1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/GuardUtils.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/CallSite.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/NoFolder.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/PatternMatch.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <climits> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <set> 80 #include <tuple> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 using namespace PatternMatch; 86 87 #define DEBUG_TYPE "simplifycfg" 88 89 // Chosen as 2 so as to be cheap, but still to have enough power to fold 90 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 91 // To catch this, we need to fold a compare and a select, hence '2' being the 92 // minimum reasonable default. 93 static cl::opt<unsigned> PHINodeFoldingThreshold( 94 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 95 cl::desc( 96 "Control the amount of phi node folding to perform (default = 2)")); 97 98 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 99 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 100 cl::desc("Control the maximal total instruction cost that we are willing " 101 "to speculatively execute to fold a 2-entry PHI node into a " 102 "select (default = 4)")); 103 104 static cl::opt<bool> DupRet( 105 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 106 cl::desc("Duplicate return instructions into unconditional branches")); 107 108 static cl::opt<bool> 109 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 110 cl::desc("Sink common instructions down to the end block")); 111 112 static cl::opt<bool> HoistCondStores( 113 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 114 cl::desc("Hoist conditional stores if an unconditional store precedes")); 115 116 static cl::opt<bool> MergeCondStores( 117 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 118 cl::desc("Hoist conditional stores even if an unconditional store does not " 119 "precede - hoist multiple conditional stores into a single " 120 "predicated store")); 121 122 static cl::opt<bool> MergeCondStoresAggressively( 123 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 124 cl::desc("When merging conditional stores, do so even if the resultant " 125 "basic blocks are unlikely to be if-converted as a result")); 126 127 static cl::opt<bool> SpeculateOneExpensiveInst( 128 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 129 cl::desc("Allow exactly one expensive instruction to be speculatively " 130 "executed")); 131 132 static cl::opt<unsigned> MaxSpeculationDepth( 133 "max-speculation-depth", cl::Hidden, cl::init(10), 134 cl::desc("Limit maximum recursion depth when calculating costs of " 135 "speculatively executed instructions")); 136 137 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 138 STATISTIC(NumLinearMaps, 139 "Number of switch instructions turned into linear mapping"); 140 STATISTIC(NumLookupTables, 141 "Number of switch instructions turned into lookup tables"); 142 STATISTIC( 143 NumLookupTablesHoles, 144 "Number of switch instructions turned into lookup tables (holes checked)"); 145 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 146 STATISTIC(NumSinkCommons, 147 "Number of common instructions sunk down to the end block"); 148 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 149 150 namespace { 151 152 // The first field contains the value that the switch produces when a certain 153 // case group is selected, and the second field is a vector containing the 154 // cases composing the case group. 155 using SwitchCaseResultVectorTy = 156 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 157 158 // The first field contains the phi node that generates a result of the switch 159 // and the second field contains the value generated for a certain case in the 160 // switch for that PHI. 161 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 162 163 /// ValueEqualityComparisonCase - Represents a case of a switch. 164 struct ValueEqualityComparisonCase { 165 ConstantInt *Value; 166 BasicBlock *Dest; 167 168 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 169 : Value(Value), Dest(Dest) {} 170 171 bool operator<(ValueEqualityComparisonCase RHS) const { 172 // Comparing pointers is ok as we only rely on the order for uniquing. 173 return Value < RHS.Value; 174 } 175 176 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 177 }; 178 179 class SimplifyCFGOpt { 180 const TargetTransformInfo &TTI; 181 const DataLayout &DL; 182 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 183 const SimplifyCFGOptions &Options; 184 bool Resimplify; 185 186 Value *isValueEqualityComparison(Instruction *TI); 187 BasicBlock *GetValueEqualityComparisonCases( 188 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 189 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 190 BasicBlock *Pred, 191 IRBuilder<> &Builder); 192 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 193 IRBuilder<> &Builder); 194 195 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 196 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 197 bool SimplifySingleResume(ResumeInst *RI); 198 bool SimplifyCommonResume(ResumeInst *RI); 199 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 200 bool SimplifyUnreachable(UnreachableInst *UI); 201 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 202 bool SimplifyIndirectBr(IndirectBrInst *IBI); 203 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 204 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 205 206 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 207 IRBuilder<> &Builder); 208 209 public: 210 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 211 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 212 const SimplifyCFGOptions &Opts) 213 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 214 215 bool run(BasicBlock *BB); 216 bool simplifyOnce(BasicBlock *BB); 217 218 // Helper to set Resimplify and return change indication. 219 bool requestResimplify() { 220 Resimplify = true; 221 return true; 222 } 223 }; 224 225 } // end anonymous namespace 226 227 /// Return true if it is safe to merge these two 228 /// terminator instructions together. 229 static bool 230 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 231 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 232 if (SI1 == SI2) 233 return false; // Can't merge with self! 234 235 // It is not safe to merge these two switch instructions if they have a common 236 // successor, and if that successor has a PHI node, and if *that* PHI node has 237 // conflicting incoming values from the two switch blocks. 238 BasicBlock *SI1BB = SI1->getParent(); 239 BasicBlock *SI2BB = SI2->getParent(); 240 241 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 242 bool Fail = false; 243 for (BasicBlock *Succ : successors(SI2BB)) 244 if (SI1Succs.count(Succ)) 245 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 246 PHINode *PN = cast<PHINode>(BBI); 247 if (PN->getIncomingValueForBlock(SI1BB) != 248 PN->getIncomingValueForBlock(SI2BB)) { 249 if (FailBlocks) 250 FailBlocks->insert(Succ); 251 Fail = true; 252 } 253 } 254 255 return !Fail; 256 } 257 258 /// Return true if it is safe and profitable to merge these two terminator 259 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 260 /// store all PHI nodes in common successors. 261 static bool 262 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 263 Instruction *Cond, 264 SmallVectorImpl<PHINode *> &PhiNodes) { 265 if (SI1 == SI2) 266 return false; // Can't merge with self! 267 assert(SI1->isUnconditional() && SI2->isConditional()); 268 269 // We fold the unconditional branch if we can easily update all PHI nodes in 270 // common successors: 271 // 1> We have a constant incoming value for the conditional branch; 272 // 2> We have "Cond" as the incoming value for the unconditional branch; 273 // 3> SI2->getCondition() and Cond have same operands. 274 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 275 if (!Ci2) 276 return false; 277 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 278 Cond->getOperand(1) == Ci2->getOperand(1)) && 279 !(Cond->getOperand(0) == Ci2->getOperand(1) && 280 Cond->getOperand(1) == Ci2->getOperand(0))) 281 return false; 282 283 BasicBlock *SI1BB = SI1->getParent(); 284 BasicBlock *SI2BB = SI2->getParent(); 285 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 286 for (BasicBlock *Succ : successors(SI2BB)) 287 if (SI1Succs.count(Succ)) 288 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 289 PHINode *PN = cast<PHINode>(BBI); 290 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 291 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 292 return false; 293 PhiNodes.push_back(PN); 294 } 295 return true; 296 } 297 298 /// Update PHI nodes in Succ to indicate that there will now be entries in it 299 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 300 /// will be the same as those coming in from ExistPred, an existing predecessor 301 /// of Succ. 302 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 303 BasicBlock *ExistPred, 304 MemorySSAUpdater *MSSAU = nullptr) { 305 for (PHINode &PN : Succ->phis()) 306 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 307 if (MSSAU) 308 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 309 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 310 } 311 312 /// Compute an abstract "cost" of speculating the given instruction, 313 /// which is assumed to be safe to speculate. TCC_Free means cheap, 314 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 315 /// expensive. 316 static unsigned ComputeSpeculationCost(const User *I, 317 const TargetTransformInfo &TTI) { 318 assert(isSafeToSpeculativelyExecute(I) && 319 "Instruction is not safe to speculatively execute!"); 320 return TTI.getUserCost(I); 321 } 322 323 /// If we have a merge point of an "if condition" as accepted above, 324 /// return true if the specified value dominates the block. We 325 /// don't handle the true generality of domination here, just a special case 326 /// which works well enough for us. 327 /// 328 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 329 /// see if V (which must be an instruction) and its recursive operands 330 /// that do not dominate BB have a combined cost lower than CostRemaining and 331 /// are non-trapping. If both are true, the instruction is inserted into the 332 /// set and true is returned. 333 /// 334 /// The cost for most non-trapping instructions is defined as 1 except for 335 /// Select whose cost is 2. 336 /// 337 /// After this function returns, CostRemaining is decreased by the cost of 338 /// V plus its non-dominating operands. If that cost is greater than 339 /// CostRemaining, false is returned and CostRemaining is undefined. 340 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 341 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 342 int &BudgetRemaining, 343 const TargetTransformInfo &TTI, 344 unsigned Depth = 0) { 345 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 346 // so limit the recursion depth. 347 // TODO: While this recursion limit does prevent pathological behavior, it 348 // would be better to track visited instructions to avoid cycles. 349 if (Depth == MaxSpeculationDepth) 350 return false; 351 352 Instruction *I = dyn_cast<Instruction>(V); 353 if (!I) { 354 // Non-instructions all dominate instructions, but not all constantexprs 355 // can be executed unconditionally. 356 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 357 if (C->canTrap()) 358 return false; 359 return true; 360 } 361 BasicBlock *PBB = I->getParent(); 362 363 // We don't want to allow weird loops that might have the "if condition" in 364 // the bottom of this block. 365 if (PBB == BB) 366 return false; 367 368 // If this instruction is defined in a block that contains an unconditional 369 // branch to BB, then it must be in the 'conditional' part of the "if 370 // statement". If not, it definitely dominates the region. 371 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 372 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 373 return true; 374 375 // If we have seen this instruction before, don't count it again. 376 if (AggressiveInsts.count(I)) 377 return true; 378 379 // Okay, it looks like the instruction IS in the "condition". Check to 380 // see if it's a cheap instruction to unconditionally compute, and if it 381 // only uses stuff defined outside of the condition. If so, hoist it out. 382 if (!isSafeToSpeculativelyExecute(I)) 383 return false; 384 385 BudgetRemaining -= ComputeSpeculationCost(I, TTI); 386 387 // Allow exactly one instruction to be speculated regardless of its cost 388 // (as long as it is safe to do so). 389 // This is intended to flatten the CFG even if the instruction is a division 390 // or other expensive operation. The speculation of an expensive instruction 391 // is expected to be undone in CodeGenPrepare if the speculation has not 392 // enabled further IR optimizations. 393 if (BudgetRemaining < 0 && 394 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 395 return false; 396 397 // Okay, we can only really hoist these out if their operands do 398 // not take us over the cost threshold. 399 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 400 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI, 401 Depth + 1)) 402 return false; 403 // Okay, it's safe to do this! Remember this instruction. 