1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/Sequence.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/MemorySSA.h" 32 #include "llvm/Analysis/MemorySSAUpdater.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/MDBuilder.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/NoFolder.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/PatternMatch.h" 59 #include "llvm/IR/ProfDataUtils.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/ValueHandle.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/ValueMapper.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <optional> 84 #include <set> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 using namespace PatternMatch; 91 92 #define DEBUG_TYPE "simplifycfg" 93 94 cl::opt<bool> llvm::RequireAndPreserveDomTree( 95 "simplifycfg-require-and-preserve-domtree", cl::Hidden, 96 97 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 98 "into preserving DomTree,")); 99 100 // Chosen as 2 so as to be cheap, but still to have enough power to fold 101 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 102 // To catch this, we need to fold a compare and a select, hence '2' being the 103 // minimum reasonable default. 104 static cl::opt<unsigned> PHINodeFoldingThreshold( 105 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 106 cl::desc( 107 "Control the amount of phi node folding to perform (default = 2)")); 108 109 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 110 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 111 cl::desc("Control the maximal total instruction cost that we are willing " 112 "to speculatively execute to fold a 2-entry PHI node into a " 113 "select (default = 4)")); 114 115 static cl::opt<bool> 116 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 117 cl::desc("Hoist common instructions up to the parent block")); 118 119 static cl::opt<unsigned> 120 HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden, 121 cl::init(20), 122 cl::desc("Allow reordering across at most this many " 123 "instructions when hoisting")); 124 125 static cl::opt<bool> 126 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 127 cl::desc("Sink common instructions down to the end block")); 128 129 static cl::opt<bool> HoistCondStores( 130 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 131 cl::desc("Hoist conditional stores if an unconditional store precedes")); 132 133 static cl::opt<bool> MergeCondStores( 134 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 135 cl::desc("Hoist conditional stores even if an unconditional store does not " 136 "precede - hoist multiple conditional stores into a single " 137 "predicated store")); 138 139 static cl::opt<bool> MergeCondStoresAggressively( 140 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 141 cl::desc("When merging conditional stores, do so even if the resultant " 142 "basic blocks are unlikely to be if-converted as a result")); 143 144 static cl::opt<bool> SpeculateOneExpensiveInst( 145 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 146 cl::desc("Allow exactly one expensive instruction to be speculatively " 147 "executed")); 148 149 static cl::opt<unsigned> MaxSpeculationDepth( 150 "max-speculation-depth", cl::Hidden, cl::init(10), 151 cl::desc("Limit maximum recursion depth when calculating costs of " 152 "speculatively executed instructions")); 153 154 static cl::opt<int> 155 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 156 cl::init(10), 157 cl::desc("Max size of a block which is still considered " 158 "small enough to thread through")); 159 160 // Two is chosen to allow one negation and a logical combine. 161 static cl::opt<unsigned> 162 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 163 cl::init(2), 164 cl::desc("Maximum cost of combining conditions when " 165 "folding branches")); 166 167 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 168 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 169 cl::init(2), 170 cl::desc("Multiplier to apply to threshold when determining whether or not " 171 "to fold branch to common destination when vector operations are " 172 "present")); 173 174 static cl::opt<bool> EnableMergeCompatibleInvokes( 175 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 176 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 177 178 static cl::opt<unsigned> MaxSwitchCasesPerResult( 179 "max-switch-cases-per-result", cl::Hidden, cl::init(16), 180 cl::desc("Limit cases to analyze when converting a switch to select")); 181 182 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 183 STATISTIC(NumLinearMaps, 184 "Number of switch instructions turned into linear mapping"); 185 STATISTIC(NumLookupTables, 186 "Number of switch instructions turned into lookup tables"); 187 STATISTIC( 188 NumLookupTablesHoles, 189 "Number of switch instructions turned into lookup tables (holes checked)"); 190 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 191 STATISTIC(NumFoldValueComparisonIntoPredecessors, 192 "Number of value comparisons folded into predecessor basic blocks"); 193 STATISTIC(NumFoldBranchToCommonDest, 194 "Number of branches folded into predecessor basic block"); 195 STATISTIC( 196 NumHoistCommonCode, 197 "Number of common instruction 'blocks' hoisted up to the begin block"); 198 STATISTIC(NumHoistCommonInstrs, 199 "Number of common instructions hoisted up to the begin block"); 200 STATISTIC(NumSinkCommonCode, 201 "Number of common instruction 'blocks' sunk down to the end block"); 202 STATISTIC(NumSinkCommonInstrs, 203 "Number of common instructions sunk down to the end block"); 204 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 205 STATISTIC(NumInvokes, 206 "Number of invokes with empty resume blocks simplified into calls"); 207 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 208 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 209 210 namespace { 211 212 // The first field contains the value that the switch produces when a certain 213 // case group is selected, and the second field is a vector containing the 214 // cases composing the case group. 215 using SwitchCaseResultVectorTy = 216 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 217 218 // The first field contains the phi node that generates a result of the switch 219 // and the second field contains the value generated for a certain case in the 220 // switch for that PHI. 221 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 222 223 /// ValueEqualityComparisonCase - Represents a case of a switch. 224 struct ValueEqualityComparisonCase { 225 ConstantInt *Value; 226 BasicBlock *Dest; 227 228 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 229 : Value(Value), Dest(Dest) {} 230 231 bool operator<(ValueEqualityComparisonCase RHS) const { 232 // Comparing pointers is ok as we only rely on the order for uniquing. 233 return Value < RHS.Value; 234 } 235 236 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 237 }; 238 239 class SimplifyCFGOpt { 240 const TargetTransformInfo &TTI; 241 DomTreeUpdater *DTU; 242 const DataLayout &DL; 243 ArrayRef<WeakVH> LoopHeaders; 244 const SimplifyCFGOptions &Options; 245 bool Resimplify; 246 247 Value *isValueEqualityComparison(Instruction *TI); 248 BasicBlock *GetValueEqualityComparisonCases( 249 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 250 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 251 BasicBlock *Pred, 252 IRBuilder<> &Builder); 253 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 254 Instruction *PTI, 255 IRBuilder<> &Builder); 256 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 257 IRBuilder<> &Builder); 258 259 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 260 bool simplifySingleResume(ResumeInst *RI); 261 bool simplifyCommonResume(ResumeInst *RI); 262 bool simplifyCleanupReturn(CleanupReturnInst *RI); 263 bool simplifyUnreachable(UnreachableInst *UI); 264 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 265 bool simplifyIndirectBr(IndirectBrInst *IBI); 266 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 267 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 268 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 269 270 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 271 IRBuilder<> &Builder); 272 273 bool hoistCommonCodeFromSuccessors(BasicBlock *BB, bool EqTermsOnly); 274 bool hoistSuccIdenticalTerminatorToSwitchOrIf( 275 Instruction *TI, Instruction *I1, 276 SmallVectorImpl<Instruction *> &OtherSuccTIs); 277 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB); 278 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 279 BasicBlock *TrueBB, BasicBlock *FalseBB, 280 uint32_t TrueWeight, uint32_t FalseWeight); 281 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 282 const DataLayout &DL); 283 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 284 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 285 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 286 287 public: 288 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 289 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 290 const SimplifyCFGOptions &Opts) 291 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 292 assert((!DTU || !DTU->hasPostDomTree()) && 293 "SimplifyCFG is not yet capable of maintaining validity of a " 294 "PostDomTree, so don't ask for it."); 295 } 296 297 bool simplifyOnce(BasicBlock *BB); 298 bool run(BasicBlock *BB); 299 300 // Helper to set Resimplify and return change indication. 301 bool requestResimplify() { 302 Resimplify = true; 303 return true; 304 } 305 }; 306 307 } // end anonymous namespace 308 309 /// Return true if all the PHI nodes in the basic block \p BB 310 /// receive compatible (identical) incoming values when coming from 311 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 312 /// 313 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 314 /// is provided, and *both* of the values are present in the set, 315 /// then they are considered equal. 316 static bool IncomingValuesAreCompatible( 317 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 318 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 319 assert(IncomingBlocks.size() == 2 && 320 "Only for a pair of incoming blocks at the time!"); 321 322 // FIXME: it is okay if one of the incoming values is an `undef` value, 323 // iff the other incoming value is guaranteed to be a non-poison value. 324 // FIXME: it is okay if one of the incoming values is a `poison` value. 325 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 326 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 327 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 328 if (IV0 == IV1) 329 return true; 330 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 331 EquivalenceSet->contains(IV1)) 332 return true; 333 return false; 334 }); 335 } 336 337 /// Return true if it is safe to merge these two 338 /// terminator instructions together. 339 static bool 340 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 341 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 342 if (SI1 == SI2) 343 return false; // Can't merge with self! 344 345 // It is not safe to merge these two switch instructions if they have a common 346 // successor, and if that successor has a PHI node, and if *that* PHI node has 347 // conflicting incoming values from the two switch blocks. 348 BasicBlock *SI1BB = SI1->getParent(); 349 BasicBlock *SI2BB = SI2->getParent(); 350 351 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 352 bool Fail = false; 353 for (BasicBlock *Succ : successors(SI2BB)) { 354 if (!SI1Succs.count(Succ)) 355 continue; 356 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 357 continue; 358 Fail = true; 359 if (FailBlocks) 360 FailBlocks->insert(Succ); 361 else 362 break; 363 } 364 365 return !Fail; 366 } 367 368 /// Update PHI nodes in Succ to indicate that there will now be entries in it 369 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 370 /// will be the same as those coming in from ExistPred, an existing predecessor 371 /// of Succ. 372 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 373 BasicBlock *ExistPred, 374 MemorySSAUpdater *MSSAU = nullptr) { 375 for (PHINode &PN : Succ->phis()) 376 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 377 if (MSSAU) 378 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 379 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 380 } 381 382 /// Compute an abstract "cost" of speculating the given instruction, 383 /// which is assumed to be safe to speculate. TCC_Free means cheap, 384 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 385 /// expensive. 386 static InstructionCost computeSpeculationCost(const User *I, 387 const TargetTransformInfo &TTI) { 388 assert((!isa<Instruction>(I) || 389 isSafeToSpeculativelyExecute(cast<Instruction>(I))) && 390 "Instruction is not safe to speculatively execute!"); 391 return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency); 392 } 393 394 /// If we have a merge point of an "if condition" as accepted above, 395 /// return true if the specified value dominates the block. We 396 /// don't handle the true generality of domination here, just a special case 397 /// which works well enough for us. 398 /// 399 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 400 /// see if V (which must be an instruction) and its recursive operands 401 /// that do not dominate BB have a combined cost lower than Budget and 402 /// are non-trapping. If both are true, the instruction is inserted into the 403 /// set and true is returned. 404 /// 405 /// The cost for most non-trapping instructions is defined as 1 except for 406 /// Select whose cost is 2. 407 /// 408 /// After this function returns, Cost is increased by the cost of 409 /// V plus its non-dominating operands. If that cost is greater than 410 /// Budget, false is returned and Cost is undefined. 411 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 412 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 413 InstructionCost &Cost, 414 InstructionCost Budget, 415 const TargetTransformInfo &TTI, 416 unsigned Depth = 0) { 417 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 418 // so limit the recursion depth. 419 // TODO: While this recursion limit does prevent pathological behavior, it 420 // would be better to track visited instructions to avoid cycles. 421 if (Depth == MaxSpeculationDepth) 422 return false; 423 424 Instruction *I = dyn_cast<Instruction>(V); 425 if (!I) { 426 // Non-instructions dominate all instructions and can be executed 427 // unconditionally. 428 return true; 429 } 430 BasicBlock *PBB = I->getParent(); 431 432 // We don't want to allow weird loops that might have the "if condition" in 433 // the bottom of this block. 434 if (PBB == BB) 435 return false; 436 437 // If this instruction is defined in a block that contains an unconditional 438 // branch to BB, then it must be in the 'conditional' part of the "if 439 // statement". If not, it definitely dominates the region. 440 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 441 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 442 return true; 443 444 // If we have seen this instruction before, don't count it again. 445 if (AggressiveInsts.count(I)) 446 return true; 447 448 // Okay, it looks like the instruction IS in the "condition". Check to 449 // see if it's a cheap instruction to unconditionally compute, and if it 450 // only uses stuff defined outside of the condition. If so, hoist it out. 451 if (!isSafeToSpeculativelyExecute(I)) 452 return false; 453 454 Cost += computeSpeculationCost(I, TTI); 455 456 // Allow exactly one instruction to be speculated regardless of its cost 457 // (as long as it is safe to do so). 458 // This is intended to flatten the CFG even if the instruction is a division 459 // or other expensive operation. The speculation of an expensive instruction 460 // is expected to be undone in CodeGenPrepare if the speculation has not 461 // enabled further IR optimizations. 462 if (Cost > Budget && 463 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 464 !Cost.isValid())) 465 return false; 466 467 // Okay, we can only really hoist these out if their operands do 468 // not take us over the cost threshold. 469 for (Use &Op : I->operands()) 470 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 471 Depth + 1)) 472 return false; 473 // Okay, it's safe to do this! Remember this instruction. 474 AggressiveInsts.insert(I); 475 return true; 476 } 477 478 /// Extract ConstantInt from value, looking through IntToPtr 479 /// and PointerNullValue. Return NULL if value is not a constant int. 480 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 481 // Normal constant int. 482 ConstantInt *CI = dyn_cast<ConstantInt>(V); 483 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() || 484 DL.isNonIntegralPointerType(V->getType())) 485 return CI; 486 487 // This is some kind of pointer constant. Turn it into a pointer-sized 488 // ConstantInt if possible. 489 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 490 491 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 492 if (isa<ConstantPointerNull>(V)) 493 return ConstantInt::get(PtrTy, 0); 494 495 // IntToPtr const int. 496 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 497 if (CE->getOpcode() == Instruction::IntToPtr) 498 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 499 // The constant is very likely to have the right type already. 500 if (CI->getType() == PtrTy) 501 return CI; 502 else 503 return cast<ConstantInt>( 504 ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL)); 505 } 506 return nullptr; 507 } 508 509 namespace { 510 511 /// Given a chain of or (||) or and (&&) comparison of a value against a 512 /// constant, this will try to recover the information required for a switch 513 /// structure. 514 /// It will depth-first traverse the chain of comparison, seeking for patterns 515 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 516 /// representing the different cases for the switch. 517 /// Note that if the chain is composed of '||' it will build the set of elements 518 /// that matches the comparisons (i.e. any of this value validate the chain) 519 /// while for a chain of '&&' it will build the set elements that make the test 520 /// fail. 521 struct ConstantComparesGatherer { 522 const DataLayout &DL; 523 524 /// Value found for the switch comparison 525 Value *CompValue = nullptr; 526 527 /// Extra clause to be checked before the switch 528 Value *Extra = nullptr; 529 530 /// Set of integers to match in switch 531 SmallVector<ConstantInt *, 8> Vals; 532 533 /// Number of comparisons matched in the and/or chain 534 unsigned UsedICmps = 0; 535 536 /// Construct and compute the result for the comparison instruction Cond 537 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 538 gather(Cond); 539 } 540 541 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 542 ConstantComparesGatherer & 543 operator=(const ConstantComparesGatherer &) = delete; 544 545 private: 546 /// Try to set the current value used for the comparison, it succeeds only if 547 /// it wasn't set before or if the new value is the same as the old one 548 bool setValueOnce(Value *NewVal) { 549 if (CompValue && CompValue != NewVal) 550 return false; 551 CompValue = NewVal; 552 return (CompValue != nullptr); 553 } 554 555 /// Try to match Instruction "I" as a comparison against a constant and 556 /// populates the array Vals with the set of values that match (or do not 557 /// match depending on isEQ). 558 /// Return false on failure. On success, the Value the comparison matched 559 /// against is placed in CompValue. 560 /// If CompValue is already set, the function is expected to fail if a match 561 /// is found but the value compared to is different. 562 bool matchInstruction(Instruction *I, bool isEQ) { 563 // If this is an icmp against a constant, handle this as one of the cases. 564 ICmpInst *ICI; 565 ConstantInt *C; 566 if (!((ICI = dyn_cast<ICmpInst>(I)) && 567 (C = GetConstantInt(I->getOperand(1), DL)))) { 568 return false; 569 } 570 571 Value *RHSVal; 572 const APInt *RHSC; 573 574 // Pattern match a special case 575 // (x & ~2^z) == y --> x == y || x == y|2^z 576 // This undoes a transformation done by instcombine to fuse 2 compares. 577 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 578 // It's a little bit hard to see why the following transformations are 579 // correct. Here is a CVC3 program to verify them for 64-bit values: 580 581 /* 582 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 583 x : BITVECTOR(64); 584 y : BITVECTOR(64); 585 z : BITVECTOR(64); 586 mask : BITVECTOR(64) = BVSHL(ONE, z); 587 QUERY( (y & ~mask = y) => 588 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 589 ); 590 QUERY( (y | mask = y) => 591 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 592 ); 593 */ 594 595 // Please note that each pattern must be a dual implication (<--> or 596 // iff). One directional implication can create spurious matches. If the 597 // implication is only one-way, an unsatisfiable condition on the left 598 // side can imply a satisfiable condition on the right side. Dual 599 // implication ensures that satisfiable conditions are transformed to 600 // other satisfiable conditions and unsatisfiable conditions are 601 // transformed to other unsatisfiable conditions. 602 603 // Here is a concrete example of a unsatisfiable condition on the left 604 // implying a satisfiable condition on the right: 605 // 606 // mask = (1 << z) 607 // (x & ~mask) == y --> (x == y || x == (y | mask)) 608 // 609 // Substituting y = 3, z = 0 yields: 610 // (x & -2) == 3 --> (x == 3 || x == 2) 611 612 // Pattern match a special case: 613 /* 614 QUERY( (y & ~mask = y) => 615 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 616 ); 617 */ 618 if (match(ICI->getOperand(0), 619 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 620 APInt Mask = ~*RHSC; 621 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 622 // If we already have a value for the switch, it has to match! 623 if (!setValueOnce(RHSVal)) 624 return false; 625 626 Vals.push_back(C); 627 Vals.push_back( 628 ConstantInt::get(C->getContext(), 629 C->getValue() | Mask)); 630 UsedICmps++; 631 return true; 632 } 633 } 634 635 // Pattern match a special case: 636 /* 637 QUERY( (y | mask = y) => 638 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 639 ); 640 */ 641 if (match(ICI->getOperand(0), 642 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 643 APInt Mask = *RHSC; 644 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 645 // If we already have a value for the switch, it has to match! 646 if (!setValueOnce(RHSVal)) 647 return false; 648 649 Vals.push_back(C); 650 Vals.push_back(ConstantInt::get(C->getContext(), 651 C->getValue() & ~Mask)); 652 UsedICmps++; 653 return true; 654 } 655 } 656 657 // If we already have a value for the switch, it has to match! 658 if (!setValueOnce(ICI->getOperand(0))) 659 return false; 660 661 UsedICmps++; 662 Vals.push_back(C); 663 return ICI->getOperand(0); 664 } 665 666 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 667 ConstantRange Span = 668 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 669 670 // Shift the range if the compare is fed by an add. This is the range 671 // compare idiom as emitted by instcombine. 672 Value *CandidateVal = I->getOperand(0); 673 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 674 Span = Span.subtract(*RHSC); 675 CandidateVal = RHSVal; 676 } 677 678 // If this is an and/!= check, then we are looking to build the set of 679 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 680 // x != 0 && x != 1. 681 if (!isEQ) 682 Span = Span.inverse(); 683 684 // If there are a ton of values, we don't want to make a ginormous switch. 685 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 686 return false; 687 } 688 689 // If we already have a value for the switch, it has to match! 690 if (!setValueOnce(CandidateVal)) 691 return false; 692 693 // Add all values from the range to the set 694 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 695 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 696 697 UsedICmps++; 698 return true; 699 } 700 701 /// Given a potentially 'or'd or 'and'd together collection of icmp 702 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 703 /// the value being compared, and stick the list constants into the Vals 704 /// vector. 705 /// One "Extra" case is allowed to differ from the other. 706 void gather(Value *V) { 707 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 708 709 // Keep a stack (SmallVector for efficiency) for depth-first traversal 710 SmallVector<Value *, 8> DFT; 711 SmallPtrSet<Value *, 8> Visited; 712 713 // Initialize 714 Visited.insert(V); 715 DFT.push_back(V); 716 717 while (!DFT.empty()) { 718 V = DFT.pop_back_val(); 719 720 if (Instruction *I = dyn_cast<Instruction>(V)) { 721 // If it is a || (or && depending on isEQ), process the operands. 722 Value *Op0, *Op1; 723 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 724 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 725 if (Visited.insert(Op1).second) 726 DFT.push_back(Op1); 727 if (Visited.insert(Op0).second) 728 DFT.push_back(Op0); 729 730 continue; 731 } 732 733 // Try to match the current instruction 734 if (matchInstruction(I, isEQ)) 735 // Match succeed, continue the loop 736 continue; 737 } 738 739 // One element of the sequence of || (or &&) could not be match as a 740 // comparison against the same value as the others. 741 // We allow only one "Extra" case to be checked before the switch 742 if (!Extra) { 743 Extra = V; 744 continue; 745 } 746 // Failed to parse a proper sequence, abort now 747 CompValue = nullptr; 748 break; 749 } 750 } 751 }; 752 753 } // end anonymous namespace 754 755 static void EraseTerminatorAndDCECond(Instruction *TI, 756 MemorySSAUpdater *MSSAU = nullptr) { 757 Instruction *Cond = nullptr; 758 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 759 Cond = dyn_cast<Instruction>(SI->getCondition()); 760 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 761 if (BI->isConditional()) 762 Cond = dyn_cast<Instruction>(BI->getCondition()); 763 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 764 Cond = dyn_cast<Instruction>(IBI->getAddress()); 765 } 766 767 TI->eraseFromParent(); 768 if (Cond) 769 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 770 } 771 772 /// Return true if the specified terminator checks 773 /// to see if a value is equal to constant integer value. 774 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 775 Value *CV = nullptr; 776 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 777 // Do not permit merging of large switch instructions into their 778 // predecessors unless there is only one predecessor. 779 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 780 CV = SI->getCondition(); 781 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 782 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 783 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 784 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 785 CV = ICI->getOperand(0); 786 } 787 788 // Unwrap any lossless ptrtoint cast. 789 if (CV) { 790 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 791 Value *Ptr = PTII->getPointerOperand(); 792 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 793 CV = Ptr; 794 } 795 } 796 return CV; 797 } 798 799 /// Given a value comparison instruction, 800 /// decode all of the 'cases' that it represents and return the 'default' block. 801 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 802 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 803 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 804 Cases.reserve(SI->getNumCases()); 805 for (auto Case : SI->cases()) 806 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 807 Case.getCaseSuccessor())); 808 return SI->getDefaultDest(); 809 } 810 811 BranchInst *BI = cast<BranchInst>(TI); 812 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 813 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 814 Cases.push_back(ValueEqualityComparisonCase( 815 GetConstantInt(ICI->getOperand(1), DL), Succ)); 816 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 817 } 818 819 /// Given a vector of bb/value pairs, remove any entries 820 /// in the list that match the specified block. 821 static void 822 EliminateBlockCases(BasicBlock *BB, 823 std::vector<ValueEqualityComparisonCase> &Cases) { 824 llvm::erase(Cases, BB); 825 } 826 827 /// Return true if there are any keys in C1 that exist in C2 as well. 828 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 829 std::vector<ValueEqualityComparisonCase> &C2) { 830 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 831 832 // Make V1 be smaller than V2. 833 if (V1->size() > V2->size()) 834 std::swap(V1, V2); 835 836 if (V1->empty()) 837 return false; 838 if (V1->size() == 1) { 839 // Just scan V2. 840 ConstantInt *TheVal = (*V1)[0].Value; 841 for (const ValueEqualityComparisonCase &VECC : *V2) 842 if (TheVal == VECC.Value) 843 return true; 844 } 845 846 // Otherwise, just sort both lists and compare element by element. 847 array_pod_sort(V1->begin(), V1->end()); 848 array_pod_sort(V2->begin(), V2->end()); 849 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 850 while (i1 != e1 && i2 != e2) { 851 if ((*V1)[i1].Value == (*V2)[i2].Value) 852 return true; 853 if ((*V1)[i1].Value < (*V2)[i2].Value) 854 ++i1; 855 else 856 ++i2; 857 } 858 return false; 859 } 860 861 // Set branch weights on SwitchInst. This sets the metadata if there is at 862 // least one non-zero weight. 863 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 864 // Check that there is at least one non-zero weight. Otherwise, pass 865 // nullptr to setMetadata which will erase the existing metadata. 866 MDNode *N = nullptr; 867 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 868 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 869 SI->setMetadata(LLVMContext::MD_prof, N); 870 } 871 872 // Similar to the above, but for branch and select instructions that take 873 // exactly 2 weights. 874 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 875 uint32_t FalseWeight) { 876 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 877 // Check that there is at least one non-zero weight. Otherwise, pass 878 // nullptr to setMetadata which will erase the existing metadata. 879 MDNode *N = nullptr; 880 if (TrueWeight || FalseWeight) 881 N = MDBuilder(I->getParent()->getContext()) 882 .createBranchWeights(TrueWeight, FalseWeight); 883 I->setMetadata(LLVMContext::MD_prof, N); 884 } 885 886 /// If TI is known to be a terminator instruction and its block is known to 887 /// only have a single predecessor block, check to see if that predecessor is 888 /// also a value comparison with the same value, and if that comparison 889 /// determines the outcome of this comparison. If so, simplify TI. This does a 890 /// very limited form of jump threading. 891 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 892 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 893 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 894 if (!PredVal) 895 return false; // Not a value comparison in predecessor. 896 897 Value *ThisVal = isValueEqualityComparison(TI); 898 assert(ThisVal && "This isn't a value comparison!!"); 899 if (ThisVal != PredVal) 900 return false; // Different predicates. 901 902 // TODO: Preserve branch weight metadata, similarly to how 903 // FoldValueComparisonIntoPredecessors preserves it. 904 905 // Find out information about when control will move from Pred to TI's block. 906 std::vector<ValueEqualityComparisonCase> PredCases; 907 BasicBlock *PredDef = 908 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 909 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 910 911 // Find information about how control leaves this block. 912 std::vector<ValueEqualityComparisonCase> ThisCases; 913 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 914 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 915 916 // If TI's block is the default block from Pred's comparison, potentially 917 // simplify TI based on this knowledge. 918 if (PredDef == TI->getParent()) { 919 // If we are here, we know that the value is none of those cases listed in 920 // PredCases. If there are any cases in ThisCases that are in PredCases, we 921 // can simplify TI. 922 if (!ValuesOverlap(PredCases, ThisCases)) 923 return false; 924 925 if (isa<BranchInst>(TI)) { 926 // Okay, one of the successors of this condbr is dead. Convert it to a 927 // uncond br. 928 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 929 // Insert the new branch. 930 Instruction *NI = Builder.CreateBr(ThisDef); 931 (void)NI; 932 933 // Remove PHI node entries for the dead edge. 934 ThisCases[0].Dest->removePredecessor(PredDef); 935 936 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 937 << "Through successor TI: " << *TI << "Leaving: " << *NI 938 << "\n"); 939 940 EraseTerminatorAndDCECond(TI); 941 942 if (DTU) 943 DTU->applyUpdates( 944 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 945 946 return true; 947 } 948 949 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 950 // Okay, TI has cases that are statically dead, prune them away. 951 SmallPtrSet<Constant *, 16> DeadCases; 952 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 953 DeadCases.insert(PredCases[i].Value); 954 955 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 956 << "Through successor TI: " << *TI); 957 958 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 959 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 960 --i; 961 auto *Successor = i->getCaseSuccessor(); 962 if (DTU) 963 ++NumPerSuccessorCases[Successor]; 964 if (DeadCases.count(i->getCaseValue())) { 965 Successor->removePredecessor(PredDef); 966 SI.removeCase(i); 967 if (DTU) 968 --NumPerSuccessorCases[Successor]; 969 } 970 } 971 972 if (DTU) { 973 std::vector<DominatorTree::UpdateType> Updates; 974 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 975 if (I.second == 0) 976 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 977 DTU->applyUpdates(Updates); 978 } 979 980 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 981 return true; 982 } 983 984 // Otherwise, TI's block must correspond to some matched value. Find out 985 // which value (or set of values) this is. 986 ConstantInt *TIV = nullptr; 987 BasicBlock *TIBB = TI->getParent(); 988 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 989 if (PredCases[i].Dest == TIBB) { 990 if (TIV) 991 return false; // Cannot handle multiple values coming to this block. 992 TIV = PredCases[i].Value; 993 } 994 assert(TIV && "No edge from pred to succ?"); 995 996 // Okay, we found the one constant that our value can be if we get into TI's 997 // BB. Find out which successor will unconditionally be branched to. 998 BasicBlock *TheRealDest = nullptr; 999 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 1000 if (ThisCases[i].Value == TIV) { 1001 TheRealDest = ThisCases[i].Dest; 1002 break; 1003 } 1004 1005 // If not handled by any explicit cases, it is handled by the default case. 1006 if (!TheRealDest) 1007 TheRealDest = ThisDef; 1008 1009 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 1010 1011 // Remove PHI node entries for dead edges. 1012 BasicBlock *CheckEdge = TheRealDest; 1013 for (BasicBlock *Succ : successors(TIBB)) 1014 if (Succ != CheckEdge) { 1015 if (Succ != TheRealDest) 1016 RemovedSuccs.insert(Succ); 1017 Succ->removePredecessor(TIBB); 1018 } else 1019 CheckEdge = nullptr; 1020 1021 // Insert the new branch. 