xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyCFG.cpp (revision e63d20b70ee1dbee9b075f29de6f30cdcfe1abe1)
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/Sequence.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/MemorySSA.h"
32 #include "llvm/Analysis/MemorySSAUpdater.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/MDBuilder.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/NoFolder.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/PatternMatch.h"
59 #include "llvm/IR/ProfDataUtils.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/ValueHandle.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/KnownBits.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ValueMapper.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <climits>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <optional>
84 #include <set>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 using namespace PatternMatch;
91 
92 #define DEBUG_TYPE "simplifycfg"
93 
94 cl::opt<bool> llvm::RequireAndPreserveDomTree(
95     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
96 
97     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
98              "into preserving DomTree,"));
99 
100 // Chosen as 2 so as to be cheap, but still to have enough power to fold
101 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
102 // To catch this, we need to fold a compare and a select, hence '2' being the
103 // minimum reasonable default.
104 static cl::opt<unsigned> PHINodeFoldingThreshold(
105     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
106     cl::desc(
107         "Control the amount of phi node folding to perform (default = 2)"));
108 
109 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
110     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
111     cl::desc("Control the maximal total instruction cost that we are willing "
112              "to speculatively execute to fold a 2-entry PHI node into a "
113              "select (default = 4)"));
114 
115 static cl::opt<bool>
116     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
117                 cl::desc("Hoist common instructions up to the parent block"));
118 
119 static cl::opt<unsigned>
120     HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden,
121                          cl::init(20),
122                          cl::desc("Allow reordering across at most this many "
123                                   "instructions when hoisting"));
124 
125 static cl::opt<bool>
126     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
127                cl::desc("Sink common instructions down to the end block"));
128 
129 static cl::opt<bool> HoistCondStores(
130     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
131     cl::desc("Hoist conditional stores if an unconditional store precedes"));
132 
133 static cl::opt<bool> MergeCondStores(
134     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
135     cl::desc("Hoist conditional stores even if an unconditional store does not "
136              "precede - hoist multiple conditional stores into a single "
137              "predicated store"));
138 
139 static cl::opt<bool> MergeCondStoresAggressively(
140     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
141     cl::desc("When merging conditional stores, do so even if the resultant "
142              "basic blocks are unlikely to be if-converted as a result"));
143 
144 static cl::opt<bool> SpeculateOneExpensiveInst(
145     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
146     cl::desc("Allow exactly one expensive instruction to be speculatively "
147              "executed"));
148 
149 static cl::opt<unsigned> MaxSpeculationDepth(
150     "max-speculation-depth", cl::Hidden, cl::init(10),
151     cl::desc("Limit maximum recursion depth when calculating costs of "
152              "speculatively executed instructions"));
153 
154 static cl::opt<int>
155     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
156                       cl::init(10),
157                       cl::desc("Max size of a block which is still considered "
158                                "small enough to thread through"));
159 
160 // Two is chosen to allow one negation and a logical combine.
161 static cl::opt<unsigned>
162     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
163                         cl::init(2),
164                         cl::desc("Maximum cost of combining conditions when "
165                                  "folding branches"));
166 
167 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
168     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
169     cl::init(2),
170     cl::desc("Multiplier to apply to threshold when determining whether or not "
171              "to fold branch to common destination when vector operations are "
172              "present"));
173 
174 static cl::opt<bool> EnableMergeCompatibleInvokes(
175     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
176     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
177 
178 static cl::opt<unsigned> MaxSwitchCasesPerResult(
179     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
180     cl::desc("Limit cases to analyze when converting a switch to select"));
181 
182 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
183 STATISTIC(NumLinearMaps,
184           "Number of switch instructions turned into linear mapping");
185 STATISTIC(NumLookupTables,
186           "Number of switch instructions turned into lookup tables");
187 STATISTIC(
188     NumLookupTablesHoles,
189     "Number of switch instructions turned into lookup tables (holes checked)");
190 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
191 STATISTIC(NumFoldValueComparisonIntoPredecessors,
192           "Number of value comparisons folded into predecessor basic blocks");
193 STATISTIC(NumFoldBranchToCommonDest,
194           "Number of branches folded into predecessor basic block");
195 STATISTIC(
196     NumHoistCommonCode,
197     "Number of common instruction 'blocks' hoisted up to the begin block");
198 STATISTIC(NumHoistCommonInstrs,
199           "Number of common instructions hoisted up to the begin block");
200 STATISTIC(NumSinkCommonCode,
201           "Number of common instruction 'blocks' sunk down to the end block");
202 STATISTIC(NumSinkCommonInstrs,
203           "Number of common instructions sunk down to the end block");
204 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
205 STATISTIC(NumInvokes,
206           "Number of invokes with empty resume blocks simplified into calls");
207 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
208 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
209 
210 namespace {
211 
212 // The first field contains the value that the switch produces when a certain
213 // case group is selected, and the second field is a vector containing the
214 // cases composing the case group.
215 using SwitchCaseResultVectorTy =
216     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
217 
218 // The first field contains the phi node that generates a result of the switch
219 // and the second field contains the value generated for a certain case in the
220 // switch for that PHI.
221 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
222 
223 /// ValueEqualityComparisonCase - Represents a case of a switch.
224 struct ValueEqualityComparisonCase {
225   ConstantInt *Value;
226   BasicBlock *Dest;
227 
228   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
229       : Value(Value), Dest(Dest) {}
230 
231   bool operator<(ValueEqualityComparisonCase RHS) const {
232     // Comparing pointers is ok as we only rely on the order for uniquing.
233     return Value < RHS.Value;
234   }
235 
236   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
237 };
238 
239 class SimplifyCFGOpt {
240   const TargetTransformInfo &TTI;
241   DomTreeUpdater *DTU;
242   const DataLayout &DL;
243   ArrayRef<WeakVH> LoopHeaders;
244   const SimplifyCFGOptions &Options;
245   bool Resimplify;
246 
247   Value *isValueEqualityComparison(Instruction *TI);
248   BasicBlock *GetValueEqualityComparisonCases(
249       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
250   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
251                                                      BasicBlock *Pred,
252                                                      IRBuilder<> &Builder);
253   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
254                                                     Instruction *PTI,
255                                                     IRBuilder<> &Builder);
256   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
257                                            IRBuilder<> &Builder);
258 
259   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
260   bool simplifySingleResume(ResumeInst *RI);
261   bool simplifyCommonResume(ResumeInst *RI);
262   bool simplifyCleanupReturn(CleanupReturnInst *RI);
263   bool simplifyUnreachable(UnreachableInst *UI);
264   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
265   bool simplifyIndirectBr(IndirectBrInst *IBI);
266   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
267   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
268   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
269 
270   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
271                                              IRBuilder<> &Builder);
272 
273   bool hoistCommonCodeFromSuccessors(BasicBlock *BB, bool EqTermsOnly);
274   bool hoistSuccIdenticalTerminatorToSwitchOrIf(
275       Instruction *TI, Instruction *I1,
276       SmallVectorImpl<Instruction *> &OtherSuccTIs);
277   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB);
278   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
279                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
280                                   uint32_t TrueWeight, uint32_t FalseWeight);
281   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
282                                  const DataLayout &DL);
283   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
284   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
285   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
286 
287 public:
288   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
289                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
290                  const SimplifyCFGOptions &Opts)
291       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
292     assert((!DTU || !DTU->hasPostDomTree()) &&
293            "SimplifyCFG is not yet capable of maintaining validity of a "
294            "PostDomTree, so don't ask for it.");
295   }
296 
297   bool simplifyOnce(BasicBlock *BB);
298   bool run(BasicBlock *BB);
299 
300   // Helper to set Resimplify and return change indication.
301   bool requestResimplify() {
302     Resimplify = true;
303     return true;
304   }
305 };
306 
307 } // end anonymous namespace
308 
309 /// Return true if all the PHI nodes in the basic block \p BB
310 /// receive compatible (identical) incoming values when coming from
311 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
312 ///
313 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
314 /// is provided, and *both* of the values are present in the set,
315 /// then they are considered equal.
316 static bool IncomingValuesAreCompatible(
317     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
318     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
319   assert(IncomingBlocks.size() == 2 &&
320          "Only for a pair of incoming blocks at the time!");
321 
322   // FIXME: it is okay if one of the incoming values is an `undef` value,
323   //        iff the other incoming value is guaranteed to be a non-poison value.
324   // FIXME: it is okay if one of the incoming values is a `poison` value.
325   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
326     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
327     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
328     if (IV0 == IV1)
329       return true;
330     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
331         EquivalenceSet->contains(IV1))
332       return true;
333     return false;
334   });
335 }
336 
337 /// Return true if it is safe to merge these two
338 /// terminator instructions together.
339 static bool
340 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
341                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
342   if (SI1 == SI2)
343     return false; // Can't merge with self!
344 
345   // It is not safe to merge these two switch instructions if they have a common
346   // successor, and if that successor has a PHI node, and if *that* PHI node has
347   // conflicting incoming values from the two switch blocks.
348   BasicBlock *SI1BB = SI1->getParent();
349   BasicBlock *SI2BB = SI2->getParent();
350 
351   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
352   bool Fail = false;
353   for (BasicBlock *Succ : successors(SI2BB)) {
354     if (!SI1Succs.count(Succ))
355       continue;
356     if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
357       continue;
358     Fail = true;
359     if (FailBlocks)
360       FailBlocks->insert(Succ);
361     else
362       break;
363   }
364 
365   return !Fail;
366 }
367 
368 /// Update PHI nodes in Succ to indicate that there will now be entries in it
369 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
370 /// will be the same as those coming in from ExistPred, an existing predecessor
371 /// of Succ.
372 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
373                                   BasicBlock *ExistPred,
374                                   MemorySSAUpdater *MSSAU = nullptr) {
375   for (PHINode &PN : Succ->phis())
376     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
377   if (MSSAU)
378     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
379       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
380 }
381 
382 /// Compute an abstract "cost" of speculating the given instruction,
383 /// which is assumed to be safe to speculate. TCC_Free means cheap,
384 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
385 /// expensive.
386 static InstructionCost computeSpeculationCost(const User *I,
387                                               const TargetTransformInfo &TTI) {
388   assert((!isa<Instruction>(I) ||
389           isSafeToSpeculativelyExecute(cast<Instruction>(I))) &&
390          "Instruction is not safe to speculatively execute!");
391   return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency);
392 }
393 
394 /// If we have a merge point of an "if condition" as accepted above,
395 /// return true if the specified value dominates the block.  We
396 /// don't handle the true generality of domination here, just a special case
397 /// which works well enough for us.
398 ///
399 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
400 /// see if V (which must be an instruction) and its recursive operands
401 /// that do not dominate BB have a combined cost lower than Budget and
402 /// are non-trapping.  If both are true, the instruction is inserted into the
403 /// set and true is returned.
404 ///
405 /// The cost for most non-trapping instructions is defined as 1 except for
406 /// Select whose cost is 2.
407 ///
408 /// After this function returns, Cost is increased by the cost of
409 /// V plus its non-dominating operands.  If that cost is greater than
410 /// Budget, false is returned and Cost is undefined.
411 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
412                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
413                                 InstructionCost &Cost,
414                                 InstructionCost Budget,
415                                 const TargetTransformInfo &TTI,
416                                 unsigned Depth = 0) {
417   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
418   // so limit the recursion depth.
419   // TODO: While this recursion limit does prevent pathological behavior, it
420   // would be better to track visited instructions to avoid cycles.
421   if (Depth == MaxSpeculationDepth)
422     return false;
423 
424   Instruction *I = dyn_cast<Instruction>(V);
425   if (!I) {
426     // Non-instructions dominate all instructions and can be executed
427     // unconditionally.
428     return true;
429   }
430   BasicBlock *PBB = I->getParent();
431 
432   // We don't want to allow weird loops that might have the "if condition" in
433   // the bottom of this block.
434   if (PBB == BB)
435     return false;
436 
437   // If this instruction is defined in a block that contains an unconditional
438   // branch to BB, then it must be in the 'conditional' part of the "if
439   // statement".  If not, it definitely dominates the region.
440   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
441   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
442     return true;
443 
444   // If we have seen this instruction before, don't count it again.
445   if (AggressiveInsts.count(I))
446     return true;
447 
448   // Okay, it looks like the instruction IS in the "condition".  Check to
449   // see if it's a cheap instruction to unconditionally compute, and if it
450   // only uses stuff defined outside of the condition.  If so, hoist it out.
451   if (!isSafeToSpeculativelyExecute(I))
452     return false;
453 
454   Cost += computeSpeculationCost(I, TTI);
455 
456   // Allow exactly one instruction to be speculated regardless of its cost
457   // (as long as it is safe to do so).
458   // This is intended to flatten the CFG even if the instruction is a division
459   // or other expensive operation. The speculation of an expensive instruction
460   // is expected to be undone in CodeGenPrepare if the speculation has not
461   // enabled further IR optimizations.
462   if (Cost > Budget &&
463       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
464        !Cost.isValid()))
465     return false;
466 
467   // Okay, we can only really hoist these out if their operands do
468   // not take us over the cost threshold.
469   for (Use &Op : I->operands())
470     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
471                              Depth + 1))
472       return false;
473   // Okay, it's safe to do this!  Remember this instruction.
474   AggressiveInsts.insert(I);
475   return true;
476 }
477 
478 /// Extract ConstantInt from value, looking through IntToPtr
479 /// and PointerNullValue. Return NULL if value is not a constant int.
480 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
481   // Normal constant int.
482   ConstantInt *CI = dyn_cast<ConstantInt>(V);
483   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() ||
484       DL.isNonIntegralPointerType(V->getType()))
485     return CI;
486 
487   // This is some kind of pointer constant. Turn it into a pointer-sized
488   // ConstantInt if possible.
489   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
490 
491   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
492   if (isa<ConstantPointerNull>(V))
493     return ConstantInt::get(PtrTy, 0);
494 
495   // IntToPtr const int.
496   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
497     if (CE->getOpcode() == Instruction::IntToPtr)
498       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
499         // The constant is very likely to have the right type already.
500         if (CI->getType() == PtrTy)
501           return CI;
502         else
503           return cast<ConstantInt>(
504               ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL));
505       }
506   return nullptr;
507 }
508 
509 namespace {
510 
511 /// Given a chain of or (||) or and (&&) comparison of a value against a
512 /// constant, this will try to recover the information required for a switch
513 /// structure.
514 /// It will depth-first traverse the chain of comparison, seeking for patterns
515 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
516 /// representing the different cases for the switch.
517 /// Note that if the chain is composed of '||' it will build the set of elements
518 /// that matches the comparisons (i.e. any of this value validate the chain)
519 /// while for a chain of '&&' it will build the set elements that make the test
520 /// fail.
521 struct ConstantComparesGatherer {
522   const DataLayout &DL;
523 
524   /// Value found for the switch comparison
525   Value *CompValue = nullptr;
526 
527   /// Extra clause to be checked before the switch
528   Value *Extra = nullptr;
529 
530   /// Set of integers to match in switch
531   SmallVector<ConstantInt *, 8> Vals;
532 
533   /// Number of comparisons matched in the and/or chain
534   unsigned UsedICmps = 0;
535 
536   /// Construct and compute the result for the comparison instruction Cond
537   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
538     gather(Cond);
539   }
540 
541   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
542   ConstantComparesGatherer &
543   operator=(const ConstantComparesGatherer &) = delete;
544 
545 private:
546   /// Try to set the current value used for the comparison, it succeeds only if
547   /// it wasn't set before or if the new value is the same as the old one
548   bool setValueOnce(Value *NewVal) {
549     if (CompValue && CompValue != NewVal)
550       return false;
551     CompValue = NewVal;
552     return (CompValue != nullptr);
553   }
554 
555   /// Try to match Instruction "I" as a comparison against a constant and
556   /// populates the array Vals with the set of values that match (or do not
557   /// match depending on isEQ).
558   /// Return false on failure. On success, the Value the comparison matched
559   /// against is placed in CompValue.
560   /// If CompValue is already set, the function is expected to fail if a match
561   /// is found but the value compared to is different.
562   bool matchInstruction(Instruction *I, bool isEQ) {
563     // If this is an icmp against a constant, handle this as one of the cases.
564     ICmpInst *ICI;
565     ConstantInt *C;
566     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
567           (C = GetConstantInt(I->getOperand(1), DL)))) {
568       return false;
569     }
570 
571     Value *RHSVal;
572     const APInt *RHSC;
573 
574     // Pattern match a special case
575     // (x & ~2^z) == y --> x == y || x == y|2^z
576     // This undoes a transformation done by instcombine to fuse 2 compares.
577     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
578       // It's a little bit hard to see why the following transformations are
579       // correct. Here is a CVC3 program to verify them for 64-bit values:
580 
581       /*
582          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
583          x    : BITVECTOR(64);
584          y    : BITVECTOR(64);
585          z    : BITVECTOR(64);
586          mask : BITVECTOR(64) = BVSHL(ONE, z);
587          QUERY( (y & ~mask = y) =>
588                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
589          );
590          QUERY( (y |  mask = y) =>
591                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
592          );
593       */
594 
595       // Please note that each pattern must be a dual implication (<--> or
596       // iff). One directional implication can create spurious matches. If the
597       // implication is only one-way, an unsatisfiable condition on the left
598       // side can imply a satisfiable condition on the right side. Dual
599       // implication ensures that satisfiable conditions are transformed to
600       // other satisfiable conditions and unsatisfiable conditions are
601       // transformed to other unsatisfiable conditions.
602 
603       // Here is a concrete example of a unsatisfiable condition on the left
604       // implying a satisfiable condition on the right:
605       //
606       // mask = (1 << z)
607       // (x & ~mask) == y  --> (x == y || x == (y | mask))
608       //
609       // Substituting y = 3, z = 0 yields:
610       // (x & -2) == 3 --> (x == 3 || x == 2)
611 
612       // Pattern match a special case:
613       /*
614         QUERY( (y & ~mask = y) =>
615                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
616         );
617       */
618       if (match(ICI->getOperand(0),
619                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
620         APInt Mask = ~*RHSC;
621         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
622           // If we already have a value for the switch, it has to match!
623           if (!setValueOnce(RHSVal))
624             return false;
625 
626           Vals.push_back(C);
627           Vals.push_back(
628               ConstantInt::get(C->getContext(),
629                                C->getValue() | Mask));
630           UsedICmps++;
631           return true;
632         }
633       }
634 
635       // Pattern match a special case:
636       /*
637         QUERY( (y |  mask = y) =>
638                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
639         );
640       */
641       if (match(ICI->getOperand(0),
642                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
643         APInt Mask = *RHSC;
644         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
645           // If we already have a value for the switch, it has to match!
646           if (!setValueOnce(RHSVal))
647             return false;
648 
649           Vals.push_back(C);
650           Vals.push_back(ConstantInt::get(C->getContext(),
651                                           C->getValue() & ~Mask));
652           UsedICmps++;
653           return true;
654         }
655       }
656 
657       // If we already have a value for the switch, it has to match!
658       if (!setValueOnce(ICI->getOperand(0)))
659         return false;
660 
661       UsedICmps++;
662       Vals.push_back(C);
663       return ICI->getOperand(0);
664     }
665 
666     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
667     ConstantRange Span =
668         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
669 
670     // Shift the range if the compare is fed by an add. This is the range
671     // compare idiom as emitted by instcombine.
672     Value *CandidateVal = I->getOperand(0);
673     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
674       Span = Span.subtract(*RHSC);
675       CandidateVal = RHSVal;
676     }
677 
678     // If this is an and/!= check, then we are looking to build the set of
679     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
680     // x != 0 && x != 1.
681     if (!isEQ)
682       Span = Span.inverse();
683 
684     // If there are a ton of values, we don't want to make a ginormous switch.
685     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
686       return false;
687     }
688 
689     // If we already have a value for the switch, it has to match!
690     if (!setValueOnce(CandidateVal))
691       return false;
692 
693     // Add all values from the range to the set
694     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
695       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
696 
697     UsedICmps++;
698     return true;
699   }
700 
701   /// Given a potentially 'or'd or 'and'd together collection of icmp
702   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
703   /// the value being compared, and stick the list constants into the Vals
704   /// vector.
705   /// One "Extra" case is allowed to differ from the other.
706   void gather(Value *V) {
707     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
708 
709     // Keep a stack (SmallVector for efficiency) for depth-first traversal
710     SmallVector<Value *, 8> DFT;
711     SmallPtrSet<Value *, 8> Visited;
712 
713     // Initialize
714     Visited.insert(V);
715     DFT.push_back(V);
716 
717     while (!DFT.empty()) {
718       V = DFT.pop_back_val();
719 
720       if (Instruction *I = dyn_cast<Instruction>(V)) {
721         // If it is a || (or && depending on isEQ), process the operands.
722         Value *Op0, *Op1;
723         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
724                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
725           if (Visited.insert(Op1).second)
726             DFT.push_back(Op1);
727           if (Visited.insert(Op0).second)
728             DFT.push_back(Op0);
729 
730           continue;
731         }
732 
733         // Try to match the current instruction
734         if (matchInstruction(I, isEQ))
735           // Match succeed, continue the loop
736           continue;
737       }
738 
739       // One element of the sequence of || (or &&) could not be match as a
740       // comparison against the same value as the others.
741       // We allow only one "Extra" case to be checked before the switch
742       if (!Extra) {
743         Extra = V;
744         continue;
745       }
746       // Failed to parse a proper sequence, abort now
747       CompValue = nullptr;
748       break;
749     }
750   }
751 };
752 
753 } // end anonymous namespace
754 
755 static void EraseTerminatorAndDCECond(Instruction *TI,
756                                       MemorySSAUpdater *MSSAU = nullptr) {
757   Instruction *Cond = nullptr;
758   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
759     Cond = dyn_cast<Instruction>(SI->getCondition());
760   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
761     if (BI->isConditional())
762       Cond = dyn_cast<Instruction>(BI->getCondition());
763   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
764     Cond = dyn_cast<Instruction>(IBI->getAddress());
765   }
766 
767   TI->eraseFromParent();
768   if (Cond)
769     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
770 }
771 
772 /// Return true if the specified terminator checks
773 /// to see if a value is equal to constant integer value.
774 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
775   Value *CV = nullptr;
776   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
777     // Do not permit merging of large switch instructions into their
778     // predecessors unless there is only one predecessor.
779     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
780       CV = SI->getCondition();
781   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
782     if (BI->isConditional() && BI->getCondition()->hasOneUse())
783       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
784         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
785           CV = ICI->getOperand(0);
786       }
787 
788   // Unwrap any lossless ptrtoint cast.
789   if (CV) {
790     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
791       Value *Ptr = PTII->getPointerOperand();
792       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
793         CV = Ptr;
794     }
795   }
796   return CV;
797 }
798 
799 /// Given a value comparison instruction,
800 /// decode all of the 'cases' that it represents and return the 'default' block.
801 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
802     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
803   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
804     Cases.reserve(SI->getNumCases());
805     for (auto Case : SI->cases())
806       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
807                                                   Case.getCaseSuccessor()));
808     return SI->getDefaultDest();
809   }
810 
811   BranchInst *BI = cast<BranchInst>(TI);
812   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
813   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
814   Cases.push_back(ValueEqualityComparisonCase(
815       GetConstantInt(ICI->getOperand(1), DL), Succ));
816   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
817 }
818 
819 /// Given a vector of bb/value pairs, remove any entries
820 /// in the list that match the specified block.
821 static void
822 EliminateBlockCases(BasicBlock *BB,
823                     std::vector<ValueEqualityComparisonCase> &Cases) {
824   llvm::erase(Cases, BB);
825 }
826 
827 /// Return true if there are any keys in C1 that exist in C2 as well.
828 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
829                           std::vector<ValueEqualityComparisonCase> &C2) {
830   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
831 
832   // Make V1 be smaller than V2.
833   if (V1->size() > V2->size())
834     std::swap(V1, V2);
835 
836   if (V1->empty())
837     return false;
838   if (V1->size() == 1) {
839     // Just scan V2.
840     ConstantInt *TheVal = (*V1)[0].Value;
841     for (const ValueEqualityComparisonCase &VECC : *V2)
842       if (TheVal == VECC.Value)
843         return true;
844   }
845 
846   // Otherwise, just sort both lists and compare element by element.
847   array_pod_sort(V1->begin(), V1->end());
848   array_pod_sort(V2->begin(), V2->end());
849   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
850   while (i1 != e1 && i2 != e2) {
851     if ((*V1)[i1].Value == (*V2)[i2].Value)
852       return true;
853     if ((*V1)[i1].Value < (*V2)[i2].Value)
854       ++i1;
855     else
856       ++i2;
857   }
858   return false;
859 }
860 
861 // Set branch weights on SwitchInst. This sets the metadata if there is at
862 // least one non-zero weight.
863 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
864   // Check that there is at least one non-zero weight. Otherwise, pass
865   // nullptr to setMetadata which will erase the existing metadata.
866   MDNode *N = nullptr;
867   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
868     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
869   SI->setMetadata(LLVMContext::MD_prof, N);
870 }
871 
872 // Similar to the above, but for branch and select instructions that take
873 // exactly 2 weights.
874 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
875                              uint32_t FalseWeight) {
876   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
877   // Check that there is at least one non-zero weight. Otherwise, pass
878   // nullptr to setMetadata which will erase the existing metadata.
879   MDNode *N = nullptr;
880   if (TrueWeight || FalseWeight)
881     N = MDBuilder(I->getParent()->getContext())
882             .createBranchWeights(TrueWeight, FalseWeight);
883   I->setMetadata(LLVMContext::MD_prof, N);
884 }
885 
886 /// If TI is known to be a terminator instruction and its block is known to
887 /// only have a single predecessor block, check to see if that predecessor is
888 /// also a value comparison with the same value, and if that comparison
889 /// determines the outcome of this comparison. If so, simplify TI. This does a
890 /// very limited form of jump threading.
891 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
892     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
893   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
894   if (!PredVal)
895     return false; // Not a value comparison in predecessor.
896 
897   Value *ThisVal = isValueEqualityComparison(TI);
898   assert(ThisVal && "This isn't a value comparison!!");
899   if (ThisVal != PredVal)
900     return false; // Different predicates.
901 
902   // TODO: Preserve branch weight metadata, similarly to how
903   // FoldValueComparisonIntoPredecessors preserves it.
904 
905   // Find out information about when control will move from Pred to TI's block.
906   std::vector<ValueEqualityComparisonCase> PredCases;
907   BasicBlock *PredDef =
908       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
909   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
910 
911   // Find information about how control leaves this block.
912   std::vector<ValueEqualityComparisonCase> ThisCases;
913   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
914   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
915 
916   // If TI's block is the default block from Pred's comparison, potentially
917   // simplify TI based on this knowledge.
918   if (PredDef == TI->getParent()) {
919     // If we are here, we know that the value is none of those cases listed in
920     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
921     // can simplify TI.
922     if (!ValuesOverlap(PredCases, ThisCases))
923       return false;
924 
925     if (isa<BranchInst>(TI)) {
926       // Okay, one of the successors of this condbr is dead.  Convert it to a
927       // uncond br.
928       assert(ThisCases.size() == 1 && "Branch can only have one case!");
929       // Insert the new branch.
930       Instruction *NI = Builder.CreateBr(ThisDef);
931       (void)NI;
932 
933       // Remove PHI node entries for the dead edge.
934       ThisCases[0].Dest->removePredecessor(PredDef);
935 
936       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
937                         << "Through successor TI: " << *TI << "Leaving: " << *NI
938                         << "\n");
939 
940       EraseTerminatorAndDCECond(TI);
941 
942       if (DTU)
943         DTU->applyUpdates(
944             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
945 
946       return true;
947     }
948 
949     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
950     // Okay, TI has cases that are statically dead, prune them away.
951     SmallPtrSet<Constant *, 16> DeadCases;
952     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
953       DeadCases.insert(PredCases[i].Value);
954 
955     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
956                       << "Through successor TI: " << *TI);
957 
958     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
959     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
960       --i;
961       auto *Successor = i->getCaseSuccessor();
962       if (DTU)
963         ++NumPerSuccessorCases[Successor];
964       if (DeadCases.count(i->getCaseValue())) {
965         Successor->removePredecessor(PredDef);
966         SI.removeCase(i);
967         if (DTU)
968           --NumPerSuccessorCases[Successor];
969       }
970     }
971 
972     if (DTU) {
973       std::vector<DominatorTree::UpdateType> Updates;
974       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
975         if (I.second == 0)
976           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
977       DTU->applyUpdates(Updates);
978     }
979 
980     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
981     return true;
982   }
983 
984   // Otherwise, TI's block must correspond to some matched value.  Find out
985   // which value (or set of values) this is.
986   ConstantInt *TIV = nullptr;
987   BasicBlock *TIBB = TI->getParent();
988   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
989     if (PredCases[i].Dest == TIBB) {
990       if (TIV)
991         return false; // Cannot handle multiple values coming to this block.
992       TIV = PredCases[i].Value;
993     }
994   assert(TIV && "No edge from pred to succ?");
995 
996   // Okay, we found the one constant that our value can be if we get into TI's
997   // BB.  Find out which successor will unconditionally be branched to.
998   BasicBlock *TheRealDest = nullptr;
999   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
1000     if (ThisCases[i].Value == TIV) {
1001       TheRealDest = ThisCases[i].Dest;
1002       break;
1003     }
1004 
1005   // If not handled by any explicit cases, it is handled by the default case.
1006   if (!TheRealDest)
1007     TheRealDest = ThisDef;
1008 
1009   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1010 
1011   // Remove PHI node entries for dead edges.
1012   BasicBlock *CheckEdge = TheRealDest;
1013   for (BasicBlock *Succ : successors(TIBB))
1014     if (Succ != CheckEdge) {
1015       if (Succ != TheRealDest)
1016         RemovedSuccs.insert(Succ);
1017       Succ->removePredecessor(TIBB);
1018     } else
1019       CheckEdge = nullptr;
1020 
1021   // Insert the new branch.
1022   Instruction *NI = Builder.CreateBr(TheRealDest);
1023   (void)NI;
1024 
1025   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1026                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1027                     << "\n");
1028 
1029   EraseTerminatorAndDCECond(TI);
1030   if (DTU) {
1031     SmallVector<DominatorTree::UpdateType, 2> Updates;
1032     Updates.reserve(RemovedSuccs.size());
1033     for (auto *RemovedSucc : RemovedSuccs)
1034       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1035     DTU->applyUpdates(Updates);
1036   }
1037   return true;
1038 }
1039 
1040 namespace {
1041 
1042 /// This class implements a stable ordering of constant
1043 /// integers that does not depend on their address.  This is important for
1044 /// applications that sort ConstantInt's to ensure uniqueness.
1045 struct ConstantIntOrdering {
1046   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1047     return LHS->getValue().ult(RHS->getValue());
1048   }
1049 };
1050 
1051 } // end anonymous namespace
1052 
1053 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1054                                     ConstantInt *const *P2) {
1055   const ConstantInt *LHS = *P1;
1056   const ConstantInt *RHS = *P2;
1057   if (LHS == RHS)
1058     return 0;
1059   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1060 }
1061 
1062 /// Get Weights of a given terminator, the default weight is at the front
1063 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1064 /// metadata.
1065 static void GetBranchWeights(Instruction *TI,
1066                              SmallVectorImpl<uint64_t> &Weights) {
1067   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1068   assert(MD);
1069   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1070     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1071     Weights.push_back(CI->getValue().getZExtValue());
1072   }
1073 
1074   // If TI is a conditional eq, the default case is the false case,
1075   // and the corresponding branch-weight data is at index 2. We swap the
1076   // default weight to be the first entry.
1077   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1078     assert(Weights.size() == 2);
1079     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1080     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1081       std::swap(Weights.front(), Weights.back());
1082   }
1083 }
1084 
1085 /// Keep halving the weights until all can fit in uint32_t.