404 AggressiveInsts.insert(I); 405 return true; 406 } 407 408 /// Extract ConstantInt from value, looking through IntToPtr 409 /// and PointerNullValue. Return NULL if value is not a constant int. 410 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 411 // Normal constant int. 412 ConstantInt *CI = dyn_cast<ConstantInt>(V); 413 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 414 return CI; 415 416 // This is some kind of pointer constant. Turn it into a pointer-sized 417 // ConstantInt if possible. 418 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 419 420 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 421 if (isa<ConstantPointerNull>(V)) 422 return ConstantInt::get(PtrTy, 0); 423 424 // IntToPtr const int. 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 426 if (CE->getOpcode() == Instruction::IntToPtr) 427 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 428 // The constant is very likely to have the right type already. 429 if (CI->getType() == PtrTy) 430 return CI; 431 else 432 return cast<ConstantInt>( 433 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 434 } 435 return nullptr; 436 } 437 438 namespace { 439 440 /// Given a chain of or (||) or and (&&) comparison of a value against a 441 /// constant, this will try to recover the information required for a switch 442 /// structure. 443 /// It will depth-first traverse the chain of comparison, seeking for patterns 444 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 445 /// representing the different cases for the switch. 446 /// Note that if the chain is composed of '||' it will build the set of elements 447 /// that matches the comparisons (i.e. any of this value validate the chain) 448 /// while for a chain of '&&' it will build the set elements that make the test 449 /// fail. 450 struct ConstantComparesGatherer { 451 const DataLayout &DL; 452 453 /// Value found for the switch comparison 454 Value *CompValue = nullptr; 455 456 /// Extra clause to be checked before the switch 457 Value *Extra = nullptr; 458 459 /// Set of integers to match in switch 460 SmallVector<ConstantInt *, 8> Vals; 461 462 /// Number of comparisons matched in the and/or chain 463 unsigned UsedICmps = 0; 464 465 /// Construct and compute the result for the comparison instruction Cond 466 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 467 gather(Cond); 468 } 469 470 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 471 ConstantComparesGatherer & 472 operator=(const ConstantComparesGatherer &) = delete; 473 474 private: 475 /// Try to set the current value used for the comparison, it succeeds only if 476 /// it wasn't set before or if the new value is the same as the old one 477 bool setValueOnce(Value *NewVal) { 478 if (CompValue && CompValue != NewVal) 479 return false; 480 CompValue = NewVal; 481 return (CompValue != nullptr); 482 } 483 484 /// Try to match Instruction "I" as a comparison against a constant and 485 /// populates the array Vals with the set of values that match (or do not 486 /// match depending on isEQ). 487 /// Return false on failure. On success, the Value the comparison matched 488 /// against is placed in CompValue. 489 /// If CompValue is already set, the function is expected to fail if a match 490 /// is found but the value compared to is different. 491 bool matchInstruction(Instruction *I, bool isEQ) { 492 // If this is an icmp against a constant, handle this as one of the cases. 493 ICmpInst *ICI; 494 ConstantInt *C; 495 if (!((ICI = dyn_cast<ICmpInst>(I)) && 496 (C = GetConstantInt(I->getOperand(1), DL)))) { 497 return false; 498 } 499 500 Value *RHSVal; 501 const APInt *RHSC; 502 503 // Pattern match a special case 504 // (x & ~2^z) == y --> x == y || x == y|2^z 505 // This undoes a transformation done by instcombine to fuse 2 compares. 506 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 507 // It's a little bit hard to see why the following transformations are 508 // correct. Here is a CVC3 program to verify them for 64-bit values: 509 510 /* 511 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 512 x : BITVECTOR(64); 513 y : BITVECTOR(64); 514 z : BITVECTOR(64); 515 mask : BITVECTOR(64) = BVSHL(ONE, z); 516 QUERY( (y & ~mask = y) => 517 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 518 ); 519 QUERY( (y | mask = y) => 520 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 521 ); 522 */ 523 524 // Please note that each pattern must be a dual implication (<--> or 525 // iff). One directional implication can create spurious matches. If the 526 // implication is only one-way, an unsatisfiable condition on the left 527 // side can imply a satisfiable condition on the right side. Dual 528 // implication ensures that satisfiable conditions are transformed to 529 // other satisfiable conditions and unsatisfiable conditions are 530 // transformed to other unsatisfiable conditions. 531 532 // Here is a concrete example of a unsatisfiable condition on the left 533 // implying a satisfiable condition on the right: 534 // 535 // mask = (1 << z) 536 // (x & ~mask) == y --> (x == y || x == (y | mask)) 537 // 538 // Substituting y = 3, z = 0 yields: 539 // (x & -2) == 3 --> (x == 3 || x == 2) 540 541 // Pattern match a special case: 542 /* 543 QUERY( (y & ~mask = y) => 544 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 545 ); 546 */ 547 if (match(ICI->getOperand(0), 548 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 549 APInt Mask = ~*RHSC; 550 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 551 // If we already have a value for the switch, it has to match! 552 if (!setValueOnce(RHSVal)) 553 return false; 554 555 Vals.push_back(C); 556 Vals.push_back( 557 ConstantInt::get(C->getContext(), 558 C->getValue() | Mask)); 559 UsedICmps++; 560 return true; 561 } 562 } 563 564 // Pattern match a special case: 565 /* 566 QUERY( (y | mask = y) => 567 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 568 ); 569 */ 570 if (match(ICI->getOperand(0), 571 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 572 APInt Mask = *RHSC; 573 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 574 // If we already have a value for the switch, it has to match! 575 if (!setValueOnce(RHSVal)) 576 return false; 577 578 Vals.push_back(C); 579 Vals.push_back(ConstantInt::get(C->getContext(), 580 C->getValue() & ~Mask)); 581 UsedICmps++; 582 return true; 583 } 584 } 585 586 // If we already have a value for the switch, it has to match! 587 if (!setValueOnce(ICI->getOperand(0))) 588 return false; 589 590 UsedICmps++; 591 Vals.push_back(C); 592 return ICI->getOperand(0); 593 } 594 595 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 596 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 597 ICI->getPredicate(), C->getValue()); 598 599 // Shift the range if the compare is fed by an add. This is the range 600 // compare idiom as emitted by instcombine. 601 Value *CandidateVal = I->getOperand(0); 602 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 603 Span = Span.subtract(*RHSC); 604 CandidateVal = RHSVal; 605 } 606 607 // If this is an and/!= check, then we are looking to build the set of 608 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 609 // x != 0 && x != 1. 610 if (!isEQ) 611 Span = Span.inverse(); 612 613 // If there are a ton of values, we don't want to make a ginormous switch. 614 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 615 return false; 616 } 617 618 // If we already have a value for the switch, it has to match! 619 if (!setValueOnce(CandidateVal)) 620 return false; 621 622 // Add all values from the range to the set 623 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 624 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 625 626 UsedICmps++; 627 return true; 628 } 629 630 /// Given a potentially 'or'd or 'and'd together collection of icmp 631 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 632 /// the value being compared, and stick the list constants into the Vals 633 /// vector. 634 /// One "Extra" case is allowed to differ from the other. 635 void gather(Value *V) { 636 bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or); 637 638 // Keep a stack (SmallVector for efficiency) for depth-first traversal 639 SmallVector<Value *, 8> DFT; 640 SmallPtrSet<Value *, 8> Visited; 641 642 // Initialize 643 Visited.insert(V); 644 DFT.push_back(V); 645 646 while (!DFT.empty()) { 647 V = DFT.pop_back_val(); 648 649 if (Instruction *I = dyn_cast<Instruction>(V)) { 650 // If it is a || (or && depending on isEQ), process the operands. 651 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 652 if (Visited.insert(I->getOperand(1)).second) 653 DFT.push_back(I->getOperand(1)); 654 if (Visited.insert(I->getOperand(0)).second) 655 DFT.push_back(I->getOperand(0)); 656 continue; 657 } 658 659 // Try to match the current instruction 660 if (matchInstruction(I, isEQ)) 661 // Match succeed, continue the loop 662 continue; 663 } 664 665 // One element of the sequence of || (or &&) could not be match as a 666 // comparison against the same value as the others. 667 // We allow only one "Extra" case to be checked before the switch 668 if (!Extra) { 669 Extra = V; 670 continue; 671 } 672 // Failed to parse a proper sequence, abort now 673 CompValue = nullptr; 674 break; 675 } 676 } 677 }; 678 679 } // end anonymous namespace 680 681 static void EraseTerminatorAndDCECond(Instruction *TI, 682 MemorySSAUpdater *MSSAU = nullptr) { 683 Instruction *Cond = nullptr; 684 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 685 Cond = dyn_cast<Instruction>(SI->getCondition()); 686 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 687 if (BI->isConditional()) 688 Cond = dyn_cast<Instruction>(BI->getCondition()); 689 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 690 Cond = dyn_cast<Instruction>(IBI->getAddress()); 691 } 692 693 TI->eraseFromParent(); 694 if (Cond) 695 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 696 } 697 698 /// Return true if the specified terminator checks 699 /// to see if a value is equal to constant integer value. 700 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 701 Value *CV = nullptr; 702 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 703 // Do not permit merging of large switch instructions into their 704 // predecessors unless there is only one predecessor. 705 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 706 CV = SI->getCondition(); 707 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 708 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 709 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 710 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 711 CV = ICI->getOperand(0); 712 } 713 714 // Unwrap any lossless ptrtoint cast. 715 if (CV) { 716 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 717 Value *Ptr = PTII->getPointerOperand(); 718 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 719 CV = Ptr; 720 } 721 } 722 return CV; 723 } 724 725 /// Given a value comparison instruction, 726 /// decode all of the 'cases' that it represents and return the 'default' block. 727 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 728 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 729 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 730 Cases.reserve(SI->getNumCases()); 731 for (auto Case : SI->cases()) 732 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 733 Case.getCaseSuccessor())); 734 return SI->getDefaultDest(); 735 } 736 737 BranchInst *BI = cast<BranchInst>(TI); 738 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 739 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 740 Cases.push_back(ValueEqualityComparisonCase( 741 GetConstantInt(ICI->getOperand(1), DL), Succ)); 742 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 743 } 744 745 /// Given a vector of bb/value pairs, remove any entries 746 /// in the list that match the specified block. 747 static void 748 EliminateBlockCases(BasicBlock *BB, 749 std::vector<ValueEqualityComparisonCase> &Cases) { 750 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 751 } 752 753 /// Return true if there are any keys in C1 that exist in C2 as well. 754 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 755 std::vector<ValueEqualityComparisonCase> &C2) { 756 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 757 758 // Make V1 be smaller than V2. 759 if (V1->size() > V2->size()) 760 std::swap(V1, V2); 761 762 if (V1->empty()) 763 return false; 764 if (V1->size() == 1) { 765 // Just scan V2. 766 ConstantInt *TheVal = (*V1)[0].Value; 767 for (unsigned i = 0, e = V2->size(); i != e; ++i) 768 if (TheVal == (*V2)[i].Value) 769 return true; 770 } 771 772 // Otherwise, just sort both lists and compare element by element. 773 array_pod_sort(V1->begin(), V1->end()); 774 array_pod_sort(V2->begin(), V2->end()); 775 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 776 while (i1 != e1 && i2 != e2) { 777 if ((*V1)[i1].Value == (*V2)[i2].Value) 778 return true; 779 if ((*V1)[i1].Value < (*V2)[i2].Value) 780 ++i1; 781 else 782 ++i2; 783 } 784 return false; 785 } 786 787 // Set branch weights on SwitchInst. This sets the metadata if there is at 788 // least one non-zero weight. 789 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 790 // Check that there is at least one non-zero weight. Otherwise, pass 791 // nullptr to setMetadata which will erase the existing metadata. 