1022 Instruction *NI = Builder.CreateBr(TheRealDest); 1023 (void)NI; 1024 1025 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1026 << "Through successor TI: " << *TI << "Leaving: " << *NI 1027 << "\n"); 1028 1029 EraseTerminatorAndDCECond(TI); 1030 if (DTU) { 1031 SmallVector<DominatorTree::UpdateType, 2> Updates; 1032 Updates.reserve(RemovedSuccs.size()); 1033 for (auto *RemovedSucc : RemovedSuccs) 1034 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1035 DTU->applyUpdates(Updates); 1036 } 1037 return true; 1038 } 1039 1040 namespace { 1041 1042 /// This class implements a stable ordering of constant 1043 /// integers that does not depend on their address. This is important for 1044 /// applications that sort ConstantInt's to ensure uniqueness. 1045 struct ConstantIntOrdering { 1046 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1047 return LHS->getValue().ult(RHS->getValue()); 1048 } 1049 }; 1050 1051 } // end anonymous namespace 1052 1053 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1054 ConstantInt *const *P2) { 1055 const ConstantInt *LHS = *P1; 1056 const ConstantInt *RHS = *P2; 1057 if (LHS == RHS) 1058 return 0; 1059 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1060 } 1061 1062 /// Get Weights of a given terminator, the default weight is at the front 1063 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1064 /// metadata. 1065 static void GetBranchWeights(Instruction *TI, 1066 SmallVectorImpl<uint64_t> &Weights) { 1067 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1068 assert(MD); 1069 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1070 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1071 Weights.push_back(CI->getValue().getZExtValue()); 1072 } 1073 1074 // If TI is a conditional eq, the default case is the false case, 1075 // and the corresponding branch-weight data is at index 2. We swap the 1076 // default weight to be the first entry. 1077 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1078 assert(Weights.size() == 2); 1079 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1080 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1081 std::swap(Weights.front(), Weights.back()); 1082 } 1083 } 1084 1085 /// Keep halving the weights until all can fit in uint32_t. 1086 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1087 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1088 if (Max > UINT_MAX) { 1089 unsigned Offset = 32 - llvm::countl_zero(Max); 1090 for (uint64_t &I : Weights) 1091 I >>= Offset; 1092 } 1093 } 1094 1095 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1096 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1097 Instruction *PTI = PredBlock->getTerminator(); 1098 1099 // If we have bonus instructions, clone them into the predecessor block. 1100 // Note that there may be multiple predecessor blocks, so we cannot move 1101 // bonus instructions to a predecessor block. 1102 for (Instruction &BonusInst : *BB) { 1103 if (BonusInst.isTerminator()) 1104 continue; 1105 1106 Instruction *NewBonusInst = BonusInst.clone(); 1107 1108 if (!isa<DbgInfoIntrinsic>(BonusInst) && 1109 PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1110 // Unless the instruction has the same !dbg location as the original 1111 // branch, drop it. When we fold the bonus instructions we want to make 1112 // sure we reset their debug locations in order to avoid stepping on 1113 // dead code caused by folding dead branches. 1114 NewBonusInst->setDebugLoc(DebugLoc()); 1115 } 1116 1117 RemapInstruction(NewBonusInst, VMap, 1118 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1119 1120 // If we speculated an instruction, we need to drop any metadata that may 1121 // result in undefined behavior, as the metadata might have been valid 1122 // only given the branch precondition. 1123 // Similarly strip attributes on call parameters that may cause UB in 1124 // location the call is moved to. 1125 NewBonusInst->dropUBImplyingAttrsAndMetadata(); 1126 1127 NewBonusInst->insertInto(PredBlock, PTI->getIterator()); 1128 auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst); 1129 RemapDPValueRange(NewBonusInst->getModule(), Range, VMap, 1130 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1131 1132 if (isa<DbgInfoIntrinsic>(BonusInst)) 1133 continue; 1134 1135 NewBonusInst->takeName(&BonusInst); 1136 BonusInst.setName(NewBonusInst->getName() + ".old"); 1137 VMap[&BonusInst] = NewBonusInst; 1138 1139 // Update (liveout) uses of bonus instructions, 1140 // now that the bonus instruction has been cloned into predecessor. 1141 // Note that we expect to be in a block-closed SSA form for this to work! 1142 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1143 auto *UI = cast<Instruction>(U.getUser()); 1144 auto *PN = dyn_cast<PHINode>(UI); 1145 if (!PN) { 1146 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1147 "If the user is not a PHI node, then it should be in the same " 1148 "block as, and come after, the original bonus instruction."); 1149 continue; // Keep using the original bonus instruction. 1150 } 1151 // Is this the block-closed SSA form PHI node? 1152 if (PN->getIncomingBlock(U) == BB) 1153 continue; // Great, keep using the original bonus instruction. 1154 // The only other alternative is an "use" when coming from 1155 // the predecessor block - here we should refer to the cloned bonus instr. 1156 assert(PN->getIncomingBlock(U) == PredBlock && 1157 "Not in block-closed SSA form?"); 1158 U.set(NewBonusInst); 1159 } 1160 } 1161 } 1162 1163 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1164 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1165 BasicBlock *BB = TI->getParent(); 1166 BasicBlock *Pred = PTI->getParent(); 1167 1168 SmallVector<DominatorTree::UpdateType, 32> Updates; 1169 1170 // Figure out which 'cases' to copy from SI to PSI. 1171 std::vector<ValueEqualityComparisonCase> BBCases; 1172 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1173 1174 std::vector<ValueEqualityComparisonCase> PredCases; 1175 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1176 1177 // Based on whether the default edge from PTI goes to BB or not, fill in 1178 // PredCases and PredDefault with the new switch cases we would like to 1179 // build. 1180 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1181 1182 // Update the branch weight metadata along the way 1183 SmallVector<uint64_t, 8> Weights; 1184 bool PredHasWeights = hasBranchWeightMD(*PTI); 1185 bool SuccHasWeights = hasBranchWeightMD(*TI); 1186 1187 if (PredHasWeights) { 1188 GetBranchWeights(PTI, Weights); 1189 // branch-weight metadata is inconsistent here. 1190 if (Weights.size() != 1 + PredCases.size()) 1191 PredHasWeights = SuccHasWeights = false; 1192 } else if (SuccHasWeights) 1193 // If there are no predecessor weights but there are successor weights, 1194 // populate Weights with 1, which will later be scaled to the sum of 1195 // successor's weights 1196 Weights.assign(1 + PredCases.size(), 1); 1197 1198 SmallVector<uint64_t, 8> SuccWeights; 1199 if (SuccHasWeights) { 1200 GetBranchWeights(TI, SuccWeights); 1201 // branch-weight metadata is inconsistent here. 1202 if (SuccWeights.size() != 1 + BBCases.size()) 1203 PredHasWeights = SuccHasWeights = false; 1204 } else if (PredHasWeights) 1205 SuccWeights.assign(1 + BBCases.size(), 1); 1206 1207 if (PredDefault == BB) { 1208 // If this is the default destination from PTI, only the edges in TI 1209 // that don't occur in PTI, or that branch to BB will be activated. 1210 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1211 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1212 if (PredCases[i].Dest != BB) 1213 PTIHandled.insert(PredCases[i].Value); 1214 else { 1215 // The default destination is BB, we don't need explicit targets. 1216 std::swap(PredCases[i], PredCases.back()); 1217 1218 if (PredHasWeights || SuccHasWeights) { 1219 // Increase weight for the default case. 1220 Weights[0] += Weights[i + 1]; 1221 std::swap(Weights[i + 1], Weights.back()); 1222 Weights.pop_back(); 1223 } 1224 1225 PredCases.pop_back(); 1226 --i; 1227 --e; 1228 } 1229 1230 // Reconstruct the new switch statement we will be building. 1231 if (PredDefault != BBDefault) { 1232 PredDefault->removePredecessor(Pred); 1233 if (DTU && PredDefault != BB) 1234 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1235 PredDefault = BBDefault; 1236 ++NewSuccessors[BBDefault]; 1237 } 1238 1239 unsigned CasesFromPred = Weights.size(); 1240 uint64_t ValidTotalSuccWeight = 0; 1241 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1242 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1243 PredCases.push_back(BBCases[i]); 1244 ++NewSuccessors[BBCases[i].Dest]; 1245 if (SuccHasWeights || PredHasWeights) { 1246 // The default weight is at index 0, so weight for the ith case 1247 // should be at index i+1. Scale the cases from successor by 1248 // PredDefaultWeight (Weights[0]). 1249 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1250 ValidTotalSuccWeight += SuccWeights[i + 1]; 1251 } 1252 } 1253 1254 if (SuccHasWeights || PredHasWeights) { 1255 ValidTotalSuccWeight += SuccWeights[0]; 1256 // Scale the cases from predecessor by ValidTotalSuccWeight. 1257 for (unsigned i = 1; i < CasesFromPred; ++i) 1258 Weights[i] *= ValidTotalSuccWeight; 1259 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1260 Weights[0] *= SuccWeights[0]; 1261 } 1262 } else { 1263 // If this is not the default destination from PSI, only the edges 1264 // in SI that occur in PSI with a destination of BB will be 1265 // activated. 1266 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1267 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1268 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1269 if (PredCases[i].Dest == BB) { 1270 PTIHandled.insert(PredCases[i].Value); 1271 1272 if (PredHasWeights || SuccHasWeights) { 1273 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1274 std::swap(Weights[i + 1], Weights.back()); 1275 Weights.pop_back(); 1276 } 1277 1278 std::swap(PredCases[i], PredCases.back()); 1279 PredCases.pop_back(); 1280 --i; 1281 --e; 1282 } 1283 1284 // Okay, now we know which constants were sent to BB from the 1285 // predecessor. Figure out where they will all go now. 1286 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1287 if (PTIHandled.count(BBCases[i].Value)) { 1288 // If this is one we are capable of getting... 1289 if (PredHasWeights || SuccHasWeights) 1290 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1291 PredCases.push_back(BBCases[i]); 1292 ++NewSuccessors[BBCases[i].Dest]; 1293 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1294 } 1295 1296 // If there are any constants vectored to BB that TI doesn't handle, 1297 // they must go to the default destination of TI. 1298 for (ConstantInt *I : PTIHandled) { 1299 if (PredHasWeights || SuccHasWeights) 1300 Weights.push_back(WeightsForHandled[I]); 1301 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1302 ++NewSuccessors[BBDefault]; 1303 } 1304 } 1305 1306 // Okay, at this point, we know which new successor Pred will get. Make 1307 // sure we update the number of entries in the PHI nodes for these 1308 // successors. 1309 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1310 if (DTU) { 1311 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1312 Updates.reserve(Updates.size() + NewSuccessors.size()); 1313 } 1314 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1315 NewSuccessors) { 1316 for (auto I : seq(NewSuccessor.second)) { 1317 (void)I; 1318 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1319 } 1320 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1321 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1322 } 1323 1324 Builder.SetInsertPoint(PTI); 1325 // Convert pointer to int before we switch. 1326 if (CV->getType()->isPointerTy()) { 1327 CV = 1328 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1329 } 1330 1331 // Now that the successors are updated, create the new Switch instruction. 1332 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1333 NewSI->setDebugLoc(PTI->getDebugLoc()); 1334 for (ValueEqualityComparisonCase &V : PredCases) 1335 NewSI->addCase(V.Value, V.Dest); 1336 1337 if (PredHasWeights || SuccHasWeights) { 1338 // Halve the weights if any of them cannot fit in an uint32_t 1339 FitWeights(Weights); 1340 1341 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1342 1343 setBranchWeights(NewSI, MDWeights); 1344 } 1345 1346 EraseTerminatorAndDCECond(PTI); 1347 1348 // Okay, last check. If BB is still a successor of PSI, then we must 1349 // have an infinite loop case. If so, add an infinitely looping block 1350 // to handle the case to preserve the behavior of the code. 1351 BasicBlock *InfLoopBlock = nullptr; 1352 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1353 if (NewSI->getSuccessor(i) == BB) { 1354 if (!InfLoopBlock) { 1355 // Insert it at the end of the function, because it's either code, 1356 // or it won't matter if it's hot. :) 1357 InfLoopBlock = 1358 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1359 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1360 if (DTU) 1361 Updates.push_back( 1362 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1363 } 1364 NewSI->setSuccessor(i, InfLoopBlock); 1365 } 1366 1367 if (DTU) { 1368 if (InfLoopBlock) 1369 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1370 1371 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1372 1373 DTU->applyUpdates(Updates); 1374 } 1375 1376 ++NumFoldValueComparisonIntoPredecessors; 1377 return true; 1378 } 1379 1380 /// The specified terminator is a value equality comparison instruction 1381 /// (either a switch or a branch on "X == c"). 1382 /// See if any of the predecessors of the terminator block are value comparisons 1383 /// on the same value. If so, and if safe to do so, fold them together. 1384 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1385 IRBuilder<> &Builder) { 1386 BasicBlock *BB = TI->getParent(); 1387 Value *CV = isValueEqualityComparison(TI); // CondVal 1388 assert(CV && "Not a comparison?"); 1389 1390 bool Changed = false; 1391 1392 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1393 while (!Preds.empty()) { 1394 BasicBlock *Pred = Preds.pop_back_val(); 1395 Instruction *PTI = Pred->getTerminator(); 1396 1397 // Don't try to fold into itself. 1398 if (Pred == BB) 1399 continue; 1400 1401 // See if the predecessor is a comparison with the same value. 1402 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1403 if (PCV != CV) 1404 continue; 1405 1406 SmallSetVector<BasicBlock *, 4> FailBlocks; 1407 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1408 for (auto *Succ : FailBlocks) { 1409 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1410 return false; 1411 } 1412 } 1413 1414 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1415 Changed = true; 1416 } 1417 return Changed; 1418 } 1419 1420 // If we would need to insert a select that uses the value of this invoke 1421 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would 1422 // need to do this), we can't hoist the invoke, as there is nowhere to put the 1423 // select in this case. 1424 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1425 Instruction *I1, Instruction *I2) { 1426 for (BasicBlock *Succ : successors(BB1)) { 1427 for (const PHINode &PN : Succ->phis()) { 1428 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1429 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1430 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1431 return false; 1432 } 1433 } 1434 } 1435 return true; 1436 } 1437 1438 // Get interesting characteristics of instructions that 1439 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of 1440 // instructions can be reordered across. 1441 enum SkipFlags { 1442 SkipReadMem = 1, 1443 SkipSideEffect = 2, 1444 SkipImplicitControlFlow = 4 1445 }; 1446 1447 static unsigned skippedInstrFlags(Instruction *I) { 1448 unsigned Flags = 0; 1449 if (I->mayReadFromMemory()) 1450 Flags |= SkipReadMem; 1451 // We can't arbitrarily move around allocas, e.g. moving allocas (especially 1452 // inalloca) across stacksave/stackrestore boundaries. 1453 if (I->mayHaveSideEffects() || isa<AllocaInst>(I)) 1454 Flags |= SkipSideEffect; 1455 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 1456 Flags |= SkipImplicitControlFlow; 1457 return Flags; 1458 } 1459 1460 // Returns true if it is safe to reorder an instruction across preceding 1461 // instructions in a basic block. 1462 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) { 1463 // Don't reorder a store over a load. 1464 if ((Flags & SkipReadMem) && I->mayWriteToMemory()) 1465 return false; 1466 1467 // If we have seen an instruction with side effects, it's unsafe to reorder an 1468 // instruction which reads memory or itself has side effects. 1469 if ((Flags & SkipSideEffect) && 1470 (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I))) 1471 return false; 1472 1473 // Reordering across an instruction which does not necessarily transfer 1474 // control to the next instruction is speculation. 1475 if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I)) 1476 return false; 1477 1478 // Hoisting of llvm.deoptimize is only legal together with the next return 1479 // instruction, which this pass is not always able to do. 1480 if (auto *CB = dyn_cast<CallBase>(I)) 1481 if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize) 1482 return false; 1483 1484 // It's also unsafe/illegal to hoist an instruction above its instruction 1485 // operands 1486 BasicBlock *BB = I->getParent(); 1487 for (Value *Op : I->operands()) { 1488 if (auto *J = dyn_cast<Instruction>(Op)) 1489 if (J->getParent() == BB) 1490 return false; 1491 } 1492 1493 return true; 1494 } 1495 1496 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1497 1498 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical 1499 /// instructions \p I1 and \p I2 can and should be hoisted. 1500 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2, 1501 const TargetTransformInfo &TTI) { 1502 // If we're going to hoist a call, make sure that the two instructions 1503 // we're commoning/hoisting are both marked with musttail, or neither of 1504 // them is marked as such. Otherwise, we might end up in a situation where 1505 // we hoist from a block where the terminator is a `ret` to a block where 1506 // the terminator is a `br`, and `musttail` calls expect to be followed by 1507 // a return. 1508 auto *C1 = dyn_cast<CallInst>(I1); 1509 auto *C2 = dyn_cast<CallInst>(I2); 1510 if (C1 && C2) 1511 if (C1->isMustTailCall() != C2->isMustTailCall()) 1512 return false; 1513 1514 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1515 return false; 1516 1517 // If any of the two call sites has nomerge or convergent attribute, stop 1518 // hoisting. 1519 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1520 if (CB1->cannotMerge() || CB1->isConvergent()) 1521 return false; 1522 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1523 if (CB2->cannotMerge() || CB2->isConvergent()) 1524 return false; 1525 1526 return true; 1527 } 1528 1529 /// Hoist any common code in the successor blocks up into the block. This 1530 /// function guarantees that BB dominates all successors. If EqTermsOnly is 1531 /// given, only perform hoisting in case both blocks only contain a terminator. 1532 /// In that case, only the original BI will be replaced and selects for PHIs are 1533 /// added. 1534 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(BasicBlock *BB, 1535 bool EqTermsOnly) { 1536 // This does very trivial matching, with limited scanning, to find identical 1537 // instructions in the two blocks. In particular, we don't want to get into 1538 // O(N1*N2*...) situations here where Ni are the sizes of these successors. As 1539 // such, we currently just scan for obviously identical instructions in an 1540 // identical order, possibly separated by the same number of non-identical 1541 // instructions. 1542 unsigned int SuccSize = succ_size(BB); 1543 if (SuccSize < 2) 1544 return false; 1545 1546 // If either of the blocks has it's address taken, then we can't do this fold, 1547 // because the code we'd hoist would no longer run when we jump into the block 1548 // by it's address. 1549 for (auto *Succ : successors(BB)) 1550 if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor()) 1551 return false; 1552 1553 auto *TI = BB->getTerminator(); 1554 1555 // The second of pair is a SkipFlags bitmask. 1556 using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>; 1557 SmallVector<SuccIterPair, 8> SuccIterPairs; 1558 for (auto *Succ : successors(BB)) { 1559 BasicBlock::iterator SuccItr = Succ->begin(); 1560 if (isa<PHINode>(*SuccItr)) 1561 return false; 1562 SuccIterPairs.push_back(SuccIterPair(SuccItr, 0)); 1563 } 1564 1565 // Check if only hoisting terminators is allowed. This does not add new 1566 // instructions to the hoist location. 1567 if (EqTermsOnly) { 1568 // Skip any debug intrinsics, as they are free to hoist. 1569 for (auto &SuccIter : make_first_range(SuccIterPairs)) { 1570 auto *INonDbg = &*skipDebugIntrinsics(SuccIter); 1571 if (!INonDbg->isTerminator()) 1572 return false; 1573 } 1574 // Now we know that we only need to hoist debug intrinsics and the 1575 // terminator. Let the loop below handle those 2 cases. 1576 } 1577 1578 // Count how many instructions were not hoisted so far. There's a limit on how 1579 // many instructions we skip, serving as a compilation time control as well as 1580 // preventing excessive increase of life ranges. 1581 unsigned NumSkipped = 0; 1582 // If we find an unreachable instruction at the beginning of a basic block, we 1583 // can still hoist instructions from the rest of the basic blocks. 1584 if (SuccIterPairs.size() > 2) { 1585 erase_if(SuccIterPairs, 1586 [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); }); 1587 if (SuccIterPairs.size() < 2) 1588 return false; 1589 } 1590 1591 bool Changed = false; 1592 1593 for (;;) { 1594 auto *SuccIterPairBegin = SuccIterPairs.begin(); 1595 auto &BB1ItrPair = *SuccIterPairBegin++; 1596 auto OtherSuccIterPairRange = 1597 iterator_range(SuccIterPairBegin, SuccIterPairs.end()); 1598 auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange); 1599 1600 Instruction *I1 = &*BB1ItrPair.first; 1601 auto *BB1 = I1->getParent(); 1602 1603 // Skip debug info if it is not identical. 1604 bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) { 1605 Instruction *I2 = &*Iter; 1606 return I1->isIdenticalToWhenDefined(I2); 1607 }); 1608 if (!AllDbgInstsAreIdentical) { 1609 while (isa<DbgInfoIntrinsic>(I1)) 1610 I1 = &*++BB1ItrPair.first; 1611 for (auto &SuccIter : OtherSuccIterRange) { 1612 Instruction *I2 = &*SuccIter; 1613 while (isa<DbgInfoIntrinsic>(I2)) 1614 I2 = &*++SuccIter; 1615 } 1616 } 1617 1618 bool AllInstsAreIdentical = true; 1619 bool HasTerminator = I1->isTerminator(); 1620 for (auto &SuccIter : OtherSuccIterRange) { 1621 Instruction *I2 = &*SuccIter; 1622 HasTerminator |= I2->isTerminator(); 1623 if (AllInstsAreIdentical && !I1->isIdenticalToWhenDefined(I2)) 1624 AllInstsAreIdentical = false; 1625 } 1626 1627 // If we are hoisting the terminator instruction, don't move one (making a 1628 // broken BB), instead clone it, and remove BI. 1629 if (HasTerminator) { 1630 // Even if BB, which contains only one unreachable instruction, is ignored 1631 // at the beginning of the loop, we can hoist the terminator instruction. 1632 // If any instructions remain in the block, we cannot hoist terminators. 1633 if (NumSkipped || !AllInstsAreIdentical) 1634 return Changed; 1635 SmallVector<Instruction *, 8> Insts; 1636 for (auto &SuccIter : OtherSuccIterRange) 1637 Insts.push_back(&*SuccIter); 1638 return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, Insts) || Changed; 1639 } 1640 1641 if (AllInstsAreIdentical) { 1642 unsigned SkipFlagsBB1 = BB1ItrPair.second; 1643 AllInstsAreIdentical = 1644 isSafeToHoistInstr(I1, SkipFlagsBB1) && 1645 all_of(OtherSuccIterPairRange, [=](const auto &Pair) { 1646 Instruction *I2 = &*Pair.first; 1647 unsigned SkipFlagsBB2 = Pair.second; 1648 // Even if the instructions are identical, it may not 1649 // be safe to hoist them if we have skipped over 1650 // instructions with side effects or their operands 1651 // weren't hoisted. 1652 return isSafeToHoistInstr(I2, SkipFlagsBB2) && 1653 shouldHoistCommonInstructions(I1, I2, TTI); 1654 }); 1655 } 1656 1657 if (AllInstsAreIdentical) { 1658 BB1ItrPair.first++; 1659 if (isa<DbgInfoIntrinsic>(I1)) { 1660 // The debug location is an integral part of a debug info intrinsic 1661 // and can't be separated from it or replaced. Instead of attempting 1662 // to merge locations, simply hoist both copies of the intrinsic. 1663 I1->moveBeforePreserving(TI); 1664 for (auto &SuccIter : OtherSuccIterRange) { 1665 auto *I2 = &*SuccIter++; 1666 assert(isa<DbgInfoIntrinsic>(I2)); 1667 I2->moveBeforePreserving(TI); 1668 } 1669 } else { 1670 // For a normal instruction, we just move one to right before the 1671 // branch, then replace all uses of the other with the first. Finally, 1672 // we remove the now redundant second instruction. 1673 I1->moveBeforePreserving(TI); 1674 BB->splice(TI->getIterator(), BB1, I1->getIterator()); 1675 for (auto &SuccIter : OtherSuccIterRange) { 1676 Instruction *I2 = &*SuccIter++; 1677 assert(I2 != I1); 1678 if (!I2->use_empty()) 1679 I2->replaceAllUsesWith(I1); 1680 I1->andIRFlags(I2); 1681 combineMetadataForCSE(I1, I2, true); 1682 // I1 and I2 are being combined into a single instruction. Its debug 1683 // location is the merged locations of the original instructions. 1684 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1685 I2->eraseFromParent(); 1686 } 1687 } 1688 if (!Changed) 1689 NumHoistCommonCode += SuccIterPairs.size(); 1690 Changed = true; 1691 NumHoistCommonInstrs += SuccIterPairs.size(); 1692 } else { 1693 if (NumSkipped >= HoistCommonSkipLimit) 1694 return Changed; 1695 // We are about to skip over a pair of non-identical instructions. Record 1696 // if any have characteristics that would prevent reordering instructions 1697 // across them. 1698 for (auto &SuccIterPair : SuccIterPairs) { 1699 Instruction *I = &*SuccIterPair.first++; 1700 SuccIterPair.second |= skippedInstrFlags(I); 1701 } 1702 ++NumSkipped; 1703 } 1704 } 1705 } 1706 1707 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf( 1708 Instruction *TI, Instruction *I1, 1709 SmallVectorImpl<Instruction *> &OtherSuccTIs) { 1710 1711 auto *BI = dyn_cast<BranchInst>(TI); 1712 1713 bool Changed = false; 1714 BasicBlock *TIParent = TI->getParent(); 1715 BasicBlock *BB1 = I1->getParent(); 1716 1717 // Use only for an if statement. 1718 auto *I2 = *OtherSuccTIs.begin(); 1719 auto *BB2 = I2->getParent(); 1720 if (BI) { 1721 assert(OtherSuccTIs.size() == 1); 1722 assert(BI->getSuccessor(0) == I1->getParent()); 1723 assert(BI->getSuccessor(1) == I2->getParent()); 1724 } 1725 1726 // In the case of an if statement, we try to hoist an invoke. 1727 // FIXME: Can we define a safety predicate for CallBr? 1728 // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll 1729 // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit? 1730 if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1731 return false; 1732 1733 // TODO: callbr hoisting currently disabled pending further study. 1734 if (isa<CallBrInst>(I1)) 1735 return false; 1736 1737 for (BasicBlock *Succ : successors(BB1)) { 1738 for (PHINode &PN : Succ->phis()) { 1739 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1740 for (Instruction *OtherSuccTI : OtherSuccTIs) { 1741 Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent()); 1742 if (BB1V == BB2V) 1743 continue; 1744 1745 // In the case of an if statement, check for 1746 // passingValueIsAlwaysUndefined here because we would rather eliminate 1747 // undefined control flow then converting it to a select. 1748 if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) || 1749 passingValueIsAlwaysUndefined(BB2V, &PN)) 1750 return false; 1751 } 1752 } 1753 } 1754 1755 // Okay, it is safe to hoist the terminator. 1756 Instruction *NT = I1->clone(); 1757 NT->insertInto(TIParent, TI->getIterator()); 1758 if (!NT->getType()->isVoidTy()) { 1759 I1->replaceAllUsesWith(NT); 1760 for (Instruction *OtherSuccTI : OtherSuccTIs) 1761 OtherSuccTI->replaceAllUsesWith(NT); 1762 NT->takeName(I1); 1763 } 1764 Changed = true; 1765 NumHoistCommonInstrs += OtherSuccTIs.size() + 1; 1766 1767 // Ensure terminator gets a debug location, even an unknown one, in case 1768 // it involves inlinable calls. 1769 SmallVector<DILocation *, 4> Locs; 1770 Locs.push_back(I1->getDebugLoc()); 1771 for (auto *OtherSuccTI : OtherSuccTIs) 1772 Locs.push_back(OtherSuccTI->getDebugLoc()); 1773 // Also clone DPValues from the existing terminator, and all others (to 1774 // duplicate existing hoisting behaviour). 1775 NT->cloneDebugInfoFrom(I1); 1776 for (Instruction *OtherSuccTI : OtherSuccTIs) 1777 NT->cloneDebugInfoFrom(OtherSuccTI); 1778 NT->setDebugLoc(DILocation::getMergedLocations(Locs)); 1779 1780 // PHIs created below will adopt NT's merged DebugLoc. 1781 IRBuilder<NoFolder> Builder(NT); 1782 1783 // In the case of an if statement, hoisting one of the terminators from our 1784 // successor is a great thing. Unfortunately, the successors of the if/else 1785 // blocks may have PHI nodes in them. If they do, all PHI entries for BB1/BB2 1786 // must agree for all PHI nodes, so we insert select instruction to compute 1787 // the final result. 1788 if (BI) { 1789 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1790 for (BasicBlock *Succ : successors(BB1)) { 1791 for (PHINode &PN : Succ->phis()) { 1792 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1793 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1794 if (BB1V == BB2V) 1795 continue; 1796 1797 // These values do not agree. Insert a select instruction before NT 1798 // that determines the right value. 1799 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1800 if (!SI) { 1801 // Propagate fast-math-flags from phi node to its replacement select. 1802 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1803 if (isa<FPMathOperator>(PN)) 1804 Builder.setFastMathFlags(PN.getFastMathFlags()); 1805 1806 SI = cast<SelectInst>(Builder.CreateSelect( 1807 BI->getCondition(), BB1V, BB2V, 1808 BB1V->getName() + "." + BB2V->getName(), BI)); 1809 } 1810 1811 // Make the PHI node use the select for all incoming values for BB1/BB2 1812 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1813 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1814 PN.setIncomingValue(i, SI); 1815 } 1816 } 1817 } 1818 1819 SmallVector<DominatorTree::UpdateType, 4> Updates; 1820 1821 // Update any PHI nodes in our new successors. 1822 for (BasicBlock *Succ : successors(BB1)) { 1823 AddPredecessorToBlock(Succ, TIParent, BB1); 1824 if (DTU) 1825 Updates.push_back({DominatorTree::Insert, TIParent, Succ}); 1826 } 1827 1828 if (DTU) 1829 for (BasicBlock *Succ : successors(TI)) 1830 Updates.push_back({DominatorTree::Delete, TIParent, Succ}); 1831 1832 EraseTerminatorAndDCECond(TI); 1833 if (DTU) 1834 DTU->applyUpdates(Updates); 1835 return Changed; 1836 } 1837 1838 // Check lifetime markers. 1839 static bool isLifeTimeMarker(const Instruction *I) { 1840 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1841 switch (II->getIntrinsicID()) { 1842 default: 1843 break; 1844 case Intrinsic::lifetime_start: 1845 case Intrinsic::lifetime_end: 1846 return true; 1847 } 1848 } 1849 return false; 1850 } 1851 1852 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1853 // into variables. 1854 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1855 int OpIdx) { 1856 return !isa<IntrinsicInst>(I); 1857 } 1858 1859 // All instructions in Insts belong to different blocks that all unconditionally 1860 // branch to a common successor. Analyze each instruction and return true if it 1861 // would be possible to sink them into their successor, creating one common 1862 // instruction instead. For every value that would be required to be provided by 1863 // PHI node (because an operand varies in each input block), add to PHIOperands. 1864 static bool canSinkInstructions( 1865 ArrayRef<Instruction *> Insts, 1866 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1867 // Prune out obviously bad instructions to move. Each instruction must have 1868 // exactly zero or one use, and we check later that use is by a single, common 1869 // PHI instruction in the successor. 1870 bool HasUse = !Insts.front()->user_empty(); 1871 for (auto *I : Insts) { 1872 // These instructions may change or break semantics if moved. 1873 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1874 I->getType()->isTokenTy()) 1875 return false; 1876 1877 // Do not try to sink an instruction in an infinite loop - it can cause 1878 // this algorithm to infinite loop. 1879 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1880 return false; 1881 1882 // Conservatively return false if I is an inline-asm instruction. Sinking 1883 // and merging inline-asm instructions can potentially create arguments 1884 // that cannot satisfy the inline-asm constraints. 1885 // If the instruction has nomerge or convergent attribute, return false. 1886 if (const auto *C = dyn_cast<CallBase>(I)) 1887 if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent()) 1888 return false; 1889 1890 // Each instruction must have zero or one use. 1891 if (HasUse && !I->hasOneUse()) 1892 return false; 1893 if (!HasUse && !I->user_empty()) 1894 return false; 1895 } 1896 1897 const Instruction *I0 = Insts.front(); 1898 for (auto *I : Insts) { 1899 if (!I->isSameOperationAs(I0)) 1900 return false; 1901 1902 // swifterror pointers can only be used by a load or store; sinking a load 1903 // or store would require introducing a select for the pointer operand, 1904 // which isn't allowed for swifterror pointers. 1905 if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError()) 1906 return false; 1907 if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError()) 1908 return false; 1909 } 1910 1911 // All instructions in Insts are known to be the same opcode. If they have a 1912 // use, check that the only user is a PHI or in the same block as the 1913 // instruction, because if a user is in the same block as an instruction we're 1914 // contemplating sinking, it must already be determined to be sinkable. 1915 if (HasUse) { 1916 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1917 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1918 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1919 auto *U = cast<Instruction>(*I->user_begin()); 1920 return (PNUse && 1921 PNUse->getParent() == Succ && 1922 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1923 U->getParent() == I->getParent(); 1924 })) 1925 return false; 1926 } 1927 1928 // Because SROA can't handle speculating stores of selects, try not to sink 1929 // loads, stores or lifetime markers of allocas when we'd have to create a 1930 // PHI for the address operand. Also, because it is likely that loads or 1931 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1932 // them. 1933 // This can cause code churn which can have unintended consequences down 1934 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1935 // FIXME: This is a workaround for a deficiency in SROA - see 1936 // https://llvm.org/bugs/show_bug.cgi?id=30188 1937 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1938 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1939 })) 1940 return false; 1941 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1942 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1943 })) 1944 return false; 1945 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1946 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1947 })) 1948 return false; 1949 1950 // For calls to be sinkable, they must all be indirect, or have same callee. 