1086 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1087   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1088   if (Max > UINT_MAX) {
1089     unsigned Offset = 32 - llvm::countl_zero(Max);
1090     for (uint64_t &I : Weights)
1091       I >>= Offset;
1092   }
1093 }
1094 
1095 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1096     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1097   Instruction *PTI = PredBlock->getTerminator();
1098 
1099   // If we have bonus instructions, clone them into the predecessor block.
1100   // Note that there may be multiple predecessor blocks, so we cannot move
1101   // bonus instructions to a predecessor block.
1102   for (Instruction &BonusInst : *BB) {
1103     if (BonusInst.isTerminator())
1104       continue;
1105 
1106     Instruction *NewBonusInst = BonusInst.clone();
1107 
1108     if (!isa<DbgInfoIntrinsic>(BonusInst) &&
1109         PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1110       // Unless the instruction has the same !dbg location as the original
1111       // branch, drop it. When we fold the bonus instructions we want to make
1112       // sure we reset their debug locations in order to avoid stepping on
1113       // dead code caused by folding dead branches.
1114       NewBonusInst->setDebugLoc(DebugLoc());
1115     }
1116 
1117     RemapInstruction(NewBonusInst, VMap,
1118                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1119 
1120     // If we speculated an instruction, we need to drop any metadata that may
1121     // result in undefined behavior, as the metadata might have been valid
1122     // only given the branch precondition.
1123     // Similarly strip attributes on call parameters that may cause UB in
1124     // location the call is moved to.
1125     NewBonusInst->dropUBImplyingAttrsAndMetadata();
1126 
1127     NewBonusInst->insertInto(PredBlock, PTI->getIterator());
1128     auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst);
1129     RemapDPValueRange(NewBonusInst->getModule(), Range, VMap,
1130                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1131 
1132     if (isa<DbgInfoIntrinsic>(BonusInst))
1133       continue;
1134 
1135     NewBonusInst->takeName(&BonusInst);
1136     BonusInst.setName(NewBonusInst->getName() + ".old");
1137     VMap[&BonusInst] = NewBonusInst;
1138 
1139     // Update (liveout) uses of bonus instructions,
1140     // now that the bonus instruction has been cloned into predecessor.
1141     // Note that we expect to be in a block-closed SSA form for this to work!
1142     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1143       auto *UI = cast<Instruction>(U.getUser());
1144       auto *PN = dyn_cast<PHINode>(UI);
1145       if (!PN) {
1146         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1147                "If the user is not a PHI node, then it should be in the same "
1148                "block as, and come after, the original bonus instruction.");
1149         continue; // Keep using the original bonus instruction.
1150       }
1151       // Is this the block-closed SSA form PHI node?
1152       if (PN->getIncomingBlock(U) == BB)
1153         continue; // Great, keep using the original bonus instruction.
1154       // The only other alternative is an "use" when coming from
1155       // the predecessor block - here we should refer to the cloned bonus instr.
1156       assert(PN->getIncomingBlock(U) == PredBlock &&
1157              "Not in block-closed SSA form?");
1158       U.set(NewBonusInst);
1159     }
1160   }
1161 }
1162 
1163 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1164     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1165   BasicBlock *BB = TI->getParent();
1166   BasicBlock *Pred = PTI->getParent();
1167 
1168   SmallVector<DominatorTree::UpdateType, 32> Updates;
1169 
1170   // Figure out which 'cases' to copy from SI to PSI.
1171   std::vector<ValueEqualityComparisonCase> BBCases;
1172   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1173 
1174   std::vector<ValueEqualityComparisonCase> PredCases;
1175   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1176 
1177   // Based on whether the default edge from PTI goes to BB or not, fill in
1178   // PredCases and PredDefault with the new switch cases we would like to
1179   // build.
1180   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1181 
1182   // Update the branch weight metadata along the way
1183   SmallVector<uint64_t, 8> Weights;
1184   bool PredHasWeights = hasBranchWeightMD(*PTI);
1185   bool SuccHasWeights = hasBranchWeightMD(*TI);
1186 
1187   if (PredHasWeights) {
1188     GetBranchWeights(PTI, Weights);
1189     // branch-weight metadata is inconsistent here.
1190     if (Weights.size() != 1 + PredCases.size())
1191       PredHasWeights = SuccHasWeights = false;
1192   } else if (SuccHasWeights)
1193     // If there are no predecessor weights but there are successor weights,
1194     // populate Weights with 1, which will later be scaled to the sum of
1195     // successor's weights
1196     Weights.assign(1 + PredCases.size(), 1);
1197 
1198   SmallVector<uint64_t, 8> SuccWeights;
1199   if (SuccHasWeights) {
1200     GetBranchWeights(TI, SuccWeights);
1201     // branch-weight metadata is inconsistent here.
1202     if (SuccWeights.size() != 1 + BBCases.size())
1203       PredHasWeights = SuccHasWeights = false;
1204   } else if (PredHasWeights)
1205     SuccWeights.assign(1 + BBCases.size(), 1);
1206 
1207   if (PredDefault == BB) {
1208     // If this is the default destination from PTI, only the edges in TI
1209     // that don't occur in PTI, or that branch to BB will be activated.
1210     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1211     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1212       if (PredCases[i].Dest != BB)
1213         PTIHandled.insert(PredCases[i].Value);
1214       else {
1215         // The default destination is BB, we don't need explicit targets.
1216         std::swap(PredCases[i], PredCases.back());
1217 
1218         if (PredHasWeights || SuccHasWeights) {
1219           // Increase weight for the default case.
1220           Weights[0] += Weights[i + 1];
1221           std::swap(Weights[i + 1], Weights.back());
1222           Weights.pop_back();
1223         }
1224 
1225         PredCases.pop_back();
1226         --i;
1227         --e;
1228       }
1229 
1230     // Reconstruct the new switch statement we will be building.
1231     if (PredDefault != BBDefault) {
1232       PredDefault->removePredecessor(Pred);
1233       if (DTU && PredDefault != BB)
1234         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1235       PredDefault = BBDefault;
1236       ++NewSuccessors[BBDefault];
1237     }
1238 
1239     unsigned CasesFromPred = Weights.size();
1240     uint64_t ValidTotalSuccWeight = 0;
1241     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1242       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1243         PredCases.push_back(BBCases[i]);
1244         ++NewSuccessors[BBCases[i].Dest];
1245         if (SuccHasWeights || PredHasWeights) {
1246           // The default weight is at index 0, so weight for the ith case
1247           // should be at index i+1. Scale the cases from successor by
1248           // PredDefaultWeight (Weights[0]).
1249           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1250           ValidTotalSuccWeight += SuccWeights[i + 1];
1251         }
1252       }
1253 
1254     if (SuccHasWeights || PredHasWeights) {
1255       ValidTotalSuccWeight += SuccWeights[0];
1256       // Scale the cases from predecessor by ValidTotalSuccWeight.
1257       for (unsigned i = 1; i < CasesFromPred; ++i)
1258         Weights[i] *= ValidTotalSuccWeight;
1259       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1260       Weights[0] *= SuccWeights[0];
1261     }
1262   } else {
1263     // If this is not the default destination from PSI, only the edges
1264     // in SI that occur in PSI with a destination of BB will be
1265     // activated.
1266     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1267     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1268     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1269       if (PredCases[i].Dest == BB) {
1270         PTIHandled.insert(PredCases[i].Value);
1271 
1272         if (PredHasWeights || SuccHasWeights) {
1273           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1274           std::swap(Weights[i + 1], Weights.back());
1275           Weights.pop_back();
1276         }
1277 
1278         std::swap(PredCases[i], PredCases.back());
1279         PredCases.pop_back();
1280         --i;
1281         --e;
1282       }
1283 
1284     // Okay, now we know which constants were sent to BB from the
1285     // predecessor.  Figure out where they will all go now.
1286     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1287       if (PTIHandled.count(BBCases[i].Value)) {
1288         // If this is one we are capable of getting...
1289         if (PredHasWeights || SuccHasWeights)
1290           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1291         PredCases.push_back(BBCases[i]);
1292         ++NewSuccessors[BBCases[i].Dest];
1293         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1294       }
1295 
1296     // If there are any constants vectored to BB that TI doesn't handle,
1297     // they must go to the default destination of TI.
1298     for (ConstantInt *I : PTIHandled) {
1299       if (PredHasWeights || SuccHasWeights)
1300         Weights.push_back(WeightsForHandled[I]);
1301       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1302       ++NewSuccessors[BBDefault];
1303     }
1304   }
1305 
1306   // Okay, at this point, we know which new successor Pred will get.  Make
1307   // sure we update the number of entries in the PHI nodes for these
1308   // successors.
1309   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1310   if (DTU) {
1311     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1312     Updates.reserve(Updates.size() + NewSuccessors.size());
1313   }
1314   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1315        NewSuccessors) {
1316     for (auto I : seq(NewSuccessor.second)) {
1317       (void)I;
1318       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1319     }
1320     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1321       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1322   }
1323 
1324   Builder.SetInsertPoint(PTI);
1325   // Convert pointer to int before we switch.
1326   if (CV->getType()->isPointerTy()) {
1327     CV =
1328         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1329   }
1330 
1331   // Now that the successors are updated, create the new Switch instruction.
1332   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1333   NewSI->setDebugLoc(PTI->getDebugLoc());
1334   for (ValueEqualityComparisonCase &V : PredCases)
1335     NewSI->addCase(V.Value, V.Dest);
1336 
1337   if (PredHasWeights || SuccHasWeights) {
1338     // Halve the weights if any of them cannot fit in an uint32_t
1339     FitWeights(Weights);
1340 
1341     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1342 
1343     setBranchWeights(NewSI, MDWeights);
1344   }
1345 
1346   EraseTerminatorAndDCECond(PTI);
1347 
1348   // Okay, last check.  If BB is still a successor of PSI, then we must
1349   // have an infinite loop case.  If so, add an infinitely looping block
1350   // to handle the case to preserve the behavior of the code.
1351   BasicBlock *InfLoopBlock = nullptr;
1352   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1353     if (NewSI->getSuccessor(i) == BB) {
1354       if (!InfLoopBlock) {
1355         // Insert it at the end of the function, because it's either code,
1356         // or it won't matter if it's hot. :)
1357         InfLoopBlock =
1358             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1359         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1360         if (DTU)
1361           Updates.push_back(
1362               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1363       }
1364       NewSI->setSuccessor(i, InfLoopBlock);
1365     }
1366 
1367   if (DTU) {
1368     if (InfLoopBlock)
1369       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1370 
1371     Updates.push_back({DominatorTree::Delete, Pred, BB});
1372 
1373     DTU->applyUpdates(Updates);
1374   }
1375 
1376   ++NumFoldValueComparisonIntoPredecessors;
1377   return true;
1378 }
1379 
1380 /// The specified terminator is a value equality comparison instruction
1381 /// (either a switch or a branch on "X == c").
1382 /// See if any of the predecessors of the terminator block are value comparisons
1383 /// on the same value.  If so, and if safe to do so, fold them together.
1384 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1385                                                          IRBuilder<> &Builder) {
1386   BasicBlock *BB = TI->getParent();
1387   Value *CV = isValueEqualityComparison(TI); // CondVal
1388   assert(CV && "Not a comparison?");
1389 
1390   bool Changed = false;
1391 
1392   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1393   while (!Preds.empty()) {
1394     BasicBlock *Pred = Preds.pop_back_val();
1395     Instruction *PTI = Pred->getTerminator();
1396 
1397     // Don't try to fold into itself.
1398     if (Pred == BB)
1399       continue;
1400 
1401     // See if the predecessor is a comparison with the same value.
1402     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1403     if (PCV != CV)
1404       continue;
1405 
1406     SmallSetVector<BasicBlock *, 4> FailBlocks;
1407     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1408       for (auto *Succ : FailBlocks) {
1409         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1410           return false;
1411       }
1412     }
1413 
1414     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1415     Changed = true;
1416   }
1417   return Changed;
1418 }
1419 
1420 // If we would need to insert a select that uses the value of this invoke
1421 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would
1422 // need to do this), we can't hoist the invoke, as there is nowhere to put the
1423 // select in this case.
1424 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1425                                 Instruction *I1, Instruction *I2) {
1426   for (BasicBlock *Succ : successors(BB1)) {
1427     for (const PHINode &PN : Succ->phis()) {
1428       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1429       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1430       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1431         return false;
1432       }
1433     }
1434   }
1435   return true;
1436 }
1437 
1438 // Get interesting characteristics of instructions that
1439 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of
1440 // instructions can be reordered across.
1441 enum SkipFlags {
1442   SkipReadMem = 1,
1443   SkipSideEffect = 2,
1444   SkipImplicitControlFlow = 4
1445 };
1446 
1447 static unsigned skippedInstrFlags(Instruction *I) {
1448   unsigned Flags = 0;
1449   if (I->mayReadFromMemory())
1450     Flags |= SkipReadMem;
1451   // We can't arbitrarily move around allocas, e.g. moving allocas (especially
1452   // inalloca) across stacksave/stackrestore boundaries.
1453   if (I->mayHaveSideEffects() || isa<AllocaInst>(I))
1454     Flags |= SkipSideEffect;
1455   if (!isGuaranteedToTransferExecutionToSuccessor(I))
1456     Flags |= SkipImplicitControlFlow;
1457   return Flags;
1458 }
1459 
1460 // Returns true if it is safe to reorder an instruction across preceding
1461 // instructions in a basic block.
1462 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) {
1463   // Don't reorder a store over a load.
1464   if ((Flags & SkipReadMem) && I->mayWriteToMemory())
1465     return false;
1466 
1467   // If we have seen an instruction with side effects, it's unsafe to reorder an
1468   // instruction which reads memory or itself has side effects.
1469   if ((Flags & SkipSideEffect) &&
1470       (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I)))
1471     return false;
1472 
1473   // Reordering across an instruction which does not necessarily transfer
1474   // control to the next instruction is speculation.
1475   if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I))
1476     return false;
1477 
1478   // Hoisting of llvm.deoptimize is only legal together with the next return
1479   // instruction, which this pass is not always able to do.
1480   if (auto *CB = dyn_cast<CallBase>(I))
1481     if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize)
1482       return false;
1483 
1484   // It's also unsafe/illegal to hoist an instruction above its instruction
1485   // operands
1486   BasicBlock *BB = I->getParent();
1487   for (Value *Op : I->operands()) {
1488     if (auto *J = dyn_cast<Instruction>(Op))
1489       if (J->getParent() == BB)
1490         return false;
1491   }
1492 
1493   return true;
1494 }
1495 
1496 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1497 
1498 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical
1499 /// instructions \p I1 and \p I2 can and should be hoisted.
1500 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2,
1501                                           const TargetTransformInfo &TTI) {
1502   // If we're going to hoist a call, make sure that the two instructions
1503   // we're commoning/hoisting are both marked with musttail, or neither of
1504   // them is marked as such. Otherwise, we might end up in a situation where
1505   // we hoist from a block where the terminator is a `ret` to a block where
1506   // the terminator is a `br`, and `musttail` calls expect to be followed by
1507   // a return.
1508   auto *C1 = dyn_cast<CallInst>(I1);
1509   auto *C2 = dyn_cast<CallInst>(I2);
1510   if (C1 && C2)
1511     if (C1->isMustTailCall() != C2->isMustTailCall())
1512       return false;
1513 
1514   if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1515     return false;
1516 
1517   // If any of the two call sites has nomerge or convergent attribute, stop
1518   // hoisting.
1519   if (const auto *CB1 = dyn_cast<CallBase>(I1))
1520     if (CB1->cannotMerge() || CB1->isConvergent())
1521       return false;
1522   if (const auto *CB2 = dyn_cast<CallBase>(I2))
1523     if (CB2->cannotMerge() || CB2->isConvergent())
1524       return false;
1525 
1526   return true;
1527 }
1528 
1529 /// Hoist any common code in the successor blocks up into the block. This
1530 /// function guarantees that BB dominates all successors. If EqTermsOnly is
1531 /// given, only perform hoisting in case both blocks only contain a terminator.
1532 /// In that case, only the original BI will be replaced and selects for PHIs are
1533 /// added.
1534 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(BasicBlock *BB,
1535                                                    bool EqTermsOnly) {
1536   // This does very trivial matching, with limited scanning, to find identical
1537   // instructions in the two blocks. In particular, we don't want to get into
1538   // O(N1*N2*...) situations here where Ni are the sizes of these successors. As
1539   // such, we currently just scan for obviously identical instructions in an
1540   // identical order, possibly separated by the same number of non-identical
1541   // instructions.
1542   unsigned int SuccSize = succ_size(BB);
1543   if (SuccSize < 2)
1544     return false;
1545 
1546   // If either of the blocks has it's address taken, then we can't do this fold,
1547   // because the code we'd hoist would no longer run when we jump into the block
1548   // by it's address.
1549   for (auto *Succ : successors(BB))
1550     if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor())
1551       return false;
1552 
1553   auto *TI = BB->getTerminator();
1554 
1555   // The second of pair is a SkipFlags bitmask.
1556   using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>;
1557   SmallVector<SuccIterPair, 8> SuccIterPairs;
1558   for (auto *Succ : successors(BB)) {
1559     BasicBlock::iterator SuccItr = Succ->begin();
1560     if (isa<PHINode>(*SuccItr))
1561       return false;
1562     SuccIterPairs.push_back(SuccIterPair(SuccItr, 0));
1563   }
1564 
1565   // Check if only hoisting terminators is allowed. This does not add new
1566   // instructions to the hoist location.
1567   if (EqTermsOnly) {
1568     // Skip any debug intrinsics, as they are free to hoist.
1569     for (auto &SuccIter : make_first_range(SuccIterPairs)) {
1570       auto *INonDbg = &*skipDebugIntrinsics(SuccIter);
1571       if (!INonDbg->isTerminator())
1572         return false;
1573     }
1574     // Now we know that we only need to hoist debug intrinsics and the
1575     // terminator. Let the loop below handle those 2 cases.
1576   }
1577 
1578   // Count how many instructions were not hoisted so far. There's a limit on how
1579   // many instructions we skip, serving as a compilation time control as well as
1580   // preventing excessive increase of life ranges.
1581   unsigned NumSkipped = 0;
1582   // If we find an unreachable instruction at the beginning of a basic block, we
1583   // can still hoist instructions from the rest of the basic blocks.
1584   if (SuccIterPairs.size() > 2) {
1585     erase_if(SuccIterPairs,
1586              [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); });
1587     if (SuccIterPairs.size() < 2)
1588       return false;
1589   }
1590 
1591   bool Changed = false;
1592 
1593   for (;;) {
1594     auto *SuccIterPairBegin = SuccIterPairs.begin();
1595     auto &BB1ItrPair = *SuccIterPairBegin++;
1596     auto OtherSuccIterPairRange =
1597         iterator_range(SuccIterPairBegin, SuccIterPairs.end());
1598     auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange);
1599 
1600     Instruction *I1 = &*BB1ItrPair.first;
1601     auto *BB1 = I1->getParent();
1602 
1603     // Skip debug info if it is not identical.
1604     bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) {
1605       Instruction *I2 = &*Iter;
1606       return I1->isIdenticalToWhenDefined(I2);
1607     });
1608     if (!AllDbgInstsAreIdentical) {
1609       while (isa<DbgInfoIntrinsic>(I1))
1610         I1 = &*++BB1ItrPair.first;
1611       for (auto &SuccIter : OtherSuccIterRange) {
1612         Instruction *I2 = &*SuccIter;
1613         while (isa<DbgInfoIntrinsic>(I2))
1614           I2 = &*++SuccIter;
1615       }
1616     }
1617 
1618     bool AllInstsAreIdentical = true;
1619     bool HasTerminator = I1->isTerminator();
1620     for (auto &SuccIter : OtherSuccIterRange) {
1621       Instruction *I2 = &*SuccIter;
1622       HasTerminator |= I2->isTerminator();
1623       if (AllInstsAreIdentical && !I1->isIdenticalToWhenDefined(I2))
1624         AllInstsAreIdentical = false;
1625     }
1626 
1627     // If we are hoisting the terminator instruction, don't move one (making a
1628     // broken BB), instead clone it, and remove BI.
1629     if (HasTerminator) {
1630       // Even if BB, which contains only one unreachable instruction, is ignored
1631       // at the beginning of the loop, we can hoist the terminator instruction.
1632       // If any instructions remain in the block, we cannot hoist terminators.
1633       if (NumSkipped || !AllInstsAreIdentical)
1634         return Changed;
1635       SmallVector<Instruction *, 8> Insts;
1636       for (auto &SuccIter : OtherSuccIterRange)
1637         Insts.push_back(&*SuccIter);
1638       return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, Insts) || Changed;
1639     }
1640 
1641     if (AllInstsAreIdentical) {
1642       unsigned SkipFlagsBB1 = BB1ItrPair.second;
1643       AllInstsAreIdentical =
1644           isSafeToHoistInstr(I1, SkipFlagsBB1) &&
1645           all_of(OtherSuccIterPairRange, [=](const auto &Pair) {
1646             Instruction *I2 = &*Pair.first;
1647             unsigned SkipFlagsBB2 = Pair.second;
1648             // Even if the instructions are identical, it may not
1649             // be safe to hoist them if we have skipped over
1650             // instructions with side effects or their operands
1651             // weren't hoisted.
1652             return isSafeToHoistInstr(I2, SkipFlagsBB2) &&
1653                    shouldHoistCommonInstructions(I1, I2, TTI);
1654           });
1655     }
1656 
1657     if (AllInstsAreIdentical) {
1658       BB1ItrPair.first++;
1659       if (isa<DbgInfoIntrinsic>(I1)) {
1660         // The debug location is an integral part of a debug info intrinsic
1661         // and can't be separated from it or replaced.  Instead of attempting
1662         // to merge locations, simply hoist both copies of the intrinsic.
1663         I1->moveBeforePreserving(TI);
1664         for (auto &SuccIter : OtherSuccIterRange) {
1665           auto *I2 = &*SuccIter++;
1666           assert(isa<DbgInfoIntrinsic>(I2));
1667           I2->moveBeforePreserving(TI);
1668         }
1669       } else {
1670         // For a normal instruction, we just move one to right before the
1671         // branch, then replace all uses of the other with the first.  Finally,
1672         // we remove the now redundant second instruction.
1673         I1->moveBeforePreserving(TI);
1674         BB->splice(TI->getIterator(), BB1, I1->getIterator());
1675         for (auto &SuccIter : OtherSuccIterRange) {
1676           Instruction *I2 = &*SuccIter++;
1677           assert(I2 != I1);
1678           if (!I2->use_empty())
1679             I2->replaceAllUsesWith(I1);
1680           I1->andIRFlags(I2);
1681           combineMetadataForCSE(I1, I2, true);
1682           // I1 and I2 are being combined into a single instruction.  Its debug
1683           // location is the merged locations of the original instructions.
1684           I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1685           I2->eraseFromParent();
1686         }
1687       }
1688       if (!Changed)
1689         NumHoistCommonCode += SuccIterPairs.size();
1690       Changed = true;
1691       NumHoistCommonInstrs += SuccIterPairs.size();
1692     } else {
1693       if (NumSkipped >= HoistCommonSkipLimit)
1694         return Changed;
1695       // We are about to skip over a pair of non-identical instructions. Record
1696       // if any have characteristics that would prevent reordering instructions
1697       // across them.
1698       for (auto &SuccIterPair : SuccIterPairs) {
1699         Instruction *I = &*SuccIterPair.first++;
1700         SuccIterPair.second |= skippedInstrFlags(I);
1701       }
1702       ++NumSkipped;
1703     }
1704   }
1705 }
1706 
1707 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf(
1708     Instruction *TI, Instruction *I1,
1709     SmallVectorImpl<Instruction *> &OtherSuccTIs) {
1710 
1711   auto *BI = dyn_cast<BranchInst>(TI);
1712 
1713   bool Changed = false;
1714   BasicBlock *TIParent = TI->getParent();
1715   BasicBlock *BB1 = I1->getParent();
1716 
1717   // Use only for an if statement.
1718   auto *I2 = *OtherSuccTIs.begin();
1719   auto *BB2 = I2->getParent();
1720   if (BI) {
1721     assert(OtherSuccTIs.size() == 1);
1722     assert(BI->getSuccessor(0) == I1->getParent());
1723     assert(BI->getSuccessor(1) == I2->getParent());
1724   }
1725 
1726   // In the case of an if statement, we try to hoist an invoke.
1727   // FIXME: Can we define a safety predicate for CallBr?
1728   // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll
1729   // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit?
1730   if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1731     return false;
1732 
1733   // TODO: callbr hoisting currently disabled pending further study.
1734   if (isa<CallBrInst>(I1))
1735     return false;
1736 
1737   for (BasicBlock *Succ : successors(BB1)) {
1738     for (PHINode &PN : Succ->phis()) {
1739       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1740       for (Instruction *OtherSuccTI : OtherSuccTIs) {
1741         Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent());
1742         if (BB1V == BB2V)
1743           continue;
1744 
1745         // In the case of an if statement, check for
1746         // passingValueIsAlwaysUndefined here because we would rather eliminate
1747         // undefined control flow then converting it to a select.
1748         if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) ||
1749             passingValueIsAlwaysUndefined(BB2V, &PN))
1750           return false;
1751       }
1752     }
1753   }
1754 
1755   // Okay, it is safe to hoist the terminator.
1756   Instruction *NT = I1->clone();
1757   NT->insertInto(TIParent, TI->getIterator());
1758   if (!NT->getType()->isVoidTy()) {
1759     I1->replaceAllUsesWith(NT);
1760     for (Instruction *OtherSuccTI : OtherSuccTIs)
1761       OtherSuccTI->replaceAllUsesWith(NT);
1762     NT->takeName(I1);
1763   }
1764   Changed = true;
1765   NumHoistCommonInstrs += OtherSuccTIs.size() + 1;
1766 
1767   // Ensure terminator gets a debug location, even an unknown one, in case
1768   // it involves inlinable calls.
1769   SmallVector<DILocation *, 4> Locs;
1770   Locs.push_back(I1->getDebugLoc());
1771   for (auto *OtherSuccTI : OtherSuccTIs)
1772     Locs.push_back(OtherSuccTI->getDebugLoc());
1773   // Also clone DPValues from the existing terminator, and all others (to
1774   // duplicate existing hoisting behaviour).
1775   NT->cloneDebugInfoFrom(I1);
1776   for (Instruction *OtherSuccTI : OtherSuccTIs)
1777     NT->cloneDebugInfoFrom(OtherSuccTI);
1778   NT->setDebugLoc(DILocation::getMergedLocations(Locs));
1779 
1780   // PHIs created below will adopt NT's merged DebugLoc.
1781   IRBuilder<NoFolder> Builder(NT);
1782 
1783   // In the case of an if statement, hoisting one of the terminators from our
1784   // successor is a great thing. Unfortunately, the successors of the if/else
1785   // blocks may have PHI nodes in them.  If they do, all PHI entries for BB1/BB2
1786   // must agree for all PHI nodes, so we insert select instruction to compute
1787   // the final result.
1788   if (BI) {
1789     std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1790     for (BasicBlock *Succ : successors(BB1)) {
1791       for (PHINode &PN : Succ->phis()) {
1792         Value *BB1V = PN.getIncomingValueForBlock(BB1);
1793         Value *BB2V = PN.getIncomingValueForBlock(BB2);
1794         if (BB1V == BB2V)
1795           continue;
1796 
1797         // These values do not agree.  Insert a select instruction before NT
1798         // that determines the right value.
1799         SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1800         if (!SI) {
1801           // Propagate fast-math-flags from phi node to its replacement select.
1802           IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1803           if (isa<FPMathOperator>(PN))
1804             Builder.setFastMathFlags(PN.getFastMathFlags());
1805 
1806           SI = cast<SelectInst>(Builder.CreateSelect(
1807               BI->getCondition(), BB1V, BB2V,
1808               BB1V->getName() + "." + BB2V->getName(), BI));
1809         }
1810 
1811         // Make the PHI node use the select for all incoming values for BB1/BB2
1812         for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1813           if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1814             PN.setIncomingValue(i, SI);
1815       }
1816     }
1817   }
1818 
1819   SmallVector<DominatorTree::UpdateType, 4> Updates;
1820 
1821   // Update any PHI nodes in our new successors.
1822   for (BasicBlock *Succ : successors(BB1)) {
1823     AddPredecessorToBlock(Succ, TIParent, BB1);
1824     if (DTU)
1825       Updates.push_back({DominatorTree::Insert, TIParent, Succ});
1826   }
1827 
1828   if (DTU)
1829     for (BasicBlock *Succ : successors(TI))
1830       Updates.push_back({DominatorTree::Delete, TIParent, Succ});
1831 
1832   EraseTerminatorAndDCECond(TI);
1833   if (DTU)
1834     DTU->applyUpdates(Updates);
1835   return Changed;
1836 }
1837 
1838 // Check lifetime markers.
1839 static bool isLifeTimeMarker(const Instruction *I) {
1840   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1841     switch (II->getIntrinsicID()) {
1842     default:
1843       break;
1844     case Intrinsic::lifetime_start:
1845     case Intrinsic::lifetime_end:
1846       return true;
1847     }
1848   }
1849   return false;
1850 }
1851 
1852 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1853 // into variables.
1854 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1855                                                 int OpIdx) {
1856   return !isa<IntrinsicInst>(I);
1857 }
1858 
1859 // All instructions in Insts belong to different blocks that all unconditionally
1860 // branch to a common successor. Analyze each instruction and return true if it
1861 // would be possible to sink them into their successor, creating one common
1862 // instruction instead. For every value that would be required to be provided by
1863 // PHI node (because an operand varies in each input block), add to PHIOperands.
1864 static bool canSinkInstructions(
1865     ArrayRef<Instruction *> Insts,
1866     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1867   // Prune out obviously bad instructions to move. Each instruction must have
1868   // exactly zero or one use, and we check later that use is by a single, common
1869   // PHI instruction in the successor.
1870   bool HasUse = !Insts.front()->user_empty();
1871   for (auto *I : Insts) {
1872     // These instructions may change or break semantics if moved.
1873     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1874         I->getType()->isTokenTy())
1875       return false;
1876 
1877     // Do not try to sink an instruction in an infinite loop - it can cause
1878     // this algorithm to infinite loop.
1879     if (I->getParent()->getSingleSuccessor() == I->getParent())
1880       return false;
1881 
1882     // Conservatively return false if I is an inline-asm instruction. Sinking
1883     // and merging inline-asm instructions can potentially create arguments
1884     // that cannot satisfy the inline-asm constraints.
1885     // If the instruction has nomerge or convergent attribute, return false.
1886     if (const auto *C = dyn_cast<CallBase>(I))
1887       if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
1888         return false;
1889 
1890     // Each instruction must have zero or one use.
1891     if (HasUse && !I->hasOneUse())
1892       return false;
1893     if (!HasUse && !I->user_empty())
1894       return false;
1895   }
1896 
1897   const Instruction *I0 = Insts.front();
1898   for (auto *I : Insts) {
1899     if (!I->isSameOperationAs(I0))
1900       return false;
1901 
1902     // swifterror pointers can only be used by a load or store; sinking a load
1903     // or store would require introducing a select for the pointer operand,
1904     // which isn't allowed for swifterror pointers.
1905     if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError())
1906       return false;
1907     if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError())
1908       return false;
1909   }
1910 
1911   // All instructions in Insts are known to be the same opcode. If they have a
1912   // use, check that the only user is a PHI or in the same block as the
1913   // instruction, because if a user is in the same block as an instruction we're
1914   // contemplating sinking, it must already be determined to be sinkable.
1915   if (HasUse) {
1916     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1917     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1918     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1919           auto *U = cast<Instruction>(*I->user_begin());
1920           return (PNUse &&
1921                   PNUse->getParent() == Succ &&
1922                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1923                  U->getParent() == I->getParent();
1924         }))
1925       return false;
1926   }
1927 
1928   // Because SROA can't handle speculating stores of selects, try not to sink
1929   // loads, stores or lifetime markers of allocas when we'd have to create a
1930   // PHI for the address operand. Also, because it is likely that loads or
1931   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1932   // them.
