1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/Sequence.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/MemorySSA.h" 32 #include "llvm/Analysis/MemorySSAUpdater.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/MDBuilder.h" 54 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/ProfDataUtils.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/ValueMapper.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <climits> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iterator> 83 #include <map> 84 #include <optional> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, 97 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> 117 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 118 cl::desc("Hoist common instructions up to the parent block")); 119 120 static cl::opt<unsigned> 121 HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden, 122 cl::init(20), 123 cl::desc("Allow reordering across at most this many " 124 "instructions when hoisting")); 125 126 static cl::opt<bool> 127 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 128 cl::desc("Sink common instructions down to the end block")); 129 130 static cl::opt<bool> HoistCondStores( 131 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 132 cl::desc("Hoist conditional stores if an unconditional store precedes")); 133 134 static cl::opt<bool> MergeCondStores( 135 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 136 cl::desc("Hoist conditional stores even if an unconditional store does not " 137 "precede - hoist multiple conditional stores into a single " 138 "predicated store")); 139 140 static cl::opt<bool> MergeCondStoresAggressively( 141 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 142 cl::desc("When merging conditional stores, do so even if the resultant " 143 "basic blocks are unlikely to be if-converted as a result")); 144 145 static cl::opt<bool> SpeculateOneExpensiveInst( 146 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 147 cl::desc("Allow exactly one expensive instruction to be speculatively " 148 "executed")); 149 150 static cl::opt<unsigned> MaxSpeculationDepth( 151 "max-speculation-depth", cl::Hidden, cl::init(10), 152 cl::desc("Limit maximum recursion depth when calculating costs of " 153 "speculatively executed instructions")); 154 155 static cl::opt<int> 156 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 157 cl::init(10), 158 cl::desc("Max size of a block which is still considered " 159 "small enough to thread through")); 160 161 // Two is chosen to allow one negation and a logical combine. 162 static cl::opt<unsigned> 163 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 164 cl::init(2), 165 cl::desc("Maximum cost of combining conditions when " 166 "folding branches")); 167 168 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 169 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 170 cl::init(2), 171 cl::desc("Multiplier to apply to threshold when determining whether or not " 172 "to fold branch to common destination when vector operations are " 173 "present")); 174 175 static cl::opt<bool> EnableMergeCompatibleInvokes( 176 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 177 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 178 179 static cl::opt<unsigned> MaxSwitchCasesPerResult( 180 "max-switch-cases-per-result", cl::Hidden, cl::init(16), 181 cl::desc("Limit cases to analyze when converting a switch to select")); 182 183 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 184 STATISTIC(NumLinearMaps, 185 "Number of switch instructions turned into linear mapping"); 186 STATISTIC(NumLookupTables, 187 "Number of switch instructions turned into lookup tables"); 188 STATISTIC( 189 NumLookupTablesHoles, 190 "Number of switch instructions turned into lookup tables (holes checked)"); 191 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 192 STATISTIC(NumFoldValueComparisonIntoPredecessors, 193 "Number of value comparisons folded into predecessor basic blocks"); 194 STATISTIC(NumFoldBranchToCommonDest, 195 "Number of branches folded into predecessor basic block"); 196 STATISTIC( 197 NumHoistCommonCode, 198 "Number of common instruction 'blocks' hoisted up to the begin block"); 199 STATISTIC(NumHoistCommonInstrs, 200 "Number of common instructions hoisted up to the begin block"); 201 STATISTIC(NumSinkCommonCode, 202 "Number of common instruction 'blocks' sunk down to the end block"); 203 STATISTIC(NumSinkCommonInstrs, 204 "Number of common instructions sunk down to the end block"); 205 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 206 STATISTIC(NumInvokes, 207 "Number of invokes with empty resume blocks simplified into calls"); 208 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 209 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 210 211 namespace { 212 213 // The first field contains the value that the switch produces when a certain 214 // case group is selected, and the second field is a vector containing the 215 // cases composing the case group. 216 using SwitchCaseResultVectorTy = 217 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 218 219 // The first field contains the phi node that generates a result of the switch 220 // and the second field contains the value generated for a certain case in the 221 // switch for that PHI. 222 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 223 224 /// ValueEqualityComparisonCase - Represents a case of a switch. 225 struct ValueEqualityComparisonCase { 226 ConstantInt *Value; 227 BasicBlock *Dest; 228 229 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 230 : Value(Value), Dest(Dest) {} 231 232 bool operator<(ValueEqualityComparisonCase RHS) const { 233 // Comparing pointers is ok as we only rely on the order for uniquing. 234 return Value < RHS.Value; 235 } 236 237 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 238 }; 239 240 class SimplifyCFGOpt { 241 const TargetTransformInfo &TTI; 242 DomTreeUpdater *DTU; 243 const DataLayout &DL; 244 ArrayRef<WeakVH> LoopHeaders; 245 const SimplifyCFGOptions &Options; 246 bool Resimplify; 247 248 Value *isValueEqualityComparison(Instruction *TI); 249 BasicBlock *GetValueEqualityComparisonCases( 250 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 251 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 252 BasicBlock *Pred, 253 IRBuilder<> &Builder); 254 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 255 Instruction *PTI, 256 IRBuilder<> &Builder); 257 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 258 IRBuilder<> &Builder); 259 260 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 261 bool simplifySingleResume(ResumeInst *RI); 262 bool simplifyCommonResume(ResumeInst *RI); 263 bool simplifyCleanupReturn(CleanupReturnInst *RI); 264 bool simplifyUnreachable(UnreachableInst *UI); 265 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 266 bool simplifyIndirectBr(IndirectBrInst *IBI); 267 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 268 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 269 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 270 271 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 272 IRBuilder<> &Builder); 273 274 bool hoistCommonCodeFromSuccessors(BasicBlock *BB, bool EqTermsOnly); 275 bool hoistSuccIdenticalTerminatorToSwitchOrIf( 276 Instruction *TI, Instruction *I1, 277 SmallVectorImpl<Instruction *> &OtherSuccTIs); 278 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB); 279 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 280 BasicBlock *TrueBB, BasicBlock *FalseBB, 281 uint32_t TrueWeight, uint32_t FalseWeight); 282 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 283 const DataLayout &DL); 284 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 285 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 286 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 287 288 public: 289 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 290 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 291 const SimplifyCFGOptions &Opts) 292 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 293 assert((!DTU || !DTU->hasPostDomTree()) && 294 "SimplifyCFG is not yet capable of maintaining validity of a " 295 "PostDomTree, so don't ask for it."); 296 } 297 298 bool simplifyOnce(BasicBlock *BB); 299 bool run(BasicBlock *BB); 300 301 // Helper to set Resimplify and return change indication. 302 bool requestResimplify() { 303 Resimplify = true; 304 return true; 305 } 306 }; 307 308 } // end anonymous namespace 309 310 /// Return true if all the PHI nodes in the basic block \p BB 311 /// receive compatible (identical) incoming values when coming from 312 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 313 /// 314 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 315 /// is provided, and *both* of the values are present in the set, 316 /// then they are considered equal. 317 static bool IncomingValuesAreCompatible( 318 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 319 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 320 assert(IncomingBlocks.size() == 2 && 321 "Only for a pair of incoming blocks at the time!"); 322 323 // FIXME: it is okay if one of the incoming values is an `undef` value, 324 // iff the other incoming value is guaranteed to be a non-poison value. 325 // FIXME: it is okay if one of the incoming values is a `poison` value. 326 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 327 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 328 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 329 if (IV0 == IV1) 330 return true; 331 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 332 EquivalenceSet->contains(IV1)) 333 return true; 334 return false; 335 }); 336 } 337 338 /// Return true if it is safe to merge these two 339 /// terminator instructions together. 340 static bool 341 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 342 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 343 if (SI1 == SI2) 344 return false; // Can't merge with self! 345 346 // It is not safe to merge these two switch instructions if they have a common 347 // successor, and if that successor has a PHI node, and if *that* PHI node has 348 // conflicting incoming values from the two switch blocks. 349 BasicBlock *SI1BB = SI1->getParent(); 350 BasicBlock *SI2BB = SI2->getParent(); 351 352 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 353 bool Fail = false; 354 for (BasicBlock *Succ : successors(SI2BB)) { 355 if (!SI1Succs.count(Succ)) 356 continue; 357 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 358 continue; 359 Fail = true; 360 if (FailBlocks) 361 FailBlocks->insert(Succ); 362 else 363 break; 364 } 365 366 return !Fail; 367 } 368 369 /// Update PHI nodes in Succ to indicate that there will now be entries in it 370 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 371 /// will be the same as those coming in from ExistPred, an existing predecessor 372 /// of Succ. 373 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 374 BasicBlock *ExistPred, 375 MemorySSAUpdater *MSSAU = nullptr) { 376 for (PHINode &PN : Succ->phis()) 377 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 378 if (MSSAU) 379 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 380 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 381 } 382 383 /// Compute an abstract "cost" of speculating the given instruction, 384 /// which is assumed to be safe to speculate. TCC_Free means cheap, 385 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 386 /// expensive. 387 static InstructionCost computeSpeculationCost(const User *I, 388 const TargetTransformInfo &TTI) { 389 assert((!isa<Instruction>(I) || 390 isSafeToSpeculativelyExecute(cast<Instruction>(I))) && 391 "Instruction is not safe to speculatively execute!"); 392 return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency); 393 } 394 395 /// If we have a merge point of an "if condition" as accepted above, 396 /// return true if the specified value dominates the block. We 397 /// don't handle the true generality of domination here, just a special case 398 /// which works well enough for us. 399 /// 400 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 401 /// see if V (which must be an instruction) and its recursive operands 402 /// that do not dominate BB have a combined cost lower than Budget and 403 /// are non-trapping. If both are true, the instruction is inserted into the 404 /// set and true is returned. 405 /// 406 /// The cost for most non-trapping instructions is defined as 1 except for 407 /// Select whose cost is 2. 408 /// 409 /// After this function returns, Cost is increased by the cost of 410 /// V plus its non-dominating operands. If that cost is greater than 411 /// Budget, false is returned and Cost is undefined. 412 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 413 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 414 InstructionCost &Cost, 415 InstructionCost Budget, 416 const TargetTransformInfo &TTI, 417 unsigned Depth = 0) { 418 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 419 // so limit the recursion depth. 420 // TODO: While this recursion limit does prevent pathological behavior, it 421 // would be better to track visited instructions to avoid cycles. 422 if (Depth == MaxSpeculationDepth) 423 return false; 424 425 Instruction *I = dyn_cast<Instruction>(V); 426 if (!I) { 427 // Non-instructions dominate all instructions and can be executed 428 // unconditionally. 429 return true; 430 } 431 BasicBlock *PBB = I->getParent(); 432 433 // We don't want to allow weird loops that might have the "if condition" in 434 // the bottom of this block. 435 if (PBB == BB) 436 return false; 437 438 // If this instruction is defined in a block that contains an unconditional 439 // branch to BB, then it must be in the 'conditional' part of the "if 440 // statement". If not, it definitely dominates the region. 441 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 442 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 443 return true; 444 445 // If we have seen this instruction before, don't count it again. 446 if (AggressiveInsts.count(I)) 447 return true; 448 449 // Okay, it looks like the instruction IS in the "condition". Check to 450 // see if it's a cheap instruction to unconditionally compute, and if it 451 // only uses stuff defined outside of the condition. If so, hoist it out. 452 if (!isSafeToSpeculativelyExecute(I)) 453 return false; 454 455 Cost += computeSpeculationCost(I, TTI); 456 457 // Allow exactly one instruction to be speculated regardless of its cost 458 // (as long as it is safe to do so). 459 // This is intended to flatten the CFG even if the instruction is a division 460 // or other expensive operation. The speculation of an expensive instruction 461 // is expected to be undone in CodeGenPrepare if the speculation has not 462 // enabled further IR optimizations. 463 if (Cost > Budget && 464 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 465 !Cost.isValid())) 466 return false; 467 468 // Okay, we can only really hoist these out if their operands do 469 // not take us over the cost threshold. 470 for (Use &Op : I->operands()) 471 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 472 Depth + 1)) 473 return false; 474 // Okay, it's safe to do this! Remember this instruction. 475 AggressiveInsts.insert(I); 476 return true; 477 } 478 479 /// Extract ConstantInt from value, looking through IntToPtr 480 /// and PointerNullValue. Return NULL if value is not a constant int. 481 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 482 // Normal constant int. 483 ConstantInt *CI = dyn_cast<ConstantInt>(V); 484 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() || 485 DL.isNonIntegralPointerType(V->getType())) 486 return CI; 487 488 // This is some kind of pointer constant. Turn it into a pointer-sized 489 // ConstantInt if possible. 490 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 491 492 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 493 if (isa<ConstantPointerNull>(V)) 494 return ConstantInt::get(PtrTy, 0); 495 496 // IntToPtr const int. 497 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 498 if (CE->getOpcode() == Instruction::IntToPtr) 499 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 500 // The constant is very likely to have the right type already. 501 if (CI->getType() == PtrTy) 502 return CI; 503 else 504 return cast<ConstantInt>( 505 ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL)); 506 } 507 return nullptr; 508 } 509 510 namespace { 511 512 /// Given a chain of or (||) or and (&&) comparison of a value against a 513 /// constant, this will try to recover the information required for a switch 514 /// structure. 515 /// It will depth-first traverse the chain of comparison, seeking for patterns 516 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 517 /// representing the different cases for the switch. 518 /// Note that if the chain is composed of '||' it will build the set of elements 519 /// that matches the comparisons (i.e. any of this value validate the chain) 520 /// while for a chain of '&&' it will build the set elements that make the test 521 /// fail. 522 struct ConstantComparesGatherer { 523 const DataLayout &DL; 524 525 /// Value found for the switch comparison 526 Value *CompValue = nullptr; 527 528 /// Extra clause to be checked before the switch 529 Value *Extra = nullptr; 530 531 /// Set of integers to match in switch 532 SmallVector<ConstantInt *, 8> Vals; 533 534 /// Number of comparisons matched in the and/or chain 535 unsigned UsedICmps = 0; 536 537 /// Construct and compute the result for the comparison instruction Cond 538 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 539 gather(Cond); 540 } 541 542 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 543 ConstantComparesGatherer & 544 operator=(const ConstantComparesGatherer &) = delete; 545 546 private: 547 /// Try to set the current value used for the comparison, it succeeds only if 548 /// it wasn't set before or if the new value is the same as the old one 549 bool setValueOnce(Value *NewVal) { 550 if (CompValue && CompValue != NewVal) 551 return false; 552 CompValue = NewVal; 553 return (CompValue != nullptr); 554 } 555 556 /// Try to match Instruction "I" as a comparison against a constant and 557 /// populates the array Vals with the set of values that match (or do not 558 /// match depending on isEQ). 559 /// Return false on failure. On success, the Value the comparison matched 560 /// against is placed in CompValue. 561 /// If CompValue is already set, the function is expected to fail if a match 562 /// is found but the value compared to is different. 563 bool matchInstruction(Instruction *I, bool isEQ) { 564 // If this is an icmp against a constant, handle this as one of the cases. 565 ICmpInst *ICI; 566 ConstantInt *C; 567 if (!((ICI = dyn_cast<ICmpInst>(I)) && 568 (C = GetConstantInt(I->getOperand(1), DL)))) { 569 return false; 570 } 571 572 Value *RHSVal; 573 const APInt *RHSC; 574 575 // Pattern match a special case 576 // (x & ~2^z) == y --> x == y || x == y|2^z 577 // This undoes a transformation done by instcombine to fuse 2 compares. 578 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 579 // It's a little bit hard to see why the following transformations are 580 // correct. Here is a CVC3 program to verify them for 64-bit values: 581 582 /* 583 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 584 x : BITVECTOR(64); 585 y : BITVECTOR(64); 586 z : BITVECTOR(64); 587 mask : BITVECTOR(64) = BVSHL(ONE, z); 588 QUERY( (y & ~mask = y) => 589 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 590 ); 591 QUERY( (y | mask = y) => 592 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 593 ); 594 */ 595 596 // Please note that each pattern must be a dual implication (<--> or 597 // iff). One directional implication can create spurious matches. If the 598 // implication is only one-way, an unsatisfiable condition on the left 599 // side can imply a satisfiable condition on the right side. Dual 600 // implication ensures that satisfiable conditions are transformed to 601 // other satisfiable conditions and unsatisfiable conditions are 602 // transformed to other unsatisfiable conditions. 603 604 // Here is a concrete example of a unsatisfiable condition on the left 605 // implying a satisfiable condition on the right: 606 // 607 // mask = (1 << z) 608 // (x & ~mask) == y --> (x == y || x == (y | mask)) 609 // 610 // Substituting y = 3, z = 0 yields: 611 // (x & -2) == 3 --> (x == 3 || x == 2) 612 613 // Pattern match a special case: 614 /* 615 QUERY( (y & ~mask = y) => 616 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 617 ); 618 */ 619 if (match(ICI->getOperand(0), 620 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 621 APInt Mask = ~*RHSC; 622 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 623 // If we already have a value for the switch, it has to match! 624 if (!setValueOnce(RHSVal)) 625 return false; 626 627 Vals.push_back(C); 628 Vals.push_back( 629 ConstantInt::get(C->getContext(), 630 C->getValue() | Mask)); 631 UsedICmps++; 632 return true; 633 } 634 } 635 636 // Pattern match a special case: 637 /* 638 QUERY( (y | mask = y) => 639 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 640 ); 641 */ 642 if (match(ICI->getOperand(0), 643 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 644 APInt Mask = *RHSC; 645 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 646 // If we already have a value for the switch, it has to match! 647 if (!setValueOnce(RHSVal)) 648 return false; 649 650 Vals.push_back(C); 651 Vals.push_back(ConstantInt::get(C->getContext(), 652 C->getValue() & ~Mask)); 653 UsedICmps++; 654 return true; 655 } 656 } 657 658 // If we already have a value for the switch, it has to match! 659 if (!setValueOnce(ICI->getOperand(0))) 660 return false; 661 662 UsedICmps++; 663 Vals.push_back(C); 664 return ICI->getOperand(0); 665 } 666 667 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 668 ConstantRange Span = 669 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 670 671 // Shift the range if the compare is fed by an add. This is the range 672 // compare idiom as emitted by instcombine. 673 Value *CandidateVal = I->getOperand(0); 674 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 675 Span = Span.subtract(*RHSC); 676 CandidateVal = RHSVal; 677 } 678 679 // If this is an and/!= check, then we are looking to build the set of 680 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 681 // x != 0 && x != 1. 682 if (!isEQ) 683 Span = Span.inverse(); 684 685 // If there are a ton of values, we don't want to make a ginormous switch. 686 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 687 return false; 688 } 689 690 // If we already have a value for the switch, it has to match! 691 if (!setValueOnce(CandidateVal)) 692 return false; 693 694 // Add all values from the range to the set 695 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 696 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 697 698 UsedICmps++; 699 return true; 700 } 701 702 /// Given a potentially 'or'd or 'and'd together collection of icmp 703 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 704 /// the value being compared, and stick the list constants into the Vals 705 /// vector. 706 /// One "Extra" case is allowed to differ from the other. 707 void gather(Value *V) { 708 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 709 710 // Keep a stack (SmallVector for efficiency) for depth-first traversal 711 SmallVector<Value *, 8> DFT; 712 SmallPtrSet<Value *, 8> Visited; 713 714 // Initialize 715 Visited.insert(V); 716 DFT.push_back(V); 717 718 while (!DFT.empty()) { 719 V = DFT.pop_back_val(); 720 721 if (Instruction *I = dyn_cast<Instruction>(V)) { 722 // If it is a || (or && depending on isEQ), process the operands. 723 Value *Op0, *Op1; 724 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 725 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 726 if (Visited.insert(Op1).second) 727 DFT.push_back(Op1); 728 if (Visited.insert(Op0).second) 729 DFT.push_back(Op0); 730 731 continue; 732 } 733 734 // Try to match the current instruction 735 if (matchInstruction(I, isEQ)) 736 // Match succeed, continue the loop 737 continue; 738 } 739 740 // One element of the sequence of || (or &&) could not be match as a 741 // comparison against the same value as the others. 742 // We allow only one "Extra" case to be checked before the switch 743 if (!Extra) { 744 Extra = V; 745 continue; 746 } 747 // Failed to parse a proper sequence, abort now 748 CompValue = nullptr; 749 break; 750 } 751 } 752 }; 753 754 } // end anonymous namespace 755 756 static void EraseTerminatorAndDCECond(Instruction *TI, 757 MemorySSAUpdater *MSSAU = nullptr) { 758 Instruction *Cond = nullptr; 759 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 760 Cond = dyn_cast<Instruction>(SI->getCondition()); 761 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 762 if (BI->isConditional()) 763 Cond = dyn_cast<Instruction>(BI->getCondition()); 764 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 765 Cond = dyn_cast<Instruction>(IBI->getAddress()); 766 } 767 768 TI->eraseFromParent(); 769 if (Cond) 770 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 771 } 772 773 /// Return true if the specified terminator checks 774 /// to see if a value is equal to constant integer value. 775 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 776 Value *CV = nullptr; 777 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 778 // Do not permit merging of large switch instructions into their 779 // predecessors unless there is only one predecessor. 780 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 781 CV = SI->getCondition(); 782 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 783 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 784 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 785 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 786 CV = ICI->getOperand(0); 787 } 788 789 // Unwrap any lossless ptrtoint cast. 790 if (CV) { 791 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 792 Value *Ptr = PTII->getPointerOperand(); 793 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 794 CV = Ptr; 795 } 796 } 797 return CV; 798 } 799 800 /// Given a value comparison instruction, 801 /// decode all of the 'cases' that it represents and return the 'default' block. 802 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 803 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 804 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 805 Cases.reserve(SI->getNumCases()); 806 for (auto Case : SI->cases()) 807 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 808 Case.getCaseSuccessor())); 809 return SI->getDefaultDest(); 810 } 811 812 BranchInst *BI = cast<BranchInst>(TI); 813 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 814 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 815 Cases.push_back(ValueEqualityComparisonCase( 816 GetConstantInt(ICI->getOperand(1), DL), Succ)); 817 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 818 } 819 820 /// Given a vector of bb/value pairs, remove any entries 821 /// in the list that match the specified block. 822 static void 823 EliminateBlockCases(BasicBlock *BB, 824 std::vector<ValueEqualityComparisonCase> &Cases) { 825 llvm::erase(Cases, BB); 826 } 827 828 /// Return true if there are any keys in C1 that exist in C2 as well. 829 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 830 std::vector<ValueEqualityComparisonCase> &C2) { 831 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 832 833 // Make V1 be smaller than V2. 834 if (V1->size() > V2->size()) 835 std::swap(V1, V2); 836 837 if (V1->empty()) 838 return false; 839 if (V1->size() == 1) { 840 // Just scan V2. 841 ConstantInt *TheVal = (*V1)[0].Value; 842 for (const ValueEqualityComparisonCase &VECC : *V2) 843 if (TheVal == VECC.Value) 844 return true; 845 } 846 847 // Otherwise, just sort both lists and compare element by element. 848 array_pod_sort(V1->begin(), V1->end()); 849 array_pod_sort(V2->begin(), V2->end()); 850 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 851 while (i1 != e1 && i2 != e2) { 852 if ((*V1)[i1].Value == (*V2)[i2].Value) 853 return true; 854 if ((*V1)[i1].Value < (*V2)[i2].Value) 855 ++i1; 856 else 857 ++i2; 858 } 859 return false; 860 } 861 862 // Set branch weights on SwitchInst. This sets the metadata if there is at 863 // least one non-zero weight. 864 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights, 865 bool IsExpected) { 866 // Check that there is at least one non-zero weight. Otherwise, pass 867 // nullptr to setMetadata which will erase the existing metadata. 868 MDNode *N = nullptr; 869 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 870 N = MDBuilder(SI->getParent()->getContext()) 871 .createBranchWeights(Weights, IsExpected); 872 SI->setMetadata(LLVMContext::MD_prof, N); 873 } 874 875 // Similar to the above, but for branch and select instructions that take 876 // exactly 2 weights. 877 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 878 uint32_t FalseWeight, bool IsExpected) { 879 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 880 // Check that there is at least one non-zero weight. Otherwise, pass 881 // nullptr to setMetadata which will erase the existing metadata. 882 MDNode *N = nullptr; 883 if (TrueWeight || FalseWeight) 884 N = MDBuilder(I->getParent()->getContext()) 885 .createBranchWeights(TrueWeight, FalseWeight, IsExpected); 886 I->setMetadata(LLVMContext::MD_prof, N); 887 } 888 889 /// If TI is known to be a terminator instruction and its block is known to 890 /// only have a single predecessor block, check to see if that predecessor is 891 /// also a value comparison with the same value, and if that comparison 892 /// determines the outcome of this comparison. If so, simplify TI. This does a 893 /// very limited form of jump threading. 894 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 895 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 896 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 897 if (!PredVal) 898 return false; // Not a value comparison in predecessor. 899 900 Value *ThisVal = isValueEqualityComparison(TI); 901 assert(ThisVal && "This isn't a value comparison!!"); 902 if (ThisVal != PredVal) 903 return false; // Different predicates. 904 905 // TODO: Preserve branch weight metadata, similarly to how 906 // FoldValueComparisonIntoPredecessors preserves it. 907 908 // Find out information about when control will move from Pred to TI's block. 909 std::vector<ValueEqualityComparisonCase> PredCases; 910 BasicBlock *PredDef = 911 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 912 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 913 914 // Find information about how control leaves this block. 915 std::vector<ValueEqualityComparisonCase> ThisCases; 916 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 917 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 918 919 // If TI's block is the default block from Pred's comparison, potentially 920 // simplify TI based on this knowledge. 921 if (PredDef == TI->getParent()) { 922 // If we are here, we know that the value is none of those cases listed in 923 // PredCases. If there are any cases in ThisCases that are in PredCases, we 924 // can simplify TI. 925 if (!ValuesOverlap(PredCases, ThisCases)) 926 return false; 927 928 if (isa<BranchInst>(TI)) { 929 // Okay, one of the successors of this condbr is dead. Convert it to a 930 // uncond br. 931 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 932 // Insert the new branch. 933 Instruction *NI = Builder.CreateBr(ThisDef); 934 (void)NI; 935 936 // Remove PHI node entries for the dead edge. 937 ThisCases[0].Dest->removePredecessor(PredDef); 938 939 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 940 << "Through successor TI: " << *TI << "Leaving: " << *NI 941 << "\n"); 942 943 EraseTerminatorAndDCECond(TI); 944 945 if (DTU) 946 DTU->applyUpdates( 947 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 948 949 return true; 950 } 951 952 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 953 // Okay, TI has cases that are statically dead, prune them away. 954 SmallPtrSet<Constant *, 16> DeadCases; 955 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 956 DeadCases.insert(PredCases[i].Value); 957 958 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 959 << "Through successor TI: " << *TI); 960 961 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 962 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 963 --i; 964 auto *Successor = i->getCaseSuccessor(); 965 if (DTU) 966 ++NumPerSuccessorCases[Successor]; 967 if (DeadCases.count(i->getCaseValue())) { 968 Successor->removePredecessor(PredDef); 969 SI.removeCase(i); 970 if (DTU) 971 --NumPerSuccessorCases[Successor]; 972 } 973 } 974 975 if (DTU) { 976 std::vector<DominatorTree::UpdateType> Updates; 977 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 978 if (I.second == 0) 979 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 980 DTU->applyUpdates(Updates); 981 } 982 983 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 984 return true; 985 } 986 987 // Otherwise, TI's block must correspond to some matched value. Find out 988 // which value (or set of values) this is. 989 ConstantInt *TIV = nullptr; 990 BasicBlock *TIBB = TI->getParent(); 991 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 992 if (PredCases[i].Dest == TIBB) { 993 if (TIV) 994 return false; // Cannot handle multiple values coming to this block. 995 TIV = PredCases[i].Value; 996 } 997 assert(TIV && "No edge from pred to succ?"); 998 999 // Okay, we found the one constant that our value can be if we get into TI's 1000 // BB. Find out which successor will unconditionally be branched to. 1001 BasicBlock *TheRealDest = nullptr; 1002 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 1003 if (ThisCases[i].Value == TIV) { 1004 TheRealDest = ThisCases[i].Dest; 1005 break; 1006 } 1007 1008 // If not handled by any explicit cases, it is handled by the default case. 1009 if (!TheRealDest) 1010 TheRealDest = ThisDef; 1011 1012 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 1013 1014 // Remove PHI node entries for dead edges. 1015 BasicBlock *CheckEdge = TheRealDest; 1016 for (BasicBlock *Succ : successors(TIBB)) 1017 if (Succ != CheckEdge) { 1018 if (Succ != TheRealDest) 1019 RemovedSuccs.insert(Succ); 1020 Succ->removePredecessor(TIBB); 1021 } else 1022 CheckEdge = nullptr; 1023 1024 // Insert the new branch. 1025 Instruction *NI = Builder.CreateBr(TheRealDest); 1026 (void)NI; 1027 1028 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1029 << "Through successor TI: " << *TI << "Leaving: " << *NI 1030 << "\n"); 1031 1032 EraseTerminatorAndDCECond(TI); 1033 if (DTU) { 1034 SmallVector<DominatorTree::UpdateType, 2> Updates; 1035 Updates.reserve(RemovedSuccs.size()); 1036 for (auto *RemovedSucc : RemovedSuccs) 1037 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1038 DTU->applyUpdates(Updates); 1039 } 1040 return true; 1041 } 1042 1043 namespace { 1044 1045 /// This class implements a stable ordering of constant 1046 /// integers that does not depend on their address. This is important for 1047 /// applications that sort ConstantInt's to ensure uniqueness. 1048 struct ConstantIntOrdering { 1049 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1050 return LHS->getValue().ult(RHS->getValue()); 1051 } 1052 }; 1053 1054 } // end anonymous namespace 1055 1056 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1057 ConstantInt *const *P2) { 1058 const ConstantInt *LHS = *P1; 1059 const ConstantInt *RHS = *P2; 1060 if (LHS == RHS) 1061 return 0; 1062 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1063 } 1064 1065 /// Get Weights of a given terminator, the default weight is at the front 1066 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1067 /// metadata. 1068 static void GetBranchWeights(Instruction *TI, 1069 SmallVectorImpl<uint64_t> &Weights) { 1070 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1071 assert(MD && "Invalid branch-weight metadata"); 1072 extractFromBranchWeightMD64(MD, Weights); 1073 1074 // If TI is a conditional eq, the default case is the false case, 1075 // and the corresponding branch-weight data is at index 2. We swap the 1076 // default weight to be the first entry. 