1951 // I.e. if we have two direct calls to different callees, we don't want to 1952 // turn that into an indirect call. Likewise, if we have an indirect call, 1953 // and a direct call, we don't actually want to have a single indirect call. 1954 if (isa<CallBase>(I0)) { 1955 auto IsIndirectCall = [](const Instruction *I) { 1956 return cast<CallBase>(I)->isIndirectCall(); 1957 }; 1958 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1959 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1960 if (HaveIndirectCalls) { 1961 if (!AllCallsAreIndirect) 1962 return false; 1963 } else { 1964 // All callees must be identical. 1965 Value *Callee = nullptr; 1966 for (const Instruction *I : Insts) { 1967 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1968 if (!Callee) 1969 Callee = CurrCallee; 1970 else if (Callee != CurrCallee) 1971 return false; 1972 } 1973 } 1974 } 1975 1976 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1977 Value *Op = I0->getOperand(OI); 1978 if (Op->getType()->isTokenTy()) 1979 // Don't touch any operand of token type. 1980 return false; 1981 1982 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1983 assert(I->getNumOperands() == I0->getNumOperands()); 1984 return I->getOperand(OI) == I0->getOperand(OI); 1985 }; 1986 if (!all_of(Insts, SameAsI0)) { 1987 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1988 !canReplaceOperandWithVariable(I0, OI)) 1989 // We can't create a PHI from this GEP. 1990 return false; 1991 for (auto *I : Insts) 1992 PHIOperands[I].push_back(I->getOperand(OI)); 1993 } 1994 } 1995 return true; 1996 } 1997 1998 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1999 // instruction of every block in Blocks to their common successor, commoning 2000 // into one instruction. 2001 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 2002 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 2003 2004 // canSinkInstructions returning true guarantees that every block has at 2005 // least one non-terminator instruction. 2006 SmallVector<Instruction*,4> Insts; 2007 for (auto *BB : Blocks) { 2008 Instruction *I = BB->getTerminator(); 2009 do { 2010 I = I->getPrevNode(); 2011 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 2012 if (!isa<DbgInfoIntrinsic>(I)) 2013 Insts.push_back(I); 2014 } 2015 2016 // The only checking we need to do now is that all users of all instructions 2017 // are the same PHI node. canSinkInstructions should have checked this but 2018 // it is slightly over-aggressive - it gets confused by commutative 2019 // instructions so double-check it here. 2020 Instruction *I0 = Insts.front(); 2021 if (!I0->user_empty()) { 2022 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 2023 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 2024 auto *U = cast<Instruction>(*I->user_begin()); 2025 return U == PNUse; 2026 })) 2027 return false; 2028 } 2029 2030 // We don't need to do any more checking here; canSinkInstructions should 2031 // have done it all for us. 2032 SmallVector<Value*, 4> NewOperands; 2033 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 2034 // This check is different to that in canSinkInstructions. There, we 2035 // cared about the global view once simplifycfg (and instcombine) have 2036 // completed - it takes into account PHIs that become trivially 2037 // simplifiable. However here we need a more local view; if an operand 2038 // differs we create a PHI and rely on instcombine to clean up the very 2039 // small mess we may make. 2040 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 2041 return I->getOperand(O) != I0->getOperand(O); 2042 }); 2043 if (!NeedPHI) { 2044 NewOperands.push_back(I0->getOperand(O)); 2045 continue; 2046 } 2047 2048 // Create a new PHI in the successor block and populate it. 2049 auto *Op = I0->getOperand(O); 2050 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 2051 auto *PN = 2052 PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink"); 2053 PN->insertBefore(BBEnd->begin()); 2054 for (auto *I : Insts) 2055 PN->addIncoming(I->getOperand(O), I->getParent()); 2056 NewOperands.push_back(PN); 2057 } 2058 2059 // Arbitrarily use I0 as the new "common" instruction; remap its operands 2060 // and move it to the start of the successor block. 2061 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 2062 I0->getOperandUse(O).set(NewOperands[O]); 2063 2064 I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt()); 2065 2066 // Update metadata and IR flags, and merge debug locations. 2067 for (auto *I : Insts) 2068 if (I != I0) { 2069 // The debug location for the "common" instruction is the merged locations 2070 // of all the commoned instructions. We start with the original location 2071 // of the "common" instruction and iteratively merge each location in the 2072 // loop below. 2073 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 2074 // However, as N-way merge for CallInst is rare, so we use simplified API 2075 // instead of using complex API for N-way merge. 2076 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 2077 combineMetadataForCSE(I0, I, true); 2078 I0->andIRFlags(I); 2079 } 2080 2081 if (!I0->user_empty()) { 2082 // canSinkLastInstruction checked that all instructions were used by 2083 // one and only one PHI node. Find that now, RAUW it to our common 2084 // instruction and nuke it. 2085 auto *PN = cast<PHINode>(*I0->user_begin()); 2086 PN->replaceAllUsesWith(I0); 2087 PN->eraseFromParent(); 2088 } 2089 2090 // Finally nuke all instructions apart from the common instruction. 2091 for (auto *I : Insts) { 2092 if (I == I0) 2093 continue; 2094 // The remaining uses are debug users, replace those with the common inst. 2095 // In most (all?) cases this just introduces a use-before-def. 2096 assert(I->user_empty() && "Inst unexpectedly still has non-dbg users"); 2097 I->replaceAllUsesWith(I0); 2098 I->eraseFromParent(); 2099 } 2100 2101 return true; 2102 } 2103 2104 namespace { 2105 2106 // LockstepReverseIterator - Iterates through instructions 2107 // in a set of blocks in reverse order from the first non-terminator. 2108 // For example (assume all blocks have size n): 2109 // LockstepReverseIterator I([B1, B2, B3]); 2110 // *I-- = [B1[n], B2[n], B3[n]]; 2111 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 2112 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 2113 // ... 2114 class LockstepReverseIterator { 2115 ArrayRef<BasicBlock*> Blocks; 2116 SmallVector<Instruction*,4> Insts; 2117 bool Fail; 2118 2119 public: 2120 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 2121 reset(); 2122 } 2123 2124 void reset() { 2125 Fail = false; 2126 Insts.clear(); 2127 for (auto *BB : Blocks) { 2128 Instruction *Inst = BB->getTerminator(); 2129 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2130 Inst = Inst->getPrevNode(); 2131 if (!Inst) { 2132 // Block wasn't big enough. 2133 Fail = true; 2134 return; 2135 } 2136 Insts.push_back(Inst); 2137 } 2138 } 2139 2140 bool isValid() const { 2141 return !Fail; 2142 } 2143 2144 void operator--() { 2145 if (Fail) 2146 return; 2147 for (auto *&Inst : Insts) { 2148 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2149 Inst = Inst->getPrevNode(); 2150 // Already at beginning of block. 2151 if (!Inst) { 2152 Fail = true; 2153 return; 2154 } 2155 } 2156 } 2157 2158 void operator++() { 2159 if (Fail) 2160 return; 2161 for (auto *&Inst : Insts) { 2162 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2163 Inst = Inst->getNextNode(); 2164 // Already at end of block. 2165 if (!Inst) { 2166 Fail = true; 2167 return; 2168 } 2169 } 2170 } 2171 2172 ArrayRef<Instruction*> operator * () const { 2173 return Insts; 2174 } 2175 }; 2176 2177 } // end anonymous namespace 2178 2179 /// Check whether BB's predecessors end with unconditional branches. If it is 2180 /// true, sink any common code from the predecessors to BB. 2181 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 2182 DomTreeUpdater *DTU) { 2183 // We support two situations: 2184 // (1) all incoming arcs are unconditional 2185 // (2) there are non-unconditional incoming arcs 2186 // 2187 // (2) is very common in switch defaults and 2188 // else-if patterns; 2189 // 2190 // if (a) f(1); 2191 // else if (b) f(2); 2192 // 2193 // produces: 2194 // 2195 // [if] 2196 // / \ 2197 // [f(1)] [if] 2198 // | | \ 2199 // | | | 2200 // | [f(2)]| 2201 // \ | / 2202 // [ end ] 2203 // 2204 // [end] has two unconditional predecessor arcs and one conditional. The 2205 // conditional refers to the implicit empty 'else' arc. This conditional 2206 // arc can also be caused by an empty default block in a switch. 2207 // 2208 // In this case, we attempt to sink code from all *unconditional* arcs. 2209 // If we can sink instructions from these arcs (determined during the scan 2210 // phase below) we insert a common successor for all unconditional arcs and 2211 // connect that to [end], to enable sinking: 2212 // 2213 // [if] 2214 // / \ 2215 // [x(1)] [if] 2216 // | | \ 2217 // | | \ 2218 // | [x(2)] | 2219 // \ / | 2220 // [sink.split] | 2221 // \ / 2222 // [ end ] 2223 // 2224 SmallVector<BasicBlock*,4> UnconditionalPreds; 2225 bool HaveNonUnconditionalPredecessors = false; 2226 for (auto *PredBB : predecessors(BB)) { 2227 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2228 if (PredBr && PredBr->isUnconditional()) 2229 UnconditionalPreds.push_back(PredBB); 2230 else 2231 HaveNonUnconditionalPredecessors = true; 2232 } 2233 if (UnconditionalPreds.size() < 2) 2234 return false; 2235 2236 // We take a two-step approach to tail sinking. First we scan from the end of 2237 // each block upwards in lockstep. If the n'th instruction from the end of each 2238 // block can be sunk, those instructions are added to ValuesToSink and we 2239 // carry on. If we can sink an instruction but need to PHI-merge some operands 2240 // (because they're not identical in each instruction) we add these to 2241 // PHIOperands. 2242 int ScanIdx = 0; 2243 SmallPtrSet<Value*,4> InstructionsToSink; 2244 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2245 LockstepReverseIterator LRI(UnconditionalPreds); 2246 while (LRI.isValid() && 2247 canSinkInstructions(*LRI, PHIOperands)) { 2248 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2249 << "\n"); 2250 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2251 ++ScanIdx; 2252 --LRI; 2253 } 2254 2255 // If no instructions can be sunk, early-return. 2256 if (ScanIdx == 0) 2257 return false; 2258 2259 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2260 2261 if (!followedByDeoptOrUnreachable) { 2262 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2263 // actually sink before encountering instruction that is unprofitable to 2264 // sink? 2265 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2266 unsigned NumPHIdValues = 0; 2267 for (auto *I : *LRI) 2268 for (auto *V : PHIOperands[I]) { 2269 if (!InstructionsToSink.contains(V)) 2270 ++NumPHIdValues; 2271 // FIXME: this check is overly optimistic. We may end up not sinking 2272 // said instruction, due to the very same profitability check. 2273 // See @creating_too_many_phis in sink-common-code.ll. 2274 } 2275 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2276 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2277 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2278 NumPHIInsts++; 2279 2280 return NumPHIInsts <= 1; 2281 }; 2282 2283 // We've determined that we are going to sink last ScanIdx instructions, 2284 // and recorded them in InstructionsToSink. Now, some instructions may be 2285 // unprofitable to sink. But that determination depends on the instructions 2286 // that we are going to sink. 2287 2288 // First, forward scan: find the first instruction unprofitable to sink, 2289 // recording all the ones that are profitable to sink. 2290 // FIXME: would it be better, after we detect that not all are profitable. 2291 // to either record the profitable ones, or erase the unprofitable ones? 2292 // Maybe we need to choose (at runtime) the one that will touch least 2293 // instrs? 2294 LRI.reset(); 2295 int Idx = 0; 2296 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2297 while (Idx < ScanIdx) { 2298 if (!ProfitableToSinkInstruction(LRI)) { 2299 // Too many PHIs would be created. 2300 LLVM_DEBUG( 2301 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2302 break; 2303 } 2304 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2305 --LRI; 2306 ++Idx; 2307 } 2308 2309 // If no instructions can be sunk, early-return. 2310 if (Idx == 0) 2311 return false; 2312 2313 // Did we determine that (only) some instructions are unprofitable to sink? 2314 if (Idx < ScanIdx) { 2315 // Okay, some instructions are unprofitable. 2316 ScanIdx = Idx; 2317 InstructionsToSink = InstructionsProfitableToSink; 2318 2319 // But, that may make other instructions unprofitable, too. 2320 // So, do a backward scan, do any earlier instructions become 2321 // unprofitable? 2322 assert( 2323 !ProfitableToSinkInstruction(LRI) && 2324 "We already know that the last instruction is unprofitable to sink"); 2325 ++LRI; 2326 --Idx; 2327 while (Idx >= 0) { 2328 // If we detect that an instruction becomes unprofitable to sink, 2329 // all earlier instructions won't be sunk either, 2330 // so preemptively keep InstructionsProfitableToSink in sync. 2331 // FIXME: is this the most performant approach? 2332 for (auto *I : *LRI) 2333 InstructionsProfitableToSink.erase(I); 2334 if (!ProfitableToSinkInstruction(LRI)) { 2335 // Everything starting with this instruction won't be sunk. 2336 ScanIdx = Idx; 2337 InstructionsToSink = InstructionsProfitableToSink; 2338 } 2339 ++LRI; 2340 --Idx; 2341 } 2342 } 2343 2344 // If no instructions can be sunk, early-return. 2345 if (ScanIdx == 0) 2346 return false; 2347 } 2348 2349 bool Changed = false; 2350 2351 if (HaveNonUnconditionalPredecessors) { 2352 if (!followedByDeoptOrUnreachable) { 2353 // It is always legal to sink common instructions from unconditional 2354 // predecessors. However, if not all predecessors are unconditional, 2355 // this transformation might be pessimizing. So as a rule of thumb, 2356 // don't do it unless we'd sink at least one non-speculatable instruction. 2357 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2358 LRI.reset(); 2359 int Idx = 0; 2360 bool Profitable = false; 2361 while (Idx < ScanIdx) { 2362 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2363 Profitable = true; 2364 break; 2365 } 2366 --LRI; 2367 ++Idx; 2368 } 2369 if (!Profitable) 2370 return false; 2371 } 2372 2373 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2374 // We have a conditional edge and we're going to sink some instructions. 2375 // Insert a new block postdominating all blocks we're going to sink from. 2376 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2377 // Edges couldn't be split. 2378 return false; 2379 Changed = true; 2380 } 2381 2382 // Now that we've analyzed all potential sinking candidates, perform the 2383 // actual sink. We iteratively sink the last non-terminator of the source 2384 // blocks into their common successor unless doing so would require too 2385 // many PHI instructions to be generated (currently only one PHI is allowed 2386 // per sunk instruction). 2387 // 2388 // We can use InstructionsToSink to discount values needing PHI-merging that will 2389 // actually be sunk in a later iteration. This allows us to be more 2390 // aggressive in what we sink. This does allow a false positive where we 2391 // sink presuming a later value will also be sunk, but stop half way through 2392 // and never actually sink it which means we produce more PHIs than intended. 2393 // This is unlikely in practice though. 2394 int SinkIdx = 0; 2395 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2396 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2397 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2398 << "\n"); 2399 2400 // Because we've sunk every instruction in turn, the current instruction to 2401 // sink is always at index 0. 2402 LRI.reset(); 2403 2404 if (!sinkLastInstruction(UnconditionalPreds)) { 2405 LLVM_DEBUG( 2406 dbgs() 2407 << "SINK: stopping here, failed to actually sink instruction!\n"); 2408 break; 2409 } 2410 2411 NumSinkCommonInstrs++; 2412 Changed = true; 2413 } 2414 if (SinkIdx != 0) 2415 ++NumSinkCommonCode; 2416 return Changed; 2417 } 2418 2419 namespace { 2420 2421 struct CompatibleSets { 2422 using SetTy = SmallVector<InvokeInst *, 2>; 2423 2424 SmallVector<SetTy, 1> Sets; 2425 2426 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2427 2428 SetTy &getCompatibleSet(InvokeInst *II); 2429 2430 void insert(InvokeInst *II); 2431 }; 2432 2433 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2434 // Perform a linear scan over all the existing sets, see if the new `invoke` 2435 // is compatible with any particular set. Since we know that all the `invokes` 2436 // within a set are compatible, only check the first `invoke` in each set. 2437 // WARNING: at worst, this has quadratic complexity. 2438 for (CompatibleSets::SetTy &Set : Sets) { 2439 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2440 return Set; 2441 } 2442 2443 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2444 return Sets.emplace_back(); 2445 } 2446 2447 void CompatibleSets::insert(InvokeInst *II) { 2448 getCompatibleSet(II).emplace_back(II); 2449 } 2450 2451 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2452 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2453 2454 // Can we theoretically merge these `invoke`s? 2455 auto IsIllegalToMerge = [](InvokeInst *II) { 2456 return II->cannotMerge() || II->isInlineAsm(); 2457 }; 2458 if (any_of(Invokes, IsIllegalToMerge)) 2459 return false; 2460 2461 // Either both `invoke`s must be direct, 2462 // or both `invoke`s must be indirect. 2463 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2464 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2465 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2466 if (HaveIndirectCalls) { 2467 if (!AllCallsAreIndirect) 2468 return false; 2469 } else { 2470 // All callees must be identical. 2471 Value *Callee = nullptr; 2472 for (InvokeInst *II : Invokes) { 2473 Value *CurrCallee = II->getCalledOperand(); 2474 assert(CurrCallee && "There is always a called operand."); 2475 if (!Callee) 2476 Callee = CurrCallee; 2477 else if (Callee != CurrCallee) 2478 return false; 2479 } 2480 } 2481 2482 // Either both `invoke`s must not have a normal destination, 2483 // or both `invoke`s must have a normal destination, 2484 auto HasNormalDest = [](InvokeInst *II) { 2485 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2486 }; 2487 if (any_of(Invokes, HasNormalDest)) { 2488 // Do not merge `invoke` that does not have a normal destination with one 2489 // that does have a normal destination, even though doing so would be legal. 2490 if (!all_of(Invokes, HasNormalDest)) 2491 return false; 2492 2493 // All normal destinations must be identical. 2494 BasicBlock *NormalBB = nullptr; 2495 for (InvokeInst *II : Invokes) { 2496 BasicBlock *CurrNormalBB = II->getNormalDest(); 2497 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2498 if (!NormalBB) 2499 NormalBB = CurrNormalBB; 2500 else if (NormalBB != CurrNormalBB) 2501 return false; 2502 } 2503 2504 // In the normal destination, the incoming values for these two `invoke`s 2505 // must be compatible. 2506 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2507 if (!IncomingValuesAreCompatible( 2508 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2509 &EquivalenceSet)) 2510 return false; 2511 } 2512 2513 #ifndef NDEBUG 2514 // All unwind destinations must be identical. 2515 // We know that because we have started from said unwind destination. 2516 BasicBlock *UnwindBB = nullptr; 2517 for (InvokeInst *II : Invokes) { 2518 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2519 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2520 if (!UnwindBB) 2521 UnwindBB = CurrUnwindBB; 2522 else 2523 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2524 } 2525 #endif 2526 2527 // In the unwind destination, the incoming values for these two `invoke`s 2528 // must be compatible. 2529 if (!IncomingValuesAreCompatible( 2530 Invokes.front()->getUnwindDest(), 2531 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2532 return false; 2533 2534 // Ignoring arguments, these `invoke`s must be identical, 2535 // including operand bundles. 2536 const InvokeInst *II0 = Invokes.front(); 2537 for (auto *II : Invokes.drop_front()) 2538 if (!II->isSameOperationAs(II0)) 2539 return false; 2540 2541 // Can we theoretically form the data operands for the merged `invoke`? 2542 auto IsIllegalToMergeArguments = [](auto Ops) { 2543 Use &U0 = std::get<0>(Ops); 2544 Use &U1 = std::get<1>(Ops); 2545 if (U0 == U1) 2546 return false; 2547 return U0->getType()->isTokenTy() || 2548 !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()), 2549 U0.getOperandNo()); 2550 }; 2551 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2552 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2553 IsIllegalToMergeArguments)) 2554 return false; 2555 2556 return true; 2557 } 2558 2559 } // namespace 2560 2561 // Merge all invokes in the provided set, all of which are compatible 2562 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2563 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2564 DomTreeUpdater *DTU) { 2565 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2566 2567 SmallVector<DominatorTree::UpdateType, 8> Updates; 2568 if (DTU) 2569 Updates.reserve(2 + 3 * Invokes.size()); 2570 2571 bool HasNormalDest = 2572 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2573 2574 // Clone one of the invokes into a new basic block. 2575 // Since they are all compatible, it doesn't matter which invoke is cloned. 2576 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2577 InvokeInst *II0 = Invokes.front(); 2578 BasicBlock *II0BB = II0->getParent(); 2579 BasicBlock *InsertBeforeBlock = 2580 II0->getParent()->getIterator()->getNextNode(); 2581 Function *Func = II0BB->getParent(); 2582 LLVMContext &Ctx = II0->getContext(); 2583 2584 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2585 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2586 2587 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2588 // NOTE: all invokes have the same attributes, so no handling needed. 2589 MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end()); 2590 2591 if (!HasNormalDest) { 2592 // This set does not have a normal destination, 2593 // so just form a new block with unreachable terminator. 2594 BasicBlock *MergedNormalDest = BasicBlock::Create( 2595 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2596 new UnreachableInst(Ctx, MergedNormalDest); 2597 MergedInvoke->setNormalDest(MergedNormalDest); 2598 } 2599 2600 // The unwind destination, however, remainds identical for all invokes here. 2601 2602 return MergedInvoke; 2603 }(); 2604 2605 if (DTU) { 2606 // Predecessor blocks that contained these invokes will now branch to 2607 // the new block that contains the merged invoke, ... 2608 for (InvokeInst *II : Invokes) 2609 Updates.push_back( 2610 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2611 2612 // ... which has the new `unreachable` block as normal destination, 2613 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2614 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2615 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2616 SuccBBOfMergedInvoke}); 2617 2618 // Since predecessor blocks now unconditionally branch to a new block, 2619 // they no longer branch to their original successors. 2620 for (InvokeInst *II : Invokes) 2621 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2622 Updates.push_back( 2623 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2624 } 2625 2626 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2627 2628 // Form the merged operands for the merged invoke. 2629 for (Use &U : MergedInvoke->operands()) { 2630 // Only PHI together the indirect callees and data operands. 2631 if (MergedInvoke->isCallee(&U)) { 2632 if (!IsIndirectCall) 2633 continue; 2634 } else if (!MergedInvoke->isDataOperand(&U)) 2635 continue; 2636 2637 // Don't create trivial PHI's with all-identical incoming values. 2638 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2639 return II->getOperand(U.getOperandNo()) != U.get(); 2640 }); 2641 if (!NeedPHI) 2642 continue; 2643 2644 // Form a PHI out of all the data ops under this index. 2645 PHINode *PN = PHINode::Create( 2646 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke); 2647 for (InvokeInst *II : Invokes) 2648 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2649 2650 U.set(PN); 2651 } 2652 2653 // We've ensured that each PHI node has compatible (identical) incoming values 2654 // when coming from each of the `invoke`s in the current merge set, 2655 // so update the PHI nodes accordingly. 2656 for (BasicBlock *Succ : successors(MergedInvoke)) 2657 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2658 /*ExistPred=*/Invokes.front()->getParent()); 2659 2660 // And finally, replace the original `invoke`s with an unconditional branch 2661 // to the block with the merged `invoke`. Also, give that merged `invoke` 2662 // the merged debugloc of all the original `invoke`s. 2663 DILocation *MergedDebugLoc = nullptr; 2664 for (InvokeInst *II : Invokes) { 2665 // Compute the debug location common to all the original `invoke`s. 2666 if (!MergedDebugLoc) 2667 MergedDebugLoc = II->getDebugLoc(); 2668 else 2669 MergedDebugLoc = 2670 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2671 2672 // And replace the old `invoke` with an unconditionally branch 2673 // to the block with the merged `invoke`. 2674 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2675 OrigSuccBB->removePredecessor(II->getParent()); 2676 BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2677 II->replaceAllUsesWith(MergedInvoke); 2678 II->eraseFromParent(); 2679 ++NumInvokesMerged; 2680 } 2681 MergedInvoke->setDebugLoc(MergedDebugLoc); 2682 ++NumInvokeSetsFormed; 2683 2684 if (DTU) 2685 DTU->applyUpdates(Updates); 2686 } 2687 2688 /// If this block is a `landingpad` exception handling block, categorize all 2689 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2690 /// being "mergeable" together, and then merge invokes in each set together. 2691 /// 2692 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2693 /// [...] [...] 2694 /// | | 2695 /// [invoke0] [invoke1] 2696 /// / \ / \ 2697 /// [cont0] [landingpad] [cont1] 2698 /// to: 2699 /// [...] [...] 2700 /// \ / 2701 /// [invoke] 2702 /// / \ 2703 /// [cont] [landingpad] 2704 /// 2705 /// But of course we can only do that if the invokes share the `landingpad`, 2706 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2707 /// and the invoked functions are "compatible". 2708 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2709 if (!EnableMergeCompatibleInvokes) 2710 return false; 2711 2712 bool Changed = false; 2713 2714 // FIXME: generalize to all exception handling blocks? 2715 if (!BB->isLandingPad()) 2716 return Changed; 2717 2718 CompatibleSets Grouper; 2719 2720 // Record all the predecessors of this `landingpad`. As per verifier, 2721 // the only allowed predecessor is the unwind edge of an `invoke`. 2722 // We want to group "compatible" `invokes` into the same set to be merged. 2723 for (BasicBlock *PredBB : predecessors(BB)) 2724 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 2725 2726 // And now, merge `invoke`s that were grouped togeter. 2727 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 2728 if (Invokes.size() < 2) 2729 continue; 2730 Changed = true; 2731 MergeCompatibleInvokesImpl(Invokes, DTU); 2732 } 2733 2734 return Changed; 2735 } 2736 2737 namespace { 2738 /// Track ephemeral values, which should be ignored for cost-modelling 2739 /// purposes. Requires walking instructions in reverse order. 2740 class EphemeralValueTracker { 2741 SmallPtrSet<const Instruction *, 32> EphValues; 2742 2743 bool isEphemeral(const Instruction *I) { 2744 if (isa<AssumeInst>(I)) 2745 return true; 2746 return !I->mayHaveSideEffects() && !I->isTerminator() && 2747 all_of(I->users(), [&](const User *U) { 2748 return EphValues.count(cast<Instruction>(U)); 2749 }); 2750 } 2751 2752 public: 2753 bool track(const Instruction *I) { 2754 if (isEphemeral(I)) { 2755 EphValues.insert(I); 2756 return true; 2757 } 2758 return false; 2759 } 2760 2761 bool contains(const Instruction *I) const { return EphValues.contains(I); } 2762 }; 2763 } // namespace 2764 2765 /// Determine if we can hoist sink a sole store instruction out of a 2766 /// conditional block. 2767 /// 2768 /// We are looking for code like the following: 2769 /// BrBB: 2770 /// store i32 %add, i32* %arrayidx2 2771 /// ... // No other stores or function calls (we could be calling a memory 2772 /// ... // function). 2773 /// %cmp = icmp ult %x, %y 2774 /// br i1 %cmp, label %EndBB, label %ThenBB 2775 /// ThenBB: 2776 /// store i32 %add5, i32* %arrayidx2 2777 /// br label EndBB 2778 /// EndBB: 2779 /// ... 2780 /// We are going to transform this into: 2781 /// BrBB: 2782 /// store i32 %add, i32* %arrayidx2 2783 /// ... // 2784 /// %cmp = icmp ult %x, %y 2785 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2786 /// store i32 %add.add5, i32* %arrayidx2 2787 /// ... 2788 /// 2789 /// \return The pointer to the value of the previous store if the store can be 2790 /// hoisted into the predecessor block. 0 otherwise. 2791 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2792 BasicBlock *StoreBB, BasicBlock *EndBB) { 2793 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2794 if (!StoreToHoist) 2795 return nullptr; 2796 2797 // Volatile or atomic. 2798 if (!StoreToHoist->isSimple()) 2799 return nullptr; 2800 2801 Value *StorePtr = StoreToHoist->getPointerOperand(); 2802 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 2803 2804 // Look for a store to the same pointer in BrBB. 2805 unsigned MaxNumInstToLookAt = 9; 2806 // Skip pseudo probe intrinsic calls which are not really killing any memory 2807 // accesses. 2808 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2809 if (!MaxNumInstToLookAt) 2810 break; 2811 --MaxNumInstToLookAt; 2812 2813 // Could be calling an instruction that affects memory like free(). 2814 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 2815 return nullptr; 2816 2817 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2818 // Found the previous store to same location and type. Make sure it is 2819 // simple, to avoid introducing a spurious non-atomic write after an 2820 // atomic write. 2821 if (SI->getPointerOperand() == StorePtr && 2822 SI->getValueOperand()->getType() == StoreTy && SI->isSimple()) 2823 // Found the previous store, return its value operand. 2824 return SI->getValueOperand(); 2825 return nullptr; // Unknown store. 2826 } 2827 2828 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 2829 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 2830 LI->isSimple()) { 2831 // Local objects (created by an `alloca` instruction) are always 2832 // writable, so once we are past a read from a location it is valid to 2833 // also write to that same location. 2834 // If the address of the local object never escapes the function, that 2835 // means it's never concurrently read or written, hence moving the store 2836 // from under the condition will not introduce a data race. 2837 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr)); 2838 if (AI && !PointerMayBeCaptured(AI, false, true)) 2839 // Found a previous load, return it. 2840 return LI; 2841 } 2842 // The load didn't work out, but we may still find a store. 2843 } 2844 } 2845 2846 return nullptr; 2847 } 2848 2849 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2850 /// converted to selects. 2851 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2852 BasicBlock *EndBB, 2853 unsigned &SpeculatedInstructions, 2854 InstructionCost &Cost, 2855 const TargetTransformInfo &TTI) { 2856 TargetTransformInfo::TargetCostKind CostKind = 2857 BB->getParent()->hasMinSize() 2858 ? TargetTransformInfo::TCK_CodeSize 2859 : TargetTransformInfo::TCK_SizeAndLatency; 2860 2861 bool HaveRewritablePHIs = false; 2862 for (PHINode &PN : EndBB->phis()) { 2863 Value *OrigV = PN.getIncomingValueForBlock(BB); 2864 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2865 2866 // FIXME: Try to remove some of the duplication with 2867 // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial. 2868 if (ThenV == OrigV) 2869 continue; 2870 2871 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2872 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2873 2874 // Don't convert to selects if we could remove undefined behavior instead. 2875 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2876 passingValueIsAlwaysUndefined(ThenV, &PN)) 2877 return false; 2878 2879 HaveRewritablePHIs = true; 2880 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2881 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2882 if (!OrigCE && !ThenCE) 2883 continue; // Known cheap (FIXME: Maybe not true for aggregates). 2884 2885 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2886 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2887 InstructionCost MaxCost = 2888 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2889 if (OrigCost + ThenCost > MaxCost) 2890 return false; 2891 2892 // Account for the cost of an unfolded ConstantExpr which could end up 2893 // getting expanded into Instructions. 2894 // FIXME: This doesn't account for how many operations are combined in the 2895 // constant expression. 2896 ++SpeculatedInstructions; 2897 if (SpeculatedInstructions > 1) 2898 return false; 2899 } 2900 2901 return HaveRewritablePHIs; 2902 } 2903 2904 /// Speculate a conditional basic block flattening the CFG. 2905 /// 2906 /// Note that this is a very risky transform currently. Speculating 2907 /// instructions like this is most often not desirable. Instead, there is an MI 2908 /// pass which can do it with full awareness of the resource constraints. 2909 /// However, some cases are "obvious" and we should do directly. An example of 2910 /// this is speculating a single, reasonably cheap instruction. 2911 /// 2912 /// There is only one distinct advantage to flattening the CFG at the IR level: 2913 /// it makes very common but simplistic optimizations such as are common in 2914 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2915 /// modeling their effects with easier to reason about SSA value graphs. 2916 /// 2917 /// 2918 /// An illustration of this transform is turning this IR: 2919 /// \code 2920 /// BB: 2921 /// %cmp = icmp ult %x, %y 2922 /// br i1 %cmp, label %EndBB, label %ThenBB 2923 /// ThenBB: 2924 /// %sub = sub %x, %y 2925 /// br label BB2 2926 /// EndBB: 2927 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2928 /// ... 2929 /// \endcode 2930 /// 2931 /// Into this IR: 2932 /// \code 2933 /// BB: 2934 /// %cmp = icmp ult %x, %y 2935 /// %sub = sub %x, %y 2936 /// %cond = select i1 %cmp, 0, %sub 2937 /// ... 2938 /// \endcode 2939 /// 2940 /// \returns true if the conditional block is removed. 2941 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, 2942 BasicBlock *ThenBB) { 2943 if (!Options.SpeculateBlocks) 2944 return false; 2945 2946 // Be conservative for now. FP select instruction can often be expensive. 