792 MDNode *N = nullptr; 793 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 794 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 795 SI->setMetadata(LLVMContext::MD_prof, N); 796 } 797 798 // Similar to the above, but for branch and select instructions that take 799 // exactly 2 weights. 800 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 801 uint32_t FalseWeight) { 802 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 803 // Check that there is at least one non-zero weight. Otherwise, pass 804 // nullptr to setMetadata which will erase the existing metadata. 805 MDNode *N = nullptr; 806 if (TrueWeight || FalseWeight) 807 N = MDBuilder(I->getParent()->getContext()) 808 .createBranchWeights(TrueWeight, FalseWeight); 809 I->setMetadata(LLVMContext::MD_prof, N); 810 } 811 812 /// If TI is known to be a terminator instruction and its block is known to 813 /// only have a single predecessor block, check to see if that predecessor is 814 /// also a value comparison with the same value, and if that comparison 815 /// determines the outcome of this comparison. If so, simplify TI. This does a 816 /// very limited form of jump threading. 817 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 818 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 819 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 820 if (!PredVal) 821 return false; // Not a value comparison in predecessor. 822 823 Value *ThisVal = isValueEqualityComparison(TI); 824 assert(ThisVal && "This isn't a value comparison!!"); 825 if (ThisVal != PredVal) 826 return false; // Different predicates. 827 828 // TODO: Preserve branch weight metadata, similarly to how 829 // FoldValueComparisonIntoPredecessors preserves it. 830 831 // Find out information about when control will move from Pred to TI's block. 832 std::vector<ValueEqualityComparisonCase> PredCases; 833 BasicBlock *PredDef = 834 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 835 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 836 837 // Find information about how control leaves this block. 838 std::vector<ValueEqualityComparisonCase> ThisCases; 839 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 840 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 841 842 // If TI's block is the default block from Pred's comparison, potentially 843 // simplify TI based on this knowledge. 844 if (PredDef == TI->getParent()) { 845 // If we are here, we know that the value is none of those cases listed in 846 // PredCases. If there are any cases in ThisCases that are in PredCases, we 847 // can simplify TI. 848 if (!ValuesOverlap(PredCases, ThisCases)) 849 return false; 850 851 if (isa<BranchInst>(TI)) { 852 // Okay, one of the successors of this condbr is dead. Convert it to a 853 // uncond br. 854 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 855 // Insert the new branch. 856 Instruction *NI = Builder.CreateBr(ThisDef); 857 (void)NI; 858 859 // Remove PHI node entries for the dead edge. 860 ThisCases[0].Dest->removePredecessor(TI->getParent()); 861 862 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 863 << "Through successor TI: " << *TI << "Leaving: " << *NI 864 << "\n"); 865 866 EraseTerminatorAndDCECond(TI); 867 return true; 868 } 869 870 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 871 // Okay, TI has cases that are statically dead, prune them away. 872 SmallPtrSet<Constant *, 16> DeadCases; 873 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 874 DeadCases.insert(PredCases[i].Value); 875 876 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 877 << "Through successor TI: " << *TI); 878 879 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 880 --i; 881 if (DeadCases.count(i->getCaseValue())) { 882 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 883 SI.removeCase(i); 884 } 885 } 886 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 887 return true; 888 } 889 890 // Otherwise, TI's block must correspond to some matched value. Find out 891 // which value (or set of values) this is. 892 ConstantInt *TIV = nullptr; 893 BasicBlock *TIBB = TI->getParent(); 894 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 895 if (PredCases[i].Dest == TIBB) { 896 if (TIV) 897 return false; // Cannot handle multiple values coming to this block. 898 TIV = PredCases[i].Value; 899 } 900 assert(TIV && "No edge from pred to succ?"); 901 902 // Okay, we found the one constant that our value can be if we get into TI's 903 // BB. Find out which successor will unconditionally be branched to. 904 BasicBlock *TheRealDest = nullptr; 905 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 906 if (ThisCases[i].Value == TIV) { 907 TheRealDest = ThisCases[i].Dest; 908 break; 909 } 910 911 // If not handled by any explicit cases, it is handled by the default case. 912 if (!TheRealDest) 913 TheRealDest = ThisDef; 914 915 // Remove PHI node entries for dead edges. 916 BasicBlock *CheckEdge = TheRealDest; 917 for (BasicBlock *Succ : successors(TIBB)) 918 if (Succ != CheckEdge) 919 Succ->removePredecessor(TIBB); 920 else 921 CheckEdge = nullptr; 922 923 // Insert the new branch. 924 Instruction *NI = Builder.CreateBr(TheRealDest); 925 (void)NI; 926 927 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 928 << "Through successor TI: " << *TI << "Leaving: " << *NI 929 << "\n"); 930 931 EraseTerminatorAndDCECond(TI); 932 return true; 933 } 934 935 namespace { 936 937 /// This class implements a stable ordering of constant 938 /// integers that does not depend on their address. This is important for 939 /// applications that sort ConstantInt's to ensure uniqueness. 940 struct ConstantIntOrdering { 941 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 942 return LHS->getValue().ult(RHS->getValue()); 943 } 944 }; 945 946 } // end anonymous namespace 947 948 static int ConstantIntSortPredicate(ConstantInt *const *P1, 949 ConstantInt *const *P2) { 950 const ConstantInt *LHS = *P1; 951 const ConstantInt *RHS = *P2; 952 if (LHS == RHS) 953 return 0; 954 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 955 } 956 957 static inline bool HasBranchWeights(const Instruction *I) { 958 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 959 if (ProfMD && ProfMD->getOperand(0)) 960 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 961 return MDS->getString().equals("branch_weights"); 962 963 return false; 964 } 965 966 /// Get Weights of a given terminator, the default weight is at the front 967 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 968 /// metadata. 969 static void GetBranchWeights(Instruction *TI, 970 SmallVectorImpl<uint64_t> &Weights) { 971 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 972 assert(MD); 973 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 974 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 975 Weights.push_back(CI->getValue().getZExtValue()); 976 } 977 978 // If TI is a conditional eq, the default case is the false case, 979 // and the corresponding branch-weight data is at index 2. We swap the 980 // default weight to be the first entry. 981 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 982 assert(Weights.size() == 2); 983 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 984 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 985 std::swap(Weights.front(), Weights.back()); 986 } 987 } 988 989 /// Keep halving the weights until all can fit in uint32_t. 990 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 991 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 992 if (Max > UINT_MAX) { 993 unsigned Offset = 32 - countLeadingZeros(Max); 994 for (uint64_t &I : Weights) 995 I >>= Offset; 996 } 997 } 998 999 /// The specified terminator is a value equality comparison instruction 1000 /// (either a switch or a branch on "X == c"). 1001 /// See if any of the predecessors of the terminator block are value comparisons 1002 /// on the same value. If so, and if safe to do so, fold them together. 1003 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1004 IRBuilder<> &Builder) { 1005 BasicBlock *BB = TI->getParent(); 1006 Value *CV = isValueEqualityComparison(TI); // CondVal 1007 assert(CV && "Not a comparison?"); 1008 bool Changed = false; 1009 1010 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1011 while (!Preds.empty()) { 1012 BasicBlock *Pred = Preds.pop_back_val(); 1013 1014 // See if the predecessor is a comparison with the same value. 1015 Instruction *PTI = Pred->getTerminator(); 1016 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1017 1018 if (PCV == CV && TI != PTI) { 1019 SmallSetVector<BasicBlock*, 4> FailBlocks; 1020 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1021 for (auto *Succ : FailBlocks) { 1022 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1023 return false; 1024 } 1025 } 1026 1027 // Figure out which 'cases' to copy from SI to PSI. 1028 std::vector<ValueEqualityComparisonCase> BBCases; 1029 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1030 1031 std::vector<ValueEqualityComparisonCase> PredCases; 1032 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1033 1034 // Based on whether the default edge from PTI goes to BB or not, fill in 1035 // PredCases and PredDefault with the new switch cases we would like to 1036 // build. 1037 SmallVector<BasicBlock *, 8> NewSuccessors; 1038 1039 // Update the branch weight metadata along the way 1040 SmallVector<uint64_t, 8> Weights; 1041 bool PredHasWeights = HasBranchWeights(PTI); 1042 bool SuccHasWeights = HasBranchWeights(TI); 1043 1044 if (PredHasWeights) { 1045 GetBranchWeights(PTI, Weights); 1046 // branch-weight metadata is inconsistent here. 1047 if (Weights.size() != 1 + PredCases.size()) 1048 PredHasWeights = SuccHasWeights = false; 1049 } else if (SuccHasWeights) 1050 // If there are no predecessor weights but there are successor weights, 1051 // populate Weights with 1, which will later be scaled to the sum of 1052 // successor's weights 1053 Weights.assign(1 + PredCases.size(), 1); 1054 1055 SmallVector<uint64_t, 8> SuccWeights; 1056 if (SuccHasWeights) { 1057 GetBranchWeights(TI, SuccWeights); 1058 // branch-weight metadata is inconsistent here. 1059 if (SuccWeights.size() != 1 + BBCases.size()) 1060 PredHasWeights = SuccHasWeights = false; 1061 } else if (PredHasWeights) 1062 SuccWeights.assign(1 + BBCases.size(), 1); 1063 1064 if (PredDefault == BB) { 1065 // If this is the default destination from PTI, only the edges in TI 1066 // that don't occur in PTI, or that branch to BB will be activated. 1067 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1068 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1069 if (PredCases[i].Dest != BB) 1070 PTIHandled.insert(PredCases[i].Value); 1071 else { 1072 // The default destination is BB, we don't need explicit targets. 1073 std::swap(PredCases[i], PredCases.back()); 1074 1075 if (PredHasWeights || SuccHasWeights) { 1076 // Increase weight for the default case. 1077 Weights[0] += Weights[i + 1]; 1078 std::swap(Weights[i + 1], Weights.back()); 1079 Weights.pop_back(); 1080 } 1081 1082 PredCases.pop_back(); 1083 --i; 1084 --e; 1085 } 1086 1087 // Reconstruct the new switch statement we will be building. 1088 if (PredDefault != BBDefault) { 1089 PredDefault->removePredecessor(Pred); 1090 PredDefault = BBDefault; 1091 NewSuccessors.push_back(BBDefault); 1092 } 1093 1094 unsigned CasesFromPred = Weights.size(); 1095 uint64_t ValidTotalSuccWeight = 0; 1096 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1097 if (!PTIHandled.count(BBCases[i].Value) && 1098 BBCases[i].Dest != BBDefault) { 1099 PredCases.push_back(BBCases[i]); 1100 NewSuccessors.push_back(BBCases[i].Dest); 1101 if (SuccHasWeights || PredHasWeights) { 1102 // The default weight is at index 0, so weight for the ith case 1103 // should be at index i+1. Scale the cases from successor by 1104 // PredDefaultWeight (Weights[0]). 1105 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1106 ValidTotalSuccWeight += SuccWeights[i + 1]; 1107 } 1108 } 1109 1110 if (SuccHasWeights || PredHasWeights) { 1111 ValidTotalSuccWeight += SuccWeights[0]; 1112 // Scale the cases from predecessor by ValidTotalSuccWeight. 1113 for (unsigned i = 1; i < CasesFromPred; ++i) 1114 Weights[i] *= ValidTotalSuccWeight; 1115 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1116 Weights[0] *= SuccWeights[0]; 1117 } 1118 } else { 1119 // If this is not the default destination from PSI, only the edges 1120 // in SI that occur in PSI with a destination of BB will be 1121 // activated. 1122 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1123 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1124 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1125 if (PredCases[i].Dest == BB) { 1126 PTIHandled.insert(PredCases[i].Value); 1127 1128 if (PredHasWeights || SuccHasWeights) { 1129 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1130 std::swap(Weights[i + 1], Weights.back()); 1131 Weights.pop_back(); 1132 } 1133 1134 std::swap(PredCases[i], PredCases.back()); 1135 PredCases.pop_back(); 1136 --i; 1137 --e; 1138 } 1139 1140 // Okay, now we know which constants were sent to BB from the 1141 // predecessor. Figure out where they will all go now. 1142 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1143 if (PTIHandled.count(BBCases[i].Value)) { 1144 // If this is one we are capable of getting... 