1933   // This can cause code churn which can have unintended consequences down
1934   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1935   // FIXME: This is a workaround for a deficiency in SROA - see
1936   // https://llvm.org/bugs/show_bug.cgi?id=30188
1937   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1938         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1939       }))
1940     return false;
1941   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1942         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1943       }))
1944     return false;
1945   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1946         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1947       }))
1948     return false;
1949 
1950   // For calls to be sinkable, they must all be indirect, or have same callee.
1951   // I.e. if we have two direct calls to different callees, we don't want to
1952   // turn that into an indirect call. Likewise, if we have an indirect call,
1953   // and a direct call, we don't actually want to have a single indirect call.
1954   if (isa<CallBase>(I0)) {
1955     auto IsIndirectCall = [](const Instruction *I) {
1956       return cast<CallBase>(I)->isIndirectCall();
1957     };
1958     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1959     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1960     if (HaveIndirectCalls) {
1961       if (!AllCallsAreIndirect)
1962         return false;
1963     } else {
1964       // All callees must be identical.
1965       Value *Callee = nullptr;
1966       for (const Instruction *I : Insts) {
1967         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1968         if (!Callee)
1969           Callee = CurrCallee;
1970         else if (Callee != CurrCallee)
1971           return false;
1972       }
1973     }
1974   }
1975 
1976   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1977     Value *Op = I0->getOperand(OI);
1978     if (Op->getType()->isTokenTy())
1979       // Don't touch any operand of token type.
1980       return false;
1981 
1982     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1983       assert(I->getNumOperands() == I0->getNumOperands());
1984       return I->getOperand(OI) == I0->getOperand(OI);
1985     };
1986     if (!all_of(Insts, SameAsI0)) {
1987       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1988           !canReplaceOperandWithVariable(I0, OI))
1989         // We can't create a PHI from this GEP.
1990         return false;
1991       for (auto *I : Insts)
1992         PHIOperands[I].push_back(I->getOperand(OI));
1993     }
1994   }
1995   return true;
1996 }
1997 
1998 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1999 // instruction of every block in Blocks to their common successor, commoning
2000 // into one instruction.
2001 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
2002   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
2003 
2004   // canSinkInstructions returning true guarantees that every block has at
2005   // least one non-terminator instruction.
2006   SmallVector<Instruction*,4> Insts;
2007   for (auto *BB : Blocks) {
2008     Instruction *I = BB->getTerminator();
2009     do {
2010       I = I->getPrevNode();
2011     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
2012     if (!isa<DbgInfoIntrinsic>(I))
2013       Insts.push_back(I);
2014   }
2015 
2016   // The only checking we need to do now is that all users of all instructions
2017   // are the same PHI node. canSinkInstructions should have checked this but
2018   // it is slightly over-aggressive - it gets confused by commutative
2019   // instructions so double-check it here.
2020   Instruction *I0 = Insts.front();
2021   if (!I0->user_empty()) {
2022     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
2023     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
2024           auto *U = cast<Instruction>(*I->user_begin());
2025           return U == PNUse;
2026         }))
2027       return false;
2028   }
2029 
2030   // We don't need to do any more checking here; canSinkInstructions should
2031   // have done it all for us.
2032   SmallVector<Value*, 4> NewOperands;
2033   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
2034     // This check is different to that in canSinkInstructions. There, we
2035     // cared about the global view once simplifycfg (and instcombine) have
2036     // completed - it takes into account PHIs that become trivially
2037     // simplifiable.  However here we need a more local view; if an operand
2038     // differs we create a PHI and rely on instcombine to clean up the very
2039     // small mess we may make.
2040     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
2041       return I->getOperand(O) != I0->getOperand(O);
2042     });
2043     if (!NeedPHI) {
2044       NewOperands.push_back(I0->getOperand(O));
2045       continue;
2046     }
2047 
2048     // Create a new PHI in the successor block and populate it.
2049     auto *Op = I0->getOperand(O);
2050     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
2051     auto *PN =
2052         PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink");
2053     PN->insertBefore(BBEnd->begin());
2054     for (auto *I : Insts)
2055       PN->addIncoming(I->getOperand(O), I->getParent());
2056     NewOperands.push_back(PN);
2057   }
2058 
2059   // Arbitrarily use I0 as the new "common" instruction; remap its operands
2060   // and move it to the start of the successor block.
2061   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
2062     I0->getOperandUse(O).set(NewOperands[O]);
2063 
2064   I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt());
2065 
2066   // Update metadata and IR flags, and merge debug locations.
2067   for (auto *I : Insts)
2068     if (I != I0) {
2069       // The debug location for the "common" instruction is the merged locations
2070       // of all the commoned instructions.  We start with the original location
2071       // of the "common" instruction and iteratively merge each location in the
2072       // loop below.
2073       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
2074       // However, as N-way merge for CallInst is rare, so we use simplified API
2075       // instead of using complex API for N-way merge.
2076       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
2077       combineMetadataForCSE(I0, I, true);
2078       I0->andIRFlags(I);
2079     }
2080 
2081   if (!I0->user_empty()) {
2082     // canSinkLastInstruction checked that all instructions were used by
2083     // one and only one PHI node. Find that now, RAUW it to our common
2084     // instruction and nuke it.
2085     auto *PN = cast<PHINode>(*I0->user_begin());
2086     PN->replaceAllUsesWith(I0);
2087     PN->eraseFromParent();
2088   }
2089 
2090   // Finally nuke all instructions apart from the common instruction.
2091   for (auto *I : Insts) {
2092     if (I == I0)
2093       continue;
2094     // The remaining uses are debug users, replace those with the common inst.
2095     // In most (all?) cases this just introduces a use-before-def.
2096     assert(I->user_empty() && "Inst unexpectedly still has non-dbg users");
2097     I->replaceAllUsesWith(I0);
2098     I->eraseFromParent();
2099   }
2100 
2101   return true;
2102 }
2103 
2104 namespace {
2105 
2106   // LockstepReverseIterator - Iterates through instructions
2107   // in a set of blocks in reverse order from the first non-terminator.
2108   // For example (assume all blocks have size n):
2109   //   LockstepReverseIterator I([B1, B2, B3]);
2110   //   *I-- = [B1[n], B2[n], B3[n]];
2111   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
2112   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
2113   //   ...
2114   class LockstepReverseIterator {
2115     ArrayRef<BasicBlock*> Blocks;
2116     SmallVector<Instruction*,4> Insts;
2117     bool Fail;
2118 
2119   public:
2120     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
2121       reset();
2122     }
2123 
2124     void reset() {
2125       Fail = false;
2126       Insts.clear();
2127       for (auto *BB : Blocks) {
2128         Instruction *Inst = BB->getTerminator();
2129         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2130           Inst = Inst->getPrevNode();
2131         if (!Inst) {
2132           // Block wasn't big enough.
2133           Fail = true;
2134           return;
2135         }
2136         Insts.push_back(Inst);
2137       }
2138     }
2139 
2140     bool isValid() const {
2141       return !Fail;
2142     }
2143 
2144     void operator--() {
2145       if (Fail)
2146         return;
2147       for (auto *&Inst : Insts) {
2148         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2149           Inst = Inst->getPrevNode();
2150         // Already at beginning of block.
2151         if (!Inst) {
2152           Fail = true;
2153           return;
2154         }
2155       }
2156     }
2157 
2158     void operator++() {
2159       if (Fail)
2160         return;
2161       for (auto *&Inst : Insts) {
2162         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2163           Inst = Inst->getNextNode();
2164         // Already at end of block.
2165         if (!Inst) {
2166           Fail = true;
2167           return;
2168         }
2169       }
2170     }
2171 
2172     ArrayRef<Instruction*> operator * () const {
2173       return Insts;
2174     }
2175   };
2176 
2177 } // end anonymous namespace
2178 
2179 /// Check whether BB's predecessors end with unconditional branches. If it is
2180 /// true, sink any common code from the predecessors to BB.
2181 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
2182                                            DomTreeUpdater *DTU) {
2183   // We support two situations:
2184   //   (1) all incoming arcs are unconditional
2185   //   (2) there are non-unconditional incoming arcs
2186   //
2187   // (2) is very common in switch defaults and
2188   // else-if patterns;
2189   //
2190   //   if (a) f(1);
2191   //   else if (b) f(2);
2192   //
2193   // produces:
2194   //
2195   //       [if]
2196   //      /    \
2197   //    [f(1)] [if]
2198   //      |     | \
2199   //      |     |  |
2200   //      |  [f(2)]|
2201   //       \    | /
2202   //        [ end ]
2203   //
2204   // [end] has two unconditional predecessor arcs and one conditional. The
2205   // conditional refers to the implicit empty 'else' arc. This conditional
2206   // arc can also be caused by an empty default block in a switch.
2207   //
2208   // In this case, we attempt to sink code from all *unconditional* arcs.
2209   // If we can sink instructions from these arcs (determined during the scan
2210   // phase below) we insert a common successor for all unconditional arcs and
2211   // connect that to [end], to enable sinking:
2212   //
2213   //       [if]
2214   //      /    \
2215   //    [x(1)] [if]
2216   //      |     | \
2217   //      |     |  \
2218   //      |  [x(2)] |
2219   //       \   /    |
2220   //   [sink.split] |
2221   //         \     /
2222   //         [ end ]
2223   //
2224   SmallVector<BasicBlock*,4> UnconditionalPreds;
2225   bool HaveNonUnconditionalPredecessors = false;
2226   for (auto *PredBB : predecessors(BB)) {
2227     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2228     if (PredBr && PredBr->isUnconditional())
2229       UnconditionalPreds.push_back(PredBB);
2230     else
2231       HaveNonUnconditionalPredecessors = true;
2232   }
2233   if (UnconditionalPreds.size() < 2)
2234     return false;
2235 
2236   // We take a two-step approach to tail sinking. First we scan from the end of
2237   // each block upwards in lockstep. If the n'th instruction from the end of each
2238   // block can be sunk, those instructions are added to ValuesToSink and we
2239   // carry on. If we can sink an instruction but need to PHI-merge some operands
2240   // (because they're not identical in each instruction) we add these to
2241   // PHIOperands.
2242   int ScanIdx = 0;
2243   SmallPtrSet<Value*,4> InstructionsToSink;
2244   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2245   LockstepReverseIterator LRI(UnconditionalPreds);
2246   while (LRI.isValid() &&
2247          canSinkInstructions(*LRI, PHIOperands)) {
2248     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2249                       << "\n");
2250     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2251     ++ScanIdx;
2252     --LRI;
2253   }
2254 
2255   // If no instructions can be sunk, early-return.
2256   if (ScanIdx == 0)
2257     return false;
2258 
2259   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2260 
2261   if (!followedByDeoptOrUnreachable) {
2262     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2263     // actually sink before encountering instruction that is unprofitable to
2264     // sink?
2265     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2266       unsigned NumPHIdValues = 0;
2267       for (auto *I : *LRI)
2268         for (auto *V : PHIOperands[I]) {
2269           if (!InstructionsToSink.contains(V))
2270             ++NumPHIdValues;
2271           // FIXME: this check is overly optimistic. We may end up not sinking
2272           // said instruction, due to the very same profitability check.
2273           // See @creating_too_many_phis in sink-common-code.ll.
2274         }
2275       LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2276       unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2277       if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2278         NumPHIInsts++;
2279 
2280       return NumPHIInsts <= 1;
2281     };
2282 
2283     // We've determined that we are going to sink last ScanIdx instructions,
2284     // and recorded them in InstructionsToSink. Now, some instructions may be
2285     // unprofitable to sink. But that determination depends on the instructions
2286     // that we are going to sink.
2287 
2288     // First, forward scan: find the first instruction unprofitable to sink,
2289     // recording all the ones that are profitable to sink.
2290     // FIXME: would it be better, after we detect that not all are profitable.
2291     // to either record the profitable ones, or erase the unprofitable ones?
2292     // Maybe we need to choose (at runtime) the one that will touch least
2293     // instrs?
2294     LRI.reset();
2295     int Idx = 0;
2296     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2297     while (Idx < ScanIdx) {
2298       if (!ProfitableToSinkInstruction(LRI)) {
2299         // Too many PHIs would be created.
2300         LLVM_DEBUG(
2301             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2302         break;
2303       }
2304       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2305       --LRI;
2306       ++Idx;
2307     }
2308 
2309     // If no instructions can be sunk, early-return.
2310     if (Idx == 0)
2311       return false;
2312 
2313     // Did we determine that (only) some instructions are unprofitable to sink?
2314     if (Idx < ScanIdx) {
2315       // Okay, some instructions are unprofitable.
2316       ScanIdx = Idx;
2317       InstructionsToSink = InstructionsProfitableToSink;
2318 
2319       // But, that may make other instructions unprofitable, too.
2320       // So, do a backward scan, do any earlier instructions become
2321       // unprofitable?
2322       assert(
2323           !ProfitableToSinkInstruction(LRI) &&
2324           "We already know that the last instruction is unprofitable to sink");
2325       ++LRI;
2326       --Idx;
2327       while (Idx >= 0) {
2328         // If we detect that an instruction becomes unprofitable to sink,
2329         // all earlier instructions won't be sunk either,
2330         // so preemptively keep InstructionsProfitableToSink in sync.
2331         // FIXME: is this the most performant approach?
2332         for (auto *I : *LRI)
2333           InstructionsProfitableToSink.erase(I);
2334         if (!ProfitableToSinkInstruction(LRI)) {
2335           // Everything starting with this instruction won't be sunk.
2336           ScanIdx = Idx;
2337           InstructionsToSink = InstructionsProfitableToSink;
2338         }
2339         ++LRI;
2340         --Idx;
2341       }
2342     }
2343 
2344     // If no instructions can be sunk, early-return.
2345     if (ScanIdx == 0)
2346       return false;
2347   }
2348 
2349   bool Changed = false;
2350 
2351   if (HaveNonUnconditionalPredecessors) {
2352     if (!followedByDeoptOrUnreachable) {
2353       // It is always legal to sink common instructions from unconditional
2354       // predecessors. However, if not all predecessors are unconditional,
2355       // this transformation might be pessimizing. So as a rule of thumb,
2356       // don't do it unless we'd sink at least one non-speculatable instruction.
2357       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2358       LRI.reset();
2359       int Idx = 0;
2360       bool Profitable = false;
2361       while (Idx < ScanIdx) {
2362         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2363           Profitable = true;
2364           break;
2365         }
2366         --LRI;
2367         ++Idx;
2368       }
2369       if (!Profitable)
2370         return false;
2371     }
2372 
2373     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2374     // We have a conditional edge and we're going to sink some instructions.
2375     // Insert a new block postdominating all blocks we're going to sink from.
2376     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2377       // Edges couldn't be split.
2378       return false;
2379     Changed = true;
2380   }
2381 
2382   // Now that we've analyzed all potential sinking candidates, perform the
2383   // actual sink. We iteratively sink the last non-terminator of the source
2384   // blocks into their common successor unless doing so would require too
2385   // many PHI instructions to be generated (currently only one PHI is allowed
2386   // per sunk instruction).
2387   //
2388   // We can use InstructionsToSink to discount values needing PHI-merging that will
2389   // actually be sunk in a later iteration. This allows us to be more
2390   // aggressive in what we sink. This does allow a false positive where we
2391   // sink presuming a later value will also be sunk, but stop half way through
2392   // and never actually sink it which means we produce more PHIs than intended.
2393   // This is unlikely in practice though.
2394   int SinkIdx = 0;
2395   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2396     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2397                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2398                       << "\n");
2399 
2400     // Because we've sunk every instruction in turn, the current instruction to
2401     // sink is always at index 0.
2402     LRI.reset();
2403 
2404     if (!sinkLastInstruction(UnconditionalPreds)) {
2405       LLVM_DEBUG(
2406           dbgs()
2407           << "SINK: stopping here, failed to actually sink instruction!\n");
2408       break;
2409     }
2410 
2411     NumSinkCommonInstrs++;
2412     Changed = true;
2413   }
2414   if (SinkIdx != 0)
2415     ++NumSinkCommonCode;
2416   return Changed;
2417 }
2418 
2419 namespace {
2420 
2421 struct CompatibleSets {
2422   using SetTy = SmallVector<InvokeInst *, 2>;
2423 
2424   SmallVector<SetTy, 1> Sets;
2425 
2426   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2427 
2428   SetTy &getCompatibleSet(InvokeInst *II);
2429 
2430   void insert(InvokeInst *II);
2431 };
2432 
2433 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2434   // Perform a linear scan over all the existing sets, see if the new `invoke`
2435   // is compatible with any particular set. Since we know that all the `invokes`
2436   // within a set are compatible, only check the first `invoke` in each set.
2437   // WARNING: at worst, this has quadratic complexity.
2438   for (CompatibleSets::SetTy &Set : Sets) {
2439     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2440       return Set;
2441   }
2442 
2443   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2444   return Sets.emplace_back();
2445 }
2446 
2447 void CompatibleSets::insert(InvokeInst *II) {
2448   getCompatibleSet(II).emplace_back(II);
2449 }
2450 
2451 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2452   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2453 
2454   // Can we theoretically merge these `invoke`s?
2455   auto IsIllegalToMerge = [](InvokeInst *II) {
2456     return II->cannotMerge() || II->isInlineAsm();
2457   };
2458   if (any_of(Invokes, IsIllegalToMerge))
2459     return false;
2460 
2461   // Either both `invoke`s must be   direct,
2462   // or     both `invoke`s must be indirect.
2463   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2464   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2465   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2466   if (HaveIndirectCalls) {
2467     if (!AllCallsAreIndirect)
2468       return false;
2469   } else {
2470     // All callees must be identical.
2471     Value *Callee = nullptr;
2472     for (InvokeInst *II : Invokes) {
2473       Value *CurrCallee = II->getCalledOperand();
2474       assert(CurrCallee && "There is always a called operand.");
2475       if (!Callee)
2476         Callee = CurrCallee;
2477       else if (Callee != CurrCallee)
2478         return false;
2479     }
2480   }
2481 
2482   // Either both `invoke`s must not have a normal destination,
2483   // or     both `invoke`s must     have a normal destination,
2484   auto HasNormalDest = [](InvokeInst *II) {
2485     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2486   };
2487   if (any_of(Invokes, HasNormalDest)) {
2488     // Do not merge `invoke` that does not have a normal destination with one
2489     // that does have a normal destination, even though doing so would be legal.
2490     if (!all_of(Invokes, HasNormalDest))
2491       return false;
2492 
2493     // All normal destinations must be identical.
2494     BasicBlock *NormalBB = nullptr;
2495     for (InvokeInst *II : Invokes) {
2496       BasicBlock *CurrNormalBB = II->getNormalDest();
2497       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2498       if (!NormalBB)
2499         NormalBB = CurrNormalBB;
2500       else if (NormalBB != CurrNormalBB)
2501         return false;
2502     }
2503 
2504     // In the normal destination, the incoming values for these two `invoke`s
2505     // must be compatible.
2506     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2507     if (!IncomingValuesAreCompatible(
2508             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2509             &EquivalenceSet))
2510       return false;
2511   }
2512 
2513 #ifndef NDEBUG
2514   // All unwind destinations must be identical.
2515   // We know that because we have started from said unwind destination.
2516   BasicBlock *UnwindBB = nullptr;
2517   for (InvokeInst *II : Invokes) {
2518     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2519     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2520     if (!UnwindBB)
2521       UnwindBB = CurrUnwindBB;
2522     else
2523       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2524   }
2525 #endif
2526 
2527   // In the unwind destination, the incoming values for these two `invoke`s
2528   // must be compatible.
2529   if (!IncomingValuesAreCompatible(
2530           Invokes.front()->getUnwindDest(),
2531           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2532     return false;
2533 
2534   // Ignoring arguments, these `invoke`s must be identical,
2535   // including operand bundles.
2536   const InvokeInst *II0 = Invokes.front();
2537   for (auto *II : Invokes.drop_front())
2538     if (!II->isSameOperationAs(II0))
2539       return false;
2540 
2541   // Can we theoretically form the data operands for the merged `invoke`?
2542   auto IsIllegalToMergeArguments = [](auto Ops) {
2543     Use &U0 = std::get<0>(Ops);
2544     Use &U1 = std::get<1>(Ops);
2545     if (U0 == U1)
2546       return false;
2547     return U0->getType()->isTokenTy() ||
2548            !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()),
2549                                           U0.getOperandNo());
2550   };
2551   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2552   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2553              IsIllegalToMergeArguments))
2554     return false;
2555 
2556   return true;
2557 }
2558 
2559 } // namespace
2560 
2561 // Merge all invokes in the provided set, all of which are compatible
2562 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2563 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2564                                        DomTreeUpdater *DTU) {
2565   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2566 
2567   SmallVector<DominatorTree::UpdateType, 8> Updates;
2568   if (DTU)
2569     Updates.reserve(2 + 3 * Invokes.size());
2570 
2571   bool HasNormalDest =
2572       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2573 
2574   // Clone one of the invokes into a new basic block.
2575   // Since they are all compatible, it doesn't matter which invoke is cloned.
2576   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2577     InvokeInst *II0 = Invokes.front();
2578     BasicBlock *II0BB = II0->getParent();
2579     BasicBlock *InsertBeforeBlock =
2580         II0->getParent()->getIterator()->getNextNode();
2581     Function *Func = II0BB->getParent();
2582     LLVMContext &Ctx = II0->getContext();
2583 
2584     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2585         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2586 
2587     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2588     // NOTE: all invokes have the same attributes, so no handling needed.
2589     MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end());
2590 
2591     if (!HasNormalDest) {
2592       // This set does not have a normal destination,
2593       // so just form a new block with unreachable terminator.
2594       BasicBlock *MergedNormalDest = BasicBlock::Create(
2595           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2596       new UnreachableInst(Ctx, MergedNormalDest);
2597       MergedInvoke->setNormalDest(MergedNormalDest);
2598     }
2599 
2600     // The unwind destination, however, remainds identical for all invokes here.
2601 
2602     return MergedInvoke;
2603   }();
2604 
2605   if (DTU) {
2606     // Predecessor blocks that contained these invokes will now branch to
2607     // the new block that contains the merged invoke, ...
2608     for (InvokeInst *II : Invokes)
2609       Updates.push_back(
2610           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2611 
2612     // ... which has the new `unreachable` block as normal destination,
2613     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2614     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2615       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2616                          SuccBBOfMergedInvoke});
2617 
2618     // Since predecessor blocks now unconditionally branch to a new block,
2619     // they no longer branch to their original successors.
2620     for (InvokeInst *II : Invokes)
2621       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2622         Updates.push_back(
2623             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2624   }
2625 
2626   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2627 
2628   // Form the merged operands for the merged invoke.
2629   for (Use &U : MergedInvoke->operands()) {
2630     // Only PHI together the indirect callees and data operands.
2631     if (MergedInvoke->isCallee(&U)) {
2632       if (!IsIndirectCall)
2633         continue;
2634     } else if (!MergedInvoke->isDataOperand(&U))
2635       continue;
2636 
2637     // Don't create trivial PHI's with all-identical incoming values.
2638     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2639       return II->getOperand(U.getOperandNo()) != U.get();
2640     });
2641     if (!NeedPHI)
2642       continue;
2643 
2644     // Form a PHI out of all the data ops under this index.
2645     PHINode *PN = PHINode::Create(
2646         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke);
2647     for (InvokeInst *II : Invokes)
2648       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2649 
2650     U.set(PN);
2651   }
2652 
2653   // We've ensured that each PHI node has compatible (identical) incoming values
2654   // when coming from each of the `invoke`s in the current merge set,
2655   // so update the PHI nodes accordingly.
2656   for (BasicBlock *Succ : successors(MergedInvoke))
2657     AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2658                           /*ExistPred=*/Invokes.front()->getParent());
2659 
2660   // And finally, replace the original `invoke`s with an unconditional branch
2661   // to the block with the merged `invoke`. Also, give that merged `invoke`
2662   // the merged debugloc of all the original `invoke`s.
2663   DILocation *MergedDebugLoc = nullptr;
2664   for (InvokeInst *II : Invokes) {
2665     // Compute the debug location common to all the original `invoke`s.
2666     if (!MergedDebugLoc)
2667       MergedDebugLoc = II->getDebugLoc();
2668     else
2669       MergedDebugLoc =
2670           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2671 
2672     // And replace the old `invoke` with an unconditionally branch
2673     // to the block with the merged `invoke`.
2674     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2675       OrigSuccBB->removePredecessor(II->getParent());
2676     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2677     II->replaceAllUsesWith(MergedInvoke);
2678     II->eraseFromParent();
2679     ++NumInvokesMerged;
2680   }
2681   MergedInvoke->setDebugLoc(MergedDebugLoc);
2682   ++NumInvokeSetsFormed;
2683 
2684   if (DTU)
2685     DTU->applyUpdates(Updates);
2686 }
2687 
2688 /// If this block is a `landingpad` exception handling block, categorize all
2689 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2690 /// being "mergeable" together, and then merge invokes in each set together.
2691 ///
2692 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2693 ///          [...]        [...]
2694 ///            |            |
2695 ///        [invoke0]    [invoke1]
2696 ///           / \          / \
2697 ///     [cont0] [landingpad] [cont1]
2698 /// to:
2699 ///      [...] [...]
2700 ///          \ /
2701 ///       [invoke]
2702 ///          / \
2703 ///     [cont] [landingpad]
2704 ///
2705 /// But of course we can only do that if the invokes share the `landingpad`,
2706 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2707 /// and the invoked functions are "compatible".
2708 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2709   if (!EnableMergeCompatibleInvokes)
2710     return false;
2711 
2712   bool Changed = false;
2713 
2714   // FIXME: generalize to all exception handling blocks?
2715   if (!BB->isLandingPad())
2716     return Changed;
2717 
2718   CompatibleSets Grouper;
2719 
2720   // Record all the predecessors of this `landingpad`. As per verifier,
2721   // the only allowed predecessor is the unwind edge of an `invoke`.
2722   // We want to group "compatible" `invokes` into the same set to be merged.
2723   for (BasicBlock *PredBB : predecessors(BB))
2724     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2725 
2726   // And now, merge `invoke`s that were grouped togeter.
2727   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2728     if (Invokes.size() < 2)
2729       continue;
2730     Changed = true;
2731     MergeCompatibleInvokesImpl(Invokes, DTU);
2732   }
2733 
2734   return Changed;
2735 }
2736 
2737 namespace {
2738 /// Track ephemeral values, which should be ignored for cost-modelling
2739 /// purposes. Requires walking instructions in reverse order.
2740 class EphemeralValueTracker {
2741   SmallPtrSet<const Instruction *, 32> EphValues;
2742 
2743   bool isEphemeral(const Instruction *I) {
2744     if (isa<AssumeInst>(I))
2745       return true;
2746     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2747            all_of(I->users(), [&](const User *U) {
2748              return EphValues.count(cast<Instruction>(U));
2749            });
2750   }
2751 
2752 public:
2753   bool track(const Instruction *I) {
2754     if (isEphemeral(I)) {
2755       EphValues.insert(I);
2756       return true;
2757     }
2758     return false;
2759   }
2760 
2761   bool contains(const Instruction *I) const { return EphValues.contains(I); }
2762 };
2763 } // namespace
2764 
2765 /// Determine if we can hoist sink a sole store instruction out of a
2766 /// conditional block.
2767 ///
2768 /// We are looking for code like the following:
2769 ///   BrBB:
2770 ///     store i32 %add, i32* %arrayidx2
2771 ///     ... // No other stores or function calls (we could be calling a memory
2772 ///     ... // function).
2773 ///     %cmp = icmp ult %x, %y
2774 ///     br i1 %cmp, label %EndBB, label %ThenBB
2775 ///   ThenBB:
2776 ///     store i32 %add5, i32* %arrayidx2
2777 ///     br label EndBB
2778 ///   EndBB:
2779 ///     ...
2780 ///   We are going to transform this into:
2781 ///   BrBB:
2782 ///     store i32 %add, i32* %arrayidx2
2783 ///     ... //
2784 ///     %cmp = icmp ult %x, %y
2785 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2786 ///     store i32 %add.add5, i32* %arrayidx2
2787 ///     ...
2788 ///
2789 /// \return The pointer to the value of the previous store if the store can be
2790 ///         hoisted into the predecessor block. 0 otherwise.
2791 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2792                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2793   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2794   if (!StoreToHoist)
2795     return nullptr;
2796 
2797   // Volatile or atomic.
2798   if (!StoreToHoist->isSimple())
2799     return nullptr;
2800 
2801   Value *StorePtr = StoreToHoist->getPointerOperand();
2802   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2803 
2804   // Look for a store to the same pointer in BrBB.
2805   unsigned MaxNumInstToLookAt = 9;
2806   // Skip pseudo probe intrinsic calls which are not really killing any memory
2807   // accesses.
2808   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2809     if (!MaxNumInstToLookAt)
2810       break;
2811     --MaxNumInstToLookAt;
2812 
2813     // Could be calling an instruction that affects memory like free().
2814     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2815       return nullptr;
2816 
2817     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2818       // Found the previous store to same location and type. Make sure it is
2819       // simple, to avoid introducing a spurious non-atomic write after an
2820       // atomic write.
2821       if (SI->getPointerOperand() == StorePtr &&
2822           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2823         // Found the previous store, return its value operand.
2824         return SI->getValueOperand();
2825       return nullptr; // Unknown store.
2826     }
2827 
2828     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2829       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2830           LI->isSimple()) {
2831         // Local objects (created by an `alloca` instruction) are always
2832         // writable, so once we are past a read from a location it is valid to
2833         // also write to that same location.
2834         // If the address of the local object never escapes the function, that
2835         // means it's never concurrently read or written, hence moving the store
2836         // from under the condition will not introduce a data race.
2837         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2838         if (AI && !PointerMayBeCaptured(AI, false, true))
2839           // Found a previous load, return it.
2840           return LI;
2841       }
2842       // The load didn't work out, but we may still find a store.
2843     }
2844   }
2845 
2846   return nullptr;
2847 }
2848 
2849 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2850 /// converted to selects.
2851 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2852                                            BasicBlock *EndBB,
2853                                            unsigned &SpeculatedInstructions,
2854                                            InstructionCost &Cost,
2855                                            const TargetTransformInfo &TTI) {
2856   TargetTransformInfo::TargetCostKind CostKind =
2857     BB->getParent()->hasMinSize()
2858     ? TargetTransformInfo::TCK_CodeSize
2859     : TargetTransformInfo::TCK_SizeAndLatency;
2860 
2861   bool HaveRewritablePHIs = false;
2862   for (PHINode &PN : EndBB->phis()) {
2863     Value *OrigV = PN.getIncomingValueForBlock(BB);
2864     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2865 
2866     // FIXME: Try to remove some of the duplication with
2867     // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial.
2868     if (ThenV == OrigV)
2869       continue;
2870 
2871     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2872                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2873 
2874     // Don't convert to selects if we could remove undefined behavior instead.
2875     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2876         passingValueIsAlwaysUndefined(ThenV, &PN))
2877       return false;
2878 
2879     HaveRewritablePHIs = true;
2880     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2881     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2882     if (!OrigCE && !ThenCE)
2883       continue; // Known cheap (FIXME: Maybe not true for aggregates).
2884 
2885     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2886     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2887     InstructionCost MaxCost =
2888         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2889     if (OrigCost + ThenCost > MaxCost)
2890       return false;
2891 
2892     // Account for the cost of an unfolded ConstantExpr which could end up
2893     // getting expanded into Instructions.
2894     // FIXME: This doesn't account for how many operations are combined in the
2895     // constant expression.
2896     ++SpeculatedInstructions;
2897     if (SpeculatedInstructions > 1)
2898       return false;
2899   }
2900 
2901   return HaveRewritablePHIs;
2902 }
2903 
2904 /// Speculate a conditional basic block flattening the CFG.