1077 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1078 assert(Weights.size() == 2); 1079 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1080 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1081 std::swap(Weights.front(), Weights.back()); 1082 } 1083 } 1084 1085 /// Keep halving the weights until all can fit in uint32_t. 1086 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1087 uint64_t Max = *llvm::max_element(Weights); 1088 if (Max > UINT_MAX) { 1089 unsigned Offset = 32 - llvm::countl_zero(Max); 1090 for (uint64_t &I : Weights) 1091 I >>= Offset; 1092 } 1093 } 1094 1095 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1096 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1097 Instruction *PTI = PredBlock->getTerminator(); 1098 1099 // If we have bonus instructions, clone them into the predecessor block. 1100 // Note that there may be multiple predecessor blocks, so we cannot move 1101 // bonus instructions to a predecessor block. 1102 for (Instruction &BonusInst : *BB) { 1103 if (BonusInst.isTerminator()) 1104 continue; 1105 1106 Instruction *NewBonusInst = BonusInst.clone(); 1107 1108 if (!isa<DbgInfoIntrinsic>(BonusInst) && 1109 PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1110 // Unless the instruction has the same !dbg location as the original 1111 // branch, drop it. When we fold the bonus instructions we want to make 1112 // sure we reset their debug locations in order to avoid stepping on 1113 // dead code caused by folding dead branches. 1114 NewBonusInst->setDebugLoc(DebugLoc()); 1115 } 1116 1117 RemapInstruction(NewBonusInst, VMap, 1118 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1119 1120 // If we speculated an instruction, we need to drop any metadata that may 1121 // result in undefined behavior, as the metadata might have been valid 1122 // only given the branch precondition. 1123 // Similarly strip attributes on call parameters that may cause UB in 1124 // location the call is moved to. 1125 NewBonusInst->dropUBImplyingAttrsAndMetadata(); 1126 1127 NewBonusInst->insertInto(PredBlock, PTI->getIterator()); 1128 auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst); 1129 RemapDbgRecordRange(NewBonusInst->getModule(), Range, VMap, 1130 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1131 1132 if (isa<DbgInfoIntrinsic>(BonusInst)) 1133 continue; 1134 1135 NewBonusInst->takeName(&BonusInst); 1136 BonusInst.setName(NewBonusInst->getName() + ".old"); 1137 VMap[&BonusInst] = NewBonusInst; 1138 1139 // Update (liveout) uses of bonus instructions, 1140 // now that the bonus instruction has been cloned into predecessor. 1141 // Note that we expect to be in a block-closed SSA form for this to work! 1142 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1143 auto *UI = cast<Instruction>(U.getUser()); 1144 auto *PN = dyn_cast<PHINode>(UI); 1145 if (!PN) { 1146 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1147 "If the user is not a PHI node, then it should be in the same " 1148 "block as, and come after, the original bonus instruction."); 1149 continue; // Keep using the original bonus instruction. 1150 } 1151 // Is this the block-closed SSA form PHI node? 1152 if (PN->getIncomingBlock(U) == BB) 1153 continue; // Great, keep using the original bonus instruction. 1154 // The only other alternative is an "use" when coming from 1155 // the predecessor block - here we should refer to the cloned bonus instr. 1156 assert(PN->getIncomingBlock(U) == PredBlock && 1157 "Not in block-closed SSA form?"); 1158 U.set(NewBonusInst); 1159 } 1160 } 1161 } 1162 1163 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1164 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1165 BasicBlock *BB = TI->getParent(); 1166 BasicBlock *Pred = PTI->getParent(); 1167 1168 SmallVector<DominatorTree::UpdateType, 32> Updates; 1169 1170 // Figure out which 'cases' to copy from SI to PSI. 1171 std::vector<ValueEqualityComparisonCase> BBCases; 1172 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1173 1174 std::vector<ValueEqualityComparisonCase> PredCases; 1175 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1176 1177 // Based on whether the default edge from PTI goes to BB or not, fill in 1178 // PredCases and PredDefault with the new switch cases we would like to 1179 // build. 1180 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1181 1182 // Update the branch weight metadata along the way 1183 SmallVector<uint64_t, 8> Weights; 1184 bool PredHasWeights = hasBranchWeightMD(*PTI); 1185 bool SuccHasWeights = hasBranchWeightMD(*TI); 1186 1187 if (PredHasWeights) { 1188 GetBranchWeights(PTI, Weights); 1189 // branch-weight metadata is inconsistent here. 1190 if (Weights.size() != 1 + PredCases.size()) 1191 PredHasWeights = SuccHasWeights = false; 1192 } else if (SuccHasWeights) 1193 // If there are no predecessor weights but there are successor weights, 1194 // populate Weights with 1, which will later be scaled to the sum of 1195 // successor's weights 1196 Weights.assign(1 + PredCases.size(), 1); 1197 1198 SmallVector<uint64_t, 8> SuccWeights; 1199 if (SuccHasWeights) { 1200 GetBranchWeights(TI, SuccWeights); 1201 // branch-weight metadata is inconsistent here. 1202 if (SuccWeights.size() != 1 + BBCases.size()) 1203 PredHasWeights = SuccHasWeights = false; 1204 } else if (PredHasWeights) 1205 SuccWeights.assign(1 + BBCases.size(), 1); 1206 1207 if (PredDefault == BB) { 1208 // If this is the default destination from PTI, only the edges in TI 1209 // that don't occur in PTI, or that branch to BB will be activated. 1210 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1211 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1212 if (PredCases[i].Dest != BB) 1213 PTIHandled.insert(PredCases[i].Value); 1214 else { 1215 // The default destination is BB, we don't need explicit targets. 1216 std::swap(PredCases[i], PredCases.back()); 1217 1218 if (PredHasWeights || SuccHasWeights) { 1219 // Increase weight for the default case. 1220 Weights[0] += Weights[i + 1]; 1221 std::swap(Weights[i + 1], Weights.back()); 1222 Weights.pop_back(); 1223 } 1224 1225 PredCases.pop_back(); 1226 --i; 1227 --e; 1228 } 1229 1230 // Reconstruct the new switch statement we will be building. 1231 if (PredDefault != BBDefault) { 1232 PredDefault->removePredecessor(Pred); 1233 if (DTU && PredDefault != BB) 1234 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1235 PredDefault = BBDefault; 1236 ++NewSuccessors[BBDefault]; 1237 } 1238 1239 unsigned CasesFromPred = Weights.size(); 1240 uint64_t ValidTotalSuccWeight = 0; 1241 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1242 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1243 PredCases.push_back(BBCases[i]); 1244 ++NewSuccessors[BBCases[i].Dest]; 1245 if (SuccHasWeights || PredHasWeights) { 1246 // The default weight is at index 0, so weight for the ith case 1247 // should be at index i+1. Scale the cases from successor by 1248 // PredDefaultWeight (Weights[0]). 1249 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1250 ValidTotalSuccWeight += SuccWeights[i + 1]; 1251 } 1252 } 1253 1254 if (SuccHasWeights || PredHasWeights) { 1255 ValidTotalSuccWeight += SuccWeights[0]; 1256 // Scale the cases from predecessor by ValidTotalSuccWeight. 1257 for (unsigned i = 1; i < CasesFromPred; ++i) 1258 Weights[i] *= ValidTotalSuccWeight; 1259 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1260 Weights[0] *= SuccWeights[0]; 1261 } 1262 } else { 1263 // If this is not the default destination from PSI, only the edges 1264 // in SI that occur in PSI with a destination of BB will be 1265 // activated. 1266 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1267 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1268 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1269 if (PredCases[i].Dest == BB) { 1270 PTIHandled.insert(PredCases[i].Value); 1271 1272 if (PredHasWeights || SuccHasWeights) { 1273 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1274 std::swap(Weights[i + 1], Weights.back()); 1275 Weights.pop_back(); 1276 } 1277 1278 std::swap(PredCases[i], PredCases.back()); 1279 PredCases.pop_back(); 1280 --i; 1281 --e; 1282 } 1283 1284 // Okay, now we know which constants were sent to BB from the 1285 // predecessor. Figure out where they will all go now. 1286 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1287 if (PTIHandled.count(BBCases[i].Value)) { 1288 // If this is one we are capable of getting... 1289 if (PredHasWeights || SuccHasWeights) 1290 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1291 PredCases.push_back(BBCases[i]); 1292 ++NewSuccessors[BBCases[i].Dest]; 1293 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1294 } 1295 1296 // If there are any constants vectored to BB that TI doesn't handle, 1297 // they must go to the default destination of TI. 1298 for (ConstantInt *I : PTIHandled) { 1299 if (PredHasWeights || SuccHasWeights) 1300 Weights.push_back(WeightsForHandled[I]); 1301 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1302 ++NewSuccessors[BBDefault]; 1303 } 1304 } 1305 1306 // Okay, at this point, we know which new successor Pred will get. Make 1307 // sure we update the number of entries in the PHI nodes for these 1308 // successors. 1309 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1310 if (DTU) { 1311 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1312 Updates.reserve(Updates.size() + NewSuccessors.size()); 1313 } 1314 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1315 NewSuccessors) { 1316 for (auto I : seq(NewSuccessor.second)) { 1317 (void)I; 1318 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1319 } 1320 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1321 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1322 } 1323 1324 Builder.SetInsertPoint(PTI); 1325 // Convert pointer to int before we switch. 1326 if (CV->getType()->isPointerTy()) { 1327 CV = 1328 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1329 } 1330 1331 // Now that the successors are updated, create the new Switch instruction. 1332 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1333 NewSI->setDebugLoc(PTI->getDebugLoc()); 1334 for (ValueEqualityComparisonCase &V : PredCases) 1335 NewSI->addCase(V.Value, V.Dest); 1336 1337 if (PredHasWeights || SuccHasWeights) { 1338 // Halve the weights if any of them cannot fit in an uint32_t 1339 FitWeights(Weights); 1340 1341 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1342 1343 setBranchWeights(NewSI, MDWeights, /*IsExpected=*/false); 1344 } 1345 1346 EraseTerminatorAndDCECond(PTI); 1347 1348 // Okay, last check. If BB is still a successor of PSI, then we must 1349 // have an infinite loop case. If so, add an infinitely looping block 1350 // to handle the case to preserve the behavior of the code. 1351 BasicBlock *InfLoopBlock = nullptr; 1352 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1353 if (NewSI->getSuccessor(i) == BB) { 1354 if (!InfLoopBlock) { 1355 // Insert it at the end of the function, because it's either code, 1356 // or it won't matter if it's hot. :) 1357 InfLoopBlock = 1358 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1359 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1360 if (DTU) 1361 Updates.push_back( 1362 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1363 } 1364 NewSI->setSuccessor(i, InfLoopBlock); 1365 } 1366 1367 if (DTU) { 1368 if (InfLoopBlock) 1369 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1370 1371 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1372 1373 DTU->applyUpdates(Updates); 1374 } 1375 1376 ++NumFoldValueComparisonIntoPredecessors; 1377 return true; 1378 } 1379 1380 /// The specified terminator is a value equality comparison instruction 1381 /// (either a switch or a branch on "X == c"). 1382 /// See if any of the predecessors of the terminator block are value comparisons 1383 /// on the same value. If so, and if safe to do so, fold them together. 1384 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1385 IRBuilder<> &Builder) { 1386 BasicBlock *BB = TI->getParent(); 1387 Value *CV = isValueEqualityComparison(TI); // CondVal 1388 assert(CV && "Not a comparison?"); 1389 1390 bool Changed = false; 1391 1392 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1393 while (!Preds.empty()) { 1394 BasicBlock *Pred = Preds.pop_back_val(); 1395 Instruction *PTI = Pred->getTerminator(); 1396 1397 // Don't try to fold into itself. 1398 if (Pred == BB) 1399 continue; 1400 1401 // See if the predecessor is a comparison with the same value. 1402 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1403 if (PCV != CV) 1404 continue; 1405 1406 SmallSetVector<BasicBlock *, 4> FailBlocks; 1407 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1408 for (auto *Succ : FailBlocks) { 1409 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1410 return false; 1411 } 1412 } 1413 1414 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1415 Changed = true; 1416 } 1417 return Changed; 1418 } 1419 1420 // If we would need to insert a select that uses the value of this invoke 1421 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would 1422 // need to do this), we can't hoist the invoke, as there is nowhere to put the 1423 // select in this case. 1424 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1425 Instruction *I1, Instruction *I2) { 1426 for (BasicBlock *Succ : successors(BB1)) { 1427 for (const PHINode &PN : Succ->phis()) { 1428 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1429 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1430 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1431 return false; 1432 } 1433 } 1434 } 1435 return true; 1436 } 1437 1438 // Get interesting characteristics of instructions that 1439 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of 1440 // instructions can be reordered across. 1441 enum SkipFlags { 1442 SkipReadMem = 1, 1443 SkipSideEffect = 2, 1444 SkipImplicitControlFlow = 4 1445 }; 1446 1447 static unsigned skippedInstrFlags(Instruction *I) { 1448 unsigned Flags = 0; 1449 if (I->mayReadFromMemory()) 1450 Flags |= SkipReadMem; 1451 // We can't arbitrarily move around allocas, e.g. moving allocas (especially 1452 // inalloca) across stacksave/stackrestore boundaries. 1453 if (I->mayHaveSideEffects() || isa<AllocaInst>(I)) 1454 Flags |= SkipSideEffect; 1455 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 1456 Flags |= SkipImplicitControlFlow; 1457 return Flags; 1458 } 1459 1460 // Returns true if it is safe to reorder an instruction across preceding 1461 // instructions in a basic block. 1462 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) { 1463 // Don't reorder a store over a load. 1464 if ((Flags & SkipReadMem) && I->mayWriteToMemory()) 1465 return false; 1466 1467 // If we have seen an instruction with side effects, it's unsafe to reorder an 1468 // instruction which reads memory or itself has side effects. 1469 if ((Flags & SkipSideEffect) && 1470 (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I))) 1471 return false; 1472 1473 // Reordering across an instruction which does not necessarily transfer 1474 // control to the next instruction is speculation. 1475 if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I)) 1476 return false; 1477 1478 // Hoisting of llvm.deoptimize is only legal together with the next return 1479 // instruction, which this pass is not always able to do. 1480 if (auto *CB = dyn_cast<CallBase>(I)) 1481 if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize) 1482 return false; 1483 1484 // It's also unsafe/illegal to hoist an instruction above its instruction 1485 // operands 1486 BasicBlock *BB = I->getParent(); 1487 for (Value *Op : I->operands()) { 1488 if (auto *J = dyn_cast<Instruction>(Op)) 1489 if (J->getParent() == BB) 1490 return false; 1491 } 1492 1493 return true; 1494 } 1495 1496 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1497 1498 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical 1499 /// instructions \p I1 and \p I2 can and should be hoisted. 1500 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2, 1501 const TargetTransformInfo &TTI) { 1502 // If we're going to hoist a call, make sure that the two instructions 1503 // we're commoning/hoisting are both marked with musttail, or neither of 1504 // them is marked as such. Otherwise, we might end up in a situation where 1505 // we hoist from a block where the terminator is a `ret` to a block where 1506 // the terminator is a `br`, and `musttail` calls expect to be followed by 1507 // a return. 1508 auto *C1 = dyn_cast<CallInst>(I1); 1509 auto *C2 = dyn_cast<CallInst>(I2); 1510 if (C1 && C2) 1511 if (C1->isMustTailCall() != C2->isMustTailCall()) 1512 return false; 1513 1514 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1515 return false; 1516 1517 // If any of the two call sites has nomerge or convergent attribute, stop 1518 // hoisting. 1519 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1520 if (CB1->cannotMerge() || CB1->isConvergent()) 1521 return false; 1522 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1523 if (CB2->cannotMerge() || CB2->isConvergent()) 1524 return false; 1525 1526 return true; 1527 } 1528 1529 /// Hoists DbgVariableRecords from \p I1 and \p OtherInstrs that are identical 1530 /// in lock-step to \p TI. This matches how dbg.* intrinsics are hoisting in 1531 /// hoistCommonCodeFromSuccessors. e.g. The input: 1532 /// I1 DVRs: { x, z }, 1533 /// OtherInsts: { I2 DVRs: { x, y, z } } 1534 /// would result in hoisting only DbgVariableRecord x. 1535 static void hoistLockstepIdenticalDbgVariableRecords( 1536 Instruction *TI, Instruction *I1, 1537 SmallVectorImpl<Instruction *> &OtherInsts) { 1538 if (!I1->hasDbgRecords()) 1539 return; 1540 using CurrentAndEndIt = 1541 std::pair<DbgRecord::self_iterator, DbgRecord::self_iterator>; 1542 // Vector of {Current, End} iterators. 1543 SmallVector<CurrentAndEndIt> Itrs; 1544 Itrs.reserve(OtherInsts.size() + 1); 1545 // Helper lambdas for lock-step checks: 1546 // Return true if this Current == End. 1547 auto atEnd = [](const CurrentAndEndIt &Pair) { 1548 return Pair.first == Pair.second; 1549 }; 1550 // Return true if all Current are identical. 1551 auto allIdentical = [](const SmallVector<CurrentAndEndIt> &Itrs) { 1552 return all_of(make_first_range(ArrayRef(Itrs).drop_front()), 1553 [&](DbgRecord::self_iterator I) { 1554 return Itrs[0].first->isIdenticalToWhenDefined(*I); 1555 }); 1556 }; 1557 1558 // Collect the iterators. 1559 Itrs.push_back( 1560 {I1->getDbgRecordRange().begin(), I1->getDbgRecordRange().end()}); 1561 for (Instruction *Other : OtherInsts) { 1562 if (!Other->hasDbgRecords()) 1563 return; 1564 Itrs.push_back( 1565 {Other->getDbgRecordRange().begin(), Other->getDbgRecordRange().end()}); 1566 } 1567 1568 // Iterate in lock-step until any of the DbgRecord lists are exausted. If 1569 // the lock-step DbgRecord are identical, hoist all of them to TI. 1570 // This replicates the dbg.* intrinsic behaviour in 1571 // hoistCommonCodeFromSuccessors. 1572 while (none_of(Itrs, atEnd)) { 1573 bool HoistDVRs = allIdentical(Itrs); 1574 for (CurrentAndEndIt &Pair : Itrs) { 1575 // Increment Current iterator now as we may be about to move the 1576 // DbgRecord. 1577 DbgRecord &DR = *Pair.first++; 1578 if (HoistDVRs) { 1579 DR.removeFromParent(); 1580 TI->getParent()->insertDbgRecordBefore(&DR, TI->getIterator()); 1581 } 1582 } 1583 } 1584 } 1585 1586 /// Hoist any common code in the successor blocks up into the block. This 1587 /// function guarantees that BB dominates all successors. If EqTermsOnly is 1588 /// given, only perform hoisting in case both blocks only contain a terminator. 1589 /// In that case, only the original BI will be replaced and selects for PHIs are 1590 /// added. 1591 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(BasicBlock *BB, 1592 bool EqTermsOnly) { 1593 // This does very trivial matching, with limited scanning, to find identical 1594 // instructions in the two blocks. In particular, we don't want to get into 1595 // O(N1*N2*...) situations here where Ni are the sizes of these successors. As 1596 // such, we currently just scan for obviously identical instructions in an 1597 // identical order, possibly separated by the same number of non-identical 1598 // instructions. 1599 unsigned int SuccSize = succ_size(BB); 1600 if (SuccSize < 2) 1601 return false; 1602 1603 // If either of the blocks has it's address taken, then we can't do this fold, 1604 // because the code we'd hoist would no longer run when we jump into the block 1605 // by it's address. 1606 for (auto *Succ : successors(BB)) 1607 if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor()) 1608 return false; 1609 1610 auto *TI = BB->getTerminator(); 1611 1612 // The second of pair is a SkipFlags bitmask. 1613 using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>; 1614 SmallVector<SuccIterPair, 8> SuccIterPairs; 1615 for (auto *Succ : successors(BB)) { 1616 BasicBlock::iterator SuccItr = Succ->begin(); 1617 if (isa<PHINode>(*SuccItr)) 1618 return false; 1619 SuccIterPairs.push_back(SuccIterPair(SuccItr, 0)); 1620 } 1621 1622 // Check if only hoisting terminators is allowed. This does not add new 1623 // instructions to the hoist location. 1624 if (EqTermsOnly) { 1625 // Skip any debug intrinsics, as they are free to hoist. 1626 for (auto &SuccIter : make_first_range(SuccIterPairs)) { 1627 auto *INonDbg = &*skipDebugIntrinsics(SuccIter); 1628 if (!INonDbg->isTerminator()) 1629 return false; 1630 } 1631 // Now we know that we only need to hoist debug intrinsics and the 1632 // terminator. Let the loop below handle those 2 cases. 1633 } 1634 1635 // Count how many instructions were not hoisted so far. There's a limit on how 1636 // many instructions we skip, serving as a compilation time control as well as 1637 // preventing excessive increase of life ranges. 1638 unsigned NumSkipped = 0; 1639 // If we find an unreachable instruction at the beginning of a basic block, we 1640 // can still hoist instructions from the rest of the basic blocks. 1641 if (SuccIterPairs.size() > 2) { 1642 erase_if(SuccIterPairs, 1643 [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); }); 1644 if (SuccIterPairs.size() < 2) 1645 return false; 1646 } 1647 1648 bool Changed = false; 1649 1650 for (;;) { 1651 auto *SuccIterPairBegin = SuccIterPairs.begin(); 1652 auto &BB1ItrPair = *SuccIterPairBegin++; 1653 auto OtherSuccIterPairRange = 1654 iterator_range(SuccIterPairBegin, SuccIterPairs.end()); 1655 auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange); 1656 1657 Instruction *I1 = &*BB1ItrPair.first; 1658 1659 // Skip debug info if it is not identical. 1660 bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) { 1661 Instruction *I2 = &*Iter; 1662 return I1->isIdenticalToWhenDefined(I2); 1663 }); 1664 if (!AllDbgInstsAreIdentical) { 1665 while (isa<DbgInfoIntrinsic>(I1)) 1666 I1 = &*++BB1ItrPair.first; 1667 for (auto &SuccIter : OtherSuccIterRange) { 1668 Instruction *I2 = &*SuccIter; 1669 while (isa<DbgInfoIntrinsic>(I2)) 1670 I2 = &*++SuccIter; 1671 } 1672 } 1673 1674 bool AllInstsAreIdentical = true; 1675 bool HasTerminator = I1->isTerminator(); 1676 for (auto &SuccIter : OtherSuccIterRange) { 1677 Instruction *I2 = &*SuccIter; 1678 HasTerminator |= I2->isTerminator(); 1679 if (AllInstsAreIdentical && (!I1->isIdenticalToWhenDefined(I2) || 1680 MMRAMetadata(*I1) != MMRAMetadata(*I2))) 1681 AllInstsAreIdentical = false; 1682 } 1683 1684 SmallVector<Instruction *, 8> OtherInsts; 1685 for (auto &SuccIter : OtherSuccIterRange) 1686 OtherInsts.push_back(&*SuccIter); 1687 1688 // If we are hoisting the terminator instruction, don't move one (making a 1689 // broken BB), instead clone it, and remove BI. 1690 if (HasTerminator) { 1691 // Even if BB, which contains only one unreachable instruction, is ignored 1692 // at the beginning of the loop, we can hoist the terminator instruction. 1693 // If any instructions remain in the block, we cannot hoist terminators. 1694 if (NumSkipped || !AllInstsAreIdentical) { 1695 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1696 return Changed; 1697 } 1698 1699 return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, OtherInsts) || 1700 Changed; 1701 } 1702 1703 if (AllInstsAreIdentical) { 1704 unsigned SkipFlagsBB1 = BB1ItrPair.second; 1705 AllInstsAreIdentical = 1706 isSafeToHoistInstr(I1, SkipFlagsBB1) && 1707 all_of(OtherSuccIterPairRange, [=](const auto &Pair) { 1708 Instruction *I2 = &*Pair.first; 1709 unsigned SkipFlagsBB2 = Pair.second; 1710 // Even if the instructions are identical, it may not 1711 // be safe to hoist them if we have skipped over 1712 // instructions with side effects or their operands 1713 // weren't hoisted. 1714 return isSafeToHoistInstr(I2, SkipFlagsBB2) && 1715 shouldHoistCommonInstructions(I1, I2, TTI); 1716 }); 1717 } 1718 1719 if (AllInstsAreIdentical) { 1720 BB1ItrPair.first++; 1721 if (isa<DbgInfoIntrinsic>(I1)) { 1722 // The debug location is an integral part of a debug info intrinsic 1723 // and can't be separated from it or replaced. Instead of attempting 1724 // to merge locations, simply hoist both copies of the intrinsic. 1725 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1726 // We've just hoisted DbgVariableRecords; move I1 after them (before TI) 1727 // and leave any that were not hoisted behind (by calling moveBefore 1728 // rather than moveBeforePreserving). 1729 I1->moveBefore(TI); 1730 for (auto &SuccIter : OtherSuccIterRange) { 1731 auto *I2 = &*SuccIter++; 1732 assert(isa<DbgInfoIntrinsic>(I2)); 1733 I2->moveBefore(TI); 1734 } 1735 } else { 1736 // For a normal instruction, we just move one to right before the 1737 // branch, then replace all uses of the other with the first. Finally, 1738 // we remove the now redundant second instruction. 1739 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1740 // We've just hoisted DbgVariableRecords; move I1 after them (before TI) 1741 // and leave any that were not hoisted behind (by calling moveBefore 1742 // rather than moveBeforePreserving). 1743 I1->moveBefore(TI); 1744 for (auto &SuccIter : OtherSuccIterRange) { 1745 Instruction *I2 = &*SuccIter++; 1746 assert(I2 != I1); 1747 if (!I2->use_empty()) 1748 I2->replaceAllUsesWith(I1); 1749 I1->andIRFlags(I2); 1750 combineMetadataForCSE(I1, I2, true); 1751 // I1 and I2 are being combined into a single instruction. Its debug 1752 // location is the merged locations of the original instructions. 1753 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1754 I2->eraseFromParent(); 1755 } 1756 } 1757 if (!Changed) 1758 NumHoistCommonCode += SuccIterPairs.size(); 1759 Changed = true; 1760 NumHoistCommonInstrs += SuccIterPairs.size(); 1761 } else { 1762 if (NumSkipped >= HoistCommonSkipLimit) { 1763 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1764 return Changed; 1765 } 1766 // We are about to skip over a pair of non-identical instructions. Record 1767 // if any have characteristics that would prevent reordering instructions 1768 // across them. 1769 for (auto &SuccIterPair : SuccIterPairs) { 1770 Instruction *I = &*SuccIterPair.first++; 1771 SuccIterPair.second |= skippedInstrFlags(I); 1772 } 1773 ++NumSkipped; 1774 } 1775 } 1776 } 1777 1778 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf( 1779 Instruction *TI, Instruction *I1, 1780 SmallVectorImpl<Instruction *> &OtherSuccTIs) { 1781 1782 auto *BI = dyn_cast<BranchInst>(TI); 1783 1784 bool Changed = false; 1785 BasicBlock *TIParent = TI->getParent(); 1786 BasicBlock *BB1 = I1->getParent(); 1787 1788 // Use only for an if statement. 1789 auto *I2 = *OtherSuccTIs.begin(); 1790 auto *BB2 = I2->getParent(); 1791 if (BI) { 1792 assert(OtherSuccTIs.size() == 1); 1793 assert(BI->getSuccessor(0) == I1->getParent()); 1794 assert(BI->getSuccessor(1) == I2->getParent()); 1795 } 1796 1797 // In the case of an if statement, we try to hoist an invoke. 1798 // FIXME: Can we define a safety predicate for CallBr? 1799 // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll 1800 // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit? 1801 if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1802 return false; 1803 1804 // TODO: callbr hoisting currently disabled pending further study. 1805 if (isa<CallBrInst>(I1)) 1806 return false; 1807 1808 for (BasicBlock *Succ : successors(BB1)) { 1809 for (PHINode &PN : Succ->phis()) { 1810 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1811 for (Instruction *OtherSuccTI : OtherSuccTIs) { 1812 Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent()); 1813 if (BB1V == BB2V) 1814 continue; 1815 1816 // In the case of an if statement, check for 1817 // passingValueIsAlwaysUndefined here because we would rather eliminate 1818 // undefined control flow then converting it to a select. 1819 if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) || 1820 passingValueIsAlwaysUndefined(BB2V, &PN)) 1821 return false; 1822 } 1823 } 1824 } 1825 1826 // Hoist DbgVariableRecords attached to the terminator to match dbg.* 1827 // intrinsic hoisting behaviour in hoistCommonCodeFromSuccessors. 1828 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherSuccTIs); 1829 // Clone the terminator and hoist it into the pred, without any debug info. 1830 Instruction *NT = I1->clone(); 1831 NT->insertInto(TIParent, TI->getIterator()); 1832 if (!NT->getType()->isVoidTy()) { 1833 I1->replaceAllUsesWith(NT); 1834 for (Instruction *OtherSuccTI : OtherSuccTIs) 1835 OtherSuccTI->replaceAllUsesWith(NT); 1836 NT->takeName(I1); 1837 } 1838 Changed = true; 1839 NumHoistCommonInstrs += OtherSuccTIs.size() + 1; 1840 1841 // Ensure terminator gets a debug location, even an unknown one, in case 1842 // it involves inlinable calls. 1843 SmallVector<DILocation *, 4> Locs; 1844 Locs.push_back(I1->getDebugLoc()); 1845 for (auto *OtherSuccTI : OtherSuccTIs) 1846 Locs.push_back(OtherSuccTI->getDebugLoc()); 1847 NT->setDebugLoc(DILocation::getMergedLocations(Locs)); 1848 1849 // PHIs created below will adopt NT's merged DebugLoc. 1850 IRBuilder<NoFolder> Builder(NT); 1851 1852 // In the case of an if statement, hoisting one of the terminators from our 1853 // successor is a great thing. Unfortunately, the successors of the if/else 1854 // blocks may have PHI nodes in them. If they do, all PHI entries for BB1/BB2 1855 // must agree for all PHI nodes, so we insert select instruction to compute 1856 // the final result. 1857 if (BI) { 1858 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1859 for (BasicBlock *Succ : successors(BB1)) { 1860 for (PHINode &PN : Succ->phis()) { 1861 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1862 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1863 if (BB1V == BB2V) 1864 continue; 1865 1866 // These values do not agree. Insert a select instruction before NT 1867 // that determines the right value. 1868 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1869 if (!SI) { 1870 // Propagate fast-math-flags from phi node to its replacement select. 1871 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1872 if (isa<FPMathOperator>(PN)) 1873 Builder.setFastMathFlags(PN.getFastMathFlags()); 1874 1875 SI = cast<SelectInst>(Builder.CreateSelect( 1876 BI->getCondition(), BB1V, BB2V, 1877 BB1V->getName() + "." + BB2V->getName(), BI)); 1878 } 1879 1880 // Make the PHI node use the select for all incoming values for BB1/BB2 1881 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1882 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1883 PN.setIncomingValue(i, SI); 1884 } 1885 } 1886 } 1887 1888 SmallVector<DominatorTree::UpdateType, 4> Updates; 1889 1890 // Update any PHI nodes in our new successors. 1891 for (BasicBlock *Succ : successors(BB1)) { 1892 AddPredecessorToBlock(Succ, TIParent, BB1); 1893 if (DTU) 1894 Updates.push_back({DominatorTree::Insert, TIParent, Succ}); 1895 } 1896 1897 if (DTU) 1898 for (BasicBlock *Succ : successors(TI)) 1899 Updates.push_back({DominatorTree::Delete, TIParent, Succ}); 1900 1901 EraseTerminatorAndDCECond(TI); 1902 if (DTU) 1903 DTU->applyUpdates(Updates); 1904 return Changed; 1905 } 1906 1907 // Check lifetime markers. 1908 static bool isLifeTimeMarker(const Instruction *I) { 1909 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1910 switch (II->getIntrinsicID()) { 1911 default: 1912 break; 1913 case Intrinsic::lifetime_start: 1914 case Intrinsic::lifetime_end: 1915 return true; 1916 } 1917 } 1918 return false; 1919 } 1920 1921 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1922 // into variables. 1923 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1924 int OpIdx) { 1925 return !isa<IntrinsicInst>(I); 1926 } 1927 1928 // All instructions in Insts belong to different blocks that all unconditionally 1929 // branch to a common successor. Analyze each instruction and return true if it 1930 // would be possible to sink them into their successor, creating one common 1931 // instruction instead. For every value that would be required to be provided by 1932 // PHI node (because an operand varies in each input block), add to PHIOperands. 1933 static bool canSinkInstructions( 1934 ArrayRef<Instruction *> Insts, 1935 DenseMap<const Use *, SmallVector<Value *, 4>> &PHIOperands) { 1936 // Prune out obviously bad instructions to move. Each instruction must have 1937 // the same number of uses, and we check later that the uses are consistent. 1938 std::optional<unsigned> NumUses; 1939 for (auto *I : Insts) { 1940 // These instructions may change or break semantics if moved. 1941 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1942 I->getType()->isTokenTy()) 1943 return false; 1944 1945 // Do not try to sink an instruction in an infinite loop - it can cause 1946 // this algorithm to infinite loop. 1947 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1948 return false; 1949 1950 // Conservatively return false if I is an inline-asm instruction. Sinking 1951 // and merging inline-asm instructions can potentially create arguments 1952 // that cannot satisfy the inline-asm constraints. 1953 // If the instruction has nomerge or convergent attribute, return false. 1954 if (const auto *C = dyn_cast<CallBase>(I)) 1955 if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent()) 1956 return false; 1957 1958 if (!NumUses) 1959 NumUses = I->getNumUses(); 1960 else if (NumUses != I->getNumUses()) 1961 return false; 1962 } 1963 1964 const Instruction *I0 = Insts.front(); 1965 const auto I0MMRA = MMRAMetadata(*I0); 1966 for (auto *I : Insts) { 1967 if (!I->isSameOperationAs(I0)) 1968 return false; 1969 1970 // swifterror pointers can only be used by a load or store; sinking a load 1971 // or store would require introducing a select for the pointer operand, 1972 // which isn't allowed for swifterror pointers. 1973 if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError()) 1974 return false; 1975 if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError()) 1976 return false; 1977 1978 // Treat MMRAs conservatively. This pass can be quite aggressive and 1979 // could drop a lot of MMRAs otherwise. 1980 if (MMRAMetadata(*I) != I0MMRA) 1981 return false; 1982 } 1983 1984 // Uses must be consistent: If I0 is used in a phi node in the sink target, 1985 // then the other phi operands must match the instructions from Insts. This 1986 // also has to hold true for any phi nodes that would be created as a result 1987 // of sinking. Both of these cases are represented by PhiOperands. 1988 for (const Use &U : I0->uses()) { 1989 auto It = PHIOperands.find(&U); 1990 if (It == PHIOperands.end()) 1991 // There may be uses in other blocks when sinking into a loop header. 1992 return false; 1993 if (!equal(Insts, It->second)) 1994 return false; 1995 } 1996 1997 // Because SROA can't handle speculating stores of selects, try not to sink 1998 // loads, stores or lifetime markers of allocas when we'd have to create a 1999 // PHI for the address operand. Also, because it is likely that loads or 2000 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 2001 // them. 2002 // This can cause code churn which can have unintended consequences down 2003 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 2004 // FIXME: This is a workaround for a deficiency in SROA - see 2005 // https://llvm.org/bugs/show_bug.cgi?id=30188 2006 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 2007 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 2008 })) 2009 return false; 2010 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 2011 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 2012 })) 2013 return false; 2014 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 2015 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 2016 })) 2017 return false; 2018 2019 // For calls to be sinkable, they must all be indirect, or have same callee. 2020 // I.e. if we have two direct calls to different callees, we don't want to 2021 // turn that into an indirect call. Likewise, if we have an indirect call, 2022 // and a direct call, we don't actually want to have a single indirect call. 2023 if (isa<CallBase>(I0)) { 2024 auto IsIndirectCall = [](const Instruction *I) { 2025 return cast<CallBase>(I)->isIndirectCall(); 2026 }; 2027 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 2028 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 2029 if (HaveIndirectCalls) { 2030 if (!AllCallsAreIndirect) 2031 return false; 2032 } else { 2033 // All callees must be identical. 