1145 if (PredHasWeights || SuccHasWeights) 1146 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1147 PredCases.push_back(BBCases[i]); 1148 NewSuccessors.push_back(BBCases[i].Dest); 1149 PTIHandled.erase( 1150 BBCases[i].Value); // This constant is taken care of 1151 } 1152 1153 // If there are any constants vectored to BB that TI doesn't handle, 1154 // they must go to the default destination of TI. 1155 for (ConstantInt *I : PTIHandled) { 1156 if (PredHasWeights || SuccHasWeights) 1157 Weights.push_back(WeightsForHandled[I]); 1158 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1159 NewSuccessors.push_back(BBDefault); 1160 } 1161 } 1162 1163 // Okay, at this point, we know which new successor Pred will get. Make 1164 // sure we update the number of entries in the PHI nodes for these 1165 // successors. 1166 for (BasicBlock *NewSuccessor : NewSuccessors) 1167 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1168 1169 Builder.SetInsertPoint(PTI); 1170 // Convert pointer to int before we switch. 1171 if (CV->getType()->isPointerTy()) { 1172 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1173 "magicptr"); 1174 } 1175 1176 // Now that the successors are updated, create the new Switch instruction. 1177 SwitchInst *NewSI = 1178 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1179 NewSI->setDebugLoc(PTI->getDebugLoc()); 1180 for (ValueEqualityComparisonCase &V : PredCases) 1181 NewSI->addCase(V.Value, V.Dest); 1182 1183 if (PredHasWeights || SuccHasWeights) { 1184 // Halve the weights if any of them cannot fit in an uint32_t 1185 FitWeights(Weights); 1186 1187 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1188 1189 setBranchWeights(NewSI, MDWeights); 1190 } 1191 1192 EraseTerminatorAndDCECond(PTI); 1193 1194 // Okay, last check. If BB is still a successor of PSI, then we must 1195 // have an infinite loop case. If so, add an infinitely looping block 1196 // to handle the case to preserve the behavior of the code. 1197 BasicBlock *InfLoopBlock = nullptr; 1198 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1199 if (NewSI->getSuccessor(i) == BB) { 1200 if (!InfLoopBlock) { 1201 // Insert it at the end of the function, because it's either code, 1202 // or it won't matter if it's hot. :) 1203 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1204 BB->getParent()); 1205 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1206 } 1207 NewSI->setSuccessor(i, InfLoopBlock); 1208 } 1209 1210 Changed = true; 1211 } 1212 } 1213 return Changed; 1214 } 1215 1216 // If we would need to insert a select that uses the value of this invoke 1217 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1218 // can't hoist the invoke, as there is nowhere to put the select in this case. 1219 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1220 Instruction *I1, Instruction *I2) { 1221 for (BasicBlock *Succ : successors(BB1)) { 1222 for (const PHINode &PN : Succ->phis()) { 1223 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1224 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1225 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1226 return false; 1227 } 1228 } 1229 } 1230 return true; 1231 } 1232 1233 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1234 1235 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1236 /// in the two blocks up into the branch block. The caller of this function 1237 /// guarantees that BI's block dominates BB1 and BB2. 1238 static bool HoistThenElseCodeToIf(BranchInst *BI, 1239 const TargetTransformInfo &TTI) { 1240 // This does very trivial matching, with limited scanning, to find identical 1241 // instructions in the two blocks. In particular, we don't want to get into 1242 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1243 // such, we currently just scan for obviously identical instructions in an 1244 // identical order. 1245 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1246 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1247 1248 BasicBlock::iterator BB1_Itr = BB1->begin(); 1249 BasicBlock::iterator BB2_Itr = BB2->begin(); 1250 1251 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1252 // Skip debug info if it is not identical. 1253 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1254 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1255 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1256 while (isa<DbgInfoIntrinsic>(I1)) 1257 I1 = &*BB1_Itr++; 1258 while (isa<DbgInfoIntrinsic>(I2)) 1259 I2 = &*BB2_Itr++; 1260 } 1261 // FIXME: Can we define a safety predicate for CallBr? 1262 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1263 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1264 isa<CallBrInst>(I1)) 1265 return false; 1266 1267 BasicBlock *BIParent = BI->getParent(); 1268 1269 bool Changed = false; 1270 do { 1271 // If we are hoisting the terminator instruction, don't move one (making a 1272 // broken BB), instead clone it, and remove BI. 1273 if (I1->isTerminator()) 1274 goto HoistTerminator; 1275 1276 // If we're going to hoist a call, make sure that the two instructions we're 1277 // commoning/hoisting are both marked with musttail, or neither of them is 1278 // marked as such. Otherwise, we might end up in a situation where we hoist 1279 // from a block where the terminator is a `ret` to a block where the terminator 1280 // is a `br`, and `musttail` calls expect to be followed by a return. 1281 auto *C1 = dyn_cast<CallInst>(I1); 1282 auto *C2 = dyn_cast<CallInst>(I2); 1283 if (C1 && C2) 1284 if (C1->isMustTailCall() != C2->isMustTailCall()) 1285 return Changed; 1286 1287 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1288 return Changed; 1289 1290 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1291 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1292 // The debug location is an integral part of a debug info intrinsic 1293 // and can't be separated from it or replaced. Instead of attempting 1294 // to merge locations, simply hoist both copies of the intrinsic. 1295 BIParent->getInstList().splice(BI->getIterator(), 1296 BB1->getInstList(), I1); 1297 BIParent->getInstList().splice(BI->getIterator(), 1298 BB2->getInstList(), I2); 1299 Changed = true; 1300 } else { 1301 // For a normal instruction, we just move one to right before the branch, 1302 // then replace all uses of the other with the first. Finally, we remove 1303 // the now redundant second instruction. 1304 BIParent->getInstList().splice(BI->getIterator(), 1305 BB1->getInstList(), I1); 1306 if (!I2->use_empty()) 1307 I2->replaceAllUsesWith(I1); 1308 I1->andIRFlags(I2); 1309 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1310 LLVMContext::MD_range, 1311 LLVMContext::MD_fpmath, 1312 LLVMContext::MD_invariant_load, 1313 LLVMContext::MD_nonnull, 1314 LLVMContext::MD_invariant_group, 1315 LLVMContext::MD_align, 1316 LLVMContext::MD_dereferenceable, 1317 LLVMContext::MD_dereferenceable_or_null, 1318 LLVMContext::MD_mem_parallel_loop_access, 1319 LLVMContext::MD_access_group, 1320 LLVMContext::MD_preserve_access_index}; 1321 combineMetadata(I1, I2, KnownIDs, true); 1322 1323 // I1 and I2 are being combined into a single instruction. Its debug 1324 // location is the merged locations of the original instructions. 1325 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1326 1327 I2->eraseFromParent(); 1328 Changed = true; 1329 } 1330 1331 I1 = &*BB1_Itr++; 1332 I2 = &*BB2_Itr++; 1333 // Skip debug info if it is not identical. 1334 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1335 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1336 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1337 while (isa<DbgInfoIntrinsic>(I1)) 1338 I1 = &*BB1_Itr++; 1339 while (isa<DbgInfoIntrinsic>(I2)) 1340 I2 = &*BB2_Itr++; 1341 } 1342 } while (I1->isIdenticalToWhenDefined(I2)); 1343 1344 return true; 1345 1346 HoistTerminator: 1347 // It may not be possible to hoist an invoke. 1348 // FIXME: Can we define a safety predicate for CallBr? 1349 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1350 return Changed; 1351 1352 // TODO: callbr hoisting currently disabled pending further study. 1353 if (isa<CallBrInst>(I1)) 1354 return Changed; 1355 1356 for (BasicBlock *Succ : successors(BB1)) { 1357 for (PHINode &PN : Succ->phis()) { 1358 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1359 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1360 if (BB1V == BB2V) 1361 continue; 1362 1363 // Check for passingValueIsAlwaysUndefined here because we would rather 1364 // eliminate undefined control flow then converting it to a select. 1365 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1366 passingValueIsAlwaysUndefined(BB2V, &PN)) 1367 return Changed; 1368 1369 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1370 return Changed; 1371 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1372 return Changed; 1373 } 1374 } 1375 1376 // Okay, it is safe to hoist the terminator. 1377 Instruction *NT = I1->clone(); 1378 BIParent->getInstList().insert(BI->getIterator(), NT); 1379 if (!NT->getType()->isVoidTy()) { 1380 I1->replaceAllUsesWith(NT); 1381 I2->replaceAllUsesWith(NT); 1382 NT->takeName(I1); 1383 } 1384 1385 // Ensure terminator gets a debug location, even an unknown one, in case 1386 // it involves inlinable calls. 1387 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1388 1389 // PHIs created below will adopt NT's merged DebugLoc. 1390 IRBuilder<NoFolder> Builder(NT); 1391 1392 // Hoisting one of the terminators from our successor is a great thing. 1393 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1394 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1395 // nodes, so we insert select instruction to compute the final result. 1396 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1397 for (BasicBlock *Succ : successors(BB1)) { 1398 for (PHINode &PN : Succ->phis()) { 1399 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1400 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1401 if (BB1V == BB2V) 1402 continue; 1403 1404 // These values do not agree. Insert a select instruction before NT 1405 // that determines the right value. 1406 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1407 if (!SI) { 1408 // Propagate fast-math-flags from phi node to its replacement select. 1409 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1410 if (isa<FPMathOperator>(PN)) 1411 Builder.setFastMathFlags(PN.getFastMathFlags()); 1412 1413 SI = cast<SelectInst>( 1414 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1415 BB1V->getName() + "." + BB2V->getName(), BI)); 1416 } 1417 1418 // Make the PHI node use the select for all incoming values for BB1/BB2 1419 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1420 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1421 PN.setIncomingValue(i, SI); 1422 } 1423 } 1424 1425 // Update any PHI nodes in our new successors. 1426 for (BasicBlock *Succ : successors(BB1)) 1427 AddPredecessorToBlock(Succ, BIParent, BB1); 1428 1429 EraseTerminatorAndDCECond(BI); 1430 return true; 1431 } 1432 1433 // Check lifetime markers. 1434 static bool isLifeTimeMarker(const Instruction *I) { 1435 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1436 switch (II->getIntrinsicID()) { 1437 default: 1438 break; 1439 case Intrinsic::lifetime_start: 1440 case Intrinsic::lifetime_end: 1441 return true; 1442 } 1443 } 1444 return false; 1445 } 1446 1447 // All instructions in Insts belong to different blocks that all unconditionally 1448 // branch to a common successor. Analyze each instruction and return true if it 1449 // would be possible to sink them into their successor, creating one common 1450 // instruction instead. For every value that would be required to be provided by 1451 // PHI node (because an operand varies in each input block), add to PHIOperands. 1452 static bool canSinkInstructions( 1453 ArrayRef<Instruction *> Insts, 1454 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1455 // Prune out obviously bad instructions to move. Any non-store instruction 1456 // must have exactly one use, and we check later that use is by a single, 1457 // common PHI instruction in the successor. 1458 for (auto *I : Insts) { 1459 // These instructions may change or break semantics if moved. 1460 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1461 I->getType()->isTokenTy()) 1462 return false; 1463 1464 // Conservatively return false if I is an inline-asm instruction. Sinking 1465 // and merging inline-asm instructions can potentially create arguments 1466 // that cannot satisfy the inline-asm constraints. 1467 if (const auto *C = dyn_cast<CallBase>(I)) 1468 if (C->isInlineAsm()) 1469 return false; 1470 1471 // Everything must have only one use too, apart from stores which 1472 // have no uses. 1473 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1474 return false; 1475 } 1476 1477 const Instruction *I0 = Insts.front(); 1478 for (auto *I : Insts) 1479 if (!I->isSameOperationAs(I0)) 1480 return false; 1481 1482 // All instructions in Insts are known to be the same opcode. If they aren't 1483 // stores, check the only user of each is a PHI or in the same block as the 1484 // instruction, because if a user is in the same block as an instruction 1485 // we're contemplating sinking, it must already be determined to be sinkable. 