intrinsics. 6289 auto I = BB->instructionsWithoutDebug().begin(); 6290 if (&*I == BI) { 6291 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6292 return requestResimplify(); 6293 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6294 ++I; 6295 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6296 return requestResimplify(); 6297 } 6298 } 6299 6300 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6301 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6302 return true; 6303 6304 // If this basic block has dominating predecessor blocks and the dominating 6305 // blocks' conditions imply BI's condition, we know the direction of BI. 6306 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6307 if (Imp) { 6308 // Turn this into a branch on constant. 6309 auto *OldCond = BI->getCondition(); 6310 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6311 : ConstantInt::getFalse(BB->getContext()); 6312 BI->setCondition(TorF); 6313 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6314 return requestResimplify(); 6315 } 6316 6317 // If this basic block is ONLY a compare and a branch, and if a predecessor 6318 // branches to us and one of our successors, fold the comparison into the 6319 // predecessor and use logical operations to pick the right destination. 6320 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6321 Options.BonusInstThreshold)) 6322 return requestResimplify(); 6323 6324 // We have a conditional branch to two blocks that are only reachable 6325 // from BI. We know that the condbr dominates the two blocks, so see if 6326 // there is any identical code in the "then" and "else" blocks. If so, we 6327 // can hoist it up to the branching block. 6328 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6329 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6330 if (HoistCommon && Options.HoistCommonInsts) 6331 if (HoistThenElseCodeToIf(BI, TTI)) 6332 return requestResimplify(); 6333 } else { 6334 // If Successor #1 has multiple preds, we may be able to conditionally 6335 // execute Successor #0 if it branches to Successor #1. 6336 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6337 if (Succ0TI->getNumSuccessors() == 1 && 6338 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6339 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6340 return requestResimplify(); 6341 } 6342 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6343 // If Successor #0 has multiple preds, we may be able to conditionally 6344 // execute Successor #1 if it branches to Successor #0. 6345 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6346 if (Succ1TI->getNumSuccessors() == 1 && 6347 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6348 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6349 return requestResimplify(); 6350 } 6351 6352 // If this is a branch on a phi node in the current block, thread control 6353 // through this block if any PHI node entries are constants. 6354 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6355 if (PN->getParent() == BI->getParent()) 6356 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6357 return requestResimplify(); 6358 6359 // Scan predecessor blocks for conditional branches. 6360 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6361 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6362 if (PBI != BI && PBI->isConditional()) 6363 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6364 return requestResimplify(); 6365 6366 // Look for diamond patterns. 6367 if (MergeCondStores) 6368 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6369 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6370 if (PBI != BI && PBI->isConditional()) 6371 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6372 return requestResimplify(); 6373 6374 return false; 6375 } 6376 6377 /// Check if passing a value to an instruction will cause undefined behavior. 6378 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6379 Constant *C = dyn_cast<Constant>(V); 6380 if (!C) 6381 return false; 6382 6383 if (I->use_empty()) 6384 return false; 6385 6386 if (C->isNullValue() || isa<UndefValue>(C)) { 6387 // Only look at the first use, avoid hurting compile time with long uselists 6388 User *Use = *I->user_begin(); 6389 6390 // Now make sure that there are no instructions in between that can alter 6391 // control flow (eg. calls) 6392 for (BasicBlock::iterator 6393 i = ++BasicBlock::iterator(I), 6394 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6395 i != UI; ++i) 6396 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6397 return false; 6398 6399 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6400 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6401 if (GEP->getPointerOperand() == I) { 6402 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6403 PtrValueMayBeModified = true; 6404 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6405 } 6406 6407 // Look through bitcasts. 6408 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6409 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6410 6411 // Load from null is undefined. 6412 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6413 if (!LI->isVolatile()) 6414 return !NullPointerIsDefined(LI->getFunction(), 6415 LI->getPointerAddressSpace()); 6416 6417 // Store to null is undefined. 6418 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6419 if (!SI->isVolatile()) 6420 return (!NullPointerIsDefined(SI->getFunction(), 6421 SI->getPointerAddressSpace())) && 6422 SI->getPointerOperand() == I; 6423 6424 if (auto *CB = dyn_cast<CallBase>(Use)) { 6425 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6426 return false; 6427 // A call to null is undefined. 