2034 Value *Callee = nullptr; 2035 for (const Instruction *I : Insts) { 2036 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 2037 if (!Callee) 2038 Callee = CurrCallee; 2039 else if (Callee != CurrCallee) 2040 return false; 2041 } 2042 } 2043 } 2044 2045 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 2046 Value *Op = I0->getOperand(OI); 2047 if (Op->getType()->isTokenTy()) 2048 // Don't touch any operand of token type. 2049 return false; 2050 2051 auto SameAsI0 = [&I0, OI](const Instruction *I) { 2052 assert(I->getNumOperands() == I0->getNumOperands()); 2053 return I->getOperand(OI) == I0->getOperand(OI); 2054 }; 2055 if (!all_of(Insts, SameAsI0)) { 2056 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 2057 !canReplaceOperandWithVariable(I0, OI)) 2058 // We can't create a PHI from this GEP. 2059 return false; 2060 auto &Ops = PHIOperands[&I0->getOperandUse(OI)]; 2061 for (auto *I : Insts) 2062 Ops.push_back(I->getOperand(OI)); 2063 } 2064 } 2065 return true; 2066 } 2067 2068 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 2069 // instruction of every block in Blocks to their common successor, commoning 2070 // into one instruction. 2071 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 2072 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 2073 2074 // canSinkInstructions returning true guarantees that every block has at 2075 // least one non-terminator instruction. 2076 SmallVector<Instruction*,4> Insts; 2077 for (auto *BB : Blocks) { 2078 Instruction *I = BB->getTerminator(); 2079 do { 2080 I = I->getPrevNode(); 2081 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 2082 if (!isa<DbgInfoIntrinsic>(I)) 2083 Insts.push_back(I); 2084 } 2085 2086 // We don't need to do any more checking here; canSinkInstructions should 2087 // have done it all for us. 2088 SmallVector<Value*, 4> NewOperands; 2089 Instruction *I0 = Insts.front(); 2090 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 2091 // This check is different to that in canSinkInstructions. There, we 2092 // cared about the global view once simplifycfg (and instcombine) have 2093 // completed - it takes into account PHIs that become trivially 2094 // simplifiable. However here we need a more local view; if an operand 2095 // differs we create a PHI and rely on instcombine to clean up the very 2096 // small mess we may make. 2097 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 2098 return I->getOperand(O) != I0->getOperand(O); 2099 }); 2100 if (!NeedPHI) { 2101 NewOperands.push_back(I0->getOperand(O)); 2102 continue; 2103 } 2104 2105 // Create a new PHI in the successor block and populate it. 2106 auto *Op = I0->getOperand(O); 2107 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 2108 auto *PN = 2109 PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink"); 2110 PN->insertBefore(BBEnd->begin()); 2111 for (auto *I : Insts) 2112 PN->addIncoming(I->getOperand(O), I->getParent()); 2113 NewOperands.push_back(PN); 2114 } 2115 2116 // Arbitrarily use I0 as the new "common" instruction; remap its operands 2117 // and move it to the start of the successor block. 2118 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 2119 I0->getOperandUse(O).set(NewOperands[O]); 2120 2121 I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt()); 2122 2123 // Update metadata and IR flags, and merge debug locations. 2124 for (auto *I : Insts) 2125 if (I != I0) { 2126 // The debug location for the "common" instruction is the merged locations 2127 // of all the commoned instructions. We start with the original location 2128 // of the "common" instruction and iteratively merge each location in the 2129 // loop below. 2130 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 2131 // However, as N-way merge for CallInst is rare, so we use simplified API 2132 // instead of using complex API for N-way merge. 2133 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 2134 combineMetadataForCSE(I0, I, true); 2135 I0->andIRFlags(I); 2136 } 2137 2138 for (User *U : make_early_inc_range(I0->users())) { 2139 // canSinkLastInstruction checked that all instructions are only used by 2140 // phi nodes in a way that allows replacing the phi node with the common 2141 // instruction. 2142 auto *PN = cast<PHINode>(U); 2143 PN->replaceAllUsesWith(I0); 2144 PN->eraseFromParent(); 2145 } 2146 2147 // Finally nuke all instructions apart from the common instruction. 2148 for (auto *I : Insts) { 2149 if (I == I0) 2150 continue; 2151 // The remaining uses are debug users, replace those with the common inst. 2152 // In most (all?) cases this just introduces a use-before-def. 2153 assert(I->user_empty() && "Inst unexpectedly still has non-dbg users"); 2154 I->replaceAllUsesWith(I0); 2155 I->eraseFromParent(); 2156 } 2157 } 2158 2159 namespace { 2160 2161 // LockstepReverseIterator - Iterates through instructions 2162 // in a set of blocks in reverse order from the first non-terminator. 2163 // For example (assume all blocks have size n): 2164 // LockstepReverseIterator I([B1, B2, B3]); 2165 // *I-- = [B1[n], B2[n], B3[n]]; 2166 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 2167 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 2168 // ... 2169 class LockstepReverseIterator { 2170 ArrayRef<BasicBlock*> Blocks; 2171 SmallVector<Instruction*,4> Insts; 2172 bool Fail; 2173 2174 public: 2175 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 2176 reset(); 2177 } 2178 2179 void reset() { 2180 Fail = false; 2181 Insts.clear(); 2182 for (auto *BB : Blocks) { 2183 Instruction *Inst = BB->getTerminator(); 2184 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2185 Inst = Inst->getPrevNode(); 2186 if (!Inst) { 2187 // Block wasn't big enough. 2188 Fail = true; 2189 return; 2190 } 2191 Insts.push_back(Inst); 2192 } 2193 } 2194 2195 bool isValid() const { 2196 return !Fail; 2197 } 2198 2199 void operator--() { 2200 if (Fail) 2201 return; 2202 for (auto *&Inst : Insts) { 2203 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2204 Inst = Inst->getPrevNode(); 2205 // Already at beginning of block. 2206 if (!Inst) { 2207 Fail = true; 2208 return; 2209 } 2210 } 2211 } 2212 2213 void operator++() { 2214 if (Fail) 2215 return; 2216 for (auto *&Inst : Insts) { 2217 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2218 Inst = Inst->getNextNode(); 2219 // Already at end of block. 2220 if (!Inst) { 2221 Fail = true; 2222 return; 2223 } 2224 } 2225 } 2226 2227 ArrayRef<Instruction*> operator * () const { 2228 return Insts; 2229 } 2230 }; 2231 2232 } // end anonymous namespace 2233 2234 /// Check whether BB's predecessors end with unconditional branches. If it is 2235 /// true, sink any common code from the predecessors to BB. 2236 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 2237 DomTreeUpdater *DTU) { 2238 // We support two situations: 2239 // (1) all incoming arcs are unconditional 2240 // (2) there are non-unconditional incoming arcs 2241 // 2242 // (2) is very common in switch defaults and 2243 // else-if patterns; 2244 // 2245 // if (a) f(1); 2246 // else if (b) f(2); 2247 // 2248 // produces: 2249 // 2250 // [if] 2251 // / \ 2252 // [f(1)] [if] 2253 // | | \ 2254 // | | | 2255 // | [f(2)]| 2256 // \ | / 2257 // [ end ] 2258 // 2259 // [end] has two unconditional predecessor arcs and one conditional. The 2260 // conditional refers to the implicit empty 'else' arc. This conditional 2261 // arc can also be caused by an empty default block in a switch. 2262 // 2263 // In this case, we attempt to sink code from all *unconditional* arcs. 2264 // If we can sink instructions from these arcs (determined during the scan 2265 // phase below) we insert a common successor for all unconditional arcs and 2266 // connect that to [end], to enable sinking: 2267 // 2268 // [if] 2269 // / \ 2270 // [x(1)] [if] 2271 // | | \ 2272 // | | \ 2273 // | [x(2)] | 2274 // \ / | 2275 // [sink.split] | 2276 // \ / 2277 // [ end ] 2278 // 2279 SmallVector<BasicBlock*,4> UnconditionalPreds; 2280 bool HaveNonUnconditionalPredecessors = false; 2281 for (auto *PredBB : predecessors(BB)) { 2282 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2283 if (PredBr && PredBr->isUnconditional()) 2284 UnconditionalPreds.push_back(PredBB); 2285 else 2286 HaveNonUnconditionalPredecessors = true; 2287 } 2288 if (UnconditionalPreds.size() < 2) 2289 return false; 2290 2291 // We take a two-step approach to tail sinking. First we scan from the end of 2292 // each block upwards in lockstep. If the n'th instruction from the end of each 2293 // block can be sunk, those instructions are added to ValuesToSink and we 2294 // carry on. If we can sink an instruction but need to PHI-merge some operands 2295 // (because they're not identical in each instruction) we add these to 2296 // PHIOperands. 2297 // We prepopulate PHIOperands with the phis that already exist in BB. 2298 DenseMap<const Use *, SmallVector<Value *, 4>> PHIOperands; 2299 for (PHINode &PN : BB->phis()) { 2300 SmallDenseMap<BasicBlock *, const Use *, 4> IncomingVals; 2301 for (const Use &U : PN.incoming_values()) 2302 IncomingVals.insert({PN.getIncomingBlock(U), &U}); 2303 auto &Ops = PHIOperands[IncomingVals[UnconditionalPreds[0]]]; 2304 for (BasicBlock *Pred : UnconditionalPreds) 2305 Ops.push_back(*IncomingVals[Pred]); 2306 } 2307 2308 int ScanIdx = 0; 2309 SmallPtrSet<Value*,4> InstructionsToSink; 2310 LockstepReverseIterator LRI(UnconditionalPreds); 2311 while (LRI.isValid() && 2312 canSinkInstructions(*LRI, PHIOperands)) { 2313 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2314 << "\n"); 2315 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2316 ++ScanIdx; 2317 --LRI; 2318 } 2319 2320 // If no instructions can be sunk, early-return. 2321 if (ScanIdx == 0) 2322 return false; 2323 2324 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2325 2326 if (!followedByDeoptOrUnreachable) { 2327 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2328 // actually sink before encountering instruction that is unprofitable to 2329 // sink? 2330 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2331 unsigned NumPHIInsts = 0; 2332 for (Use &U : (*LRI)[0]->operands()) { 2333 auto It = PHIOperands.find(&U); 2334 if (It != PHIOperands.end() && !all_of(It->second, [&](Value *V) { 2335 return InstructionsToSink.contains(V); 2336 })) { 2337 ++NumPHIInsts; 2338 // FIXME: this check is overly optimistic. We may end up not sinking 2339 // said instruction, due to the very same profitability check. 2340 // See @creating_too_many_phis in sink-common-code.ll. 2341 } 2342 } 2343 LLVM_DEBUG(dbgs() << "SINK: #phi insts: " << NumPHIInsts << "\n"); 2344 return NumPHIInsts <= 1; 2345 }; 2346 2347 // We've determined that we are going to sink last ScanIdx instructions, 2348 // and recorded them in InstructionsToSink. Now, some instructions may be 2349 // unprofitable to sink. But that determination depends on the instructions 2350 // that we are going to sink. 2351 2352 // First, forward scan: find the first instruction unprofitable to sink, 2353 // recording all the ones that are profitable to sink. 2354 // FIXME: would it be better, after we detect that not all are profitable. 2355 // to either record the profitable ones, or erase the unprofitable ones? 2356 // Maybe we need to choose (at runtime) the one that will touch least 2357 // instrs? 2358 LRI.reset(); 2359 int Idx = 0; 2360 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2361 while (Idx < ScanIdx) { 2362 if (!ProfitableToSinkInstruction(LRI)) { 2363 // Too many PHIs would be created. 2364 LLVM_DEBUG( 2365 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2366 break; 2367 } 2368 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2369 --LRI; 2370 ++Idx; 2371 } 2372 2373 // If no instructions can be sunk, early-return. 2374 if (Idx == 0) 2375 return false; 2376 2377 // Did we determine that (only) some instructions are unprofitable to sink? 2378 if (Idx < ScanIdx) { 2379 // Okay, some instructions are unprofitable. 2380 ScanIdx = Idx; 2381 InstructionsToSink = InstructionsProfitableToSink; 2382 2383 // But, that may make other instructions unprofitable, too. 2384 // So, do a backward scan, do any earlier instructions become 2385 // unprofitable? 2386 assert( 2387 !ProfitableToSinkInstruction(LRI) && 2388 "We already know that the last instruction is unprofitable to sink"); 2389 ++LRI; 2390 --Idx; 2391 while (Idx >= 0) { 2392 // If we detect that an instruction becomes unprofitable to sink, 2393 // all earlier instructions won't be sunk either, 2394 // so preemptively keep InstructionsProfitableToSink in sync. 2395 // FIXME: is this the most performant approach? 2396 for (auto *I : *LRI) 2397 InstructionsProfitableToSink.erase(I); 2398 if (!ProfitableToSinkInstruction(LRI)) { 2399 // Everything starting with this instruction won't be sunk. 2400 ScanIdx = Idx; 2401 InstructionsToSink = InstructionsProfitableToSink; 2402 } 2403 ++LRI; 2404 --Idx; 2405 } 2406 } 2407 2408 // If no instructions can be sunk, early-return. 2409 if (ScanIdx == 0) 2410 return false; 2411 } 2412 2413 bool Changed = false; 2414 2415 if (HaveNonUnconditionalPredecessors) { 2416 if (!followedByDeoptOrUnreachable) { 2417 // It is always legal to sink common instructions from unconditional 2418 // predecessors. However, if not all predecessors are unconditional, 2419 // this transformation might be pessimizing. So as a rule of thumb, 2420 // don't do it unless we'd sink at least one non-speculatable instruction. 2421 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2422 LRI.reset(); 2423 int Idx = 0; 2424 bool Profitable = false; 2425 while (Idx < ScanIdx) { 2426 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2427 Profitable = true; 2428 break; 2429 } 2430 --LRI; 2431 ++Idx; 2432 } 2433 if (!Profitable) 2434 return false; 2435 } 2436 2437 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2438 // We have a conditional edge and we're going to sink some instructions. 2439 // Insert a new block postdominating all blocks we're going to sink from. 2440 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2441 // Edges couldn't be split. 2442 return false; 2443 Changed = true; 2444 } 2445 2446 // Now that we've analyzed all potential sinking candidates, perform the 2447 // actual sink. We iteratively sink the last non-terminator of the source 2448 // blocks into their common successor unless doing so would require too 2449 // many PHI instructions to be generated (currently only one PHI is allowed 2450 // per sunk instruction). 2451 // 2452 // We can use InstructionsToSink to discount values needing PHI-merging that will 2453 // actually be sunk in a later iteration. This allows us to be more 2454 // aggressive in what we sink. This does allow a false positive where we 2455 // sink presuming a later value will also be sunk, but stop half way through 2456 // and never actually sink it which means we produce more PHIs than intended. 2457 // This is unlikely in practice though. 2458 int SinkIdx = 0; 2459 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2460 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2461 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2462 << "\n"); 2463 2464 // Because we've sunk every instruction in turn, the current instruction to 2465 // sink is always at index 0. 2466 LRI.reset(); 2467 2468 sinkLastInstruction(UnconditionalPreds); 2469 NumSinkCommonInstrs++; 2470 Changed = true; 2471 } 2472 if (SinkIdx != 0) 2473 ++NumSinkCommonCode; 2474 return Changed; 2475 } 2476 2477 namespace { 2478 2479 struct CompatibleSets { 2480 using SetTy = SmallVector<InvokeInst *, 2>; 2481 2482 SmallVector<SetTy, 1> Sets; 2483 2484 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2485 2486 SetTy &getCompatibleSet(InvokeInst *II); 2487 2488 void insert(InvokeInst *II); 2489 }; 2490 2491 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2492 // Perform a linear scan over all the existing sets, see if the new `invoke` 2493 // is compatible with any particular set. Since we know that all the `invokes` 2494 // within a set are compatible, only check the first `invoke` in each set. 2495 // WARNING: at worst, this has quadratic complexity. 2496 for (CompatibleSets::SetTy &Set : Sets) { 2497 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2498 return Set; 2499 } 2500 2501 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2502 return Sets.emplace_back(); 2503 } 2504 2505 void CompatibleSets::insert(InvokeInst *II) { 2506 getCompatibleSet(II).emplace_back(II); 2507 } 2508 2509 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2510 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2511 2512 // Can we theoretically merge these `invoke`s? 2513 auto IsIllegalToMerge = [](InvokeInst *II) { 2514 return II->cannotMerge() || II->isInlineAsm(); 2515 }; 2516 if (any_of(Invokes, IsIllegalToMerge)) 2517 return false; 2518 2519 // Either both `invoke`s must be direct, 2520 // or both `invoke`s must be indirect. 2521 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2522 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2523 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2524 if (HaveIndirectCalls) { 2525 if (!AllCallsAreIndirect) 2526 return false; 2527 } else { 2528 // All callees must be identical. 2529 Value *Callee = nullptr; 2530 for (InvokeInst *II : Invokes) { 2531 Value *CurrCallee = II->getCalledOperand(); 2532 assert(CurrCallee && "There is always a called operand."); 2533 if (!Callee) 2534 Callee = CurrCallee; 2535 else if (Callee != CurrCallee) 2536 return false; 2537 } 2538 } 2539 2540 // Either both `invoke`s must not have a normal destination, 2541 // or both `invoke`s must have a normal destination, 2542 auto HasNormalDest = [](InvokeInst *II) { 2543 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2544 }; 2545 if (any_of(Invokes, HasNormalDest)) { 2546 // Do not merge `invoke` that does not have a normal destination with one 2547 // that does have a normal destination, even though doing so would be legal. 2548 if (!all_of(Invokes, HasNormalDest)) 2549 return false; 2550 2551 // All normal destinations must be identical. 2552 BasicBlock *NormalBB = nullptr; 2553 for (InvokeInst *II : Invokes) { 2554 BasicBlock *CurrNormalBB = II->getNormalDest(); 2555 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2556 if (!NormalBB) 2557 NormalBB = CurrNormalBB; 2558 else if (NormalBB != CurrNormalBB) 2559 return false; 2560 } 2561 2562 // In the normal destination, the incoming values for these two `invoke`s 2563 // must be compatible. 2564 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2565 if (!IncomingValuesAreCompatible( 2566 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2567 &EquivalenceSet)) 2568 return false; 2569 } 2570 2571 #ifndef NDEBUG 2572 // All unwind destinations must be identical. 2573 // We know that because we have started from said unwind destination. 2574 BasicBlock *UnwindBB = nullptr; 2575 for (InvokeInst *II : Invokes) { 2576 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2577 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2578 if (!UnwindBB) 2579 UnwindBB = CurrUnwindBB; 2580 else 2581 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2582 } 2583 #endif 2584 2585 // In the unwind destination, the incoming values for these two `invoke`s 2586 // must be compatible. 2587 if (!IncomingValuesAreCompatible( 2588 Invokes.front()->getUnwindDest(), 2589 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2590 return false; 2591 2592 // Ignoring arguments, these `invoke`s must be identical, 2593 // including operand bundles. 2594 const InvokeInst *II0 = Invokes.front(); 2595 for (auto *II : Invokes.drop_front()) 2596 if (!II->isSameOperationAs(II0)) 2597 return false; 2598 2599 // Can we theoretically form the data operands for the merged `invoke`? 2600 auto IsIllegalToMergeArguments = [](auto Ops) { 2601 Use &U0 = std::get<0>(Ops); 2602 Use &U1 = std::get<1>(Ops); 2603 if (U0 == U1) 2604 return false; 2605 return U0->getType()->isTokenTy() || 2606 !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()), 2607 U0.getOperandNo()); 2608 }; 2609 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2610 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2611 IsIllegalToMergeArguments)) 2612 return false; 2613 2614 return true; 2615 } 2616 2617 } // namespace 2618 2619 // Merge all invokes in the provided set, all of which are compatible 2620 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2621 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2622 DomTreeUpdater *DTU) { 2623 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2624 2625 SmallVector<DominatorTree::UpdateType, 8> Updates; 2626 if (DTU) 2627 Updates.reserve(2 + 3 * Invokes.size()); 2628 2629 bool HasNormalDest = 2630 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2631 2632 // Clone one of the invokes into a new basic block. 2633 // Since they are all compatible, it doesn't matter which invoke is cloned. 2634 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2635 InvokeInst *II0 = Invokes.front(); 2636 BasicBlock *II0BB = II0->getParent(); 2637 BasicBlock *InsertBeforeBlock = 2638 II0->getParent()->getIterator()->getNextNode(); 2639 Function *Func = II0BB->getParent(); 2640 LLVMContext &Ctx = II0->getContext(); 2641 2642 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2643 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2644 2645 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2646 // NOTE: all invokes have the same attributes, so no handling needed. 2647 MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end()); 2648 2649 if (!HasNormalDest) { 2650 // This set does not have a normal destination, 2651 // so just form a new block with unreachable terminator. 2652 BasicBlock *MergedNormalDest = BasicBlock::Create( 2653 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2654 new UnreachableInst(Ctx, MergedNormalDest); 2655 MergedInvoke->setNormalDest(MergedNormalDest); 2656 } 2657 2658 // The unwind destination, however, remainds identical for all invokes here. 2659 2660 return MergedInvoke; 2661 }(); 2662 2663 if (DTU) { 2664 // Predecessor blocks that contained these invokes will now branch to 2665 // the new block that contains the merged invoke, ... 2666 for (InvokeInst *II : Invokes) 2667 Updates.push_back( 2668 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2669 2670 // ... which has the new `unreachable` block as normal destination, 2671 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2672 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2673 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2674 SuccBBOfMergedInvoke}); 2675 2676 // Since predecessor blocks now unconditionally branch to a new block, 2677 // they no longer branch to their original successors. 2678 for (InvokeInst *II : Invokes) 2679 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2680 Updates.push_back( 2681 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2682 } 2683 2684 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2685 2686 // Form the merged operands for the merged invoke. 2687 for (Use &U : MergedInvoke->operands()) { 2688 // Only PHI together the indirect callees and data operands. 2689 if (MergedInvoke->isCallee(&U)) { 2690 if (!IsIndirectCall) 2691 continue; 2692 } else if (!MergedInvoke->isDataOperand(&U)) 2693 continue; 2694 2695 // Don't create trivial PHI's with all-identical incoming values. 2696 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2697 return II->getOperand(U.getOperandNo()) != U.get(); 2698 }); 2699 if (!NeedPHI) 2700 continue; 2701 2702 // Form a PHI out of all the data ops under this index. 2703 PHINode *PN = PHINode::Create( 2704 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke->getIterator()); 2705 for (InvokeInst *II : Invokes) 2706 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2707 2708 U.set(PN); 2709 } 2710 2711 // We've ensured that each PHI node has compatible (identical) incoming values 2712 // when coming from each of the `invoke`s in the current merge set, 2713 // so update the PHI nodes accordingly. 2714 for (BasicBlock *Succ : successors(MergedInvoke)) 2715 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2716 /*ExistPred=*/Invokes.front()->getParent()); 2717 2718 // And finally, replace the original `invoke`s with an unconditional branch 2719 // to the block with the merged `invoke`. Also, give that merged `invoke` 2720 // the merged debugloc of all the original `invoke`s. 2721 DILocation *MergedDebugLoc = nullptr; 2722 for (InvokeInst *II : Invokes) { 2723 // Compute the debug location common to all the original `invoke`s. 2724 if (!MergedDebugLoc) 2725 MergedDebugLoc = II->getDebugLoc(); 2726 else 2727 MergedDebugLoc = 2728 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2729 2730 // And replace the old `invoke` with an unconditionally branch 2731 // to the block with the merged `invoke`. 2732 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2733 OrigSuccBB->removePredecessor(II->getParent()); 2734 BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2735 II->replaceAllUsesWith(MergedInvoke); 2736 II->eraseFromParent(); 2737 ++NumInvokesMerged; 2738 } 2739 MergedInvoke->setDebugLoc(MergedDebugLoc); 2740 ++NumInvokeSetsFormed; 2741 2742 if (DTU) 2743 DTU->applyUpdates(Updates); 2744 } 2745 2746 /// If this block is a `landingpad` exception handling block, categorize all 2747 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2748 /// being "mergeable" together, and then merge invokes in each set together. 2749 /// 2750 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2751 /// [...] [...] 2752 /// | | 2753 /// [invoke0] [invoke1] 2754 /// / \ / \ 2755 /// [cont0] [landingpad] [cont1] 2756 /// to: 2757 /// [...] [...] 2758 /// \ / 2759 /// [invoke] 2760 /// / \ 2761 /// [cont] [landingpad] 2762 /// 2763 /// But of course we can only do that if the invokes share the `landingpad`, 2764 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2765 /// and the invoked functions are "compatible". 2766 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2767 if (!EnableMergeCompatibleInvokes) 2768 return false; 2769 2770 bool Changed = false; 2771 2772 // FIXME: generalize to all exception handling blocks? 2773 if (!BB->isLandingPad()) 2774 return Changed; 2775 2776 CompatibleSets Grouper; 2777 2778 // Record all the predecessors of this `landingpad`. As per verifier, 2779 // the only allowed predecessor is the unwind edge of an `invoke`. 2780 // We want to group "compatible" `invokes` into the same set to be merged. 2781 for (BasicBlock *PredBB : predecessors(BB)) 2782 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 2783 2784 // And now, merge `invoke`s that were grouped togeter. 2785 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 2786 if (Invokes.size() < 2) 2787 continue; 2788 Changed = true; 2789 MergeCompatibleInvokesImpl(Invokes, DTU); 2790 } 2791 2792 return Changed; 2793 } 2794 2795 namespace { 2796 /// Track ephemeral values, which should be ignored for cost-modelling 2797 /// purposes. Requires walking instructions in reverse order. 2798 class EphemeralValueTracker { 2799 SmallPtrSet<const Instruction *, 32> EphValues; 2800 2801 bool isEphemeral(const Instruction *I) { 2802 if (isa<AssumeInst>(I)) 2803 return true; 2804 return !I->mayHaveSideEffects() && !I->isTerminator() && 2805 all_of(I->users(), [&](const User *U) { 2806 return EphValues.count(cast<Instruction>(U)); 2807 }); 2808 } 2809 2810 public: 2811 bool track(const Instruction *I) { 2812 if (isEphemeral(I)) { 2813 EphValues.insert(I); 2814 return true; 2815 } 2816 return false; 2817 } 2818 2819 bool contains(const Instruction *I) const { return EphValues.contains(I); } 2820 }; 2821 } // namespace 2822 2823 /// Determine if we can hoist sink a sole store instruction out of a 2824 /// conditional block. 2825 /// 2826 /// We are looking for code like the following: 2827 /// BrBB: 2828 /// store i32 %add, i32* %arrayidx2 2829 /// ... // No other stores or function calls (we could be calling a memory 2830 /// ... // function). 2831 /// %cmp = icmp ult %x, %y 2832 /// br i1 %cmp, label %EndBB, label %ThenBB 2833 /// ThenBB: 2834 /// store i32 %add5, i32* %arrayidx2 2835 /// br label EndBB 2836 /// EndBB: 2837 /// ... 2838 /// We are going to transform this into: 2839 /// BrBB: 2840 /// store i32 %add, i32* %arrayidx2 2841 /// ... // 2842 /// %cmp = icmp ult %x, %y 2843 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2844 /// store i32 %add.add5, i32* %arrayidx2 2845 /// ... 2846 /// 2847 /// \return The pointer to the value of the previous store if the store can be 2848 /// hoisted into the predecessor block. 0 otherwise. 2849 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2850 BasicBlock *StoreBB, BasicBlock *EndBB) { 2851 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2852 if (!StoreToHoist) 2853 return nullptr; 2854 2855 // Volatile or atomic. 2856 if (!StoreToHoist->isSimple()) 2857 return nullptr; 2858 2859 Value *StorePtr = StoreToHoist->getPointerOperand(); 2860 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 2861 2862 // Look for a store to the same pointer in BrBB. 2863 unsigned MaxNumInstToLookAt = 9; 2864 // Skip pseudo probe intrinsic calls which are not really killing any memory 2865 // accesses. 2866 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2867 if (!MaxNumInstToLookAt) 2868 break; 2869 --MaxNumInstToLookAt; 2870 2871 // Could be calling an instruction that affects memory like free(). 2872 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 2873 return nullptr; 2874 2875 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2876 // Found the previous store to same location and type. Make sure it is 2877 // simple, to avoid introducing a spurious non-atomic write after an 2878 // atomic write. 2879 if (SI->getPointerOperand() == StorePtr && 2880 SI->getValueOperand()->getType() == StoreTy && SI->isSimple() && 2881 SI->getAlign() >= StoreToHoist->getAlign()) 2882 // Found the previous store, return its value operand. 2883 return SI->getValueOperand(); 2884 return nullptr; // Unknown store. 2885 } 2886 2887 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 2888 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 2889 LI->isSimple() && LI->getAlign() >= StoreToHoist->getAlign()) { 2890 // Local objects (created by an `alloca` instruction) are always 2891 // writable, so once we are past a read from a location it is valid to 2892 // also write to that same location. 2893 // If the address of the local object never escapes the function, that 2894 // means it's never concurrently read or written, hence moving the store 2895 // from under the condition will not introduce a data race. 2896 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr)); 2897 if (AI && !PointerMayBeCaptured(AI, false, true)) 2898 // Found a previous load, return it. 2899 return LI; 2900 } 2901 // The load didn't work out, but we may still find a store. 2902 } 2903 } 2904 2905 return nullptr; 2906 } 2907 2908 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2909 /// converted to selects. 2910 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2911 BasicBlock *EndBB, 2912 unsigned &SpeculatedInstructions, 2913 InstructionCost &Cost, 2914 const TargetTransformInfo &TTI) { 2915 TargetTransformInfo::TargetCostKind CostKind = 2916 BB->getParent()->hasMinSize() 2917 ? TargetTransformInfo::TCK_CodeSize 2918 : TargetTransformInfo::TCK_SizeAndLatency; 2919 2920 bool HaveRewritablePHIs = false; 2921 for (PHINode &PN : EndBB->phis()) { 2922 Value *OrigV = PN.getIncomingValueForBlock(BB); 2923 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2924 2925 // FIXME: Try to remove some of the duplication with 2926 // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial. 2927 if (ThenV == OrigV) 2928 continue; 2929 2930 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2931 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2932 2933 // Don't convert to selects if we could remove undefined behavior instead. 2934 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2935 passingValueIsAlwaysUndefined(ThenV, &PN)) 2936 return false; 2937 2938 HaveRewritablePHIs = true; 2939 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2940 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2941 if (!OrigCE && !ThenCE) 2942 continue; // Known cheap (FIXME: Maybe not true for aggregates). 2943 2944 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2945 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2946 InstructionCost MaxCost = 2947 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2948 if (OrigCost + ThenCost > MaxCost) 2949 return false; 2950 2951 // Account for the cost of an unfolded ConstantExpr which could end up 2952 // getting expanded into Instructions. 2953 // FIXME: This doesn't account for how many operations are combined in the 2954 // constant expression. 2955 ++SpeculatedInstructions; 2956 if (SpeculatedInstructions > 1) 2957 return false; 2958 } 2959 2960 return HaveRewritablePHIs; 2961 } 2962 2963 /// Speculate a conditional basic block flattening the CFG. 2964 /// 2965 /// Note that this is a very risky transform currently. Speculating 2966 /// instructions like this is most often not desirable. Instead, there is an MI 2967 /// pass which can do it with full awareness of the resource constraints. 2968 /// However, some cases are "obvious" and we should do directly. An example of 2969 /// this is speculating a single, reasonably cheap instruction. 2970 /// 2971 /// There is only one distinct advantage to flattening the CFG at the IR level: 2972 /// it makes very common but simplistic optimizations such as are common in 2973 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2974 /// modeling their effects with easier to reason about SSA value graphs. 2975 /// 2976 /// 2977 /// An illustration of this transform is turning this IR: 2978 /// \code 2979 /// BB: 2980 /// %cmp = icmp ult %x, %y 2981 /// br i1 %cmp, label %EndBB, label %ThenBB 2982 /// ThenBB: 2983 /// %sub = sub %x, %y 2984 /// br label BB2 2985 /// EndBB: 2986 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2987 /// ... 2988 /// \endcode 2989 /// 2990 /// Into this IR: 2991 /// \code 2992 /// BB: 2993 /// %cmp = icmp ult %x, %y 2994 /// %sub = sub %x, %y 2995 /// %cond = select i1 %cmp, 0, %sub 2996 /// ... 2997 /// \endcode 2998 /// 2999 /// \returns true if the conditional block is removed. 3000 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, 3001 BasicBlock *ThenBB) { 3002 if (!Options.SpeculateBlocks) 3003 return false; 3004 3005 // Be conservative for now. FP select instruction can often be expensive. 3006 Value *BrCond = BI->getCondition(); 3007 if (isa<FCmpInst>(BrCond)) 3008 return false; 3009 3010 BasicBlock *BB = BI->getParent(); 3011 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 3012 InstructionCost Budget = 3013 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3014 3015 // If ThenBB is actually on the false edge of the conditional branch, remember 3016 // to swap the select operands later. 3017 bool Invert = false; 3018 if (ThenBB != BI->getSuccessor(0)) { 3019 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 3020 Invert = true; 3021 } 3022 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 3023 3024 // If the branch is non-unpredictable, and is predicted to *not* branch to 3025 // the `then` block, then avoid speculating it. 3026 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) { 3027 uint64_t TWeight, FWeight; 3028 if (extractBranchWeights(*BI, TWeight, FWeight) && 3029 (TWeight + FWeight) != 0) { 3030 uint64_t EndWeight = Invert ? TWeight : FWeight; 3031 BranchProbability BIEndProb = 3032 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 3033 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3034 if (BIEndProb >= Likely) 3035 return false; 3036 } 3037 } 3038 3039 // Keep a count of how many times instructions are used within ThenBB when 3040 // they are candidates for sinking into ThenBB. Specifically: 3041 // - They are defined in BB, and 3042 // - They have no side effects, and 3043 // - All of their uses are in ThenBB. 3044 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 3045 3046 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 3047 3048 unsigned SpeculatedInstructions = 0; 3049 Value *SpeculatedStoreValue = nullptr; 3050 StoreInst *SpeculatedStore = nullptr; 3051 EphemeralValueTracker EphTracker; 3052 for (Instruction &I : reverse(drop_end(*ThenBB))) { 3053 // Skip debug info. 3054 if (isa<DbgInfoIntrinsic>(I)) { 3055 SpeculatedDbgIntrinsics.push_back(&I); 3056 continue; 3057 } 3058 3059 // Skip pseudo probes. The consequence is we lose track of the branch 3060 // probability for ThenBB, which is fine since the optimization here takes 3061 // place regardless of the branch probability. 