2905 ///
2906 /// Note that this is a very risky transform currently. Speculating
2907 /// instructions like this is most often not desirable. Instead, there is an MI
2908 /// pass which can do it with full awareness of the resource constraints.
2909 /// However, some cases are "obvious" and we should do directly. An example of
2910 /// this is speculating a single, reasonably cheap instruction.
2911 ///
2912 /// There is only one distinct advantage to flattening the CFG at the IR level:
2913 /// it makes very common but simplistic optimizations such as are common in
2914 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2915 /// modeling their effects with easier to reason about SSA value graphs.
2916 ///
2917 ///
2918 /// An illustration of this transform is turning this IR:
2919 /// \code
2920 ///   BB:
2921 ///     %cmp = icmp ult %x, %y
2922 ///     br i1 %cmp, label %EndBB, label %ThenBB
2923 ///   ThenBB:
2924 ///     %sub = sub %x, %y
2925 ///     br label BB2
2926 ///   EndBB:
2927 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2928 ///     ...
2929 /// \endcode
2930 ///
2931 /// Into this IR:
2932 /// \code
2933 ///   BB:
2934 ///     %cmp = icmp ult %x, %y
2935 ///     %sub = sub %x, %y
2936 ///     %cond = select i1 %cmp, 0, %sub
2937 ///     ...
2938 /// \endcode
2939 ///
2940 /// \returns true if the conditional block is removed.
2941 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI,
2942                                             BasicBlock *ThenBB) {
2943   if (!Options.SpeculateBlocks)
2944     return false;
2945 
2946   // Be conservative for now. FP select instruction can often be expensive.
2947   Value *BrCond = BI->getCondition();
2948   if (isa<FCmpInst>(BrCond))
2949     return false;
2950 
2951   BasicBlock *BB = BI->getParent();
2952   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2953   InstructionCost Budget =
2954       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2955 
2956   // If ThenBB is actually on the false edge of the conditional branch, remember
2957   // to swap the select operands later.
2958   bool Invert = false;
2959   if (ThenBB != BI->getSuccessor(0)) {
2960     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2961     Invert = true;
2962   }
2963   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2964 
2965   // If the branch is non-unpredictable, and is predicted to *not* branch to
2966   // the `then` block, then avoid speculating it.
2967   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2968     uint64_t TWeight, FWeight;
2969     if (extractBranchWeights(*BI, TWeight, FWeight) &&
2970         (TWeight + FWeight) != 0) {
2971       uint64_t EndWeight = Invert ? TWeight : FWeight;
2972       BranchProbability BIEndProb =
2973           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2974       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2975       if (BIEndProb >= Likely)
2976         return false;
2977     }
2978   }
2979 
2980   // Keep a count of how many times instructions are used within ThenBB when
2981   // they are candidates for sinking into ThenBB. Specifically:
2982   // - They are defined in BB, and
2983   // - They have no side effects, and
2984   // - All of their uses are in ThenBB.
2985   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2986 
2987   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2988 
2989   unsigned SpeculatedInstructions = 0;
2990   Value *SpeculatedStoreValue = nullptr;
2991   StoreInst *SpeculatedStore = nullptr;
2992   EphemeralValueTracker EphTracker;
2993   for (Instruction &I : reverse(drop_end(*ThenBB))) {
2994     // Skip debug info.
2995     if (isa<DbgInfoIntrinsic>(I)) {
2996       SpeculatedDbgIntrinsics.push_back(&I);
2997       continue;
2998     }
2999 
3000     // Skip pseudo probes. The consequence is we lose track of the branch
3001     // probability for ThenBB, which is fine since the optimization here takes
3002     // place regardless of the branch probability.
3003     if (isa<PseudoProbeInst>(I)) {
3004       // The probe should be deleted so that it will not be over-counted when
3005       // the samples collected on the non-conditional path are counted towards
3006       // the conditional path. We leave it for the counts inference algorithm to
3007       // figure out a proper count for an unknown probe.
3008       SpeculatedDbgIntrinsics.push_back(&I);
3009       continue;
3010     }
3011 
3012     // Ignore ephemeral values, they will be dropped by the transform.
3013     if (EphTracker.track(&I))
3014       continue;
3015 
3016     // Only speculatively execute a single instruction (not counting the
3017     // terminator) for now.
3018     ++SpeculatedInstructions;
3019     if (SpeculatedInstructions > 1)
3020       return false;
3021 
3022     // Don't hoist the instruction if it's unsafe or expensive.
3023     if (!isSafeToSpeculativelyExecute(&I) &&
3024         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
3025                                   &I, BB, ThenBB, EndBB))))
3026       return false;
3027     if (!SpeculatedStoreValue &&
3028         computeSpeculationCost(&I, TTI) >
3029             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
3030       return false;
3031 
3032     // Store the store speculation candidate.
3033     if (SpeculatedStoreValue)
3034       SpeculatedStore = cast<StoreInst>(&I);
3035 
3036     // Do not hoist the instruction if any of its operands are defined but not
3037     // used in BB. The transformation will prevent the operand from
3038     // being sunk into the use block.
3039     for (Use &Op : I.operands()) {
3040       Instruction *OpI = dyn_cast<Instruction>(Op);
3041       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
3042         continue; // Not a candidate for sinking.
3043 
3044       ++SinkCandidateUseCounts[OpI];
3045     }
3046   }
3047 
3048   // Consider any sink candidates which are only used in ThenBB as costs for
3049   // speculation. Note, while we iterate over a DenseMap here, we are summing
3050   // and so iteration order isn't significant.
3051   for (const auto &[Inst, Count] : SinkCandidateUseCounts)
3052     if (Inst->hasNUses(Count)) {
3053       ++SpeculatedInstructions;
3054       if (SpeculatedInstructions > 1)
3055         return false;
3056     }
3057 
3058   // Check that we can insert the selects and that it's not too expensive to do
3059   // so.
3060   bool Convert = SpeculatedStore != nullptr;
3061   InstructionCost Cost = 0;
3062   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
3063                                             SpeculatedInstructions,
3064                                             Cost, TTI);
3065   if (!Convert || Cost > Budget)
3066     return false;
3067 
3068   // If we get here, we can hoist the instruction and if-convert.
3069   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
3070 
3071   // Insert a select of the value of the speculated store.
3072   if (SpeculatedStoreValue) {
3073     IRBuilder<NoFolder> Builder(BI);
3074     Value *OrigV = SpeculatedStore->getValueOperand();
3075     Value *TrueV = SpeculatedStore->getValueOperand();
3076     Value *FalseV = SpeculatedStoreValue;
3077     if (Invert)
3078       std::swap(TrueV, FalseV);
3079     Value *S = Builder.CreateSelect(
3080         BrCond, TrueV, FalseV, "spec.store.select", BI);
3081     SpeculatedStore->setOperand(0, S);
3082     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
3083                                          SpeculatedStore->getDebugLoc());
3084     // The value stored is still conditional, but the store itself is now
3085     // unconditonally executed, so we must be sure that any linked dbg.assign
3086     // intrinsics are tracking the new stored value (the result of the
3087     // select). If we don't, and the store were to be removed by another pass
3088     // (e.g. DSE), then we'd eventually end up emitting a location describing
3089     // the conditional value, unconditionally.
3090     //
3091     // === Before this transformation ===
3092     // pred:
3093     //   store %one, %x.dest, !DIAssignID !1
3094     //   dbg.assign %one, "x", ..., !1, ...
3095     //   br %cond if.then
3096     //
3097     // if.then:
3098     //   store %two, %x.dest, !DIAssignID !2
3099     //   dbg.assign %two, "x", ..., !2, ...
3100     //
3101     // === After this transformation ===
3102     // pred:
3103     //   store %one, %x.dest, !DIAssignID !1
3104     //   dbg.assign %one, "x", ..., !1
3105     ///  ...
3106     //   %merge = select %cond, %two, %one
3107     //   store %merge, %x.dest, !DIAssignID !2
3108     //   dbg.assign %merge, "x", ..., !2
3109     auto replaceVariable = [OrigV, S](auto *DbgAssign) {
3110       if (llvm::is_contained(DbgAssign->location_ops(), OrigV))
3111         DbgAssign->replaceVariableLocationOp(OrigV, S);
3112     };
3113     for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable);
3114     for_each(at::getDPVAssignmentMarkers(SpeculatedStore), replaceVariable);
3115   }
3116 
3117   // Metadata can be dependent on the condition we are hoisting above.
3118   // Strip all UB-implying metadata on the instruction. Drop the debug loc
3119   // to avoid making it appear as if the condition is a constant, which would
3120   // be misleading while debugging.
3121   // Similarly strip attributes that maybe dependent on condition we are
3122   // hoisting above.
3123   for (auto &I : make_early_inc_range(*ThenBB)) {
3124     if (!SpeculatedStoreValue || &I != SpeculatedStore) {
3125       // Don't update the DILocation of dbg.assign intrinsics.
3126       if (!isa<DbgAssignIntrinsic>(&I))
3127         I.setDebugLoc(DebugLoc());
3128     }
3129     I.dropUBImplyingAttrsAndMetadata();
3130 
3131     // Drop ephemeral values.
3132     if (EphTracker.contains(&I)) {
3133       I.replaceAllUsesWith(PoisonValue::get(I.getType()));
3134       I.eraseFromParent();
3135     }
3136   }
3137 
3138   // Hoist the instructions.
3139   // In "RemoveDIs" non-instr debug-info mode, drop DPValues attached to these
3140   // instructions, in the same way that dbg.value intrinsics are dropped at the
3141   // end of this block.
3142   for (auto &It : make_range(ThenBB->begin(), ThenBB->end()))
3143     for (DPValue &DPV : make_early_inc_range(It.getDbgValueRange()))
3144       if (!DPV.isDbgAssign())
3145         It.dropOneDbgValue(&DPV);
3146   BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(),
3147              std::prev(ThenBB->end()));
3148 
3149   // Insert selects and rewrite the PHI operands.
3150   IRBuilder<NoFolder> Builder(BI);
3151   for (PHINode &PN : EndBB->phis()) {
3152     unsigned OrigI = PN.getBasicBlockIndex(BB);
3153     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
3154     Value *OrigV = PN.getIncomingValue(OrigI);
3155     Value *ThenV = PN.getIncomingValue(ThenI);
3156 
3157     // Skip PHIs which are trivial.
3158     if (OrigV == ThenV)
3159       continue;
3160 
3161     // Create a select whose true value is the speculatively executed value and
3162     // false value is the pre-existing value. Swap them if the branch
3163     // destinations were inverted.
3164     Value *TrueV = ThenV, *FalseV = OrigV;
3165     if (Invert)
3166       std::swap(TrueV, FalseV);
3167     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
3168     PN.setIncomingValue(OrigI, V);
3169     PN.setIncomingValue(ThenI, V);
3170   }
3171 
3172   // Remove speculated dbg intrinsics.
3173   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
3174   // dbg value for the different flows and inserting it after the select.
3175   for (Instruction *I : SpeculatedDbgIntrinsics) {
3176     // We still want to know that an assignment took place so don't remove
3177     // dbg.assign intrinsics.
3178     if (!isa<DbgAssignIntrinsic>(I))
3179       I->eraseFromParent();
3180   }
3181 
3182   ++NumSpeculations;
3183   return true;
3184 }
3185 
3186 /// Return true if we can thread a branch across this block.
3187 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
3188   int Size = 0;
3189   EphemeralValueTracker EphTracker;
3190 
3191   // Walk the loop in reverse so that we can identify ephemeral values properly
3192   // (values only feeding assumes).
3193   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
3194     // Can't fold blocks that contain noduplicate or convergent calls.
3195     if (CallInst *CI = dyn_cast<CallInst>(&I))
3196       if (CI->cannotDuplicate() || CI->isConvergent())
3197         return false;
3198 
3199     // Ignore ephemeral values which are deleted during codegen.
3200     // We will delete Phis while threading, so Phis should not be accounted in
3201     // block's size.
3202     if (!EphTracker.track(&I) && !isa<PHINode>(I)) {
3203       if (Size++ > MaxSmallBlockSize)
3204         return false; // Don't clone large BB's.
3205     }
3206 
3207     // We can only support instructions that do not define values that are
3208     // live outside of the current basic block.
3209     for (User *U : I.users()) {
3210       Instruction *UI = cast<Instruction>(U);
3211       if (UI->getParent() != BB || isa<PHINode>(UI))
3212         return false;
3213     }
3214 
3215     // Looks ok, continue checking.
3216   }
3217 
3218   return true;
3219 }
3220 
3221 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
3222                                         BasicBlock *To) {
3223   // Don't look past the block defining the value, we might get the value from
3224   // a previous loop iteration.
3225   auto *I = dyn_cast<Instruction>(V);
3226   if (I && I->getParent() == To)
3227     return nullptr;
3228 
3229   // We know the value if the From block branches on it.
3230   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
3231   if (BI && BI->isConditional() && BI->getCondition() == V &&
3232       BI->getSuccessor(0) != BI->getSuccessor(1))
3233     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
3234                                      : ConstantInt::getFalse(BI->getContext());
3235 
3236   return nullptr;
3237 }
3238 
3239 /// If we have a conditional branch on something for which we know the constant
3240 /// value in predecessors (e.g. a phi node in the current block), thread edges
3241 /// from the predecessor to their ultimate destination.
3242 static std::optional<bool>
3243 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3244                                             const DataLayout &DL,
3245                                             AssumptionCache *AC) {
3246   SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3247   BasicBlock *BB = BI->getParent();
3248   Value *Cond = BI->getCondition();
3249   PHINode *PN = dyn_cast<PHINode>(Cond);
3250   if (PN && PN->getParent() == BB) {
3251     // Degenerate case of a single entry PHI.
3252     if (PN->getNumIncomingValues() == 1) {
3253       FoldSingleEntryPHINodes(PN->getParent());
3254       return true;
3255     }
3256 
3257     for (Use &U : PN->incoming_values())
3258       if (auto *CB = dyn_cast<ConstantInt>(U))
3259         KnownValues[CB].insert(PN->getIncomingBlock(U));
3260   } else {
3261     for (BasicBlock *Pred : predecessors(BB)) {
3262       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3263         KnownValues[CB].insert(Pred);
3264     }
3265   }
3266 
3267   if (KnownValues.empty())
3268     return false;
3269 
3270   // Now we know that this block has multiple preds and two succs.
3271   // Check that the block is small enough and values defined in the block are
3272   // not used outside of it.
3273   if (!BlockIsSimpleEnoughToThreadThrough(BB))
3274     return false;
3275 
3276   for (const auto &Pair : KnownValues) {
3277     // Okay, we now know that all edges from PredBB should be revectored to
3278     // branch to RealDest.
3279     ConstantInt *CB = Pair.first;
3280     ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3281     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3282 
3283     if (RealDest == BB)
3284       continue; // Skip self loops.
3285 
3286     // Skip if the predecessor's terminator is an indirect branch.
3287     if (any_of(PredBBs, [](BasicBlock *PredBB) {
3288           return isa<IndirectBrInst>(PredBB->getTerminator());
3289         }))
3290       continue;
3291 
3292     LLVM_DEBUG({
3293       dbgs() << "Condition " << *Cond << " in " << BB->getName()
3294              << " has value " << *Pair.first << " in predecessors:\n";
3295       for (const BasicBlock *PredBB : Pair.second)
3296         dbgs() << "  " << PredBB->getName() << "\n";
3297       dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3298     });
3299 
3300     // Split the predecessors we are threading into a new edge block. We'll
3301     // clone the instructions into this block, and then redirect it to RealDest.
3302     BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3303 
3304     // TODO: These just exist to reduce test diff, we can drop them if we like.
3305     EdgeBB->setName(RealDest->getName() + ".critedge");
3306     EdgeBB->moveBefore(RealDest);
3307 
3308     // Update PHI nodes.
3309     AddPredecessorToBlock(RealDest, EdgeBB, BB);
3310 
3311     // BB may have instructions that are being threaded over.  Clone these
3312     // instructions into EdgeBB.  We know that there will be no uses of the
3313     // cloned instructions outside of EdgeBB.
3314     BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3315     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3316     TranslateMap[Cond] = CB;
3317 
3318     // RemoveDIs: track instructions that we optimise away while folding, so
3319     // that we can copy DPValues from them later.
3320     BasicBlock::iterator SrcDbgCursor = BB->begin();
3321     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3322       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3323         TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3324         continue;
3325       }
3326       // Clone the instruction.
3327       Instruction *N = BBI->clone();
3328       // Insert the new instruction into its new home.
3329       N->insertInto(EdgeBB, InsertPt);
3330 
3331       if (BBI->hasName())
3332         N->setName(BBI->getName() + ".c");
3333 
3334       // Update operands due to translation.
3335       for (Use &Op : N->operands()) {
3336         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3337         if (PI != TranslateMap.end())
3338           Op = PI->second;
3339       }
3340 
3341       // Check for trivial simplification.
3342       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3343         if (!BBI->use_empty())
3344           TranslateMap[&*BBI] = V;
3345         if (!N->mayHaveSideEffects()) {
3346           N->eraseFromParent(); // Instruction folded away, don't need actual
3347                                 // inst
3348           N = nullptr;
3349         }
3350       } else {
3351         if (!BBI->use_empty())
3352           TranslateMap[&*BBI] = N;
3353       }
3354       if (N) {
3355         // Copy all debug-info attached to instructions from the last we
3356         // successfully clone, up to this instruction (they might have been
3357         // folded away).
3358         for (; SrcDbgCursor != BBI; ++SrcDbgCursor)
3359           N->cloneDebugInfoFrom(&*SrcDbgCursor);
3360         SrcDbgCursor = std::next(BBI);
3361         // Clone debug-info on this instruction too.
3362         N->cloneDebugInfoFrom(&*BBI);
3363 
3364         // Register the new instruction with the assumption cache if necessary.
3365         if (auto *Assume = dyn_cast<AssumeInst>(N))
3366           if (AC)
3367             AC->registerAssumption(Assume);
3368       }
3369     }
3370 
3371     for (; &*SrcDbgCursor != BI; ++SrcDbgCursor)
3372       InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor);
3373     InsertPt->cloneDebugInfoFrom(BI);
3374 
3375     BB->removePredecessor(EdgeBB);
3376     BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3377     EdgeBI->setSuccessor(0, RealDest);
3378     EdgeBI->setDebugLoc(BI->getDebugLoc());
3379 
3380     if (DTU) {
3381       SmallVector<DominatorTree::UpdateType, 2> Updates;
3382       Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3383       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3384       DTU->applyUpdates(Updates);
3385     }
3386 
3387     // For simplicity, we created a separate basic block for the edge. Merge
3388     // it back into the predecessor if possible. This not only avoids
3389     // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3390     // bypass the check for trivial cycles above.
3391     MergeBlockIntoPredecessor(EdgeBB, DTU);
3392 
3393     // Signal repeat, simplifying any other constants.
3394     return std::nullopt;
3395   }
3396 
3397   return false;
3398 }
3399 
3400 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3401                                                     DomTreeUpdater *DTU,
3402                                                     const DataLayout &DL,
3403                                                     AssumptionCache *AC) {
3404   std::optional<bool> Result;
3405   bool EverChanged = false;
3406   do {
3407     // Note that None means "we changed things, but recurse further."
3408     Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3409     EverChanged |= Result == std::nullopt || *Result;
3410   } while (Result == std::nullopt);
3411   return EverChanged;
3412 }
3413 
3414 /// Given a BB that starts with the specified two-entry PHI node,
3415 /// see if we can eliminate it.
3416 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3417                                 DomTreeUpdater *DTU, const DataLayout &DL) {
3418   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3419   // statement", which has a very simple dominance structure.  Basically, we
3420   // are trying to find the condition that is being branched on, which
3421   // subsequently causes this merge to happen.  We really want control
3422   // dependence information for this check, but simplifycfg can't keep it up
3423   // to date, and this catches most of the cases we care about anyway.
3424   BasicBlock *BB = PN->getParent();
3425 
3426   BasicBlock *IfTrue, *IfFalse;
3427   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3428   if (!DomBI)
3429     return false;
3430   Value *IfCond = DomBI->getCondition();
3431   // Don't bother if the branch will be constant folded trivially.
3432   if (isa<ConstantInt>(IfCond))
3433     return false;
3434 
3435   BasicBlock *DomBlock = DomBI->getParent();
3436   SmallVector<BasicBlock *, 2> IfBlocks;
3437   llvm::copy_if(
3438       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3439         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3440       });
3441   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3442          "Will have either one or two blocks to speculate.");
3443 
3444   // If the branch is non-unpredictable, see if we either predictably jump to
3445   // the merge bb (if we have only a single 'then' block), or if we predictably
3446   // jump to one specific 'then' block (if we have two of them).
3447   // It isn't beneficial to speculatively execute the code
3448   // from the block that we know is predictably not entered.
3449   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
3450     uint64_t TWeight, FWeight;
3451     if (extractBranchWeights(*DomBI, TWeight, FWeight) &&
3452         (TWeight + FWeight) != 0) {
3453       BranchProbability BITrueProb =
3454           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3455       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3456       BranchProbability BIFalseProb = BITrueProb.getCompl();
3457       if (IfBlocks.size() == 1) {
3458         BranchProbability BIBBProb =
3459             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3460         if (BIBBProb >= Likely)
3461           return false;
3462       } else {
3463         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3464           return false;
3465       }
3466     }
3467   }
3468 
3469   // Don't try to fold an unreachable block. For example, the phi node itself
3470   // can't be the candidate if-condition for a select that we want to form.
3471   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3472     if (IfCondPhiInst->getParent() == BB)
3473       return false;
3474 
3475   // Okay, we found that we can merge this two-entry phi node into a select.
3476   // Doing so would require us to fold *all* two entry phi nodes in this block.
3477   // At some point this becomes non-profitable (particularly if the target
3478   // doesn't support cmov's).  Only do this transformation if there are two or
3479   // fewer PHI nodes in this block.
3480   unsigned NumPhis = 0;
3481   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3482     if (NumPhis > 2)
3483       return false;
3484 
3485   // Loop over the PHI's seeing if we can promote them all to select
3486   // instructions.  While we are at it, keep track of the instructions
3487   // that need to be moved to the dominating block.
3488   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3489   InstructionCost Cost = 0;
3490   InstructionCost Budget =
3491       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3492 
3493   bool Changed = false;
3494   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3495     PHINode *PN = cast<PHINode>(II++);
3496     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3497       PN->replaceAllUsesWith(V);
3498       PN->eraseFromParent();
3499       Changed = true;
3500       continue;
3501     }
3502 
3503     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
3504                              Cost, Budget, TTI) ||
3505         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
3506                              Cost, Budget, TTI))
3507       return Changed;
3508   }
3509 
3510   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3511   // we ran out of PHIs then we simplified them all.
3512   PN = dyn_cast<PHINode>(BB->begin());
3513   if (!PN)
3514     return true;
3515 
3516   // Return true if at least one of these is a 'not', and another is either
3517   // a 'not' too, or a constant.
3518   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3519     if (!match(V0, m_Not(m_Value())))
3520       std::swap(V0, V1);
3521     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3522     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3523   };
3524 
3525   // Don't fold i1 branches on PHIs which contain binary operators or
3526   // (possibly inverted) select form of or/ands,  unless one of
3527   // the incoming values is an 'not' and another one is freely invertible.
3528   // These can often be turned into switches and other things.
3529   auto IsBinOpOrAnd = [](Value *V) {
3530     return match(
3531         V, m_CombineOr(
3532                m_BinOp(),
3533                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3534                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3535   };
3536   if (PN->getType()->isIntegerTy(1) &&
3537       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3538        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3539       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3540                                  PN->getIncomingValue(1)))
3541     return Changed;
3542 
3543   // If all PHI nodes are promotable, check to make sure that all instructions
3544   // in the predecessor blocks can be promoted as well. If not, we won't be able
3545   // to get rid of the control flow, so it's not worth promoting to select
3546   // instructions.
3547   for (BasicBlock *IfBlock : IfBlocks)
3548     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3549       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3550         // This is not an aggressive instruction that we can promote.
3551         // Because of this, we won't be able to get rid of the control flow, so
3552         // the xform is not worth it.
3553         return Changed;
3554       }
3555 
3556   // If either of the blocks has it's address taken, we can't do this fold.
3557   if (any_of(IfBlocks,
3558              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3559     return Changed;
3560 
3561   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
3562                     << "  T: " << IfTrue->getName()
3563                     << "  F: " << IfFalse->getName() << "\n");
3564 
3565   // If we can still promote the PHI nodes after this gauntlet of tests,
3566   // do all of the PHI's now.
3567 
3568   // Move all 'aggressive' instructions, which are defined in the
3569   // conditional parts of the if's up to the dominating block.
3570   for (BasicBlock *IfBlock : IfBlocks)
3571       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3572 
3573   IRBuilder<NoFolder> Builder(DomBI);
3574   // Propagate fast-math-flags from phi nodes to replacement selects.
3575   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3576   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3577     if (isa<FPMathOperator>(PN))
3578       Builder.setFastMathFlags(PN->getFastMathFlags());
3579 
3580     // Change the PHI node into a select instruction.
3581     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3582     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3583 
3584     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3585     PN->replaceAllUsesWith(Sel);
3586     Sel->takeName(PN);
3587     PN->eraseFromParent();
3588   }
3589 
3590   // At this point, all IfBlocks are empty, so our if statement
3591   // has been flattened.  Change DomBlock to jump directly to our new block to
3592   // avoid other simplifycfg's kicking in on the diamond.
3593   Builder.CreateBr(BB);
3594 
3595   SmallVector<DominatorTree::UpdateType, 3> Updates;
3596   if (DTU) {
3597     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3598     for (auto *Successor : successors(DomBlock))
3599       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3600   }
3601 
3602   DomBI->eraseFromParent();
3603   if (DTU)
3604     DTU->applyUpdates(Updates);
3605 
3606   return true;
3607 }
3608 
3609 static Value *createLogicalOp(IRBuilderBase &Builder,
3610                               Instruction::BinaryOps Opc, Value *LHS,
3611                               Value *RHS, const Twine &Name = "") {
3612   // Try to relax logical op to binary op.
3613   if (impliesPoison(RHS, LHS))
3614     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3615   if (Opc == Instruction::And)
3616     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3617   if (Opc == Instruction::Or)
3618     return Builder.CreateLogicalOr(LHS, RHS, Name);
3619   llvm_unreachable("Invalid logical opcode");
3620 }
3621 
3622 /// Return true if either PBI or BI has branch weight available, and store
3623 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3624 /// not have branch weight, use 1:1 as its weight.
3625 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3626                                    uint64_t &PredTrueWeight,
3627                                    uint64_t &PredFalseWeight,
3628                                    uint64_t &SuccTrueWeight,
3629                                    uint64_t &SuccFalseWeight) {
3630   bool PredHasWeights =
3631       extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight);
3632   bool SuccHasWeights =
3633       extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight);
3634   if (PredHasWeights || SuccHasWeights) {
3635     if (!PredHasWeights)
3636       PredTrueWeight = PredFalseWeight = 1;
3637     if (!SuccHasWeights)
3638       SuccTrueWeight = SuccFalseWeight = 1;
3639     return true;
3640   } else {
3641     return false;
3642   }
3643 }
3644 
3645 /// Determine if the two branches share a common destination and deduce a glue
3646 /// that joins the branches' conditions to arrive at the common destination if
3647 /// that would be profitable.
3648 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>>
3649 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3650                                           const TargetTransformInfo *TTI) {
3651   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3652          "Both blocks must end with a conditional branches.");
3653   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3654          "PredBB must be a predecessor of BB.");
3655 
3656   // We have the potential to fold the conditions together, but if the
3657   // predecessor branch is predictable, we may not want to merge them.
3658   uint64_t PTWeight, PFWeight;
3659   BranchProbability PBITrueProb, Likely;
3660   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3661       extractBranchWeights(*PBI, PTWeight, PFWeight) &&
3662       (PTWeight + PFWeight) != 0) {
3663     PBITrueProb =
3664         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3665     Likely = TTI->getPredictableBranchThreshold();
3666   }
3667 
3668   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3669     // Speculate the 2nd condition unless the 1st is probably true.
3670     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3671       return {{BI->getSuccessor(0), Instruction::Or, false}};
3672   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3673     // Speculate the 2nd condition unless the 1st is probably false.
3674     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3675       return {{BI->getSuccessor(1), Instruction::And, false}};
3676   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3677     // Speculate the 2nd condition unless the 1st is probably true.
3678     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3679       return {{BI->getSuccessor(1), Instruction::And, true}};
3680   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3681     // Speculate the 2nd condition unless the 1st is probably false.
3682     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3683       return {{BI->getSuccessor(0), Instruction::Or, true}};
3684   }
3685   return std::nullopt;
3686 }
3687 
3688 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3689                                              DomTreeUpdater *DTU,
3690                                              MemorySSAUpdater *MSSAU,
3691                                              const TargetTransformInfo *TTI) {
3692   BasicBlock *BB = BI->getParent();
3693   BasicBlock *PredBlock = PBI->getParent();
3694 
3695   // Determine if the two branches share a common destination.
3696   BasicBlock *CommonSucc;
3697   Instruction::BinaryOps Opc;
3698   bool InvertPredCond;
3699   std::tie(CommonSucc, Opc, InvertPredCond) =
3700       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3701 
3702   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3703 
3704   IRBuilder<> Builder(PBI);
3705   // The builder is used to create instructions to eliminate the branch in BB.
3706   // If BB's terminator has !annotation metadata, add it to the new
3707   // instructions.
3708   Builder.CollectMetadataToCopy(BB->getTerminator(),
3709                                 {LLVMContext::MD_annotation});
3710 
3711   // If we need to invert the condition in the pred block to match, do so now.
3712   if (InvertPredCond) {
3713     InvertBranch(PBI, Builder);
3714   }
3715 
3716   BasicBlock *UniqueSucc =
3717       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3718 
3719   // Before cloning instructions, notify the successor basic block that it
3720   // is about to have a new predecessor. This will update PHI nodes,
3721   // which will allow us to update live-out uses of bonus instructions.
3722   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3723 
3724   // Try to update branch weights.
3725   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3726   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3727                              SuccTrueWeight, SuccFalseWeight)) {
3728     SmallVector<uint64_t, 8> NewWeights;
3729 
3730     if (PBI->getSuccessor(0) == BB) {
3731       // PBI: br i1 %x, BB, FalseDest
3732       // BI:  br i1 %y, UniqueSucc, FalseDest
3733       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3734       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3735       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3736       //               TrueWeight for PBI * FalseWeight for BI.
3737       // We assume that total weights of a BranchInst can fit into 32 bits.
3738       // Therefore, we will not have overflow using 64-bit arithmetic.
3739       NewWeights.push_back(PredFalseWeight *
3740                                (SuccFalseWeight + SuccTrueWeight) +
3741                            PredTrueWeight * SuccFalseWeight);
3742     } else {
3743       // PBI: br i1 %x, TrueDest, BB
3744       // BI:  br i1 %y, TrueDest, UniqueSucc
3745       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3746       //              FalseWeight for PBI * TrueWeight for BI.
3747       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3748                            PredFalseWeight * SuccTrueWeight);
3749       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3750       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3751     }
3752 
3753     // Halve the weights if any of them cannot fit in an uint32_t
3754     FitWeights(NewWeights);
3755 
3756     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3757     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3758 
3759     // TODO: If BB is reachable from all paths through PredBlock, then we
3760     // could replace PBI's branch probabilities with BI's.
3761   } else
3762     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3763 
3764   // Now, update the CFG.
3765   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3766 
3767   if (DTU)
3768     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3769                        {DominatorTree::Delete, PredBlock, BB}});
3770 
3771   // If BI was a loop latch, it may have had associated loop metadata.
3772   // We need to copy it to the new latch, that is, PBI.