1486 if (!isa<StoreInst>(I0)) { 1487 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1488 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1489 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1490 auto *U = cast<Instruction>(*I->user_begin()); 1491 return (PNUse && 1492 PNUse->getParent() == Succ && 1493 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1494 U->getParent() == I->getParent(); 1495 })) 1496 return false; 1497 } 1498 1499 // Because SROA can't handle speculating stores of selects, try not to sink 1500 // loads, stores or lifetime markers of allocas when we'd have to create a 1501 // PHI for the address operand. Also, because it is likely that loads or 1502 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1503 // them. 1504 // This can cause code churn which can have unintended consequences down 1505 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1506 // FIXME: This is a workaround for a deficiency in SROA - see 1507 // https://llvm.org/bugs/show_bug.cgi?id=30188 1508 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1509 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1510 })) 1511 return false; 1512 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1513 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1514 })) 1515 return false; 1516 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1517 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1518 })) 1519 return false; 1520 1521 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1522 if (I0->getOperand(OI)->getType()->isTokenTy()) 1523 // Don't touch any operand of token type. 1524 return false; 1525 1526 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1527 assert(I->getNumOperands() == I0->getNumOperands()); 1528 return I->getOperand(OI) == I0->getOperand(OI); 1529 }; 1530 if (!all_of(Insts, SameAsI0)) { 1531 if (!canReplaceOperandWithVariable(I0, OI)) 1532 // We can't create a PHI from this GEP. 1533 return false; 1534 // Don't create indirect calls! The called value is the final operand. 1535 if (isa<CallBase>(I0) && OI == OE - 1) { 1536 // FIXME: if the call was *already* indirect, we should do this. 1537 return false; 1538 } 1539 for (auto *I : Insts) 1540 PHIOperands[I].push_back(I->getOperand(OI)); 1541 } 1542 } 1543 return true; 1544 } 1545 1546 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1547 // instruction of every block in Blocks to their common successor, commoning 1548 // into one instruction. 1549 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1550 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1551 1552 // canSinkLastInstruction returning true guarantees that every block has at 1553 // least one non-terminator instruction. 1554 SmallVector<Instruction*,4> Insts; 1555 for (auto *BB : Blocks) { 1556 Instruction *I = BB->getTerminator(); 1557 do { 1558 I = I->getPrevNode(); 1559 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1560 if (!isa<DbgInfoIntrinsic>(I)) 1561 Insts.push_back(I); 1562 } 1563 1564 // The only checking we need to do now is that all users of all instructions 1565 // are the same PHI node. canSinkLastInstruction should have checked this but 1566 // it is slightly over-aggressive - it gets confused by commutative instructions 1567 // so double-check it here. 1568 Instruction *I0 = Insts.front(); 1569 if (!isa<StoreInst>(I0)) { 1570 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1571 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1572 auto *U = cast<Instruction>(*I->user_begin()); 1573 return U == PNUse; 1574 })) 1575 return false; 1576 } 1577 1578 // We don't need to do any more checking here; canSinkLastInstruction should 1579 // have done it all for us. 1580 SmallVector<Value*, 4> NewOperands; 1581 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1582 // This check is different to that in canSinkLastInstruction. There, we 1583 // cared about the global view once simplifycfg (and instcombine) have 1584 // completed - it takes into account PHIs that become trivially 1585 // simplifiable. However here we need a more local view; if an operand 1586 // differs we create a PHI and rely on instcombine to clean up the very 1587 // small mess we may make. 1588 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1589 return I->getOperand(O) != I0->getOperand(O); 1590 }); 1591 if (!NeedPHI) { 1592 NewOperands.push_back(I0->getOperand(O)); 1593 continue; 1594 } 1595 1596 // Create a new PHI in the successor block and populate it. 1597 auto *Op = I0->getOperand(O); 1598 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1599 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1600 Op->getName() + ".sink", &BBEnd->front()); 1601 for (auto *I : Insts) 1602 PN->addIncoming(I->getOperand(O), I->getParent()); 1603 NewOperands.push_back(PN); 1604 } 1605 1606 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1607 // and move it to the start of the successor block. 1608 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1609 I0->getOperandUse(O).set(NewOperands[O]); 1610 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1611 1612 // Update metadata and IR flags, and merge debug locations. 1613 for (auto *I : Insts) 1614 if (I != I0) { 1615 // The debug location for the "common" instruction is the merged locations 1616 // of all the commoned instructions. We start with the original location 1617 // of the "common" instruction and iteratively merge each location in the 1618 // loop below. 1619 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1620 // However, as N-way merge for CallInst is rare, so we use simplified API 1621 // instead of using complex API for N-way merge. 1622 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1623 combineMetadataForCSE(I0, I, true); 1624 I0->andIRFlags(I); 1625 } 1626 1627 if (!isa<StoreInst>(I0)) { 1628 // canSinkLastInstruction checked that all instructions were used by 1629 // one and only one PHI node. Find that now, RAUW it to our common 1630 // instruction and nuke it. 1631 assert(I0->hasOneUse()); 1632 auto *PN = cast<PHINode>(*I0->user_begin()); 1633 PN->replaceAllUsesWith(I0); 1634 PN->eraseFromParent(); 1635 } 1636 1637 // Finally nuke all instructions apart from the common instruction. 1638 for (auto *I : Insts) 1639 if (I != I0) 1640 I->eraseFromParent(); 1641 1642 return true; 1643 } 1644 1645 namespace { 1646 1647 // LockstepReverseIterator - Iterates through instructions 1648 // in a set of blocks in reverse order from the first non-terminator. 1649 // For example (assume all blocks have size n): 1650 // LockstepReverseIterator I([B1, B2, B3]); 1651 // *I-- = [B1[n], B2[n], B3[n]]; 1652 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1653 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1654 // ... 1655 class LockstepReverseIterator { 1656 ArrayRef<BasicBlock*> Blocks; 1657 SmallVector<Instruction*,4> Insts; 1658 bool Fail; 1659 1660 public: 1661 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1662 reset(); 1663 } 1664 1665 void reset() { 1666 Fail = false; 1667 Insts.clear(); 1668 for (auto *BB : Blocks) { 1669 Instruction *Inst = BB->getTerminator(); 1670 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1671 Inst = Inst->getPrevNode(); 1672 if (!Inst) { 1673 // Block wasn't big enough. 1674 Fail = true; 1675 return; 1676 } 1677 Insts.push_back(Inst); 1678 } 1679 } 1680 1681 bool isValid() const { 1682 return !Fail; 1683 } 1684 1685 void operator--() { 1686 if (Fail) 1687 return; 1688 for (auto *&Inst : Insts) { 1689 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1690 Inst = Inst->getPrevNode(); 1691 // Already at beginning of block. 1692 if (!Inst) { 1693 Fail = true; 1694 return; 1695 } 1696 } 1697 } 1698 1699 ArrayRef<Instruction*> operator * () const { 1700 return Insts; 1701 } 1702 }; 1703 1704 } // end anonymous namespace 1705 1706 /// Check whether BB's predecessors end with unconditional branches. If it is 1707 /// true, sink any common code from the predecessors to BB. 1708 /// We also allow one predecessor to end with conditional branch (but no more 1709 /// than one). 1710 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1711 // We support two situations: 1712 // (1) all incoming arcs are unconditional 1713 // (2) one incoming arc is conditional 1714 // 1715 // (2) is very common in switch defaults and 1716 // else-if patterns; 1717 // 1718 // if (a) f(1); 1719 // else if (b) f(2); 1720 // 1721 // produces: 1722 // 1723 // [if] 1724 // / \ 1725 // [f(1)] [if] 1726 // | | \ 1727 // | | | 1728 // | [f(2)]| 1729 // \ | / 1730 // [ end ] 1731 // 1732 // [end] has two unconditional predecessor arcs and one conditional. The 1733 // conditional refers to the implicit empty 'else' arc. This conditional 1734 // arc can also be caused by an empty default block in a switch. 1735 // 1736 // In this case, we attempt to sink code from all *unconditional* arcs. 1737 // If we can sink instructions from these arcs (determined during the scan 1738 // phase below) we insert a common successor for all unconditional arcs and 1739 // connect that to [end], to enable sinking: 1740 // 1741 // [if] 1742 // / \ 1743 // [x(1)] [if] 1744 // | | \ 1745 // | | \ 1746 // | [x(2)] | 1747 // \ / | 1748 // [sink.split] | 1749 // \ / 1750 // [ end ] 1751 // 1752 SmallVector<BasicBlock*,4> UnconditionalPreds; 1753 Instruction *Cond = nullptr; 1754 for (auto *B : predecessors(BB)) { 1755 auto *T = B->getTerminator(); 1756 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1757 UnconditionalPreds.push_back(B); 1758 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1759 Cond = T; 1760 else 1761 return false; 1762 } 1763 if (UnconditionalPreds.size() < 2) 1764 return false; 1765 1766 bool Changed = false; 1767 // We take a two-step approach to tail sinking. First we scan from the end of 1768 // each block upwards in lockstep. If the n'th instruction from the end of each 1769 // block can be sunk, those instructions are added to ValuesToSink and we 1770 // carry on. If we can sink an instruction but need to PHI-merge some operands 1771 // (because they're not identical in each instruction) we add these to 1772 // PHIOperands. 1773 unsigned ScanIdx = 0; 1774 SmallPtrSet<Value*,4> InstructionsToSink; 1775 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1776 LockstepReverseIterator LRI(UnconditionalPreds); 1777 while (LRI.isValid() && 1778 canSinkInstructions(*LRI, PHIOperands)) { 1779 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1780 << "\n"); 1781 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1782 ++ScanIdx; 1783 --LRI; 1784 } 1785 1786 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1787 unsigned NumPHIdValues = 0; 1788 for (auto *I : *LRI) 1789 for (auto *V : PHIOperands[I]) 1790 if (InstructionsToSink.count(V) == 0) 1791 ++NumPHIdValues; 1792 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1793 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1794 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1795 NumPHIInsts++; 1796 1797 return NumPHIInsts <= 1; 1798 }; 1799 1800 if (ScanIdx > 0 && Cond) { 1801 // Check if we would actually sink anything first! This mutates the CFG and 1802 // adds an extra block. The goal in doing this is to allow instructions that 1803 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1804 // (such as trunc, add) can be sunk and predicated already. So we check that 1805 // we're going to sink at least one non-speculatable instruction. 1806 LRI.reset(); 1807 unsigned Idx = 0; 1808 bool Profitable = false; 1809 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1810 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1811 Profitable = true; 1812 break; 1813 } 1814 --LRI; 1815 ++Idx; 1816 } 1817 if (!Profitable) 1818 return false; 1819 1820 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1821 // We have a conditional edge and we're going to sink some instructions. 1822 // Insert a new block postdominating all blocks we're going to sink from. 1823 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1824 // Edges couldn't be split. 1825 return false; 1826 Changed = true; 1827 } 1828 1829 // Now that we've analyzed all potential sinking candidates, perform the 1830 // actual sink. We iteratively sink the last non-terminator of the source 1831 // blocks into their common successor unless doing so would require too 1832 // many PHI instructions to be generated (currently only one PHI is allowed 1833 // per sunk instruction). 1834 // 1835 // We can use InstructionsToSink to discount values needing PHI-merging that will 1836 // actually be sunk in a later iteration. This allows us to be more 1837 // aggressive in what we sink. This does allow a false positive where we 1838 // sink presuming a later value will also be sunk, but stop half way through 1839 // and never actually sink it which means we produce more PHIs than intended. 1840 // This is unlikely in practice though. 1841 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1842 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1843 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1844 << "\n"); 1845 1846 // Because we've sunk every instruction in turn, the current instruction to 1847 // sink is always at index 0. 1848 LRI.reset(); 1849 if (!ProfitableToSinkInstruction(LRI)) { 1850 // Too many PHIs would be created. 1851 LLVM_DEBUG( 1852 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1853 break; 1854 } 1855 1856 if (!sinkLastInstruction(UnconditionalPreds)) 1857 return Changed; 1858 NumSinkCommons++; 1859 Changed = true; 1860 } 1861 return Changed; 1862 } 1863 1864 /// Determine if we can hoist sink a sole store instruction out of a 1865 /// conditional block. 