3062 if (isa<PseudoProbeInst>(I)) { 3063 // The probe should be deleted so that it will not be over-counted when 3064 // the samples collected on the non-conditional path are counted towards 3065 // the conditional path. We leave it for the counts inference algorithm to 3066 // figure out a proper count for an unknown probe. 3067 SpeculatedDbgIntrinsics.push_back(&I); 3068 continue; 3069 } 3070 3071 // Ignore ephemeral values, they will be dropped by the transform. 3072 if (EphTracker.track(&I)) 3073 continue; 3074 3075 // Only speculatively execute a single instruction (not counting the 3076 // terminator) for now. 3077 ++SpeculatedInstructions; 3078 if (SpeculatedInstructions > 1) 3079 return false; 3080 3081 // Don't hoist the instruction if it's unsafe or expensive. 3082 if (!isSafeToSpeculativelyExecute(&I) && 3083 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 3084 &I, BB, ThenBB, EndBB)))) 3085 return false; 3086 if (!SpeculatedStoreValue && 3087 computeSpeculationCost(&I, TTI) > 3088 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 3089 return false; 3090 3091 // Store the store speculation candidate. 3092 if (SpeculatedStoreValue) 3093 SpeculatedStore = cast<StoreInst>(&I); 3094 3095 // Do not hoist the instruction if any of its operands are defined but not 3096 // used in BB. The transformation will prevent the operand from 3097 // being sunk into the use block. 3098 for (Use &Op : I.operands()) { 3099 Instruction *OpI = dyn_cast<Instruction>(Op); 3100 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 3101 continue; // Not a candidate for sinking. 3102 3103 ++SinkCandidateUseCounts[OpI]; 3104 } 3105 } 3106 3107 // Consider any sink candidates which are only used in ThenBB as costs for 3108 // speculation. Note, while we iterate over a DenseMap here, we are summing 3109 // and so iteration order isn't significant. 3110 for (const auto &[Inst, Count] : SinkCandidateUseCounts) 3111 if (Inst->hasNUses(Count)) { 3112 ++SpeculatedInstructions; 3113 if (SpeculatedInstructions > 1) 3114 return false; 3115 } 3116 3117 // Check that we can insert the selects and that it's not too expensive to do 3118 // so. 3119 bool Convert = SpeculatedStore != nullptr; 3120 InstructionCost Cost = 0; 3121 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 3122 SpeculatedInstructions, 3123 Cost, TTI); 3124 if (!Convert || Cost > Budget) 3125 return false; 3126 3127 // If we get here, we can hoist the instruction and if-convert. 3128 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 3129 3130 // Insert a select of the value of the speculated store. 3131 if (SpeculatedStoreValue) { 3132 IRBuilder<NoFolder> Builder(BI); 3133 Value *OrigV = SpeculatedStore->getValueOperand(); 3134 Value *TrueV = SpeculatedStore->getValueOperand(); 3135 Value *FalseV = SpeculatedStoreValue; 3136 if (Invert) 3137 std::swap(TrueV, FalseV); 3138 Value *S = Builder.CreateSelect( 3139 BrCond, TrueV, FalseV, "spec.store.select", BI); 3140 SpeculatedStore->setOperand(0, S); 3141 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 3142 SpeculatedStore->getDebugLoc()); 3143 // The value stored is still conditional, but the store itself is now 3144 // unconditonally executed, so we must be sure that any linked dbg.assign 3145 // intrinsics are tracking the new stored value (the result of the 3146 // select). If we don't, and the store were to be removed by another pass 3147 // (e.g. DSE), then we'd eventually end up emitting a location describing 3148 // the conditional value, unconditionally. 3149 // 3150 // === Before this transformation === 3151 // pred: 3152 // store %one, %x.dest, !DIAssignID !1 3153 // dbg.assign %one, "x", ..., !1, ... 3154 // br %cond if.then 3155 // 3156 // if.then: 3157 // store %two, %x.dest, !DIAssignID !2 3158 // dbg.assign %two, "x", ..., !2, ... 3159 // 3160 // === After this transformation === 3161 // pred: 3162 // store %one, %x.dest, !DIAssignID !1 3163 // dbg.assign %one, "x", ..., !1 3164 /// ... 3165 // %merge = select %cond, %two, %one 3166 // store %merge, %x.dest, !DIAssignID !2 3167 // dbg.assign %merge, "x", ..., !2 3168 auto replaceVariable = [OrigV, S](auto *DbgAssign) { 3169 if (llvm::is_contained(DbgAssign->location_ops(), OrigV)) 3170 DbgAssign->replaceVariableLocationOp(OrigV, S); 3171 }; 3172 for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable); 3173 for_each(at::getDVRAssignmentMarkers(SpeculatedStore), replaceVariable); 3174 } 3175 3176 // Metadata can be dependent on the condition we are hoisting above. 3177 // Strip all UB-implying metadata on the instruction. Drop the debug loc 3178 // to avoid making it appear as if the condition is a constant, which would 3179 // be misleading while debugging. 3180 // Similarly strip attributes that maybe dependent on condition we are 3181 // hoisting above. 3182 for (auto &I : make_early_inc_range(*ThenBB)) { 3183 if (!SpeculatedStoreValue || &I != SpeculatedStore) { 3184 // Don't update the DILocation of dbg.assign intrinsics. 3185 if (!isa<DbgAssignIntrinsic>(&I)) 3186 I.setDebugLoc(DebugLoc()); 3187 } 3188 I.dropUBImplyingAttrsAndMetadata(); 3189 3190 // Drop ephemeral values. 3191 if (EphTracker.contains(&I)) { 3192 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 3193 I.eraseFromParent(); 3194 } 3195 } 3196 3197 // Hoist the instructions. 3198 // In "RemoveDIs" non-instr debug-info mode, drop DbgVariableRecords attached 3199 // to these instructions, in the same way that dbg.value intrinsics are 3200 // dropped at the end of this block. 3201 for (auto &It : make_range(ThenBB->begin(), ThenBB->end())) 3202 for (DbgRecord &DR : make_early_inc_range(It.getDbgRecordRange())) 3203 // Drop all records except assign-kind DbgVariableRecords (dbg.assign 3204 // equivalent). 3205 if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR); 3206 !DVR || !DVR->isDbgAssign()) 3207 It.dropOneDbgRecord(&DR); 3208 BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(), 3209 std::prev(ThenBB->end())); 3210 3211 // Insert selects and rewrite the PHI operands. 3212 IRBuilder<NoFolder> Builder(BI); 3213 for (PHINode &PN : EndBB->phis()) { 3214 unsigned OrigI = PN.getBasicBlockIndex(BB); 3215 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 3216 Value *OrigV = PN.getIncomingValue(OrigI); 3217 Value *ThenV = PN.getIncomingValue(ThenI); 3218 3219 // Skip PHIs which are trivial. 3220 if (OrigV == ThenV) 3221 continue; 3222 3223 // Create a select whose true value is the speculatively executed value and 3224 // false value is the pre-existing value. Swap them if the branch 3225 // destinations were inverted. 3226 Value *TrueV = ThenV, *FalseV = OrigV; 3227 if (Invert) 3228 std::swap(TrueV, FalseV); 3229 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 3230 PN.setIncomingValue(OrigI, V); 3231 PN.setIncomingValue(ThenI, V); 3232 } 3233 3234 // Remove speculated dbg intrinsics. 3235 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 3236 // dbg value for the different flows and inserting it after the select. 3237 for (Instruction *I : SpeculatedDbgIntrinsics) { 3238 // We still want to know that an assignment took place so don't remove 3239 // dbg.assign intrinsics. 3240 if (!isa<DbgAssignIntrinsic>(I)) 3241 I->eraseFromParent(); 3242 } 3243 3244 ++NumSpeculations; 3245 return true; 3246 } 3247 3248 /// Return true if we can thread a branch across this block. 3249 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 3250 int Size = 0; 3251 EphemeralValueTracker EphTracker; 3252 3253 // Walk the loop in reverse so that we can identify ephemeral values properly 3254 // (values only feeding assumes). 3255 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 3256 // Can't fold blocks that contain noduplicate or convergent calls. 3257 if (CallInst *CI = dyn_cast<CallInst>(&I)) 3258 if (CI->cannotDuplicate() || CI->isConvergent()) 3259 return false; 3260 3261 // Ignore ephemeral values which are deleted during codegen. 3262 // We will delete Phis while threading, so Phis should not be accounted in 3263 // block's size. 3264 if (!EphTracker.track(&I) && !isa<PHINode>(I)) { 3265 if (Size++ > MaxSmallBlockSize) 3266 return false; // Don't clone large BB's. 3267 } 3268 3269 // We can only support instructions that do not define values that are 3270 // live outside of the current basic block. 3271 for (User *U : I.users()) { 3272 Instruction *UI = cast<Instruction>(U); 3273 if (UI->getParent() != BB || isa<PHINode>(UI)) 3274 return false; 3275 } 3276 3277 // Looks ok, continue checking. 3278 } 3279 3280 return true; 3281 } 3282 3283 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From, 3284 BasicBlock *To) { 3285 // Don't look past the block defining the value, we might get the value from 3286 // a previous loop iteration. 3287 auto *I = dyn_cast<Instruction>(V); 3288 if (I && I->getParent() == To) 3289 return nullptr; 3290 3291 // We know the value if the From block branches on it. 3292 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 3293 if (BI && BI->isConditional() && BI->getCondition() == V && 3294 BI->getSuccessor(0) != BI->getSuccessor(1)) 3295 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext()) 3296 : ConstantInt::getFalse(BI->getContext()); 3297 3298 return nullptr; 3299 } 3300 3301 /// If we have a conditional branch on something for which we know the constant 3302 /// value in predecessors (e.g. a phi node in the current block), thread edges 3303 /// from the predecessor to their ultimate destination. 3304 static std::optional<bool> 3305 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU, 3306 const DataLayout &DL, 3307 AssumptionCache *AC) { 3308 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues; 3309 BasicBlock *BB = BI->getParent(); 3310 Value *Cond = BI->getCondition(); 3311 PHINode *PN = dyn_cast<PHINode>(Cond); 3312 if (PN && PN->getParent() == BB) { 3313 // Degenerate case of a single entry PHI. 3314 if (PN->getNumIncomingValues() == 1) { 3315 FoldSingleEntryPHINodes(PN->getParent()); 3316 return true; 3317 } 3318 3319 for (Use &U : PN->incoming_values()) 3320 if (auto *CB = dyn_cast<ConstantInt>(U)) 3321 KnownValues[CB].insert(PN->getIncomingBlock(U)); 3322 } else { 3323 for (BasicBlock *Pred : predecessors(BB)) { 3324 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB)) 3325 KnownValues[CB].insert(Pred); 3326 } 3327 } 3328 3329 if (KnownValues.empty()) 3330 return false; 3331 3332 // Now we know that this block has multiple preds and two succs. 3333 // Check that the block is small enough and values defined in the block are 3334 // not used outside of it. 3335 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 3336 return false; 3337 3338 for (const auto &Pair : KnownValues) { 3339 // Okay, we now know that all edges from PredBB should be revectored to 3340 // branch to RealDest. 3341 ConstantInt *CB = Pair.first; 3342 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef(); 3343 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3344 3345 if (RealDest == BB) 3346 continue; // Skip self loops. 3347 3348 // Skip if the predecessor's terminator is an indirect branch. 3349 if (any_of(PredBBs, [](BasicBlock *PredBB) { 3350 return isa<IndirectBrInst>(PredBB->getTerminator()); 3351 })) 3352 continue; 3353 3354 LLVM_DEBUG({ 3355 dbgs() << "Condition " << *Cond << " in " << BB->getName() 3356 << " has value " << *Pair.first << " in predecessors:\n"; 3357 for (const BasicBlock *PredBB : Pair.second) 3358 dbgs() << " " << PredBB->getName() << "\n"; 3359 dbgs() << "Threading to destination " << RealDest->getName() << ".\n"; 3360 }); 3361 3362 // Split the predecessors we are threading into a new edge block. We'll 3363 // clone the instructions into this block, and then redirect it to RealDest. 3364 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU); 3365 3366 // TODO: These just exist to reduce test diff, we can drop them if we like. 3367 EdgeBB->setName(RealDest->getName() + ".critedge"); 3368 EdgeBB->moveBefore(RealDest); 3369 3370 // Update PHI nodes. 3371 AddPredecessorToBlock(RealDest, EdgeBB, BB); 3372 3373 // BB may have instructions that are being threaded over. Clone these 3374 // instructions into EdgeBB. We know that there will be no uses of the 3375 // cloned instructions outside of EdgeBB. 3376 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt(); 3377 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3378 TranslateMap[Cond] = CB; 3379 3380 // RemoveDIs: track instructions that we optimise away while folding, so 3381 // that we can copy DbgVariableRecords from them later. 3382 BasicBlock::iterator SrcDbgCursor = BB->begin(); 3383 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3384 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3385 TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB); 3386 continue; 3387 } 3388 // Clone the instruction. 3389 Instruction *N = BBI->clone(); 3390 // Insert the new instruction into its new home. 3391 N->insertInto(EdgeBB, InsertPt); 3392 3393 if (BBI->hasName()) 3394 N->setName(BBI->getName() + ".c"); 3395 3396 // Update operands due to translation. 3397 for (Use &Op : N->operands()) { 3398 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3399 if (PI != TranslateMap.end()) 3400 Op = PI->second; 3401 } 3402 3403 // Check for trivial simplification. 3404 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3405 if (!BBI->use_empty()) 3406 TranslateMap[&*BBI] = V; 3407 if (!N->mayHaveSideEffects()) { 3408 N->eraseFromParent(); // Instruction folded away, don't need actual 3409 // inst 3410 N = nullptr; 3411 } 3412 } else { 3413 if (!BBI->use_empty()) 3414 TranslateMap[&*BBI] = N; 3415 } 3416 if (N) { 3417 // Copy all debug-info attached to instructions from the last we 3418 // successfully clone, up to this instruction (they might have been 3419 // folded away). 3420 for (; SrcDbgCursor != BBI; ++SrcDbgCursor) 3421 N->cloneDebugInfoFrom(&*SrcDbgCursor); 3422 SrcDbgCursor = std::next(BBI); 3423 // Clone debug-info on this instruction too. 3424 N->cloneDebugInfoFrom(&*BBI); 3425 3426 // Register the new instruction with the assumption cache if necessary. 3427 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3428 if (AC) 3429 AC->registerAssumption(Assume); 3430 } 3431 } 3432 3433 for (; &*SrcDbgCursor != BI; ++SrcDbgCursor) 3434 InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor); 3435 InsertPt->cloneDebugInfoFrom(BI); 3436 3437 BB->removePredecessor(EdgeBB); 3438 BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator()); 3439 EdgeBI->setSuccessor(0, RealDest); 3440 EdgeBI->setDebugLoc(BI->getDebugLoc()); 3441 3442 if (DTU) { 3443 SmallVector<DominatorTree::UpdateType, 2> Updates; 3444 Updates.push_back({DominatorTree::Delete, EdgeBB, BB}); 3445 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3446 DTU->applyUpdates(Updates); 3447 } 3448 3449 // For simplicity, we created a separate basic block for the edge. Merge 3450 // it back into the predecessor if possible. This not only avoids 3451 // unnecessary SimplifyCFG iterations, but also makes sure that we don't 3452 // bypass the check for trivial cycles above. 3453 MergeBlockIntoPredecessor(EdgeBB, DTU); 3454 3455 // Signal repeat, simplifying any other constants. 3456 return std::nullopt; 3457 } 3458 3459 return false; 3460 } 3461 3462 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI, 3463 DomTreeUpdater *DTU, 3464 const DataLayout &DL, 3465 AssumptionCache *AC) { 3466 std::optional<bool> Result; 3467 bool EverChanged = false; 3468 do { 3469 // Note that None means "we changed things, but recurse further." 3470 Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC); 3471 EverChanged |= Result == std::nullopt || *Result; 3472 } while (Result == std::nullopt); 3473 return EverChanged; 3474 } 3475 3476 /// Given a BB that starts with the specified two-entry PHI node, 3477 /// see if we can eliminate it. 3478 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3479 DomTreeUpdater *DTU, const DataLayout &DL, 3480 bool SpeculateUnpredictables) { 3481 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3482 // statement", which has a very simple dominance structure. Basically, we 3483 // are trying to find the condition that is being branched on, which 3484 // subsequently causes this merge to happen. We really want control 3485 // dependence information for this check, but simplifycfg can't keep it up 3486 // to date, and this catches most of the cases we care about anyway. 3487 BasicBlock *BB = PN->getParent(); 3488 3489 BasicBlock *IfTrue, *IfFalse; 3490 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3491 if (!DomBI) 3492 return false; 3493 Value *IfCond = DomBI->getCondition(); 3494 // Don't bother if the branch will be constant folded trivially. 3495 if (isa<ConstantInt>(IfCond)) 3496 return false; 3497 3498 BasicBlock *DomBlock = DomBI->getParent(); 3499 SmallVector<BasicBlock *, 2> IfBlocks; 3500 llvm::copy_if( 3501 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3502 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3503 }); 3504 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3505 "Will have either one or two blocks to speculate."); 3506 3507 // If the branch is non-unpredictable, see if we either predictably jump to 3508 // the merge bb (if we have only a single 'then' block), or if we predictably 3509 // jump to one specific 'then' block (if we have two of them). 3510 // It isn't beneficial to speculatively execute the code 3511 // from the block that we know is predictably not entered. 3512 bool IsUnpredictable = DomBI->getMetadata(LLVMContext::MD_unpredictable); 3513 if (!IsUnpredictable) { 3514 uint64_t TWeight, FWeight; 3515 if (extractBranchWeights(*DomBI, TWeight, FWeight) && 3516 (TWeight + FWeight) != 0) { 3517 BranchProbability BITrueProb = 3518 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3519 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3520 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3521 if (IfBlocks.size() == 1) { 3522 BranchProbability BIBBProb = 3523 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3524 if (BIBBProb >= Likely) 3525 return false; 3526 } else { 3527 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3528 return false; 3529 } 3530 } 3531 } 3532 3533 // Don't try to fold an unreachable block. For example, the phi node itself 3534 // can't be the candidate if-condition for a select that we want to form. 3535 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3536 if (IfCondPhiInst->getParent() == BB) 3537 return false; 3538 3539 // Okay, we found that we can merge this two-entry phi node into a select. 3540 // Doing so would require us to fold *all* two entry phi nodes in this block. 3541 // At some point this becomes non-profitable (particularly if the target 3542 // doesn't support cmov's). Only do this transformation if there are two or 3543 // fewer PHI nodes in this block. 3544 unsigned NumPhis = 0; 3545 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3546 if (NumPhis > 2) 3547 return false; 3548 3549 // Loop over the PHI's seeing if we can promote them all to select 3550 // instructions. While we are at it, keep track of the instructions 3551 // that need to be moved to the dominating block. 3552 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3553 InstructionCost Cost = 0; 3554 InstructionCost Budget = 3555 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3556 if (SpeculateUnpredictables && IsUnpredictable) 3557 Budget += TTI.getBranchMispredictPenalty(); 3558 3559 bool Changed = false; 3560 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3561 PHINode *PN = cast<PHINode>(II++); 3562 if (Value *V = simplifyInstruction(PN, {DL, PN})) { 3563 PN->replaceAllUsesWith(V); 3564 PN->eraseFromParent(); 3565 Changed = true; 3566 continue; 3567 } 3568 3569 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 3570 Cost, Budget, TTI) || 3571 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 3572 Cost, Budget, TTI)) 3573 return Changed; 3574 } 3575 3576 // If we folded the first phi, PN dangles at this point. Refresh it. If 3577 // we ran out of PHIs then we simplified them all. 3578 PN = dyn_cast<PHINode>(BB->begin()); 3579 if (!PN) 3580 return true; 3581 3582 // Return true if at least one of these is a 'not', and another is either 3583 // a 'not' too, or a constant. 3584 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3585 if (!match(V0, m_Not(m_Value()))) 3586 std::swap(V0, V1); 3587 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3588 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3589 }; 3590 3591 // Don't fold i1 branches on PHIs which contain binary operators or 3592 // (possibly inverted) select form of or/ands, unless one of 3593 // the incoming values is an 'not' and another one is freely invertible. 3594 // These can often be turned into switches and other things. 3595 auto IsBinOpOrAnd = [](Value *V) { 3596 return match( 3597 V, m_CombineOr( 3598 m_BinOp(), 3599 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 3600 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 3601 }; 3602 if (PN->getType()->isIntegerTy(1) && 3603 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3604 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3605 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3606 PN->getIncomingValue(1))) 3607 return Changed; 3608 3609 // If all PHI nodes are promotable, check to make sure that all instructions 3610 // in the predecessor blocks can be promoted as well. If not, we won't be able 3611 // to get rid of the control flow, so it's not worth promoting to select 3612 // instructions. 3613 for (BasicBlock *IfBlock : IfBlocks) 3614 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3615 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3616 // This is not an aggressive instruction that we can promote. 3617 // Because of this, we won't be able to get rid of the control flow, so 3618 // the xform is not worth it. 3619 return Changed; 3620 } 3621 3622 // If either of the blocks has it's address taken, we can't do this fold. 3623 if (any_of(IfBlocks, 3624 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3625 return Changed; 3626 3627 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond; 3628 if (IsUnpredictable) dbgs() << " (unpredictable)"; 3629 dbgs() << " T: " << IfTrue->getName() 3630 << " F: " << IfFalse->getName() << "\n"); 3631 3632 // If we can still promote the PHI nodes after this gauntlet of tests, 3633 // do all of the PHI's now. 3634 3635 // Move all 'aggressive' instructions, which are defined in the 3636 // conditional parts of the if's up to the dominating block. 3637 for (BasicBlock *IfBlock : IfBlocks) 3638 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3639 3640 IRBuilder<NoFolder> Builder(DomBI); 3641 // Propagate fast-math-flags from phi nodes to replacement selects. 3642 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 3643 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3644 if (isa<FPMathOperator>(PN)) 3645 Builder.setFastMathFlags(PN->getFastMathFlags()); 3646 3647 // Change the PHI node into a select instruction. 3648 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3649 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3650 3651 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 3652 PN->replaceAllUsesWith(Sel); 3653 Sel->takeName(PN); 3654 PN->eraseFromParent(); 3655 } 3656 3657 // At this point, all IfBlocks are empty, so our if statement 3658 // has been flattened. Change DomBlock to jump directly to our new block to 3659 // avoid other simplifycfg's kicking in on the diamond. 3660 Builder.CreateBr(BB); 3661 3662 SmallVector<DominatorTree::UpdateType, 3> Updates; 3663 if (DTU) { 3664 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3665 for (auto *Successor : successors(DomBlock)) 3666 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3667 } 3668 3669 DomBI->eraseFromParent(); 3670 if (DTU) 3671 DTU->applyUpdates(Updates); 3672 3673 return true; 3674 } 3675 3676 static Value *createLogicalOp(IRBuilderBase &Builder, 3677 Instruction::BinaryOps Opc, Value *LHS, 3678 Value *RHS, const Twine &Name = "") { 3679 // Try to relax logical op to binary op. 3680 if (impliesPoison(RHS, LHS)) 3681 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3682 if (Opc == Instruction::And) 3683 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3684 if (Opc == Instruction::Or) 3685 return Builder.CreateLogicalOr(LHS, RHS, Name); 3686 llvm_unreachable("Invalid logical opcode"); 3687 } 3688 3689 /// Return true if either PBI or BI has branch weight available, and store 3690 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3691 /// not have branch weight, use 1:1 as its weight. 3692 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3693 uint64_t &PredTrueWeight, 3694 uint64_t &PredFalseWeight, 3695 uint64_t &SuccTrueWeight, 3696 uint64_t &SuccFalseWeight) { 3697 bool PredHasWeights = 3698 extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight); 3699 bool SuccHasWeights = 3700 extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight); 3701 if (PredHasWeights || SuccHasWeights) { 3702 if (!PredHasWeights) 3703 PredTrueWeight = PredFalseWeight = 1; 3704 if (!SuccHasWeights) 3705 SuccTrueWeight = SuccFalseWeight = 1; 3706 return true; 3707 } else { 3708 return false; 3709 } 3710 } 3711 3712 /// Determine if the two branches share a common destination and deduce a glue 3713 /// that joins the branches' conditions to arrive at the common destination if 3714 /// that would be profitable. 3715 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>> 3716 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3717 const TargetTransformInfo *TTI) { 3718 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3719 "Both blocks must end with a conditional branches."); 3720 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3721 "PredBB must be a predecessor of BB."); 3722 3723 // We have the potential to fold the conditions together, but if the 3724 // predecessor branch is predictable, we may not want to merge them. 3725 uint64_t PTWeight, PFWeight; 3726 BranchProbability PBITrueProb, Likely; 3727 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3728 extractBranchWeights(*PBI, PTWeight, PFWeight) && 3729 (PTWeight + PFWeight) != 0) { 3730 PBITrueProb = 3731 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3732 Likely = TTI->getPredictableBranchThreshold(); 3733 } 3734 3735 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3736 // Speculate the 2nd condition unless the 1st is probably true. 3737 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3738 return {{BI->getSuccessor(0), Instruction::Or, false}}; 3739 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3740 // Speculate the 2nd condition unless the 1st is probably false. 3741 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3742 return {{BI->getSuccessor(1), Instruction::And, false}}; 3743 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3744 // Speculate the 2nd condition unless the 1st is probably true. 3745 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3746 return {{BI->getSuccessor(1), Instruction::And, true}}; 3747 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3748 // Speculate the 2nd condition unless the 1st is probably false. 3749 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3750 return {{BI->getSuccessor(0), Instruction::Or, true}}; 3751 } 3752 return std::nullopt; 3753 } 3754 3755 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3756 DomTreeUpdater *DTU, 3757 MemorySSAUpdater *MSSAU, 3758 const TargetTransformInfo *TTI) { 3759 BasicBlock *BB = BI->getParent(); 3760 BasicBlock *PredBlock = PBI->getParent(); 3761 3762 // Determine if the two branches share a common destination. 3763 BasicBlock *CommonSucc; 3764 Instruction::BinaryOps Opc; 3765 bool InvertPredCond; 3766 std::tie(CommonSucc, Opc, InvertPredCond) = 3767 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3768 3769 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3770 3771 IRBuilder<> Builder(PBI); 3772 // The builder is used to create instructions to eliminate the branch in BB. 3773 // If BB's terminator has !annotation metadata, add it to the new 3774 // instructions. 3775 Builder.CollectMetadataToCopy(BB->getTerminator(), 3776 {LLVMContext::MD_annotation}); 3777 3778 // If we need to invert the condition in the pred block to match, do so now. 3779 if (InvertPredCond) { 3780 InvertBranch(PBI, Builder); 3781 } 3782 3783 BasicBlock *UniqueSucc = 3784 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3785 3786 // Before cloning instructions, notify the successor basic block that it 3787 // is about to have a new predecessor. This will update PHI nodes, 3788 // which will allow us to update live-out uses of bonus instructions. 3789 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3790 3791 // Try to update branch weights. 3792 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3793 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3794 SuccTrueWeight, SuccFalseWeight)) { 3795 SmallVector<uint64_t, 8> NewWeights; 3796 3797 if (PBI->getSuccessor(0) == BB) { 3798 // PBI: br i1 %x, BB, FalseDest 3799 // BI: br i1 %y, UniqueSucc, FalseDest 3800 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3801 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3802 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3803 // TrueWeight for PBI * FalseWeight for BI. 3804 // We assume that total weights of a BranchInst can fit into 32 bits. 3805 // Therefore, we will not have overflow using 64-bit arithmetic. 3806 NewWeights.push_back(PredFalseWeight * 3807 (SuccFalseWeight + SuccTrueWeight) + 3808 PredTrueWeight * SuccFalseWeight); 3809 } else { 3810 // PBI: br i1 %x, TrueDest, BB 3811 // BI: br i1 %y, TrueDest, UniqueSucc 3812 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3813 // FalseWeight for PBI * TrueWeight for BI. 3814 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3815 PredFalseWeight * SuccTrueWeight); 3816 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3817 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3818 } 3819 3820 // Halve the weights if any of them cannot fit in an uint32_t 3821 FitWeights(NewWeights); 3822 3823 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3824 setBranchWeights(PBI, MDWeights[0], MDWeights[1], /*IsExpected=*/false); 3825 3826 // TODO: If BB is reachable from all paths through PredBlock, then we 3827 // could replace PBI's branch probabilities with BI's. 3828 } else 3829 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3830 3831 // Now, update the CFG. 3832 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3833 3834 if (DTU) 3835 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3836 {DominatorTree::Delete, PredBlock, BB}}); 3837 3838 // If BI was a loop latch, it may have had associated loop metadata. 3839 // We need to copy it to the new latch, that is, PBI. 3840 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3841 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3842 3843 ValueToValueMapTy VMap; // maps original values to cloned values 3844 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3845 3846 Module *M = BB->getModule(); 3847 3848 if (PredBlock->IsNewDbgInfoFormat) { 3849 PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator()); 3850 for (DbgVariableRecord &DVR : 3851 filterDbgVars(PredBlock->getTerminator()->getDbgRecordRange())) { 3852 RemapDbgRecord(M, &DVR, VMap, 3853 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3854 } 3855 } 3856 3857 // Now that the Cond was cloned into the predecessor basic block, 3858 // or/and the two conditions together. 3859 Value *BICond = VMap[BI->getCondition()]; 3860 PBI->setCondition( 3861 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3862 3863 ++NumFoldBranchToCommonDest; 3864 return true; 3865 } 3866 3867 /// Return if an instruction's type or any of its operands' types are a vector 3868 /// type. 3869 static bool isVectorOp(Instruction &I) { 3870 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 3871 return U->getType()->isVectorTy(); 3872 }); 3873 } 3874 3875 /// If this basic block is simple enough, and if a predecessor branches to us 3876 /// and one of our successors, fold the block into the predecessor and use 3877 /// logical operations to pick the right destination. 3878 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3879 MemorySSAUpdater *MSSAU, 3880 const TargetTransformInfo *TTI, 3881 unsigned BonusInstThreshold) { 3882 // If this block ends with an unconditional branch, 3883 // let SpeculativelyExecuteBB() deal with it. 3884 if (!BI->isConditional()) 3885 return false; 3886 3887 BasicBlock *BB = BI->getParent(); 3888 TargetTransformInfo::TargetCostKind CostKind = 3889 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3890 : TargetTransformInfo::TCK_SizeAndLatency; 3891 3892 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3893 3894 if (!Cond || 3895 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && 3896 !isa<SelectInst>(Cond)) || 3897 Cond->getParent() != BB || !Cond->hasOneUse()) 3898 return false; 3899 3900 // Finally, don't infinitely unroll conditional loops. 3901 if (is_contained(successors(BB), BB)) 3902 return false; 3903 3904 // With which predecessors will we want to deal with? 3905 SmallVector<BasicBlock *, 8> Preds; 3906 for (BasicBlock *PredBlock : predecessors(BB)) { 3907 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3908 3909 // Check that we have two conditional branches. If there is a PHI node in 3910 // the common successor, verify that the same value flows in from both 3911 // blocks. 3912 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3913 continue; 3914 3915 // Determine if the two branches share a common destination. 3916 BasicBlock *CommonSucc; 3917 Instruction::BinaryOps Opc; 3918 bool InvertPredCond; 3919 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3920 std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe; 3921 else 3922 continue; 3923 3924 // Check the cost of inserting the necessary logic before performing the 3925 // transformation. 3926 if (TTI) { 3927 Type *Ty = BI->getCondition()->getType(); 3928 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3929 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3930 !isa<CmpInst>(PBI->getCondition()))) 3931 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3932 3933 if (Cost > BranchFoldThreshold) 3934 continue; 3935 } 3936 3937 // Ok, we do want to deal with this predecessor. Record it. 3938 Preds.emplace_back(PredBlock); 3939 } 3940 3941 // If there aren't any predecessors into which we can fold, 3942 // don't bother checking the cost. 3943 if (Preds.empty()) 3944 return false; 3945 3946 // Only allow this transformation if computing the condition doesn't involve 3947 // too many instructions and these involved instructions can be executed 3948 // unconditionally. We denote all involved instructions except the condition 3949 // as "bonus instructions", and only allow this transformation when the 3950 // number of the bonus instructions we'll need to create when cloning into 3951 // each predecessor does not exceed a certain threshold. 3952 unsigned NumBonusInsts = 0; 3953 bool SawVectorOp = false; 3954 const unsigned PredCount = Preds.size(); 3955 for (Instruction &I : *BB) { 3956 // Don't check the branch condition comparison itself. 3957 if (&I == Cond) 3958 continue; 3959 // Ignore dbg intrinsics, and the terminator. 3960 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3961 continue; 3962 // I must be safe to execute unconditionally. 3963 if (!isSafeToSpeculativelyExecute(&I)) 3964 return false; 3965 SawVectorOp |= isVectorOp(I); 3966 3967 // Account for the cost of duplicating this instruction into each 3968 // predecessor. Ignore free instructions. 3969 if (!TTI || TTI->getInstructionCost(&I, CostKind) != 3970 TargetTransformInfo::TCC_Free) { 3971 NumBonusInsts += PredCount; 3972 3973 // Early exits once we reach the limit. 3974 if (NumBonusInsts > 3975 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 3976 return false; 3977 } 3978 3979 auto IsBCSSAUse = [BB, &I](Use &U) { 3980 auto *UI = cast<Instruction>(U.getUser()); 3981 if (auto *PN = dyn_cast<PHINode>(UI)) 3982 return PN->getIncomingBlock(U) == BB; 3983 return UI->getParent() == BB && I.comesBefore(UI); 3984 }; 3985 3986 // Does this instruction require rewriting of uses? 3987 if (!all_of(I.uses(), IsBCSSAUse)) 3988 return false; 3989 } 3990 if (NumBonusInsts > 3991 BonusInstThreshold * 3992 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 3993 return false; 3994 3995 // Ok, we have the budget. Perform the transformation. 