2947 Value *BrCond = BI->getCondition(); 2948 if (isa<FCmpInst>(BrCond)) 2949 return false; 2950 2951 BasicBlock *BB = BI->getParent(); 2952 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2953 InstructionCost Budget = 2954 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2955 2956 // If ThenBB is actually on the false edge of the conditional branch, remember 2957 // to swap the select operands later. 2958 bool Invert = false; 2959 if (ThenBB != BI->getSuccessor(0)) { 2960 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2961 Invert = true; 2962 } 2963 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2964 2965 // If the branch is non-unpredictable, and is predicted to *not* branch to 2966 // the `then` block, then avoid speculating it. 2967 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) { 2968 uint64_t TWeight, FWeight; 2969 if (extractBranchWeights(*BI, TWeight, FWeight) && 2970 (TWeight + FWeight) != 0) { 2971 uint64_t EndWeight = Invert ? TWeight : FWeight; 2972 BranchProbability BIEndProb = 2973 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 2974 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 2975 if (BIEndProb >= Likely) 2976 return false; 2977 } 2978 } 2979 2980 // Keep a count of how many times instructions are used within ThenBB when 2981 // they are candidates for sinking into ThenBB. Specifically: 2982 // - They are defined in BB, and 2983 // - They have no side effects, and 2984 // - All of their uses are in ThenBB. 2985 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2986 2987 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2988 2989 unsigned SpeculatedInstructions = 0; 2990 Value *SpeculatedStoreValue = nullptr; 2991 StoreInst *SpeculatedStore = nullptr; 2992 EphemeralValueTracker EphTracker; 2993 for (Instruction &I : reverse(drop_end(*ThenBB))) { 2994 // Skip debug info. 2995 if (isa<DbgInfoIntrinsic>(I)) { 2996 SpeculatedDbgIntrinsics.push_back(&I); 2997 continue; 2998 } 2999 3000 // Skip pseudo probes. The consequence is we lose track of the branch 3001 // probability for ThenBB, which is fine since the optimization here takes 3002 // place regardless of the branch probability. 3003 if (isa<PseudoProbeInst>(I)) { 3004 // The probe should be deleted so that it will not be over-counted when 3005 // the samples collected on the non-conditional path are counted towards 3006 // the conditional path. We leave it for the counts inference algorithm to 3007 // figure out a proper count for an unknown probe. 3008 SpeculatedDbgIntrinsics.push_back(&I); 3009 continue; 3010 } 3011 3012 // Ignore ephemeral values, they will be dropped by the transform. 3013 if (EphTracker.track(&I)) 3014 continue; 3015 3016 // Only speculatively execute a single instruction (not counting the 3017 // terminator) for now. 3018 ++SpeculatedInstructions; 3019 if (SpeculatedInstructions > 1) 3020 return false; 3021 3022 // Don't hoist the instruction if it's unsafe or expensive. 3023 if (!isSafeToSpeculativelyExecute(&I) && 3024 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 3025 &I, BB, ThenBB, EndBB)))) 3026 return false; 3027 if (!SpeculatedStoreValue && 3028 computeSpeculationCost(&I, TTI) > 3029 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 3030 return false; 3031 3032 // Store the store speculation candidate. 3033 if (SpeculatedStoreValue) 3034 SpeculatedStore = cast<StoreInst>(&I); 3035 3036 // Do not hoist the instruction if any of its operands are defined but not 3037 // used in BB. The transformation will prevent the operand from 3038 // being sunk into the use block. 3039 for (Use &Op : I.operands()) { 3040 Instruction *OpI = dyn_cast<Instruction>(Op); 3041 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 3042 continue; // Not a candidate for sinking. 3043 3044 ++SinkCandidateUseCounts[OpI]; 3045 } 3046 } 3047 3048 // Consider any sink candidates which are only used in ThenBB as costs for 3049 // speculation. Note, while we iterate over a DenseMap here, we are summing 3050 // and so iteration order isn't significant. 3051 for (const auto &[Inst, Count] : SinkCandidateUseCounts) 3052 if (Inst->hasNUses(Count)) { 3053 ++SpeculatedInstructions; 3054 if (SpeculatedInstructions > 1) 3055 return false; 3056 } 3057 3058 // Check that we can insert the selects and that it's not too expensive to do 3059 // so. 3060 bool Convert = SpeculatedStore != nullptr; 3061 InstructionCost Cost = 0; 3062 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 3063 SpeculatedInstructions, 3064 Cost, TTI); 3065 if (!Convert || Cost > Budget) 3066 return false; 3067 3068 // If we get here, we can hoist the instruction and if-convert. 3069 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 3070 3071 // Insert a select of the value of the speculated store. 3072 if (SpeculatedStoreValue) { 3073 IRBuilder<NoFolder> Builder(BI); 3074 Value *OrigV = SpeculatedStore->getValueOperand(); 3075 Value *TrueV = SpeculatedStore->getValueOperand(); 3076 Value *FalseV = SpeculatedStoreValue; 3077 if (Invert) 3078 std::swap(TrueV, FalseV); 3079 Value *S = Builder.CreateSelect( 3080 BrCond, TrueV, FalseV, "spec.store.select", BI); 3081 SpeculatedStore->setOperand(0, S); 3082 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 3083 SpeculatedStore->getDebugLoc()); 3084 // The value stored is still conditional, but the store itself is now 3085 // unconditonally executed, so we must be sure that any linked dbg.assign 3086 // intrinsics are tracking the new stored value (the result of the 3087 // select). If we don't, and the store were to be removed by another pass 3088 // (e.g. DSE), then we'd eventually end up emitting a location describing 3089 // the conditional value, unconditionally. 3090 // 3091 // === Before this transformation === 3092 // pred: 3093 // store %one, %x.dest, !DIAssignID !1 3094 // dbg.assign %one, "x", ..., !1, ... 3095 // br %cond if.then 3096 // 3097 // if.then: 3098 // store %two, %x.dest, !DIAssignID !2 3099 // dbg.assign %two, "x", ..., !2, ... 3100 // 3101 // === After this transformation === 3102 // pred: 3103 // store %one, %x.dest, !DIAssignID !1 3104 // dbg.assign %one, "x", ..., !1 3105 /// ... 3106 // %merge = select %cond, %two, %one 3107 // store %merge, %x.dest, !DIAssignID !2 3108 // dbg.assign %merge, "x", ..., !2 3109 auto replaceVariable = [OrigV, S](auto *DbgAssign) { 3110 if (llvm::is_contained(DbgAssign->location_ops(), OrigV)) 3111 DbgAssign->replaceVariableLocationOp(OrigV, S); 3112 }; 3113 for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable); 3114 for_each(at::getDPVAssignmentMarkers(SpeculatedStore), replaceVariable); 3115 } 3116 3117 // Metadata can be dependent on the condition we are hoisting above. 3118 // Strip all UB-implying metadata on the instruction. Drop the debug loc 3119 // to avoid making it appear as if the condition is a constant, which would 3120 // be misleading while debugging. 3121 // Similarly strip attributes that maybe dependent on condition we are 3122 // hoisting above. 3123 for (auto &I : make_early_inc_range(*ThenBB)) { 3124 if (!SpeculatedStoreValue || &I != SpeculatedStore) { 3125 // Don't update the DILocation of dbg.assign intrinsics. 3126 if (!isa<DbgAssignIntrinsic>(&I)) 3127 I.setDebugLoc(DebugLoc()); 3128 } 3129 I.dropUBImplyingAttrsAndMetadata(); 3130 3131 // Drop ephemeral values. 3132 if (EphTracker.contains(&I)) { 3133 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 3134 I.eraseFromParent(); 3135 } 3136 } 3137 3138 // Hoist the instructions. 3139 // In "RemoveDIs" non-instr debug-info mode, drop DPValues attached to these 3140 // instructions, in the same way that dbg.value intrinsics are dropped at the 3141 // end of this block. 3142 for (auto &It : make_range(ThenBB->begin(), ThenBB->end())) 3143 for (DPValue &DPV : make_early_inc_range(It.getDbgValueRange())) 3144 if (!DPV.isDbgAssign()) 3145 It.dropOneDbgValue(&DPV); 3146 BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(), 3147 std::prev(ThenBB->end())); 3148 3149 // Insert selects and rewrite the PHI operands. 3150 IRBuilder<NoFolder> Builder(BI); 3151 for (PHINode &PN : EndBB->phis()) { 3152 unsigned OrigI = PN.getBasicBlockIndex(BB); 3153 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 3154 Value *OrigV = PN.getIncomingValue(OrigI); 3155 Value *ThenV = PN.getIncomingValue(ThenI); 3156 3157 // Skip PHIs which are trivial. 3158 if (OrigV == ThenV) 3159 continue; 3160 3161 // Create a select whose true value is the speculatively executed value and 3162 // false value is the pre-existing value. Swap them if the branch 3163 // destinations were inverted. 3164 Value *TrueV = ThenV, *FalseV = OrigV; 3165 if (Invert) 3166 std::swap(TrueV, FalseV); 3167 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 3168 PN.setIncomingValue(OrigI, V); 3169 PN.setIncomingValue(ThenI, V); 3170 } 3171 3172 // Remove speculated dbg intrinsics. 3173 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 3174 // dbg value for the different flows and inserting it after the select. 3175 for (Instruction *I : SpeculatedDbgIntrinsics) { 3176 // We still want to know that an assignment took place so don't remove 3177 // dbg.assign intrinsics. 3178 if (!isa<DbgAssignIntrinsic>(I)) 3179 I->eraseFromParent(); 3180 } 3181 3182 ++NumSpeculations; 3183 return true; 3184 } 3185 3186 /// Return true if we can thread a branch across this block. 3187 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 3188 int Size = 0; 3189 EphemeralValueTracker EphTracker; 3190 3191 // Walk the loop in reverse so that we can identify ephemeral values properly 3192 // (values only feeding assumes). 3193 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 3194 // Can't fold blocks that contain noduplicate or convergent calls. 3195 if (CallInst *CI = dyn_cast<CallInst>(&I)) 3196 if (CI->cannotDuplicate() || CI->isConvergent()) 3197 return false; 3198 3199 // Ignore ephemeral values which are deleted during codegen. 3200 // We will delete Phis while threading, so Phis should not be accounted in 3201 // block's size. 3202 if (!EphTracker.track(&I) && !isa<PHINode>(I)) { 3203 if (Size++ > MaxSmallBlockSize) 3204 return false; // Don't clone large BB's. 3205 } 3206 3207 // We can only support instructions that do not define values that are 3208 // live outside of the current basic block. 3209 for (User *U : I.users()) { 3210 Instruction *UI = cast<Instruction>(U); 3211 if (UI->getParent() != BB || isa<PHINode>(UI)) 3212 return false; 3213 } 3214 3215 // Looks ok, continue checking. 3216 } 3217 3218 return true; 3219 } 3220 3221 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From, 3222 BasicBlock *To) { 3223 // Don't look past the block defining the value, we might get the value from 3224 // a previous loop iteration. 3225 auto *I = dyn_cast<Instruction>(V); 3226 if (I && I->getParent() == To) 3227 return nullptr; 3228 3229 // We know the value if the From block branches on it. 3230 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 3231 if (BI && BI->isConditional() && BI->getCondition() == V && 3232 BI->getSuccessor(0) != BI->getSuccessor(1)) 3233 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext()) 3234 : ConstantInt::getFalse(BI->getContext()); 3235 3236 return nullptr; 3237 } 3238 3239 /// If we have a conditional branch on something for which we know the constant 3240 /// value in predecessors (e.g. a phi node in the current block), thread edges 3241 /// from the predecessor to their ultimate destination. 3242 static std::optional<bool> 3243 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU, 3244 const DataLayout &DL, 3245 AssumptionCache *AC) { 3246 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues; 3247 BasicBlock *BB = BI->getParent(); 3248 Value *Cond = BI->getCondition(); 3249 PHINode *PN = dyn_cast<PHINode>(Cond); 3250 if (PN && PN->getParent() == BB) { 3251 // Degenerate case of a single entry PHI. 3252 if (PN->getNumIncomingValues() == 1) { 3253 FoldSingleEntryPHINodes(PN->getParent()); 3254 return true; 3255 } 3256 3257 for (Use &U : PN->incoming_values()) 3258 if (auto *CB = dyn_cast<ConstantInt>(U)) 3259 KnownValues[CB].insert(PN->getIncomingBlock(U)); 3260 } else { 3261 for (BasicBlock *Pred : predecessors(BB)) { 3262 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB)) 3263 KnownValues[CB].insert(Pred); 3264 } 3265 } 3266 3267 if (KnownValues.empty()) 3268 return false; 3269 3270 // Now we know that this block has multiple preds and two succs. 3271 // Check that the block is small enough and values defined in the block are 3272 // not used outside of it. 3273 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 3274 return false; 3275 3276 for (const auto &Pair : KnownValues) { 3277 // Okay, we now know that all edges from PredBB should be revectored to 3278 // branch to RealDest. 3279 ConstantInt *CB = Pair.first; 3280 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef(); 3281 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3282 3283 if (RealDest == BB) 3284 continue; // Skip self loops. 3285 3286 // Skip if the predecessor's terminator is an indirect branch. 3287 if (any_of(PredBBs, [](BasicBlock *PredBB) { 3288 return isa<IndirectBrInst>(PredBB->getTerminator()); 3289 })) 3290 continue; 3291 3292 LLVM_DEBUG({ 3293 dbgs() << "Condition " << *Cond << " in " << BB->getName() 3294 << " has value " << *Pair.first << " in predecessors:\n"; 3295 for (const BasicBlock *PredBB : Pair.second) 3296 dbgs() << " " << PredBB->getName() << "\n"; 3297 dbgs() << "Threading to destination " << RealDest->getName() << ".\n"; 3298 }); 3299 3300 // Split the predecessors we are threading into a new edge block. We'll 3301 // clone the instructions into this block, and then redirect it to RealDest. 3302 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU); 3303 3304 // TODO: These just exist to reduce test diff, we can drop them if we like. 3305 EdgeBB->setName(RealDest->getName() + ".critedge"); 3306 EdgeBB->moveBefore(RealDest); 3307 3308 // Update PHI nodes. 3309 AddPredecessorToBlock(RealDest, EdgeBB, BB); 3310 3311 // BB may have instructions that are being threaded over. Clone these 3312 // instructions into EdgeBB. We know that there will be no uses of the 3313 // cloned instructions outside of EdgeBB. 3314 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt(); 3315 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3316 TranslateMap[Cond] = CB; 3317 3318 // RemoveDIs: track instructions that we optimise away while folding, so 3319 // that we can copy DPValues from them later. 3320 BasicBlock::iterator SrcDbgCursor = BB->begin(); 3321 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3322 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3323 TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB); 3324 continue; 3325 } 3326 // Clone the instruction. 3327 Instruction *N = BBI->clone(); 3328 // Insert the new instruction into its new home. 3329 N->insertInto(EdgeBB, InsertPt); 3330 3331 if (BBI->hasName()) 3332 N->setName(BBI->getName() + ".c"); 3333 3334 // Update operands due to translation. 3335 for (Use &Op : N->operands()) { 3336 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3337 if (PI != TranslateMap.end()) 3338 Op = PI->second; 3339 } 3340 3341 // Check for trivial simplification. 3342 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3343 if (!BBI->use_empty()) 3344 TranslateMap[&*BBI] = V; 3345 if (!N->mayHaveSideEffects()) { 3346 N->eraseFromParent(); // Instruction folded away, don't need actual 3347 // inst 3348 N = nullptr; 3349 } 3350 } else { 3351 if (!BBI->use_empty()) 3352 TranslateMap[&*BBI] = N; 3353 } 3354 if (N) { 3355 // Copy all debug-info attached to instructions from the last we 3356 // successfully clone, up to this instruction (they might have been 3357 // folded away). 3358 for (; SrcDbgCursor != BBI; ++SrcDbgCursor) 3359 N->cloneDebugInfoFrom(&*SrcDbgCursor); 3360 SrcDbgCursor = std::next(BBI); 3361 // Clone debug-info on this instruction too. 3362 N->cloneDebugInfoFrom(&*BBI); 3363 3364 // Register the new instruction with the assumption cache if necessary. 3365 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3366 if (AC) 3367 AC->registerAssumption(Assume); 3368 } 3369 } 3370 3371 for (; &*SrcDbgCursor != BI; ++SrcDbgCursor) 3372 InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor); 3373 InsertPt->cloneDebugInfoFrom(BI); 3374 3375 BB->removePredecessor(EdgeBB); 3376 BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator()); 3377 EdgeBI->setSuccessor(0, RealDest); 3378 EdgeBI->setDebugLoc(BI->getDebugLoc()); 3379 3380 if (DTU) { 3381 SmallVector<DominatorTree::UpdateType, 2> Updates; 3382 Updates.push_back({DominatorTree::Delete, EdgeBB, BB}); 3383 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3384 DTU->applyUpdates(Updates); 3385 } 3386 3387 // For simplicity, we created a separate basic block for the edge. Merge 3388 // it back into the predecessor if possible. This not only avoids 3389 // unnecessary SimplifyCFG iterations, but also makes sure that we don't 3390 // bypass the check for trivial cycles above. 3391 MergeBlockIntoPredecessor(EdgeBB, DTU); 3392 3393 // Signal repeat, simplifying any other constants. 3394 return std::nullopt; 3395 } 3396 3397 return false; 3398 } 3399 3400 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI, 3401 DomTreeUpdater *DTU, 3402 const DataLayout &DL, 3403 AssumptionCache *AC) { 3404 std::optional<bool> Result; 3405 bool EverChanged = false; 3406 do { 3407 // Note that None means "we changed things, but recurse further." 3408 Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC); 3409 EverChanged |= Result == std::nullopt || *Result; 3410 } while (Result == std::nullopt); 3411 return EverChanged; 3412 } 3413 3414 /// Given a BB that starts with the specified two-entry PHI node, 3415 /// see if we can eliminate it. 3416 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3417 DomTreeUpdater *DTU, const DataLayout &DL) { 3418 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3419 // statement", which has a very simple dominance structure. Basically, we 3420 // are trying to find the condition that is being branched on, which 3421 // subsequently causes this merge to happen. We really want control 3422 // dependence information for this check, but simplifycfg can't keep it up 3423 // to date, and this catches most of the cases we care about anyway. 3424 BasicBlock *BB = PN->getParent(); 3425 3426 BasicBlock *IfTrue, *IfFalse; 3427 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3428 if (!DomBI) 3429 return false; 3430 Value *IfCond = DomBI->getCondition(); 3431 // Don't bother if the branch will be constant folded trivially. 3432 if (isa<ConstantInt>(IfCond)) 3433 return false; 3434 3435 BasicBlock *DomBlock = DomBI->getParent(); 3436 SmallVector<BasicBlock *, 2> IfBlocks; 3437 llvm::copy_if( 3438 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3439 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3440 }); 3441 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3442 "Will have either one or two blocks to speculate."); 3443 3444 // If the branch is non-unpredictable, see if we either predictably jump to 3445 // the merge bb (if we have only a single 'then' block), or if we predictably 3446 // jump to one specific 'then' block (if we have two of them). 3447 // It isn't beneficial to speculatively execute the code 3448 // from the block that we know is predictably not entered. 3449 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) { 3450 uint64_t TWeight, FWeight; 3451 if (extractBranchWeights(*DomBI, TWeight, FWeight) && 3452 (TWeight + FWeight) != 0) { 3453 BranchProbability BITrueProb = 3454 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3455 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3456 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3457 if (IfBlocks.size() == 1) { 3458 BranchProbability BIBBProb = 3459 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3460 if (BIBBProb >= Likely) 3461 return false; 3462 } else { 3463 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3464 return false; 3465 } 3466 } 3467 } 3468 3469 // Don't try to fold an unreachable block. For example, the phi node itself 3470 // can't be the candidate if-condition for a select that we want to form. 3471 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3472 if (IfCondPhiInst->getParent() == BB) 3473 return false; 3474 3475 // Okay, we found that we can merge this two-entry phi node into a select. 3476 // Doing so would require us to fold *all* two entry phi nodes in this block. 3477 // At some point this becomes non-profitable (particularly if the target 3478 // doesn't support cmov's). Only do this transformation if there are two or 3479 // fewer PHI nodes in this block. 3480 unsigned NumPhis = 0; 3481 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3482 if (NumPhis > 2) 3483 return false; 3484 3485 // Loop over the PHI's seeing if we can promote them all to select 3486 // instructions. While we are at it, keep track of the instructions 3487 // that need to be moved to the dominating block. 3488 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3489 InstructionCost Cost = 0; 3490 InstructionCost Budget = 3491 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3492 3493 bool Changed = false; 3494 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3495 PHINode *PN = cast<PHINode>(II++); 3496 if (Value *V = simplifyInstruction(PN, {DL, PN})) { 3497 PN->replaceAllUsesWith(V); 3498 PN->eraseFromParent(); 3499 Changed = true; 3500 continue; 3501 } 3502 3503 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 3504 Cost, Budget, TTI) || 3505 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 3506 Cost, Budget, TTI)) 3507 return Changed; 3508 } 3509 3510 // If we folded the first phi, PN dangles at this point. Refresh it. If 3511 // we ran out of PHIs then we simplified them all. 3512 PN = dyn_cast<PHINode>(BB->begin()); 3513 if (!PN) 3514 return true; 3515 3516 // Return true if at least one of these is a 'not', and another is either 3517 // a 'not' too, or a constant. 3518 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3519 if (!match(V0, m_Not(m_Value()))) 3520 std::swap(V0, V1); 3521 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3522 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3523 }; 3524 3525 // Don't fold i1 branches on PHIs which contain binary operators or 3526 // (possibly inverted) select form of or/ands, unless one of 3527 // the incoming values is an 'not' and another one is freely invertible. 3528 // These can often be turned into switches and other things. 3529 auto IsBinOpOrAnd = [](Value *V) { 3530 return match( 3531 V, m_CombineOr( 3532 m_BinOp(), 3533 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 3534 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 3535 }; 3536 if (PN->getType()->isIntegerTy(1) && 3537 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3538 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3539 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3540 PN->getIncomingValue(1))) 3541 return Changed; 3542 3543 // If all PHI nodes are promotable, check to make sure that all instructions 3544 // in the predecessor blocks can be promoted as well. If not, we won't be able 3545 // to get rid of the control flow, so it's not worth promoting to select 3546 // instructions. 3547 for (BasicBlock *IfBlock : IfBlocks) 3548 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3549 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3550 // This is not an aggressive instruction that we can promote. 3551 // Because of this, we won't be able to get rid of the control flow, so 3552 // the xform is not worth it. 3553 return Changed; 3554 } 3555 3556 // If either of the blocks has it's address taken, we can't do this fold. 3557 if (any_of(IfBlocks, 3558 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3559 return Changed; 3560 3561 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 3562 << " T: " << IfTrue->getName() 3563 << " F: " << IfFalse->getName() << "\n"); 3564 3565 // If we can still promote the PHI nodes after this gauntlet of tests, 3566 // do all of the PHI's now. 3567 3568 // Move all 'aggressive' instructions, which are defined in the 3569 // conditional parts of the if's up to the dominating block. 3570 for (BasicBlock *IfBlock : IfBlocks) 3571 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3572 3573 IRBuilder<NoFolder> Builder(DomBI); 3574 // Propagate fast-math-flags from phi nodes to replacement selects. 3575 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 3576 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3577 if (isa<FPMathOperator>(PN)) 3578 Builder.setFastMathFlags(PN->getFastMathFlags()); 3579 3580 // Change the PHI node into a select instruction. 3581 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3582 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3583 3584 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 3585 PN->replaceAllUsesWith(Sel); 3586 Sel->takeName(PN); 3587 PN->eraseFromParent(); 3588 } 3589 3590 // At this point, all IfBlocks are empty, so our if statement 3591 // has been flattened. Change DomBlock to jump directly to our new block to 3592 // avoid other simplifycfg's kicking in on the diamond. 3593 Builder.CreateBr(BB); 3594 3595 SmallVector<DominatorTree::UpdateType, 3> Updates; 3596 if (DTU) { 3597 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3598 for (auto *Successor : successors(DomBlock)) 3599 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3600 } 3601 3602 DomBI->eraseFromParent(); 3603 if (DTU) 3604 DTU->applyUpdates(Updates); 3605 3606 return true; 3607 } 3608 3609 static Value *createLogicalOp(IRBuilderBase &Builder, 3610 Instruction::BinaryOps Opc, Value *LHS, 3611 Value *RHS, const Twine &Name = "") { 3612 // Try to relax logical op to binary op. 3613 if (impliesPoison(RHS, LHS)) 3614 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3615 if (Opc == Instruction::And) 3616 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3617 if (Opc == Instruction::Or) 3618 return Builder.CreateLogicalOr(LHS, RHS, Name); 3619 llvm_unreachable("Invalid logical opcode"); 3620 } 3621 3622 /// Return true if either PBI or BI has branch weight available, and store 3623 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3624 /// not have branch weight, use 1:1 as its weight. 3625 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3626 uint64_t &PredTrueWeight, 3627 uint64_t &PredFalseWeight, 3628 uint64_t &SuccTrueWeight, 3629 uint64_t &SuccFalseWeight) { 3630 bool PredHasWeights = 3631 extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight); 3632 bool SuccHasWeights = 3633 extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight); 3634 if (PredHasWeights || SuccHasWeights) { 3635 if (!PredHasWeights) 3636 PredTrueWeight = PredFalseWeight = 1; 3637 if (!SuccHasWeights) 3638 SuccTrueWeight = SuccFalseWeight = 1; 3639 return true; 3640 } else { 3641 return false; 3642 } 3643 } 3644 3645 /// Determine if the two branches share a common destination and deduce a glue 3646 /// that joins the branches' conditions to arrive at the common destination if 3647 /// that would be profitable. 3648 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>> 3649 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3650 const TargetTransformInfo *TTI) { 3651 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3652 "Both blocks must end with a conditional branches."); 3653 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3654 "PredBB must be a predecessor of BB."); 3655 3656 // We have the potential to fold the conditions together, but if the 3657 // predecessor branch is predictable, we may not want to merge them. 3658 uint64_t PTWeight, PFWeight; 3659 BranchProbability PBITrueProb, Likely; 3660 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3661 extractBranchWeights(*PBI, PTWeight, PFWeight) && 3662 (PTWeight + PFWeight) != 0) { 3663 PBITrueProb = 3664 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3665 Likely = TTI->getPredictableBranchThreshold(); 3666 } 3667 3668 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3669 // Speculate the 2nd condition unless the 1st is probably true. 3670 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3671 return {{BI->getSuccessor(0), Instruction::Or, false}}; 3672 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3673 // Speculate the 2nd condition unless the 1st is probably false. 3674 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3675 return {{BI->getSuccessor(1), Instruction::And, false}}; 3676 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3677 // Speculate the 2nd condition unless the 1st is probably true. 3678 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3679 return {{BI->getSuccessor(1), Instruction::And, true}}; 3680 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3681 // Speculate the 2nd condition unless the 1st is probably false. 3682 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3683 return {{BI->getSuccessor(0), Instruction::Or, true}}; 3684 } 3685 return std::nullopt; 3686 } 3687 3688 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3689 DomTreeUpdater *DTU, 3690 MemorySSAUpdater *MSSAU, 3691 const TargetTransformInfo *TTI) { 3692 BasicBlock *BB = BI->getParent(); 3693 BasicBlock *PredBlock = PBI->getParent(); 3694 3695 // Determine if the two branches share a common destination. 3696 BasicBlock *CommonSucc; 3697 Instruction::BinaryOps Opc; 3698 bool InvertPredCond; 3699 std::tie(CommonSucc, Opc, InvertPredCond) = 3700 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3701 3702 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3703 3704 IRBuilder<> Builder(PBI); 3705 // The builder is used to create instructions to eliminate the branch in BB. 3706 // If BB's terminator has !annotation metadata, add it to the new 3707 // instructions. 3708 Builder.CollectMetadataToCopy(BB->getTerminator(), 3709 {LLVMContext::MD_annotation}); 3710 3711 // If we need to invert the condition in the pred block to match, do so now. 3712 if (InvertPredCond) { 3713 InvertBranch(PBI, Builder); 3714 } 3715 3716 BasicBlock *UniqueSucc = 3717 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3718 3719 // Before cloning instructions, notify the successor basic block that it 3720 // is about to have a new predecessor. This will update PHI nodes, 3721 // which will allow us to update live-out uses of bonus instructions. 3722 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3723 3724 // Try to update branch weights. 3725 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3726 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3727 SuccTrueWeight, SuccFalseWeight)) { 3728 SmallVector<uint64_t, 8> NewWeights; 3729 3730 if (PBI->getSuccessor(0) == BB) { 3731 // PBI: br i1 %x, BB, FalseDest 3732 // BI: br i1 %y, UniqueSucc, FalseDest 3733 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3734 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3735 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3736 // TrueWeight for PBI * FalseWeight for BI. 3737 // We assume that total weights of a BranchInst can fit into 32 bits. 3738 // Therefore, we will not have overflow using 64-bit arithmetic. 3739 NewWeights.push_back(PredFalseWeight * 3740 (SuccFalseWeight + SuccTrueWeight) + 3741 PredTrueWeight * SuccFalseWeight); 3742 } else { 3743 // PBI: br i1 %x, TrueDest, BB 3744 // BI: br i1 %y, TrueDest, UniqueSucc 3745 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3746 // FalseWeight for PBI * TrueWeight for BI. 3747 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3748 PredFalseWeight * SuccTrueWeight); 3749 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3750 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3751 } 3752 3753 // Halve the weights if any of them cannot fit in an uint32_t 3754 FitWeights(NewWeights); 3755 3756 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3757 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3758 3759 // TODO: If BB is reachable from all paths through PredBlock, then we 3760 // could replace PBI's branch probabilities with BI's. 3761 } else 3762 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3763 3764 // Now, update the CFG. 3765 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3766 3767 if (DTU) 3768 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3769 {DominatorTree::Delete, PredBlock, BB}}); 3770 3771 // If BI was a loop latch, it may have had associated loop metadata. 3772 // We need to copy it to the new latch, that is, PBI. 3773 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3774 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3775 3776 ValueToValueMapTy VMap; // maps original values to cloned values 3777 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3778 3779 Module *M = BB->getModule(); 3780 3781 if (PredBlock->IsNewDbgInfoFormat) { 3782 PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator()); 3783 for (DPValue &DPV : PredBlock->getTerminator()->getDbgValueRange()) { 3784 RemapDPValue(M, &DPV, VMap, 3785 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3786 } 3787 } 3788 3789 // Now that the Cond was cloned into the predecessor basic block, 3790 // or/and the two conditions together. 3791 Value *BICond = VMap[BI->getCondition()]; 3792 PBI->setCondition( 3793 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3794 3795 ++NumFoldBranchToCommonDest; 3796 return true; 3797 } 3798 3799 /// Return if an instruction's type or any of its operands' types are a vector 3800 /// type. 3801 static bool isVectorOp(Instruction &I) { 3802 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 3803 return U->getType()->isVectorTy(); 3804 }); 3805 } 3806 3807 /// If this basic block is simple enough, and if a predecessor branches to us 3808 /// and one of our successors, fold the block into the predecessor and use 3809 /// logical operations to pick the right destination. 3810 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3811 MemorySSAUpdater *MSSAU, 3812 const TargetTransformInfo *TTI, 3813 unsigned BonusInstThreshold) { 3814 // If this block ends with an unconditional branch, 3815 // let SpeculativelyExecuteBB() deal with it. 3816 if (!BI->isConditional()) 3817 return false; 3818 3819 BasicBlock *BB = BI->getParent(); 3820 TargetTransformInfo::TargetCostKind CostKind = 3821 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3822 : TargetTransformInfo::TCK_SizeAndLatency; 3823 3824 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3825 3826 if (!Cond || 3827 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && 3828 !isa<SelectInst>(Cond)) || 3829 Cond->getParent() != BB || !Cond->hasOneUse()) 3830 return false; 3831 3832 // Finally, don't infinitely unroll conditional loops. 3833 if (is_contained(successors(BB), BB)) 3834 return false; 3835 3836 // With which predecessors will we want to deal with? 3837 SmallVector<BasicBlock *, 8> Preds; 3838 for (BasicBlock *PredBlock : predecessors(BB)) { 3839 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3840 3841 // Check that we have two conditional branches. If there is a PHI node in 3842 // the common successor, verify that the same value flows in from both 3843 // blocks. 3844 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3845 continue; 3846 3847 // Determine if the two branches share a common destination. 3848 BasicBlock *CommonSucc; 3849 Instruction::BinaryOps Opc; 3850 bool InvertPredCond; 3851 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3852 std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe; 3853 else 3854 continue; 3855 3856 // Check the cost of inserting the necessary logic before performing the 3857 // transformation. 