1866 /// 1867 /// We are looking for code like the following: 1868 /// BrBB: 1869 /// store i32 %add, i32* %arrayidx2 1870 /// ... // No other stores or function calls (we could be calling a memory 1871 /// ... // function). 1872 /// %cmp = icmp ult %x, %y 1873 /// br i1 %cmp, label %EndBB, label %ThenBB 1874 /// ThenBB: 1875 /// store i32 %add5, i32* %arrayidx2 1876 /// br label EndBB 1877 /// EndBB: 1878 /// ... 1879 /// We are going to transform this into: 1880 /// BrBB: 1881 /// store i32 %add, i32* %arrayidx2 1882 /// ... // 1883 /// %cmp = icmp ult %x, %y 1884 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1885 /// store i32 %add.add5, i32* %arrayidx2 1886 /// ... 1887 /// 1888 /// \return The pointer to the value of the previous store if the store can be 1889 /// hoisted into the predecessor block. 0 otherwise. 1890 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1891 BasicBlock *StoreBB, BasicBlock *EndBB) { 1892 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1893 if (!StoreToHoist) 1894 return nullptr; 1895 1896 // Volatile or atomic. 1897 if (!StoreToHoist->isSimple()) 1898 return nullptr; 1899 1900 Value *StorePtr = StoreToHoist->getPointerOperand(); 1901 1902 // Look for a store to the same pointer in BrBB. 1903 unsigned MaxNumInstToLookAt = 9; 1904 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1905 if (!MaxNumInstToLookAt) 1906 break; 1907 --MaxNumInstToLookAt; 1908 1909 // Could be calling an instruction that affects memory like free(). 1910 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1911 return nullptr; 1912 1913 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1914 // Found the previous store make sure it stores to the same location. 1915 if (SI->getPointerOperand() == StorePtr) 1916 // Found the previous store, return its value operand. 1917 return SI->getValueOperand(); 1918 return nullptr; // Unknown store. 1919 } 1920 } 1921 1922 return nullptr; 1923 } 1924 1925 /// Speculate a conditional basic block flattening the CFG. 1926 /// 1927 /// Note that this is a very risky transform currently. Speculating 1928 /// instructions like this is most often not desirable. Instead, there is an MI 1929 /// pass which can do it with full awareness of the resource constraints. 1930 /// However, some cases are "obvious" and we should do directly. An example of 1931 /// this is speculating a single, reasonably cheap instruction. 1932 /// 1933 /// There is only one distinct advantage to flattening the CFG at the IR level: 1934 /// it makes very common but simplistic optimizations such as are common in 1935 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1936 /// modeling their effects with easier to reason about SSA value graphs. 1937 /// 1938 /// 1939 /// An illustration of this transform is turning this IR: 1940 /// \code 1941 /// BB: 1942 /// %cmp = icmp ult %x, %y 1943 /// br i1 %cmp, label %EndBB, label %ThenBB 1944 /// ThenBB: 1945 /// %sub = sub %x, %y 1946 /// br label BB2 1947 /// EndBB: 1948 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1949 /// ... 1950 /// \endcode 1951 /// 1952 /// Into this IR: 1953 /// \code 1954 /// BB: 1955 /// %cmp = icmp ult %x, %y 1956 /// %sub = sub %x, %y 1957 /// %cond = select i1 %cmp, 0, %sub 1958 /// ... 1959 /// \endcode 1960 /// 1961 /// \returns true if the conditional block is removed. 1962 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1963 const TargetTransformInfo &TTI) { 1964 // Be conservative for now. FP select instruction can often be expensive. 1965 Value *BrCond = BI->getCondition(); 1966 if (isa<FCmpInst>(BrCond)) 1967 return false; 1968 1969 BasicBlock *BB = BI->getParent(); 1970 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1971 1972 // If ThenBB is actually on the false edge of the conditional branch, remember 1973 // to swap the select operands later. 1974 bool Invert = false; 1975 if (ThenBB != BI->getSuccessor(0)) { 1976 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1977 Invert = true; 1978 } 1979 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1980 1981 // Keep a count of how many times instructions are used within ThenBB when 1982 // they are candidates for sinking into ThenBB. Specifically: 1983 // - They are defined in BB, and 1984 // - They have no side effects, and 1985 // - All of their uses are in ThenBB. 1986 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1987 1988 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1989 1990 unsigned SpeculatedInstructions = 0; 1991 Value *SpeculatedStoreValue = nullptr; 1992 StoreInst *SpeculatedStore = nullptr; 1993 for (BasicBlock::iterator BBI = ThenBB->begin(), 1994 BBE = std::prev(ThenBB->end()); 1995 BBI != BBE; ++BBI) { 1996 Instruction *I = &*BBI; 1997 // Skip debug info. 1998 if (isa<DbgInfoIntrinsic>(I)) { 1999 SpeculatedDbgIntrinsics.push_back(I); 2000 continue; 2001 } 2002 2003 // Only speculatively execute a single instruction (not counting the 2004 // terminator) for now. 2005 ++SpeculatedInstructions; 2006 if (SpeculatedInstructions > 1) 2007 return false; 2008 2009 // Don't hoist the instruction if it's unsafe or expensive. 2010 if (!isSafeToSpeculativelyExecute(I) && 2011 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2012 I, BB, ThenBB, EndBB)))) 2013 return false; 2014 if (!SpeculatedStoreValue && 2015 ComputeSpeculationCost(I, TTI) > 2016 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2017 return false; 2018 2019 // Store the store speculation candidate. 2020 if (SpeculatedStoreValue) 2021 SpeculatedStore = cast<StoreInst>(I); 2022 2023 // Do not hoist the instruction if any of its operands are defined but not 2024 // used in BB. The transformation will prevent the operand from 2025 // being sunk into the use block. 2026 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2027 Instruction *OpI = dyn_cast<Instruction>(*i); 2028 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2029 continue; // Not a candidate for sinking. 2030 2031 ++SinkCandidateUseCounts[OpI]; 2032 } 2033 } 2034 2035 // Consider any sink candidates which are only used in ThenBB as costs for 2036 // speculation. Note, while we iterate over a DenseMap here, we are summing 2037 // and so iteration order isn't significant. 2038 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2039 I = SinkCandidateUseCounts.begin(), 2040 E = SinkCandidateUseCounts.end(); 2041 I != E; ++I) 2042 if (I->first->hasNUses(I->second)) { 2043 ++SpeculatedInstructions; 2044 if (SpeculatedInstructions > 1) 2045 return false; 2046 } 2047 2048 // Check that the PHI nodes can be converted to selects. 2049 bool HaveRewritablePHIs = false; 2050 for (PHINode &PN : EndBB->phis()) { 2051 Value *OrigV = PN.getIncomingValueForBlock(BB); 2052 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2053 2054 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2055 // Skip PHIs which are trivial. 2056 if (ThenV == OrigV) 2057 continue; 2058 2059 // Don't convert to selects if we could remove undefined behavior instead. 2060 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2061 passingValueIsAlwaysUndefined(ThenV, &PN)) 2062 return false; 2063 2064 HaveRewritablePHIs = true; 2065 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2066 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2067 if (!OrigCE && !ThenCE) 2068 continue; // Known safe and cheap. 2069 2070 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2071 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2072 return false; 2073 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2074 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2075 unsigned MaxCost = 2076 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2077 if (OrigCost + ThenCost > MaxCost) 2078 return false; 2079 2080 // Account for the cost of an unfolded ConstantExpr which could end up 2081 // getting expanded into Instructions. 2082 // FIXME: This doesn't account for how many operations are combined in the 2083 // constant expression. 2084 ++SpeculatedInstructions; 2085 if (SpeculatedInstructions > 1) 2086 return false; 2087 } 2088 2089 // If there are no PHIs to process, bail early. This helps ensure idempotence 2090 // as well. 2091 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2092 return false; 2093 2094 // If we get here, we can hoist the instruction and if-convert. 2095 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2096 2097 // Insert a select of the value of the speculated store. 2098 if (SpeculatedStoreValue) { 2099 IRBuilder<NoFolder> Builder(BI); 2100 Value *TrueV = SpeculatedStore->getValueOperand(); 2101 Value *FalseV = SpeculatedStoreValue; 2102 if (Invert) 2103 std::swap(TrueV, FalseV); 2104 Value *S = Builder.CreateSelect( 2105 BrCond, TrueV, FalseV, "spec.store.select", BI); 2106 SpeculatedStore->setOperand(0, S); 2107 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2108 SpeculatedStore->getDebugLoc()); 2109 } 2110 2111 // Metadata can be dependent on the condition we are hoisting above. 2112 // Conservatively strip all metadata on the instruction. 2113 for (auto &I : *ThenBB) 2114 I.dropUnknownNonDebugMetadata(); 2115 2116 // Hoist the instructions. 2117 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2118 ThenBB->begin(), std::prev(ThenBB->end())); 2119 2120 // Insert selects and rewrite the PHI operands. 2121 IRBuilder<NoFolder> Builder(BI); 2122 for (PHINode &PN : EndBB->phis()) { 2123 unsigned OrigI = PN.getBasicBlockIndex(BB); 2124 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2125 Value *OrigV = PN.getIncomingValue(OrigI); 2126 Value *ThenV = PN.getIncomingValue(ThenI); 2127 2128 // Skip PHIs which are trivial. 2129 if (OrigV == ThenV) 2130 continue; 2131 2132 // Create a select whose true value is the speculatively executed value and 2133 // false value is the preexisting value. Swap them if the branch 2134 // destinations were inverted. 2135 Value *TrueV = ThenV, *FalseV = OrigV; 2136 if (Invert) 2137 std::swap(TrueV, FalseV); 2138 Value *V = Builder.CreateSelect( 2139 BrCond, TrueV, FalseV, "spec.select", BI); 2140 PN.setIncomingValue(OrigI, V); 2141 PN.setIncomingValue(ThenI, V); 2142 } 2143 2144 // Remove speculated dbg intrinsics. 2145 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2146 // dbg value for the different flows and inserting it after the select. 2147 for (Instruction *I : SpeculatedDbgIntrinsics) 2148 I->eraseFromParent(); 2149 2150 ++NumSpeculations; 2151 return true; 2152 } 2153 2154 /// Return true if we can thread a branch across this block. 2155 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2156 unsigned Size = 0; 2157 2158 for (Instruction &I : BB->instructionsWithoutDebug()) { 2159 if (Size > 10) 2160 return false; // Don't clone large BB's. 2161 ++Size; 2162 2163 // We can only support instructions that do not define values that are 2164 // live outside of the current basic block. 2165 for (User *U : I.users()) { 2166 Instruction *UI = cast<Instruction>(U); 2167 if (UI->getParent() != BB || isa<PHINode>(UI)) 2168 return false; 2169 } 2170 2171 // Looks ok, continue checking. 2172 } 2173 2174 return true; 2175 } 2176 2177 /// If we have a conditional branch on a PHI node value that is defined in the 2178 /// same block as the branch and if any PHI entries are constants, thread edges 2179 /// corresponding to that entry to be branches to their ultimate destination. 2180 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2181 AssumptionCache *AC) { 2182 BasicBlock *BB = BI->getParent(); 2183 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2184 // NOTE: we currently cannot transform this case if the PHI node is used 2185 // outside of the block. 2186 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2187 return false; 2188 2189 // Degenerate case of a single entry PHI. 2190 if (PN->getNumIncomingValues() == 1) { 2191 FoldSingleEntryPHINodes(PN->getParent()); 2192 return true; 2193 } 2194 2195 // Now we know that this block has multiple preds and two succs. 2196 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2197 return false; 2198 2199 // Can't fold blocks that contain noduplicate or convergent calls. 2200 if (any_of(*BB, [](const Instruction &I) { 2201 const CallInst *CI = dyn_cast<CallInst>(&I); 2202 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2203 })) 2204 return false; 2205 2206 // Okay, this is a simple enough basic block. See if any phi values are 2207 // constants. 2208 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2209 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2210 if (!CB || !CB->getType()->isIntegerTy(1)) 2211 continue; 2212 2213 // Okay, we now know that all edges from PredBB should be revectored to 2214 // branch to RealDest. 2215 BasicBlock *PredBB = PN->getIncomingBlock(i); 2216 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2217 2218 if (RealDest == BB) 2219 continue; // Skip self loops. 2220 // Skip if the predecessor's terminator is an indirect branch. 2221 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2222 continue; 2223 2224 // The dest block might have PHI nodes, other predecessors and other 2225 // difficult cases. Instead of being smart about this, just insert a new 2226 // block that jumps to the destination block, effectively splitting 2227 // the edge we are about to create. 