3996 for (BasicBlock *PredBlock : Preds) { 3997 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3998 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3999 } 4000 return false; 4001 } 4002 4003 // If there is only one store in BB1 and BB2, return it, otherwise return 4004 // nullptr. 4005 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 4006 StoreInst *S = nullptr; 4007 for (auto *BB : {BB1, BB2}) { 4008 if (!BB) 4009 continue; 4010 for (auto &I : *BB) 4011 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4012 if (S) 4013 // Multiple stores seen. 4014 return nullptr; 4015 else 4016 S = SI; 4017 } 4018 } 4019 return S; 4020 } 4021 4022 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 4023 Value *AlternativeV = nullptr) { 4024 // PHI is going to be a PHI node that allows the value V that is defined in 4025 // BB to be referenced in BB's only successor. 4026 // 4027 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 4028 // doesn't matter to us what the other operand is (it'll never get used). We 4029 // could just create a new PHI with an undef incoming value, but that could 4030 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 4031 // other PHI. So here we directly look for some PHI in BB's successor with V 4032 // as an incoming operand. If we find one, we use it, else we create a new 4033 // one. 4034 // 4035 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 4036 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 4037 // where OtherBB is the single other predecessor of BB's only successor. 4038 PHINode *PHI = nullptr; 4039 BasicBlock *Succ = BB->getSingleSuccessor(); 4040 4041 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 4042 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 4043 PHI = cast<PHINode>(I); 4044 if (!AlternativeV) 4045 break; 4046 4047 assert(Succ->hasNPredecessors(2)); 4048 auto PredI = pred_begin(Succ); 4049 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 4050 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 4051 break; 4052 PHI = nullptr; 4053 } 4054 if (PHI) 4055 return PHI; 4056 4057 // If V is not an instruction defined in BB, just return it. 4058 if (!AlternativeV && 4059 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 4060 return V; 4061 4062 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge"); 4063 PHI->insertBefore(Succ->begin()); 4064 PHI->addIncoming(V, BB); 4065 for (BasicBlock *PredBB : predecessors(Succ)) 4066 if (PredBB != BB) 4067 PHI->addIncoming( 4068 AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB); 4069 return PHI; 4070 } 4071 4072 static bool mergeConditionalStoreToAddress( 4073 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 4074 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 4075 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 4076 // For every pointer, there must be exactly two stores, one coming from 4077 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 4078 // store (to any address) in PTB,PFB or QTB,QFB. 4079 // FIXME: We could relax this restriction with a bit more work and performance 4080 // testing. 4081 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 4082 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 4083 if (!PStore || !QStore) 4084 return false; 4085 4086 // Now check the stores are compatible. 4087 if (!QStore->isUnordered() || !PStore->isUnordered() || 4088 PStore->getValueOperand()->getType() != 4089 QStore->getValueOperand()->getType()) 4090 return false; 4091 4092 // Check that sinking the store won't cause program behavior changes. Sinking 4093 // the store out of the Q blocks won't change any behavior as we're sinking 4094 // from a block to its unconditional successor. But we're moving a store from 4095 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 4096 // So we need to check that there are no aliasing loads or stores in 4097 // QBI, QTB and QFB. We also need to check there are no conflicting memory 4098 // operations between PStore and the end of its parent block. 4099 // 4100 // The ideal way to do this is to query AliasAnalysis, but we don't 4101 // preserve AA currently so that is dangerous. Be super safe and just 4102 // check there are no other memory operations at all. 4103 for (auto &I : *QFB->getSinglePredecessor()) 4104 if (I.mayReadOrWriteMemory()) 4105 return false; 4106 for (auto &I : *QFB) 4107 if (&I != QStore && I.mayReadOrWriteMemory()) 4108 return false; 4109 if (QTB) 4110 for (auto &I : *QTB) 4111 if (&I != QStore && I.mayReadOrWriteMemory()) 4112 return false; 4113 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 4114 I != E; ++I) 4115 if (&*I != PStore && I->mayReadOrWriteMemory()) 4116 return false; 4117 4118 // If we're not in aggressive mode, we only optimize if we have some 4119 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 4120 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 4121 if (!BB) 4122 return true; 4123 // Heuristic: if the block can be if-converted/phi-folded and the 4124 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 4125 // thread this store. 4126 InstructionCost Cost = 0; 4127 InstructionCost Budget = 4128 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 4129 for (auto &I : BB->instructionsWithoutDebug(false)) { 4130 // Consider terminator instruction to be free. 4131 if (I.isTerminator()) 4132 continue; 4133 // If this is one the stores that we want to speculate out of this BB, 4134 // then don't count it's cost, consider it to be free. 4135 if (auto *S = dyn_cast<StoreInst>(&I)) 4136 if (llvm::find(FreeStores, S)) 4137 continue; 4138 // Else, we have a white-list of instructions that we are ak speculating. 4139 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 4140 return false; // Not in white-list - not worthwhile folding. 4141 // And finally, if this is a non-free instruction that we are okay 4142 // speculating, ensure that we consider the speculation budget. 4143 Cost += 4144 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 4145 if (Cost > Budget) 4146 return false; // Eagerly refuse to fold as soon as we're out of budget. 4147 } 4148 assert(Cost <= Budget && 4149 "When we run out of budget we will eagerly return from within the " 4150 "per-instruction loop."); 4151 return true; 4152 }; 4153 4154 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 4155 if (!MergeCondStoresAggressively && 4156 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 4157 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 4158 return false; 4159 4160 // If PostBB has more than two predecessors, we need to split it so we can 4161 // sink the store. 4162 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 4163 // We know that QFB's only successor is PostBB. And QFB has a single 4164 // predecessor. If QTB exists, then its only successor is also PostBB. 4165 // If QTB does not exist, then QFB's only predecessor has a conditional 4166 // branch to QFB and PostBB. 4167 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 4168 BasicBlock *NewBB = 4169 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 4170 if (!NewBB) 4171 return false; 4172 PostBB = NewBB; 4173 } 4174 4175 // OK, we're going to sink the stores to PostBB. The store has to be 4176 // conditional though, so first create the predicate. 4177 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 4178 ->getCondition(); 4179 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 4180 ->getCondition(); 4181 4182 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 4183 PStore->getParent()); 4184 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 4185 QStore->getParent(), PPHI); 4186 4187 BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt(); 4188 IRBuilder<> QB(PostBB, PostBBFirst); 4189 QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc()); 4190 4191 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 4192 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 4193 4194 if (InvertPCond) 4195 PPred = QB.CreateNot(PPred); 4196 if (InvertQCond) 4197 QPred = QB.CreateNot(QPred); 4198 Value *CombinedPred = QB.CreateOr(PPred, QPred); 4199 4200 BasicBlock::iterator InsertPt = QB.GetInsertPoint(); 4201 auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt, 4202 /*Unreachable=*/false, 4203 /*BranchWeights=*/nullptr, DTU); 4204 4205 QB.SetInsertPoint(T); 4206 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 4207 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 4208 // Choose the minimum alignment. If we could prove both stores execute, we 4209 // could use biggest one. In this case, though, we only know that one of the 4210 // stores executes. And we don't know it's safe to take the alignment from a 4211 // store that doesn't execute. 4212 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 4213 4214 QStore->eraseFromParent(); 4215 PStore->eraseFromParent(); 4216 4217 return true; 4218 } 4219 4220 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 4221 DomTreeUpdater *DTU, const DataLayout &DL, 4222 const TargetTransformInfo &TTI) { 4223 // The intention here is to find diamonds or triangles (see below) where each 4224 // conditional block contains a store to the same address. Both of these 4225 // stores are conditional, so they can't be unconditionally sunk. But it may 4226 // be profitable to speculatively sink the stores into one merged store at the 4227 // end, and predicate the merged store on the union of the two conditions of 4228 // PBI and QBI. 4229 // 4230 // This can reduce the number of stores executed if both of the conditions are 4231 // true, and can allow the blocks to become small enough to be if-converted. 4232 // This optimization will also chain, so that ladders of test-and-set 4233 // sequences can be if-converted away. 4234 // 4235 // We only deal with simple diamonds or triangles: 4236 // 4237 // PBI or PBI or a combination of the two 4238 // / \ | \ 4239 // PTB PFB | PFB 4240 // \ / | / 4241 // QBI QBI 4242 // / \ | \ 4243 // QTB QFB | QFB 4244 // \ / | / 4245 // PostBB PostBB 4246 // 4247 // We model triangles as a type of diamond with a nullptr "true" block. 4248 // Triangles are canonicalized so that the fallthrough edge is represented by 4249 // a true condition, as in the diagram above. 4250 BasicBlock *PTB = PBI->getSuccessor(0); 4251 BasicBlock *PFB = PBI->getSuccessor(1); 4252 BasicBlock *QTB = QBI->getSuccessor(0); 4253 BasicBlock *QFB = QBI->getSuccessor(1); 4254 BasicBlock *PostBB = QFB->getSingleSuccessor(); 4255 4256 // Make sure we have a good guess for PostBB. If QTB's only successor is 4257 // QFB, then QFB is a better PostBB. 4258 if (QTB->getSingleSuccessor() == QFB) 4259 PostBB = QFB; 4260 4261 // If we couldn't find a good PostBB, stop. 4262 if (!PostBB) 4263 return false; 4264 4265 bool InvertPCond = false, InvertQCond = false; 4266 // Canonicalize fallthroughs to the true branches. 4267 if (PFB == QBI->getParent()) { 4268 std::swap(PFB, PTB); 4269 InvertPCond = true; 4270 } 4271 if (QFB == PostBB) { 4272 std::swap(QFB, QTB); 4273 InvertQCond = true; 4274 } 4275 4276 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 4277 // and QFB may not. Model fallthroughs as a nullptr block. 4278 if (PTB == QBI->getParent()) 4279 PTB = nullptr; 4280 if (QTB == PostBB) 4281 QTB = nullptr; 4282 4283 // Legality bailouts. We must have at least the non-fallthrough blocks and 4284 // the post-dominating block, and the non-fallthroughs must only have one 4285 // predecessor. 4286 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 4287 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 4288 }; 4289 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 4290 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 4291 return false; 4292 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 4293 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 4294 return false; 4295 if (!QBI->getParent()->hasNUses(2)) 4296 return false; 4297 4298 // OK, this is a sequence of two diamonds or triangles. 4299 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 4300 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 4301 for (auto *BB : {PTB, PFB}) { 4302 if (!BB) 4303 continue; 4304 for (auto &I : *BB) 4305 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4306 PStoreAddresses.insert(SI->getPointerOperand()); 4307 } 4308 for (auto *BB : {QTB, QFB}) { 4309 if (!BB) 4310 continue; 4311 for (auto &I : *BB) 4312 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4313 QStoreAddresses.insert(SI->getPointerOperand()); 4314 } 4315 4316 set_intersect(PStoreAddresses, QStoreAddresses); 4317 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 4318 // clear what it contains. 4319 auto &CommonAddresses = PStoreAddresses; 4320 4321 bool Changed = false; 4322 for (auto *Address : CommonAddresses) 4323 Changed |= 4324 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 4325 InvertPCond, InvertQCond, DTU, DL, TTI); 4326 return Changed; 4327 } 4328 4329 /// If the previous block ended with a widenable branch, determine if reusing 4330 /// the target block is profitable and legal. This will have the effect of 4331 /// "widening" PBI, but doesn't require us to reason about hosting safety. 4332 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4333 DomTreeUpdater *DTU) { 4334 // TODO: This can be generalized in two important ways: 4335 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 4336 // values from the PBI edge. 4337 // 2) We can sink side effecting instructions into BI's fallthrough 4338 // successor provided they doesn't contribute to computation of 4339 // BI's condition. 4340 BasicBlock *IfTrueBB = PBI->getSuccessor(0); 4341 BasicBlock *IfFalseBB = PBI->getSuccessor(1); 4342 if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() || 4343 !BI->getParent()->getSinglePredecessor()) 4344 return false; 4345 if (!IfFalseBB->phis().empty()) 4346 return false; // TODO 4347 // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which 4348 // may undo the transform done here. 4349 // TODO: There might be a more fine-grained solution to this. 4350 if (!llvm::succ_empty(IfFalseBB)) 4351 return false; 4352 // Use lambda to lazily compute expensive condition after cheap ones. 4353 auto NoSideEffects = [](BasicBlock &BB) { 4354 return llvm::none_of(BB, [](const Instruction &I) { 4355 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 4356 }); 4357 }; 4358 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 4359 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 4360 NoSideEffects(*BI->getParent())) { 4361 auto *OldSuccessor = BI->getSuccessor(1); 4362 OldSuccessor->removePredecessor(BI->getParent()); 4363 BI->setSuccessor(1, IfFalseBB); 4364 if (DTU) 4365 DTU->applyUpdates( 4366 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4367 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4368 return true; 4369 } 4370 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4371 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4372 NoSideEffects(*BI->getParent())) { 4373 auto *OldSuccessor = BI->getSuccessor(0); 4374 OldSuccessor->removePredecessor(BI->getParent()); 4375 BI->setSuccessor(0, IfFalseBB); 4376 if (DTU) 4377 DTU->applyUpdates( 4378 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4379 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4380 return true; 4381 } 4382 return false; 4383 } 4384 4385 /// If we have a conditional branch as a predecessor of another block, 4386 /// this function tries to simplify it. We know 4387 /// that PBI and BI are both conditional branches, and BI is in one of the 4388 /// successor blocks of PBI - PBI branches to BI. 4389 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4390 DomTreeUpdater *DTU, 4391 const DataLayout &DL, 4392 const TargetTransformInfo &TTI) { 4393 assert(PBI->isConditional() && BI->isConditional()); 4394 BasicBlock *BB = BI->getParent(); 4395 4396 // If this block ends with a branch instruction, and if there is a 4397 // predecessor that ends on a branch of the same condition, make 4398 // this conditional branch redundant. 4399 if (PBI->getCondition() == BI->getCondition() && 4400 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4401 // Okay, the outcome of this conditional branch is statically 4402 // knowable. If this block had a single pred, handle specially, otherwise 4403 // FoldCondBranchOnValueKnownInPredecessor() will handle it. 4404 if (BB->getSinglePredecessor()) { 4405 // Turn this into a branch on constant. 4406 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4407 BI->setCondition( 4408 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4409 return true; // Nuke the branch on constant. 4410 } 4411 } 4412 4413 // If the previous block ended with a widenable branch, determine if reusing 4414 // the target block is profitable and legal. This will have the effect of 4415 // "widening" PBI, but doesn't require us to reason about hosting safety. 4416 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4417 return true; 4418 4419 // If both branches are conditional and both contain stores to the same 4420 // address, remove the stores from the conditionals and create a conditional 4421 // merged store at the end. 4422 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4423 return true; 4424 4425 // If this is a conditional branch in an empty block, and if any 4426 // predecessors are a conditional branch to one of our destinations, 4427 // fold the conditions into logical ops and one cond br. 4428 4429 // Ignore dbg intrinsics. 4430 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4431 return false; 4432 4433 int PBIOp, BIOp; 4434 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4435 PBIOp = 0; 4436 BIOp = 0; 4437 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4438 PBIOp = 0; 4439 BIOp = 1; 4440 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4441 PBIOp = 1; 4442 BIOp = 0; 4443 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4444 PBIOp = 1; 4445 BIOp = 1; 4446 } else { 4447 return false; 4448 } 4449 4450 // Check to make sure that the other destination of this branch 4451 // isn't BB itself. If so, this is an infinite loop that will 4452 // keep getting unwound. 4453 if (PBI->getSuccessor(PBIOp) == BB) 4454 return false; 4455 4456 // If predecessor's branch probability to BB is too low don't merge branches. 4457 SmallVector<uint32_t, 2> PredWeights; 4458 if (!PBI->getMetadata(LLVMContext::MD_unpredictable) && 4459 extractBranchWeights(*PBI, PredWeights) && 4460 (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) { 4461 4462 BranchProbability CommonDestProb = BranchProbability::getBranchProbability( 4463 PredWeights[PBIOp], 4464 static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]); 4465 4466 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 4467 if (CommonDestProb >= Likely) 4468 return false; 4469 } 4470 4471 // Do not perform this transformation if it would require 4472 // insertion of a large number of select instructions. For targets 4473 // without predication/cmovs, this is a big pessimization. 4474 4475 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4476 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4477 unsigned NumPhis = 0; 4478 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4479 ++II, ++NumPhis) { 4480 if (NumPhis > 2) // Disable this xform. 4481 return false; 4482 } 4483 4484 // Finally, if everything is ok, fold the branches to logical ops. 4485 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4486 4487 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4488 << "AND: " << *BI->getParent()); 4489 4490 SmallVector<DominatorTree::UpdateType, 5> Updates; 4491 4492 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4493 // branch in it, where one edge (OtherDest) goes back to itself but the other 4494 // exits. We don't *know* that the program avoids the infinite loop 4495 // (even though that seems likely). If we do this xform naively, we'll end up 4496 // recursively unpeeling the loop. Since we know that (after the xform is 4497 // done) that the block *is* infinite if reached, we just make it an obviously 4498 // infinite loop with no cond branch. 4499 if (OtherDest == BB) { 4500 // Insert it at the end of the function, because it's either code, 4501 // or it won't matter if it's hot. :) 4502 BasicBlock *InfLoopBlock = 4503 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4504 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4505 if (DTU) 4506 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4507 OtherDest = InfLoopBlock; 4508 } 4509 4510 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4511 4512 // BI may have other predecessors. Because of this, we leave 4513 // it alone, but modify PBI. 4514 4515 // Make sure we get to CommonDest on True&True directions. 4516 Value *PBICond = PBI->getCondition(); 4517 IRBuilder<NoFolder> Builder(PBI); 4518 if (PBIOp) 4519 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4520 4521 Value *BICond = BI->getCondition(); 4522 if (BIOp) 4523 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4524 4525 // Merge the conditions. 4526 Value *Cond = 4527 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4528 4529 // Modify PBI to branch on the new condition to the new dests. 4530 PBI->setCondition(Cond); 4531 PBI->setSuccessor(0, CommonDest); 4532 PBI->setSuccessor(1, OtherDest); 4533 4534 if (DTU) { 4535 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4536 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4537 4538 DTU->applyUpdates(Updates); 4539 } 4540 4541 // Update branch weight for PBI. 4542 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4543 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4544 bool HasWeights = 4545 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4546 SuccTrueWeight, SuccFalseWeight); 4547 if (HasWeights) { 4548 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4549 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4550 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4551 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4552 // The weight to CommonDest should be PredCommon * SuccTotal + 4553 // PredOther * SuccCommon. 4554 // The weight to OtherDest should be PredOther * SuccOther. 4555 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4556 PredOther * SuccCommon, 4557 PredOther * SuccOther}; 4558 // Halve the weights if any of them cannot fit in an uint32_t 4559 FitWeights(NewWeights); 4560 4561 setBranchWeights(PBI, NewWeights[0], NewWeights[1], /*IsExpected=*/false); 4562 } 4563 4564 // OtherDest may have phi nodes. If so, add an entry from PBI's 4565 // block that are identical to the entries for BI's block. 4566 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4567 4568 // We know that the CommonDest already had an edge from PBI to 4569 // it. If it has PHIs though, the PHIs may have different 4570 // entries for BB and PBI's BB. If so, insert a select to make 4571 // them agree. 4572 for (PHINode &PN : CommonDest->phis()) { 4573 Value *BIV = PN.getIncomingValueForBlock(BB); 4574 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4575 Value *PBIV = PN.getIncomingValue(PBBIdx); 4576 if (BIV != PBIV) { 4577 // Insert a select in PBI to pick the right value. 4578 SelectInst *NV = cast<SelectInst>( 4579 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4580 PN.setIncomingValue(PBBIdx, NV); 4581 // Although the select has the same condition as PBI, the original branch 4582 // weights for PBI do not apply to the new select because the select's 4583 // 'logical' edges are incoming edges of the phi that is eliminated, not 4584 // the outgoing edges of PBI. 4585 if (HasWeights) { 4586 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4587 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4588 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4589 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4590 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4591 // The weight to PredOtherDest should be PredOther * SuccCommon. 4592 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4593 PredOther * SuccCommon}; 4594 4595 FitWeights(NewWeights); 4596 4597 setBranchWeights(NV, NewWeights[0], NewWeights[1], 4598 /*IsExpected=*/false); 4599 } 4600 } 4601 } 4602 4603 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4604 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4605 4606 // This basic block is probably dead. We know it has at least 4607 // one fewer predecessor. 4608 return true; 4609 } 4610 4611 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4612 // true or to FalseBB if Cond is false. 4613 // Takes care of updating the successors and removing the old terminator. 4614 // Also makes sure not to introduce new successors by assuming that edges to 4615 // non-successor TrueBBs and FalseBBs aren't reachable. 4616 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 4617 Value *Cond, BasicBlock *TrueBB, 4618 BasicBlock *FalseBB, 4619 uint32_t TrueWeight, 4620 uint32_t FalseWeight) { 4621 auto *BB = OldTerm->getParent(); 4622 // Remove any superfluous successor edges from the CFG. 4623 // First, figure out which successors to preserve. 4624 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4625 // successor. 4626 BasicBlock *KeepEdge1 = TrueBB; 4627 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4628 4629 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4630 4631 // Then remove the rest. 4632 for (BasicBlock *Succ : successors(OldTerm)) { 4633 // Make sure only to keep exactly one copy of each edge. 4634 if (Succ == KeepEdge1) 4635 KeepEdge1 = nullptr; 4636 else if (Succ == KeepEdge2) 4637 KeepEdge2 = nullptr; 4638 else { 4639 Succ->removePredecessor(BB, 4640 /*KeepOneInputPHIs=*/true); 4641 4642 if (Succ != TrueBB && Succ != FalseBB) 4643 RemovedSuccessors.insert(Succ); 4644 } 4645 } 4646 4647 IRBuilder<> Builder(OldTerm); 4648 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4649 4650 // Insert an appropriate new terminator. 4651 if (!KeepEdge1 && !KeepEdge2) { 4652 if (TrueBB == FalseBB) { 4653 // We were only looking for one successor, and it was present. 4654 // Create an unconditional branch to it. 4655 Builder.CreateBr(TrueBB); 4656 } else { 4657 // We found both of the successors we were looking for. 4658 // Create a conditional branch sharing the condition of the select. 4659 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4660 if (TrueWeight != FalseWeight) 4661 setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false); 4662 } 4663 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4664 // Neither of the selected blocks were successors, so this 4665 // terminator must be unreachable. 4666 new UnreachableInst(OldTerm->getContext(), OldTerm->getIterator()); 4667 } else { 4668 // One of the selected values was a successor, but the other wasn't. 4669 // Insert an unconditional branch to the one that was found; 4670 // the edge to the one that wasn't must be unreachable. 4671 if (!KeepEdge1) { 4672 // Only TrueBB was found. 4673 Builder.CreateBr(TrueBB); 4674 } else { 4675 // Only FalseBB was found. 4676 Builder.CreateBr(FalseBB); 4677 } 4678 } 4679 4680 EraseTerminatorAndDCECond(OldTerm); 4681 4682 if (DTU) { 4683 SmallVector<DominatorTree::UpdateType, 2> Updates; 4684 Updates.reserve(RemovedSuccessors.size()); 4685 for (auto *RemovedSuccessor : RemovedSuccessors) 4686 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4687 DTU->applyUpdates(Updates); 4688 } 4689 4690 return true; 4691 } 4692 4693 // Replaces 4694 // (switch (select cond, X, Y)) on constant X, Y 4695 // with a branch - conditional if X and Y lead to distinct BBs, 4696 // unconditional otherwise. 4697 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4698 SelectInst *Select) { 4699 // Check for constant integer values in the select. 4700 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4701 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4702 if (!TrueVal || !FalseVal) 4703 return false; 4704 4705 // Find the relevant condition and destinations. 4706 Value *Condition = Select->getCondition(); 4707 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4708 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4709 4710 // Get weight for TrueBB and FalseBB. 4711 uint32_t TrueWeight = 0, FalseWeight = 0; 4712 SmallVector<uint64_t, 8> Weights; 4713 bool HasWeights = hasBranchWeightMD(*SI); 4714 if (HasWeights) { 4715 GetBranchWeights(SI, Weights); 4716 if (Weights.size() == 1 + SI->getNumCases()) { 4717 TrueWeight = 4718 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4719 FalseWeight = 4720 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4721 } 4722 } 4723 4724 // Perform the actual simplification. 4725 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4726 FalseWeight); 4727 } 4728 4729 // Replaces 4730 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4731 // blockaddress(@fn, BlockB))) 4732 // with 4733 // (br cond, BlockA, BlockB). 4734 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4735 SelectInst *SI) { 4736 // Check that both operands of the select are block addresses. 4737 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4738 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4739 if (!TBA || !FBA) 4740 return false; 4741 4742 // Extract the actual blocks. 4743 BasicBlock *TrueBB = TBA->getBasicBlock(); 4744 BasicBlock *FalseBB = FBA->getBasicBlock(); 4745 4746 // Perform the actual simplification. 4747 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4748 0); 4749 } 4750 4751 /// This is called when we find an icmp instruction 4752 /// (a seteq/setne with a constant) as the only instruction in a 4753 /// block that ends with an uncond branch. We are looking for a very specific 4754 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4755 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4756 /// default value goes to an uncond block with a seteq in it, we get something 4757 /// like: 4758 /// 4759 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4760 /// DEFAULT: 4761 /// %tmp = icmp eq i8 %A, 92 4762 /// br label %end 4763 /// end: 4764 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4765 /// 4766 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4767 /// the PHI, merging the third icmp into the switch. 4768 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4769 ICmpInst *ICI, IRBuilder<> &Builder) { 4770 BasicBlock *BB = ICI->getParent(); 4771 4772 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4773 // complex. 4774 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4775 return false; 4776 4777 Value *V = ICI->getOperand(0); 4778 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4779 4780 // The pattern we're looking for is where our only predecessor is a switch on 4781 // 'V' and this block is the default case for the switch. In this case we can 4782 // fold the compared value into the switch to simplify things. 4783 BasicBlock *Pred = BB->getSinglePredecessor(); 4784 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4785 return false; 4786 4787 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4788 if (SI->getCondition() != V) 4789 return false; 4790 4791 // If BB is reachable on a non-default case, then we simply know the value of 4792 // V in this block. Substitute it and constant fold the icmp instruction 4793 // away. 4794 if (SI->getDefaultDest() != BB) { 4795 ConstantInt *VVal = SI->findCaseDest(BB); 4796 assert(VVal && "Should have a unique destination value"); 4797 ICI->setOperand(0, VVal); 4798 4799 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) { 4800 ICI->replaceAllUsesWith(V); 4801 ICI->eraseFromParent(); 4802 } 4803 // BB is now empty, so it is likely to simplify away. 4804 return requestResimplify(); 4805 } 4806 4807 // Ok, the block is reachable from the default dest. If the constant we're 4808 // comparing exists in one of the other edges, then we can constant fold ICI 4809 // and zap it. 4810 if (SI->findCaseValue(Cst) != SI->case_default()) { 4811 Value *V; 4812 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4813 V = ConstantInt::getFalse(BB->getContext()); 4814 else 4815 V = ConstantInt::getTrue(BB->getContext()); 4816 4817 ICI->replaceAllUsesWith(V); 4818 ICI->eraseFromParent(); 4819 // BB is now empty, so it is likely to simplify away. 4820 return requestResimplify(); 4821 } 4822 4823 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4824 // the block. 4825 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4826 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4827 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4828 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4829 return false; 4830 4831 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4832 // true in the PHI. 4833 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4834 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4835 4836 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4837 std::swap(DefaultCst, NewCst); 4838 4839 // Replace ICI (which is used by the PHI for the default value) with true or 4840 // false depending on if it is EQ or NE. 4841 ICI->replaceAllUsesWith(DefaultCst); 4842 ICI->eraseFromParent(); 4843 4844 SmallVector<DominatorTree::UpdateType, 2> Updates; 4845 4846 // Okay, the switch goes to this block on a default value. Add an edge from 4847 // the switch to the merge point on the compared value. 4848 BasicBlock *NewBB = 4849 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4850 { 4851 SwitchInstProfUpdateWrapper SIW(*SI); 4852 auto W0 = SIW.getSuccessorWeight(0); 4853 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4854 if (W0) { 4855 NewW = ((uint64_t(*W0) + 1) >> 1); 4856 SIW.setSuccessorWeight(0, *NewW); 4857 } 4858 SIW.addCase(Cst, NewBB, NewW); 4859 if (DTU) 4860 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4861 } 4862 4863 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4864 Builder.SetInsertPoint(NewBB); 4865 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4866 Builder.CreateBr(SuccBlock); 4867 PHIUse->addIncoming(NewCst, NewBB); 4868 if (DTU) { 4869 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4870 DTU->applyUpdates(Updates); 4871 } 4872 return true; 4873 } 4874 4875 /// The specified branch is a conditional branch. 4876 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4877 /// fold it into a switch instruction if so. 4878 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4879 IRBuilder<> &Builder, 4880 const DataLayout &DL) { 4881 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4882 if (!Cond) 4883 return false; 4884 4885 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4886 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4887 // 'setne's and'ed together, collect them. 4888 4889 // Try to gather values from a chain of and/or to be turned into a switch 4890 ConstantComparesGatherer ConstantCompare(Cond, DL); 4891 // Unpack the result 4892 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4893 Value *CompVal = ConstantCompare.CompValue; 4894 unsigned UsedICmps = ConstantCompare.UsedICmps; 4895 Value *ExtraCase = ConstantCompare.Extra; 4896 4897 // If we didn't have a multiply compared value, fail. 4898 if (!CompVal) 4899 return false; 4900 4901 // Avoid turning single icmps into a switch. 4902 if (UsedICmps <= 1) 4903 return false; 4904 4905 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4906 4907 // There might be duplicate constants in the list, which the switch 4908 // instruction can't handle, remove them now. 4909 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4910 Values.erase(llvm::unique(Values), Values.end()); 4911 4912 // If Extra was used, we require at least two switch values to do the 4913 // transformation. A switch with one value is just a conditional branch. 4914 if (ExtraCase && Values.size() < 2) 4915 return false; 4916 4917 // TODO: Preserve branch weight metadata, similarly to how 4918 // FoldValueComparisonIntoPredecessors preserves it. 4919 4920 // Figure out which block is which destination. 4921 BasicBlock *DefaultBB = BI->getSuccessor(1); 4922 BasicBlock *EdgeBB = BI->getSuccessor(0); 4923 if (!TrueWhenEqual) 4924 std::swap(DefaultBB, EdgeBB); 4925 4926 BasicBlock *BB = BI->getParent(); 4927 4928 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4929 << " cases into SWITCH. BB is:\n" 4930 << *BB); 4931 4932 SmallVector<DominatorTree::UpdateType, 2> Updates; 4933 4934 // If there are any extra values that couldn't be folded into the switch 4935 // then we evaluate them with an explicit branch first. Split the block 4936 // right before the condbr to handle it. 4937 if (ExtraCase) { 4938 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4939 /*MSSAU=*/nullptr, "switch.early.test"); 4940 4941 // Remove the uncond branch added to the old block. 