3773   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3774     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3775 
3776   ValueToValueMapTy VMap; // maps original values to cloned values
3777   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3778 
3779   Module *M = BB->getModule();
3780 
3781   if (PredBlock->IsNewDbgInfoFormat) {
3782     PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator());
3783     for (DPValue &DPV : PredBlock->getTerminator()->getDbgValueRange()) {
3784       RemapDPValue(M, &DPV, VMap,
3785                    RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3786     }
3787   }
3788 
3789   // Now that the Cond was cloned into the predecessor basic block,
3790   // or/and the two conditions together.
3791   Value *BICond = VMap[BI->getCondition()];
3792   PBI->setCondition(
3793       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3794 
3795   ++NumFoldBranchToCommonDest;
3796   return true;
3797 }
3798 
3799 /// Return if an instruction's type or any of its operands' types are a vector
3800 /// type.
3801 static bool isVectorOp(Instruction &I) {
3802   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3803            return U->getType()->isVectorTy();
3804          });
3805 }
3806 
3807 /// If this basic block is simple enough, and if a predecessor branches to us
3808 /// and one of our successors, fold the block into the predecessor and use
3809 /// logical operations to pick the right destination.
3810 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3811                                   MemorySSAUpdater *MSSAU,
3812                                   const TargetTransformInfo *TTI,
3813                                   unsigned BonusInstThreshold) {
3814   // If this block ends with an unconditional branch,
3815   // let SpeculativelyExecuteBB() deal with it.
3816   if (!BI->isConditional())
3817     return false;
3818 
3819   BasicBlock *BB = BI->getParent();
3820   TargetTransformInfo::TargetCostKind CostKind =
3821     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3822                                   : TargetTransformInfo::TCK_SizeAndLatency;
3823 
3824   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3825 
3826   if (!Cond ||
3827       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
3828        !isa<SelectInst>(Cond)) ||
3829       Cond->getParent() != BB || !Cond->hasOneUse())
3830     return false;
3831 
3832   // Finally, don't infinitely unroll conditional loops.
3833   if (is_contained(successors(BB), BB))
3834     return false;
3835 
3836   // With which predecessors will we want to deal with?
3837   SmallVector<BasicBlock *, 8> Preds;
3838   for (BasicBlock *PredBlock : predecessors(BB)) {
3839     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3840 
3841     // Check that we have two conditional branches.  If there is a PHI node in
3842     // the common successor, verify that the same value flows in from both
3843     // blocks.
3844     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3845       continue;
3846 
3847     // Determine if the two branches share a common destination.
3848     BasicBlock *CommonSucc;
3849     Instruction::BinaryOps Opc;
3850     bool InvertPredCond;
3851     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3852       std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe;
3853     else
3854       continue;
3855 
3856     // Check the cost of inserting the necessary logic before performing the
3857     // transformation.
3858     if (TTI) {
3859       Type *Ty = BI->getCondition()->getType();
3860       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3861       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3862                              !isa<CmpInst>(PBI->getCondition())))
3863         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3864 
3865       if (Cost > BranchFoldThreshold)
3866         continue;
3867     }
3868 
3869     // Ok, we do want to deal with this predecessor. Record it.
3870     Preds.emplace_back(PredBlock);
3871   }
3872 
3873   // If there aren't any predecessors into which we can fold,
3874   // don't bother checking the cost.
3875   if (Preds.empty())
3876     return false;
3877 
3878   // Only allow this transformation if computing the condition doesn't involve
3879   // too many instructions and these involved instructions can be executed
3880   // unconditionally. We denote all involved instructions except the condition
3881   // as "bonus instructions", and only allow this transformation when the
3882   // number of the bonus instructions we'll need to create when cloning into
3883   // each predecessor does not exceed a certain threshold.
3884   unsigned NumBonusInsts = 0;
3885   bool SawVectorOp = false;
3886   const unsigned PredCount = Preds.size();
3887   for (Instruction &I : *BB) {
3888     // Don't check the branch condition comparison itself.
3889     if (&I == Cond)
3890       continue;
3891     // Ignore dbg intrinsics, and the terminator.
3892     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3893       continue;
3894     // I must be safe to execute unconditionally.
3895     if (!isSafeToSpeculativelyExecute(&I))
3896       return false;
3897     SawVectorOp |= isVectorOp(I);
3898 
3899     // Account for the cost of duplicating this instruction into each
3900     // predecessor. Ignore free instructions.
3901     if (!TTI || TTI->getInstructionCost(&I, CostKind) !=
3902                     TargetTransformInfo::TCC_Free) {
3903       NumBonusInsts += PredCount;
3904 
3905       // Early exits once we reach the limit.
3906       if (NumBonusInsts >
3907           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3908         return false;
3909     }
3910 
3911     auto IsBCSSAUse = [BB, &I](Use &U) {
3912       auto *UI = cast<Instruction>(U.getUser());
3913       if (auto *PN = dyn_cast<PHINode>(UI))
3914         return PN->getIncomingBlock(U) == BB;
3915       return UI->getParent() == BB && I.comesBefore(UI);
3916     };
3917 
3918     // Does this instruction require rewriting of uses?
3919     if (!all_of(I.uses(), IsBCSSAUse))
3920       return false;
3921   }
3922   if (NumBonusInsts >
3923       BonusInstThreshold *
3924           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3925     return false;
3926 
3927   // Ok, we have the budget. Perform the transformation.
3928   for (BasicBlock *PredBlock : Preds) {
3929     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3930     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3931   }
3932   return false;
3933 }
3934 
3935 // If there is only one store in BB1 and BB2, return it, otherwise return
3936 // nullptr.
3937 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3938   StoreInst *S = nullptr;
3939   for (auto *BB : {BB1, BB2}) {
3940     if (!BB)
3941       continue;
3942     for (auto &I : *BB)
3943       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3944         if (S)
3945           // Multiple stores seen.
3946           return nullptr;
3947         else
3948           S = SI;
3949       }
3950   }
3951   return S;
3952 }
3953 
3954 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3955                                               Value *AlternativeV = nullptr) {
3956   // PHI is going to be a PHI node that allows the value V that is defined in
3957   // BB to be referenced in BB's only successor.
3958   //
3959   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3960   // doesn't matter to us what the other operand is (it'll never get used). We
3961   // could just create a new PHI with an undef incoming value, but that could
3962   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3963   // other PHI. So here we directly look for some PHI in BB's successor with V
3964   // as an incoming operand. If we find one, we use it, else we create a new
3965   // one.
3966   //
3967   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3968   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3969   // where OtherBB is the single other predecessor of BB's only successor.
3970   PHINode *PHI = nullptr;
3971   BasicBlock *Succ = BB->getSingleSuccessor();
3972 
3973   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3974     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3975       PHI = cast<PHINode>(I);
3976       if (!AlternativeV)
3977         break;
3978 
3979       assert(Succ->hasNPredecessors(2));
3980       auto PredI = pred_begin(Succ);
3981       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3982       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3983         break;
3984       PHI = nullptr;
3985     }
3986   if (PHI)
3987     return PHI;
3988 
3989   // If V is not an instruction defined in BB, just return it.
3990   if (!AlternativeV &&
3991       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3992     return V;
3993 
3994   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge");
3995   PHI->insertBefore(Succ->begin());
3996   PHI->addIncoming(V, BB);
3997   for (BasicBlock *PredBB : predecessors(Succ))
3998     if (PredBB != BB)
3999       PHI->addIncoming(
4000           AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB);
4001   return PHI;
4002 }
4003 
4004 static bool mergeConditionalStoreToAddress(
4005     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
4006     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
4007     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
4008   // For every pointer, there must be exactly two stores, one coming from
4009   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
4010   // store (to any address) in PTB,PFB or QTB,QFB.
4011   // FIXME: We could relax this restriction with a bit more work and performance
4012   // testing.
4013   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
4014   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
4015   if (!PStore || !QStore)
4016     return false;
4017 
4018   // Now check the stores are compatible.
4019   if (!QStore->isUnordered() || !PStore->isUnordered() ||
4020       PStore->getValueOperand()->getType() !=
4021           QStore->getValueOperand()->getType())
4022     return false;
4023 
4024   // Check that sinking the store won't cause program behavior changes. Sinking
4025   // the store out of the Q blocks won't change any behavior as we're sinking
4026   // from a block to its unconditional successor. But we're moving a store from
4027   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
4028   // So we need to check that there are no aliasing loads or stores in
4029   // QBI, QTB and QFB. We also need to check there are no conflicting memory
4030   // operations between PStore and the end of its parent block.
4031   //
4032   // The ideal way to do this is to query AliasAnalysis, but we don't
4033   // preserve AA currently so that is dangerous. Be super safe and just
4034   // check there are no other memory operations at all.
4035   for (auto &I : *QFB->getSinglePredecessor())
4036     if (I.mayReadOrWriteMemory())
4037       return false;
4038   for (auto &I : *QFB)
4039     if (&I != QStore && I.mayReadOrWriteMemory())
4040       return false;
4041   if (QTB)
4042     for (auto &I : *QTB)
4043       if (&I != QStore && I.mayReadOrWriteMemory())
4044         return false;
4045   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
4046        I != E; ++I)
4047     if (&*I != PStore && I->mayReadOrWriteMemory())
4048       return false;
4049 
4050   // If we're not in aggressive mode, we only optimize if we have some
4051   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
4052   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
4053     if (!BB)
4054       return true;
4055     // Heuristic: if the block can be if-converted/phi-folded and the
4056     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
4057     // thread this store.
4058     InstructionCost Cost = 0;
4059     InstructionCost Budget =
4060         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
4061     for (auto &I : BB->instructionsWithoutDebug(false)) {
4062       // Consider terminator instruction to be free.
4063       if (I.isTerminator())
4064         continue;
4065       // If this is one the stores that we want to speculate out of this BB,
4066       // then don't count it's cost, consider it to be free.
4067       if (auto *S = dyn_cast<StoreInst>(&I))
4068         if (llvm::find(FreeStores, S))
4069           continue;
4070       // Else, we have a white-list of instructions that we are ak speculating.
4071       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
4072         return false; // Not in white-list - not worthwhile folding.
4073       // And finally, if this is a non-free instruction that we are okay
4074       // speculating, ensure that we consider the speculation budget.
4075       Cost +=
4076           TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
4077       if (Cost > Budget)
4078         return false; // Eagerly refuse to fold as soon as we're out of budget.
4079     }
4080     assert(Cost <= Budget &&
4081            "When we run out of budget we will eagerly return from within the "
4082            "per-instruction loop.");
4083     return true;
4084   };
4085 
4086   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
4087   if (!MergeCondStoresAggressively &&
4088       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
4089        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
4090     return false;
4091 
4092   // If PostBB has more than two predecessors, we need to split it so we can
4093   // sink the store.
4094   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
4095     // We know that QFB's only successor is PostBB. And QFB has a single
4096     // predecessor. If QTB exists, then its only successor is also PostBB.
4097     // If QTB does not exist, then QFB's only predecessor has a conditional
4098     // branch to QFB and PostBB.
4099     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
4100     BasicBlock *NewBB =
4101         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
4102     if (!NewBB)
4103       return false;
4104     PostBB = NewBB;
4105   }
4106 
4107   // OK, we're going to sink the stores to PostBB. The store has to be
4108   // conditional though, so first create the predicate.
4109   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
4110                      ->getCondition();
4111   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
4112                      ->getCondition();
4113 
4114   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
4115                                                 PStore->getParent());
4116   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
4117                                                 QStore->getParent(), PPHI);
4118 
4119   BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt();
4120   IRBuilder<> QB(PostBB, PostBBFirst);
4121   QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc());
4122 
4123   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
4124   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
4125 
4126   if (InvertPCond)
4127     PPred = QB.CreateNot(PPred);
4128   if (InvertQCond)
4129     QPred = QB.CreateNot(QPred);
4130   Value *CombinedPred = QB.CreateOr(PPred, QPred);
4131 
4132   BasicBlock::iterator InsertPt = QB.GetInsertPoint();
4133   auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt,
4134                                       /*Unreachable=*/false,
4135                                       /*BranchWeights=*/nullptr, DTU);
4136 
4137   QB.SetInsertPoint(T);
4138   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
4139   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
4140   // Choose the minimum alignment. If we could prove both stores execute, we
4141   // could use biggest one.  In this case, though, we only know that one of the
4142   // stores executes.  And we don't know it's safe to take the alignment from a
4143   // store that doesn't execute.
4144   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
4145 
4146   QStore->eraseFromParent();
4147   PStore->eraseFromParent();
4148 
4149   return true;
4150 }
4151 
4152 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
4153                                    DomTreeUpdater *DTU, const DataLayout &DL,
4154                                    const TargetTransformInfo &TTI) {
4155   // The intention here is to find diamonds or triangles (see below) where each
4156   // conditional block contains a store to the same address. Both of these
4157   // stores are conditional, so they can't be unconditionally sunk. But it may
4158   // be profitable to speculatively sink the stores into one merged store at the
4159   // end, and predicate the merged store on the union of the two conditions of
4160   // PBI and QBI.
4161   //
4162   // This can reduce the number of stores executed if both of the conditions are
4163   // true, and can allow the blocks to become small enough to be if-converted.
4164   // This optimization will also chain, so that ladders of test-and-set
4165   // sequences can be if-converted away.
4166   //
4167   // We only deal with simple diamonds or triangles:
4168   //
4169   //     PBI       or      PBI        or a combination of the two
4170   //    /   \               | \
4171   //   PTB  PFB             |  PFB
4172   //    \   /               | /
4173   //     QBI                QBI
4174   //    /  \                | \
4175   //   QTB  QFB             |  QFB
4176   //    \  /                | /
4177   //    PostBB            PostBB
4178   //
4179   // We model triangles as a type of diamond with a nullptr "true" block.
4180   // Triangles are canonicalized so that the fallthrough edge is represented by
4181   // a true condition, as in the diagram above.
4182   BasicBlock *PTB = PBI->getSuccessor(0);
4183   BasicBlock *PFB = PBI->getSuccessor(1);
4184   BasicBlock *QTB = QBI->getSuccessor(0);
4185   BasicBlock *QFB = QBI->getSuccessor(1);
4186   BasicBlock *PostBB = QFB->getSingleSuccessor();
4187 
4188   // Make sure we have a good guess for PostBB. If QTB's only successor is
4189   // QFB, then QFB is a better PostBB.
4190   if (QTB->getSingleSuccessor() == QFB)
4191     PostBB = QFB;
4192 
4193   // If we couldn't find a good PostBB, stop.
4194   if (!PostBB)
4195     return false;
4196 
4197   bool InvertPCond = false, InvertQCond = false;
4198   // Canonicalize fallthroughs to the true branches.
4199   if (PFB == QBI->getParent()) {
4200     std::swap(PFB, PTB);
4201     InvertPCond = true;
4202   }
4203   if (QFB == PostBB) {
4204     std::swap(QFB, QTB);
4205     InvertQCond = true;
4206   }
4207 
4208   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
4209   // and QFB may not. Model fallthroughs as a nullptr block.
4210   if (PTB == QBI->getParent())
4211     PTB = nullptr;
4212   if (QTB == PostBB)
4213     QTB = nullptr;
4214 
4215   // Legality bailouts. We must have at least the non-fallthrough blocks and
4216   // the post-dominating block, and the non-fallthroughs must only have one
4217   // predecessor.
4218   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
4219     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
4220   };
4221   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
4222       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
4223     return false;
4224   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
4225       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
4226     return false;
4227   if (!QBI->getParent()->hasNUses(2))
4228     return false;
4229 
4230   // OK, this is a sequence of two diamonds or triangles.
4231   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
4232   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
4233   for (auto *BB : {PTB, PFB}) {
4234     if (!BB)
4235       continue;
4236     for (auto &I : *BB)
4237       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4238         PStoreAddresses.insert(SI->getPointerOperand());
4239   }
4240   for (auto *BB : {QTB, QFB}) {
4241     if (!BB)
4242       continue;
4243     for (auto &I : *BB)
4244       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4245         QStoreAddresses.insert(SI->getPointerOperand());
4246   }
4247 
4248   set_intersect(PStoreAddresses, QStoreAddresses);
4249   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4250   // clear what it contains.
4251   auto &CommonAddresses = PStoreAddresses;
4252 
4253   bool Changed = false;
4254   for (auto *Address : CommonAddresses)
4255     Changed |=
4256         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4257                                        InvertPCond, InvertQCond, DTU, DL, TTI);
4258   return Changed;
4259 }
4260 
4261 /// If the previous block ended with a widenable branch, determine if reusing
4262 /// the target block is profitable and legal.  This will have the effect of
4263 /// "widening" PBI, but doesn't require us to reason about hosting safety.
4264 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4265                                            DomTreeUpdater *DTU) {
4266   // TODO: This can be generalized in two important ways:
4267   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4268   //    values from the PBI edge.
4269   // 2) We can sink side effecting instructions into BI's fallthrough
4270   //    successor provided they doesn't contribute to computation of
4271   //    BI's condition.
4272   BasicBlock *IfTrueBB = PBI->getSuccessor(0);
4273   BasicBlock *IfFalseBB = PBI->getSuccessor(1);
4274   if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() ||
4275       !BI->getParent()->getSinglePredecessor())
4276     return false;
4277   if (!IfFalseBB->phis().empty())
4278     return false; // TODO
4279   // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which
4280   // may undo the transform done here.
4281   // TODO: There might be a more fine-grained solution to this.
4282   if (!llvm::succ_empty(IfFalseBB))
4283     return false;
4284   // Use lambda to lazily compute expensive condition after cheap ones.
4285   auto NoSideEffects = [](BasicBlock &BB) {
4286     return llvm::none_of(BB, [](const Instruction &I) {
4287         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4288       });
4289   };
4290   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4291       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4292       NoSideEffects(*BI->getParent())) {
4293     auto *OldSuccessor = BI->getSuccessor(1);
4294     OldSuccessor->removePredecessor(BI->getParent());
4295     BI->setSuccessor(1, IfFalseBB);
4296     if (DTU)
4297       DTU->applyUpdates(
4298           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4299            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4300     return true;
4301   }
4302   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4303       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4304       NoSideEffects(*BI->getParent())) {
4305     auto *OldSuccessor = BI->getSuccessor(0);
4306     OldSuccessor->removePredecessor(BI->getParent());
4307     BI->setSuccessor(0, IfFalseBB);
4308     if (DTU)
4309       DTU->applyUpdates(
4310           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4311            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4312     return true;
4313   }
4314   return false;
4315 }
4316 
4317 /// If we have a conditional branch as a predecessor of another block,
4318 /// this function tries to simplify it.  We know
4319 /// that PBI and BI are both conditional branches, and BI is in one of the
4320 /// successor blocks of PBI - PBI branches to BI.
4321 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4322                                            DomTreeUpdater *DTU,
4323                                            const DataLayout &DL,
4324                                            const TargetTransformInfo &TTI) {
4325   assert(PBI->isConditional() && BI->isConditional());
4326   BasicBlock *BB = BI->getParent();
4327 
4328   // If this block ends with a branch instruction, and if there is a
4329   // predecessor that ends on a branch of the same condition, make
4330   // this conditional branch redundant.
4331   if (PBI->getCondition() == BI->getCondition() &&
4332       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4333     // Okay, the outcome of this conditional branch is statically
4334     // knowable.  If this block had a single pred, handle specially, otherwise
4335     // FoldCondBranchOnValueKnownInPredecessor() will handle it.
4336     if (BB->getSinglePredecessor()) {
4337       // Turn this into a branch on constant.
4338       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4339       BI->setCondition(
4340           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4341       return true; // Nuke the branch on constant.
4342     }
4343   }
4344 
4345   // If the previous block ended with a widenable branch, determine if reusing
4346   // the target block is profitable and legal.  This will have the effect of
4347   // "widening" PBI, but doesn't require us to reason about hosting safety.
4348   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4349     return true;
4350 
4351   // If both branches are conditional and both contain stores to the same
4352   // address, remove the stores from the conditionals and create a conditional
4353   // merged store at the end.
4354   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4355     return true;
4356 
4357   // If this is a conditional branch in an empty block, and if any
4358   // predecessors are a conditional branch to one of our destinations,
4359   // fold the conditions into logical ops and one cond br.
4360 
4361   // Ignore dbg intrinsics.
4362   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4363     return false;
4364 
4365   int PBIOp, BIOp;
4366   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4367     PBIOp = 0;
4368     BIOp = 0;
4369   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4370     PBIOp = 0;
4371     BIOp = 1;
4372   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4373     PBIOp = 1;
4374     BIOp = 0;
4375   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4376     PBIOp = 1;
4377     BIOp = 1;
4378   } else {
4379     return false;
4380   }
4381 
4382   // Check to make sure that the other destination of this branch
4383   // isn't BB itself.  If so, this is an infinite loop that will
4384   // keep getting unwound.
4385   if (PBI->getSuccessor(PBIOp) == BB)
4386     return false;
4387 
4388   // If predecessor's branch probability to BB is too low don't merge branches.
4389   SmallVector<uint32_t, 2> PredWeights;
4390   if (!PBI->getMetadata(LLVMContext::MD_unpredictable) &&
4391       extractBranchWeights(*PBI, PredWeights) &&
4392       (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) {
4393 
4394     BranchProbability CommonDestProb = BranchProbability::getBranchProbability(
4395         PredWeights[PBIOp],
4396         static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]);
4397 
4398     BranchProbability Likely = TTI.getPredictableBranchThreshold();
4399     if (CommonDestProb >= Likely)
4400       return false;
4401   }
4402 
4403   // Do not perform this transformation if it would require
4404   // insertion of a large number of select instructions. For targets
4405   // without predication/cmovs, this is a big pessimization.
4406 
4407   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4408   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4409   unsigned NumPhis = 0;
4410   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4411        ++II, ++NumPhis) {
4412     if (NumPhis > 2) // Disable this xform.
4413       return false;
4414   }
4415 
4416   // Finally, if everything is ok, fold the branches to logical ops.
4417   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4418 
4419   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4420                     << "AND: " << *BI->getParent());
4421 
4422   SmallVector<DominatorTree::UpdateType, 5> Updates;
4423 
4424   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4425   // branch in it, where one edge (OtherDest) goes back to itself but the other
4426   // exits.  We don't *know* that the program avoids the infinite loop
4427   // (even though that seems likely).  If we do this xform naively, we'll end up
4428   // recursively unpeeling the loop.  Since we know that (after the xform is
4429   // done) that the block *is* infinite if reached, we just make it an obviously
4430   // infinite loop with no cond branch.
4431   if (OtherDest == BB) {
4432     // Insert it at the end of the function, because it's either code,
4433     // or it won't matter if it's hot. :)
4434     BasicBlock *InfLoopBlock =
4435         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4436     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4437     if (DTU)
4438       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4439     OtherDest = InfLoopBlock;
4440   }
4441 
4442   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4443 
4444   // BI may have other predecessors.  Because of this, we leave
4445   // it alone, but modify PBI.
4446 
4447   // Make sure we get to CommonDest on True&True directions.
4448   Value *PBICond = PBI->getCondition();
4449   IRBuilder<NoFolder> Builder(PBI);
4450   if (PBIOp)
4451     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4452 
4453   Value *BICond = BI->getCondition();
4454   if (BIOp)
4455     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4456 
4457   // Merge the conditions.
4458   Value *Cond =
4459       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4460 
4461   // Modify PBI to branch on the new condition to the new dests.
4462   PBI->setCondition(Cond);
4463   PBI->setSuccessor(0, CommonDest);
4464   PBI->setSuccessor(1, OtherDest);
4465 
4466   if (DTU) {
4467     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4468     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4469 
4470     DTU->applyUpdates(Updates);
4471   }
4472 
4473   // Update branch weight for PBI.
4474   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4475   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4476   bool HasWeights =
4477       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4478                              SuccTrueWeight, SuccFalseWeight);
4479   if (HasWeights) {
4480     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4481     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4482     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4483     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4484     // The weight to CommonDest should be PredCommon * SuccTotal +
4485     //                                    PredOther * SuccCommon.
4486     // The weight to OtherDest should be PredOther * SuccOther.
4487     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4488                                   PredOther * SuccCommon,
4489                               PredOther * SuccOther};
4490     // Halve the weights if any of them cannot fit in an uint32_t
4491     FitWeights(NewWeights);
4492 
4493     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
4494   }
4495 
4496   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4497   // block that are identical to the entries for BI's block.
4498   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4499 
4500   // We know that the CommonDest already had an edge from PBI to
4501   // it.  If it has PHIs though, the PHIs may have different
4502   // entries for BB and PBI's BB.  If so, insert a select to make
4503   // them agree.
4504   for (PHINode &PN : CommonDest->phis()) {
4505     Value *BIV = PN.getIncomingValueForBlock(BB);
4506     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4507     Value *PBIV = PN.getIncomingValue(PBBIdx);
4508     if (BIV != PBIV) {
4509       // Insert a select in PBI to pick the right value.
4510       SelectInst *NV = cast<SelectInst>(
4511           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4512       PN.setIncomingValue(PBBIdx, NV);
4513       // Although the select has the same condition as PBI, the original branch
4514       // weights for PBI do not apply to the new select because the select's
4515       // 'logical' edges are incoming edges of the phi that is eliminated, not
4516       // the outgoing edges of PBI.
4517       if (HasWeights) {
4518         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4519         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4520         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4521         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4522         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4523         // The weight to PredOtherDest should be PredOther * SuccCommon.
4524         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4525                                   PredOther * SuccCommon};
4526 
4527         FitWeights(NewWeights);
4528 
4529         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
4530       }
4531     }
4532   }
4533 
4534   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4535   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4536 
4537   // This basic block is probably dead.  We know it has at least
4538   // one fewer predecessor.
4539   return true;
4540 }
4541 
4542 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4543 // true or to FalseBB if Cond is false.
4544 // Takes care of updating the successors and removing the old terminator.
4545 // Also makes sure not to introduce new successors by assuming that edges to
4546 // non-successor TrueBBs and FalseBBs aren't reachable.
4547 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4548                                                 Value *Cond, BasicBlock *TrueBB,
4549                                                 BasicBlock *FalseBB,
4550                                                 uint32_t TrueWeight,
4551                                                 uint32_t FalseWeight) {
4552   auto *BB = OldTerm->getParent();
4553   // Remove any superfluous successor edges from the CFG.
4554   // First, figure out which successors to preserve.
4555   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4556   // successor.
4557   BasicBlock *KeepEdge1 = TrueBB;
4558   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4559 
4560   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4561 
4562   // Then remove the rest.
4563   for (BasicBlock *Succ : successors(OldTerm)) {
4564     // Make sure only to keep exactly one copy of each edge.
4565     if (Succ == KeepEdge1)
4566       KeepEdge1 = nullptr;
4567     else if (Succ == KeepEdge2)
4568       KeepEdge2 = nullptr;
4569     else {
4570       Succ->removePredecessor(BB,
4571                               /*KeepOneInputPHIs=*/true);
4572 
4573       if (Succ != TrueBB && Succ != FalseBB)
4574         RemovedSuccessors.insert(Succ);
4575     }
4576   }
4577 
4578   IRBuilder<> Builder(OldTerm);
4579   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4580 
4581   // Insert an appropriate new terminator.
4582   if (!KeepEdge1 && !KeepEdge2) {
4583     if (TrueBB == FalseBB) {
4584       // We were only looking for one successor, and it was present.
4585       // Create an unconditional branch to it.
4586       Builder.CreateBr(TrueBB);
4587     } else {
4588       // We found both of the successors we were looking for.
4589       // Create a conditional branch sharing the condition of the select.
4590       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4591       if (TrueWeight != FalseWeight)
4592         setBranchWeights(NewBI, TrueWeight, FalseWeight);
4593     }
4594   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4595     // Neither of the selected blocks were successors, so this
4596     // terminator must be unreachable.
4597     new UnreachableInst(OldTerm->getContext(), OldTerm);
4598   } else {
4599     // One of the selected values was a successor, but the other wasn't.
4600     // Insert an unconditional branch to the one that was found;
4601     // the edge to the one that wasn't must be unreachable.
4602     if (!KeepEdge1) {
4603       // Only TrueBB was found.
4604       Builder.CreateBr(TrueBB);
4605     } else {
4606       // Only FalseBB was found.
4607       Builder.CreateBr(FalseBB);
4608     }
4609   }
4610 
4611   EraseTerminatorAndDCECond(OldTerm);
4612 
4613   if (DTU) {
4614     SmallVector<DominatorTree::UpdateType, 2> Updates;
4615     Updates.reserve(RemovedSuccessors.size());
4616     for (auto *RemovedSuccessor : RemovedSuccessors)
4617       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4618     DTU->applyUpdates(Updates);
4619   }
4620 
4621   return true;
4622 }
4623 
4624 // Replaces
4625 //   (switch (select cond, X, Y)) on constant X, Y
4626 // with a branch - conditional if X and Y lead to distinct BBs,
4627 // unconditional otherwise.
4628 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4629                                             SelectInst *Select) {
4630   // Check for constant integer values in the select.
4631   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4632   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4633   if (!TrueVal || !FalseVal)
4634     return false;
4635 
4636   // Find the relevant condition and destinations.
4637   Value *Condition = Select->getCondition();
4638   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4639   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4640 
4641   // Get weight for TrueBB and FalseBB.
4642   uint32_t TrueWeight = 0, FalseWeight = 0;
4643   SmallVector<uint64_t, 8> Weights;
4644   bool HasWeights = hasBranchWeightMD(*SI);
4645   if (HasWeights) {
4646     GetBranchWeights(SI, Weights);
4647     if (Weights.size() == 1 + SI->getNumCases()) {
4648       TrueWeight =
4649           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4650       FalseWeight =
4651           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4652     }
4653   }
4654 
4655   // Perform the actual simplification.
4656   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4657                                     FalseWeight);
4658 }
4659 
4660 // Replaces
4661 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4662 //                             blockaddress(@fn, BlockB)))
4663 // with
4664 //   (br cond, BlockA, BlockB).
4665 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4666                                                 SelectInst *SI) {
4667   // Check that both operands of the select are block addresses.
4668   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4669   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4670   if (!TBA || !FBA)
4671     return false;
4672 
4673   // Extract the actual blocks.
4674   BasicBlock *TrueBB = TBA->getBasicBlock();
4675   BasicBlock *FalseBB = FBA->getBasicBlock();
4676 
4677   // Perform the actual simplification.
4678   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4679                                     0);
4680 }
4681 
4682 /// This is called when we find an icmp instruction
4683 /// (a seteq/setne with a constant) as the only instruction in a
4684 /// block that ends with an uncond branch.  We are looking for a very specific
4685 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4686 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4687 /// default value goes to an uncond block with a seteq in it, we get something
4688 /// like:
4689 ///
4690 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4691 /// DEFAULT:
4692 ///   %tmp = icmp eq i8 %A, 92
4693 ///   br label %end
4694 /// end:
4695 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4696 ///
4697 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4698 /// the PHI, merging the third icmp into the switch.
4699 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4700     ICmpInst *ICI, IRBuilder<> &Builder) {
4701   BasicBlock *BB = ICI->getParent();
4702 
4703   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4704   // complex.
4705   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4706     return false;
4707 
4708   Value *V = ICI->getOperand(0);
4709   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4710 
4711   // The pattern we're looking for is where our only predecessor is a switch on
4712   // 'V' and this block is the default case for the switch.  In this case we can
4713   // fold the compared value into the switch to simplify things.
4714   BasicBlock *Pred = BB->getSinglePredecessor();
4715   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4716     return false;
4717 
4718   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4719   if (SI->getCondition() != V)
4720     return false;
4721 
4722   // If BB is reachable on a non-default case, then we simply know the value of
4723   // V in this block.  Substitute it and constant fold the icmp instruction
4724   // away.
4725   if (SI->getDefaultDest() != BB) {
4726     ConstantInt *VVal = SI->findCaseDest(BB);
4727     assert(VVal && "Should have a unique destination value");
4728     ICI->setOperand(0, VVal);
4729 
4730     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
4731       ICI->replaceAllUsesWith(V);
4732       ICI->eraseFromParent();
4733     }
4734     // BB is now empty, so it is likely to simplify away.