2228 BasicBlock *EdgeBB = 2229 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2230 RealDest->getParent(), RealDest); 2231 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2232 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2233 2234 // Update PHI nodes. 2235 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2236 2237 // BB may have instructions that are being threaded over. Clone these 2238 // instructions into EdgeBB. We know that there will be no uses of the 2239 // cloned instructions outside of EdgeBB. 2240 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2241 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2242 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2243 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2244 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2245 continue; 2246 } 2247 // Clone the instruction. 2248 Instruction *N = BBI->clone(); 2249 if (BBI->hasName()) 2250 N->setName(BBI->getName() + ".c"); 2251 2252 // Update operands due to translation. 2253 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2254 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2255 if (PI != TranslateMap.end()) 2256 *i = PI->second; 2257 } 2258 2259 // Check for trivial simplification. 2260 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2261 if (!BBI->use_empty()) 2262 TranslateMap[&*BBI] = V; 2263 if (!N->mayHaveSideEffects()) { 2264 N->deleteValue(); // Instruction folded away, don't need actual inst 2265 N = nullptr; 2266 } 2267 } else { 2268 if (!BBI->use_empty()) 2269 TranslateMap[&*BBI] = N; 2270 } 2271 if (N) { 2272 // Insert the new instruction into its new home. 2273 EdgeBB->getInstList().insert(InsertPt, N); 2274 2275 // Register the new instruction with the assumption cache if necessary. 2276 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2277 AC->registerAssumption(cast<IntrinsicInst>(N)); 2278 } 2279 } 2280 2281 // Loop over all of the edges from PredBB to BB, changing them to branch 2282 // to EdgeBB instead. 2283 Instruction *PredBBTI = PredBB->getTerminator(); 2284 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2285 if (PredBBTI->getSuccessor(i) == BB) { 2286 BB->removePredecessor(PredBB); 2287 PredBBTI->setSuccessor(i, EdgeBB); 2288 } 2289 2290 // Recurse, simplifying any other constants. 2291 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2292 } 2293 2294 return false; 2295 } 2296 2297 /// Given a BB that starts with the specified two-entry PHI node, 2298 /// see if we can eliminate it. 2299 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2300 const DataLayout &DL) { 2301 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2302 // statement", which has a very simple dominance structure. Basically, we 2303 // are trying to find the condition that is being branched on, which 2304 // subsequently causes this merge to happen. We really want control 2305 // dependence information for this check, but simplifycfg can't keep it up 2306 // to date, and this catches most of the cases we care about anyway. 2307 BasicBlock *BB = PN->getParent(); 2308 const Function *Fn = BB->getParent(); 2309 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2310 return false; 2311 2312 BasicBlock *IfTrue, *IfFalse; 2313 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2314 if (!IfCond || 2315 // Don't bother if the branch will be constant folded trivially. 2316 isa<ConstantInt>(IfCond)) 2317 return false; 2318 2319 // Okay, we found that we can merge this two-entry phi node into a select. 2320 // Doing so would require us to fold *all* two entry phi nodes in this block. 2321 // At some point this becomes non-profitable (particularly if the target 2322 // doesn't support cmov's). Only do this transformation if there are two or 2323 // fewer PHI nodes in this block. 2324 unsigned NumPhis = 0; 2325 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2326 if (NumPhis > 2) 2327 return false; 2328 2329 // Loop over the PHI's seeing if we can promote them all to select 2330 // instructions. While we are at it, keep track of the instructions 2331 // that need to be moved to the dominating block. 2332 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2333 int BudgetRemaining = 2334 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2335 2336 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2337 PHINode *PN = cast<PHINode>(II++); 2338 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2339 PN->replaceAllUsesWith(V); 2340 PN->eraseFromParent(); 2341 continue; 2342 } 2343 2344 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2345 BudgetRemaining, TTI) || 2346 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2347 BudgetRemaining, TTI)) 2348 return false; 2349 } 2350 2351 // If we folded the first phi, PN dangles at this point. Refresh it. If 2352 // we ran out of PHIs then we simplified them all. 2353 PN = dyn_cast<PHINode>(BB->begin()); 2354 if (!PN) 2355 return true; 2356 2357 // Return true if at least one of these is a 'not', and another is either 2358 // a 'not' too, or a constant. 2359 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2360 if (!match(V0, m_Not(m_Value()))) 2361 std::swap(V0, V1); 2362 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2363 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2364 }; 2365 2366 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2367 // of the incoming values is an 'not' and another one is freely invertible. 2368 // These can often be turned into switches and other things. 2369 if (PN->getType()->isIntegerTy(1) && 2370 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2371 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2372 isa<BinaryOperator>(IfCond)) && 2373 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2374 PN->getIncomingValue(1))) 2375 return false; 2376 2377 // If all PHI nodes are promotable, check to make sure that all instructions 2378 // in the predecessor blocks can be promoted as well. If not, we won't be able 2379 // to get rid of the control flow, so it's not worth promoting to select 2380 // instructions. 2381 BasicBlock *DomBlock = nullptr; 2382 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2383 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2384 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2385 IfBlock1 = nullptr; 2386 } else { 2387 DomBlock = *pred_begin(IfBlock1); 2388 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2389 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2390 // This is not an aggressive instruction that we can promote. 2391 // Because of this, we won't be able to get rid of the control flow, so 2392 // the xform is not worth it. 2393 return false; 2394 } 2395 } 2396 2397 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2398 IfBlock2 = nullptr; 2399 } else { 2400 DomBlock = *pred_begin(IfBlock2); 2401 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2402 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2403 // This is not an aggressive instruction that we can promote. 2404 // Because of this, we won't be able to get rid of the control flow, so 2405 // the xform is not worth it. 2406 return false; 2407 } 2408 } 2409 assert(DomBlock && "Failed to find root DomBlock"); 2410 2411 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2412 << " T: " << IfTrue->getName() 2413 << " F: " << IfFalse->getName() << "\n"); 2414 2415 // If we can still promote the PHI nodes after this gauntlet of tests, 2416 // do all of the PHI's now. 2417 Instruction *InsertPt = DomBlock->getTerminator(); 2418 IRBuilder<NoFolder> Builder(InsertPt); 2419 2420 // Move all 'aggressive' instructions, which are defined in the 2421 // conditional parts of the if's up to the dominating block. 2422 if (IfBlock1) 2423 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2424 if (IfBlock2) 2425 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2426 2427 // Propagate fast-math-flags from phi nodes to replacement selects. 2428 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2429 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2430 if (isa<FPMathOperator>(PN)) 2431 Builder.setFastMathFlags(PN->getFastMathFlags()); 2432 2433 // Change the PHI node into a select instruction. 2434 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2435 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2436 2437 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2438 PN->replaceAllUsesWith(Sel); 2439 Sel->takeName(PN); 2440 PN->eraseFromParent(); 2441 } 2442 2443 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2444 // has been flattened. Change DomBlock to jump directly to our new block to 2445 // avoid other simplifycfg's kicking in on the diamond. 2446 Instruction *OldTI = DomBlock->getTerminator(); 2447 Builder.SetInsertPoint(OldTI); 2448 Builder.CreateBr(BB); 2449 OldTI->eraseFromParent(); 2450 return true; 2451 } 2452 2453 /// If we found a conditional branch that goes to two returning blocks, 2454 /// try to merge them together into one return, 2455 /// introducing a select if the return values disagree. 2456 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2457 IRBuilder<> &Builder) { 2458 assert(BI->isConditional() && "Must be a conditional branch"); 2459 BasicBlock *TrueSucc = BI->getSuccessor(0); 2460 BasicBlock *FalseSucc = BI->getSuccessor(1); 2461 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2462 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2463 2464 // Check to ensure both blocks are empty (just a return) or optionally empty 2465 // with PHI nodes. If there are other instructions, merging would cause extra 2466 // computation on one path or the other. 2467 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2468 return false; 2469 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2470 return false; 2471 2472 Builder.SetInsertPoint(BI); 2473 // Okay, we found a branch that is going to two return nodes. If 2474 // there is no return value for this function, just change the 2475 // branch into a return. 2476 if (FalseRet->getNumOperands() == 0) { 2477 TrueSucc->removePredecessor(BI->getParent()); 2478 FalseSucc->removePredecessor(BI->getParent()); 2479 Builder.CreateRetVoid(); 2480 EraseTerminatorAndDCECond(BI); 2481 return true; 2482 } 2483 2484 // Otherwise, figure out what the true and false return values are 2485 // so we can insert a new select instruction. 2486 Value *TrueValue = TrueRet->getReturnValue(); 2487 Value *FalseValue = FalseRet->getReturnValue(); 2488 2489 // Unwrap any PHI nodes in the return blocks. 2490 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2491 if (TVPN->getParent() == TrueSucc) 2492 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2493 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2494 if (FVPN->getParent() == FalseSucc) 2495 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2496 2497 // In order for this transformation to be safe, we must be able to 2498 // unconditionally execute both operands to the return. This is 2499 // normally the case, but we could have a potentially-trapping 2500 // constant expression that prevents this transformation from being 2501 // safe. 2502 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2503 if (TCV->canTrap()) 2504 return false; 2505 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2506 if (FCV->canTrap()) 2507 return false; 2508 2509 // Okay, we collected all the mapped values and checked them for sanity, and 2510 // defined to really do this transformation. First, update the CFG. 2511 TrueSucc->removePredecessor(BI->getParent()); 2512 FalseSucc->removePredecessor(BI->getParent()); 2513 2514 // Insert select instructions where needed. 2515 Value *BrCond = BI->getCondition(); 2516 if (TrueValue) { 2517 // Insert a select if the results differ. 2518 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2519 } else if (isa<UndefValue>(TrueValue)) { 2520 TrueValue = FalseValue; 2521 } else { 2522 TrueValue = 2523 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2524 } 2525 } 2526 2527 Value *RI = 2528 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2529 2530 (void)RI; 2531 2532 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2533 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2534 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2535 2536 EraseTerminatorAndDCECond(BI); 2537 2538 return true; 2539 } 2540 2541 /// Return true if the given instruction is available 2542 /// in its predecessor block. If yes, the instruction will be removed. 2543 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2544 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2545 return false; 2546 for (Instruction &I : *PB) { 2547 Instruction *PBI = &I; 2548 // Check whether Inst and PBI generate the same value. 2549 if (Inst->isIdenticalTo(PBI)) { 2550 Inst->replaceAllUsesWith(PBI); 2551 Inst->eraseFromParent(); 2552 return true; 2553 } 2554 } 2555 return false; 2556 } 2557 2558 /// Return true if either PBI or BI has branch weight available, and store 2559 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2560 /// not have branch weight, use 1:1 as its weight. 