4942 Instruction *OldTI = BB->getTerminator(); 4943 Builder.SetInsertPoint(OldTI); 4944 4945 // There can be an unintended UB if extra values are Poison. Before the 4946 // transformation, extra values may not be evaluated according to the 4947 // condition, and it will not raise UB. But after transformation, we are 4948 // evaluating extra values before checking the condition, and it will raise 4949 // UB. It can be solved by adding freeze instruction to extra values. 4950 AssumptionCache *AC = Options.AC; 4951 4952 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 4953 ExtraCase = Builder.CreateFreeze(ExtraCase); 4954 4955 if (TrueWhenEqual) 4956 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4957 else 4958 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4959 4960 OldTI->eraseFromParent(); 4961 4962 if (DTU) 4963 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4964 4965 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4966 // for the edge we just added. 4967 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4968 4969 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4970 << "\nEXTRABB = " << *BB); 4971 BB = NewBB; 4972 } 4973 4974 Builder.SetInsertPoint(BI); 4975 // Convert pointer to int before we switch. 4976 if (CompVal->getType()->isPointerTy()) { 4977 CompVal = Builder.CreatePtrToInt( 4978 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4979 } 4980 4981 // Create the new switch instruction now. 4982 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4983 4984 // Add all of the 'cases' to the switch instruction. 4985 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4986 New->addCase(Values[i], EdgeBB); 4987 4988 // We added edges from PI to the EdgeBB. As such, if there were any 4989 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4990 // the number of edges added. 4991 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4992 PHINode *PN = cast<PHINode>(BBI); 4993 Value *InVal = PN->getIncomingValueForBlock(BB); 4994 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4995 PN->addIncoming(InVal, BB); 4996 } 4997 4998 // Erase the old branch instruction. 4999 EraseTerminatorAndDCECond(BI); 5000 if (DTU) 5001 DTU->applyUpdates(Updates); 5002 5003 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 5004 return true; 5005 } 5006 5007 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 5008 if (isa<PHINode>(RI->getValue())) 5009 return simplifyCommonResume(RI); 5010 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 5011 RI->getValue() == RI->getParent()->getFirstNonPHI()) 5012 // The resume must unwind the exception that caused control to branch here. 5013 return simplifySingleResume(RI); 5014 5015 return false; 5016 } 5017 5018 // Check if cleanup block is empty 5019 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 5020 for (Instruction &I : R) { 5021 auto *II = dyn_cast<IntrinsicInst>(&I); 5022 if (!II) 5023 return false; 5024 5025 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 5026 switch (IntrinsicID) { 5027 case Intrinsic::dbg_declare: 5028 case Intrinsic::dbg_value: 5029 case Intrinsic::dbg_label: 5030 case Intrinsic::lifetime_end: 5031 break; 5032 default: 5033 return false; 5034 } 5035 } 5036 return true; 5037 } 5038 5039 // Simplify resume that is shared by several landing pads (phi of landing pad). 5040 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 5041 BasicBlock *BB = RI->getParent(); 5042 5043 // Check that there are no other instructions except for debug and lifetime 5044 // intrinsics between the phi's and resume instruction. 5045 if (!isCleanupBlockEmpty( 5046 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 5047 return false; 5048 5049 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 5050 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 5051 5052 // Check incoming blocks to see if any of them are trivial. 5053 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 5054 Idx++) { 5055 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 5056 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 5057 5058 // If the block has other successors, we can not delete it because 5059 // it has other dependents. 5060 if (IncomingBB->getUniqueSuccessor() != BB) 5061 continue; 5062 5063 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 5064 // Not the landing pad that caused the control to branch here. 5065 if (IncomingValue != LandingPad) 5066 continue; 5067 5068 if (isCleanupBlockEmpty( 5069 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 5070 TrivialUnwindBlocks.insert(IncomingBB); 5071 } 5072 5073 // If no trivial unwind blocks, don't do any simplifications. 5074 if (TrivialUnwindBlocks.empty()) 5075 return false; 5076 5077 // Turn all invokes that unwind here into calls. 5078 for (auto *TrivialBB : TrivialUnwindBlocks) { 5079 // Blocks that will be simplified should be removed from the phi node. 5080 // Note there could be multiple edges to the resume block, and we need 5081 // to remove them all. 5082 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 5083 BB->removePredecessor(TrivialBB, true); 5084 5085 for (BasicBlock *Pred : 5086 llvm::make_early_inc_range(predecessors(TrivialBB))) { 5087 removeUnwindEdge(Pred, DTU); 5088 ++NumInvokes; 5089 } 5090 5091 // In each SimplifyCFG run, only the current processed block can be erased. 5092 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 5093 // of erasing TrivialBB, we only remove the branch to the common resume 5094 // block so that we can later erase the resume block since it has no 5095 // predecessors. 5096 TrivialBB->getTerminator()->eraseFromParent(); 5097 new UnreachableInst(RI->getContext(), TrivialBB); 5098 if (DTU) 5099 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 5100 } 5101 5102 // Delete the resume block if all its predecessors have been removed. 5103 if (pred_empty(BB)) 5104 DeleteDeadBlock(BB, DTU); 5105 5106 return !TrivialUnwindBlocks.empty(); 5107 } 5108 5109 // Simplify resume that is only used by a single (non-phi) landing pad. 5110 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 5111 BasicBlock *BB = RI->getParent(); 5112 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 5113 assert(RI->getValue() == LPInst && 5114 "Resume must unwind the exception that caused control to here"); 5115 5116 // Check that there are no other instructions except for debug intrinsics. 5117 if (!isCleanupBlockEmpty( 5118 make_range<Instruction *>(LPInst->getNextNode(), RI))) 5119 return false; 5120 5121 // Turn all invokes that unwind here into calls and delete the basic block. 5122 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 5123 removeUnwindEdge(Pred, DTU); 5124 ++NumInvokes; 5125 } 5126 5127 // The landingpad is now unreachable. Zap it. 5128 DeleteDeadBlock(BB, DTU); 5129 return true; 5130 } 5131 5132 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 5133 // If this is a trivial cleanup pad that executes no instructions, it can be 5134 // eliminated. If the cleanup pad continues to the caller, any predecessor 5135 // that is an EH pad will be updated to continue to the caller and any 5136 // predecessor that terminates with an invoke instruction will have its invoke 5137 // instruction converted to a call instruction. If the cleanup pad being 5138 // simplified does not continue to the caller, each predecessor will be 5139 // updated to continue to the unwind destination of the cleanup pad being 5140 // simplified. 5141 BasicBlock *BB = RI->getParent(); 5142 CleanupPadInst *CPInst = RI->getCleanupPad(); 5143 if (CPInst->getParent() != BB) 5144 // This isn't an empty cleanup. 5145 return false; 5146 5147 // We cannot kill the pad if it has multiple uses. This typically arises 5148 // from unreachable basic blocks. 5149 if (!CPInst->hasOneUse()) 5150 return false; 5151 5152 // Check that there are no other instructions except for benign intrinsics. 5153 if (!isCleanupBlockEmpty( 5154 make_range<Instruction *>(CPInst->getNextNode(), RI))) 5155 return false; 5156 5157 // If the cleanup return we are simplifying unwinds to the caller, this will 5158 // set UnwindDest to nullptr. 5159 BasicBlock *UnwindDest = RI->getUnwindDest(); 5160 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 5161 5162 // We're about to remove BB from the control flow. Before we do, sink any 5163 // PHINodes into the unwind destination. Doing this before changing the 5164 // control flow avoids some potentially slow checks, since we can currently 5165 // be certain that UnwindDest and BB have no common predecessors (since they 5166 // are both EH pads). 5167 if (UnwindDest) { 5168 // First, go through the PHI nodes in UnwindDest and update any nodes that 5169 // reference the block we are removing 5170 for (PHINode &DestPN : UnwindDest->phis()) { 5171 int Idx = DestPN.getBasicBlockIndex(BB); 5172 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 5173 assert(Idx != -1); 5174 // This PHI node has an incoming value that corresponds to a control 5175 // path through the cleanup pad we are removing. If the incoming 5176 // value is in the cleanup pad, it must be a PHINode (because we 5177 // verified above that the block is otherwise empty). Otherwise, the 5178 // value is either a constant or a value that dominates the cleanup 5179 // pad being removed. 5180 // 5181 // Because BB and UnwindDest are both EH pads, all of their 5182 // predecessors must unwind to these blocks, and since no instruction 5183 // can have multiple unwind destinations, there will be no overlap in 5184 // incoming blocks between SrcPN and DestPN. 5185 Value *SrcVal = DestPN.getIncomingValue(Idx); 5186 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 5187 5188 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 5189 for (auto *Pred : predecessors(BB)) { 5190 Value *Incoming = 5191 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 5192 DestPN.addIncoming(Incoming, Pred); 5193 } 5194 } 5195 5196 // Sink any remaining PHI nodes directly into UnwindDest. 5197 Instruction *InsertPt = DestEHPad; 5198 for (PHINode &PN : make_early_inc_range(BB->phis())) { 5199 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 5200 // If the PHI node has no uses or all of its uses are in this basic 5201 // block (meaning they are debug or lifetime intrinsics), just leave 5202 // it. It will be erased when we erase BB below. 5203 continue; 5204 5205 // Otherwise, sink this PHI node into UnwindDest. 5206 // Any predecessors to UnwindDest which are not already represented 5207 // must be back edges which inherit the value from the path through 5208 // BB. In this case, the PHI value must reference itself. 5209 for (auto *pred : predecessors(UnwindDest)) 5210 if (pred != BB) 5211 PN.addIncoming(&PN, pred); 5212 PN.moveBefore(InsertPt); 5213 // Also, add a dummy incoming value for the original BB itself, 5214 // so that the PHI is well-formed until we drop said predecessor. 5215 PN.addIncoming(PoisonValue::get(PN.getType()), BB); 5216 } 5217 } 5218 5219 std::vector<DominatorTree::UpdateType> Updates; 5220 5221 // We use make_early_inc_range here because we will remove all predecessors. 5222 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 5223 if (UnwindDest == nullptr) { 5224 if (DTU) { 5225 DTU->applyUpdates(Updates); 5226 Updates.clear(); 5227 } 5228 removeUnwindEdge(PredBB, DTU); 5229 ++NumInvokes; 5230 } else { 5231 BB->removePredecessor(PredBB); 5232 Instruction *TI = PredBB->getTerminator(); 5233 TI->replaceUsesOfWith(BB, UnwindDest); 5234 if (DTU) { 5235 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 5236 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 5237 } 5238 } 5239 } 5240 5241 if (DTU) 5242 DTU->applyUpdates(Updates); 5243 5244 DeleteDeadBlock(BB, DTU); 5245 5246 return true; 5247 } 5248 5249 // Try to merge two cleanuppads together. 5250 static bool mergeCleanupPad(CleanupReturnInst *RI) { 5251 // Skip any cleanuprets which unwind to caller, there is nothing to merge 5252 // with. 5253 BasicBlock *UnwindDest = RI->getUnwindDest(); 5254 if (!UnwindDest) 5255 return false; 5256 5257 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 5258 // be safe to merge without code duplication. 5259 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 5260 return false; 5261 5262 // Verify that our cleanuppad's unwind destination is another cleanuppad. 5263 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 5264 if (!SuccessorCleanupPad) 5265 return false; 5266 5267 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 5268 // Replace any uses of the successor cleanupad with the predecessor pad 5269 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 5270 // funclet bundle operands. 5271 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 5272 // Remove the old cleanuppad. 5273 SuccessorCleanupPad->eraseFromParent(); 5274 // Now, we simply replace the cleanupret with a branch to the unwind 5275 // destination. 5276 BranchInst::Create(UnwindDest, RI->getParent()); 5277 RI->eraseFromParent(); 5278 5279 return true; 5280 } 5281 5282 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 5283 // It is possible to transiantly have an undef cleanuppad operand because we 5284 // have deleted some, but not all, dead blocks. 5285 // Eventually, this block will be deleted. 5286 if (isa<UndefValue>(RI->getOperand(0))) 5287 return false; 5288 5289 if (mergeCleanupPad(RI)) 5290 return true; 5291 5292 if (removeEmptyCleanup(RI, DTU)) 5293 return true; 5294 5295 return false; 5296 } 5297 5298 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 5299 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 5300 BasicBlock *BB = UI->getParent(); 5301 5302 bool Changed = false; 5303 5304 // Ensure that any debug-info records that used to occur after the Unreachable 5305 // are moved to in front of it -- otherwise they'll "dangle" at the end of 5306 // the block. 5307 BB->flushTerminatorDbgRecords(); 5308 5309 // Debug-info records on the unreachable inst itself should be deleted, as 5310 // below we delete everything past the final executable instruction. 5311 UI->dropDbgRecords(); 5312 5313 // If there are any instructions immediately before the unreachable that can 5314 // be removed, do so. 5315 while (UI->getIterator() != BB->begin()) { 5316 BasicBlock::iterator BBI = UI->getIterator(); 5317 --BBI; 5318 5319 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 5320 break; // Can not drop any more instructions. We're done here. 5321 // Otherwise, this instruction can be freely erased, 5322 // even if it is not side-effect free. 5323 5324 // Note that deleting EH's here is in fact okay, although it involves a bit 5325 // of subtle reasoning. If this inst is an EH, all the predecessors of this 5326 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 5327 // and we can therefore guarantee this block will be erased. 5328 5329 // If we're deleting this, we're deleting any subsequent debug info, so 5330 // delete DbgRecords. 5331 BBI->dropDbgRecords(); 5332 5333 // Delete this instruction (any uses are guaranteed to be dead) 5334 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 5335 BBI->eraseFromParent(); 5336 Changed = true; 5337 } 5338 5339 // If the unreachable instruction is the first in the block, take a gander 5340 // at all of the predecessors of this instruction, and simplify them. 5341 if (&BB->front() != UI) 5342 return Changed; 5343 5344 std::vector<DominatorTree::UpdateType> Updates; 5345 5346 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5347 for (BasicBlock *Predecessor : Preds) { 5348 Instruction *TI = Predecessor->getTerminator(); 5349 IRBuilder<> Builder(TI); 5350 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5351 // We could either have a proper unconditional branch, 5352 // or a degenerate conditional branch with matching destinations. 5353 if (all_of(BI->successors(), 5354 [BB](auto *Successor) { return Successor == BB; })) { 5355 new UnreachableInst(TI->getContext(), TI->getIterator()); 5356 TI->eraseFromParent(); 5357 Changed = true; 5358 } else { 5359 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5360 Value* Cond = BI->getCondition(); 5361 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5362 "The destinations are guaranteed to be different here."); 5363 CallInst *Assumption; 5364 if (BI->getSuccessor(0) == BB) { 5365 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 5366 Builder.CreateBr(BI->getSuccessor(1)); 5367 } else { 5368 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5369 Assumption = Builder.CreateAssumption(Cond); 5370 Builder.CreateBr(BI->getSuccessor(0)); 5371 } 5372 if (Options.AC) 5373 Options.AC->registerAssumption(cast<AssumeInst>(Assumption)); 5374 5375 EraseTerminatorAndDCECond(BI); 5376 Changed = true; 5377 } 5378 if (DTU) 5379 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5380 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5381 SwitchInstProfUpdateWrapper SU(*SI); 5382 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5383 if (i->getCaseSuccessor() != BB) { 5384 ++i; 5385 continue; 5386 } 5387 BB->removePredecessor(SU->getParent()); 5388 i = SU.removeCase(i); 5389 e = SU->case_end(); 5390 Changed = true; 5391 } 5392 // Note that the default destination can't be removed! 5393 if (DTU && SI->getDefaultDest() != BB) 5394 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5395 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5396 if (II->getUnwindDest() == BB) { 5397 if (DTU) { 5398 DTU->applyUpdates(Updates); 5399 Updates.clear(); 5400 } 5401 auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU)); 5402 if (!CI->doesNotThrow()) 5403 CI->setDoesNotThrow(); 5404 Changed = true; 5405 } 5406 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5407 if (CSI->getUnwindDest() == BB) { 5408 if (DTU) { 5409 DTU->applyUpdates(Updates); 5410 Updates.clear(); 5411 } 5412 removeUnwindEdge(TI->getParent(), DTU); 5413 Changed = true; 5414 continue; 5415 } 5416 5417 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5418 E = CSI->handler_end(); 5419 I != E; ++I) { 5420 if (*I == BB) { 5421 CSI->removeHandler(I); 5422 --I; 5423 --E; 5424 Changed = true; 5425 } 5426 } 5427 if (DTU) 5428 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5429 if (CSI->getNumHandlers() == 0) { 5430 if (CSI->hasUnwindDest()) { 5431 // Redirect all predecessors of the block containing CatchSwitchInst 5432 // to instead branch to the CatchSwitchInst's unwind destination. 5433 if (DTU) { 5434 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5435 Updates.push_back({DominatorTree::Insert, 5436 PredecessorOfPredecessor, 5437 CSI->getUnwindDest()}); 5438 Updates.push_back({DominatorTree::Delete, 5439 PredecessorOfPredecessor, Predecessor}); 5440 } 5441 } 5442 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5443 } else { 5444 // Rewrite all preds to unwind to caller (or from invoke to call). 5445 if (DTU) { 5446 DTU->applyUpdates(Updates); 5447 Updates.clear(); 5448 } 5449 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5450 for (BasicBlock *EHPred : EHPreds) 5451 removeUnwindEdge(EHPred, DTU); 5452 } 5453 // The catchswitch is no longer reachable. 5454 new UnreachableInst(CSI->getContext(), CSI->getIterator()); 5455 CSI->eraseFromParent(); 5456 Changed = true; 5457 } 5458 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5459 (void)CRI; 5460 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5461 "Expected to always have an unwind to BB."); 5462 if (DTU) 5463 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5464 new UnreachableInst(TI->getContext(), TI->getIterator()); 5465 TI->eraseFromParent(); 5466 Changed = true; 5467 } 5468 } 5469 5470 if (DTU) 5471 DTU->applyUpdates(Updates); 5472 5473 // If this block is now dead, remove it. 5474 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5475 DeleteDeadBlock(BB, DTU); 5476 return true; 5477 } 5478 5479 return Changed; 5480 } 5481 5482 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5483 assert(Cases.size() >= 1); 5484 5485 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 5486 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5487 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5488 return false; 5489 } 5490 return true; 5491 } 5492 5493 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5494 DomTreeUpdater *DTU, 5495 bool RemoveOrigDefaultBlock = true) { 5496 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5497 auto *BB = Switch->getParent(); 5498 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5499 if (RemoveOrigDefaultBlock) 5500 OrigDefaultBlock->removePredecessor(BB); 5501 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5502 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5503 OrigDefaultBlock); 5504 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5505 Switch->setDefaultDest(&*NewDefaultBlock); 5506 if (DTU) { 5507 SmallVector<DominatorTree::UpdateType, 2> Updates; 5508 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5509 if (RemoveOrigDefaultBlock && 5510 !is_contained(successors(BB), OrigDefaultBlock)) 5511 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5512 DTU->applyUpdates(Updates); 5513 } 5514 } 5515 5516 /// Turn a switch into an integer range comparison and branch. 5517 /// Switches with more than 2 destinations are ignored. 5518 /// Switches with 1 destination are also ignored. 5519 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 5520 IRBuilder<> &Builder) { 5521 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5522 5523 bool HasDefault = 5524 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5525 5526 auto *BB = SI->getParent(); 5527 5528 // Partition the cases into two sets with different destinations. 5529 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5530 BasicBlock *DestB = nullptr; 5531 SmallVector<ConstantInt *, 16> CasesA; 5532 SmallVector<ConstantInt *, 16> CasesB; 5533 5534 for (auto Case : SI->cases()) { 5535 BasicBlock *Dest = Case.getCaseSuccessor(); 5536 if (!DestA) 5537 DestA = Dest; 5538 if (Dest == DestA) { 5539 CasesA.push_back(Case.getCaseValue()); 5540 continue; 5541 } 5542 if (!DestB) 5543 DestB = Dest; 5544 if (Dest == DestB) { 5545 CasesB.push_back(Case.getCaseValue()); 5546 continue; 5547 } 5548 return false; // More than two destinations. 5549 } 5550 if (!DestB) 5551 return false; // All destinations are the same and the default is unreachable 5552 5553 assert(DestA && DestB && 5554 "Single-destination switch should have been folded."); 5555 assert(DestA != DestB); 5556 assert(DestB != SI->getDefaultDest()); 5557 assert(!CasesB.empty() && "There must be non-default cases."); 5558 assert(!CasesA.empty() || HasDefault); 5559 5560 // Figure out if one of the sets of cases form a contiguous range. 5561 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5562 BasicBlock *ContiguousDest = nullptr; 5563 BasicBlock *OtherDest = nullptr; 5564 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 5565 ContiguousCases = &CasesA; 5566 ContiguousDest = DestA; 5567 OtherDest = DestB; 5568 } else if (CasesAreContiguous(CasesB)) { 5569 ContiguousCases = &CasesB; 5570 ContiguousDest = DestB; 5571 OtherDest = DestA; 5572 } else 5573 return false; 5574 5575 // Start building the compare and branch. 5576 5577 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5578 Constant *NumCases = 5579 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5580 5581 Value *Sub = SI->getCondition(); 5582 if (!Offset->isNullValue()) 5583 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5584 5585 Value *Cmp; 5586 // If NumCases overflowed, then all possible values jump to the successor. 5587 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5588 Cmp = ConstantInt::getTrue(SI->getContext()); 5589 else 5590 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5591 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5592 5593 // Update weight for the newly-created conditional branch. 5594 if (hasBranchWeightMD(*SI)) { 5595 SmallVector<uint64_t, 8> Weights; 5596 GetBranchWeights(SI, Weights); 5597 if (Weights.size() == 1 + SI->getNumCases()) { 5598 uint64_t TrueWeight = 0; 5599 uint64_t FalseWeight = 0; 5600 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5601 if (SI->getSuccessor(I) == ContiguousDest) 5602 TrueWeight += Weights[I]; 5603 else 5604 FalseWeight += Weights[I]; 5605 } 5606 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5607 TrueWeight /= 2; 5608 FalseWeight /= 2; 5609 } 5610 setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false); 5611 } 5612 } 5613 5614 // Prune obsolete incoming values off the successors' PHI nodes. 5615 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5616 unsigned PreviousEdges = ContiguousCases->size(); 5617 if (ContiguousDest == SI->getDefaultDest()) 5618 ++PreviousEdges; 5619 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5620 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5621 } 5622 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5623 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5624 if (OtherDest == SI->getDefaultDest()) 5625 ++PreviousEdges; 5626 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5627 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5628 } 5629 5630 // Clean up the default block - it may have phis or other instructions before 5631 // the unreachable terminator. 5632 if (!HasDefault) 5633 createUnreachableSwitchDefault(SI, DTU); 5634 5635 auto *UnreachableDefault = SI->getDefaultDest(); 5636 5637 // Drop the switch. 5638 SI->eraseFromParent(); 5639 5640 if (!HasDefault && DTU) 5641 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5642 5643 return true; 5644 } 5645 5646 /// Compute masked bits for the condition of a switch 5647 /// and use it to remove dead cases. 5648 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5649 AssumptionCache *AC, 5650 const DataLayout &DL) { 5651 Value *Cond = SI->getCondition(); 5652 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5653 5654 // We can also eliminate cases by determining that their values are outside of 5655 // the limited range of the condition based on how many significant (non-sign) 5656 // bits are in the condition value. 5657 unsigned MaxSignificantBitsInCond = 5658 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5659 5660 // Gather dead cases. 5661 SmallVector<ConstantInt *, 8> DeadCases; 5662 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5663 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5664 for (const auto &Case : SI->cases()) { 5665 auto *Successor = Case.getCaseSuccessor(); 5666 if (DTU) { 5667 if (!NumPerSuccessorCases.count(Successor)) 5668 UniqueSuccessors.push_back(Successor); 5669 ++NumPerSuccessorCases[Successor]; 5670 } 5671 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5672 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5673 (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) { 5674 DeadCases.push_back(Case.getCaseValue()); 5675 if (DTU) 5676 --NumPerSuccessorCases[Successor]; 5677 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5678 << " is dead.\n"); 5679 } 5680 } 5681 5682 // If we can prove that the cases must cover all possible values, the 5683 // default destination becomes dead and we can remove it. If we know some 5684 // of the bits in the value, we can use that to more precisely compute the 5685 // number of possible unique case values. 5686 bool HasDefault = 5687 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5688 const unsigned NumUnknownBits = 5689 Known.getBitWidth() - (Known.Zero | Known.One).popcount(); 5690 assert(NumUnknownBits <= Known.getBitWidth()); 5691 if (HasDefault && DeadCases.empty() && 5692 NumUnknownBits < 64 /* avoid overflow */) { 5693 uint64_t AllNumCases = 1ULL << NumUnknownBits; 5694 if (SI->getNumCases() == AllNumCases) { 5695 createUnreachableSwitchDefault(SI, DTU); 5696 return true; 5697 } 5698 // When only one case value is missing, replace default with that case. 5699 // Eliminating the default branch will provide more opportunities for 5700 // optimization, such as lookup tables. 5701 if (SI->getNumCases() == AllNumCases - 1) { 5702 assert(NumUnknownBits > 1 && "Should be canonicalized to a branch"); 5703 IntegerType *CondTy = cast<IntegerType>(Cond->getType()); 5704 if (CondTy->getIntegerBitWidth() > 64 || 5705 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5706 return false; 5707 5708 uint64_t MissingCaseVal = 0; 5709 for (const auto &Case : SI->cases()) 5710 MissingCaseVal ^= Case.getCaseValue()->getValue().getLimitedValue(); 5711 auto *MissingCase = 5712 cast<ConstantInt>(ConstantInt::get(Cond->getType(), MissingCaseVal)); 5713 SwitchInstProfUpdateWrapper SIW(*SI); 5714 SIW.addCase(MissingCase, SI->getDefaultDest(), SIW.getSuccessorWeight(0)); 5715 createUnreachableSwitchDefault(SI, DTU, /*RemoveOrigDefaultBlock*/ false); 5716 SIW.setSuccessorWeight(0, 0); 5717 return true; 5718 } 5719 } 5720 5721 if (DeadCases.empty()) 5722 return false; 5723 5724 SwitchInstProfUpdateWrapper SIW(*SI); 5725 for (ConstantInt *DeadCase : DeadCases) { 5726 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5727 assert(CaseI != SI->case_default() && 5728 "Case was not found. Probably mistake in DeadCases forming."); 5729 // Prune unused values from PHI nodes. 5730 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5731 SIW.removeCase(CaseI); 5732 } 5733 5734 if (DTU) { 5735 std::vector<DominatorTree::UpdateType> Updates; 5736 for (auto *Successor : UniqueSuccessors) 5737 if (NumPerSuccessorCases[Successor] == 0) 5738 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5739 DTU->applyUpdates(Updates); 5740 } 5741 5742 return true; 5743 } 5744 5745 /// If BB would be eligible for simplification by 5746 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5747 /// by an unconditional branch), look at the phi node for BB in the successor 5748 /// block and see if the incoming value is equal to CaseValue. If so, return 5749 /// the phi node, and set PhiIndex to BB's index in the phi node. 5750 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5751 BasicBlock *BB, int *PhiIndex) { 5752 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5753 return nullptr; // BB must be empty to be a candidate for simplification. 5754 if (!BB->getSinglePredecessor()) 5755 return nullptr; // BB must be dominated by the switch. 5756 5757 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5758 if (!Branch || !Branch->isUnconditional()) 5759 return nullptr; // Terminator must be unconditional branch. 5760 5761 BasicBlock *Succ = Branch->getSuccessor(0); 5762 5763 for (PHINode &PHI : Succ->phis()) { 5764 int Idx = PHI.getBasicBlockIndex(BB); 5765 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5766 5767 Value *InValue = PHI.getIncomingValue(Idx); 5768 if (InValue != CaseValue) 5769 continue; 5770 5771 *PhiIndex = Idx; 5772 return &PHI; 5773 } 5774 5775 return nullptr; 5776 } 5777 5778 /// Try to forward the condition of a switch instruction to a phi node 5779 /// dominated by the switch, if that would mean that some of the destination 5780 /// blocks of the switch can be folded away. Return true if a change is made. 5781 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5782 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5783 5784 ForwardingNodesMap ForwardingNodes; 5785 BasicBlock *SwitchBlock = SI->getParent(); 5786 bool Changed = false; 5787 for (const auto &Case : SI->cases()) { 5788 ConstantInt *CaseValue = Case.getCaseValue(); 5789 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5790 5791 // Replace phi operands in successor blocks that are using the constant case 5792 // value rather than the switch condition variable: 5793 // switchbb: 5794 // switch i32 %x, label %default [ 5795 // i32 17, label %succ 5796 // ... 5797 // succ: 5798 // %r = phi i32 ... [ 17, %switchbb ] ... 5799 // --> 5800 // %r = phi i32 ... [ %x, %switchbb ] ... 5801 5802 for (PHINode &Phi : CaseDest->phis()) { 5803 // This only works if there is exactly 1 incoming edge from the switch to 5804 // a phi. If there is >1, that means multiple cases of the switch map to 1 5805 // value in the phi, and that phi value is not the switch condition. Thus, 5806 // this transform would not make sense (the phi would be invalid because 5807 // a phi can't have different incoming values from the same block). 5808 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5809 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5810 count(Phi.blocks(), SwitchBlock) == 1) { 5811 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5812 Changed = true; 5813 } 5814 } 5815 5816 // Collect phi nodes that are indirectly using this switch's case constants. 5817 int PhiIdx; 5818 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5819 ForwardingNodes[Phi].push_back(PhiIdx); 5820 } 5821 5822 for (auto &ForwardingNode : ForwardingNodes) { 5823 PHINode *Phi = ForwardingNode.first; 5824 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5825 // Check if it helps to fold PHI. 5826 if (Indexes.size() < 2 && !llvm::is_contained(Phi->incoming_values(), SI->getCondition())) 5827 continue; 5828 5829 for (int Index : Indexes) 5830 Phi->setIncomingValue(Index, SI->getCondition()); 5831 Changed = true; 5832 } 5833 5834 return Changed; 5835 } 5836 5837 /// Return true if the backend will be able to handle 5838 /// initializing an array of constants like C. 5839 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5840 if (C->isThreadDependent()) 5841 return false; 5842 if (C->isDLLImportDependent()) 5843 return false; 5844 5845 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5846 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5847 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5848 return false; 5849 5850 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5851 // Pointer casts and in-bounds GEPs will not prohibit the backend from 5852 // materializing the array of constants. 5853 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 5854 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI)) 5855 return false; 5856 } 5857 5858 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5859 return false; 5860 5861 return true; 5862 } 5863 5864 /// If V is a Constant, return it. Otherwise, try to look up 5865 /// its constant value in ConstantPool, returning 0 if it's not there. 5866 static Constant * 5867 LookupConstant(Value *V, 5868 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5869 if (Constant *C = dyn_cast<Constant>(V)) 5870 return C; 5871 return ConstantPool.lookup(V); 5872 } 5873 5874 /// Try to fold instruction I into a constant. This works for 5875 /// simple instructions such as binary operations where both operands are 5876 /// constant or can be replaced by constants from the ConstantPool. Returns the 5877 /// resulting constant on success, 0 otherwise. 5878 static Constant * 5879 ConstantFold(Instruction *I, const DataLayout &DL, 5880 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5881 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5882 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5883 if (!A) 5884 return nullptr; 5885 if (A->isAllOnesValue()) 5886 return LookupConstant(Select->getTrueValue(), ConstantPool); 5887 if (A->isNullValue()) 5888 return LookupConstant(Select->getFalseValue(), ConstantPool); 5889 return nullptr; 5890 } 5891 5892 SmallVector<Constant *, 4> COps; 5893 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5894 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5895 COps.push_back(A); 5896 else 5897 return nullptr; 5898 } 5899 5900 return ConstantFoldInstOperands(I, COps, DL); 5901 } 5902 5903 /// Try to determine the resulting constant values in phi nodes 5904 /// at the common destination basic block, *CommonDest, for one of the case 5905 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5906 /// case), of a switch instruction SI. 5907 static bool 5908 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5909 BasicBlock **CommonDest, 5910 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5911 const DataLayout &DL, const TargetTransformInfo &TTI) { 5912 // The block from which we enter the common destination. 5913 BasicBlock *Pred = SI->getParent(); 5914 5915 // If CaseDest is empty except for some side-effect free instructions through 5916 // which we can constant-propagate the CaseVal, continue to its successor. 5917 SmallDenseMap<Value *, Constant *> ConstantPool; 5918 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5919 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 5920 if (I.isTerminator()) { 5921 // If the terminator is a simple branch, continue to the next block. 5922 if (I.getNumSuccessors() != 1 || I.isSpecialTerminator()) 5923 return false; 5924 Pred = CaseDest; 5925 CaseDest = I.getSuccessor(0); 5926 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5927 // Instruction is side-effect free and constant. 