3858 if (TTI) { 3859 Type *Ty = BI->getCondition()->getType(); 3860 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3861 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3862 !isa<CmpInst>(PBI->getCondition()))) 3863 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3864 3865 if (Cost > BranchFoldThreshold) 3866 continue; 3867 } 3868 3869 // Ok, we do want to deal with this predecessor. Record it. 3870 Preds.emplace_back(PredBlock); 3871 } 3872 3873 // If there aren't any predecessors into which we can fold, 3874 // don't bother checking the cost. 3875 if (Preds.empty()) 3876 return false; 3877 3878 // Only allow this transformation if computing the condition doesn't involve 3879 // too many instructions and these involved instructions can be executed 3880 // unconditionally. We denote all involved instructions except the condition 3881 // as "bonus instructions", and only allow this transformation when the 3882 // number of the bonus instructions we'll need to create when cloning into 3883 // each predecessor does not exceed a certain threshold. 3884 unsigned NumBonusInsts = 0; 3885 bool SawVectorOp = false; 3886 const unsigned PredCount = Preds.size(); 3887 for (Instruction &I : *BB) { 3888 // Don't check the branch condition comparison itself. 3889 if (&I == Cond) 3890 continue; 3891 // Ignore dbg intrinsics, and the terminator. 3892 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3893 continue; 3894 // I must be safe to execute unconditionally. 3895 if (!isSafeToSpeculativelyExecute(&I)) 3896 return false; 3897 SawVectorOp |= isVectorOp(I); 3898 3899 // Account for the cost of duplicating this instruction into each 3900 // predecessor. Ignore free instructions. 3901 if (!TTI || TTI->getInstructionCost(&I, CostKind) != 3902 TargetTransformInfo::TCC_Free) { 3903 NumBonusInsts += PredCount; 3904 3905 // Early exits once we reach the limit. 3906 if (NumBonusInsts > 3907 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 3908 return false; 3909 } 3910 3911 auto IsBCSSAUse = [BB, &I](Use &U) { 3912 auto *UI = cast<Instruction>(U.getUser()); 3913 if (auto *PN = dyn_cast<PHINode>(UI)) 3914 return PN->getIncomingBlock(U) == BB; 3915 return UI->getParent() == BB && I.comesBefore(UI); 3916 }; 3917 3918 // Does this instruction require rewriting of uses? 3919 if (!all_of(I.uses(), IsBCSSAUse)) 3920 return false; 3921 } 3922 if (NumBonusInsts > 3923 BonusInstThreshold * 3924 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 3925 return false; 3926 3927 // Ok, we have the budget. Perform the transformation. 3928 for (BasicBlock *PredBlock : Preds) { 3929 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3930 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3931 } 3932 return false; 3933 } 3934 3935 // If there is only one store in BB1 and BB2, return it, otherwise return 3936 // nullptr. 3937 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3938 StoreInst *S = nullptr; 3939 for (auto *BB : {BB1, BB2}) { 3940 if (!BB) 3941 continue; 3942 for (auto &I : *BB) 3943 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3944 if (S) 3945 // Multiple stores seen. 3946 return nullptr; 3947 else 3948 S = SI; 3949 } 3950 } 3951 return S; 3952 } 3953 3954 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3955 Value *AlternativeV = nullptr) { 3956 // PHI is going to be a PHI node that allows the value V that is defined in 3957 // BB to be referenced in BB's only successor. 3958 // 3959 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3960 // doesn't matter to us what the other operand is (it'll never get used). We 3961 // could just create a new PHI with an undef incoming value, but that could 3962 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3963 // other PHI. So here we directly look for some PHI in BB's successor with V 3964 // as an incoming operand. If we find one, we use it, else we create a new 3965 // one. 3966 // 3967 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3968 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3969 // where OtherBB is the single other predecessor of BB's only successor. 3970 PHINode *PHI = nullptr; 3971 BasicBlock *Succ = BB->getSingleSuccessor(); 3972 3973 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3974 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3975 PHI = cast<PHINode>(I); 3976 if (!AlternativeV) 3977 break; 3978 3979 assert(Succ->hasNPredecessors(2)); 3980 auto PredI = pred_begin(Succ); 3981 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3982 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3983 break; 3984 PHI = nullptr; 3985 } 3986 if (PHI) 3987 return PHI; 3988 3989 // If V is not an instruction defined in BB, just return it. 3990 if (!AlternativeV && 3991 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3992 return V; 3993 3994 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge"); 3995 PHI->insertBefore(Succ->begin()); 3996 PHI->addIncoming(V, BB); 3997 for (BasicBlock *PredBB : predecessors(Succ)) 3998 if (PredBB != BB) 3999 PHI->addIncoming( 4000 AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB); 4001 return PHI; 4002 } 4003 4004 static bool mergeConditionalStoreToAddress( 4005 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 4006 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 4007 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 4008 // For every pointer, there must be exactly two stores, one coming from 4009 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 4010 // store (to any address) in PTB,PFB or QTB,QFB. 4011 // FIXME: We could relax this restriction with a bit more work and performance 4012 // testing. 4013 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 4014 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 4015 if (!PStore || !QStore) 4016 return false; 4017 4018 // Now check the stores are compatible. 4019 if (!QStore->isUnordered() || !PStore->isUnordered() || 4020 PStore->getValueOperand()->getType() != 4021 QStore->getValueOperand()->getType()) 4022 return false; 4023 4024 // Check that sinking the store won't cause program behavior changes. Sinking 4025 // the store out of the Q blocks won't change any behavior as we're sinking 4026 // from a block to its unconditional successor. But we're moving a store from 4027 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 4028 // So we need to check that there are no aliasing loads or stores in 4029 // QBI, QTB and QFB. We also need to check there are no conflicting memory 4030 // operations between PStore and the end of its parent block. 4031 // 4032 // The ideal way to do this is to query AliasAnalysis, but we don't 4033 // preserve AA currently so that is dangerous. Be super safe and just 4034 // check there are no other memory operations at all. 4035 for (auto &I : *QFB->getSinglePredecessor()) 4036 if (I.mayReadOrWriteMemory()) 4037 return false; 4038 for (auto &I : *QFB) 4039 if (&I != QStore && I.mayReadOrWriteMemory()) 4040 return false; 4041 if (QTB) 4042 for (auto &I : *QTB) 4043 if (&I != QStore && I.mayReadOrWriteMemory()) 4044 return false; 4045 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 4046 I != E; ++I) 4047 if (&*I != PStore && I->mayReadOrWriteMemory()) 4048 return false; 4049 4050 // If we're not in aggressive mode, we only optimize if we have some 4051 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 4052 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 4053 if (!BB) 4054 return true; 4055 // Heuristic: if the block can be if-converted/phi-folded and the 4056 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 4057 // thread this store. 4058 InstructionCost Cost = 0; 4059 InstructionCost Budget = 4060 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 4061 for (auto &I : BB->instructionsWithoutDebug(false)) { 4062 // Consider terminator instruction to be free. 4063 if (I.isTerminator()) 4064 continue; 4065 // If this is one the stores that we want to speculate out of this BB, 4066 // then don't count it's cost, consider it to be free. 4067 if (auto *S = dyn_cast<StoreInst>(&I)) 4068 if (llvm::find(FreeStores, S)) 4069 continue; 4070 // Else, we have a white-list of instructions that we are ak speculating. 4071 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 4072 return false; // Not in white-list - not worthwhile folding. 4073 // And finally, if this is a non-free instruction that we are okay 4074 // speculating, ensure that we consider the speculation budget. 4075 Cost += 4076 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 4077 if (Cost > Budget) 4078 return false; // Eagerly refuse to fold as soon as we're out of budget. 4079 } 4080 assert(Cost <= Budget && 4081 "When we run out of budget we will eagerly return from within the " 4082 "per-instruction loop."); 4083 return true; 4084 }; 4085 4086 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 4087 if (!MergeCondStoresAggressively && 4088 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 4089 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 4090 return false; 4091 4092 // If PostBB has more than two predecessors, we need to split it so we can 4093 // sink the store. 4094 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 4095 // We know that QFB's only successor is PostBB. And QFB has a single 4096 // predecessor. If QTB exists, then its only successor is also PostBB. 4097 // If QTB does not exist, then QFB's only predecessor has a conditional 4098 // branch to QFB and PostBB. 4099 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 4100 BasicBlock *NewBB = 4101 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 4102 if (!NewBB) 4103 return false; 4104 PostBB = NewBB; 4105 } 4106 4107 // OK, we're going to sink the stores to PostBB. The store has to be 4108 // conditional though, so first create the predicate. 4109 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 4110 ->getCondition(); 4111 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 4112 ->getCondition(); 4113 4114 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 4115 PStore->getParent()); 4116 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 4117 QStore->getParent(), PPHI); 4118 4119 BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt(); 4120 IRBuilder<> QB(PostBB, PostBBFirst); 4121 QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc()); 4122 4123 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 4124 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 4125 4126 if (InvertPCond) 4127 PPred = QB.CreateNot(PPred); 4128 if (InvertQCond) 4129 QPred = QB.CreateNot(QPred); 4130 Value *CombinedPred = QB.CreateOr(PPred, QPred); 4131 4132 BasicBlock::iterator InsertPt = QB.GetInsertPoint(); 4133 auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt, 4134 /*Unreachable=*/false, 4135 /*BranchWeights=*/nullptr, DTU); 4136 4137 QB.SetInsertPoint(T); 4138 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 4139 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 4140 // Choose the minimum alignment. If we could prove both stores execute, we 4141 // could use biggest one. In this case, though, we only know that one of the 4142 // stores executes. And we don't know it's safe to take the alignment from a 4143 // store that doesn't execute. 4144 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 4145 4146 QStore->eraseFromParent(); 4147 PStore->eraseFromParent(); 4148 4149 return true; 4150 } 4151 4152 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 4153 DomTreeUpdater *DTU, const DataLayout &DL, 4154 const TargetTransformInfo &TTI) { 4155 // The intention here is to find diamonds or triangles (see below) where each 4156 // conditional block contains a store to the same address. Both of these 4157 // stores are conditional, so they can't be unconditionally sunk. But it may 4158 // be profitable to speculatively sink the stores into one merged store at the 4159 // end, and predicate the merged store on the union of the two conditions of 4160 // PBI and QBI. 4161 // 4162 // This can reduce the number of stores executed if both of the conditions are 4163 // true, and can allow the blocks to become small enough to be if-converted. 4164 // This optimization will also chain, so that ladders of test-and-set 4165 // sequences can be if-converted away. 4166 // 4167 // We only deal with simple diamonds or triangles: 4168 // 4169 // PBI or PBI or a combination of the two 4170 // / \ | \ 4171 // PTB PFB | PFB 4172 // \ / | / 4173 // QBI QBI 4174 // / \ | \ 4175 // QTB QFB | QFB 4176 // \ / | / 4177 // PostBB PostBB 4178 // 4179 // We model triangles as a type of diamond with a nullptr "true" block. 4180 // Triangles are canonicalized so that the fallthrough edge is represented by 4181 // a true condition, as in the diagram above. 4182 BasicBlock *PTB = PBI->getSuccessor(0); 4183 BasicBlock *PFB = PBI->getSuccessor(1); 4184 BasicBlock *QTB = QBI->getSuccessor(0); 4185 BasicBlock *QFB = QBI->getSuccessor(1); 4186 BasicBlock *PostBB = QFB->getSingleSuccessor(); 4187 4188 // Make sure we have a good guess for PostBB. If QTB's only successor is 4189 // QFB, then QFB is a better PostBB. 4190 if (QTB->getSingleSuccessor() == QFB) 4191 PostBB = QFB; 4192 4193 // If we couldn't find a good PostBB, stop. 4194 if (!PostBB) 4195 return false; 4196 4197 bool InvertPCond = false, InvertQCond = false; 4198 // Canonicalize fallthroughs to the true branches. 4199 if (PFB == QBI->getParent()) { 4200 std::swap(PFB, PTB); 4201 InvertPCond = true; 4202 } 4203 if (QFB == PostBB) { 4204 std::swap(QFB, QTB); 4205 InvertQCond = true; 4206 } 4207 4208 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 4209 // and QFB may not. Model fallthroughs as a nullptr block. 4210 if (PTB == QBI->getParent()) 4211 PTB = nullptr; 4212 if (QTB == PostBB) 4213 QTB = nullptr; 4214 4215 // Legality bailouts. We must have at least the non-fallthrough blocks and 4216 // the post-dominating block, and the non-fallthroughs must only have one 4217 // predecessor. 4218 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 4219 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 4220 }; 4221 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 4222 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 4223 return false; 4224 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 4225 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 4226 return false; 4227 if (!QBI->getParent()->hasNUses(2)) 4228 return false; 4229 4230 // OK, this is a sequence of two diamonds or triangles. 4231 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 4232 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 4233 for (auto *BB : {PTB, PFB}) { 4234 if (!BB) 4235 continue; 4236 for (auto &I : *BB) 4237 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4238 PStoreAddresses.insert(SI->getPointerOperand()); 4239 } 4240 for (auto *BB : {QTB, QFB}) { 4241 if (!BB) 4242 continue; 4243 for (auto &I : *BB) 4244 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4245 QStoreAddresses.insert(SI->getPointerOperand()); 4246 } 4247 4248 set_intersect(PStoreAddresses, QStoreAddresses); 4249 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 4250 // clear what it contains. 4251 auto &CommonAddresses = PStoreAddresses; 4252 4253 bool Changed = false; 4254 for (auto *Address : CommonAddresses) 4255 Changed |= 4256 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 4257 InvertPCond, InvertQCond, DTU, DL, TTI); 4258 return Changed; 4259 } 4260 4261 /// If the previous block ended with a widenable branch, determine if reusing 4262 /// the target block is profitable and legal. This will have the effect of 4263 /// "widening" PBI, but doesn't require us to reason about hosting safety. 4264 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4265 DomTreeUpdater *DTU) { 4266 // TODO: This can be generalized in two important ways: 4267 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 4268 // values from the PBI edge. 4269 // 2) We can sink side effecting instructions into BI's fallthrough 4270 // successor provided they doesn't contribute to computation of 4271 // BI's condition. 4272 BasicBlock *IfTrueBB = PBI->getSuccessor(0); 4273 BasicBlock *IfFalseBB = PBI->getSuccessor(1); 4274 if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() || 4275 !BI->getParent()->getSinglePredecessor()) 4276 return false; 4277 if (!IfFalseBB->phis().empty()) 4278 return false; // TODO 4279 // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which 4280 // may undo the transform done here. 4281 // TODO: There might be a more fine-grained solution to this. 4282 if (!llvm::succ_empty(IfFalseBB)) 4283 return false; 4284 // Use lambda to lazily compute expensive condition after cheap ones. 4285 auto NoSideEffects = [](BasicBlock &BB) { 4286 return llvm::none_of(BB, [](const Instruction &I) { 4287 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 4288 }); 4289 }; 4290 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 4291 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 4292 NoSideEffects(*BI->getParent())) { 4293 auto *OldSuccessor = BI->getSuccessor(1); 4294 OldSuccessor->removePredecessor(BI->getParent()); 4295 BI->setSuccessor(1, IfFalseBB); 4296 if (DTU) 4297 DTU->applyUpdates( 4298 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4299 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4300 return true; 4301 } 4302 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4303 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4304 NoSideEffects(*BI->getParent())) { 4305 auto *OldSuccessor = BI->getSuccessor(0); 4306 OldSuccessor->removePredecessor(BI->getParent()); 4307 BI->setSuccessor(0, IfFalseBB); 4308 if (DTU) 4309 DTU->applyUpdates( 4310 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4311 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4312 return true; 4313 } 4314 return false; 4315 } 4316 4317 /// If we have a conditional branch as a predecessor of another block, 4318 /// this function tries to simplify it. We know 4319 /// that PBI and BI are both conditional branches, and BI is in one of the 4320 /// successor blocks of PBI - PBI branches to BI. 4321 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4322 DomTreeUpdater *DTU, 4323 const DataLayout &DL, 4324 const TargetTransformInfo &TTI) { 4325 assert(PBI->isConditional() && BI->isConditional()); 4326 BasicBlock *BB = BI->getParent(); 4327 4328 // If this block ends with a branch instruction, and if there is a 4329 // predecessor that ends on a branch of the same condition, make 4330 // this conditional branch redundant. 4331 if (PBI->getCondition() == BI->getCondition() && 4332 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4333 // Okay, the outcome of this conditional branch is statically 4334 // knowable. If this block had a single pred, handle specially, otherwise 4335 // FoldCondBranchOnValueKnownInPredecessor() will handle it. 4336 if (BB->getSinglePredecessor()) { 4337 // Turn this into a branch on constant. 4338 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4339 BI->setCondition( 4340 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4341 return true; // Nuke the branch on constant. 4342 } 4343 } 4344 4345 // If the previous block ended with a widenable branch, determine if reusing 4346 // the target block is profitable and legal. This will have the effect of 4347 // "widening" PBI, but doesn't require us to reason about hosting safety. 4348 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4349 return true; 4350 4351 // If both branches are conditional and both contain stores to the same 4352 // address, remove the stores from the conditionals and create a conditional 4353 // merged store at the end. 4354 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4355 return true; 4356 4357 // If this is a conditional branch in an empty block, and if any 4358 // predecessors are a conditional branch to one of our destinations, 4359 // fold the conditions into logical ops and one cond br. 4360 4361 // Ignore dbg intrinsics. 4362 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4363 return false; 4364 4365 int PBIOp, BIOp; 4366 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4367 PBIOp = 0; 4368 BIOp = 0; 4369 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4370 PBIOp = 0; 4371 BIOp = 1; 4372 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4373 PBIOp = 1; 4374 BIOp = 0; 4375 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4376 PBIOp = 1; 4377 BIOp = 1; 4378 } else { 4379 return false; 4380 } 4381 4382 // Check to make sure that the other destination of this branch 4383 // isn't BB itself. If so, this is an infinite loop that will 4384 // keep getting unwound. 4385 if (PBI->getSuccessor(PBIOp) == BB) 4386 return false; 4387 4388 // If predecessor's branch probability to BB is too low don't merge branches. 4389 SmallVector<uint32_t, 2> PredWeights; 4390 if (!PBI->getMetadata(LLVMContext::MD_unpredictable) && 4391 extractBranchWeights(*PBI, PredWeights) && 4392 (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) { 4393 4394 BranchProbability CommonDestProb = BranchProbability::getBranchProbability( 4395 PredWeights[PBIOp], 4396 static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]); 4397 4398 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 4399 if (CommonDestProb >= Likely) 4400 return false; 4401 } 4402 4403 // Do not perform this transformation if it would require 4404 // insertion of a large number of select instructions. For targets 4405 // without predication/cmovs, this is a big pessimization. 4406 4407 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4408 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4409 unsigned NumPhis = 0; 4410 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4411 ++II, ++NumPhis) { 4412 if (NumPhis > 2) // Disable this xform. 4413 return false; 4414 } 4415 4416 // Finally, if everything is ok, fold the branches to logical ops. 4417 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4418 4419 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4420 << "AND: " << *BI->getParent()); 4421 4422 SmallVector<DominatorTree::UpdateType, 5> Updates; 4423 4424 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4425 // branch in it, where one edge (OtherDest) goes back to itself but the other 4426 // exits. We don't *know* that the program avoids the infinite loop 4427 // (even though that seems likely). If we do this xform naively, we'll end up 4428 // recursively unpeeling the loop. Since we know that (after the xform is 4429 // done) that the block *is* infinite if reached, we just make it an obviously 4430 // infinite loop with no cond branch. 4431 if (OtherDest == BB) { 4432 // Insert it at the end of the function, because it's either code, 4433 // or it won't matter if it's hot. :) 4434 BasicBlock *InfLoopBlock = 4435 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4436 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4437 if (DTU) 4438 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4439 OtherDest = InfLoopBlock; 4440 } 4441 4442 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4443 4444 // BI may have other predecessors. Because of this, we leave 4445 // it alone, but modify PBI. 4446 4447 // Make sure we get to CommonDest on True&True directions. 4448 Value *PBICond = PBI->getCondition(); 4449 IRBuilder<NoFolder> Builder(PBI); 4450 if (PBIOp) 4451 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4452 4453 Value *BICond = BI->getCondition(); 4454 if (BIOp) 4455 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4456 4457 // Merge the conditions. 4458 Value *Cond = 4459 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4460 4461 // Modify PBI to branch on the new condition to the new dests. 4462 PBI->setCondition(Cond); 4463 PBI->setSuccessor(0, CommonDest); 4464 PBI->setSuccessor(1, OtherDest); 4465 4466 if (DTU) { 4467 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4468 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4469 4470 DTU->applyUpdates(Updates); 4471 } 4472 4473 // Update branch weight for PBI. 4474 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4475 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4476 bool HasWeights = 4477 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4478 SuccTrueWeight, SuccFalseWeight); 4479 if (HasWeights) { 4480 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4481 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4482 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4483 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4484 // The weight to CommonDest should be PredCommon * SuccTotal + 4485 // PredOther * SuccCommon. 4486 // The weight to OtherDest should be PredOther * SuccOther. 4487 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4488 PredOther * SuccCommon, 4489 PredOther * SuccOther}; 4490 // Halve the weights if any of them cannot fit in an uint32_t 4491 FitWeights(NewWeights); 4492 4493 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 4494 } 4495 4496 // OtherDest may have phi nodes. If so, add an entry from PBI's 4497 // block that are identical to the entries for BI's block. 4498 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4499 4500 // We know that the CommonDest already had an edge from PBI to 4501 // it. If it has PHIs though, the PHIs may have different 4502 // entries for BB and PBI's BB. If so, insert a select to make 4503 // them agree. 4504 for (PHINode &PN : CommonDest->phis()) { 4505 Value *BIV = PN.getIncomingValueForBlock(BB); 4506 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4507 Value *PBIV = PN.getIncomingValue(PBBIdx); 4508 if (BIV != PBIV) { 4509 // Insert a select in PBI to pick the right value. 4510 SelectInst *NV = cast<SelectInst>( 4511 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4512 PN.setIncomingValue(PBBIdx, NV); 4513 // Although the select has the same condition as PBI, the original branch 4514 // weights for PBI do not apply to the new select because the select's 4515 // 'logical' edges are incoming edges of the phi that is eliminated, not 4516 // the outgoing edges of PBI. 4517 if (HasWeights) { 4518 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4519 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4520 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4521 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4522 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4523 // The weight to PredOtherDest should be PredOther * SuccCommon. 4524 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4525 PredOther * SuccCommon}; 4526 4527 FitWeights(NewWeights); 4528 4529 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 4530 } 4531 } 4532 } 4533 4534 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4535 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4536 4537 // This basic block is probably dead. We know it has at least 4538 // one fewer predecessor. 4539 return true; 4540 } 4541 4542 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4543 // true or to FalseBB if Cond is false. 4544 // Takes care of updating the successors and removing the old terminator. 4545 // Also makes sure not to introduce new successors by assuming that edges to 4546 // non-successor TrueBBs and FalseBBs aren't reachable. 4547 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 4548 Value *Cond, BasicBlock *TrueBB, 4549 BasicBlock *FalseBB, 4550 uint32_t TrueWeight, 4551 uint32_t FalseWeight) { 4552 auto *BB = OldTerm->getParent(); 4553 // Remove any superfluous successor edges from the CFG. 4554 // First, figure out which successors to preserve. 4555 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4556 // successor. 4557 BasicBlock *KeepEdge1 = TrueBB; 4558 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4559 4560 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4561 4562 // Then remove the rest. 4563 for (BasicBlock *Succ : successors(OldTerm)) { 4564 // Make sure only to keep exactly one copy of each edge. 4565 if (Succ == KeepEdge1) 4566 KeepEdge1 = nullptr; 4567 else if (Succ == KeepEdge2) 4568 KeepEdge2 = nullptr; 4569 else { 4570 Succ->removePredecessor(BB, 4571 /*KeepOneInputPHIs=*/true); 4572 4573 if (Succ != TrueBB && Succ != FalseBB) 4574 RemovedSuccessors.insert(Succ); 4575 } 4576 } 4577 4578 IRBuilder<> Builder(OldTerm); 4579 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4580 4581 // Insert an appropriate new terminator. 4582 if (!KeepEdge1 && !KeepEdge2) { 4583 if (TrueBB == FalseBB) { 4584 // We were only looking for one successor, and it was present. 4585 // Create an unconditional branch to it. 4586 Builder.CreateBr(TrueBB); 4587 } else { 4588 // We found both of the successors we were looking for. 4589 // Create a conditional branch sharing the condition of the select. 4590 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4591 if (TrueWeight != FalseWeight) 4592 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4593 } 4594 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4595 // Neither of the selected blocks were successors, so this 4596 // terminator must be unreachable. 4597 new UnreachableInst(OldTerm->getContext(), OldTerm); 4598 } else { 4599 // One of the selected values was a successor, but the other wasn't. 4600 // Insert an unconditional branch to the one that was found; 4601 // the edge to the one that wasn't must be unreachable. 4602 if (!KeepEdge1) { 4603 // Only TrueBB was found. 4604 Builder.CreateBr(TrueBB); 4605 } else { 4606 // Only FalseBB was found. 4607 Builder.CreateBr(FalseBB); 4608 } 4609 } 4610 4611 EraseTerminatorAndDCECond(OldTerm); 4612 4613 if (DTU) { 4614 SmallVector<DominatorTree::UpdateType, 2> Updates; 4615 Updates.reserve(RemovedSuccessors.size()); 4616 for (auto *RemovedSuccessor : RemovedSuccessors) 4617 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4618 DTU->applyUpdates(Updates); 4619 } 4620 4621 return true; 4622 } 4623 4624 // Replaces 4625 // (switch (select cond, X, Y)) on constant X, Y 4626 // with a branch - conditional if X and Y lead to distinct BBs, 4627 // unconditional otherwise. 4628 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4629 SelectInst *Select) { 4630 // Check for constant integer values in the select. 4631 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4632 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4633 if (!TrueVal || !FalseVal) 4634 return false; 4635 4636 // Find the relevant condition and destinations. 4637 Value *Condition = Select->getCondition(); 4638 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4639 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4640 4641 // Get weight for TrueBB and FalseBB. 4642 uint32_t TrueWeight = 0, FalseWeight = 0; 4643 SmallVector<uint64_t, 8> Weights; 4644 bool HasWeights = hasBranchWeightMD(*SI); 4645 if (HasWeights) { 4646 GetBranchWeights(SI, Weights); 4647 if (Weights.size() == 1 + SI->getNumCases()) { 4648 TrueWeight = 4649 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4650 FalseWeight = 4651 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4652 } 4653 } 4654 4655 // Perform the actual simplification. 4656 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4657 FalseWeight); 4658 } 4659 4660 // Replaces 4661 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4662 // blockaddress(@fn, BlockB))) 4663 // with 4664 // (br cond, BlockA, BlockB). 4665 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4666 SelectInst *SI) { 4667 // Check that both operands of the select are block addresses. 4668 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4669 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4670 if (!TBA || !FBA) 4671 return false; 4672 4673 // Extract the actual blocks. 4674 BasicBlock *TrueBB = TBA->getBasicBlock(); 4675 BasicBlock *FalseBB = FBA->getBasicBlock(); 4676 4677 // Perform the actual simplification. 4678 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4679 0); 4680 } 4681 4682 /// This is called when we find an icmp instruction 4683 /// (a seteq/setne with a constant) as the only instruction in a 4684 /// block that ends with an uncond branch. We are looking for a very specific 4685 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4686 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4687 /// default value goes to an uncond block with a seteq in it, we get something 4688 /// like: 4689 /// 4690 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4691 /// DEFAULT: 4692 /// %tmp = icmp eq i8 %A, 92 4693 /// br label %end 4694 /// end: 4695 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4696 /// 4697 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4698 /// the PHI, merging the third icmp into the switch. 4699 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4700 ICmpInst *ICI, IRBuilder<> &Builder) { 4701 BasicBlock *BB = ICI->getParent(); 4702 4703 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4704 // complex. 4705 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4706 return false; 4707 4708 Value *V = ICI->getOperand(0); 4709 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4710 4711 // The pattern we're looking for is where our only predecessor is a switch on 4712 // 'V' and this block is the default case for the switch. In this case we can 4713 // fold the compared value into the switch to simplify things. 4714 BasicBlock *Pred = BB->getSinglePredecessor(); 4715 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4716 return false; 4717 4718 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4719 if (SI->getCondition() != V) 4720 return false; 4721 4722 // If BB is reachable on a non-default case, then we simply know the value of 4723 // V in this block. Substitute it and constant fold the icmp instruction 4724 // away. 4725 if (SI->getDefaultDest() != BB) { 4726 ConstantInt *VVal = SI->findCaseDest(BB); 4727 assert(VVal && "Should have a unique destination value"); 4728 ICI->setOperand(0, VVal); 4729 4730 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) { 4731 ICI->replaceAllUsesWith(V); 4732 ICI->eraseFromParent(); 4733 } 4734 // BB is now empty, so it is likely to simplify away. 4735 return requestResimplify(); 4736 } 4737 4738 // Ok, the block is reachable from the default dest. If the constant we're 4739 // comparing exists in one of the other edges, then we can constant fold ICI 4740 // and zap it. 4741 if (SI->findCaseValue(Cst) != SI->case_default()) { 4742 Value *V; 4743 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4744 V = ConstantInt::getFalse(BB->getContext()); 4745 else 4746 V = ConstantInt::getTrue(BB->getContext()); 4747 4748 ICI->replaceAllUsesWith(V); 4749 ICI->eraseFromParent(); 4750 // BB is now empty, so it is likely to simplify away. 4751 return requestResimplify(); 4752 } 4753 4754 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4755 // the block. 4756 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4757 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4758 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4759 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4760 return false; 4761 4762 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4763 // true in the PHI. 4764 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4765 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4766 4767 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4768 std::swap(DefaultCst, NewCst); 4769 4770 // Replace ICI (which is used by the PHI for the default value) with true or 4771 // false depending on if it is EQ or NE. 4772 ICI->replaceAllUsesWith(DefaultCst); 4773 ICI->eraseFromParent(); 4774 4775 SmallVector<DominatorTree::UpdateType, 2> Updates; 4776 4777 // Okay, the switch goes to this block on a default value. Add an edge from 4778 // the switch to the merge point on the compared value. 