4735     return requestResimplify();
4736   }
4737 
4738   // Ok, the block is reachable from the default dest.  If the constant we're
4739   // comparing exists in one of the other edges, then we can constant fold ICI
4740   // and zap it.
4741   if (SI->findCaseValue(Cst) != SI->case_default()) {
4742     Value *V;
4743     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4744       V = ConstantInt::getFalse(BB->getContext());
4745     else
4746       V = ConstantInt::getTrue(BB->getContext());
4747 
4748     ICI->replaceAllUsesWith(V);
4749     ICI->eraseFromParent();
4750     // BB is now empty, so it is likely to simplify away.
4751     return requestResimplify();
4752   }
4753 
4754   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4755   // the block.
4756   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4757   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4758   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4759       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4760     return false;
4761 
4762   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4763   // true in the PHI.
4764   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4765   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4766 
4767   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4768     std::swap(DefaultCst, NewCst);
4769 
4770   // Replace ICI (which is used by the PHI for the default value) with true or
4771   // false depending on if it is EQ or NE.
4772   ICI->replaceAllUsesWith(DefaultCst);
4773   ICI->eraseFromParent();
4774 
4775   SmallVector<DominatorTree::UpdateType, 2> Updates;
4776 
4777   // Okay, the switch goes to this block on a default value.  Add an edge from
4778   // the switch to the merge point on the compared value.
4779   BasicBlock *NewBB =
4780       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4781   {
4782     SwitchInstProfUpdateWrapper SIW(*SI);
4783     auto W0 = SIW.getSuccessorWeight(0);
4784     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4785     if (W0) {
4786       NewW = ((uint64_t(*W0) + 1) >> 1);
4787       SIW.setSuccessorWeight(0, *NewW);
4788     }
4789     SIW.addCase(Cst, NewBB, NewW);
4790     if (DTU)
4791       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4792   }
4793 
4794   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4795   Builder.SetInsertPoint(NewBB);
4796   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4797   Builder.CreateBr(SuccBlock);
4798   PHIUse->addIncoming(NewCst, NewBB);
4799   if (DTU) {
4800     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4801     DTU->applyUpdates(Updates);
4802   }
4803   return true;
4804 }
4805 
4806 /// The specified branch is a conditional branch.
4807 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4808 /// fold it into a switch instruction if so.
4809 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4810                                                IRBuilder<> &Builder,
4811                                                const DataLayout &DL) {
4812   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4813   if (!Cond)
4814     return false;
4815 
4816   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4817   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4818   // 'setne's and'ed together, collect them.
4819 
4820   // Try to gather values from a chain of and/or to be turned into a switch
4821   ConstantComparesGatherer ConstantCompare(Cond, DL);
4822   // Unpack the result
4823   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4824   Value *CompVal = ConstantCompare.CompValue;
4825   unsigned UsedICmps = ConstantCompare.UsedICmps;
4826   Value *ExtraCase = ConstantCompare.Extra;
4827 
4828   // If we didn't have a multiply compared value, fail.
4829   if (!CompVal)
4830     return false;
4831 
4832   // Avoid turning single icmps into a switch.
4833   if (UsedICmps <= 1)
4834     return false;
4835 
4836   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4837 
4838   // There might be duplicate constants in the list, which the switch
4839   // instruction can't handle, remove them now.
4840   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4841   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4842 
4843   // If Extra was used, we require at least two switch values to do the
4844   // transformation.  A switch with one value is just a conditional branch.
4845   if (ExtraCase && Values.size() < 2)
4846     return false;
4847 
4848   // TODO: Preserve branch weight metadata, similarly to how
4849   // FoldValueComparisonIntoPredecessors preserves it.
4850 
4851   // Figure out which block is which destination.
4852   BasicBlock *DefaultBB = BI->getSuccessor(1);
4853   BasicBlock *EdgeBB = BI->getSuccessor(0);
4854   if (!TrueWhenEqual)
4855     std::swap(DefaultBB, EdgeBB);
4856 
4857   BasicBlock *BB = BI->getParent();
4858 
4859   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4860                     << " cases into SWITCH.  BB is:\n"
4861                     << *BB);
4862 
4863   SmallVector<DominatorTree::UpdateType, 2> Updates;
4864 
4865   // If there are any extra values that couldn't be folded into the switch
4866   // then we evaluate them with an explicit branch first. Split the block
4867   // right before the condbr to handle it.
4868   if (ExtraCase) {
4869     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4870                                    /*MSSAU=*/nullptr, "switch.early.test");
4871 
4872     // Remove the uncond branch added to the old block.
4873     Instruction *OldTI = BB->getTerminator();
4874     Builder.SetInsertPoint(OldTI);
4875 
4876     // There can be an unintended UB if extra values are Poison. Before the
4877     // transformation, extra values may not be evaluated according to the
4878     // condition, and it will not raise UB. But after transformation, we are
4879     // evaluating extra values before checking the condition, and it will raise
4880     // UB. It can be solved by adding freeze instruction to extra values.
4881     AssumptionCache *AC = Options.AC;
4882 
4883     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4884       ExtraCase = Builder.CreateFreeze(ExtraCase);
4885 
4886     if (TrueWhenEqual)
4887       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4888     else
4889       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4890 
4891     OldTI->eraseFromParent();
4892 
4893     if (DTU)
4894       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4895 
4896     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4897     // for the edge we just added.
4898     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4899 
4900     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4901                       << "\nEXTRABB = " << *BB);
4902     BB = NewBB;
4903   }
4904 
4905   Builder.SetInsertPoint(BI);
4906   // Convert pointer to int before we switch.
4907   if (CompVal->getType()->isPointerTy()) {
4908     CompVal = Builder.CreatePtrToInt(
4909         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4910   }
4911 
4912   // Create the new switch instruction now.
4913   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4914 
4915   // Add all of the 'cases' to the switch instruction.
4916   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4917     New->addCase(Values[i], EdgeBB);
4918 
4919   // We added edges from PI to the EdgeBB.  As such, if there were any
4920   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4921   // the number of edges added.
4922   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4923     PHINode *PN = cast<PHINode>(BBI);
4924     Value *InVal = PN->getIncomingValueForBlock(BB);
4925     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4926       PN->addIncoming(InVal, BB);
4927   }
4928 
4929   // Erase the old branch instruction.
4930   EraseTerminatorAndDCECond(BI);
4931   if (DTU)
4932     DTU->applyUpdates(Updates);
4933 
4934   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4935   return true;
4936 }
4937 
4938 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4939   if (isa<PHINode>(RI->getValue()))
4940     return simplifyCommonResume(RI);
4941   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4942            RI->getValue() == RI->getParent()->getFirstNonPHI())
4943     // The resume must unwind the exception that caused control to branch here.
4944     return simplifySingleResume(RI);
4945 
4946   return false;
4947 }
4948 
4949 // Check if cleanup block is empty
4950 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4951   for (Instruction &I : R) {
4952     auto *II = dyn_cast<IntrinsicInst>(&I);
4953     if (!II)
4954       return false;
4955 
4956     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4957     switch (IntrinsicID) {
4958     case Intrinsic::dbg_declare:
4959     case Intrinsic::dbg_value:
4960     case Intrinsic::dbg_label:
4961     case Intrinsic::lifetime_end:
4962       break;
4963     default:
4964       return false;
4965     }
4966   }
4967   return true;
4968 }
4969 
4970 // Simplify resume that is shared by several landing pads (phi of landing pad).
4971 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4972   BasicBlock *BB = RI->getParent();
4973 
4974   // Check that there are no other instructions except for debug and lifetime
4975   // intrinsics between the phi's and resume instruction.
4976   if (!isCleanupBlockEmpty(
4977           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4978     return false;
4979 
4980   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4981   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4982 
4983   // Check incoming blocks to see if any of them are trivial.
4984   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4985        Idx++) {
4986     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4987     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4988 
4989     // If the block has other successors, we can not delete it because
4990     // it has other dependents.
4991     if (IncomingBB->getUniqueSuccessor() != BB)
4992       continue;
4993 
4994     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4995     // Not the landing pad that caused the control to branch here.
4996     if (IncomingValue != LandingPad)
4997       continue;
4998 
4999     if (isCleanupBlockEmpty(
5000             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
5001       TrivialUnwindBlocks.insert(IncomingBB);
5002   }
5003 
5004   // If no trivial unwind blocks, don't do any simplifications.
5005   if (TrivialUnwindBlocks.empty())
5006     return false;
5007 
5008   // Turn all invokes that unwind here into calls.
5009   for (auto *TrivialBB : TrivialUnwindBlocks) {
5010     // Blocks that will be simplified should be removed from the phi node.
5011     // Note there could be multiple edges to the resume block, and we need
5012     // to remove them all.
5013     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
5014       BB->removePredecessor(TrivialBB, true);
5015 
5016     for (BasicBlock *Pred :
5017          llvm::make_early_inc_range(predecessors(TrivialBB))) {
5018       removeUnwindEdge(Pred, DTU);
5019       ++NumInvokes;
5020     }
5021 
5022     // In each SimplifyCFG run, only the current processed block can be erased.
5023     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
5024     // of erasing TrivialBB, we only remove the branch to the common resume
5025     // block so that we can later erase the resume block since it has no
5026     // predecessors.
5027     TrivialBB->getTerminator()->eraseFromParent();
5028     new UnreachableInst(RI->getContext(), TrivialBB);
5029     if (DTU)
5030       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
5031   }
5032 
5033   // Delete the resume block if all its predecessors have been removed.
5034   if (pred_empty(BB))
5035     DeleteDeadBlock(BB, DTU);
5036 
5037   return !TrivialUnwindBlocks.empty();
5038 }
5039 
5040 // Simplify resume that is only used by a single (non-phi) landing pad.
5041 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
5042   BasicBlock *BB = RI->getParent();
5043   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
5044   assert(RI->getValue() == LPInst &&
5045          "Resume must unwind the exception that caused control to here");
5046 
5047   // Check that there are no other instructions except for debug intrinsics.
5048   if (!isCleanupBlockEmpty(
5049           make_range<Instruction *>(LPInst->getNextNode(), RI)))
5050     return false;
5051 
5052   // Turn all invokes that unwind here into calls and delete the basic block.
5053   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
5054     removeUnwindEdge(Pred, DTU);
5055     ++NumInvokes;
5056   }
5057 
5058   // The landingpad is now unreachable.  Zap it.
5059   DeleteDeadBlock(BB, DTU);
5060   return true;
5061 }
5062 
5063 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
5064   // If this is a trivial cleanup pad that executes no instructions, it can be
5065   // eliminated.  If the cleanup pad continues to the caller, any predecessor
5066   // that is an EH pad will be updated to continue to the caller and any
5067   // predecessor that terminates with an invoke instruction will have its invoke
5068   // instruction converted to a call instruction.  If the cleanup pad being
5069   // simplified does not continue to the caller, each predecessor will be
5070   // updated to continue to the unwind destination of the cleanup pad being
5071   // simplified.
5072   BasicBlock *BB = RI->getParent();
5073   CleanupPadInst *CPInst = RI->getCleanupPad();
5074   if (CPInst->getParent() != BB)
5075     // This isn't an empty cleanup.
5076     return false;
5077 
5078   // We cannot kill the pad if it has multiple uses.  This typically arises
5079   // from unreachable basic blocks.
5080   if (!CPInst->hasOneUse())
5081     return false;
5082 
5083   // Check that there are no other instructions except for benign intrinsics.
5084   if (!isCleanupBlockEmpty(
5085           make_range<Instruction *>(CPInst->getNextNode(), RI)))
5086     return false;
5087 
5088   // If the cleanup return we are simplifying unwinds to the caller, this will
5089   // set UnwindDest to nullptr.
5090   BasicBlock *UnwindDest = RI->getUnwindDest();
5091   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
5092 
5093   // We're about to remove BB from the control flow.  Before we do, sink any
5094   // PHINodes into the unwind destination.  Doing this before changing the
5095   // control flow avoids some potentially slow checks, since we can currently
5096   // be certain that UnwindDest and BB have no common predecessors (since they
5097   // are both EH pads).
5098   if (UnwindDest) {
5099     // First, go through the PHI nodes in UnwindDest and update any nodes that
5100     // reference the block we are removing
5101     for (PHINode &DestPN : UnwindDest->phis()) {
5102       int Idx = DestPN.getBasicBlockIndex(BB);
5103       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
5104       assert(Idx != -1);
5105       // This PHI node has an incoming value that corresponds to a control
5106       // path through the cleanup pad we are removing.  If the incoming
5107       // value is in the cleanup pad, it must be a PHINode (because we
5108       // verified above that the block is otherwise empty).  Otherwise, the
5109       // value is either a constant or a value that dominates the cleanup
5110       // pad being removed.
5111       //
5112       // Because BB and UnwindDest are both EH pads, all of their
5113       // predecessors must unwind to these blocks, and since no instruction
5114       // can have multiple unwind destinations, there will be no overlap in
5115       // incoming blocks between SrcPN and DestPN.
5116       Value *SrcVal = DestPN.getIncomingValue(Idx);
5117       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
5118 
5119       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
5120       for (auto *Pred : predecessors(BB)) {
5121         Value *Incoming =
5122             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
5123         DestPN.addIncoming(Incoming, Pred);
5124       }
5125     }
5126 
5127     // Sink any remaining PHI nodes directly into UnwindDest.
5128     Instruction *InsertPt = DestEHPad;
5129     for (PHINode &PN : make_early_inc_range(BB->phis())) {
5130       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
5131         // If the PHI node has no uses or all of its uses are in this basic
5132         // block (meaning they are debug or lifetime intrinsics), just leave
5133         // it.  It will be erased when we erase BB below.
5134         continue;
5135 
5136       // Otherwise, sink this PHI node into UnwindDest.
5137       // Any predecessors to UnwindDest which are not already represented
5138       // must be back edges which inherit the value from the path through
5139       // BB.  In this case, the PHI value must reference itself.
5140       for (auto *pred : predecessors(UnwindDest))
5141         if (pred != BB)
5142           PN.addIncoming(&PN, pred);
5143       PN.moveBefore(InsertPt);
5144       // Also, add a dummy incoming value for the original BB itself,
5145       // so that the PHI is well-formed until we drop said predecessor.
5146       PN.addIncoming(PoisonValue::get(PN.getType()), BB);
5147     }
5148   }
5149 
5150   std::vector<DominatorTree::UpdateType> Updates;
5151 
5152   // We use make_early_inc_range here because we will remove all predecessors.
5153   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
5154     if (UnwindDest == nullptr) {
5155       if (DTU) {
5156         DTU->applyUpdates(Updates);
5157         Updates.clear();
5158       }
5159       removeUnwindEdge(PredBB, DTU);
5160       ++NumInvokes;
5161     } else {
5162       BB->removePredecessor(PredBB);
5163       Instruction *TI = PredBB->getTerminator();
5164       TI->replaceUsesOfWith(BB, UnwindDest);
5165       if (DTU) {
5166         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
5167         Updates.push_back({DominatorTree::Delete, PredBB, BB});
5168       }
5169     }
5170   }
5171 
5172   if (DTU)
5173     DTU->applyUpdates(Updates);
5174 
5175   DeleteDeadBlock(BB, DTU);
5176 
5177   return true;
5178 }
5179 
5180 // Try to merge two cleanuppads together.
5181 static bool mergeCleanupPad(CleanupReturnInst *RI) {
5182   // Skip any cleanuprets which unwind to caller, there is nothing to merge
5183   // with.
5184   BasicBlock *UnwindDest = RI->getUnwindDest();
5185   if (!UnwindDest)
5186     return false;
5187 
5188   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
5189   // be safe to merge without code duplication.
5190   if (UnwindDest->getSinglePredecessor() != RI->getParent())
5191     return false;
5192 
5193   // Verify that our cleanuppad's unwind destination is another cleanuppad.
5194   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
5195   if (!SuccessorCleanupPad)
5196     return false;
5197 
5198   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
5199   // Replace any uses of the successor cleanupad with the predecessor pad
5200   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
5201   // funclet bundle operands.
5202   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
5203   // Remove the old cleanuppad.
5204   SuccessorCleanupPad->eraseFromParent();
5205   // Now, we simply replace the cleanupret with a branch to the unwind
5206   // destination.
5207   BranchInst::Create(UnwindDest, RI->getParent());
5208   RI->eraseFromParent();
5209 
5210   return true;
5211 }
5212 
5213 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
5214   // It is possible to transiantly have an undef cleanuppad operand because we
5215   // have deleted some, but not all, dead blocks.
5216   // Eventually, this block will be deleted.
5217   if (isa<UndefValue>(RI->getOperand(0)))
5218     return false;
5219 
5220   if (mergeCleanupPad(RI))
5221     return true;
5222 
5223   if (removeEmptyCleanup(RI, DTU))
5224     return true;
5225 
5226   return false;
5227 }
5228 
5229 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
5230 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
5231   BasicBlock *BB = UI->getParent();
5232 
5233   bool Changed = false;
5234 
5235   // Ensure that any debug-info records that used to occur after the Unreachable
5236   // are moved to in front of it -- otherwise they'll "dangle" at the end of
5237   // the block.
5238   BB->flushTerminatorDbgValues();
5239 
5240   // Debug-info records on the unreachable inst itself should be deleted, as
5241   // below we delete everything past the final executable instruction.
5242   UI->dropDbgValues();
5243 
5244   // If there are any instructions immediately before the unreachable that can
5245   // be removed, do so.
5246   while (UI->getIterator() != BB->begin()) {
5247     BasicBlock::iterator BBI = UI->getIterator();
5248     --BBI;
5249 
5250     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
5251       break; // Can not drop any more instructions. We're done here.
5252     // Otherwise, this instruction can be freely erased,
5253     // even if it is not side-effect free.
5254 
5255     // Note that deleting EH's here is in fact okay, although it involves a bit
5256     // of subtle reasoning. If this inst is an EH, all the predecessors of this
5257     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5258     // and we can therefore guarantee this block will be erased.
5259 
5260     // If we're deleting this, we're deleting any subsequent dbg.values, so
5261     // delete DPValue records of variable information.
5262     BBI->dropDbgValues();
5263 
5264     // Delete this instruction (any uses are guaranteed to be dead)
5265     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5266     BBI->eraseFromParent();
5267     Changed = true;
5268   }
5269 
5270   // If the unreachable instruction is the first in the block, take a gander
5271   // at all of the predecessors of this instruction, and simplify them.
5272   if (&BB->front() != UI)
5273     return Changed;
5274 
5275   std::vector<DominatorTree::UpdateType> Updates;
5276 
5277   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5278   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
5279     auto *Predecessor = Preds[i];
5280     Instruction *TI = Predecessor->getTerminator();
5281     IRBuilder<> Builder(TI);
5282     if (auto *BI = dyn_cast<BranchInst>(TI)) {
5283       // We could either have a proper unconditional branch,
5284       // or a degenerate conditional branch with matching destinations.
5285       if (all_of(BI->successors(),
5286                  [BB](auto *Successor) { return Successor == BB; })) {
5287         new UnreachableInst(TI->getContext(), TI);
5288         TI->eraseFromParent();
5289         Changed = true;
5290       } else {
5291         assert(BI->isConditional() && "Can't get here with an uncond branch.");
5292         Value* Cond = BI->getCondition();
5293         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5294                "The destinations are guaranteed to be different here.");
5295         CallInst *Assumption;
5296         if (BI->getSuccessor(0) == BB) {
5297           Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
5298           Builder.CreateBr(BI->getSuccessor(1));
5299         } else {
5300           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5301           Assumption = Builder.CreateAssumption(Cond);
5302           Builder.CreateBr(BI->getSuccessor(0));
5303         }
5304         if (Options.AC)
5305           Options.AC->registerAssumption(cast<AssumeInst>(Assumption));
5306 
5307         EraseTerminatorAndDCECond(BI);
5308         Changed = true;
5309       }
5310       if (DTU)
5311         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5312     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5313       SwitchInstProfUpdateWrapper SU(*SI);
5314       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5315         if (i->getCaseSuccessor() != BB) {
5316           ++i;
5317           continue;
5318         }
5319         BB->removePredecessor(SU->getParent());
5320         i = SU.removeCase(i);
5321         e = SU->case_end();
5322         Changed = true;
5323       }
5324       // Note that the default destination can't be removed!
5325       if (DTU && SI->getDefaultDest() != BB)
5326         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5327     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5328       if (II->getUnwindDest() == BB) {
5329         if (DTU) {
5330           DTU->applyUpdates(Updates);
5331           Updates.clear();
5332         }
5333         auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU));
5334         if (!CI->doesNotThrow())
5335           CI->setDoesNotThrow();
5336         Changed = true;
5337       }
5338     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5339       if (CSI->getUnwindDest() == BB) {
5340         if (DTU) {
5341           DTU->applyUpdates(Updates);
5342           Updates.clear();
5343         }
5344         removeUnwindEdge(TI->getParent(), DTU);
5345         Changed = true;
5346         continue;
5347       }
5348 
5349       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5350                                              E = CSI->handler_end();
5351            I != E; ++I) {
5352         if (*I == BB) {
5353           CSI->removeHandler(I);
5354           --I;
5355           --E;
5356           Changed = true;
5357         }
5358       }
5359       if (DTU)
5360         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5361       if (CSI->getNumHandlers() == 0) {
5362         if (CSI->hasUnwindDest()) {
5363           // Redirect all predecessors of the block containing CatchSwitchInst
5364           // to instead branch to the CatchSwitchInst's unwind destination.
5365           if (DTU) {
5366             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5367               Updates.push_back({DominatorTree::Insert,
5368                                  PredecessorOfPredecessor,
5369                                  CSI->getUnwindDest()});
5370               Updates.push_back({DominatorTree::Delete,
5371                                  PredecessorOfPredecessor, Predecessor});
5372             }
5373           }
5374           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5375         } else {
5376           // Rewrite all preds to unwind to caller (or from invoke to call).
5377           if (DTU) {
5378             DTU->applyUpdates(Updates);
5379             Updates.clear();
5380           }
5381           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5382           for (BasicBlock *EHPred : EHPreds)
5383             removeUnwindEdge(EHPred, DTU);
5384         }
5385         // The catchswitch is no longer reachable.
5386         new UnreachableInst(CSI->getContext(), CSI);
5387         CSI->eraseFromParent();
5388         Changed = true;
5389       }
5390     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5391       (void)CRI;
5392       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5393              "Expected to always have an unwind to BB.");
5394       if (DTU)
5395         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5396       new UnreachableInst(TI->getContext(), TI);
5397       TI->eraseFromParent();
5398       Changed = true;
5399     }
5400   }
5401 
5402   if (DTU)
5403     DTU->applyUpdates(Updates);
5404 
5405   // If this block is now dead, remove it.
5406   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5407     DeleteDeadBlock(BB, DTU);
5408     return true;
5409   }
5410 
5411   return Changed;
5412 }
5413 
5414 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5415   assert(Cases.size() >= 1);
5416 
5417   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
5418   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5419     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5420       return false;
5421   }
5422   return true;
5423 }
5424 
5425 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5426                                            DomTreeUpdater *DTU) {
5427   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5428   auto *BB = Switch->getParent();
5429   auto *OrigDefaultBlock = Switch->getDefaultDest();
5430   OrigDefaultBlock->removePredecessor(BB);
5431   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5432       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5433       OrigDefaultBlock);
5434   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5435   Switch->setDefaultDest(&*NewDefaultBlock);
5436   if (DTU) {
5437     SmallVector<DominatorTree::UpdateType, 2> Updates;
5438     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5439     if (!is_contained(successors(BB), OrigDefaultBlock))
5440       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5441     DTU->applyUpdates(Updates);
5442   }
5443 }
5444 
5445 /// Turn a switch into an integer range comparison and branch.
5446 /// Switches with more than 2 destinations are ignored.
5447 /// Switches with 1 destination are also ignored.
5448 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5449                                              IRBuilder<> &Builder) {
5450   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5451 
5452   bool HasDefault =
5453       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5454 
5455   auto *BB = SI->getParent();
5456 
5457   // Partition the cases into two sets with different destinations.
5458   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5459   BasicBlock *DestB = nullptr;
5460   SmallVector<ConstantInt *, 16> CasesA;
5461   SmallVector<ConstantInt *, 16> CasesB;
5462 
5463   for (auto Case : SI->cases()) {
5464     BasicBlock *Dest = Case.getCaseSuccessor();
5465     if (!DestA)
5466       DestA = Dest;
5467     if (Dest == DestA) {
5468       CasesA.push_back(Case.getCaseValue());
5469       continue;
5470     }
5471     if (!DestB)
5472       DestB = Dest;
5473     if (Dest == DestB) {
5474       CasesB.push_back(Case.getCaseValue());
5475       continue;
5476     }
5477     return false; // More than two destinations.
5478   }
5479   if (!DestB)
5480     return false; // All destinations are the same and the default is unreachable
5481 
5482   assert(DestA && DestB &&
5483          "Single-destination switch should have been folded.");
5484   assert(DestA != DestB);
5485   assert(DestB != SI->getDefaultDest());
5486   assert(!CasesB.empty() && "There must be non-default cases.");
5487   assert(!CasesA.empty() || HasDefault);
5488 
5489   // Figure out if one of the sets of cases form a contiguous range.
5490   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5491   BasicBlock *ContiguousDest = nullptr;
5492   BasicBlock *OtherDest = nullptr;
5493   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
5494     ContiguousCases = &CasesA;
5495     ContiguousDest = DestA;
5496     OtherDest = DestB;
5497   } else if (CasesAreContiguous(CasesB)) {
5498     ContiguousCases = &CasesB;
5499     ContiguousDest = DestB;
5500     OtherDest = DestA;
5501   } else
5502     return false;
5503 
5504   // Start building the compare and branch.
5505 
5506   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5507   Constant *NumCases =
5508       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5509 
5510   Value *Sub = SI->getCondition();
5511   if (!Offset->isNullValue())
5512     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5513 
5514   Value *Cmp;
5515   // If NumCases overflowed, then all possible values jump to the successor.
5516   if (NumCases->isNullValue() && !ContiguousCases->empty())
5517     Cmp = ConstantInt::getTrue(SI->getContext());
5518   else
5519     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5520   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5521 
5522   // Update weight for the newly-created conditional branch.
5523   if (hasBranchWeightMD(*SI)) {
5524     SmallVector<uint64_t, 8> Weights;
5525     GetBranchWeights(SI, Weights);
5526     if (Weights.size() == 1 + SI->getNumCases()) {
5527       uint64_t TrueWeight = 0;
5528       uint64_t FalseWeight = 0;
5529       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5530         if (SI->getSuccessor(I) == ContiguousDest)
5531           TrueWeight += Weights[I];
5532         else
5533           FalseWeight += Weights[I];
5534       }
5535       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5536         TrueWeight /= 2;
5537         FalseWeight /= 2;
5538       }
5539       setBranchWeights(NewBI, TrueWeight, FalseWeight);
5540     }
5541   }
5542 
5543   // Prune obsolete incoming values off the successors' PHI nodes.
5544   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5545     unsigned PreviousEdges = ContiguousCases->size();
5546     if (ContiguousDest == SI->getDefaultDest())
5547       ++PreviousEdges;
5548     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5549       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5550   }
5551   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5552     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5553     if (OtherDest == SI->getDefaultDest())
5554       ++PreviousEdges;
5555     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5556       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5557   }
5558 
5559   // Clean up the default block - it may have phis or other instructions before
5560   // the unreachable terminator.
5561   if (!HasDefault)
5562     createUnreachableSwitchDefault(SI, DTU);
5563 
5564   auto *UnreachableDefault = SI->getDefaultDest();
5565 
5566   // Drop the switch.
5567   SI->eraseFromParent();
5568 
5569   if (!HasDefault && DTU)
5570     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5571 
5572   return true;
5573 }
5574 
5575 /// Compute masked bits for the condition of a switch
5576 /// and use it to remove dead cases.
5577 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5578                                      AssumptionCache *AC,
5579                                      const DataLayout &DL) {
5580   Value *Cond = SI->getCondition();
5581   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5582 
5583   // We can also eliminate cases by determining that their values are outside of
5584   // the limited range of the condition based on how many significant (non-sign)
5585   // bits are in the condition value.
5586   unsigned MaxSignificantBitsInCond =
5587       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5588 
5589   // Gather dead cases.
5590   SmallVector<ConstantInt *, 8> DeadCases;
5591   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5592   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5593   for (const auto &Case : SI->cases()) {
5594     auto *Successor = Case.getCaseSuccessor();
5595     if (DTU) {
5596       if (!NumPerSuccessorCases.count(Successor))
5597         UniqueSuccessors.push_back(Successor);
5598       ++NumPerSuccessorCases[Successor];
5599     }
5600     const APInt &CaseVal = Case.getCaseValue()->getValue();
5601     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5602         (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) {
5603       DeadCases.push_back(Case.getCaseValue());
5604       if (DTU)
5605         --NumPerSuccessorCases[Successor];
5606       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5607                         << " is dead.\n");
5608     }
5609   }
5610 
5611   // If we can prove that the cases must cover all possible values, the
5612   // default destination becomes dead and we can remove it.  If we know some
5613   // of the bits in the value, we can use that to more precisely compute the
5614   // number of possible unique case values.
5615   bool HasDefault =
5616       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5617   const unsigned NumUnknownBits =
5618       Known.getBitWidth() - (Known.Zero | Known.One).popcount();
5619   assert(NumUnknownBits <= Known.getBitWidth());
5620   if (HasDefault && DeadCases.empty() &&
5621       NumUnknownBits < 64 /* avoid overflow */ &&
5622       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5623     createUnreachableSwitchDefault(SI, DTU);
5624     return true;
5625   }
5626 
5627   if (DeadCases.empty())
5628     return false;
5629 
5630   SwitchInstProfUpdateWrapper SIW(*SI);
5631   for (ConstantInt *DeadCase : DeadCases) {
5632     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5633     assert(CaseI != SI->case_default() &&
5634            "Case was not found. Probably mistake in DeadCases forming.");
5635     // Prune unused values from PHI nodes.
5636     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5637     SIW.removeCase(CaseI);
5638   }
5639 
5640   if (DTU) {
5641     std::vector<DominatorTree::UpdateType> Updates;
5642     for (auto *Successor : UniqueSuccessors)
5643       if (NumPerSuccessorCases[Successor] == 0)
5644         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5645     DTU->applyUpdates(Updates);
5646   }
5647 
5648   return true;
5649 }
5650 
5651 /// If BB would be eligible for simplification by
5652 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5653 /// by an unconditional branch), look at the phi node for BB in the successor
5654 /// block and see if the incoming value is equal to CaseValue. If so, return
5655 /// the phi node, and set PhiIndex to BB's index in the phi node.
5656 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5657                                               BasicBlock *BB, int *PhiIndex) {
5658   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5659     return nullptr; // BB must be empty to be a candidate for simplification.
5660   if (!BB->getSinglePredecessor())
5661     return nullptr; // BB must be dominated by the switch.
5662 
5663   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5664   if (!Branch || !Branch->isUnconditional())
5665     return nullptr; // Terminator must be unconditional branch.
5666 
5667   BasicBlock *Succ = Branch->getSuccessor(0);
5668 
5669   for (PHINode &PHI : Succ->phis()) {
5670     int Idx = PHI.getBasicBlockIndex(BB);
5671     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5672 
5673     Value *InValue = PHI.getIncomingValue(Idx);
5674     if (InValue != CaseValue)
5675       continue;
5676 
5677     *PhiIndex = Idx;
5678     return &PHI;
5679   }
5680 
5681   return nullptr;
5682 }
5683 
5684 /// Try to forward the condition of a switch instruction to a phi node
5685 /// dominated by the switch, if that would mean that some of the destination
5686 /// blocks of the switch can be folded away. Return true if a change is made.