5928 5929 // If the instruction has uses outside this block or a phi node slot for 5930 // the block, it is not safe to bypass the instruction since it would then 5931 // no longer dominate all its uses. 5932 for (auto &Use : I.uses()) { 5933 User *User = Use.getUser(); 5934 if (Instruction *I = dyn_cast<Instruction>(User)) 5935 if (I->getParent() == CaseDest) 5936 continue; 5937 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5938 if (Phi->getIncomingBlock(Use) == CaseDest) 5939 continue; 5940 return false; 5941 } 5942 5943 ConstantPool.insert(std::make_pair(&I, C)); 5944 } else { 5945 break; 5946 } 5947 } 5948 5949 // If we did not have a CommonDest before, use the current one. 5950 if (!*CommonDest) 5951 *CommonDest = CaseDest; 5952 // If the destination isn't the common one, abort. 5953 if (CaseDest != *CommonDest) 5954 return false; 5955 5956 // Get the values for this case from phi nodes in the destination block. 5957 for (PHINode &PHI : (*CommonDest)->phis()) { 5958 int Idx = PHI.getBasicBlockIndex(Pred); 5959 if (Idx == -1) 5960 continue; 5961 5962 Constant *ConstVal = 5963 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5964 if (!ConstVal) 5965 return false; 5966 5967 // Be conservative about which kinds of constants we support. 5968 if (!ValidLookupTableConstant(ConstVal, TTI)) 5969 return false; 5970 5971 Res.push_back(std::make_pair(&PHI, ConstVal)); 5972 } 5973 5974 return Res.size() > 0; 5975 } 5976 5977 // Helper function used to add CaseVal to the list of cases that generate 5978 // Result. Returns the updated number of cases that generate this result. 5979 static size_t mapCaseToResult(ConstantInt *CaseVal, 5980 SwitchCaseResultVectorTy &UniqueResults, 5981 Constant *Result) { 5982 for (auto &I : UniqueResults) { 5983 if (I.first == Result) { 5984 I.second.push_back(CaseVal); 5985 return I.second.size(); 5986 } 5987 } 5988 UniqueResults.push_back( 5989 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5990 return 1; 5991 } 5992 5993 // Helper function that initializes a map containing 5994 // results for the PHI node of the common destination block for a switch 5995 // instruction. Returns false if multiple PHI nodes have been found or if 5996 // there is not a common destination block for the switch. 5997 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 5998 BasicBlock *&CommonDest, 5999 SwitchCaseResultVectorTy &UniqueResults, 6000 Constant *&DefaultResult, 6001 const DataLayout &DL, 6002 const TargetTransformInfo &TTI, 6003 uintptr_t MaxUniqueResults) { 6004 for (const auto &I : SI->cases()) { 6005 ConstantInt *CaseVal = I.getCaseValue(); 6006 6007 // Resulting value at phi nodes for this case value. 6008 SwitchCaseResultsTy Results; 6009 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 6010 DL, TTI)) 6011 return false; 6012 6013 // Only one value per case is permitted. 6014 if (Results.size() > 1) 6015 return false; 6016 6017 // Add the case->result mapping to UniqueResults. 6018 const size_t NumCasesForResult = 6019 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 6020 6021 // Early out if there are too many cases for this result. 6022 if (NumCasesForResult > MaxSwitchCasesPerResult) 6023 return false; 6024 6025 // Early out if there are too many unique results. 6026 if (UniqueResults.size() > MaxUniqueResults) 6027 return false; 6028 6029 // Check the PHI consistency. 6030 if (!PHI) 6031 PHI = Results[0].first; 6032 else if (PHI != Results[0].first) 6033 return false; 6034 } 6035 // Find the default result value. 6036 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 6037 BasicBlock *DefaultDest = SI->getDefaultDest(); 6038 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 6039 DL, TTI); 6040 // If the default value is not found abort unless the default destination 6041 // is unreachable. 6042 DefaultResult = 6043 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 6044 if ((!DefaultResult && 6045 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 6046 return false; 6047 6048 return true; 6049 } 6050 6051 // Helper function that checks if it is possible to transform a switch with only 6052 // two cases (or two cases + default) that produces a result into a select. 6053 // TODO: Handle switches with more than 2 cases that map to the same result. 6054 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector, 6055 Constant *DefaultResult, Value *Condition, 6056 IRBuilder<> &Builder) { 6057 // If we are selecting between only two cases transform into a simple 6058 // select or a two-way select if default is possible. 6059 // Example: 6060 // switch (a) { %0 = icmp eq i32 %a, 10 6061 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4 6062 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20 6063 // default: return 4; %3 = select i1 %2, i32 2, i32 %1 6064 // } 6065 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 6066 ResultVector[1].second.size() == 1) { 6067 ConstantInt *FirstCase = ResultVector[0].second[0]; 6068 ConstantInt *SecondCase = ResultVector[1].second[0]; 6069 Value *SelectValue = ResultVector[1].first; 6070 if (DefaultResult) { 6071 Value *ValueCompare = 6072 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 6073 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 6074 DefaultResult, "switch.select"); 6075 } 6076 Value *ValueCompare = 6077 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 6078 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 6079 SelectValue, "switch.select"); 6080 } 6081 6082 // Handle the degenerate case where two cases have the same result value. 6083 if (ResultVector.size() == 1 && DefaultResult) { 6084 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second; 6085 unsigned CaseCount = CaseValues.size(); 6086 // n bits group cases map to the same result: 6087 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default 6088 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default 6089 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default 6090 if (isPowerOf2_32(CaseCount)) { 6091 ConstantInt *MinCaseVal = CaseValues[0]; 6092 // Find mininal value. 6093 for (auto *Case : CaseValues) 6094 if (Case->getValue().slt(MinCaseVal->getValue())) 6095 MinCaseVal = Case; 6096 6097 // Mark the bits case number touched. 6098 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth()); 6099 for (auto *Case : CaseValues) 6100 BitMask |= (Case->getValue() - MinCaseVal->getValue()); 6101 6102 // Check if cases with the same result can cover all number 6103 // in touched bits. 6104 if (BitMask.popcount() == Log2_32(CaseCount)) { 6105 if (!MinCaseVal->isNullValue()) 6106 Condition = Builder.CreateSub(Condition, MinCaseVal); 6107 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and"); 6108 Value *Cmp = Builder.CreateICmpEQ( 6109 And, Constant::getNullValue(And->getType()), "switch.selectcmp"); 6110 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 6111 } 6112 } 6113 6114 // Handle the degenerate case where two cases have the same value. 6115 if (CaseValues.size() == 2) { 6116 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0], 6117 "switch.selectcmp.case1"); 6118 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1], 6119 "switch.selectcmp.case2"); 6120 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 6121 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 6122 } 6123 } 6124 6125 return nullptr; 6126 } 6127 6128 // Helper function to cleanup a switch instruction that has been converted into 6129 // a select, fixing up PHI nodes and basic blocks. 6130 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI, 6131 Value *SelectValue, 6132 IRBuilder<> &Builder, 6133 DomTreeUpdater *DTU) { 6134 std::vector<DominatorTree::UpdateType> Updates; 6135 6136 BasicBlock *SelectBB = SI->getParent(); 6137 BasicBlock *DestBB = PHI->getParent(); 6138 6139 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 6140 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 6141 Builder.CreateBr(DestBB); 6142 6143 // Remove the switch. 6144 6145 PHI->removeIncomingValueIf( 6146 [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; }); 6147 PHI->addIncoming(SelectValue, SelectBB); 6148 6149 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 6150 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6151 BasicBlock *Succ = SI->getSuccessor(i); 6152 6153 if (Succ == DestBB) 6154 continue; 6155 Succ->removePredecessor(SelectBB); 6156 if (DTU && RemovedSuccessors.insert(Succ).second) 6157 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 6158 } 6159 SI->eraseFromParent(); 6160 if (DTU) 6161 DTU->applyUpdates(Updates); 6162 } 6163 6164 /// If a switch is only used to initialize one or more phi nodes in a common 6165 /// successor block with only two different constant values, try to replace the 6166 /// switch with a select. Returns true if the fold was made. 6167 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 6168 DomTreeUpdater *DTU, const DataLayout &DL, 6169 const TargetTransformInfo &TTI) { 6170 Value *const Cond = SI->getCondition(); 6171 PHINode *PHI = nullptr; 6172 BasicBlock *CommonDest = nullptr; 6173 Constant *DefaultResult; 6174 SwitchCaseResultVectorTy UniqueResults; 6175 // Collect all the cases that will deliver the same value from the switch. 6176 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 6177 DL, TTI, /*MaxUniqueResults*/ 2)) 6178 return false; 6179 6180 assert(PHI != nullptr && "PHI for value select not found"); 6181 Builder.SetInsertPoint(SI); 6182 Value *SelectValue = 6183 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder); 6184 if (!SelectValue) 6185 return false; 6186 6187 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU); 6188 return true; 6189 } 6190 6191 namespace { 6192 6193 /// This class represents a lookup table that can be used to replace a switch. 6194 class SwitchLookupTable { 6195 public: 6196 /// Create a lookup table to use as a switch replacement with the contents 6197 /// of Values, using DefaultValue to fill any holes in the table. 6198 SwitchLookupTable( 6199 Module &M, uint64_t TableSize, ConstantInt *Offset, 6200 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6201 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 6202 6203 /// Build instructions with Builder to retrieve the value at 6204 /// the position given by Index in the lookup table. 6205 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 6206 6207 /// Return true if a table with TableSize elements of 6208 /// type ElementType would fit in a target-legal register. 6209 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 6210 Type *ElementType); 6211 6212 private: 6213 // Depending on the contents of the table, it can be represented in 6214 // different ways. 6215 enum { 6216 // For tables where each element contains the same value, we just have to 6217 // store that single value and return it for each lookup. 6218 SingleValueKind, 6219 6220 // For tables where there is a linear relationship between table index 6221 // and values. We calculate the result with a simple multiplication 6222 // and addition instead of a table lookup. 6223 LinearMapKind, 6224 6225 // For small tables with integer elements, we can pack them into a bitmap 6226 // that fits into a target-legal register. Values are retrieved by 6227 // shift and mask operations. 6228 BitMapKind, 6229 6230 // The table is stored as an array of values. Values are retrieved by load 6231 // instructions from the table. 6232 ArrayKind 6233 } Kind; 6234 6235 // For SingleValueKind, this is the single value. 6236 Constant *SingleValue = nullptr; 6237 6238 // For BitMapKind, this is the bitmap. 6239 ConstantInt *BitMap = nullptr; 6240 IntegerType *BitMapElementTy = nullptr; 6241 6242 // For LinearMapKind, these are the constants used to derive the value. 6243 ConstantInt *LinearOffset = nullptr; 6244 ConstantInt *LinearMultiplier = nullptr; 6245 bool LinearMapValWrapped = false; 6246 6247 // For ArrayKind, this is the array. 6248 GlobalVariable *Array = nullptr; 6249 }; 6250 6251 } // end anonymous namespace 6252 6253 SwitchLookupTable::SwitchLookupTable( 6254 Module &M, uint64_t TableSize, ConstantInt *Offset, 6255 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6256 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 6257 assert(Values.size() && "Can't build lookup table without values!"); 6258 assert(TableSize >= Values.size() && "Can't fit values in table!"); 6259 6260 // If all values in the table are equal, this is that value. 6261 SingleValue = Values.begin()->second; 6262 6263 Type *ValueType = Values.begin()->second->getType(); 6264 6265 // Build up the table contents. 6266 SmallVector<Constant *, 64> TableContents(TableSize); 6267 for (size_t I = 0, E = Values.size(); I != E; ++I) { 6268 ConstantInt *CaseVal = Values[I].first; 6269 Constant *CaseRes = Values[I].second; 6270 assert(CaseRes->getType() == ValueType); 6271 6272 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 6273 TableContents[Idx] = CaseRes; 6274 6275 if (CaseRes != SingleValue) 6276 SingleValue = nullptr; 6277 } 6278 6279 // Fill in any holes in the table with the default result. 6280 if (Values.size() < TableSize) { 6281 assert(DefaultValue && 6282 "Need a default value to fill the lookup table holes."); 6283 assert(DefaultValue->getType() == ValueType); 6284 for (uint64_t I = 0; I < TableSize; ++I) { 6285 if (!TableContents[I]) 6286 TableContents[I] = DefaultValue; 6287 } 6288 6289 if (DefaultValue != SingleValue) 6290 SingleValue = nullptr; 6291 } 6292 6293 // If each element in the table contains the same value, we only need to store 6294 // that single value. 6295 if (SingleValue) { 6296 Kind = SingleValueKind; 6297 return; 6298 } 6299 6300 // Check if we can derive the value with a linear transformation from the 6301 // table index. 6302 if (isa<IntegerType>(ValueType)) { 6303 bool LinearMappingPossible = true; 6304 APInt PrevVal; 6305 APInt DistToPrev; 6306 // When linear map is monotonic and signed overflow doesn't happen on 6307 // maximum index, we can attach nsw on Add and Mul. 6308 bool NonMonotonic = false; 6309 assert(TableSize >= 2 && "Should be a SingleValue table."); 6310 // Check if there is the same distance between two consecutive values. 6311 for (uint64_t I = 0; I < TableSize; ++I) { 6312 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 6313 if (!ConstVal) { 6314 // This is an undef. We could deal with it, but undefs in lookup tables 6315 // are very seldom. It's probably not worth the additional complexity. 6316 LinearMappingPossible = false; 6317 break; 6318 } 6319 const APInt &Val = ConstVal->getValue(); 6320 if (I != 0) { 6321 APInt Dist = Val - PrevVal; 6322 if (I == 1) { 6323 DistToPrev = Dist; 6324 } else if (Dist != DistToPrev) { 6325 LinearMappingPossible = false; 6326 break; 6327 } 6328 NonMonotonic |= 6329 Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal); 6330 } 6331 PrevVal = Val; 6332 } 6333 if (LinearMappingPossible) { 6334 LinearOffset = cast<ConstantInt>(TableContents[0]); 6335 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 6336 bool MayWrap = false; 6337 APInt M = LinearMultiplier->getValue(); 6338 (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap); 6339 LinearMapValWrapped = NonMonotonic || MayWrap; 6340 Kind = LinearMapKind; 6341 ++NumLinearMaps; 6342 return; 6343 } 6344 } 6345 6346 // If the type is integer and the table fits in a register, build a bitmap. 6347 if (WouldFitInRegister(DL, TableSize, ValueType)) { 6348 IntegerType *IT = cast<IntegerType>(ValueType); 6349 APInt TableInt(TableSize * IT->getBitWidth(), 0); 6350 for (uint64_t I = TableSize; I > 0; --I) { 6351 TableInt <<= IT->getBitWidth(); 6352 // Insert values into the bitmap. Undef values are set to zero. 6353 if (!isa<UndefValue>(TableContents[I - 1])) { 6354 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 6355 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 6356 } 6357 } 6358 BitMap = ConstantInt::get(M.getContext(), TableInt); 6359 BitMapElementTy = IT; 6360 Kind = BitMapKind; 6361 ++NumBitMaps; 6362 return; 6363 } 6364 6365 // Store the table in an array. 6366 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 6367 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 6368 6369 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 6370 GlobalVariable::PrivateLinkage, Initializer, 6371 "switch.table." + FuncName); 6372 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 6373 // Set the alignment to that of an array items. We will be only loading one 6374 // value out of it. 6375 Array->setAlignment(DL.getPrefTypeAlign(ValueType)); 6376 Kind = ArrayKind; 6377 } 6378 6379 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 6380 switch (Kind) { 6381 case SingleValueKind: 6382 return SingleValue; 6383 case LinearMapKind: { 6384 // Derive the result value from the input value. 6385 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 6386 false, "switch.idx.cast"); 6387 if (!LinearMultiplier->isOne()) 6388 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult", 6389 /*HasNUW = */ false, 6390 /*HasNSW = */ !LinearMapValWrapped); 6391 6392 if (!LinearOffset->isZero()) 6393 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset", 6394 /*HasNUW = */ false, 6395 /*HasNSW = */ !LinearMapValWrapped); 6396 return Result; 6397 } 6398 case BitMapKind: { 6399 // Type of the bitmap (e.g. i59). 6400 IntegerType *MapTy = BitMap->getIntegerType(); 6401 6402 // Cast Index to the same type as the bitmap. 6403 // Note: The Index is <= the number of elements in the table, so 6404 // truncating it to the width of the bitmask is safe. 6405 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 6406 6407 // Multiply the shift amount by the element width. NUW/NSW can always be 6408 // set, because WouldFitInRegister guarantees Index * ShiftAmt is in 6409 // BitMap's bit width. 6410 ShiftAmt = Builder.CreateMul( 6411 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 6412 "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true); 6413 6414 // Shift down. 6415 Value *DownShifted = 6416 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 6417 // Mask off. 6418 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6419 } 6420 case ArrayKind: { 6421 // Make sure the table index will not overflow when treated as signed. 6422 IntegerType *IT = cast<IntegerType>(Index->getType()); 6423 uint64_t TableSize = 6424 Array->getInitializer()->getType()->getArrayNumElements(); 6425 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u))) 6426 Index = Builder.CreateZExt( 6427 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6428 "switch.tableidx.zext"); 6429 6430 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6431 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6432 GEPIndices, "switch.gep"); 6433 return Builder.CreateLoad( 6434 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6435 "switch.load"); 6436 } 6437 } 6438 llvm_unreachable("Unknown lookup table kind!"); 6439 } 6440 6441 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 6442 uint64_t TableSize, 6443 Type *ElementType) { 6444 auto *IT = dyn_cast<IntegerType>(ElementType); 6445 if (!IT) 6446 return false; 6447 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6448 // are <= 15, we could try to narrow the type. 6449 6450 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6451 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6452 return false; 6453 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6454 } 6455 6456 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6457 const DataLayout &DL) { 6458 // Allow any legal type. 6459 if (TTI.isTypeLegal(Ty)) 6460 return true; 6461 6462 auto *IT = dyn_cast<IntegerType>(Ty); 6463 if (!IT) 6464 return false; 6465 6466 // Also allow power of 2 integer types that have at least 8 bits and fit in 6467 // a register. These types are common in frontend languages and targets 6468 // usually support loads of these types. 6469 // TODO: We could relax this to any integer that fits in a register and rely 6470 // on ABI alignment and padding in the table to allow the load to be widened. 6471 // Or we could widen the constants and truncate the load. 6472 unsigned BitWidth = IT->getBitWidth(); 6473 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6474 DL.fitsInLegalInteger(IT->getBitWidth()); 6475 } 6476 6477 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) { 6478 // 40% is the default density for building a jump table in optsize/minsize 6479 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this 6480 // function was based on. 6481 const uint64_t MinDensity = 40; 6482 6483 if (CaseRange >= UINT64_MAX / 100) 6484 return false; // Avoid multiplication overflows below. 6485 6486 return NumCases * 100 >= CaseRange * MinDensity; 6487 } 6488 6489 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6490 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6491 uint64_t Range = Diff + 1; 6492 if (Range < Diff) 6493 return false; // Overflow. 6494 6495 return isSwitchDense(Values.size(), Range); 6496 } 6497 6498 /// Determine whether a lookup table should be built for this switch, based on 6499 /// the number of cases, size of the table, and the types of the results. 6500 // TODO: We could support larger than legal types by limiting based on the 6501 // number of loads required and/or table size. If the constants are small we 6502 // could use smaller table entries and extend after the load. 6503 static bool 6504 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6505 const TargetTransformInfo &TTI, const DataLayout &DL, 6506 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6507 if (SI->getNumCases() > TableSize) 6508 return false; // TableSize overflowed. 6509 6510 bool AllTablesFitInRegister = true; 6511 bool HasIllegalType = false; 6512 for (const auto &I : ResultTypes) { 6513 Type *Ty = I.second; 6514 6515 // Saturate this flag to true. 6516 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6517 6518 // Saturate this flag to false. 6519 AllTablesFitInRegister = 6520 AllTablesFitInRegister && 6521 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 6522 6523 // If both flags saturate, we're done. NOTE: This *only* works with 6524 // saturating flags, and all flags have to saturate first due to the 6525 // non-deterministic behavior of iterating over a dense map. 6526 if (HasIllegalType && !AllTablesFitInRegister) 6527 break; 6528 } 6529 6530 // If each table would fit in a register, we should build it anyway. 6531 if (AllTablesFitInRegister) 6532 return true; 6533 6534 // Don't build a table that doesn't fit in-register if it has illegal types. 6535 if (HasIllegalType) 6536 return false; 6537 6538 return isSwitchDense(SI->getNumCases(), TableSize); 6539 } 6540 6541 static bool ShouldUseSwitchConditionAsTableIndex( 6542 ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal, 6543 bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes, 6544 const DataLayout &DL, const TargetTransformInfo &TTI) { 6545 if (MinCaseVal.isNullValue()) 6546 return true; 6547 if (MinCaseVal.isNegative() || 6548 MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() || 6549 !HasDefaultResults) 6550 return false; 6551 return all_of(ResultTypes, [&](const auto &KV) { 6552 return SwitchLookupTable::WouldFitInRegister( 6553 DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */, 6554 KV.second /* ResultType */); 6555 }); 6556 } 6557 6558 /// Try to reuse the switch table index compare. Following pattern: 6559 /// \code 6560 /// if (idx < tablesize) 6561 /// r = table[idx]; // table does not contain default_value 6562 /// else 6563 /// r = default_value; 6564 /// if (r != default_value) 6565 /// ... 6566 /// \endcode 6567 /// Is optimized to: 6568 /// \code 6569 /// cond = idx < tablesize; 6570 /// if (cond) 6571 /// r = table[idx]; 6572 /// else 6573 /// r = default_value; 6574 /// if (cond) 6575 /// ... 6576 /// \endcode 6577 /// Jump threading will then eliminate the second if(cond). 6578 static void reuseTableCompare( 6579 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6580 Constant *DefaultValue, 6581 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6582 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6583 if (!CmpInst) 6584 return; 6585 6586 // We require that the compare is in the same block as the phi so that jump 6587 // threading can do its work afterwards. 6588 if (CmpInst->getParent() != PhiBlock) 6589 return; 6590 6591 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6592 if (!CmpOp1) 6593 return; 6594 6595 Value *RangeCmp = RangeCheckBranch->getCondition(); 6596 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6597 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6598 6599 // Check if the compare with the default value is constant true or false. 6600 const DataLayout &DL = PhiBlock->getDataLayout(); 6601 Constant *DefaultConst = ConstantFoldCompareInstOperands( 6602 CmpInst->getPredicate(), DefaultValue, CmpOp1, DL); 6603 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6604 return; 6605 6606 // Check if the compare with the case values is distinct from the default 6607 // compare result. 6608 for (auto ValuePair : Values) { 6609 Constant *CaseConst = ConstantFoldCompareInstOperands( 6610 CmpInst->getPredicate(), ValuePair.second, CmpOp1, DL); 6611 if (!CaseConst || CaseConst == DefaultConst || 6612 (CaseConst != TrueConst && CaseConst != FalseConst)) 6613 return; 6614 } 6615 6616 // Check if the branch instruction dominates the phi node. It's a simple 6617 // dominance check, but sufficient for our needs. 6618 // Although this check is invariant in the calling loops, it's better to do it 6619 // at this late stage. Practically we do it at most once for a switch. 6620 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6621 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6622 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6623 return; 6624 } 6625 6626 if (DefaultConst == FalseConst) { 6627 // The compare yields the same result. We can replace it. 6628 CmpInst->replaceAllUsesWith(RangeCmp); 6629 ++NumTableCmpReuses; 6630 } else { 6631 // The compare yields the same result, just inverted. We can replace it. 6632 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6633 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6634 RangeCheckBranch->getIterator()); 6635 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6636 ++NumTableCmpReuses; 6637 } 6638 } 6639 6640 /// If the switch is only used to initialize one or more phi nodes in a common 6641 /// successor block with different constant values, replace the switch with 6642 /// lookup tables. 6643 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6644 DomTreeUpdater *DTU, const DataLayout &DL, 6645 const TargetTransformInfo &TTI) { 6646 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6647 6648 BasicBlock *BB = SI->getParent(); 6649 Function *Fn = BB->getParent(); 6650 // Only build lookup table when we have a target that supports it or the 6651 // attribute is not set. 6652 if (!TTI.shouldBuildLookupTables() || 6653 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6654 return false; 6655 6656 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6657 // split off a dense part and build a lookup table for that. 6658 6659 // FIXME: This creates arrays of GEPs to constant strings, which means each 6660 // GEP needs a runtime relocation in PIC code. We should just build one big 6661 // string and lookup indices into that. 6662 6663 // Ignore switches with less than three cases. Lookup tables will not make 6664 // them faster, so we don't analyze them. 6665 if (SI->getNumCases() < 3) 6666 return false; 6667 6668 // Figure out the corresponding result for each case value and phi node in the 6669 // common destination, as well as the min and max case values. 6670 assert(!SI->cases().empty()); 6671 SwitchInst::CaseIt CI = SI->case_begin(); 6672 ConstantInt *MinCaseVal = CI->getCaseValue(); 6673 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6674 6675 BasicBlock *CommonDest = nullptr; 6676 6677 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6678 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6679 6680 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6681 SmallDenseMap<PHINode *, Type *> ResultTypes; 6682 SmallVector<PHINode *, 4> PHIs; 6683 6684 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6685 ConstantInt *CaseVal = CI->getCaseValue(); 6686 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6687 MinCaseVal = CaseVal; 6688 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6689 MaxCaseVal = CaseVal; 6690 6691 // Resulting value at phi nodes for this case value. 6692 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6693 ResultsTy Results; 6694 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6695 Results, DL, TTI)) 6696 return false; 6697 6698 // Append the result from this case to the list for each phi. 6699 for (const auto &I : Results) { 6700 PHINode *PHI = I.first; 6701 Constant *Value = I.second; 6702 if (!ResultLists.count(PHI)) 6703 PHIs.push_back(PHI); 6704 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6705 } 6706 } 6707 6708 // Keep track of the result types. 6709 for (PHINode *PHI : PHIs) { 6710 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6711 } 6712 6713 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6714 6715 // If the table has holes, we need a constant result for the default case 6716 // or a bitmask that fits in a register. 6717 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6718 bool HasDefaultResults = 6719 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6720 DefaultResultsList, DL, TTI); 6721 6722 for (const auto &I : DefaultResultsList) { 6723 PHINode *PHI = I.first; 6724 Constant *Result = I.second; 6725 DefaultResults[PHI] = Result; 6726 } 6727 6728 bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex( 6729 *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI); 6730 uint64_t TableSize; 6731 if (UseSwitchConditionAsTableIndex) 6732 TableSize = MaxCaseVal->getLimitedValue() + 1; 6733 else 6734 TableSize = 6735 (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1; 6736 6737 // If the default destination is unreachable, or if the lookup table covers 6738 // all values of the conditional variable, branch directly to the lookup table 6739 // BB. Otherwise, check that the condition is within the case range. 6740 bool DefaultIsReachable = !SI->defaultDestUndefined(); 6741 6742 bool TableHasHoles = (NumResults < TableSize); 6743 6744 // If the table has holes but the default destination doesn't produce any 6745 // constant results, the lookup table entries corresponding to the holes will 6746 // contain undefined values. 6747 bool AllHolesAreUndefined = TableHasHoles && !HasDefaultResults; 6748 6749 // If the default destination doesn't produce a constant result but is still 6750 // reachable, and the lookup table has holes, we need to use a mask to 6751 // determine if the current index should load from the lookup table or jump 6752 // to the default case. 6753 // The mask is unnecessary if the table has holes but the default destination 6754 // is unreachable, as in that case the holes must also be unreachable. 6755 bool NeedMask = AllHolesAreUndefined && DefaultIsReachable; 6756 if (NeedMask) { 6757 // As an extra penalty for the validity test we require more cases. 6758 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 6759 return false; 6760 if (!DL.fitsInLegalInteger(TableSize)) 6761 return false; 6762 } 6763 6764 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 6765 return false; 6766 6767 std::vector<DominatorTree::UpdateType> Updates; 6768 6769 // Compute the maximum table size representable by the integer type we are 6770 // switching upon. 6771 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6772 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6773 assert(MaxTableSize >= TableSize && 6774 "It is impossible for a switch to have more entries than the max " 6775 "representable value of its input integer type's size."); 6776 6777 // Create the BB that does the lookups. 6778 Module &Mod = *CommonDest->getParent()->getParent(); 6779 BasicBlock *LookupBB = BasicBlock::Create( 6780 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6781 6782 // Compute the table index value. 6783 Builder.SetInsertPoint(SI); 6784 Value *TableIndex; 6785 ConstantInt *TableIndexOffset; 6786 if (UseSwitchConditionAsTableIndex) { 6787 TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0); 6788 TableIndex = SI->getCondition(); 6789 } else { 6790 TableIndexOffset = MinCaseVal; 6791 // If the default is unreachable, all case values are s>= MinCaseVal. Then 6792 // we can try to attach nsw. 6793 bool MayWrap = true; 6794 if (!DefaultIsReachable) { 6795 APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap); 6796 (void)Res; 6797 } 6798 6799 TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset, 6800 "switch.tableidx", /*HasNUW =*/false, 6801 /*HasNSW =*/!MayWrap); 6802 } 6803 6804 BranchInst *RangeCheckBranch = nullptr; 6805 6806 // Grow the table to cover all possible index values to avoid the range check. 6807 // It will use the default result to fill in the table hole later, so make 6808 // sure it exist. 6809 if (UseSwitchConditionAsTableIndex && HasDefaultResults) { 6810 ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false); 6811 // Grow the table shouldn't have any size impact by checking 6812 // WouldFitInRegister. 6813 // TODO: Consider growing the table also when it doesn't fit in a register 6814 // if no optsize is specified. 6815 const uint64_t UpperBound = CR.getUpper().getLimitedValue(); 6816 if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) { 6817 return SwitchLookupTable::WouldFitInRegister( 6818 DL, UpperBound, KV.second /* ResultType */); 6819 })) { 6820 // There may be some case index larger than the UpperBound (unreachable 6821 // case), so make sure the table size does not get smaller. 6822 TableSize = std::max(UpperBound, TableSize); 6823 // The default branch is unreachable after we enlarge the lookup table. 6824 // Adjust DefaultIsReachable to reuse code path. 6825 DefaultIsReachable = false; 6826 } 6827 } 6828 6829 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6830 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6831 Builder.CreateBr(LookupBB); 6832 if (DTU) 6833 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6834 // Note: We call removeProdecessor later since we need to be able to get the 6835 // PHI value for the default case in case we're using a bit mask. 6836 } else { 6837 Value *Cmp = Builder.CreateICmpULT( 6838 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6839 RangeCheckBranch = 6840 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6841 if (DTU) 6842 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6843 } 6844 6845 // Populate the BB that does the lookups. 6846 Builder.SetInsertPoint(LookupBB); 6847 6848 if (NeedMask) { 6849 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6850 // re-purposed to do the hole check, and we create a new LookupBB. 6851 BasicBlock *MaskBB = LookupBB; 6852 MaskBB->setName("switch.hole_check"); 6853 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6854 CommonDest->getParent(), CommonDest); 6855 6856 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6857 // unnecessary illegal types. 6858 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6859 APInt MaskInt(TableSizePowOf2, 0); 6860 APInt One(TableSizePowOf2, 1); 6861 // Build bitmask; fill in a 1 bit for every case. 6862 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6863 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6864 uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue()) 6865 .getLimitedValue(); 6866 MaskInt |= One << Idx; 6867 } 6868 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6869 6870 // Get the TableIndex'th bit of the bitmask. 6871 // If this bit is 0 (meaning hole) jump to the default destination, 6872 // else continue with table lookup. 6873 IntegerType *MapTy = TableMask->getIntegerType(); 6874 Value *MaskIndex = 6875 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6876 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6877 Value *LoBit = Builder.CreateTrunc( 6878 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6879 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6880 if (DTU) { 6881 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6882 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6883 } 6884 Builder.SetInsertPoint(LookupBB); 6885 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6886 } 6887 6888 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6889 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6890 // do not delete PHINodes here. 6891 SI->getDefaultDest()->removePredecessor(BB, 6892 /*KeepOneInputPHIs=*/true); 6893 if (DTU) 6894 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6895 } 6896 6897 for (PHINode *PHI : PHIs) { 6898 const ResultListTy &ResultList = ResultLists[PHI]; 6899 6900 // Use any value to fill the lookup table holes. 