6428 if (CB->getCalledOperand() == I) 6429 return true; 6430 6431 if (C->isNullValue()) { 6432 for (const llvm::Use &Arg : CB->args()) 6433 if (Arg == I) { 6434 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6435 if (CB->paramHasAttr(ArgIdx, Attribute::NonNull) && 6436 CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) { 6437 // Passing null to a nonnnull+noundef argument is undefined. 6438 return !PtrValueMayBeModified; 6439 } 6440 } 6441 } else if (isa<UndefValue>(C)) { 6442 // Passing undef to a noundef argument is undefined. 6443 for (const llvm::Use &Arg : CB->args()) 6444 if (Arg == I) { 6445 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6446 if (CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) { 6447 // Passing undef to a noundef argument is undefined. 6448 return true; 6449 } 6450 } 6451 } 6452 } 6453 } 6454 return false; 6455 } 6456 6457 /// If BB has an incoming value that will always trigger undefined behavior 6458 /// (eg. null pointer dereference), remove the branch leading here. 6459 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6460 DomTreeUpdater *DTU) { 6461 for (PHINode &PHI : BB->phis()) 6462 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6463 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6464 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6465 Instruction *T = Predecessor->getTerminator(); 6466 IRBuilder<> Builder(T); 6467 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6468 BB->removePredecessor(Predecessor); 6469 // Turn uncoditional branches into unreachables and remove the dead 6470 // destination from conditional branches. 6471 if (BI->isUnconditional()) 6472 Builder.CreateUnreachable(); 6473 else 6474 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6475 : BI->getSuccessor(0)); 6476 BI->eraseFromParent(); 6477 if (DTU) 6478 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6479 return true; 6480 } 6481 // TODO: SwitchInst. 6482 } 6483 6484 return false; 6485 } 6486 6487 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6488 bool Changed = false; 6489 6490 assert(BB && BB->getParent() && "Block not embedded in function!"); 6491 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6492 6493 // Remove basic blocks that have no predecessors (except the entry block)... 6494 // or that just have themself as a predecessor. These are unreachable. 6495 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6496 BB->getSinglePredecessor() == BB) { 6497 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6498 DeleteDeadBlock(BB, DTU); 6499 return true; 6500 } 6501 6502 // Check to see if we can constant propagate this terminator instruction 6503 // away... 6504 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6505 /*TLI=*/nullptr, DTU); 6506 6507 // Check for and eliminate duplicate PHI nodes in this block. 6508 Changed |= EliminateDuplicatePHINodes(BB); 6509 6510 // Check for and remove branches that will always cause undefined behavior. 6511 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6512 6513 // Merge basic blocks into their predecessor if there is only one distinct 6514 // pred, and if there is only one distinct successor of the predecessor, and 6515 // if there are no PHI nodes. 6516 if (MergeBlockIntoPredecessor(BB, DTU)) 6517 return true; 6518 6519 if (SinkCommon && Options.SinkCommonInsts) 6520 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6521 6522 IRBuilder<> Builder(BB); 6523 6524 if (Options.FoldTwoEntryPHINode) { 6525 // If there is a trivial two-entry PHI node in this basic block, and we can 6526 // eliminate it, do so now. 6527 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6528 if (PN->getNumIncomingValues() == 2) 6529 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6530 } 6531 6532 Instruction *Terminator = BB->getTerminator(); 6533 Builder.SetInsertPoint(Terminator); 6534 switch (Terminator->getOpcode()) { 6535 case Instruction::Br: 6536 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6537 break; 6538 case Instruction::Ret: 6539 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6540 break; 6541 case Instruction::Resume: 6542 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6543 break; 6544 case Instruction::CleanupRet: 6545 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6546 break; 6547 case Instruction::Switch: 6548 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6549 break; 6550 case Instruction::Unreachable: 6551 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6552 break; 6553 case Instruction::IndirectBr: 6554 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6555 break; 6556 } 6557 6558 return Changed; 6559 } 6560 6561 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6562 bool Changed = simplifyOnceImpl(BB); 6563 6564 assert((!RequireAndPreserveDomTree || 6565 (DTU && 6566 DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) && 6567 "Failed to maintain validity of domtree!"); 6568 6569 return Changed; 6570 } 6571 6572 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6573 assert((!RequireAndPreserveDomTree || 6574 (DTU && 6575 DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) && 6576 "Original domtree is invalid?"); 6577 6578 bool Changed = false; 6579 6580 // Repeated simplify BB as long as resimplification is requested. 6581 do { 6582 Resimplify = false; 6583 6584 // Perform one round of simplifcation. Resimplify flag will be set if 6585 // another iteration is requested. 6586 Changed |= simplifyOnce(BB); 6587 } while (Resimplify); 6588 6589 return Changed; 6590 } 6591 6592 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6593 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6594 ArrayRef<WeakVH> LoopHeaders) { 6595 return SimplifyCFGOpt(TTI, RequireAndPreserveDomTree ? DTU : nullptr, 6596 BB->getModule()->getDataLayout(), LoopHeaders, Options) 6597 .run(BB); 6598 } 6599