5687 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5688   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5689 
5690   ForwardingNodesMap ForwardingNodes;
5691   BasicBlock *SwitchBlock = SI->getParent();
5692   bool Changed = false;
5693   for (const auto &Case : SI->cases()) {
5694     ConstantInt *CaseValue = Case.getCaseValue();
5695     BasicBlock *CaseDest = Case.getCaseSuccessor();
5696 
5697     // Replace phi operands in successor blocks that are using the constant case
5698     // value rather than the switch condition variable:
5699     //   switchbb:
5700     //   switch i32 %x, label %default [
5701     //     i32 17, label %succ
5702     //   ...
5703     //   succ:
5704     //     %r = phi i32 ... [ 17, %switchbb ] ...
5705     // -->
5706     //     %r = phi i32 ... [ %x, %switchbb ] ...
5707 
5708     for (PHINode &Phi : CaseDest->phis()) {
5709       // This only works if there is exactly 1 incoming edge from the switch to
5710       // a phi. If there is >1, that means multiple cases of the switch map to 1
5711       // value in the phi, and that phi value is not the switch condition. Thus,
5712       // this transform would not make sense (the phi would be invalid because
5713       // a phi can't have different incoming values from the same block).
5714       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5715       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5716           count(Phi.blocks(), SwitchBlock) == 1) {
5717         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5718         Changed = true;
5719       }
5720     }
5721 
5722     // Collect phi nodes that are indirectly using this switch's case constants.
5723     int PhiIdx;
5724     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5725       ForwardingNodes[Phi].push_back(PhiIdx);
5726   }
5727 
5728   for (auto &ForwardingNode : ForwardingNodes) {
5729     PHINode *Phi = ForwardingNode.first;
5730     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5731     if (Indexes.size() < 2)
5732       continue;
5733 
5734     for (int Index : Indexes)
5735       Phi->setIncomingValue(Index, SI->getCondition());
5736     Changed = true;
5737   }
5738 
5739   return Changed;
5740 }
5741 
5742 /// Return true if the backend will be able to handle
5743 /// initializing an array of constants like C.
5744 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5745   if (C->isThreadDependent())
5746     return false;
5747   if (C->isDLLImportDependent())
5748     return false;
5749 
5750   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5751       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5752       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5753     return false;
5754 
5755   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5756     // Pointer casts and in-bounds GEPs will not prohibit the backend from
5757     // materializing the array of constants.
5758     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5759     if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5760       return false;
5761   }
5762 
5763   if (!TTI.shouldBuildLookupTablesForConstant(C))
5764     return false;
5765 
5766   return true;
5767 }
5768 
5769 /// If V is a Constant, return it. Otherwise, try to look up
5770 /// its constant value in ConstantPool, returning 0 if it's not there.
5771 static Constant *
5772 LookupConstant(Value *V,
5773                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5774   if (Constant *C = dyn_cast<Constant>(V))
5775     return C;
5776   return ConstantPool.lookup(V);
5777 }
5778 
5779 /// Try to fold instruction I into a constant. This works for
5780 /// simple instructions such as binary operations where both operands are
5781 /// constant or can be replaced by constants from the ConstantPool. Returns the
5782 /// resulting constant on success, 0 otherwise.
5783 static Constant *
5784 ConstantFold(Instruction *I, const DataLayout &DL,
5785              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5786   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5787     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5788     if (!A)
5789       return nullptr;
5790     if (A->isAllOnesValue())
5791       return LookupConstant(Select->getTrueValue(), ConstantPool);
5792     if (A->isNullValue())
5793       return LookupConstant(Select->getFalseValue(), ConstantPool);
5794     return nullptr;
5795   }
5796 
5797   SmallVector<Constant *, 4> COps;
5798   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5799     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5800       COps.push_back(A);
5801     else
5802       return nullptr;
5803   }
5804 
5805   return ConstantFoldInstOperands(I, COps, DL);
5806 }
5807 
5808 /// Try to determine the resulting constant values in phi nodes
5809 /// at the common destination basic block, *CommonDest, for one of the case
5810 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5811 /// case), of a switch instruction SI.
5812 static bool
5813 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5814                BasicBlock **CommonDest,
5815                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5816                const DataLayout &DL, const TargetTransformInfo &TTI) {
5817   // The block from which we enter the common destination.
5818   BasicBlock *Pred = SI->getParent();
5819 
5820   // If CaseDest is empty except for some side-effect free instructions through
5821   // which we can constant-propagate the CaseVal, continue to its successor.
5822   SmallDenseMap<Value *, Constant *> ConstantPool;
5823   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5824   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5825     if (I.isTerminator()) {
5826       // If the terminator is a simple branch, continue to the next block.
5827       if (I.getNumSuccessors() != 1 || I.isSpecialTerminator())
5828         return false;
5829       Pred = CaseDest;
5830       CaseDest = I.getSuccessor(0);
5831     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5832       // Instruction is side-effect free and constant.
5833 
5834       // If the instruction has uses outside this block or a phi node slot for
5835       // the block, it is not safe to bypass the instruction since it would then
5836       // no longer dominate all its uses.
5837       for (auto &Use : I.uses()) {
5838         User *User = Use.getUser();
5839         if (Instruction *I = dyn_cast<Instruction>(User))
5840           if (I->getParent() == CaseDest)
5841             continue;
5842         if (PHINode *Phi = dyn_cast<PHINode>(User))
5843           if (Phi->getIncomingBlock(Use) == CaseDest)
5844             continue;
5845         return false;
5846       }
5847 
5848       ConstantPool.insert(std::make_pair(&I, C));
5849     } else {
5850       break;
5851     }
5852   }
5853 
5854   // If we did not have a CommonDest before, use the current one.
5855   if (!*CommonDest)
5856     *CommonDest = CaseDest;
5857   // If the destination isn't the common one, abort.
5858   if (CaseDest != *CommonDest)
5859     return false;
5860 
5861   // Get the values for this case from phi nodes in the destination block.
5862   for (PHINode &PHI : (*CommonDest)->phis()) {
5863     int Idx = PHI.getBasicBlockIndex(Pred);
5864     if (Idx == -1)
5865       continue;
5866 
5867     Constant *ConstVal =
5868         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5869     if (!ConstVal)
5870       return false;
5871 
5872     // Be conservative about which kinds of constants we support.
5873     if (!ValidLookupTableConstant(ConstVal, TTI))
5874       return false;
5875 
5876     Res.push_back(std::make_pair(&PHI, ConstVal));
5877   }
5878 
5879   return Res.size() > 0;
5880 }
5881 
5882 // Helper function used to add CaseVal to the list of cases that generate
5883 // Result. Returns the updated number of cases that generate this result.
5884 static size_t mapCaseToResult(ConstantInt *CaseVal,
5885                               SwitchCaseResultVectorTy &UniqueResults,
5886                               Constant *Result) {
5887   for (auto &I : UniqueResults) {
5888     if (I.first == Result) {
5889       I.second.push_back(CaseVal);
5890       return I.second.size();
5891     }
5892   }
5893   UniqueResults.push_back(
5894       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5895   return 1;
5896 }
5897 
5898 // Helper function that initializes a map containing
5899 // results for the PHI node of the common destination block for a switch
5900 // instruction. Returns false if multiple PHI nodes have been found or if
5901 // there is not a common destination block for the switch.
5902 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
5903                                   BasicBlock *&CommonDest,
5904                                   SwitchCaseResultVectorTy &UniqueResults,
5905                                   Constant *&DefaultResult,
5906                                   const DataLayout &DL,
5907                                   const TargetTransformInfo &TTI,
5908                                   uintptr_t MaxUniqueResults) {
5909   for (const auto &I : SI->cases()) {
5910     ConstantInt *CaseVal = I.getCaseValue();
5911 
5912     // Resulting value at phi nodes for this case value.
5913     SwitchCaseResultsTy Results;
5914     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5915                         DL, TTI))
5916       return false;
5917 
5918     // Only one value per case is permitted.
5919     if (Results.size() > 1)
5920       return false;
5921 
5922     // Add the case->result mapping to UniqueResults.
5923     const size_t NumCasesForResult =
5924         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5925 
5926     // Early out if there are too many cases for this result.
5927     if (NumCasesForResult > MaxSwitchCasesPerResult)
5928       return false;
5929 
5930     // Early out if there are too many unique results.
5931     if (UniqueResults.size() > MaxUniqueResults)
5932       return false;
5933 
5934     // Check the PHI consistency.
5935     if (!PHI)
5936       PHI = Results[0].first;
5937     else if (PHI != Results[0].first)
5938       return false;
5939   }
5940   // Find the default result value.
5941   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5942   BasicBlock *DefaultDest = SI->getDefaultDest();
5943   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5944                  DL, TTI);
5945   // If the default value is not found abort unless the default destination
5946   // is unreachable.
5947   DefaultResult =
5948       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5949   if ((!DefaultResult &&
5950        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5951     return false;
5952 
5953   return true;
5954 }
5955 
5956 // Helper function that checks if it is possible to transform a switch with only
5957 // two cases (or two cases + default) that produces a result into a select.
5958 // TODO: Handle switches with more than 2 cases that map to the same result.
5959 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
5960                                  Constant *DefaultResult, Value *Condition,
5961                                  IRBuilder<> &Builder) {
5962   // If we are selecting between only two cases transform into a simple
5963   // select or a two-way select if default is possible.
5964   // Example:
5965   // switch (a) {                  %0 = icmp eq i32 %a, 10
5966   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
5967   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
5968   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
5969   // }
5970   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5971       ResultVector[1].second.size() == 1) {
5972     ConstantInt *FirstCase = ResultVector[0].second[0];
5973     ConstantInt *SecondCase = ResultVector[1].second[0];
5974     Value *SelectValue = ResultVector[1].first;
5975     if (DefaultResult) {
5976       Value *ValueCompare =
5977           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5978       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5979                                          DefaultResult, "switch.select");
5980     }
5981     Value *ValueCompare =
5982         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5983     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5984                                 SelectValue, "switch.select");
5985   }
5986 
5987   // Handle the degenerate case where two cases have the same result value.
5988   if (ResultVector.size() == 1 && DefaultResult) {
5989     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
5990     unsigned CaseCount = CaseValues.size();
5991     // n bits group cases map to the same result:
5992     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
5993     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
5994     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
5995     if (isPowerOf2_32(CaseCount)) {
5996       ConstantInt *MinCaseVal = CaseValues[0];
5997       // Find mininal value.
5998       for (auto *Case : CaseValues)
5999         if (Case->getValue().slt(MinCaseVal->getValue()))
6000           MinCaseVal = Case;
6001 
6002       // Mark the bits case number touched.
6003       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
6004       for (auto *Case : CaseValues)
6005         BitMask |= (Case->getValue() - MinCaseVal->getValue());
6006 
6007       // Check if cases with the same result can cover all number
6008       // in touched bits.
6009       if (BitMask.popcount() == Log2_32(CaseCount)) {
6010         if (!MinCaseVal->isNullValue())
6011           Condition = Builder.CreateSub(Condition, MinCaseVal);
6012         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
6013         Value *Cmp = Builder.CreateICmpEQ(
6014             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
6015         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6016       }
6017     }
6018 
6019     // Handle the degenerate case where two cases have the same value.
6020     if (CaseValues.size() == 2) {
6021       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
6022                                          "switch.selectcmp.case1");
6023       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
6024                                          "switch.selectcmp.case2");
6025       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
6026       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6027     }
6028   }
6029 
6030   return nullptr;
6031 }
6032 
6033 // Helper function to cleanup a switch instruction that has been converted into
6034 // a select, fixing up PHI nodes and basic blocks.
6035 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
6036                                         Value *SelectValue,
6037                                         IRBuilder<> &Builder,
6038                                         DomTreeUpdater *DTU) {
6039   std::vector<DominatorTree::UpdateType> Updates;
6040 
6041   BasicBlock *SelectBB = SI->getParent();
6042   BasicBlock *DestBB = PHI->getParent();
6043 
6044   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
6045     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
6046   Builder.CreateBr(DestBB);
6047 
6048   // Remove the switch.
6049 
6050   PHI->removeIncomingValueIf(
6051       [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; });
6052   PHI->addIncoming(SelectValue, SelectBB);
6053 
6054   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
6055   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6056     BasicBlock *Succ = SI->getSuccessor(i);
6057 
6058     if (Succ == DestBB)
6059       continue;
6060     Succ->removePredecessor(SelectBB);
6061     if (DTU && RemovedSuccessors.insert(Succ).second)
6062       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
6063   }
6064   SI->eraseFromParent();
6065   if (DTU)
6066     DTU->applyUpdates(Updates);
6067 }
6068 
6069 /// If a switch is only used to initialize one or more phi nodes in a common
6070 /// successor block with only two different constant values, try to replace the
6071 /// switch with a select. Returns true if the fold was made.
6072 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
6073                               DomTreeUpdater *DTU, const DataLayout &DL,
6074                               const TargetTransformInfo &TTI) {
6075   Value *const Cond = SI->getCondition();
6076   PHINode *PHI = nullptr;
6077   BasicBlock *CommonDest = nullptr;
6078   Constant *DefaultResult;
6079   SwitchCaseResultVectorTy UniqueResults;
6080   // Collect all the cases that will deliver the same value from the switch.
6081   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
6082                              DL, TTI, /*MaxUniqueResults*/ 2))
6083     return false;
6084 
6085   assert(PHI != nullptr && "PHI for value select not found");
6086   Builder.SetInsertPoint(SI);
6087   Value *SelectValue =
6088       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
6089   if (!SelectValue)
6090     return false;
6091 
6092   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
6093   return true;
6094 }
6095 
6096 namespace {
6097 
6098 /// This class represents a lookup table that can be used to replace a switch.
6099 class SwitchLookupTable {
6100 public:
6101   /// Create a lookup table to use as a switch replacement with the contents
6102   /// of Values, using DefaultValue to fill any holes in the table.
6103   SwitchLookupTable(
6104       Module &M, uint64_t TableSize, ConstantInt *Offset,
6105       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6106       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
6107 
6108   /// Build instructions with Builder to retrieve the value at
6109   /// the position given by Index in the lookup table.
6110   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
6111 
6112   /// Return true if a table with TableSize elements of
6113   /// type ElementType would fit in a target-legal register.
6114   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
6115                                  Type *ElementType);
6116 
6117 private:
6118   // Depending on the contents of the table, it can be represented in
6119   // different ways.
6120   enum {
6121     // For tables where each element contains the same value, we just have to
6122     // store that single value and return it for each lookup.
6123     SingleValueKind,
6124 
6125     // For tables where there is a linear relationship between table index
6126     // and values. We calculate the result with a simple multiplication
6127     // and addition instead of a table lookup.
6128     LinearMapKind,
6129 
6130     // For small tables with integer elements, we can pack them into a bitmap
6131     // that fits into a target-legal register. Values are retrieved by
6132     // shift and mask operations.
6133     BitMapKind,
6134 
6135     // The table is stored as an array of values. Values are retrieved by load
6136     // instructions from the table.
6137     ArrayKind
6138   } Kind;
6139 
6140   // For SingleValueKind, this is the single value.
6141   Constant *SingleValue = nullptr;
6142 
6143   // For BitMapKind, this is the bitmap.
6144   ConstantInt *BitMap = nullptr;
6145   IntegerType *BitMapElementTy = nullptr;
6146 
6147   // For LinearMapKind, these are the constants used to derive the value.
6148   ConstantInt *LinearOffset = nullptr;
6149   ConstantInt *LinearMultiplier = nullptr;
6150   bool LinearMapValWrapped = false;
6151 
6152   // For ArrayKind, this is the array.
6153   GlobalVariable *Array = nullptr;
6154 };
6155 
6156 } // end anonymous namespace
6157 
6158 SwitchLookupTable::SwitchLookupTable(
6159     Module &M, uint64_t TableSize, ConstantInt *Offset,
6160     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6161     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
6162   assert(Values.size() && "Can't build lookup table without values!");
6163   assert(TableSize >= Values.size() && "Can't fit values in table!");
6164 
6165   // If all values in the table are equal, this is that value.
6166   SingleValue = Values.begin()->second;
6167 
6168   Type *ValueType = Values.begin()->second->getType();
6169 
6170   // Build up the table contents.
6171   SmallVector<Constant *, 64> TableContents(TableSize);
6172   for (size_t I = 0, E = Values.size(); I != E; ++I) {
6173     ConstantInt *CaseVal = Values[I].first;
6174     Constant *CaseRes = Values[I].second;
6175     assert(CaseRes->getType() == ValueType);
6176 
6177     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
6178     TableContents[Idx] = CaseRes;
6179 
6180     if (CaseRes != SingleValue)
6181       SingleValue = nullptr;
6182   }
6183 
6184   // Fill in any holes in the table with the default result.
6185   if (Values.size() < TableSize) {
6186     assert(DefaultValue &&
6187            "Need a default value to fill the lookup table holes.");
6188     assert(DefaultValue->getType() == ValueType);
6189     for (uint64_t I = 0; I < TableSize; ++I) {
6190       if (!TableContents[I])
6191         TableContents[I] = DefaultValue;
6192     }
6193 
6194     if (DefaultValue != SingleValue)
6195       SingleValue = nullptr;
6196   }
6197 
6198   // If each element in the table contains the same value, we only need to store
6199   // that single value.
6200   if (SingleValue) {
6201     Kind = SingleValueKind;
6202     return;
6203   }
6204 
6205   // Check if we can derive the value with a linear transformation from the
6206   // table index.
6207   if (isa<IntegerType>(ValueType)) {
6208     bool LinearMappingPossible = true;
6209     APInt PrevVal;
6210     APInt DistToPrev;
6211     // When linear map is monotonic and signed overflow doesn't happen on
6212     // maximum index, we can attach nsw on Add and Mul.
6213     bool NonMonotonic = false;
6214     assert(TableSize >= 2 && "Should be a SingleValue table.");
6215     // Check if there is the same distance between two consecutive values.
6216     for (uint64_t I = 0; I < TableSize; ++I) {
6217       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
6218       if (!ConstVal) {
6219         // This is an undef. We could deal with it, but undefs in lookup tables
6220         // are very seldom. It's probably not worth the additional complexity.
6221         LinearMappingPossible = false;
6222         break;
6223       }
6224       const APInt &Val = ConstVal->getValue();
6225       if (I != 0) {
6226         APInt Dist = Val - PrevVal;
6227         if (I == 1) {
6228           DistToPrev = Dist;
6229         } else if (Dist != DistToPrev) {
6230           LinearMappingPossible = false;
6231           break;
6232         }
6233         NonMonotonic |=
6234             Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal);
6235       }
6236       PrevVal = Val;
6237     }
6238     if (LinearMappingPossible) {
6239       LinearOffset = cast<ConstantInt>(TableContents[0]);
6240       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
6241       bool MayWrap = false;
6242       APInt M = LinearMultiplier->getValue();
6243       (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap);
6244       LinearMapValWrapped = NonMonotonic || MayWrap;
6245       Kind = LinearMapKind;
6246       ++NumLinearMaps;
6247       return;
6248     }
6249   }
6250 
6251   // If the type is integer and the table fits in a register, build a bitmap.
6252   if (WouldFitInRegister(DL, TableSize, ValueType)) {
6253     IntegerType *IT = cast<IntegerType>(ValueType);
6254     APInt TableInt(TableSize * IT->getBitWidth(), 0);
6255     for (uint64_t I = TableSize; I > 0; --I) {
6256       TableInt <<= IT->getBitWidth();
6257       // Insert values into the bitmap. Undef values are set to zero.
6258       if (!isa<UndefValue>(TableContents[I - 1])) {
6259         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
6260         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
6261       }
6262     }
6263     BitMap = ConstantInt::get(M.getContext(), TableInt);
6264     BitMapElementTy = IT;
6265     Kind = BitMapKind;
6266     ++NumBitMaps;
6267     return;
6268   }
6269 
6270   // Store the table in an array.
6271   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
6272   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
6273 
6274   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6275                              GlobalVariable::PrivateLinkage, Initializer,
6276                              "switch.table." + FuncName);
6277   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6278   // Set the alignment to that of an array items. We will be only loading one
6279   // value out of it.
6280   Array->setAlignment(DL.getPrefTypeAlign(ValueType));
6281   Kind = ArrayKind;
6282 }
6283 
6284 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
6285   switch (Kind) {
6286   case SingleValueKind:
6287     return SingleValue;
6288   case LinearMapKind: {
6289     // Derive the result value from the input value.
6290     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6291                                           false, "switch.idx.cast");
6292     if (!LinearMultiplier->isOne())
6293       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult",
6294                                  /*HasNUW = */ false,
6295                                  /*HasNSW = */ !LinearMapValWrapped);
6296 
6297     if (!LinearOffset->isZero())
6298       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset",
6299                                  /*HasNUW = */ false,
6300                                  /*HasNSW = */ !LinearMapValWrapped);
6301     return Result;
6302   }
6303   case BitMapKind: {
6304     // Type of the bitmap (e.g. i59).
6305     IntegerType *MapTy = BitMap->getIntegerType();
6306 
6307     // Cast Index to the same type as the bitmap.
6308     // Note: The Index is <= the number of elements in the table, so
6309     // truncating it to the width of the bitmask is safe.
6310     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6311 
6312     // Multiply the shift amount by the element width. NUW/NSW can always be
6313     // set, because WouldFitInRegister guarantees Index * ShiftAmt is in
6314     // BitMap's bit width.
6315     ShiftAmt = Builder.CreateMul(
6316         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6317         "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true);
6318 
6319     // Shift down.
6320     Value *DownShifted =
6321         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6322     // Mask off.
6323     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6324   }
6325   case ArrayKind: {
6326     // Make sure the table index will not overflow when treated as signed.
6327     IntegerType *IT = cast<IntegerType>(Index->getType());
6328     uint64_t TableSize =
6329         Array->getInitializer()->getType()->getArrayNumElements();
6330     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6331       Index = Builder.CreateZExt(
6332           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6333           "switch.tableidx.zext");
6334 
6335     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6336     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6337                                            GEPIndices, "switch.gep");
6338     return Builder.CreateLoad(
6339         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6340         "switch.load");
6341   }
6342   }
6343   llvm_unreachable("Unknown lookup table kind!");
6344 }
6345 
6346 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
6347                                            uint64_t TableSize,
6348                                            Type *ElementType) {
6349   auto *IT = dyn_cast<IntegerType>(ElementType);
6350   if (!IT)
6351     return false;
6352   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6353   // are <= 15, we could try to narrow the type.
6354 
6355   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6356   if (TableSize >= UINT_MAX / IT->getBitWidth())
6357     return false;
6358   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6359 }
6360 
6361 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6362                                       const DataLayout &DL) {
6363   // Allow any legal type.
6364   if (TTI.isTypeLegal(Ty))
6365     return true;
6366 
6367   auto *IT = dyn_cast<IntegerType>(Ty);
6368   if (!IT)
6369     return false;
6370 
6371   // Also allow power of 2 integer types that have at least 8 bits and fit in
6372   // a register. These types are common in frontend languages and targets
6373   // usually support loads of these types.
6374   // TODO: We could relax this to any integer that fits in a register and rely
6375   // on ABI alignment and padding in the table to allow the load to be widened.
6376   // Or we could widen the constants and truncate the load.
6377   unsigned BitWidth = IT->getBitWidth();
6378   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6379          DL.fitsInLegalInteger(IT->getBitWidth());
6380 }
6381 
6382 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6383   // 40% is the default density for building a jump table in optsize/minsize
6384   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6385   // function was based on.
6386   const uint64_t MinDensity = 40;
6387 
6388   if (CaseRange >= UINT64_MAX / 100)
6389     return false; // Avoid multiplication overflows below.
6390 
6391   return NumCases * 100 >= CaseRange * MinDensity;
6392 }
6393 
6394 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6395   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6396   uint64_t Range = Diff + 1;
6397   if (Range < Diff)
6398     return false; // Overflow.
6399 
6400   return isSwitchDense(Values.size(), Range);
6401 }
6402 
6403 /// Determine whether a lookup table should be built for this switch, based on
6404 /// the number of cases, size of the table, and the types of the results.
6405 // TODO: We could support larger than legal types by limiting based on the
6406 // number of loads required and/or table size. If the constants are small we
6407 // could use smaller table entries and extend after the load.
6408 static bool
6409 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6410                        const TargetTransformInfo &TTI, const DataLayout &DL,
6411                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6412   if (SI->getNumCases() > TableSize)
6413     return false; // TableSize overflowed.
6414 
6415   bool AllTablesFitInRegister = true;
6416   bool HasIllegalType = false;
6417   for (const auto &I : ResultTypes) {
6418     Type *Ty = I.second;
6419 
6420     // Saturate this flag to true.
6421     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6422 
6423     // Saturate this flag to false.
6424     AllTablesFitInRegister =
6425         AllTablesFitInRegister &&
6426         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
6427 
6428     // If both flags saturate, we're done. NOTE: This *only* works with
6429     // saturating flags, and all flags have to saturate first due to the
6430     // non-deterministic behavior of iterating over a dense map.
6431     if (HasIllegalType && !AllTablesFitInRegister)
6432       break;
6433   }
6434 
6435   // If each table would fit in a register, we should build it anyway.
6436   if (AllTablesFitInRegister)
6437     return true;
6438 
6439   // Don't build a table that doesn't fit in-register if it has illegal types.
6440   if (HasIllegalType)
6441     return false;
6442 
6443   return isSwitchDense(SI->getNumCases(), TableSize);
6444 }
6445 
6446 static bool ShouldUseSwitchConditionAsTableIndex(
6447     ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6448     bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6449     const DataLayout &DL, const TargetTransformInfo &TTI) {
6450   if (MinCaseVal.isNullValue())
6451     return true;
6452   if (MinCaseVal.isNegative() ||
6453       MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6454       !HasDefaultResults)
6455     return false;
6456   return all_of(ResultTypes, [&](const auto &KV) {
6457     return SwitchLookupTable::WouldFitInRegister(
6458         DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6459         KV.second /* ResultType */);
6460   });
6461 }
6462 
6463 /// Try to reuse the switch table index compare. Following pattern:
6464 /// \code
6465 ///     if (idx < tablesize)
6466 ///        r = table[idx]; // table does not contain default_value
6467 ///     else
6468 ///        r = default_value;
6469 ///     if (r != default_value)
6470 ///        ...
6471 /// \endcode
6472 /// Is optimized to:
6473 /// \code
6474 ///     cond = idx < tablesize;
6475 ///     if (cond)
6476 ///        r = table[idx];
6477 ///     else
6478 ///        r = default_value;
6479 ///     if (cond)
6480 ///        ...
6481 /// \endcode
6482 /// Jump threading will then eliminate the second if(cond).
6483 static void reuseTableCompare(
6484     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6485     Constant *DefaultValue,
6486     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6487   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6488   if (!CmpInst)
6489     return;
6490 
6491   // We require that the compare is in the same block as the phi so that jump
6492   // threading can do its work afterwards.
6493   if (CmpInst->getParent() != PhiBlock)
6494     return;
6495 
6496   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6497   if (!CmpOp1)
6498     return;
6499 
6500   Value *RangeCmp = RangeCheckBranch->getCondition();
6501   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6502   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6503 
6504   // Check if the compare with the default value is constant true or false.
6505   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6506                                                  DefaultValue, CmpOp1, true);
6507   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6508     return;
6509 
6510   // Check if the compare with the case values is distinct from the default
6511   // compare result.
6512   for (auto ValuePair : Values) {
6513     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6514                                                 ValuePair.second, CmpOp1, true);
6515     if (!CaseConst || CaseConst == DefaultConst ||
6516         (CaseConst != TrueConst && CaseConst != FalseConst))
6517       return;
6518   }
6519 
6520   // Check if the branch instruction dominates the phi node. It's a simple
6521   // dominance check, but sufficient for our needs.
6522   // Although this check is invariant in the calling loops, it's better to do it
6523   // at this late stage. Practically we do it at most once for a switch.
6524   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6525   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6526     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6527       return;
6528   }
6529 
6530   if (DefaultConst == FalseConst) {
6531     // The compare yields the same result. We can replace it.
6532     CmpInst->replaceAllUsesWith(RangeCmp);
6533     ++NumTableCmpReuses;
6534   } else {
6535     // The compare yields the same result, just inverted. We can replace it.
6536     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6537         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6538         RangeCheckBranch);
6539     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6540     ++NumTableCmpReuses;
6541   }
6542 }
6543 
6544 /// If the switch is only used to initialize one or more phi nodes in a common
6545 /// successor block with different constant values, replace the switch with
6546 /// lookup tables.
6547 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6548                                 DomTreeUpdater *DTU, const DataLayout &DL,
6549                                 const TargetTransformInfo &TTI) {
6550   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6551 
6552   BasicBlock *BB = SI->getParent();
6553   Function *Fn = BB->getParent();
6554   // Only build lookup table when we have a target that supports it or the
6555   // attribute is not set.
6556   if (!TTI.shouldBuildLookupTables() ||
6557       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6558     return false;
6559 
6560   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6561   // split off a dense part and build a lookup table for that.
6562 
6563   // FIXME: This creates arrays of GEPs to constant strings, which means each
6564   // GEP needs a runtime relocation in PIC code. We should just build one big
6565   // string and lookup indices into that.
6566 
6567   // Ignore switches with less than three cases. Lookup tables will not make
6568   // them faster, so we don't analyze them.
6569   if (SI->getNumCases() < 3)
6570     return false;
6571 
6572   // Figure out the corresponding result for each case value and phi node in the
6573   // common destination, as well as the min and max case values.
6574   assert(!SI->cases().empty());
6575   SwitchInst::CaseIt CI = SI->case_begin();
6576   ConstantInt *MinCaseVal = CI->getCaseValue();
6577   ConstantInt *MaxCaseVal = CI->getCaseValue();
6578 
6579   BasicBlock *CommonDest = nullptr;
6580 
6581   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6582   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6583 
6584   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6585   SmallDenseMap<PHINode *, Type *> ResultTypes;
6586   SmallVector<PHINode *, 4> PHIs;
6587 
6588   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6589     ConstantInt *CaseVal = CI->getCaseValue();
6590     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6591       MinCaseVal = CaseVal;
6592     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6593       MaxCaseVal = CaseVal;
6594 
6595     // Resulting value at phi nodes for this case value.
6596     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6597     ResultsTy Results;
6598     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6599                         Results, DL, TTI))
6600       return false;
6601 
6602     // Append the result from this case to the list for each phi.
6603     for (const auto &I : Results) {
6604       PHINode *PHI = I.first;
6605       Constant *Value = I.second;
6606       if (!ResultLists.count(PHI))
6607         PHIs.push_back(PHI);
6608       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6609     }
6610   }
6611 
6612   // Keep track of the result types.
6613   for (PHINode *PHI : PHIs) {
6614     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6615   }
6616 
6617   uint64_t NumResults = ResultLists[PHIs[0]].size();
6618 
6619   // If the table has holes, we need a constant result for the default case
6620   // or a bitmask that fits in a register.
6621   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6622   bool HasDefaultResults =
6623       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6624                      DefaultResultsList, DL, TTI);
6625 
6626   for (const auto &I : DefaultResultsList) {
6627     PHINode *PHI = I.first;
6628     Constant *Result = I.second;
6629     DefaultResults[PHI] = Result;
6630   }
6631 
6632   bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex(
6633       *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6634   uint64_t TableSize;
6635   if (UseSwitchConditionAsTableIndex)
6636     TableSize = MaxCaseVal->getLimitedValue() + 1;
6637   else
6638     TableSize =
6639         (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6640 
6641   bool TableHasHoles = (NumResults < TableSize);
6642   bool NeedMask = (TableHasHoles && !HasDefaultResults);
6643   if (NeedMask) {
6644     // As an extra penalty for the validity test we require more cases.
6645     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6646       return false;
6647     if (!DL.fitsInLegalInteger(TableSize))
6648       return false;
6649   }
6650 
6651   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6652     return false;
6653 
6654   std::vector<DominatorTree::UpdateType> Updates;
6655 
6656   // Compute the maximum table size representable by the integer type we are
6657   // switching upon.