6901 Constant *DV = 6902 AllHolesAreUndefined ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6903 StringRef FuncName = Fn->getName(); 6904 SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV, 6905 DL, FuncName); 6906 6907 Value *Result = Table.BuildLookup(TableIndex, Builder); 6908 6909 // Do a small peephole optimization: re-use the switch table compare if 6910 // possible. 6911 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6912 BasicBlock *PhiBlock = PHI->getParent(); 6913 // Search for compare instructions which use the phi. 6914 for (auto *User : PHI->users()) { 6915 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6916 } 6917 } 6918 6919 PHI->addIncoming(Result, LookupBB); 6920 } 6921 6922 Builder.CreateBr(CommonDest); 6923 if (DTU) 6924 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6925 6926 // Remove the switch. 6927 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6928 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6929 BasicBlock *Succ = SI->getSuccessor(i); 6930 6931 if (Succ == SI->getDefaultDest()) 6932 continue; 6933 Succ->removePredecessor(BB); 6934 if (DTU && RemovedSuccessors.insert(Succ).second) 6935 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6936 } 6937 SI->eraseFromParent(); 6938 6939 if (DTU) 6940 DTU->applyUpdates(Updates); 6941 6942 ++NumLookupTables; 6943 if (NeedMask) 6944 ++NumLookupTablesHoles; 6945 return true; 6946 } 6947 6948 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6949 /// of cases. 6950 /// 6951 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6952 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6953 /// 6954 /// This converts a sparse switch into a dense switch which allows better 6955 /// lowering and could also allow transforming into a lookup table. 6956 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6957 const DataLayout &DL, 6958 const TargetTransformInfo &TTI) { 6959 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6960 if (CondTy->getIntegerBitWidth() > 64 || 6961 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6962 return false; 6963 // Only bother with this optimization if there are more than 3 switch cases; 6964 // SDAG will only bother creating jump tables for 4 or more cases. 6965 if (SI->getNumCases() < 4) 6966 return false; 6967 6968 // This transform is agnostic to the signedness of the input or case values. We 6969 // can treat the case values as signed or unsigned. We can optimize more common 6970 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6971 // as signed. 6972 SmallVector<int64_t,4> Values; 6973 for (const auto &C : SI->cases()) 6974 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6975 llvm::sort(Values); 6976 6977 // If the switch is already dense, there's nothing useful to do here. 6978 if (isSwitchDense(Values)) 6979 return false; 6980 6981 // First, transform the values such that they start at zero and ascend. 6982 int64_t Base = Values[0]; 6983 for (auto &V : Values) 6984 V -= (uint64_t)(Base); 6985 6986 // Now we have signed numbers that have been shifted so that, given enough 6987 // precision, there are no negative values. Since the rest of the transform 6988 // is bitwise only, we switch now to an unsigned representation. 6989 6990 // This transform can be done speculatively because it is so cheap - it 6991 // results in a single rotate operation being inserted. 6992 6993 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6994 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6995 // less than 64. 6996 unsigned Shift = 64; 6997 for (auto &V : Values) 6998 Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V)); 6999 assert(Shift < 64); 7000 if (Shift > 0) 7001 for (auto &V : Values) 7002 V = (int64_t)((uint64_t)V >> Shift); 7003 7004 if (!isSwitchDense(Values)) 7005 // Transform didn't create a dense switch. 7006 return false; 7007 7008 // The obvious transform is to shift the switch condition right and emit a 7009 // check that the condition actually cleanly divided by GCD, i.e. 7010 // C & (1 << Shift - 1) == 0 7011 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 7012 // 7013 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 7014 // shift and puts the shifted-off bits in the uppermost bits. If any of these 7015 // are nonzero then the switch condition will be very large and will hit the 7016 // default case. 7017 7018 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 7019 Builder.SetInsertPoint(SI); 7020 Value *Sub = 7021 Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 7022 Value *Rot = Builder.CreateIntrinsic( 7023 Ty, Intrinsic::fshl, 7024 {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)}); 7025 SI->replaceUsesOfWith(SI->getCondition(), Rot); 7026 7027 for (auto Case : SI->cases()) { 7028 auto *Orig = Case.getCaseValue(); 7029 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 7030 Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift)))); 7031 } 7032 return true; 7033 } 7034 7035 /// Tries to transform switch of powers of two to reduce switch range. 7036 /// For example, switch like: 7037 /// switch (C) { case 1: case 2: case 64: case 128: } 7038 /// will be transformed to: 7039 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: } 7040 /// 7041 /// This transformation allows better lowering and could allow transforming into 7042 /// a lookup table. 7043 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder, 7044 const DataLayout &DL, 7045 const TargetTransformInfo &TTI) { 7046 Value *Condition = SI->getCondition(); 7047 LLVMContext &Context = SI->getContext(); 7048 auto *CondTy = cast<IntegerType>(Condition->getType()); 7049 7050 if (CondTy->getIntegerBitWidth() > 64 || 7051 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 7052 return false; 7053 7054 const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost( 7055 IntrinsicCostAttributes(Intrinsic::cttz, CondTy, 7056 {Condition, ConstantInt::getTrue(Context)}), 7057 TTI::TCK_SizeAndLatency); 7058 7059 if (CttzIntrinsicCost > TTI::TCC_Basic) 7060 // Inserting intrinsic is too expensive. 7061 return false; 7062 7063 // Only bother with this optimization if there are more than 3 switch cases. 7064 // SDAG will only bother creating jump tables for 4 or more cases. 7065 if (SI->getNumCases() < 4) 7066 return false; 7067 7068 // We perform this optimization only for switches with 7069 // unreachable default case. 7070 // This assumtion will save us from checking if `Condition` is a power of two. 7071 if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg())) 7072 return false; 7073 7074 // Check that switch cases are powers of two. 7075 SmallVector<uint64_t, 4> Values; 7076 for (const auto &Case : SI->cases()) { 7077 uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue(); 7078 if (llvm::has_single_bit(CaseValue)) 7079 Values.push_back(CaseValue); 7080 else 7081 return false; 7082 } 7083 7084 // isSwichDense requires case values to be sorted. 7085 llvm::sort(Values); 7086 if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) - 7087 llvm::countr_zero(Values.front()) + 1)) 7088 // Transform is unable to generate dense switch. 7089 return false; 7090 7091 Builder.SetInsertPoint(SI); 7092 7093 // Replace each case with its trailing zeros number. 7094 for (auto &Case : SI->cases()) { 7095 auto *OrigValue = Case.getCaseValue(); 7096 Case.setValue(ConstantInt::get(OrigValue->getIntegerType(), 7097 OrigValue->getValue().countr_zero())); 7098 } 7099 7100 // Replace condition with its trailing zeros number. 7101 auto *ConditionTrailingZeros = Builder.CreateIntrinsic( 7102 Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)}); 7103 7104 SI->setCondition(ConditionTrailingZeros); 7105 7106 return true; 7107 } 7108 7109 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 7110 BasicBlock *BB = SI->getParent(); 7111 7112 if (isValueEqualityComparison(SI)) { 7113 // If we only have one predecessor, and if it is a branch on this value, 7114 // see if that predecessor totally determines the outcome of this switch. 7115 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 7116 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 7117 return requestResimplify(); 7118 7119 Value *Cond = SI->getCondition(); 7120 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 7121 if (SimplifySwitchOnSelect(SI, Select)) 7122 return requestResimplify(); 7123 7124 // If the block only contains the switch, see if we can fold the block 7125 // away into any preds. 7126 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 7127 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 7128 return requestResimplify(); 7129 } 7130 7131 // Try to transform the switch into an icmp and a branch. 7132 // The conversion from switch to comparison may lose information on 7133 // impossible switch values, so disable it early in the pipeline. 7134 if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder)) 7135 return requestResimplify(); 7136 7137 // Remove unreachable cases. 7138 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 7139 return requestResimplify(); 7140 7141 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI)) 7142 return requestResimplify(); 7143 7144 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 7145 return requestResimplify(); 7146 7147 // The conversion from switch to lookup tables results in difficult-to-analyze 7148 // code and makes pruning branches much harder. This is a problem if the 7149 // switch expression itself can still be restricted as a result of inlining or 7150 // CVP. Therefore, only apply this transformation during late stages of the 7151 // optimisation pipeline. 7152 if (Options.ConvertSwitchToLookupTable && 7153 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 7154 return requestResimplify(); 7155 7156 if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI)) 7157 return requestResimplify(); 7158 7159 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 7160 return requestResimplify(); 7161 7162 if (HoistCommon && 7163 hoistCommonCodeFromSuccessors(SI->getParent(), !Options.HoistCommonInsts)) 7164 return requestResimplify(); 7165 7166 return false; 7167 } 7168 7169 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 7170 BasicBlock *BB = IBI->getParent(); 7171 bool Changed = false; 7172 7173 // Eliminate redundant destinations. 7174 SmallPtrSet<Value *, 8> Succs; 7175 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 7176 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 7177 BasicBlock *Dest = IBI->getDestination(i); 7178 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 7179 if (!Dest->hasAddressTaken()) 7180 RemovedSuccs.insert(Dest); 7181 Dest->removePredecessor(BB); 7182 IBI->removeDestination(i); 7183 --i; 7184 --e; 7185 Changed = true; 7186 } 7187 } 7188 7189 if (DTU) { 7190 std::vector<DominatorTree::UpdateType> Updates; 7191 Updates.reserve(RemovedSuccs.size()); 7192 for (auto *RemovedSucc : RemovedSuccs) 7193 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 7194 DTU->applyUpdates(Updates); 7195 } 7196 7197 if (IBI->getNumDestinations() == 0) { 7198 // If the indirectbr has no successors, change it to unreachable. 7199 new UnreachableInst(IBI->getContext(), IBI->getIterator()); 7200 EraseTerminatorAndDCECond(IBI); 7201 return true; 7202 } 7203 7204 if (IBI->getNumDestinations() == 1) { 7205 // If the indirectbr has one successor, change it to a direct branch. 7206 BranchInst::Create(IBI->getDestination(0), IBI->getIterator()); 7207 EraseTerminatorAndDCECond(IBI); 7208 return true; 7209 } 7210 7211 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 7212 if (SimplifyIndirectBrOnSelect(IBI, SI)) 7213 return requestResimplify(); 7214 } 7215 return Changed; 7216 } 7217 7218 /// Given an block with only a single landing pad and a unconditional branch 7219 /// try to find another basic block which this one can be merged with. This 7220 /// handles cases where we have multiple invokes with unique landing pads, but 7221 /// a shared handler. 7222 /// 7223 /// We specifically choose to not worry about merging non-empty blocks 7224 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 7225 /// practice, the optimizer produces empty landing pad blocks quite frequently 7226 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 7227 /// sinking in this file) 7228 /// 7229 /// This is primarily a code size optimization. We need to avoid performing 7230 /// any transform which might inhibit optimization (such as our ability to 7231 /// specialize a particular handler via tail commoning). We do this by not 7232 /// merging any blocks which require us to introduce a phi. Since the same 7233 /// values are flowing through both blocks, we don't lose any ability to 7234 /// specialize. If anything, we make such specialization more likely. 7235 /// 7236 /// TODO - This transformation could remove entries from a phi in the target 7237 /// block when the inputs in the phi are the same for the two blocks being 7238 /// merged. In some cases, this could result in removal of the PHI entirely. 7239 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 7240 BasicBlock *BB, DomTreeUpdater *DTU) { 7241 auto Succ = BB->getUniqueSuccessor(); 7242 assert(Succ); 7243 // If there's a phi in the successor block, we'd likely have to introduce 7244 // a phi into the merged landing pad block. 7245 if (isa<PHINode>(*Succ->begin())) 7246 return false; 7247 7248 for (BasicBlock *OtherPred : predecessors(Succ)) { 7249 if (BB == OtherPred) 7250 continue; 7251 BasicBlock::iterator I = OtherPred->begin(); 7252 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 7253 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 7254 continue; 7255 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7256 ; 7257 BranchInst *BI2 = dyn_cast<BranchInst>(I); 7258 if (!BI2 || !BI2->isIdenticalTo(BI)) 7259 continue; 7260 7261 std::vector<DominatorTree::UpdateType> Updates; 7262 7263 // We've found an identical block. Update our predecessors to take that 7264 // path instead and make ourselves dead. 7265 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 7266 for (BasicBlock *Pred : UniquePreds) { 7267 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 7268 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 7269 "unexpected successor"); 7270 II->setUnwindDest(OtherPred); 7271 if (DTU) { 7272 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 7273 Updates.push_back({DominatorTree::Delete, Pred, BB}); 7274 } 7275 } 7276 7277 // The debug info in OtherPred doesn't cover the merged control flow that 7278 // used to go through BB. We need to delete it or update it. 7279 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 7280 if (isa<DbgInfoIntrinsic>(Inst)) 7281 Inst.eraseFromParent(); 7282 7283 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 7284 for (BasicBlock *Succ : UniqueSuccs) { 7285 Succ->removePredecessor(BB); 7286 if (DTU) 7287 Updates.push_back({DominatorTree::Delete, BB, Succ}); 7288 } 7289 7290 IRBuilder<> Builder(BI); 7291 Builder.CreateUnreachable(); 7292 BI->eraseFromParent(); 7293 if (DTU) 7294 DTU->applyUpdates(Updates); 7295 return true; 7296 } 7297 return false; 7298 } 7299 7300 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 7301 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 7302 : simplifyCondBranch(Branch, Builder); 7303 } 7304 7305 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 7306 IRBuilder<> &Builder) { 7307 BasicBlock *BB = BI->getParent(); 7308 BasicBlock *Succ = BI->getSuccessor(0); 7309 7310 // If the Terminator is the only non-phi instruction, simplify the block. 7311 // If LoopHeader is provided, check if the block or its successor is a loop 7312 // header. (This is for early invocations before loop simplify and 7313 // vectorization to keep canonical loop forms for nested loops. These blocks 7314 // can be eliminated when the pass is invoked later in the back-end.) 7315 // Note that if BB has only one predecessor then we do not introduce new 7316 // backedge, so we can eliminate BB. 7317 bool NeedCanonicalLoop = 7318 Options.NeedCanonicalLoop && 7319 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 7320 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 7321 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 7322 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 7323 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 7324 return true; 7325 7326 // If the only instruction in the block is a seteq/setne comparison against a 7327 // constant, try to simplify the block. 7328 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 7329 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 7330 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7331 ; 7332 if (I->isTerminator() && 7333 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 7334 return true; 7335 } 7336 7337 // See if we can merge an empty landing pad block with another which is 7338 // equivalent. 7339 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 7340 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7341 ; 7342 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 7343 return true; 7344 } 7345 7346 // If this basic block is ONLY a compare and a branch, and if a predecessor 7347 // branches to us and our successor, fold the comparison into the 7348 // predecessor and use logical operations to update the incoming value 7349 // for PHI nodes in common successor. 7350 if (Options.SpeculateBlocks && 7351 FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 7352 Options.BonusInstThreshold)) 7353 return requestResimplify(); 7354 return false; 7355 } 7356 7357 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 7358 BasicBlock *PredPred = nullptr; 7359 for (auto *P : predecessors(BB)) { 7360 BasicBlock *PPred = P->getSinglePredecessor(); 7361 if (!PPred || (PredPred && PredPred != PPred)) 7362 return nullptr; 7363 PredPred = PPred; 7364 } 7365 return PredPred; 7366 } 7367 7368 /// Fold the following pattern: 7369 /// bb0: 7370 /// br i1 %cond1, label %bb1, label %bb2 7371 /// bb1: 7372 /// br i1 %cond2, label %bb3, label %bb4 7373 /// bb2: 7374 /// br i1 %cond2, label %bb4, label %bb3 7375 /// bb3: 7376 /// ... 7377 /// bb4: 7378 /// ... 7379 /// into 7380 /// bb0: 7381 /// %cond = xor i1 %cond1, %cond2 7382 /// br i1 %cond, label %bb4, label %bb3 7383 /// bb3: 7384 /// ... 7385 /// bb4: 7386 /// ... 7387 /// NOTE: %cond2 always dominates the terminator of bb0. 7388 static bool mergeNestedCondBranch(BranchInst *BI, DomTreeUpdater *DTU) { 7389 BasicBlock *BB = BI->getParent(); 7390 BasicBlock *BB1 = BI->getSuccessor(0); 7391 BasicBlock *BB2 = BI->getSuccessor(1); 7392 auto IsSimpleSuccessor = [BB](BasicBlock *Succ, BranchInst *&SuccBI) { 7393 if (Succ == BB) 7394 return false; 7395 if (&Succ->front() != Succ->getTerminator()) 7396 return false; 7397 SuccBI = dyn_cast<BranchInst>(Succ->getTerminator()); 7398 if (!SuccBI || !SuccBI->isConditional()) 7399 return false; 7400 BasicBlock *Succ1 = SuccBI->getSuccessor(0); 7401 BasicBlock *Succ2 = SuccBI->getSuccessor(1); 7402 return Succ1 != Succ && Succ2 != Succ && Succ1 != BB && Succ2 != BB && 7403 !isa<PHINode>(Succ1->front()) && !isa<PHINode>(Succ2->front()); 7404 }; 7405 BranchInst *BB1BI, *BB2BI; 7406 if (!IsSimpleSuccessor(BB1, BB1BI) || !IsSimpleSuccessor(BB2, BB2BI)) 7407 return false; 7408 7409 if (BB1BI->getCondition() != BB2BI->getCondition() || 7410 BB1BI->getSuccessor(0) != BB2BI->getSuccessor(1) || 7411 BB1BI->getSuccessor(1) != BB2BI->getSuccessor(0)) 7412 return false; 7413 7414 BasicBlock *BB3 = BB1BI->getSuccessor(0); 7415 BasicBlock *BB4 = BB1BI->getSuccessor(1); 7416 IRBuilder<> Builder(BI); 7417 BI->setCondition( 7418 Builder.CreateXor(BI->getCondition(), BB1BI->getCondition())); 7419 BB1->removePredecessor(BB); 7420 BI->setSuccessor(0, BB4); 7421 BB2->removePredecessor(BB); 7422 BI->setSuccessor(1, BB3); 7423 if (DTU) { 7424 SmallVector<DominatorTree::UpdateType, 4> Updates; 7425 Updates.push_back({DominatorTree::Delete, BB, BB1}); 7426 Updates.push_back({DominatorTree::Insert, BB, BB4}); 7427 Updates.push_back({DominatorTree::Delete, BB, BB2}); 7428 Updates.push_back({DominatorTree::Insert, BB, BB3}); 7429 7430 DTU->applyUpdates(Updates); 7431 } 7432 bool HasWeight = false; 7433 uint64_t BBTWeight, BBFWeight; 7434 if (extractBranchWeights(*BI, BBTWeight, BBFWeight)) 7435 HasWeight = true; 7436 else 7437 BBTWeight = BBFWeight = 1; 7438 uint64_t BB1TWeight, BB1FWeight; 7439 if (extractBranchWeights(*BB1BI, BB1TWeight, BB1FWeight)) 7440 HasWeight = true; 7441 else 7442 BB1TWeight = BB1FWeight = 1; 7443 uint64_t BB2TWeight, BB2FWeight; 7444 if (extractBranchWeights(*BB2BI, BB2TWeight, BB2FWeight)) 7445 HasWeight = true; 7446 else 7447 BB2TWeight = BB2FWeight = 1; 7448 if (HasWeight) { 7449 uint64_t Weights[2] = {BBTWeight * BB1FWeight + BBFWeight * BB2TWeight, 7450 BBTWeight * BB1TWeight + BBFWeight * BB2FWeight}; 7451 FitWeights(Weights); 7452 setBranchWeights(BI, Weights[0], Weights[1], /*IsExpected=*/false); 7453 } 7454 return true; 7455 } 7456 7457 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 7458 assert( 7459 !isa<ConstantInt>(BI->getCondition()) && 7460 BI->getSuccessor(0) != BI->getSuccessor(1) && 7461 "Tautological conditional branch should have been eliminated already."); 7462 7463 BasicBlock *BB = BI->getParent(); 7464 if (!Options.SimplifyCondBranch || 7465 BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing)) 7466 return false; 7467 7468 // Conditional branch 7469 if (isValueEqualityComparison(BI)) { 7470 // If we only have one predecessor, and if it is a branch on this value, 7471 // see if that predecessor totally determines the outcome of this 7472 // switch. 7473 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 7474 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 7475 return requestResimplify(); 7476 7477 // This block must be empty, except for the setcond inst, if it exists. 7478 // Ignore dbg and pseudo intrinsics. 7479 auto I = BB->instructionsWithoutDebug(true).begin(); 7480 if (&*I == BI) { 7481 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 7482 return requestResimplify(); 7483 } else if (&*I == cast<Instruction>(BI->getCondition())) { 7484 ++I; 7485 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 7486 return requestResimplify(); 7487 } 7488 } 7489 7490 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 7491 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 7492 return true; 7493 7494 // If this basic block has dominating predecessor blocks and the dominating 7495 // blocks' conditions imply BI's condition, we know the direction of BI. 7496 std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 7497 if (Imp) { 7498 // Turn this into a branch on constant. 7499 auto *OldCond = BI->getCondition(); 7500 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 7501 : ConstantInt::getFalse(BB->getContext()); 7502 BI->setCondition(TorF); 7503 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 7504 return requestResimplify(); 7505 } 7506 7507 // If this basic block is ONLY a compare and a branch, and if a predecessor 7508 // branches to us and one of our successors, fold the comparison into the 7509 // predecessor and use logical operations to pick the right destination. 7510 if (Options.SpeculateBlocks && 7511 FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 7512 Options.BonusInstThreshold)) 7513 return requestResimplify(); 7514 7515 // We have a conditional branch to two blocks that are only reachable 7516 // from BI. We know that the condbr dominates the two blocks, so see if 7517 // there is any identical code in the "then" and "else" blocks. If so, we 7518 // can hoist it up to the branching block. 7519 if (BI->getSuccessor(0)->getSinglePredecessor()) { 7520 if (BI->getSuccessor(1)->getSinglePredecessor()) { 7521 if (HoistCommon && hoistCommonCodeFromSuccessors( 7522 BI->getParent(), !Options.HoistCommonInsts)) 7523 return requestResimplify(); 7524 } else { 7525 // If Successor #1 has multiple preds, we may be able to conditionally 7526 // execute Successor #0 if it branches to Successor #1. 7527 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 7528 if (Succ0TI->getNumSuccessors() == 1 && 7529 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 7530 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 7531 return requestResimplify(); 7532 } 7533 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 7534 // If Successor #0 has multiple preds, we may be able to conditionally 7535 // execute Successor #1 if it branches to Successor #0. 7536 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 7537 if (Succ1TI->getNumSuccessors() == 1 && 7538 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 7539 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 7540 return requestResimplify(); 7541 } 7542 7543 // If this is a branch on something for which we know the constant value in 7544 // predecessors (e.g. a phi node in the current block), thread control 7545 // through this block. 7546 if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC)) 7547 return requestResimplify(); 7548 7549 // Scan predecessor blocks for conditional branches. 7550 for (BasicBlock *Pred : predecessors(BB)) 7551 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 7552 if (PBI != BI && PBI->isConditional()) 7553 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 7554 return requestResimplify(); 7555 7556 // Look for diamond patterns. 7557 if (MergeCondStores) 7558 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 7559 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 7560 if (PBI != BI && PBI->isConditional()) 7561 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 7562 return requestResimplify(); 7563 7564 // Look for nested conditional branches. 7565 if (mergeNestedCondBranch(BI, DTU)) 7566 return requestResimplify(); 7567 7568 return false; 7569 } 7570 7571 /// Check if passing a value to an instruction will cause undefined behavior. 7572 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 7573 Constant *C = dyn_cast<Constant>(V); 7574 if (!C) 7575 return false; 7576 7577 if (I->use_empty()) 7578 return false; 7579 7580 if (C->isNullValue() || isa<UndefValue>(C)) { 7581 // Only look at the first use we can handle, avoid hurting compile time with 7582 // long uselists 7583 auto FindUse = llvm::find_if(I->users(), [](auto *U) { 7584 auto *Use = cast<Instruction>(U); 7585 // Change this list when we want to add new instructions. 7586 switch (Use->getOpcode()) { 7587 default: 7588 return false; 7589 case Instruction::GetElementPtr: 7590 case Instruction::Ret: 7591 case Instruction::BitCast: 7592 case Instruction::Load: 7593 case Instruction::Store: 7594 case Instruction::Call: 7595 case Instruction::CallBr: 7596 case Instruction::Invoke: 7597 return true; 7598 } 7599 }); 7600 if (FindUse == I->user_end()) 7601 return false; 7602 auto *Use = cast<Instruction>(*FindUse); 7603 // Bail out if Use is not in the same BB as I or Use == I or Use comes 7604 // before I in the block. The latter two can be the case if Use is a 7605 // PHI node. 7606 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 7607 return false; 7608 7609 // Now make sure that there are no instructions in between that can alter 7610 // control flow (eg. calls) 7611 auto InstrRange = 7612 make_range(std::next(I->getIterator()), Use->getIterator()); 7613 if (any_of(InstrRange, [](Instruction &I) { 7614 return !isGuaranteedToTransferExecutionToSuccessor(&I); 7615 })) 7616 return false; 7617 7618 // Look through GEPs. A load from a GEP derived from NULL is still undefined 7619 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 7620 if (GEP->getPointerOperand() == I) { 7621 // The current base address is null, there are four cases to consider: 7622 // getelementptr (TY, null, 0) -> null 7623 // getelementptr (TY, null, not zero) -> may be modified 7624 // getelementptr inbounds (TY, null, 0) -> null 7625 // getelementptr inbounds (TY, null, not zero) -> poison iff null is 7626 // undefined? 7627 if (!GEP->hasAllZeroIndices() && 7628 (!GEP->isInBounds() || 7629 NullPointerIsDefined(GEP->getFunction(), 7630 GEP->getPointerAddressSpace()))) 7631 PtrValueMayBeModified = true; 7632 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 7633 } 7634 7635 // Look through return. 7636 if (ReturnInst *Ret = dyn_cast<ReturnInst>(Use)) { 7637 bool HasNoUndefAttr = 7638 Ret->getFunction()->hasRetAttribute(Attribute::NoUndef); 7639 // Return undefined to a noundef return value is undefined. 7640 if (isa<UndefValue>(C) && HasNoUndefAttr) 7641 return true; 7642 // Return null to a nonnull+noundef return value is undefined. 7643 if (C->isNullValue() && HasNoUndefAttr && 7644 Ret->getFunction()->hasRetAttribute(Attribute::NonNull)) { 7645 return !PtrValueMayBeModified; 7646 } 7647 } 7648 7649 // Look through bitcasts. 7650 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 7651 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 7652 7653 // Load from null is undefined. 7654 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 7655 if (!LI->isVolatile()) 7656 return !NullPointerIsDefined(LI->getFunction(), 7657 LI->getPointerAddressSpace()); 7658 7659 // Store to null is undefined. 7660 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 7661 if (!SI->isVolatile()) 7662 return (!NullPointerIsDefined(SI->getFunction(), 7663 SI->getPointerAddressSpace())) && 7664 SI->getPointerOperand() == I; 7665 7666 // llvm.assume(false/undef) always triggers immediate UB. 7667 if (auto *Assume = dyn_cast<AssumeInst>(Use)) { 7668 // Ignore assume operand bundles. 7669 if (I == Assume->getArgOperand(0)) 7670 return true; 7671 } 7672 7673 if (auto *CB = dyn_cast<CallBase>(Use)) { 7674 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 7675 return false; 7676 // A call to null is undefined. 7677 if (CB->getCalledOperand() == I) 7678 return true; 7679 7680 if (C->isNullValue()) { 7681 for (const llvm::Use &Arg : CB->args()) 7682 if (Arg == I) { 7683 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7684 if (CB->isPassingUndefUB(ArgIdx) && 7685 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 7686 // Passing null to a nonnnull+noundef argument is undefined. 7687 return !PtrValueMayBeModified; 7688 } 7689 } 7690 } else if (isa<UndefValue>(C)) { 7691 // Passing undef to a noundef argument is undefined. 7692 for (const llvm::Use &Arg : CB->args()) 7693 if (Arg == I) { 7694 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7695 if (CB->isPassingUndefUB(ArgIdx)) { 7696 // Passing undef to a noundef argument is undefined. 7697 return true; 7698 } 7699 } 7700 } 7701 } 7702 } 7703 return false; 7704 } 7705 7706 /// If BB has an incoming value that will always trigger undefined behavior 7707 /// (eg. null pointer dereference), remove the branch leading here. 7708 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 7709 DomTreeUpdater *DTU, 7710 AssumptionCache *AC) { 7711 for (PHINode &PHI : BB->phis()) 7712 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 7713 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 7714 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 7715 Instruction *T = Predecessor->getTerminator(); 7716 IRBuilder<> Builder(T); 7717 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 7718 BB->removePredecessor(Predecessor); 7719 // Turn unconditional branches into unreachables and remove the dead 7720 // destination from conditional branches. 7721 if (BI->isUnconditional()) 7722 Builder.CreateUnreachable(); 7723 else { 7724 // Preserve guarding condition in assume, because it might not be 7725 // inferrable from any dominating condition. 7726 Value *Cond = BI->getCondition(); 7727 CallInst *Assumption; 7728 if (BI->getSuccessor(0) == BB) 7729 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 7730 else 7731 Assumption = Builder.CreateAssumption(Cond); 7732 if (AC) 7733 AC->registerAssumption(cast<AssumeInst>(Assumption)); 7734 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 7735 : BI->getSuccessor(0)); 7736 } 7737 BI->eraseFromParent(); 7738 if (DTU) 7739 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 7740 return true; 7741 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 7742 // Redirect all branches leading to UB into 7743 // a newly created unreachable block. 7744 BasicBlock *Unreachable = BasicBlock::Create( 7745 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 7746 Builder.SetInsertPoint(Unreachable); 7747 // The new block contains only one instruction: Unreachable 7748 Builder.CreateUnreachable(); 7749 for (const auto &Case : SI->cases()) 7750 if (Case.getCaseSuccessor() == BB) { 7751 BB->removePredecessor(Predecessor); 7752 Case.setSuccessor(Unreachable); 7753 } 7754 if (SI->getDefaultDest() == BB) { 7755 BB->removePredecessor(Predecessor); 7756 SI->setDefaultDest(Unreachable); 7757 } 7758 7759 if (DTU) 7760 DTU->applyUpdates( 7761 { { DominatorTree::Insert, Predecessor, Unreachable }, 7762 { DominatorTree::Delete, Predecessor, BB } }); 7763 return true; 7764 } 7765 } 7766 7767 return false; 7768 } 7769 7770 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 7771 bool Changed = false; 7772 7773 assert(BB && BB->getParent() && "Block not embedded in function!"); 7774 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 7775 7776 // Remove basic blocks that have no predecessors (except the entry block)... 7777 // or that just have themself as a predecessor. These are unreachable. 7778 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 7779 BB->getSinglePredecessor() == BB) { 7780 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 7781 DeleteDeadBlock(BB, DTU); 7782 return true; 7783 } 7784 7785 // Check to see if we can constant propagate this terminator instruction 7786 // away... 7787 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 7788 /*TLI=*/nullptr, DTU); 7789 7790 // Check for and eliminate duplicate PHI nodes in this block. 7791 Changed |= EliminateDuplicatePHINodes(BB); 7792 7793 // Check for and remove branches that will always cause undefined behavior. 7794 if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC)) 7795 return requestResimplify(); 7796 7797 // Merge basic blocks into their predecessor if there is only one distinct 7798 // pred, and if there is only one distinct successor of the predecessor, and 7799 // if there are no PHI nodes. 7800 if (MergeBlockIntoPredecessor(BB, DTU)) 7801 return true; 7802 7803 if (SinkCommon && Options.SinkCommonInsts) 7804 if (SinkCommonCodeFromPredecessors(BB, DTU) || 7805 MergeCompatibleInvokes(BB, DTU)) { 7806 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 7807 // so we may now how duplicate PHI's. 7808 // Let's rerun EliminateDuplicatePHINodes() first, 7809 // before FoldTwoEntryPHINode() potentially converts them into select's, 7810 // after which we'd need a whole EarlyCSE pass run to cleanup them. 7811 return true; 7812 } 7813 7814 IRBuilder<> Builder(BB); 7815 7816 if (Options.SpeculateBlocks && 7817 !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) { 7818 // If there is a trivial two-entry PHI node in this basic block, and we can 7819 // eliminate it, do so now. 7820 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 7821 if (PN->getNumIncomingValues() == 2) 7822 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL, 7823 Options.SpeculateUnpredictables)) 7824 return true; 7825 } 7826 7827 Instruction *Terminator = BB->getTerminator(); 7828 Builder.SetInsertPoint(Terminator); 7829 switch (Terminator->getOpcode()) { 7830 case Instruction::Br: 7831 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 7832 break; 7833 case Instruction::Resume: 7834 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 7835 break; 7836 case Instruction::CleanupRet: 7837 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 7838 break; 7839 case Instruction::Switch: 7840 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 7841 break; 7842 case Instruction::Unreachable: 7843 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 7844 break; 7845 case Instruction::IndirectBr: 7846 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 7847 break; 7848 } 7849 7850 return Changed; 7851 } 7852 7853 bool SimplifyCFGOpt::run(BasicBlock *BB) { 7854 bool Changed = false; 7855 7856 // Repeated simplify BB as long as resimplification is requested. 7857 do { 7858 Resimplify = false; 7859 7860 // Perform one round of simplifcation. Resimplify flag will be set if 7861 // another iteration is requested. 7862 Changed |= simplifyOnce(BB); 7863 } while (Resimplify); 7864 7865 return Changed; 7866 } 7867 7868 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 7869 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 7870 ArrayRef<WeakVH> LoopHeaders) { 7871 return SimplifyCFGOpt(TTI, DTU, BB->getDataLayout(), LoopHeaders, 7872 Options) 7873 .run(BB); 7874 } 7875