4779 BasicBlock *NewBB = 4780 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4781 { 4782 SwitchInstProfUpdateWrapper SIW(*SI); 4783 auto W0 = SIW.getSuccessorWeight(0); 4784 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4785 if (W0) { 4786 NewW = ((uint64_t(*W0) + 1) >> 1); 4787 SIW.setSuccessorWeight(0, *NewW); 4788 } 4789 SIW.addCase(Cst, NewBB, NewW); 4790 if (DTU) 4791 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4792 } 4793 4794 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4795 Builder.SetInsertPoint(NewBB); 4796 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4797 Builder.CreateBr(SuccBlock); 4798 PHIUse->addIncoming(NewCst, NewBB); 4799 if (DTU) { 4800 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4801 DTU->applyUpdates(Updates); 4802 } 4803 return true; 4804 } 4805 4806 /// The specified branch is a conditional branch. 4807 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4808 /// fold it into a switch instruction if so. 4809 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4810 IRBuilder<> &Builder, 4811 const DataLayout &DL) { 4812 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4813 if (!Cond) 4814 return false; 4815 4816 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4817 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4818 // 'setne's and'ed together, collect them. 4819 4820 // Try to gather values from a chain of and/or to be turned into a switch 4821 ConstantComparesGatherer ConstantCompare(Cond, DL); 4822 // Unpack the result 4823 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4824 Value *CompVal = ConstantCompare.CompValue; 4825 unsigned UsedICmps = ConstantCompare.UsedICmps; 4826 Value *ExtraCase = ConstantCompare.Extra; 4827 4828 // If we didn't have a multiply compared value, fail. 4829 if (!CompVal) 4830 return false; 4831 4832 // Avoid turning single icmps into a switch. 4833 if (UsedICmps <= 1) 4834 return false; 4835 4836 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4837 4838 // There might be duplicate constants in the list, which the switch 4839 // instruction can't handle, remove them now. 4840 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4841 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4842 4843 // If Extra was used, we require at least two switch values to do the 4844 // transformation. A switch with one value is just a conditional branch. 4845 if (ExtraCase && Values.size() < 2) 4846 return false; 4847 4848 // TODO: Preserve branch weight metadata, similarly to how 4849 // FoldValueComparisonIntoPredecessors preserves it. 4850 4851 // Figure out which block is which destination. 4852 BasicBlock *DefaultBB = BI->getSuccessor(1); 4853 BasicBlock *EdgeBB = BI->getSuccessor(0); 4854 if (!TrueWhenEqual) 4855 std::swap(DefaultBB, EdgeBB); 4856 4857 BasicBlock *BB = BI->getParent(); 4858 4859 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4860 << " cases into SWITCH. BB is:\n" 4861 << *BB); 4862 4863 SmallVector<DominatorTree::UpdateType, 2> Updates; 4864 4865 // If there are any extra values that couldn't be folded into the switch 4866 // then we evaluate them with an explicit branch first. Split the block 4867 // right before the condbr to handle it. 4868 if (ExtraCase) { 4869 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4870 /*MSSAU=*/nullptr, "switch.early.test"); 4871 4872 // Remove the uncond branch added to the old block. 4873 Instruction *OldTI = BB->getTerminator(); 4874 Builder.SetInsertPoint(OldTI); 4875 4876 // There can be an unintended UB if extra values are Poison. Before the 4877 // transformation, extra values may not be evaluated according to the 4878 // condition, and it will not raise UB. But after transformation, we are 4879 // evaluating extra values before checking the condition, and it will raise 4880 // UB. It can be solved by adding freeze instruction to extra values. 4881 AssumptionCache *AC = Options.AC; 4882 4883 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 4884 ExtraCase = Builder.CreateFreeze(ExtraCase); 4885 4886 if (TrueWhenEqual) 4887 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4888 else 4889 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4890 4891 OldTI->eraseFromParent(); 4892 4893 if (DTU) 4894 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4895 4896 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4897 // for the edge we just added. 4898 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4899 4900 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4901 << "\nEXTRABB = " << *BB); 4902 BB = NewBB; 4903 } 4904 4905 Builder.SetInsertPoint(BI); 4906 // Convert pointer to int before we switch. 4907 if (CompVal->getType()->isPointerTy()) { 4908 CompVal = Builder.CreatePtrToInt( 4909 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4910 } 4911 4912 // Create the new switch instruction now. 4913 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4914 4915 // Add all of the 'cases' to the switch instruction. 4916 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4917 New->addCase(Values[i], EdgeBB); 4918 4919 // We added edges from PI to the EdgeBB. As such, if there were any 4920 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4921 // the number of edges added. 4922 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4923 PHINode *PN = cast<PHINode>(BBI); 4924 Value *InVal = PN->getIncomingValueForBlock(BB); 4925 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4926 PN->addIncoming(InVal, BB); 4927 } 4928 4929 // Erase the old branch instruction. 4930 EraseTerminatorAndDCECond(BI); 4931 if (DTU) 4932 DTU->applyUpdates(Updates); 4933 4934 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4935 return true; 4936 } 4937 4938 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4939 if (isa<PHINode>(RI->getValue())) 4940 return simplifyCommonResume(RI); 4941 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4942 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4943 // The resume must unwind the exception that caused control to branch here. 4944 return simplifySingleResume(RI); 4945 4946 return false; 4947 } 4948 4949 // Check if cleanup block is empty 4950 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4951 for (Instruction &I : R) { 4952 auto *II = dyn_cast<IntrinsicInst>(&I); 4953 if (!II) 4954 return false; 4955 4956 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4957 switch (IntrinsicID) { 4958 case Intrinsic::dbg_declare: 4959 case Intrinsic::dbg_value: 4960 case Intrinsic::dbg_label: 4961 case Intrinsic::lifetime_end: 4962 break; 4963 default: 4964 return false; 4965 } 4966 } 4967 return true; 4968 } 4969 4970 // Simplify resume that is shared by several landing pads (phi of landing pad). 4971 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4972 BasicBlock *BB = RI->getParent(); 4973 4974 // Check that there are no other instructions except for debug and lifetime 4975 // intrinsics between the phi's and resume instruction. 4976 if (!isCleanupBlockEmpty( 4977 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4978 return false; 4979 4980 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4981 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4982 4983 // Check incoming blocks to see if any of them are trivial. 4984 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4985 Idx++) { 4986 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4987 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4988 4989 // If the block has other successors, we can not delete it because 4990 // it has other dependents. 4991 if (IncomingBB->getUniqueSuccessor() != BB) 4992 continue; 4993 4994 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4995 // Not the landing pad that caused the control to branch here. 4996 if (IncomingValue != LandingPad) 4997 continue; 4998 4999 if (isCleanupBlockEmpty( 5000 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 5001 TrivialUnwindBlocks.insert(IncomingBB); 5002 } 5003 5004 // If no trivial unwind blocks, don't do any simplifications. 5005 if (TrivialUnwindBlocks.empty()) 5006 return false; 5007 5008 // Turn all invokes that unwind here into calls. 5009 for (auto *TrivialBB : TrivialUnwindBlocks) { 5010 // Blocks that will be simplified should be removed from the phi node. 5011 // Note there could be multiple edges to the resume block, and we need 5012 // to remove them all. 5013 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 5014 BB->removePredecessor(TrivialBB, true); 5015 5016 for (BasicBlock *Pred : 5017 llvm::make_early_inc_range(predecessors(TrivialBB))) { 5018 removeUnwindEdge(Pred, DTU); 5019 ++NumInvokes; 5020 } 5021 5022 // In each SimplifyCFG run, only the current processed block can be erased. 5023 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 5024 // of erasing TrivialBB, we only remove the branch to the common resume 5025 // block so that we can later erase the resume block since it has no 5026 // predecessors. 5027 TrivialBB->getTerminator()->eraseFromParent(); 5028 new UnreachableInst(RI->getContext(), TrivialBB); 5029 if (DTU) 5030 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 5031 } 5032 5033 // Delete the resume block if all its predecessors have been removed. 5034 if (pred_empty(BB)) 5035 DeleteDeadBlock(BB, DTU); 5036 5037 return !TrivialUnwindBlocks.empty(); 5038 } 5039 5040 // Simplify resume that is only used by a single (non-phi) landing pad. 5041 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 5042 BasicBlock *BB = RI->getParent(); 5043 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 5044 assert(RI->getValue() == LPInst && 5045 "Resume must unwind the exception that caused control to here"); 5046 5047 // Check that there are no other instructions except for debug intrinsics. 5048 if (!isCleanupBlockEmpty( 5049 make_range<Instruction *>(LPInst->getNextNode(), RI))) 5050 return false; 5051 5052 // Turn all invokes that unwind here into calls and delete the basic block. 5053 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 5054 removeUnwindEdge(Pred, DTU); 5055 ++NumInvokes; 5056 } 5057 5058 // The landingpad is now unreachable. Zap it. 5059 DeleteDeadBlock(BB, DTU); 5060 return true; 5061 } 5062 5063 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 5064 // If this is a trivial cleanup pad that executes no instructions, it can be 5065 // eliminated. If the cleanup pad continues to the caller, any predecessor 5066 // that is an EH pad will be updated to continue to the caller and any 5067 // predecessor that terminates with an invoke instruction will have its invoke 5068 // instruction converted to a call instruction. If the cleanup pad being 5069 // simplified does not continue to the caller, each predecessor will be 5070 // updated to continue to the unwind destination of the cleanup pad being 5071 // simplified. 5072 BasicBlock *BB = RI->getParent(); 5073 CleanupPadInst *CPInst = RI->getCleanupPad(); 5074 if (CPInst->getParent() != BB) 5075 // This isn't an empty cleanup. 5076 return false; 5077 5078 // We cannot kill the pad if it has multiple uses. This typically arises 5079 // from unreachable basic blocks. 5080 if (!CPInst->hasOneUse()) 5081 return false; 5082 5083 // Check that there are no other instructions except for benign intrinsics. 5084 if (!isCleanupBlockEmpty( 5085 make_range<Instruction *>(CPInst->getNextNode(), RI))) 5086 return false; 5087 5088 // If the cleanup return we are simplifying unwinds to the caller, this will 5089 // set UnwindDest to nullptr. 5090 BasicBlock *UnwindDest = RI->getUnwindDest(); 5091 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 5092 5093 // We're about to remove BB from the control flow. Before we do, sink any 5094 // PHINodes into the unwind destination. Doing this before changing the 5095 // control flow avoids some potentially slow checks, since we can currently 5096 // be certain that UnwindDest and BB have no common predecessors (since they 5097 // are both EH pads). 5098 if (UnwindDest) { 5099 // First, go through the PHI nodes in UnwindDest and update any nodes that 5100 // reference the block we are removing 5101 for (PHINode &DestPN : UnwindDest->phis()) { 5102 int Idx = DestPN.getBasicBlockIndex(BB); 5103 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 5104 assert(Idx != -1); 5105 // This PHI node has an incoming value that corresponds to a control 5106 // path through the cleanup pad we are removing. If the incoming 5107 // value is in the cleanup pad, it must be a PHINode (because we 5108 // verified above that the block is otherwise empty). Otherwise, the 5109 // value is either a constant or a value that dominates the cleanup 5110 // pad being removed. 5111 // 5112 // Because BB and UnwindDest are both EH pads, all of their 5113 // predecessors must unwind to these blocks, and since no instruction 5114 // can have multiple unwind destinations, there will be no overlap in 5115 // incoming blocks between SrcPN and DestPN. 5116 Value *SrcVal = DestPN.getIncomingValue(Idx); 5117 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 5118 5119 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 5120 for (auto *Pred : predecessors(BB)) { 5121 Value *Incoming = 5122 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 5123 DestPN.addIncoming(Incoming, Pred); 5124 } 5125 } 5126 5127 // Sink any remaining PHI nodes directly into UnwindDest. 5128 Instruction *InsertPt = DestEHPad; 5129 for (PHINode &PN : make_early_inc_range(BB->phis())) { 5130 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 5131 // If the PHI node has no uses or all of its uses are in this basic 5132 // block (meaning they are debug or lifetime intrinsics), just leave 5133 // it. It will be erased when we erase BB below. 5134 continue; 5135 5136 // Otherwise, sink this PHI node into UnwindDest. 5137 // Any predecessors to UnwindDest which are not already represented 5138 // must be back edges which inherit the value from the path through 5139 // BB. In this case, the PHI value must reference itself. 5140 for (auto *pred : predecessors(UnwindDest)) 5141 if (pred != BB) 5142 PN.addIncoming(&PN, pred); 5143 PN.moveBefore(InsertPt); 5144 // Also, add a dummy incoming value for the original BB itself, 5145 // so that the PHI is well-formed until we drop said predecessor. 5146 PN.addIncoming(PoisonValue::get(PN.getType()), BB); 5147 } 5148 } 5149 5150 std::vector<DominatorTree::UpdateType> Updates; 5151 5152 // We use make_early_inc_range here because we will remove all predecessors. 5153 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 5154 if (UnwindDest == nullptr) { 5155 if (DTU) { 5156 DTU->applyUpdates(Updates); 5157 Updates.clear(); 5158 } 5159 removeUnwindEdge(PredBB, DTU); 5160 ++NumInvokes; 5161 } else { 5162 BB->removePredecessor(PredBB); 5163 Instruction *TI = PredBB->getTerminator(); 5164 TI->replaceUsesOfWith(BB, UnwindDest); 5165 if (DTU) { 5166 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 5167 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 5168 } 5169 } 5170 } 5171 5172 if (DTU) 5173 DTU->applyUpdates(Updates); 5174 5175 DeleteDeadBlock(BB, DTU); 5176 5177 return true; 5178 } 5179 5180 // Try to merge two cleanuppads together. 5181 static bool mergeCleanupPad(CleanupReturnInst *RI) { 5182 // Skip any cleanuprets which unwind to caller, there is nothing to merge 5183 // with. 5184 BasicBlock *UnwindDest = RI->getUnwindDest(); 5185 if (!UnwindDest) 5186 return false; 5187 5188 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 5189 // be safe to merge without code duplication. 5190 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 5191 return false; 5192 5193 // Verify that our cleanuppad's unwind destination is another cleanuppad. 5194 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 5195 if (!SuccessorCleanupPad) 5196 return false; 5197 5198 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 5199 // Replace any uses of the successor cleanupad with the predecessor pad 5200 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 5201 // funclet bundle operands. 5202 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 5203 // Remove the old cleanuppad. 5204 SuccessorCleanupPad->eraseFromParent(); 5205 // Now, we simply replace the cleanupret with a branch to the unwind 5206 // destination. 5207 BranchInst::Create(UnwindDest, RI->getParent()); 5208 RI->eraseFromParent(); 5209 5210 return true; 5211 } 5212 5213 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 5214 // It is possible to transiantly have an undef cleanuppad operand because we 5215 // have deleted some, but not all, dead blocks. 5216 // Eventually, this block will be deleted. 5217 if (isa<UndefValue>(RI->getOperand(0))) 5218 return false; 5219 5220 if (mergeCleanupPad(RI)) 5221 return true; 5222 5223 if (removeEmptyCleanup(RI, DTU)) 5224 return true; 5225 5226 return false; 5227 } 5228 5229 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 5230 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 5231 BasicBlock *BB = UI->getParent(); 5232 5233 bool Changed = false; 5234 5235 // Ensure that any debug-info records that used to occur after the Unreachable 5236 // are moved to in front of it -- otherwise they'll "dangle" at the end of 5237 // the block. 5238 BB->flushTerminatorDbgValues(); 5239 5240 // Debug-info records on the unreachable inst itself should be deleted, as 5241 // below we delete everything past the final executable instruction. 5242 UI->dropDbgValues(); 5243 5244 // If there are any instructions immediately before the unreachable that can 5245 // be removed, do so. 5246 while (UI->getIterator() != BB->begin()) { 5247 BasicBlock::iterator BBI = UI->getIterator(); 5248 --BBI; 5249 5250 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 5251 break; // Can not drop any more instructions. We're done here. 5252 // Otherwise, this instruction can be freely erased, 5253 // even if it is not side-effect free. 5254 5255 // Note that deleting EH's here is in fact okay, although it involves a bit 5256 // of subtle reasoning. If this inst is an EH, all the predecessors of this 5257 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 5258 // and we can therefore guarantee this block will be erased. 5259 5260 // If we're deleting this, we're deleting any subsequent dbg.values, so 5261 // delete DPValue records of variable information. 5262 BBI->dropDbgValues(); 5263 5264 // Delete this instruction (any uses are guaranteed to be dead) 5265 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 5266 BBI->eraseFromParent(); 5267 Changed = true; 5268 } 5269 5270 // If the unreachable instruction is the first in the block, take a gander 5271 // at all of the predecessors of this instruction, and simplify them. 5272 if (&BB->front() != UI) 5273 return Changed; 5274 5275 std::vector<DominatorTree::UpdateType> Updates; 5276 5277 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5278 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 5279 auto *Predecessor = Preds[i]; 5280 Instruction *TI = Predecessor->getTerminator(); 5281 IRBuilder<> Builder(TI); 5282 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5283 // We could either have a proper unconditional branch, 5284 // or a degenerate conditional branch with matching destinations. 5285 if (all_of(BI->successors(), 5286 [BB](auto *Successor) { return Successor == BB; })) { 5287 new UnreachableInst(TI->getContext(), TI); 5288 TI->eraseFromParent(); 5289 Changed = true; 5290 } else { 5291 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5292 Value* Cond = BI->getCondition(); 5293 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5294 "The destinations are guaranteed to be different here."); 5295 CallInst *Assumption; 5296 if (BI->getSuccessor(0) == BB) { 5297 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 5298 Builder.CreateBr(BI->getSuccessor(1)); 5299 } else { 5300 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5301 Assumption = Builder.CreateAssumption(Cond); 5302 Builder.CreateBr(BI->getSuccessor(0)); 5303 } 5304 if (Options.AC) 5305 Options.AC->registerAssumption(cast<AssumeInst>(Assumption)); 5306 5307 EraseTerminatorAndDCECond(BI); 5308 Changed = true; 5309 } 5310 if (DTU) 5311 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5312 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5313 SwitchInstProfUpdateWrapper SU(*SI); 5314 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5315 if (i->getCaseSuccessor() != BB) { 5316 ++i; 5317 continue; 5318 } 5319 BB->removePredecessor(SU->getParent()); 5320 i = SU.removeCase(i); 5321 e = SU->case_end(); 5322 Changed = true; 5323 } 5324 // Note that the default destination can't be removed! 5325 if (DTU && SI->getDefaultDest() != BB) 5326 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5327 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5328 if (II->getUnwindDest() == BB) { 5329 if (DTU) { 5330 DTU->applyUpdates(Updates); 5331 Updates.clear(); 5332 } 5333 auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU)); 5334 if (!CI->doesNotThrow()) 5335 CI->setDoesNotThrow(); 5336 Changed = true; 5337 } 5338 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5339 if (CSI->getUnwindDest() == BB) { 5340 if (DTU) { 5341 DTU->applyUpdates(Updates); 5342 Updates.clear(); 5343 } 5344 removeUnwindEdge(TI->getParent(), DTU); 5345 Changed = true; 5346 continue; 5347 } 5348 5349 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5350 E = CSI->handler_end(); 5351 I != E; ++I) { 5352 if (*I == BB) { 5353 CSI->removeHandler(I); 5354 --I; 5355 --E; 5356 Changed = true; 5357 } 5358 } 5359 if (DTU) 5360 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5361 if (CSI->getNumHandlers() == 0) { 5362 if (CSI->hasUnwindDest()) { 5363 // Redirect all predecessors of the block containing CatchSwitchInst 5364 // to instead branch to the CatchSwitchInst's unwind destination. 5365 if (DTU) { 5366 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5367 Updates.push_back({DominatorTree::Insert, 5368 PredecessorOfPredecessor, 5369 CSI->getUnwindDest()}); 5370 Updates.push_back({DominatorTree::Delete, 5371 PredecessorOfPredecessor, Predecessor}); 5372 } 5373 } 5374 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5375 } else { 5376 // Rewrite all preds to unwind to caller (or from invoke to call). 5377 if (DTU) { 5378 DTU->applyUpdates(Updates); 5379 Updates.clear(); 5380 } 5381 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5382 for (BasicBlock *EHPred : EHPreds) 5383 removeUnwindEdge(EHPred, DTU); 5384 } 5385 // The catchswitch is no longer reachable. 5386 new UnreachableInst(CSI->getContext(), CSI); 5387 CSI->eraseFromParent(); 5388 Changed = true; 5389 } 5390 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5391 (void)CRI; 5392 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5393 "Expected to always have an unwind to BB."); 5394 if (DTU) 5395 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5396 new UnreachableInst(TI->getContext(), TI); 5397 TI->eraseFromParent(); 5398 Changed = true; 5399 } 5400 } 5401 5402 if (DTU) 5403 DTU->applyUpdates(Updates); 5404 5405 // If this block is now dead, remove it. 5406 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5407 DeleteDeadBlock(BB, DTU); 5408 return true; 5409 } 5410 5411 return Changed; 5412 } 5413 5414 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5415 assert(Cases.size() >= 1); 5416 5417 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 5418 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5419 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5420 return false; 5421 } 5422 return true; 5423 } 5424 5425 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5426 DomTreeUpdater *DTU) { 5427 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5428 auto *BB = Switch->getParent(); 5429 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5430 OrigDefaultBlock->removePredecessor(BB); 5431 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5432 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5433 OrigDefaultBlock); 5434 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5435 Switch->setDefaultDest(&*NewDefaultBlock); 5436 if (DTU) { 5437 SmallVector<DominatorTree::UpdateType, 2> Updates; 5438 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5439 if (!is_contained(successors(BB), OrigDefaultBlock)) 5440 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5441 DTU->applyUpdates(Updates); 5442 } 5443 } 5444 5445 /// Turn a switch into an integer range comparison and branch. 5446 /// Switches with more than 2 destinations are ignored. 5447 /// Switches with 1 destination are also ignored. 5448 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 5449 IRBuilder<> &Builder) { 5450 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5451 5452 bool HasDefault = 5453 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5454 5455 auto *BB = SI->getParent(); 5456 5457 // Partition the cases into two sets with different destinations. 5458 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5459 BasicBlock *DestB = nullptr; 5460 SmallVector<ConstantInt *, 16> CasesA; 5461 SmallVector<ConstantInt *, 16> CasesB; 5462 5463 for (auto Case : SI->cases()) { 5464 BasicBlock *Dest = Case.getCaseSuccessor(); 5465 if (!DestA) 5466 DestA = Dest; 5467 if (Dest == DestA) { 5468 CasesA.push_back(Case.getCaseValue()); 5469 continue; 5470 } 5471 if (!DestB) 5472 DestB = Dest; 5473 if (Dest == DestB) { 5474 CasesB.push_back(Case.getCaseValue()); 5475 continue; 5476 } 5477 return false; // More than two destinations. 5478 } 5479 if (!DestB) 5480 return false; // All destinations are the same and the default is unreachable 5481 5482 assert(DestA && DestB && 5483 "Single-destination switch should have been folded."); 5484 assert(DestA != DestB); 5485 assert(DestB != SI->getDefaultDest()); 5486 assert(!CasesB.empty() && "There must be non-default cases."); 5487 assert(!CasesA.empty() || HasDefault); 5488 5489 // Figure out if one of the sets of cases form a contiguous range. 5490 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5491 BasicBlock *ContiguousDest = nullptr; 5492 BasicBlock *OtherDest = nullptr; 5493 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 5494 ContiguousCases = &CasesA; 5495 ContiguousDest = DestA; 5496 OtherDest = DestB; 5497 } else if (CasesAreContiguous(CasesB)) { 5498 ContiguousCases = &CasesB; 5499 ContiguousDest = DestB; 5500 OtherDest = DestA; 5501 } else 5502 return false; 5503 5504 // Start building the compare and branch. 5505 5506 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5507 Constant *NumCases = 5508 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5509 5510 Value *Sub = SI->getCondition(); 5511 if (!Offset->isNullValue()) 5512 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5513 5514 Value *Cmp; 5515 // If NumCases overflowed, then all possible values jump to the successor. 5516 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5517 Cmp = ConstantInt::getTrue(SI->getContext()); 5518 else 5519 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5520 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5521 5522 // Update weight for the newly-created conditional branch. 5523 if (hasBranchWeightMD(*SI)) { 5524 SmallVector<uint64_t, 8> Weights; 5525 GetBranchWeights(SI, Weights); 5526 if (Weights.size() == 1 + SI->getNumCases()) { 5527 uint64_t TrueWeight = 0; 5528 uint64_t FalseWeight = 0; 5529 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5530 if (SI->getSuccessor(I) == ContiguousDest) 5531 TrueWeight += Weights[I]; 5532 else 5533 FalseWeight += Weights[I]; 5534 } 5535 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5536 TrueWeight /= 2; 5537 FalseWeight /= 2; 5538 } 5539 setBranchWeights(NewBI, TrueWeight, FalseWeight); 5540 } 5541 } 5542 5543 // Prune obsolete incoming values off the successors' PHI nodes. 5544 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5545 unsigned PreviousEdges = ContiguousCases->size(); 5546 if (ContiguousDest == SI->getDefaultDest()) 5547 ++PreviousEdges; 5548 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5549 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5550 } 5551 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5552 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5553 if (OtherDest == SI->getDefaultDest()) 5554 ++PreviousEdges; 5555 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5556 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5557 } 5558 5559 // Clean up the default block - it may have phis or other instructions before 5560 // the unreachable terminator. 5561 if (!HasDefault) 5562 createUnreachableSwitchDefault(SI, DTU); 5563 5564 auto *UnreachableDefault = SI->getDefaultDest(); 5565 5566 // Drop the switch. 5567 SI->eraseFromParent(); 5568 5569 if (!HasDefault && DTU) 5570 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5571 5572 return true; 5573 } 5574 5575 /// Compute masked bits for the condition of a switch 5576 /// and use it to remove dead cases. 5577 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5578 AssumptionCache *AC, 5579 const DataLayout &DL) { 5580 Value *Cond = SI->getCondition(); 5581 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5582 5583 // We can also eliminate cases by determining that their values are outside of 5584 // the limited range of the condition based on how many significant (non-sign) 5585 // bits are in the condition value. 5586 unsigned MaxSignificantBitsInCond = 5587 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5588 5589 // Gather dead cases. 5590 SmallVector<ConstantInt *, 8> DeadCases; 5591 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5592 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5593 for (const auto &Case : SI->cases()) { 5594 auto *Successor = Case.getCaseSuccessor(); 5595 if (DTU) { 5596 if (!NumPerSuccessorCases.count(Successor)) 5597 UniqueSuccessors.push_back(Successor); 5598 ++NumPerSuccessorCases[Successor]; 5599 } 5600 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5601 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5602 (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) { 5603 DeadCases.push_back(Case.getCaseValue()); 5604 if (DTU) 5605 --NumPerSuccessorCases[Successor]; 5606 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5607 << " is dead.\n"); 5608 } 5609 } 5610 5611 // If we can prove that the cases must cover all possible values, the 5612 // default destination becomes dead and we can remove it. If we know some 5613 // of the bits in the value, we can use that to more precisely compute the 5614 // number of possible unique case values. 5615 bool HasDefault = 5616 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5617 const unsigned NumUnknownBits = 5618 Known.getBitWidth() - (Known.Zero | Known.One).popcount(); 5619 assert(NumUnknownBits <= Known.getBitWidth()); 5620 if (HasDefault && DeadCases.empty() && 5621 NumUnknownBits < 64 /* avoid overflow */ && 5622 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5623 createUnreachableSwitchDefault(SI, DTU); 5624 return true; 5625 } 5626 5627 if (DeadCases.empty()) 5628 return false; 5629 5630 SwitchInstProfUpdateWrapper SIW(*SI); 5631 for (ConstantInt *DeadCase : DeadCases) { 5632 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5633 assert(CaseI != SI->case_default() && 5634 "Case was not found. Probably mistake in DeadCases forming."); 5635 // Prune unused values from PHI nodes. 5636 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5637 SIW.removeCase(CaseI); 5638 } 5639 5640 if (DTU) { 5641 std::vector<DominatorTree::UpdateType> Updates; 5642 for (auto *Successor : UniqueSuccessors) 5643 if (NumPerSuccessorCases[Successor] == 0) 5644 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5645 DTU->applyUpdates(Updates); 5646 } 5647 5648 return true; 5649 } 5650 5651 /// If BB would be eligible for simplification by 5652 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5653 /// by an unconditional branch), look at the phi node for BB in the successor 5654 /// block and see if the incoming value is equal to CaseValue. If so, return 5655 /// the phi node, and set PhiIndex to BB's index in the phi node. 5656 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5657 BasicBlock *BB, int *PhiIndex) { 5658 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5659 return nullptr; // BB must be empty to be a candidate for simplification. 5660 if (!BB->getSinglePredecessor()) 5661 return nullptr; // BB must be dominated by the switch. 5662 5663 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5664 if (!Branch || !Branch->isUnconditional()) 5665 return nullptr; // Terminator must be unconditional branch. 5666 5667 BasicBlock *Succ = Branch->getSuccessor(0); 5668 5669 for (PHINode &PHI : Succ->phis()) { 5670 int Idx = PHI.getBasicBlockIndex(BB); 5671 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5672 5673 Value *InValue = PHI.getIncomingValue(Idx); 5674 if (InValue != CaseValue) 5675 continue; 5676 5677 *PhiIndex = Idx; 5678 return &PHI; 5679 } 5680 5681 return nullptr; 5682 } 5683 5684 /// Try to forward the condition of a switch instruction to a phi node 5685 /// dominated by the switch, if that would mean that some of the destination 5686 /// blocks of the switch can be folded away. Return true if a change is made. 5687 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5688 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5689 5690 ForwardingNodesMap ForwardingNodes; 5691 BasicBlock *SwitchBlock = SI->getParent(); 5692 bool Changed = false; 5693 for (const auto &Case : SI->cases()) { 5694 ConstantInt *CaseValue = Case.getCaseValue(); 5695 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5696 5697 // Replace phi operands in successor blocks that are using the constant case 5698 // value rather than the switch condition variable: 5699 // switchbb: 5700 // switch i32 %x, label %default [ 5701 // i32 17, label %succ 5702 // ... 5703 // succ: 5704 // %r = phi i32 ... [ 17, %switchbb ] ... 5705 // --> 5706 // %r = phi i32 ... [ %x, %switchbb ] ... 5707 5708 for (PHINode &Phi : CaseDest->phis()) { 5709 // This only works if there is exactly 1 incoming edge from the switch to 5710 // a phi. If there is >1, that means multiple cases of the switch map to 1 5711 // value in the phi, and that phi value is not the switch condition. Thus, 5712 // this transform would not make sense (the phi would be invalid because 5713 // a phi can't have different incoming values from the same block). 5714 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5715 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5716 count(Phi.blocks(), SwitchBlock) == 1) { 5717 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5718 Changed = true; 5719 } 5720 } 5721 5722 // Collect phi nodes that are indirectly using this switch's case constants. 5723 int PhiIdx; 5724 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5725 ForwardingNodes[Phi].push_back(PhiIdx); 5726 } 5727 5728 for (auto &ForwardingNode : ForwardingNodes) { 5729 PHINode *Phi = ForwardingNode.first; 5730 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5731 if (Indexes.size() < 2) 5732 continue; 5733 5734 for (int Index : Indexes) 5735 Phi->setIncomingValue(Index, SI->getCondition()); 5736 Changed = true; 5737 } 5738 5739 return Changed; 5740 } 5741 5742 /// Return true if the backend will be able to handle 5743 /// initializing an array of constants like C. 5744 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5745 if (C->isThreadDependent()) 5746 return false; 5747 if (C->isDLLImportDependent()) 5748 return false; 5749 5750 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5751 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5752 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5753 return false; 5754 5755 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5756 // Pointer casts and in-bounds GEPs will not prohibit the backend from 5757 // materializing the array of constants. 