6658   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6659   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6660   assert(MaxTableSize >= TableSize &&
6661          "It is impossible for a switch to have more entries than the max "
6662          "representable value of its input integer type's size.");
6663 
6664   // If the default destination is unreachable, or if the lookup table covers
6665   // all values of the conditional variable, branch directly to the lookup table
6666   // BB. Otherwise, check that the condition is within the case range.
6667   bool DefaultIsReachable =
6668       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6669 
6670   // Create the BB that does the lookups.
6671   Module &Mod = *CommonDest->getParent()->getParent();
6672   BasicBlock *LookupBB = BasicBlock::Create(
6673       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6674 
6675   // Compute the table index value.
6676   Builder.SetInsertPoint(SI);
6677   Value *TableIndex;
6678   ConstantInt *TableIndexOffset;
6679   if (UseSwitchConditionAsTableIndex) {
6680     TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0);
6681     TableIndex = SI->getCondition();
6682   } else {
6683     TableIndexOffset = MinCaseVal;
6684     // If the default is unreachable, all case values are s>= MinCaseVal. Then
6685     // we can try to attach nsw.
6686     bool MayWrap = true;
6687     if (!DefaultIsReachable) {
6688       APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap);
6689       (void)Res;
6690     }
6691 
6692     TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset,
6693                                    "switch.tableidx", /*HasNUW =*/false,
6694                                    /*HasNSW =*/!MayWrap);
6695   }
6696 
6697   BranchInst *RangeCheckBranch = nullptr;
6698 
6699   // Grow the table to cover all possible index values to avoid the range check.
6700   // It will use the default result to fill in the table hole later, so make
6701   // sure it exist.
6702   if (UseSwitchConditionAsTableIndex && HasDefaultResults) {
6703     ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false);
6704     // Grow the table shouldn't have any size impact by checking
6705     // WouldFitInRegister.
6706     // TODO: Consider growing the table also when it doesn't fit in a register
6707     // if no optsize is specified.
6708     const uint64_t UpperBound = CR.getUpper().getLimitedValue();
6709     if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) {
6710           return SwitchLookupTable::WouldFitInRegister(
6711               DL, UpperBound, KV.second /* ResultType */);
6712         })) {
6713       // There may be some case index larger than the UpperBound (unreachable
6714       // case), so make sure the table size does not get smaller.
6715       TableSize = std::max(UpperBound, TableSize);
6716       // The default branch is unreachable after we enlarge the lookup table.
6717       // Adjust DefaultIsReachable to reuse code path.
6718       DefaultIsReachable = false;
6719     }
6720   }
6721 
6722   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6723   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6724     Builder.CreateBr(LookupBB);
6725     if (DTU)
6726       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6727     // Note: We call removeProdecessor later since we need to be able to get the
6728     // PHI value for the default case in case we're using a bit mask.
6729   } else {
6730     Value *Cmp = Builder.CreateICmpULT(
6731         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6732     RangeCheckBranch =
6733         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6734     if (DTU)
6735       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6736   }
6737 
6738   // Populate the BB that does the lookups.
6739   Builder.SetInsertPoint(LookupBB);
6740 
6741   if (NeedMask) {
6742     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6743     // re-purposed to do the hole check, and we create a new LookupBB.
6744     BasicBlock *MaskBB = LookupBB;
6745     MaskBB->setName("switch.hole_check");
6746     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6747                                   CommonDest->getParent(), CommonDest);
6748 
6749     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6750     // unnecessary illegal types.
6751     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6752     APInt MaskInt(TableSizePowOf2, 0);
6753     APInt One(TableSizePowOf2, 1);
6754     // Build bitmask; fill in a 1 bit for every case.
6755     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6756     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6757       uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
6758                          .getLimitedValue();
6759       MaskInt |= One << Idx;
6760     }
6761     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6762 
6763     // Get the TableIndex'th bit of the bitmask.
6764     // If this bit is 0 (meaning hole) jump to the default destination,
6765     // else continue with table lookup.
6766     IntegerType *MapTy = TableMask->getIntegerType();
6767     Value *MaskIndex =
6768         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6769     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6770     Value *LoBit = Builder.CreateTrunc(
6771         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6772     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6773     if (DTU) {
6774       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6775       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6776     }
6777     Builder.SetInsertPoint(LookupBB);
6778     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6779   }
6780 
6781   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6782     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6783     // do not delete PHINodes here.
6784     SI->getDefaultDest()->removePredecessor(BB,
6785                                             /*KeepOneInputPHIs=*/true);
6786     if (DTU)
6787       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6788   }
6789 
6790   for (PHINode *PHI : PHIs) {
6791     const ResultListTy &ResultList = ResultLists[PHI];
6792 
6793     // If using a bitmask, use any value to fill the lookup table holes.
6794     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6795     StringRef FuncName = Fn->getName();
6796     SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
6797                             DL, FuncName);
6798 
6799     Value *Result = Table.BuildLookup(TableIndex, Builder);
6800 
6801     // Do a small peephole optimization: re-use the switch table compare if
6802     // possible.
6803     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6804       BasicBlock *PhiBlock = PHI->getParent();
6805       // Search for compare instructions which use the phi.
6806       for (auto *User : PHI->users()) {
6807         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6808       }
6809     }
6810 
6811     PHI->addIncoming(Result, LookupBB);
6812   }
6813 
6814   Builder.CreateBr(CommonDest);
6815   if (DTU)
6816     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6817 
6818   // Remove the switch.
6819   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6820   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6821     BasicBlock *Succ = SI->getSuccessor(i);
6822 
6823     if (Succ == SI->getDefaultDest())
6824       continue;
6825     Succ->removePredecessor(BB);
6826     if (DTU && RemovedSuccessors.insert(Succ).second)
6827       Updates.push_back({DominatorTree::Delete, BB, Succ});
6828   }
6829   SI->eraseFromParent();
6830 
6831   if (DTU)
6832     DTU->applyUpdates(Updates);
6833 
6834   ++NumLookupTables;
6835   if (NeedMask)
6836     ++NumLookupTablesHoles;
6837   return true;
6838 }
6839 
6840 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6841 /// of cases.
6842 ///
6843 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6844 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6845 ///
6846 /// This converts a sparse switch into a dense switch which allows better
6847 /// lowering and could also allow transforming into a lookup table.
6848 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6849                               const DataLayout &DL,
6850                               const TargetTransformInfo &TTI) {
6851   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6852   if (CondTy->getIntegerBitWidth() > 64 ||
6853       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6854     return false;
6855   // Only bother with this optimization if there are more than 3 switch cases;
6856   // SDAG will only bother creating jump tables for 4 or more cases.
6857   if (SI->getNumCases() < 4)
6858     return false;
6859 
6860   // This transform is agnostic to the signedness of the input or case values. We
6861   // can treat the case values as signed or unsigned. We can optimize more common
6862   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6863   // as signed.
6864   SmallVector<int64_t,4> Values;
6865   for (const auto &C : SI->cases())
6866     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6867   llvm::sort(Values);
6868 
6869   // If the switch is already dense, there's nothing useful to do here.
6870   if (isSwitchDense(Values))
6871     return false;
6872 
6873   // First, transform the values such that they start at zero and ascend.
6874   int64_t Base = Values[0];
6875   for (auto &V : Values)
6876     V -= (uint64_t)(Base);
6877 
6878   // Now we have signed numbers that have been shifted so that, given enough
6879   // precision, there are no negative values. Since the rest of the transform
6880   // is bitwise only, we switch now to an unsigned representation.
6881 
6882   // This transform can be done speculatively because it is so cheap - it
6883   // results in a single rotate operation being inserted.
6884 
6885   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6886   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6887   // less than 64.
6888   unsigned Shift = 64;
6889   for (auto &V : Values)
6890     Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V));
6891   assert(Shift < 64);
6892   if (Shift > 0)
6893     for (auto &V : Values)
6894       V = (int64_t)((uint64_t)V >> Shift);
6895 
6896   if (!isSwitchDense(Values))
6897     // Transform didn't create a dense switch.
6898     return false;
6899 
6900   // The obvious transform is to shift the switch condition right and emit a
6901   // check that the condition actually cleanly divided by GCD, i.e.
6902   //   C & (1 << Shift - 1) == 0
6903   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6904   //
6905   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6906   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6907   // are nonzero then the switch condition will be very large and will hit the
6908   // default case.
6909 
6910   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6911   Builder.SetInsertPoint(SI);
6912   Value *Sub =
6913       Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6914   Value *Rot = Builder.CreateIntrinsic(
6915       Ty, Intrinsic::fshl,
6916       {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)});
6917   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6918 
6919   for (auto Case : SI->cases()) {
6920     auto *Orig = Case.getCaseValue();
6921     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6922     Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift))));
6923   }
6924   return true;
6925 }
6926 
6927 /// Tries to transform switch of powers of two to reduce switch range.
6928 /// For example, switch like:
6929 /// switch (C) { case 1: case 2: case 64: case 128: }
6930 /// will be transformed to:
6931 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: }
6932 ///
6933 /// This transformation allows better lowering and could allow transforming into
6934 /// a lookup table.
6935 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder,
6936                                         const DataLayout &DL,
6937                                         const TargetTransformInfo &TTI) {
6938   Value *Condition = SI->getCondition();
6939   LLVMContext &Context = SI->getContext();
6940   auto *CondTy = cast<IntegerType>(Condition->getType());
6941 
6942   if (CondTy->getIntegerBitWidth() > 64 ||
6943       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6944     return false;
6945 
6946   const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost(
6947       IntrinsicCostAttributes(Intrinsic::cttz, CondTy,
6948                               {Condition, ConstantInt::getTrue(Context)}),
6949       TTI::TCK_SizeAndLatency);
6950 
6951   if (CttzIntrinsicCost > TTI::TCC_Basic)
6952     // Inserting intrinsic is too expensive.
6953     return false;
6954 
6955   // Only bother with this optimization if there are more than 3 switch cases.
6956   // SDAG will only bother creating jump tables for 4 or more cases.
6957   if (SI->getNumCases() < 4)
6958     return false;
6959 
6960   // We perform this optimization only for switches with
6961   // unreachable default case.
6962   // This assumtion will save us from checking if `Condition` is a power of two.
6963   if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()))
6964     return false;
6965 
6966   // Check that switch cases are powers of two.
6967   SmallVector<uint64_t, 4> Values;
6968   for (const auto &Case : SI->cases()) {
6969     uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue();
6970     if (llvm::has_single_bit(CaseValue))
6971       Values.push_back(CaseValue);
6972     else
6973       return false;
6974   }
6975 
6976   // isSwichDense requires case values to be sorted.
6977   llvm::sort(Values);
6978   if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) -
6979                                         llvm::countr_zero(Values.front()) + 1))
6980     // Transform is unable to generate dense switch.
6981     return false;
6982 
6983   Builder.SetInsertPoint(SI);
6984 
6985   // Replace each case with its trailing zeros number.
6986   for (auto &Case : SI->cases()) {
6987     auto *OrigValue = Case.getCaseValue();
6988     Case.setValue(ConstantInt::get(OrigValue->getIntegerType(),
6989                                    OrigValue->getValue().countr_zero()));
6990   }
6991 
6992   // Replace condition with its trailing zeros number.
6993   auto *ConditionTrailingZeros = Builder.CreateIntrinsic(
6994       Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)});
6995 
6996   SI->setCondition(ConditionTrailingZeros);
6997 
6998   return true;
6999 }
7000 
7001 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
7002   BasicBlock *BB = SI->getParent();
7003 
7004   if (isValueEqualityComparison(SI)) {
7005     // If we only have one predecessor, and if it is a branch on this value,
7006     // see if that predecessor totally determines the outcome of this switch.
7007     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7008       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
7009         return requestResimplify();
7010 
7011     Value *Cond = SI->getCondition();
7012     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
7013       if (SimplifySwitchOnSelect(SI, Select))
7014         return requestResimplify();
7015 
7016     // If the block only contains the switch, see if we can fold the block
7017     // away into any preds.
7018     if (SI == &*BB->instructionsWithoutDebug(false).begin())
7019       if (FoldValueComparisonIntoPredecessors(SI, Builder))
7020         return requestResimplify();
7021   }
7022 
7023   // Try to transform the switch into an icmp and a branch.
7024   // The conversion from switch to comparison may lose information on
7025   // impossible switch values, so disable it early in the pipeline.
7026   if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
7027     return requestResimplify();
7028 
7029   // Remove unreachable cases.
7030   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
7031     return requestResimplify();
7032 
7033   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
7034     return requestResimplify();
7035 
7036   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
7037     return requestResimplify();
7038 
7039   // The conversion from switch to lookup tables results in difficult-to-analyze
7040   // code and makes pruning branches much harder. This is a problem if the
7041   // switch expression itself can still be restricted as a result of inlining or
7042   // CVP. Therefore, only apply this transformation during late stages of the
7043   // optimisation pipeline.
7044   if (Options.ConvertSwitchToLookupTable &&
7045       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
7046     return requestResimplify();
7047 
7048   if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI))
7049     return requestResimplify();
7050 
7051   if (ReduceSwitchRange(SI, Builder, DL, TTI))
7052     return requestResimplify();
7053 
7054   if (HoistCommon &&
7055       hoistCommonCodeFromSuccessors(SI->getParent(), !Options.HoistCommonInsts))
7056     return requestResimplify();
7057 
7058   return false;
7059 }
7060 
7061 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
7062   BasicBlock *BB = IBI->getParent();
7063   bool Changed = false;
7064 
7065   // Eliminate redundant destinations.
7066   SmallPtrSet<Value *, 8> Succs;
7067   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
7068   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
7069     BasicBlock *Dest = IBI->getDestination(i);
7070     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
7071       if (!Dest->hasAddressTaken())
7072         RemovedSuccs.insert(Dest);
7073       Dest->removePredecessor(BB);
7074       IBI->removeDestination(i);
7075       --i;
7076       --e;
7077       Changed = true;
7078     }
7079   }
7080 
7081   if (DTU) {
7082     std::vector<DominatorTree::UpdateType> Updates;
7083     Updates.reserve(RemovedSuccs.size());
7084     for (auto *RemovedSucc : RemovedSuccs)
7085       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
7086     DTU->applyUpdates(Updates);
7087   }
7088 
7089   if (IBI->getNumDestinations() == 0) {
7090     // If the indirectbr has no successors, change it to unreachable.
7091     new UnreachableInst(IBI->getContext(), IBI);
7092     EraseTerminatorAndDCECond(IBI);
7093     return true;
7094   }
7095 
7096   if (IBI->getNumDestinations() == 1) {
7097     // If the indirectbr has one successor, change it to a direct branch.
7098     BranchInst::Create(IBI->getDestination(0), IBI);
7099     EraseTerminatorAndDCECond(IBI);
7100     return true;
7101   }
7102 
7103   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
7104     if (SimplifyIndirectBrOnSelect(IBI, SI))
7105       return requestResimplify();
7106   }
7107   return Changed;
7108 }
7109 
7110 /// Given an block with only a single landing pad and a unconditional branch
7111 /// try to find another basic block which this one can be merged with.  This
7112 /// handles cases where we have multiple invokes with unique landing pads, but
7113 /// a shared handler.
7114 ///
7115 /// We specifically choose to not worry about merging non-empty blocks
7116 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
7117 /// practice, the optimizer produces empty landing pad blocks quite frequently
7118 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
7119 /// sinking in this file)
7120 ///
7121 /// This is primarily a code size optimization.  We need to avoid performing
7122 /// any transform which might inhibit optimization (such as our ability to
7123 /// specialize a particular handler via tail commoning).  We do this by not
7124 /// merging any blocks which require us to introduce a phi.  Since the same
7125 /// values are flowing through both blocks, we don't lose any ability to
7126 /// specialize.  If anything, we make such specialization more likely.
7127 ///
7128 /// TODO - This transformation could remove entries from a phi in the target
7129 /// block when the inputs in the phi are the same for the two blocks being
7130 /// merged.  In some cases, this could result in removal of the PHI entirely.
7131 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
7132                                  BasicBlock *BB, DomTreeUpdater *DTU) {
7133   auto Succ = BB->getUniqueSuccessor();
7134   assert(Succ);
7135   // If there's a phi in the successor block, we'd likely have to introduce
7136   // a phi into the merged landing pad block.
7137   if (isa<PHINode>(*Succ->begin()))
7138     return false;
7139 
7140   for (BasicBlock *OtherPred : predecessors(Succ)) {
7141     if (BB == OtherPred)
7142       continue;
7143     BasicBlock::iterator I = OtherPred->begin();
7144     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
7145     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
7146       continue;
7147     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7148       ;
7149     BranchInst *BI2 = dyn_cast<BranchInst>(I);
7150     if (!BI2 || !BI2->isIdenticalTo(BI))
7151       continue;
7152 
7153     std::vector<DominatorTree::UpdateType> Updates;
7154 
7155     // We've found an identical block.  Update our predecessors to take that
7156     // path instead and make ourselves dead.
7157     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
7158     for (BasicBlock *Pred : UniquePreds) {
7159       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
7160       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
7161              "unexpected successor");
7162       II->setUnwindDest(OtherPred);
7163       if (DTU) {
7164         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
7165         Updates.push_back({DominatorTree::Delete, Pred, BB});
7166       }
7167     }
7168 
7169     // The debug info in OtherPred doesn't cover the merged control flow that
7170     // used to go through BB.  We need to delete it or update it.
7171     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
7172       if (isa<DbgInfoIntrinsic>(Inst))
7173         Inst.eraseFromParent();
7174 
7175     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
7176     for (BasicBlock *Succ : UniqueSuccs) {
7177       Succ->removePredecessor(BB);
7178       if (DTU)
7179         Updates.push_back({DominatorTree::Delete, BB, Succ});
7180     }
7181 
7182     IRBuilder<> Builder(BI);
7183     Builder.CreateUnreachable();
7184     BI->eraseFromParent();
7185     if (DTU)
7186       DTU->applyUpdates(Updates);
7187     return true;
7188   }
7189   return false;
7190 }
7191 
7192 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
7193   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
7194                                    : simplifyCondBranch(Branch, Builder);
7195 }
7196 
7197 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
7198                                           IRBuilder<> &Builder) {
7199   BasicBlock *BB = BI->getParent();
7200   BasicBlock *Succ = BI->getSuccessor(0);
7201 
7202   // If the Terminator is the only non-phi instruction, simplify the block.
7203   // If LoopHeader is provided, check if the block or its successor is a loop
7204   // header. (This is for early invocations before loop simplify and
7205   // vectorization to keep canonical loop forms for nested loops. These blocks
7206   // can be eliminated when the pass is invoked later in the back-end.)
7207   // Note that if BB has only one predecessor then we do not introduce new
7208   // backedge, so we can eliminate BB.
7209   bool NeedCanonicalLoop =
7210       Options.NeedCanonicalLoop &&
7211       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
7212        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
7213   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
7214   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
7215       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
7216     return true;
7217 
7218   // If the only instruction in the block is a seteq/setne comparison against a
7219   // constant, try to simplify the block.
7220   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
7221     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
7222       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7223         ;
7224       if (I->isTerminator() &&
7225           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
7226         return true;
7227     }
7228 
7229   // See if we can merge an empty landing pad block with another which is
7230   // equivalent.
7231   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
7232     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7233       ;
7234     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
7235       return true;
7236   }
7237 
7238   // If this basic block is ONLY a compare and a branch, and if a predecessor
7239   // branches to us and our successor, fold the comparison into the
7240   // predecessor and use logical operations to update the incoming value
7241   // for PHI nodes in common successor.
7242   if (Options.SpeculateBlocks &&
7243       FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7244                              Options.BonusInstThreshold))
7245     return requestResimplify();
7246   return false;
7247 }
7248 
7249 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
7250   BasicBlock *PredPred = nullptr;
7251   for (auto *P : predecessors(BB)) {
7252     BasicBlock *PPred = P->getSinglePredecessor();
7253     if (!PPred || (PredPred && PredPred != PPred))
7254       return nullptr;
7255     PredPred = PPred;
7256   }
7257   return PredPred;
7258 }
7259 
7260 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
7261   assert(
7262       !isa<ConstantInt>(BI->getCondition()) &&
7263       BI->getSuccessor(0) != BI->getSuccessor(1) &&
7264       "Tautological conditional branch should have been eliminated already.");
7265 
7266   BasicBlock *BB = BI->getParent();
7267   if (!Options.SimplifyCondBranch ||
7268       BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing))
7269     return false;
7270 
7271   // Conditional branch
7272   if (isValueEqualityComparison(BI)) {
7273     // If we only have one predecessor, and if it is a branch on this value,
7274     // see if that predecessor totally determines the outcome of this
7275     // switch.
7276     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7277       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
7278         return requestResimplify();
7279 
7280     // This block must be empty, except for the setcond inst, if it exists.
7281     // Ignore dbg and pseudo intrinsics.
7282     auto I = BB->instructionsWithoutDebug(true).begin();
7283     if (&*I == BI) {
7284       if (FoldValueComparisonIntoPredecessors(BI, Builder))
7285         return requestResimplify();
7286     } else if (&*I == cast<Instruction>(BI->getCondition())) {
7287       ++I;
7288       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
7289         return requestResimplify();
7290     }
7291   }
7292 
7293   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
7294   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
7295     return true;
7296 
7297   // If this basic block has dominating predecessor blocks and the dominating
7298   // blocks' conditions imply BI's condition, we know the direction of BI.
7299   std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
7300   if (Imp) {
7301     // Turn this into a branch on constant.
7302     auto *OldCond = BI->getCondition();
7303     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
7304                              : ConstantInt::getFalse(BB->getContext());
7305     BI->setCondition(TorF);
7306     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
7307     return requestResimplify();
7308   }
7309 
7310   // If this basic block is ONLY a compare and a branch, and if a predecessor
7311   // branches to us and one of our successors, fold the comparison into the
7312   // predecessor and use logical operations to pick the right destination.
7313   if (Options.SpeculateBlocks &&
7314       FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7315                              Options.BonusInstThreshold))
7316     return requestResimplify();
7317 
7318   // We have a conditional branch to two blocks that are only reachable
7319   // from BI.  We know that the condbr dominates the two blocks, so see if
7320   // there is any identical code in the "then" and "else" blocks.  If so, we
7321   // can hoist it up to the branching block.
7322   if (BI->getSuccessor(0)->getSinglePredecessor()) {
7323     if (BI->getSuccessor(1)->getSinglePredecessor()) {
7324       if (HoistCommon && hoistCommonCodeFromSuccessors(
7325                              BI->getParent(), !Options.HoistCommonInsts))
7326         return requestResimplify();
7327     } else {
7328       // If Successor #1 has multiple preds, we may be able to conditionally
7329       // execute Successor #0 if it branches to Successor #1.
7330       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
7331       if (Succ0TI->getNumSuccessors() == 1 &&
7332           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
7333         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
7334           return requestResimplify();
7335     }
7336   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
7337     // If Successor #0 has multiple preds, we may be able to conditionally
7338     // execute Successor #1 if it branches to Successor #0.
7339     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
7340     if (Succ1TI->getNumSuccessors() == 1 &&
7341         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
7342       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
7343         return requestResimplify();
7344   }
7345 
7346   // If this is a branch on something for which we know the constant value in
7347   // predecessors (e.g. a phi node in the current block), thread control
7348   // through this block.
7349   if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
7350     return requestResimplify();
7351 
7352   // Scan predecessor blocks for conditional branches.
7353   for (BasicBlock *Pred : predecessors(BB))
7354     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
7355       if (PBI != BI && PBI->isConditional())
7356         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
7357           return requestResimplify();
7358 
7359   // Look for diamond patterns.
7360   if (MergeCondStores)
7361     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
7362       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
7363         if (PBI != BI && PBI->isConditional())
7364           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
7365             return requestResimplify();
7366 
7367   return false;
7368 }
7369 
7370 /// Check if passing a value to an instruction will cause undefined behavior.
7371 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
7372   Constant *C = dyn_cast<Constant>(V);
7373   if (!C)
7374     return false;
7375 
7376   if (I->use_empty())
7377     return false;
7378 
7379   if (C->isNullValue() || isa<UndefValue>(C)) {
7380     // Only look at the first use, avoid hurting compile time with long uselists
7381     auto *Use = cast<Instruction>(*I->user_begin());
7382     // Bail out if Use is not in the same BB as I or Use == I or Use comes
7383     // before I in the block. The latter two can be the case if Use is a PHI
7384     // node.
7385     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
7386       return false;
7387 
7388     // Now make sure that there are no instructions in between that can alter
7389     // control flow (eg. calls)
7390     auto InstrRange =
7391         make_range(std::next(I->getIterator()), Use->getIterator());
7392     if (any_of(InstrRange, [](Instruction &I) {
7393           return !isGuaranteedToTransferExecutionToSuccessor(&I);
7394         }))
7395       return false;
7396 
7397     // Look through GEPs. A load from a GEP derived from NULL is still undefined
7398     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
7399       if (GEP->getPointerOperand() == I) {
7400         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
7401           PtrValueMayBeModified = true;
7402         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
7403       }
7404 
7405     // Look through bitcasts.
7406     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
7407       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
7408 
7409     // Load from null is undefined.
7410     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
7411       if (!LI->isVolatile())
7412         return !NullPointerIsDefined(LI->getFunction(),
7413                                      LI->getPointerAddressSpace());
7414 
7415     // Store to null is undefined.
7416     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
7417       if (!SI->isVolatile())
7418         return (!NullPointerIsDefined(SI->getFunction(),
7419                                       SI->getPointerAddressSpace())) &&
7420                SI->getPointerOperand() == I;
7421 
7422     if (auto *CB = dyn_cast<CallBase>(Use)) {
7423       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
7424         return false;
7425       // A call to null is undefined.
7426       if (CB->getCalledOperand() == I)
7427         return true;
7428 
7429       if (C->isNullValue()) {
7430         for (const llvm::Use &Arg : CB->args())
7431           if (Arg == I) {
7432             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7433             if (CB->isPassingUndefUB(ArgIdx) &&
7434                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
7435               // Passing null to a nonnnull+noundef argument is undefined.
7436               return !PtrValueMayBeModified;
7437             }
7438           }
7439       } else if (isa<UndefValue>(C)) {
7440         // Passing undef to a noundef argument is undefined.
7441         for (const llvm::Use &Arg : CB->args())
7442           if (Arg == I) {
7443             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7444             if (CB->isPassingUndefUB(ArgIdx)) {
7445               // Passing undef to a noundef argument is undefined.
7446               return true;
7447             }
7448           }
7449       }
7450     }
7451   }
7452   return false;
7453 }
7454 
7455 /// If BB has an incoming value that will always trigger undefined behavior
7456 /// (eg. null pointer dereference), remove the branch leading here.
7457 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
7458                                               DomTreeUpdater *DTU,
7459                                               AssumptionCache *AC) {
7460   for (PHINode &PHI : BB->phis())
7461     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
7462       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
7463         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
7464         Instruction *T = Predecessor->getTerminator();
7465         IRBuilder<> Builder(T);
7466         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
7467           BB->removePredecessor(Predecessor);
7468           // Turn unconditional branches into unreachables and remove the dead
7469           // destination from conditional branches.
7470           if (BI->isUnconditional())
7471             Builder.CreateUnreachable();
7472           else {
7473             // Preserve guarding condition in assume, because it might not be
7474             // inferrable from any dominating condition.
7475             Value *Cond = BI->getCondition();
7476             CallInst *Assumption;
7477             if (BI->getSuccessor(0) == BB)
7478               Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
7479             else
7480               Assumption = Builder.CreateAssumption(Cond);
7481             if (AC)
7482               AC->registerAssumption(cast<AssumeInst>(Assumption));
7483             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
7484                                                        : BI->getSuccessor(0));
7485           }
7486           BI->eraseFromParent();
7487           if (DTU)
7488             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
7489           return true;
7490         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
7491           // Redirect all branches leading to UB into
7492           // a newly created unreachable block.
7493           BasicBlock *Unreachable = BasicBlock::Create(
7494               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
7495           Builder.SetInsertPoint(Unreachable);
7496           // The new block contains only one instruction: Unreachable
7497           Builder.CreateUnreachable();
7498           for (const auto &Case : SI->cases())
7499             if (Case.getCaseSuccessor() == BB) {
7500               BB->removePredecessor(Predecessor);
7501               Case.setSuccessor(Unreachable);
7502             }
7503           if (SI->getDefaultDest() == BB) {
7504             BB->removePredecessor(Predecessor);
7505             SI->setDefaultDest(Unreachable);
7506           }
7507 
7508           if (DTU)
7509             DTU->applyUpdates(
7510                 { { DominatorTree::Insert, Predecessor, Unreachable },
7511                   { DominatorTree::Delete, Predecessor, BB } });
7512           return true;
7513         }
7514       }
7515 
7516   return false;
7517 }
7518 
7519 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
7520   bool Changed = false;
7521 
7522   assert(BB && BB->getParent() && "Block not embedded in function!");
7523   assert(BB->getTerminator() && "Degenerate basic block encountered!");
7524 
7525   // Remove basic blocks that have no predecessors (except the entry block)...
7526   // or that just have themself as a predecessor.  These are unreachable.
7527   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
7528       BB->getSinglePredecessor() == BB) {
7529     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
7530     DeleteDeadBlock(BB, DTU);
7531     return true;
7532   }
7533 
7534   // Check to see if we can constant propagate this terminator instruction
7535   // away...
7536   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
7537                                     /*TLI=*/nullptr, DTU);
7538 
7539   // Check for and eliminate duplicate PHI nodes in this block.
7540   Changed |= EliminateDuplicatePHINodes(BB);
7541 
7542   // Check for and remove branches that will always cause undefined behavior.
7543   if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC))
7544     return requestResimplify();
7545 
7546   // Merge basic blocks into their predecessor if there is only one distinct
7547   // pred, and if there is only one distinct successor of the predecessor, and
7548   // if there are no PHI nodes.
7549   if (MergeBlockIntoPredecessor(BB, DTU))
7550     return true;
7551 
7552   if (SinkCommon && Options.SinkCommonInsts)
7553     if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7554         MergeCompatibleInvokes(BB, DTU)) {
7555       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7556       // so we may now how duplicate PHI's.
7557       // Let's rerun EliminateDuplicatePHINodes() first,
7558       // before FoldTwoEntryPHINode() potentially converts them into select's,
7559       // after which we'd need a whole EarlyCSE pass run to cleanup them.
7560       return true;
7561     }
7562 
7563   IRBuilder<> Builder(BB);
7564 
7565   if (Options.SpeculateBlocks &&
7566       !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) {
7567     // If there is a trivial two-entry PHI node in this basic block, and we can
7568     // eliminate it, do so now.
7569     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
7570       if (PN->getNumIncomingValues() == 2)
7571         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7572           return true;
7573   }
7574 
7575   Instruction *Terminator = BB->getTerminator();
7576   Builder.SetInsertPoint(Terminator);
7577   switch (Terminator->getOpcode()) {
7578   case Instruction::Br:
7579     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
7580     break;
7581   case Instruction::Resume:
7582     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
7583     break;
7584   case Instruction::CleanupRet:
7585     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
7586     break;
7587   case Instruction::Switch:
7588     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
7589     break;
7590   case Instruction::Unreachable:
7591     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
7592     break;
7593   case Instruction::IndirectBr:
7594     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
7595     break;
7596   }
7597 
7598   return Changed;
7599 }
7600 
7601 bool SimplifyCFGOpt::run(BasicBlock *BB) {
7602   bool Changed = false;
7603 
7604   // Repeated simplify BB as long as resimplification is requested.
7605   do {
7606     Resimplify = false;
7607 
7608     // Perform one round of simplifcation. Resimplify flag will be set if
7609     // another iteration is requested.
7610     Changed |= simplifyOnce(BB);
7611   } while (Resimplify);
7612 
7613   return Changed;
7614 }
7615 
7616 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7617                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7618                        ArrayRef<WeakVH> LoopHeaders) {
7619   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7620                         Options)
7621       .run(BB);
7622 }
7623