5758 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 5759 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI)) 5760 return false; 5761 } 5762 5763 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5764 return false; 5765 5766 return true; 5767 } 5768 5769 /// If V is a Constant, return it. Otherwise, try to look up 5770 /// its constant value in ConstantPool, returning 0 if it's not there. 5771 static Constant * 5772 LookupConstant(Value *V, 5773 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5774 if (Constant *C = dyn_cast<Constant>(V)) 5775 return C; 5776 return ConstantPool.lookup(V); 5777 } 5778 5779 /// Try to fold instruction I into a constant. This works for 5780 /// simple instructions such as binary operations where both operands are 5781 /// constant or can be replaced by constants from the ConstantPool. Returns the 5782 /// resulting constant on success, 0 otherwise. 5783 static Constant * 5784 ConstantFold(Instruction *I, const DataLayout &DL, 5785 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5786 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5787 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5788 if (!A) 5789 return nullptr; 5790 if (A->isAllOnesValue()) 5791 return LookupConstant(Select->getTrueValue(), ConstantPool); 5792 if (A->isNullValue()) 5793 return LookupConstant(Select->getFalseValue(), ConstantPool); 5794 return nullptr; 5795 } 5796 5797 SmallVector<Constant *, 4> COps; 5798 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5799 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5800 COps.push_back(A); 5801 else 5802 return nullptr; 5803 } 5804 5805 return ConstantFoldInstOperands(I, COps, DL); 5806 } 5807 5808 /// Try to determine the resulting constant values in phi nodes 5809 /// at the common destination basic block, *CommonDest, for one of the case 5810 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5811 /// case), of a switch instruction SI. 5812 static bool 5813 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5814 BasicBlock **CommonDest, 5815 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5816 const DataLayout &DL, const TargetTransformInfo &TTI) { 5817 // The block from which we enter the common destination. 5818 BasicBlock *Pred = SI->getParent(); 5819 5820 // If CaseDest is empty except for some side-effect free instructions through 5821 // which we can constant-propagate the CaseVal, continue to its successor. 5822 SmallDenseMap<Value *, Constant *> ConstantPool; 5823 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5824 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 5825 if (I.isTerminator()) { 5826 // If the terminator is a simple branch, continue to the next block. 5827 if (I.getNumSuccessors() != 1 || I.isSpecialTerminator()) 5828 return false; 5829 Pred = CaseDest; 5830 CaseDest = I.getSuccessor(0); 5831 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5832 // Instruction is side-effect free and constant. 5833 5834 // If the instruction has uses outside this block or a phi node slot for 5835 // the block, it is not safe to bypass the instruction since it would then 5836 // no longer dominate all its uses. 5837 for (auto &Use : I.uses()) { 5838 User *User = Use.getUser(); 5839 if (Instruction *I = dyn_cast<Instruction>(User)) 5840 if (I->getParent() == CaseDest) 5841 continue; 5842 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5843 if (Phi->getIncomingBlock(Use) == CaseDest) 5844 continue; 5845 return false; 5846 } 5847 5848 ConstantPool.insert(std::make_pair(&I, C)); 5849 } else { 5850 break; 5851 } 5852 } 5853 5854 // If we did not have a CommonDest before, use the current one. 5855 if (!*CommonDest) 5856 *CommonDest = CaseDest; 5857 // If the destination isn't the common one, abort. 5858 if (CaseDest != *CommonDest) 5859 return false; 5860 5861 // Get the values for this case from phi nodes in the destination block. 5862 for (PHINode &PHI : (*CommonDest)->phis()) { 5863 int Idx = PHI.getBasicBlockIndex(Pred); 5864 if (Idx == -1) 5865 continue; 5866 5867 Constant *ConstVal = 5868 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5869 if (!ConstVal) 5870 return false; 5871 5872 // Be conservative about which kinds of constants we support. 5873 if (!ValidLookupTableConstant(ConstVal, TTI)) 5874 return false; 5875 5876 Res.push_back(std::make_pair(&PHI, ConstVal)); 5877 } 5878 5879 return Res.size() > 0; 5880 } 5881 5882 // Helper function used to add CaseVal to the list of cases that generate 5883 // Result. Returns the updated number of cases that generate this result. 5884 static size_t mapCaseToResult(ConstantInt *CaseVal, 5885 SwitchCaseResultVectorTy &UniqueResults, 5886 Constant *Result) { 5887 for (auto &I : UniqueResults) { 5888 if (I.first == Result) { 5889 I.second.push_back(CaseVal); 5890 return I.second.size(); 5891 } 5892 } 5893 UniqueResults.push_back( 5894 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5895 return 1; 5896 } 5897 5898 // Helper function that initializes a map containing 5899 // results for the PHI node of the common destination block for a switch 5900 // instruction. Returns false if multiple PHI nodes have been found or if 5901 // there is not a common destination block for the switch. 5902 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 5903 BasicBlock *&CommonDest, 5904 SwitchCaseResultVectorTy &UniqueResults, 5905 Constant *&DefaultResult, 5906 const DataLayout &DL, 5907 const TargetTransformInfo &TTI, 5908 uintptr_t MaxUniqueResults) { 5909 for (const auto &I : SI->cases()) { 5910 ConstantInt *CaseVal = I.getCaseValue(); 5911 5912 // Resulting value at phi nodes for this case value. 5913 SwitchCaseResultsTy Results; 5914 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5915 DL, TTI)) 5916 return false; 5917 5918 // Only one value per case is permitted. 5919 if (Results.size() > 1) 5920 return false; 5921 5922 // Add the case->result mapping to UniqueResults. 5923 const size_t NumCasesForResult = 5924 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5925 5926 // Early out if there are too many cases for this result. 5927 if (NumCasesForResult > MaxSwitchCasesPerResult) 5928 return false; 5929 5930 // Early out if there are too many unique results. 5931 if (UniqueResults.size() > MaxUniqueResults) 5932 return false; 5933 5934 // Check the PHI consistency. 5935 if (!PHI) 5936 PHI = Results[0].first; 5937 else if (PHI != Results[0].first) 5938 return false; 5939 } 5940 // Find the default result value. 5941 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5942 BasicBlock *DefaultDest = SI->getDefaultDest(); 5943 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5944 DL, TTI); 5945 // If the default value is not found abort unless the default destination 5946 // is unreachable. 5947 DefaultResult = 5948 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5949 if ((!DefaultResult && 5950 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5951 return false; 5952 5953 return true; 5954 } 5955 5956 // Helper function that checks if it is possible to transform a switch with only 5957 // two cases (or two cases + default) that produces a result into a select. 5958 // TODO: Handle switches with more than 2 cases that map to the same result. 5959 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector, 5960 Constant *DefaultResult, Value *Condition, 5961 IRBuilder<> &Builder) { 5962 // If we are selecting between only two cases transform into a simple 5963 // select or a two-way select if default is possible. 5964 // Example: 5965 // switch (a) { %0 = icmp eq i32 %a, 10 5966 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4 5967 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20 5968 // default: return 4; %3 = select i1 %2, i32 2, i32 %1 5969 // } 5970 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5971 ResultVector[1].second.size() == 1) { 5972 ConstantInt *FirstCase = ResultVector[0].second[0]; 5973 ConstantInt *SecondCase = ResultVector[1].second[0]; 5974 Value *SelectValue = ResultVector[1].first; 5975 if (DefaultResult) { 5976 Value *ValueCompare = 5977 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5978 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5979 DefaultResult, "switch.select"); 5980 } 5981 Value *ValueCompare = 5982 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5983 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5984 SelectValue, "switch.select"); 5985 } 5986 5987 // Handle the degenerate case where two cases have the same result value. 5988 if (ResultVector.size() == 1 && DefaultResult) { 5989 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second; 5990 unsigned CaseCount = CaseValues.size(); 5991 // n bits group cases map to the same result: 5992 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default 5993 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default 5994 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default 5995 if (isPowerOf2_32(CaseCount)) { 5996 ConstantInt *MinCaseVal = CaseValues[0]; 5997 // Find mininal value. 5998 for (auto *Case : CaseValues) 5999 if (Case->getValue().slt(MinCaseVal->getValue())) 6000 MinCaseVal = Case; 6001 6002 // Mark the bits case number touched. 6003 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth()); 6004 for (auto *Case : CaseValues) 6005 BitMask |= (Case->getValue() - MinCaseVal->getValue()); 6006 6007 // Check if cases with the same result can cover all number 6008 // in touched bits. 6009 if (BitMask.popcount() == Log2_32(CaseCount)) { 6010 if (!MinCaseVal->isNullValue()) 6011 Condition = Builder.CreateSub(Condition, MinCaseVal); 6012 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and"); 6013 Value *Cmp = Builder.CreateICmpEQ( 6014 And, Constant::getNullValue(And->getType()), "switch.selectcmp"); 6015 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 6016 } 6017 } 6018 6019 // Handle the degenerate case where two cases have the same value. 6020 if (CaseValues.size() == 2) { 6021 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0], 6022 "switch.selectcmp.case1"); 6023 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1], 6024 "switch.selectcmp.case2"); 6025 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 6026 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 6027 } 6028 } 6029 6030 return nullptr; 6031 } 6032 6033 // Helper function to cleanup a switch instruction that has been converted into 6034 // a select, fixing up PHI nodes and basic blocks. 6035 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI, 6036 Value *SelectValue, 6037 IRBuilder<> &Builder, 6038 DomTreeUpdater *DTU) { 6039 std::vector<DominatorTree::UpdateType> Updates; 6040 6041 BasicBlock *SelectBB = SI->getParent(); 6042 BasicBlock *DestBB = PHI->getParent(); 6043 6044 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 6045 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 6046 Builder.CreateBr(DestBB); 6047 6048 // Remove the switch. 6049 6050 PHI->removeIncomingValueIf( 6051 [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; }); 6052 PHI->addIncoming(SelectValue, SelectBB); 6053 6054 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 6055 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6056 BasicBlock *Succ = SI->getSuccessor(i); 6057 6058 if (Succ == DestBB) 6059 continue; 6060 Succ->removePredecessor(SelectBB); 6061 if (DTU && RemovedSuccessors.insert(Succ).second) 6062 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 6063 } 6064 SI->eraseFromParent(); 6065 if (DTU) 6066 DTU->applyUpdates(Updates); 6067 } 6068 6069 /// If a switch is only used to initialize one or more phi nodes in a common 6070 /// successor block with only two different constant values, try to replace the 6071 /// switch with a select. Returns true if the fold was made. 6072 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 6073 DomTreeUpdater *DTU, const DataLayout &DL, 6074 const TargetTransformInfo &TTI) { 6075 Value *const Cond = SI->getCondition(); 6076 PHINode *PHI = nullptr; 6077 BasicBlock *CommonDest = nullptr; 6078 Constant *DefaultResult; 6079 SwitchCaseResultVectorTy UniqueResults; 6080 // Collect all the cases that will deliver the same value from the switch. 6081 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 6082 DL, TTI, /*MaxUniqueResults*/ 2)) 6083 return false; 6084 6085 assert(PHI != nullptr && "PHI for value select not found"); 6086 Builder.SetInsertPoint(SI); 6087 Value *SelectValue = 6088 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder); 6089 if (!SelectValue) 6090 return false; 6091 6092 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU); 6093 return true; 6094 } 6095 6096 namespace { 6097 6098 /// This class represents a lookup table that can be used to replace a switch. 6099 class SwitchLookupTable { 6100 public: 6101 /// Create a lookup table to use as a switch replacement with the contents 6102 /// of Values, using DefaultValue to fill any holes in the table. 6103 SwitchLookupTable( 6104 Module &M, uint64_t TableSize, ConstantInt *Offset, 6105 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6106 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 6107 6108 /// Build instructions with Builder to retrieve the value at 6109 /// the position given by Index in the lookup table. 6110 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 6111 6112 /// Return true if a table with TableSize elements of 6113 /// type ElementType would fit in a target-legal register. 6114 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 6115 Type *ElementType); 6116 6117 private: 6118 // Depending on the contents of the table, it can be represented in 6119 // different ways. 6120 enum { 6121 // For tables where each element contains the same value, we just have to 6122 // store that single value and return it for each lookup. 6123 SingleValueKind, 6124 6125 // For tables where there is a linear relationship between table index 6126 // and values. We calculate the result with a simple multiplication 6127 // and addition instead of a table lookup. 6128 LinearMapKind, 6129 6130 // For small tables with integer elements, we can pack them into a bitmap 6131 // that fits into a target-legal register. Values are retrieved by 6132 // shift and mask operations. 6133 BitMapKind, 6134 6135 // The table is stored as an array of values. Values are retrieved by load 6136 // instructions from the table. 6137 ArrayKind 6138 } Kind; 6139 6140 // For SingleValueKind, this is the single value. 6141 Constant *SingleValue = nullptr; 6142 6143 // For BitMapKind, this is the bitmap. 6144 ConstantInt *BitMap = nullptr; 6145 IntegerType *BitMapElementTy = nullptr; 6146 6147 // For LinearMapKind, these are the constants used to derive the value. 6148 ConstantInt *LinearOffset = nullptr; 6149 ConstantInt *LinearMultiplier = nullptr; 6150 bool LinearMapValWrapped = false; 6151 6152 // For ArrayKind, this is the array. 6153 GlobalVariable *Array = nullptr; 6154 }; 6155 6156 } // end anonymous namespace 6157 6158 SwitchLookupTable::SwitchLookupTable( 6159 Module &M, uint64_t TableSize, ConstantInt *Offset, 6160 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6161 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 6162 assert(Values.size() && "Can't build lookup table without values!"); 6163 assert(TableSize >= Values.size() && "Can't fit values in table!"); 6164 6165 // If all values in the table are equal, this is that value. 6166 SingleValue = Values.begin()->second; 6167 6168 Type *ValueType = Values.begin()->second->getType(); 6169 6170 // Build up the table contents. 6171 SmallVector<Constant *, 64> TableContents(TableSize); 6172 for (size_t I = 0, E = Values.size(); I != E; ++I) { 6173 ConstantInt *CaseVal = Values[I].first; 6174 Constant *CaseRes = Values[I].second; 6175 assert(CaseRes->getType() == ValueType); 6176 6177 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 6178 TableContents[Idx] = CaseRes; 6179 6180 if (CaseRes != SingleValue) 6181 SingleValue = nullptr; 6182 } 6183 6184 // Fill in any holes in the table with the default result. 6185 if (Values.size() < TableSize) { 6186 assert(DefaultValue && 6187 "Need a default value to fill the lookup table holes."); 6188 assert(DefaultValue->getType() == ValueType); 6189 for (uint64_t I = 0; I < TableSize; ++I) { 6190 if (!TableContents[I]) 6191 TableContents[I] = DefaultValue; 6192 } 6193 6194 if (DefaultValue != SingleValue) 6195 SingleValue = nullptr; 6196 } 6197 6198 // If each element in the table contains the same value, we only need to store 6199 // that single value. 6200 if (SingleValue) { 6201 Kind = SingleValueKind; 6202 return; 6203 } 6204 6205 // Check if we can derive the value with a linear transformation from the 6206 // table index. 6207 if (isa<IntegerType>(ValueType)) { 6208 bool LinearMappingPossible = true; 6209 APInt PrevVal; 6210 APInt DistToPrev; 6211 // When linear map is monotonic and signed overflow doesn't happen on 6212 // maximum index, we can attach nsw on Add and Mul. 6213 bool NonMonotonic = false; 6214 assert(TableSize >= 2 && "Should be a SingleValue table."); 6215 // Check if there is the same distance between two consecutive values. 6216 for (uint64_t I = 0; I < TableSize; ++I) { 6217 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 6218 if (!ConstVal) { 6219 // This is an undef. We could deal with it, but undefs in lookup tables 6220 // are very seldom. It's probably not worth the additional complexity. 6221 LinearMappingPossible = false; 6222 break; 6223 } 6224 const APInt &Val = ConstVal->getValue(); 6225 if (I != 0) { 6226 APInt Dist = Val - PrevVal; 6227 if (I == 1) { 6228 DistToPrev = Dist; 6229 } else if (Dist != DistToPrev) { 6230 LinearMappingPossible = false; 6231 break; 6232 } 6233 NonMonotonic |= 6234 Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal); 6235 } 6236 PrevVal = Val; 6237 } 6238 if (LinearMappingPossible) { 6239 LinearOffset = cast<ConstantInt>(TableContents[0]); 6240 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 6241 bool MayWrap = false; 6242 APInt M = LinearMultiplier->getValue(); 6243 (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap); 6244 LinearMapValWrapped = NonMonotonic || MayWrap; 6245 Kind = LinearMapKind; 6246 ++NumLinearMaps; 6247 return; 6248 } 6249 } 6250 6251 // If the type is integer and the table fits in a register, build a bitmap. 6252 if (WouldFitInRegister(DL, TableSize, ValueType)) { 6253 IntegerType *IT = cast<IntegerType>(ValueType); 6254 APInt TableInt(TableSize * IT->getBitWidth(), 0); 6255 for (uint64_t I = TableSize; I > 0; --I) { 6256 TableInt <<= IT->getBitWidth(); 6257 // Insert values into the bitmap. Undef values are set to zero. 6258 if (!isa<UndefValue>(TableContents[I - 1])) { 6259 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 6260 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 6261 } 6262 } 6263 BitMap = ConstantInt::get(M.getContext(), TableInt); 6264 BitMapElementTy = IT; 6265 Kind = BitMapKind; 6266 ++NumBitMaps; 6267 return; 6268 } 6269 6270 // Store the table in an array. 6271 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 6272 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 6273 6274 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 6275 GlobalVariable::PrivateLinkage, Initializer, 6276 "switch.table." + FuncName); 6277 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 6278 // Set the alignment to that of an array items. We will be only loading one 6279 // value out of it. 6280 Array->setAlignment(DL.getPrefTypeAlign(ValueType)); 6281 Kind = ArrayKind; 6282 } 6283 6284 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 6285 switch (Kind) { 6286 case SingleValueKind: 6287 return SingleValue; 6288 case LinearMapKind: { 6289 // Derive the result value from the input value. 6290 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 6291 false, "switch.idx.cast"); 6292 if (!LinearMultiplier->isOne()) 6293 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult", 6294 /*HasNUW = */ false, 6295 /*HasNSW = */ !LinearMapValWrapped); 6296 6297 if (!LinearOffset->isZero()) 6298 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset", 6299 /*HasNUW = */ false, 6300 /*HasNSW = */ !LinearMapValWrapped); 6301 return Result; 6302 } 6303 case BitMapKind: { 6304 // Type of the bitmap (e.g. i59). 6305 IntegerType *MapTy = BitMap->getIntegerType(); 6306 6307 // Cast Index to the same type as the bitmap. 6308 // Note: The Index is <= the number of elements in the table, so 6309 // truncating it to the width of the bitmask is safe. 6310 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 6311 6312 // Multiply the shift amount by the element width. NUW/NSW can always be 6313 // set, because WouldFitInRegister guarantees Index * ShiftAmt is in 6314 // BitMap's bit width. 6315 ShiftAmt = Builder.CreateMul( 6316 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 6317 "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true); 6318 6319 // Shift down. 6320 Value *DownShifted = 6321 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 6322 // Mask off. 6323 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6324 } 6325 case ArrayKind: { 6326 // Make sure the table index will not overflow when treated as signed. 6327 IntegerType *IT = cast<IntegerType>(Index->getType()); 6328 uint64_t TableSize = 6329 Array->getInitializer()->getType()->getArrayNumElements(); 6330 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u))) 6331 Index = Builder.CreateZExt( 6332 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6333 "switch.tableidx.zext"); 6334 6335 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6336 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6337 GEPIndices, "switch.gep"); 6338 return Builder.CreateLoad( 6339 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6340 "switch.load"); 6341 } 6342 } 6343 llvm_unreachable("Unknown lookup table kind!"); 6344 } 6345 6346 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 6347 uint64_t TableSize, 6348 Type *ElementType) { 6349 auto *IT = dyn_cast<IntegerType>(ElementType); 6350 if (!IT) 6351 return false; 6352 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6353 // are <= 15, we could try to narrow the type. 6354 6355 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6356 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6357 return false; 6358 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6359 } 6360 6361 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6362 const DataLayout &DL) { 6363 // Allow any legal type. 6364 if (TTI.isTypeLegal(Ty)) 6365 return true; 6366 6367 auto *IT = dyn_cast<IntegerType>(Ty); 6368 if (!IT) 6369 return false; 6370 6371 // Also allow power of 2 integer types that have at least 8 bits and fit in 6372 // a register. These types are common in frontend languages and targets 6373 // usually support loads of these types. 6374 // TODO: We could relax this to any integer that fits in a register and rely 6375 // on ABI alignment and padding in the table to allow the load to be widened. 6376 // Or we could widen the constants and truncate the load. 6377 unsigned BitWidth = IT->getBitWidth(); 6378 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6379 DL.fitsInLegalInteger(IT->getBitWidth()); 6380 } 6381 6382 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) { 6383 // 40% is the default density for building a jump table in optsize/minsize 6384 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this 6385 // function was based on. 6386 const uint64_t MinDensity = 40; 6387 6388 if (CaseRange >= UINT64_MAX / 100) 6389 return false; // Avoid multiplication overflows below. 6390 6391 return NumCases * 100 >= CaseRange * MinDensity; 6392 } 6393 6394 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6395 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6396 uint64_t Range = Diff + 1; 6397 if (Range < Diff) 6398 return false; // Overflow. 6399 6400 return isSwitchDense(Values.size(), Range); 6401 } 6402 6403 /// Determine whether a lookup table should be built for this switch, based on 6404 /// the number of cases, size of the table, and the types of the results. 6405 // TODO: We could support larger than legal types by limiting based on the 6406 // number of loads required and/or table size. If the constants are small we 6407 // could use smaller table entries and extend after the load. 6408 static bool 6409 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6410 const TargetTransformInfo &TTI, const DataLayout &DL, 6411 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6412 if (SI->getNumCases() > TableSize) 6413 return false; // TableSize overflowed. 6414 6415 bool AllTablesFitInRegister = true; 6416 bool HasIllegalType = false; 6417 for (const auto &I : ResultTypes) { 6418 Type *Ty = I.second; 6419 6420 // Saturate this flag to true. 6421 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6422 6423 // Saturate this flag to false. 6424 AllTablesFitInRegister = 6425 AllTablesFitInRegister && 6426 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 6427 6428 // If both flags saturate, we're done. NOTE: This *only* works with 6429 // saturating flags, and all flags have to saturate first due to the 6430 // non-deterministic behavior of iterating over a dense map. 6431 if (HasIllegalType && !AllTablesFitInRegister) 6432 break; 6433 } 6434 6435 // If each table would fit in a register, we should build it anyway. 6436 if (AllTablesFitInRegister) 6437 return true; 6438 6439 // Don't build a table that doesn't fit in-register if it has illegal types. 6440 if (HasIllegalType) 6441 return false; 6442 6443 return isSwitchDense(SI->getNumCases(), TableSize); 6444 } 6445 6446 static bool ShouldUseSwitchConditionAsTableIndex( 6447 ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal, 6448 bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes, 6449 const DataLayout &DL, const TargetTransformInfo &TTI) { 6450 if (MinCaseVal.isNullValue()) 6451 return true; 6452 if (MinCaseVal.isNegative() || 6453 MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() || 6454 !HasDefaultResults) 6455 return false; 6456 return all_of(ResultTypes, [&](const auto &KV) { 6457 return SwitchLookupTable::WouldFitInRegister( 6458 DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */, 6459 KV.second /* ResultType */); 6460 }); 6461 } 6462 6463 /// Try to reuse the switch table index compare. Following pattern: 6464 /// \code 6465 /// if (idx < tablesize) 6466 /// r = table[idx]; // table does not contain default_value 6467 /// else 6468 /// r = default_value; 6469 /// if (r != default_value) 6470 /// ... 6471 /// \endcode 6472 /// Is optimized to: 6473 /// \code 6474 /// cond = idx < tablesize; 6475 /// if (cond) 6476 /// r = table[idx]; 6477 /// else 6478 /// r = default_value; 6479 /// if (cond) 6480 /// ... 6481 /// \endcode 6482 /// Jump threading will then eliminate the second if(cond). 6483 static void reuseTableCompare( 6484 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6485 Constant *DefaultValue, 6486 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6487 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6488 if (!CmpInst) 6489 return; 6490 6491 // We require that the compare is in the same block as the phi so that jump 6492 // threading can do its work afterwards. 6493 if (CmpInst->getParent() != PhiBlock) 6494 return; 6495 6496 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6497 if (!CmpOp1) 6498 return; 6499 6500 Value *RangeCmp = RangeCheckBranch->getCondition(); 6501 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6502 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6503 6504 // Check if the compare with the default value is constant true or false. 6505 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6506 DefaultValue, CmpOp1, true); 6507 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6508 return; 6509 6510 // Check if the compare with the case values is distinct from the default 6511 // compare result. 6512 for (auto ValuePair : Values) { 6513 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6514 ValuePair.second, CmpOp1, true); 6515 if (!CaseConst || CaseConst == DefaultConst || 6516 (CaseConst != TrueConst && CaseConst != FalseConst)) 6517 return; 6518 } 6519 6520 // Check if the branch instruction dominates the phi node. It's a simple 6521 // dominance check, but sufficient for our needs. 6522 // Although this check is invariant in the calling loops, it's better to do it 6523 // at this late stage. Practically we do it at most once for a switch. 6524 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6525 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6526 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6527 return; 6528 } 6529 6530 if (DefaultConst == FalseConst) { 6531 // The compare yields the same result. We can replace it. 6532 CmpInst->replaceAllUsesWith(RangeCmp); 6533 ++NumTableCmpReuses; 6534 } else { 6535 // The compare yields the same result, just inverted. We can replace it. 6536 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6537 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6538 RangeCheckBranch); 6539 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6540 ++NumTableCmpReuses; 6541 } 6542 } 6543 6544 /// If the switch is only used to initialize one or more phi nodes in a common 6545 /// successor block with different constant values, replace the switch with 6546 /// lookup tables. 6547 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6548 DomTreeUpdater *DTU, const DataLayout &DL, 6549 const TargetTransformInfo &TTI) { 6550 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6551 6552 BasicBlock *BB = SI->getParent(); 6553 Function *Fn = BB->getParent(); 6554 // Only build lookup table when we have a target that supports it or the 6555 // attribute is not set. 6556 if (!TTI.shouldBuildLookupTables() || 6557 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6558 return false; 6559 6560 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6561 // split off a dense part and build a lookup table for that. 6562 6563 // FIXME: This creates arrays of GEPs to constant strings, which means each 6564 // GEP needs a runtime relocation in PIC code. We should just build one big 6565 // string and lookup indices into that. 6566 6567 // Ignore switches with less than three cases. Lookup tables will not make 6568 // them faster, so we don't analyze them. 6569 if (SI->getNumCases() < 3) 6570 return false; 6571 6572 // Figure out the corresponding result for each case value and phi node in the 6573 // common destination, as well as the min and max case values. 6574 assert(!SI->cases().empty()); 6575 SwitchInst::CaseIt CI = SI->case_begin(); 6576 ConstantInt *MinCaseVal = CI->getCaseValue(); 6577 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6578 6579 BasicBlock *CommonDest = nullptr; 6580 6581 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6582 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6583 6584 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6585 SmallDenseMap<PHINode *, Type *> ResultTypes; 6586 SmallVector<PHINode *, 4> PHIs; 6587 6588 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6589 ConstantInt *CaseVal = CI->getCaseValue(); 6590 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6591 MinCaseVal = CaseVal; 6592 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6593 MaxCaseVal = CaseVal; 6594 6595 // Resulting value at phi nodes for this case value. 6596 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6597 ResultsTy Results; 6598 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6599 Results, DL, TTI)) 6600 return false; 6601 6602 // Append the result from this case to the list for each phi. 6603 for (const auto &I : Results) { 6604 PHINode *PHI = I.first; 6605 Constant *Value = I.second; 6606 if (!ResultLists.count(PHI)) 6607 PHIs.push_back(PHI); 6608 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6609 } 6610 } 6611 6612 // Keep track of the result types. 6613 for (PHINode *PHI : PHIs) { 6614 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6615 } 6616 6617 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6618 6619 // If the table has holes, we need a constant result for the default case 6620 // or a bitmask that fits in a register. 6621 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6622 bool HasDefaultResults = 6623 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6624 DefaultResultsList, DL, TTI); 6625 6626 for (const auto &I : DefaultResultsList) { 6627 PHINode *PHI = I.first; 6628 Constant *Result = I.second; 6629 DefaultResults[PHI] = Result; 6630 } 6631 6632 bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex( 6633 *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI); 6634 uint64_t TableSize; 6635 if (UseSwitchConditionAsTableIndex) 6636 TableSize = MaxCaseVal->getLimitedValue() + 1; 6637 else 6638 TableSize = 6639 (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1; 6640 6641 bool TableHasHoles = (NumResults < TableSize); 6642 bool NeedMask = (TableHasHoles && !HasDefaultResults); 6643 if (NeedMask) { 6644 // As an extra penalty for the validity test we require more cases. 6645 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 6646 return false; 6647 if (!DL.fitsInLegalInteger(TableSize)) 6648 return false; 6649 } 6650 6651 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 6652 return false; 6653 6654 std::vector<DominatorTree::UpdateType> Updates; 6655 6656 // Compute the maximum table size representable by the integer type we are 6657 // switching upon. 6658 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6659 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6660 assert(MaxTableSize >= TableSize && 6661 "It is impossible for a switch to have more entries than the max " 6662 "representable value of its input integer type's size."); 6663 6664 // If the default destination is unreachable, or if the lookup table covers 6665 // all values of the conditional variable, branch directly to the lookup table 6666 // BB. Otherwise, check that the condition is within the case range. 6667 bool DefaultIsReachable = 6668 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6669 6670 // Create the BB that does the lookups. 6671 Module &Mod = *CommonDest->getParent()->getParent(); 6672 BasicBlock *LookupBB = BasicBlock::Create( 6673 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6674 6675 // Compute the table index value. 6676 Builder.SetInsertPoint(SI); 6677 Value *TableIndex; 6678 ConstantInt *TableIndexOffset; 6679 if (UseSwitchConditionAsTableIndex) { 6680 TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0); 6681 TableIndex = SI->getCondition(); 6682 } else { 6683 TableIndexOffset = MinCaseVal; 6684 // If the default is unreachable, all case values are s>= MinCaseVal. Then 6685 // we can try to attach nsw. 6686 bool MayWrap = true; 6687 if (!DefaultIsReachable) { 6688 APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap); 6689 (void)Res; 6690 } 6691 6692 TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset, 6693 "switch.tableidx", /*HasNUW =*/false, 6694 /*HasNSW =*/!MayWrap); 6695 } 6696 6697 BranchInst *RangeCheckBranch = nullptr; 6698 6699 // Grow the table to cover all possible index values to avoid the range check. 6700 // It will use the default result to fill in the table hole later, so make 6701 // sure it exist. 6702 if (UseSwitchConditionAsTableIndex && HasDefaultResults) { 6703 ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false); 6704 // Grow the table shouldn't have any size impact by checking 6705 // WouldFitInRegister. 6706 // TODO: Consider growing the table also when it doesn't fit in a register 6707 // if no optsize is specified. 6708 const uint64_t UpperBound = CR.getUpper().getLimitedValue(); 6709 if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) { 6710 return SwitchLookupTable::WouldFitInRegister( 6711 DL, UpperBound, KV.second /* ResultType */); 6712 })) { 6713 // There may be some case index larger than the UpperBound (unreachable 6714 // case), so make sure the table size does not get smaller. 6715 TableSize = std::max(UpperBound, TableSize); 6716 // The default branch is unreachable after we enlarge the lookup table. 6717 // Adjust DefaultIsReachable to reuse code path. 6718 DefaultIsReachable = false; 6719 } 6720 } 6721 6722 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6723 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6724 Builder.CreateBr(LookupBB); 6725 if (DTU) 6726 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6727 // Note: We call removeProdecessor later since we need to be able to get the 6728 // PHI value for the default case in case we're using a bit mask. 6729 } else { 6730 Value *Cmp = Builder.CreateICmpULT( 6731 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6732 RangeCheckBranch = 6733 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6734 if (DTU) 6735 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6736 } 6737 6738 // Populate the BB that does the lookups. 6739 Builder.SetInsertPoint(LookupBB); 6740 6741 if (NeedMask) { 6742 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6743 // re-purposed to do the hole check, and we create a new LookupBB. 6744 BasicBlock *MaskBB = LookupBB; 6745 MaskBB->setName("switch.hole_check"); 6746 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6747 CommonDest->getParent(), CommonDest); 6748 6749 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6750 // unnecessary illegal types. 6751 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6752 APInt MaskInt(TableSizePowOf2, 0); 6753 APInt One(TableSizePowOf2, 1); 6754 // Build bitmask; fill in a 1 bit for every case. 6755 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6756 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6757 uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue()) 6758 .getLimitedValue(); 6759 MaskInt |= One << Idx; 6760 } 6761 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6762 6763 // Get the TableIndex'th bit of the bitmask. 6764 // If this bit is 0 (meaning hole) jump to the default destination, 6765 // else continue with table lookup. 6766 IntegerType *MapTy = TableMask->getIntegerType(); 6767 Value *MaskIndex = 6768 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6769 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6770 Value *LoBit = Builder.CreateTrunc( 6771 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6772 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6773 if (DTU) { 6774 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6775 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6776 } 6777 Builder.SetInsertPoint(LookupBB); 6778 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6779 } 6780 6781 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6782 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6783 // do not delete PHINodes here. 6784 SI->getDefaultDest()->removePredecessor(BB, 6785 /*KeepOneInputPHIs=*/true); 6786 if (DTU) 6787 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6788 } 6789 6790 for (PHINode *PHI : PHIs) { 6791 const ResultListTy &ResultList = ResultLists[PHI]; 6792 6793 // If using a bitmask, use any value to fill the lookup table holes. 6794 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6795 StringRef FuncName = Fn->getName(); 6796 SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV, 6797 DL, FuncName); 6798 6799 Value *Result = Table.BuildLookup(TableIndex, Builder); 6800 6801 // Do a small peephole optimization: re-use the switch table compare if 6802 // possible. 6803 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6804 BasicBlock *PhiBlock = PHI->getParent(); 6805 // Search for compare instructions which use the phi. 6806 for (auto *User : PHI->users()) { 6807 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6808 } 6809 } 6810 6811 PHI->addIncoming(Result, LookupBB); 6812 } 6813 6814 Builder.CreateBr(CommonDest); 6815 if (DTU) 6816 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6817 6818 // Remove the switch. 6819 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6820 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6821 BasicBlock *Succ = SI->getSuccessor(i); 6822 6823 if (Succ == SI->getDefaultDest()) 6824 continue; 6825 Succ->removePredecessor(BB); 6826 if (DTU && RemovedSuccessors.insert(Succ).second) 6827 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6828 } 6829 SI->eraseFromParent(); 6830 6831 if (DTU) 6832 DTU->applyUpdates(Updates); 6833 6834 ++NumLookupTables; 6835 if (NeedMask) 6836 ++NumLookupTablesHoles; 6837 return true; 6838 } 6839 6840 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6841 /// of cases. 6842 /// 6843 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6844 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6845 /// 6846 /// This converts a sparse switch into a dense switch which allows better 6847 /// lowering and could also allow transforming into a lookup table. 6848 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6849 const DataLayout &DL, 6850 const TargetTransformInfo &TTI) { 6851 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6852 if (CondTy->getIntegerBitWidth() > 64 || 6853 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6854 return false; 6855 // Only bother with this optimization if there are more than 3 switch cases; 6856 // SDAG will only bother creating jump tables for 4 or more cases. 6857 if (SI->getNumCases() < 4) 6858 return false; 6859 6860 // This transform is agnostic to the signedness of the input or case values. We 6861 // can treat the case values as signed or unsigned. We can optimize more common 6862 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6863 // as signed. 6864 SmallVector<int64_t,4> Values; 6865 for (const auto &C : SI->cases()) 6866 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6867 llvm::sort(Values); 6868 6869 // If the switch is already dense, there's nothing useful to do here. 6870 if (isSwitchDense(Values)) 6871 return false; 6872 6873 // First, transform the values such that they start at zero and ascend. 6874 int64_t Base = Values[0]; 6875 for (auto &V : Values) 6876 V -= (uint64_t)(Base); 6877 6878 // Now we have signed numbers that have been shifted so that, given enough 6879 // precision, there are no negative values. Since the rest of the transform 6880 // is bitwise only, we switch now to an unsigned representation. 6881 6882 // This transform can be done speculatively because it is so cheap - it 6883 // results in a single rotate operation being inserted. 6884 6885 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6886 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6887 // less than 64. 6888 unsigned Shift = 64; 6889 for (auto &V : Values) 6890 Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V)); 6891 assert(Shift < 64); 6892 if (Shift > 0) 6893 for (auto &V : Values) 6894 V = (int64_t)((uint64_t)V >> Shift); 6895 6896 if (!isSwitchDense(Values)) 6897 // Transform didn't create a dense switch. 6898 return false; 6899 6900 // The obvious transform is to shift the switch condition right and emit a 6901 // check that the condition actually cleanly divided by GCD, i.e. 6902 // C & (1 << Shift - 1) == 0 6903 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6904 // 6905 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6906 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6907 // are nonzero then the switch condition will be very large and will hit the 6908 // default case. 6909 6910 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6911 Builder.SetInsertPoint(SI); 6912 Value *Sub = 6913 Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6914 Value *Rot = Builder.CreateIntrinsic( 6915 Ty, Intrinsic::fshl, 6916 {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)}); 6917 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6918 6919 for (auto Case : SI->cases()) { 6920 auto *Orig = Case.getCaseValue(); 6921 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6922 Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift)))); 6923 } 6924 return true; 6925 } 6926 6927 /// Tries to transform switch of powers of two to reduce switch range. 6928 /// For example, switch like: 6929 /// switch (C) { case 1: case 2: case 64: case 128: } 6930 /// will be transformed to: 6931 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: } 6932 /// 6933 /// This transformation allows better lowering and could allow transforming into 6934 /// a lookup table. 6935 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder, 6936 const DataLayout &DL, 6937 const TargetTransformInfo &TTI) { 6938 Value *Condition = SI->getCondition(); 6939 LLVMContext &Context = SI->getContext(); 6940 auto *CondTy = cast<IntegerType>(Condition->getType()); 6941 6942 if (CondTy->getIntegerBitWidth() > 64 || 6943 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6944 return false; 6945 6946 const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost( 6947 IntrinsicCostAttributes(Intrinsic::cttz, CondTy, 6948 {Condition, ConstantInt::getTrue(Context)}), 6949 TTI::TCK_SizeAndLatency); 6950 6951 if (CttzIntrinsicCost > TTI::TCC_Basic) 6952 // Inserting intrinsic is too expensive. 6953 return false; 6954 6955 // Only bother with this optimization if there are more than 3 switch cases. 6956 // SDAG will only bother creating jump tables for 4 or more cases. 6957 if (SI->getNumCases() < 4) 6958 return false; 6959 6960 // We perform this optimization only for switches with 6961 // unreachable default case. 6962 // This assumtion will save us from checking if `Condition` is a power of two. 6963 if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg())) 6964 return false; 6965 6966 // Check that switch cases are powers of two. 6967 SmallVector<uint64_t, 4> Values; 6968 for (const auto &Case : SI->cases()) { 6969 uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue(); 6970 if (llvm::has_single_bit(CaseValue)) 6971 Values.push_back(CaseValue); 6972 else 6973 return false; 6974 } 6975 6976 // isSwichDense requires case values to be sorted. 6977 llvm::sort(Values); 6978 if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) - 6979 llvm::countr_zero(Values.front()) + 1)) 6980 // Transform is unable to generate dense switch. 6981 return false; 6982 6983 Builder.SetInsertPoint(SI); 6984 6985 // Replace each case with its trailing zeros number. 6986 for (auto &Case : SI->cases()) { 6987 auto *OrigValue = Case.getCaseValue(); 6988 Case.setValue(ConstantInt::get(OrigValue->getIntegerType(), 6989 OrigValue->getValue().countr_zero())); 6990 } 6991 6992 // Replace condition with its trailing zeros number. 6993 auto *ConditionTrailingZeros = Builder.CreateIntrinsic( 6994 Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)}); 6995 6996 SI->setCondition(ConditionTrailingZeros); 6997 6998 return true; 6999 } 7000 7001 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 7002 BasicBlock *BB = SI->getParent(); 7003 7004 if (isValueEqualityComparison(SI)) { 7005 // If we only have one predecessor, and if it is a branch on this value, 7006 // see if that predecessor totally determines the outcome of this switch. 7007 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 7008 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 7009 return requestResimplify(); 7010 7011 Value *Cond = SI->getCondition(); 7012 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 7013 if (SimplifySwitchOnSelect(SI, Select)) 7014 return requestResimplify(); 7015 7016 // If the block only contains the switch, see if we can fold the block 7017 // away into any preds. 7018 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 7019 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 7020 return requestResimplify(); 7021 } 7022 7023 // Try to transform the switch into an icmp and a branch. 7024 // The conversion from switch to comparison may lose information on 7025 // impossible switch values, so disable it early in the pipeline. 7026 if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder)) 7027 return requestResimplify(); 7028 7029 // Remove unreachable cases. 7030 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 7031 return requestResimplify(); 7032 7033 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI)) 7034 return requestResimplify(); 7035 7036 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 7037 return requestResimplify(); 7038 7039 // The conversion from switch to lookup tables results in difficult-to-analyze 7040 // code and makes pruning branches much harder. This is a problem if the 7041 // switch expression itself can still be restricted as a result of inlining or 7042 // CVP. Therefore, only apply this transformation during late stages of the 7043 // optimisation pipeline. 7044 if (Options.ConvertSwitchToLookupTable && 7045 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 7046 return requestResimplify(); 7047 7048 if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI)) 7049 return requestResimplify(); 7050 7051 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 7052 return requestResimplify(); 7053 7054 if (HoistCommon && 7055 hoistCommonCodeFromSuccessors(SI->getParent(), !Options.HoistCommonInsts)) 7056 return requestResimplify(); 7057 7058 return false; 7059 } 7060 7061 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 7062 BasicBlock *BB = IBI->getParent(); 7063 bool Changed = false; 7064 7065 // Eliminate redundant destinations. 7066 SmallPtrSet<Value *, 8> Succs; 7067 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 7068 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 7069 BasicBlock *Dest = IBI->getDestination(i); 7070 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 7071 if (!Dest->hasAddressTaken()) 7072 RemovedSuccs.insert(Dest); 7073 Dest->removePredecessor(BB); 7074 IBI->removeDestination(i); 7075 --i; 7076 --e; 7077 Changed = true; 7078 } 7079 } 7080 7081 if (DTU) { 7082 std::vector<DominatorTree::UpdateType> Updates; 7083 Updates.reserve(RemovedSuccs.size()); 7084 for (auto *RemovedSucc : RemovedSuccs) 7085 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 7086 DTU->applyUpdates(Updates); 7087 } 7088 7089 if (IBI->getNumDestinations() == 0) { 7090 // If the indirectbr has no successors, change it to unreachable. 7091 new UnreachableInst(IBI->getContext(), IBI); 7092 EraseTerminatorAndDCECond(IBI); 7093 return true; 7094 } 7095 7096 if (IBI->getNumDestinations() == 1) { 7097 // If the indirectbr has one successor, change it to a direct branch. 7098 BranchInst::Create(IBI->getDestination(0), IBI); 7099 EraseTerminatorAndDCECond(IBI); 7100 return true; 7101 } 7102 7103 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 7104 if (SimplifyIndirectBrOnSelect(IBI, SI)) 7105 return requestResimplify(); 7106 } 7107 return Changed; 7108 } 7109 7110 /// Given an block with only a single landing pad and a unconditional branch 7111 /// try to find another basic block which this one can be merged with. This 7112 /// handles cases where we have multiple invokes with unique landing pads, but 7113 /// a shared handler. 7114 /// 7115 /// We specifically choose to not worry about merging non-empty blocks 7116 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 7117 /// practice, the optimizer produces empty landing pad blocks quite frequently 7118 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 7119 /// sinking in this file) 7120 /// 7121 /// This is primarily a code size optimization. We need to avoid performing 7122 /// any transform which might inhibit optimization (such as our ability to 7123 /// specialize a particular handler via tail commoning). We do this by not 7124 /// merging any blocks which require us to introduce a phi. Since the same 7125 /// values are flowing through both blocks, we don't lose any ability to 7126 /// specialize. If anything, we make such specialization more likely. 7127 /// 7128 /// TODO - This transformation could remove entries from a phi in the target 7129 /// block when the inputs in the phi are the same for the two blocks being 7130 /// merged. In some cases, this could result in removal of the PHI entirely. 7131 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 7132 BasicBlock *BB, DomTreeUpdater *DTU) { 7133 auto Succ = BB->getUniqueSuccessor(); 7134 assert(Succ); 7135 // If there's a phi in the successor block, we'd likely have to introduce 7136 // a phi into the merged landing pad block. 7137 if (isa<PHINode>(*Succ->begin())) 7138 return false; 7139 7140 for (BasicBlock *OtherPred : predecessors(Succ)) { 7141 if (BB == OtherPred) 7142 continue; 7143 BasicBlock::iterator I = OtherPred->begin(); 7144 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 7145 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 7146 continue; 7147 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7148 ; 7149 BranchInst *BI2 = dyn_cast<BranchInst>(I); 7150 if (!BI2 || !BI2->isIdenticalTo(BI)) 7151 continue; 7152 7153 std::vector<DominatorTree::UpdateType> Updates; 7154 7155 // We've found an identical block. Update our predecessors to take that 7156 // path instead and make ourselves dead. 7157 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 7158 for (BasicBlock *Pred : UniquePreds) { 7159 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 7160 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 7161 "unexpected successor"); 7162 II->setUnwindDest(OtherPred); 7163 if (DTU) { 7164 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 7165 Updates.push_back({DominatorTree::Delete, Pred, BB}); 7166 } 7167 } 7168 7169 // The debug info in OtherPred doesn't cover the merged control flow that 7170 // used to go through BB. We need to delete it or update it. 7171 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 7172 if (isa<DbgInfoIntrinsic>(Inst)) 7173 Inst.eraseFromParent(); 7174 7175 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 7176 for (BasicBlock *Succ : UniqueSuccs) { 7177 Succ->removePredecessor(BB); 7178 if (DTU) 7179 Updates.push_back({DominatorTree::Delete, BB, Succ}); 7180 } 7181 7182 IRBuilder<> Builder(BI); 7183 Builder.CreateUnreachable(); 7184 BI->eraseFromParent(); 7185 if (DTU) 7186 DTU->applyUpdates(Updates); 7187 return true; 7188 } 7189 return false; 7190 } 7191 7192 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 7193 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 7194 : simplifyCondBranch(Branch, Builder); 7195 } 7196 7197 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 7198 IRBuilder<> &Builder) { 7199 BasicBlock *BB = BI->getParent(); 7200 BasicBlock *Succ = BI->getSuccessor(0); 7201 7202 // If the Terminator is the only non-phi instruction, simplify the block. 7203 // If LoopHeader is provided, check if the block or its successor is a loop 7204 // header. (This is for early invocations before loop simplify and 7205 // vectorization to keep canonical loop forms for nested loops. These blocks 7206 // can be eliminated when the pass is invoked later in the back-end.) 7207 // Note that if BB has only one predecessor then we do not introduce new 7208 // backedge, so we can eliminate BB. 7209 bool NeedCanonicalLoop = 7210 Options.NeedCanonicalLoop && 7211 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 7212 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 7213 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 7214 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 7215 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 7216 return true; 7217 7218 // If the only instruction in the block is a seteq/setne comparison against a 7219 // constant, try to simplify the block. 7220 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 7221 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 7222 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7223 ; 7224 if (I->isTerminator() && 7225 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 7226 return true; 7227 } 7228 7229 // See if we can merge an empty landing pad block with another which is 7230 // equivalent. 7231 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 7232 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7233 ; 7234 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 7235 return true; 7236 } 7237 7238 // If this basic block is ONLY a compare and a branch, and if a predecessor 7239 // branches to us and our successor, fold the comparison into the 7240 // predecessor and use logical operations to update the incoming value 7241 // for PHI nodes in common successor. 7242 if (Options.SpeculateBlocks && 7243 FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 7244 Options.BonusInstThreshold)) 7245 return requestResimplify(); 7246 return false; 7247 } 7248 7249 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 7250 BasicBlock *PredPred = nullptr; 7251 for (auto *P : predecessors(BB)) { 7252 BasicBlock *PPred = P->getSinglePredecessor(); 7253 if (!PPred || (PredPred && PredPred != PPred)) 7254 return nullptr; 7255 PredPred = PPred; 7256 } 7257 return PredPred; 7258 } 7259 7260 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 7261 assert( 7262 !isa<ConstantInt>(BI->getCondition()) && 7263 BI->getSuccessor(0) != BI->getSuccessor(1) && 7264 "Tautological conditional branch should have been eliminated already."); 7265 7266 BasicBlock *BB = BI->getParent(); 7267 if (!Options.SimplifyCondBranch || 7268 BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing)) 7269 return false; 7270 7271 // Conditional branch 7272 if (isValueEqualityComparison(BI)) { 7273 // If we only have one predecessor, and if it is a branch on this value, 7274 // see if that predecessor totally determines the outcome of this 7275 // switch. 7276 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 7277 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 7278 return requestResimplify(); 7279 7280 // This block must be empty, except for the setcond inst, if it exists. 7281 // Ignore dbg and pseudo intrinsics. 7282 auto I = BB->instructionsWithoutDebug(true).begin(); 7283 if (&*I == BI) { 7284 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 7285 return requestResimplify(); 7286 } else if (&*I == cast<Instruction>(BI->getCondition())) { 7287 ++I; 7288 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 7289 return requestResimplify(); 7290 } 7291 } 7292 7293 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 7294 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 7295 return true; 7296 7297 // If this basic block has dominating predecessor blocks and the dominating 7298 // blocks' conditions imply BI's condition, we know the direction of BI. 7299 std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 7300 if (Imp) { 7301 // Turn this into a branch on constant. 7302 auto *OldCond = BI->getCondition(); 7303 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 7304 : ConstantInt::getFalse(BB->getContext()); 7305 BI->setCondition(TorF); 7306 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 7307 return requestResimplify(); 7308 } 7309 7310 // If this basic block is ONLY a compare and a branch, and if a predecessor 7311 // branches to us and one of our successors, fold the comparison into the 7312 // predecessor and use logical operations to pick the right destination. 7313 if (Options.SpeculateBlocks && 7314 FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 7315 Options.BonusInstThreshold)) 7316 return requestResimplify(); 7317 7318 // We have a conditional branch to two blocks that are only reachable 7319 // from BI. We know that the condbr dominates the two blocks, so see if 7320 // there is any identical code in the "then" and "else" blocks. If so, we 7321 // can hoist it up to the branching block. 7322 if (BI->getSuccessor(0)->getSinglePredecessor()) { 7323 if (BI->getSuccessor(1)->getSinglePredecessor()) { 7324 if (HoistCommon && hoistCommonCodeFromSuccessors( 7325 BI->getParent(), !Options.HoistCommonInsts)) 7326 return requestResimplify(); 7327 } else { 7328 // If Successor #1 has multiple preds, we may be able to conditionally 7329 // execute Successor #0 if it branches to Successor #1. 7330 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 7331 if (Succ0TI->getNumSuccessors() == 1 && 7332 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 7333 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 7334 return requestResimplify(); 7335 } 7336 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 7337 // If Successor #0 has multiple preds, we may be able to conditionally 7338 // execute Successor #1 if it branches to Successor #0. 7339 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 7340 if (Succ1TI->getNumSuccessors() == 1 && 7341 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 7342 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 7343 return requestResimplify(); 7344 } 7345 7346 // If this is a branch on something for which we know the constant value in 7347 // predecessors (e.g. a phi node in the current block), thread control 7348 // through this block. 7349 if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC)) 7350 return requestResimplify(); 7351 7352 // Scan predecessor blocks for conditional branches. 7353 for (BasicBlock *Pred : predecessors(BB)) 7354 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 7355 if (PBI != BI && PBI->isConditional()) 7356 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 7357 return requestResimplify(); 7358 7359 // Look for diamond patterns. 7360 if (MergeCondStores) 7361 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 7362 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 7363 if (PBI != BI && PBI->isConditional()) 7364 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 7365 return requestResimplify(); 7366 7367 return false; 7368 } 7369 7370 /// Check if passing a value to an instruction will cause undefined behavior. 7371 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 7372 Constant *C = dyn_cast<Constant>(V); 7373 if (!C) 7374 return false; 7375 7376 if (I->use_empty()) 7377 return false; 7378 7379 if (C->isNullValue() || isa<UndefValue>(C)) { 7380 // Only look at the first use, avoid hurting compile time with long uselists 7381 auto *Use = cast<Instruction>(*I->user_begin()); 7382 // Bail out if Use is not in the same BB as I or Use == I or Use comes 7383 // before I in the block. The latter two can be the case if Use is a PHI 7384 // node. 7385 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 7386 return false; 7387 7388 // Now make sure that there are no instructions in between that can alter 7389 // control flow (eg. calls) 7390 auto InstrRange = 7391 make_range(std::next(I->getIterator()), Use->getIterator()); 7392 if (any_of(InstrRange, [](Instruction &I) { 7393 return !isGuaranteedToTransferExecutionToSuccessor(&I); 7394 })) 7395 return false; 7396 7397 // Look through GEPs. A load from a GEP derived from NULL is still undefined 7398 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 7399 if (GEP->getPointerOperand() == I) { 7400 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 7401 PtrValueMayBeModified = true; 7402 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 7403 } 7404 7405 // Look through bitcasts. 7406 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 7407 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 7408 7409 // Load from null is undefined. 7410 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 7411 if (!LI->isVolatile()) 7412 return !NullPointerIsDefined(LI->getFunction(), 7413 LI->getPointerAddressSpace()); 7414 7415 // Store to null is undefined. 7416 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 7417 if (!SI->isVolatile()) 7418 return (!NullPointerIsDefined(SI->getFunction(), 7419 SI->getPointerAddressSpace())) && 7420 SI->getPointerOperand() == I; 7421 7422 if (auto *CB = dyn_cast<CallBase>(Use)) { 7423 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 7424 return false; 7425 // A call to null is undefined. 7426 if (CB->getCalledOperand() == I) 7427 return true; 7428 7429 if (C->isNullValue()) { 7430 for (const llvm::Use &Arg : CB->args()) 7431 if (Arg == I) { 7432 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7433 if (CB->isPassingUndefUB(ArgIdx) && 7434 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 7435 // Passing null to a nonnnull+noundef argument is undefined. 7436 return !PtrValueMayBeModified; 7437 } 7438 } 7439 } else if (isa<UndefValue>(C)) { 7440 // Passing undef to a noundef argument is undefined. 7441 for (const llvm::Use &Arg : CB->args()) 7442 if (Arg == I) { 7443 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7444 if (CB->isPassingUndefUB(ArgIdx)) { 7445 // Passing undef to a noundef argument is undefined. 7446 return true; 7447 } 7448 } 7449 } 7450 } 7451 } 7452 return false; 7453 } 7454 7455 /// If BB has an incoming value that will always trigger undefined behavior 7456 /// (eg. null pointer dereference), remove the branch leading here. 7457 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 7458 DomTreeUpdater *DTU, 7459 AssumptionCache *AC) { 7460 for (PHINode &PHI : BB->phis()) 7461 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 7462 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 7463 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 7464 Instruction *T = Predecessor->getTerminator(); 7465 IRBuilder<> Builder(T); 7466 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 7467 BB->removePredecessor(Predecessor); 7468 // Turn unconditional branches into unreachables and remove the dead 7469 // destination from conditional branches. 7470 if (BI->isUnconditional()) 7471 Builder.CreateUnreachable(); 7472 else { 7473 // Preserve guarding condition in assume, because it might not be 7474 // inferrable from any dominating condition. 7475 Value *Cond = BI->getCondition(); 7476 CallInst *Assumption; 7477 if (BI->getSuccessor(0) == BB) 7478 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 7479 else 7480 Assumption = Builder.CreateAssumption(Cond); 7481 if (AC) 7482 AC->registerAssumption(cast<AssumeInst>(Assumption)); 7483 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 7484 : BI->getSuccessor(0)); 7485 } 7486 BI->eraseFromParent(); 7487 if (DTU) 7488 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 7489 return true; 7490 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 7491 // Redirect all branches leading to UB into 7492 // a newly created unreachable block. 7493 BasicBlock *Unreachable = BasicBlock::Create( 7494 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 7495 Builder.SetInsertPoint(Unreachable); 7496 // The new block contains only one instruction: Unreachable 7497 Builder.CreateUnreachable(); 7498 for (const auto &Case : SI->cases()) 7499 if (Case.getCaseSuccessor() == BB) { 7500 BB->removePredecessor(Predecessor); 7501 Case.setSuccessor(Unreachable); 7502 } 7503 if (SI->getDefaultDest() == BB) { 7504 BB->removePredecessor(Predecessor); 7505 SI->setDefaultDest(Unreachable); 7506 } 7507 7508 if (DTU) 7509 DTU->applyUpdates( 7510 { { DominatorTree::Insert, Predecessor, Unreachable }, 7511 { DominatorTree::Delete, Predecessor, BB } }); 7512 return true; 7513 } 7514 } 7515 7516 return false; 7517 } 7518 7519 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 7520 bool Changed = false; 7521 7522 assert(BB && BB->getParent() && "Block not embedded in function!"); 7523 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 7524 7525 // Remove basic blocks that have no predecessors (except the entry block)... 7526 // or that just have themself as a predecessor. These are unreachable. 7527 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 7528 BB->getSinglePredecessor() == BB) { 7529 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 7530 DeleteDeadBlock(BB, DTU); 7531 return true; 7532 } 7533 7534 // Check to see if we can constant propagate this terminator instruction 7535 // away... 7536 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 7537 /*TLI=*/nullptr, DTU); 7538 7539 // Check for and eliminate duplicate PHI nodes in this block. 7540 Changed |= EliminateDuplicatePHINodes(BB); 7541 7542 // Check for and remove branches that will always cause undefined behavior. 7543 if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC)) 7544 return requestResimplify(); 7545 7546 // Merge basic blocks into their predecessor if there is only one distinct 7547 // pred, and if there is only one distinct successor of the predecessor, and 7548 // if there are no PHI nodes. 7549 if (MergeBlockIntoPredecessor(BB, DTU)) 7550 return true; 7551 7552 if (SinkCommon && Options.SinkCommonInsts) 7553 if (SinkCommonCodeFromPredecessors(BB, DTU) || 7554 MergeCompatibleInvokes(BB, DTU)) { 7555 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 7556 // so we may now how duplicate PHI's. 7557 // Let's rerun EliminateDuplicatePHINodes() first, 7558 // before FoldTwoEntryPHINode() potentially converts them into select's, 7559 // after which we'd need a whole EarlyCSE pass run to cleanup them. 7560 return true; 7561 } 7562 7563 IRBuilder<> Builder(BB); 7564 7565 if (Options.SpeculateBlocks && 7566 !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) { 7567 // If there is a trivial two-entry PHI node in this basic block, and we can 7568 // eliminate it, do so now. 7569 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 7570 if (PN->getNumIncomingValues() == 2) 7571 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL)) 7572 return true; 7573 } 7574 7575 Instruction *Terminator = BB->getTerminator(); 7576 Builder.SetInsertPoint(Terminator); 7577 switch (Terminator->getOpcode()) { 7578 case Instruction::Br: 7579 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 7580 break; 7581 case Instruction::Resume: 7582 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 7583 break; 7584 case Instruction::CleanupRet: 7585 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 7586 break; 7587 case Instruction::Switch: 7588 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 7589 break; 7590 case Instruction::Unreachable: 7591 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 7592 break; 7593 case Instruction::IndirectBr: 7594 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 7595 break; 7596 } 7597 7598 return Changed; 7599 } 7600 7601 bool SimplifyCFGOpt::run(BasicBlock *BB) { 7602 bool Changed = false; 7603 7604 // Repeated simplify BB as long as resimplification is requested. 7605 do { 7606 Resimplify = false; 7607 7608 // Perform one round of simplifcation. Resimplify flag will be set if 7609 // another iteration is requested. 7610 Changed |= simplifyOnce(BB); 7611 } while (Resimplify); 7612 7613 return Changed; 7614 } 7615 7616 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 7617 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 7618 ArrayRef<WeakVH> LoopHeaders) { 7619 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 7620 Options) 7621 .run(BB); 7622 } 7623