2561 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2562 uint64_t &PredTrueWeight, 2563 uint64_t &PredFalseWeight, 2564 uint64_t &SuccTrueWeight, 2565 uint64_t &SuccFalseWeight) { 2566 bool PredHasWeights = 2567 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2568 bool SuccHasWeights = 2569 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2570 if (PredHasWeights || SuccHasWeights) { 2571 if (!PredHasWeights) 2572 PredTrueWeight = PredFalseWeight = 1; 2573 if (!SuccHasWeights) 2574 SuccTrueWeight = SuccFalseWeight = 1; 2575 return true; 2576 } else { 2577 return false; 2578 } 2579 } 2580 2581 /// If this basic block is simple enough, and if a predecessor branches to us 2582 /// and one of our successors, fold the block into the predecessor and use 2583 /// logical operations to pick the right destination. 2584 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2585 unsigned BonusInstThreshold) { 2586 BasicBlock *BB = BI->getParent(); 2587 2588 const unsigned PredCount = pred_size(BB); 2589 2590 Instruction *Cond = nullptr; 2591 if (BI->isConditional()) 2592 Cond = dyn_cast<Instruction>(BI->getCondition()); 2593 else { 2594 // For unconditional branch, check for a simple CFG pattern, where 2595 // BB has a single predecessor and BB's successor is also its predecessor's 2596 // successor. If such pattern exists, check for CSE between BB and its 2597 // predecessor. 2598 if (BasicBlock *PB = BB->getSinglePredecessor()) 2599 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2600 if (PBI->isConditional() && 2601 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2602 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2603 for (auto I = BB->instructionsWithoutDebug().begin(), 2604 E = BB->instructionsWithoutDebug().end(); 2605 I != E;) { 2606 Instruction *Curr = &*I++; 2607 if (isa<CmpInst>(Curr)) { 2608 Cond = Curr; 2609 break; 2610 } 2611 // Quit if we can't remove this instruction. 2612 if (!tryCSEWithPredecessor(Curr, PB)) 2613 return false; 2614 } 2615 } 2616 2617 if (!Cond) 2618 return false; 2619 } 2620 2621 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2622 Cond->getParent() != BB || !Cond->hasOneUse()) 2623 return false; 2624 2625 // Make sure the instruction after the condition is the cond branch. 2626 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2627 2628 // Ignore dbg intrinsics. 2629 while (isa<DbgInfoIntrinsic>(CondIt)) 2630 ++CondIt; 2631 2632 if (&*CondIt != BI) 2633 return false; 2634 2635 // Only allow this transformation if computing the condition doesn't involve 2636 // too many instructions and these involved instructions can be executed 2637 // unconditionally. We denote all involved instructions except the condition 2638 // as "bonus instructions", and only allow this transformation when the 2639 // number of the bonus instructions we'll need to create when cloning into 2640 // each predecessor does not exceed a certain threshold. 2641 unsigned NumBonusInsts = 0; 2642 for (auto I = BB->begin(); Cond != &*I; ++I) { 2643 // Ignore dbg intrinsics. 2644 if (isa<DbgInfoIntrinsic>(I)) 2645 continue; 2646 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2647 return false; 2648 // I has only one use and can be executed unconditionally. 2649 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2650 if (User == nullptr || User->getParent() != BB) 2651 return false; 2652 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2653 // to use any other instruction, User must be an instruction between next(I) 2654 // and Cond. 2655 2656 // Account for the cost of duplicating this instruction into each 2657 // predecessor. 2658 NumBonusInsts += PredCount; 2659 // Early exits once we reach the limit. 2660 if (NumBonusInsts > BonusInstThreshold) 2661 return false; 2662 } 2663 2664 // Cond is known to be a compare or binary operator. Check to make sure that 2665 // neither operand is a potentially-trapping constant expression. 2666 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2667 if (CE->canTrap()) 2668 return false; 2669 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2670 if (CE->canTrap()) 2671 return false; 2672 2673 // Finally, don't infinitely unroll conditional loops. 2674 BasicBlock *TrueDest = BI->getSuccessor(0); 2675 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2676 if (TrueDest == BB || FalseDest == BB) 2677 return false; 2678 2679 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2680 BasicBlock *PredBlock = *PI; 2681 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2682 2683 // Check that we have two conditional branches. If there is a PHI node in 2684 // the common successor, verify that the same value flows in from both 2685 // blocks. 2686 SmallVector<PHINode *, 4> PHIs; 2687 if (!PBI || PBI->isUnconditional() || 2688 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2689 (!BI->isConditional() && 2690 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2691 continue; 2692 2693 // Determine if the two branches share a common destination. 2694 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2695 bool InvertPredCond = false; 2696 2697 if (BI->isConditional()) { 2698 if (PBI->getSuccessor(0) == TrueDest) { 2699 Opc = Instruction::Or; 2700 } else if (PBI->getSuccessor(1) == FalseDest) { 2701 Opc = Instruction::And; 2702 } else if (PBI->getSuccessor(0) == FalseDest) { 2703 Opc = Instruction::And; 2704 InvertPredCond = true; 2705 } else if (PBI->getSuccessor(1) == TrueDest) { 2706 Opc = Instruction::Or; 2707 InvertPredCond = true; 2708 } else { 2709 continue; 2710 } 2711 } else { 2712 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2713 continue; 2714 } 2715 2716 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2717 IRBuilder<> Builder(PBI); 2718 2719 // If we need to invert the condition in the pred block to match, do so now. 2720 if (InvertPredCond) { 2721 Value *NewCond = PBI->getCondition(); 2722 2723 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2724 CmpInst *CI = cast<CmpInst>(NewCond); 2725 CI->setPredicate(CI->getInversePredicate()); 2726 } else { 2727 NewCond = 2728 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2729 } 2730 2731 PBI->setCondition(NewCond); 2732 PBI->swapSuccessors(); 2733 } 2734 2735 // If we have bonus instructions, clone them into the predecessor block. 2736 // Note that there may be multiple predecessor blocks, so we cannot move 2737 // bonus instructions to a predecessor block. 2738 ValueToValueMapTy VMap; // maps original values to cloned values 2739 // We already make sure Cond is the last instruction before BI. Therefore, 2740 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2741 // instructions. 2742 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2743 if (isa<DbgInfoIntrinsic>(BonusInst)) 2744 continue; 2745 Instruction *NewBonusInst = BonusInst->clone(); 2746 RemapInstruction(NewBonusInst, VMap, 2747 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2748 VMap[&*BonusInst] = NewBonusInst; 2749 2750 // If we moved a load, we cannot any longer claim any knowledge about 2751 // its potential value. The previous information might have been valid 2752 // only given the branch precondition. 2753 // For an analogous reason, we must also drop all the metadata whose 2754 // semantics we don't understand. 2755 NewBonusInst->dropUnknownNonDebugMetadata(); 2756 2757 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2758 NewBonusInst->takeName(&*BonusInst); 2759 BonusInst->setName(BonusInst->getName() + ".old"); 2760 } 2761 2762 // Clone Cond into the predecessor basic block, and or/and the 2763 // two conditions together. 2764 Instruction *CondInPred = Cond->clone(); 2765 RemapInstruction(CondInPred, VMap, 2766 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2767 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2768 CondInPred->takeName(Cond); 2769 Cond->setName(CondInPred->getName() + ".old"); 2770 2771 if (BI->isConditional()) { 2772 Instruction *NewCond = cast<Instruction>( 2773 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2774 PBI->setCondition(NewCond); 2775 2776 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2777 bool HasWeights = 2778 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2779 SuccTrueWeight, SuccFalseWeight); 2780 SmallVector<uint64_t, 8> NewWeights; 2781 2782 if (PBI->getSuccessor(0) == BB) { 2783 if (HasWeights) { 2784 // PBI: br i1 %x, BB, FalseDest 2785 // BI: br i1 %y, TrueDest, FalseDest 2786 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2787 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2788 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2789 // TrueWeight for PBI * FalseWeight for BI. 2790 // We assume that total weights of a BranchInst can fit into 32 bits. 2791 // Therefore, we will not have overflow using 64-bit arithmetic. 2792 NewWeights.push_back(PredFalseWeight * 2793 (SuccFalseWeight + SuccTrueWeight) + 2794 PredTrueWeight * SuccFalseWeight); 2795 } 2796 AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU); 2797 PBI->setSuccessor(0, TrueDest); 2798 } 2799 if (PBI->getSuccessor(1) == BB) { 2800 if (HasWeights) { 2801 // PBI: br i1 %x, TrueDest, BB 2802 // BI: br i1 %y, TrueDest, FalseDest 2803 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2804 // FalseWeight for PBI * TrueWeight for BI. 2805 NewWeights.push_back(PredTrueWeight * 2806 (SuccFalseWeight + SuccTrueWeight) + 2807 PredFalseWeight * SuccTrueWeight); 2808 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2809 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2810 } 2811 AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU); 2812 PBI->setSuccessor(1, FalseDest); 2813 } 2814 if (NewWeights.size() == 2) { 2815 // Halve the weights if any of them cannot fit in an uint32_t 2816 FitWeights(NewWeights); 2817 2818 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2819 NewWeights.end()); 2820 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2821 } else 2822 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2823 } else { 2824 // Update PHI nodes in the common successors. 2825 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2826 ConstantInt *PBI_C = cast<ConstantInt>( 2827 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2828 assert(PBI_C->getType()->isIntegerTy(1)); 2829 Instruction *MergedCond = nullptr; 2830 if (PBI->getSuccessor(0) == TrueDest) { 2831 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2832 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2833 // is false: !PBI_Cond and BI_Value 2834 Instruction *NotCond = cast<Instruction>( 2835 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2836 MergedCond = cast<Instruction>( 2837 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2838 "and.cond")); 2839 if (PBI_C->isOne()) 2840 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2841 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2842 } else { 2843 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2844 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2845 // is false: PBI_Cond and BI_Value 2846 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2847 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2848 if (PBI_C->isOne()) { 2849 Instruction *NotCond = cast<Instruction>( 2850 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2851 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2852 Instruction::Or, NotCond, MergedCond, "or.cond")); 2853 } 2854 } 2855 // Update PHI Node. 2856 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 2857 } 2858 2859 // PBI is changed to branch to TrueDest below. Remove itself from 2860 // potential phis from all other successors. 2861 if (MSSAU) 2862 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 2863 2864 // Change PBI from Conditional to Unconditional. 2865 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2866 EraseTerminatorAndDCECond(PBI, MSSAU); 2867 PBI = New_PBI; 2868 } 2869 2870 // If BI was a loop latch, it may have had associated loop metadata. 2871 // We need to copy it to the new latch, that is, PBI. 2872 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2873 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2874 2875 // TODO: If BB is reachable from all paths through PredBlock, then we 2876 // could replace PBI's branch probabilities with BI's. 2877 2878 // Copy any debug value intrinsics into the end of PredBlock. 2879 for (Instruction &I : *BB) 2880 if (isa<DbgInfoIntrinsic>(I)) 2881 I.clone()->insertBefore(PBI); 2882 2883 return true; 2884 } 2885 return false; 2886 } 2887 2888 // If there is only one store in BB1 and BB2, return it, otherwise return 2889 // nullptr. 2890 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2891 StoreInst *S = nullptr; 2892 for (auto *BB : {BB1, BB2}) { 2893 if (!BB) 2894 continue; 2895 for (auto &I : *BB) 2896 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2897 if (S) 2898 // Multiple stores seen. 2899 return nullptr; 2900 else 2901 S = SI; 2902 } 2903 } 2904 return S; 2905 } 2906 2907 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2908 Value *AlternativeV = nullptr) { 2909 // PHI is going to be a PHI node that allows the value V that is defined in 2910 // BB to be referenced in BB's only successor. 2911 // 2912 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2913 // doesn't matter to us what the other operand is (it'll never get used). We 2914 // could just create a new PHI with an undef incoming value, but that could 2915 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2916 // other PHI. So here we directly look for some PHI in BB's successor with V 2917 // as an incoming operand. If we find one, we use it, else we create a new 2918 // one. 2919 // 2920 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2921 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2922 // where OtherBB is the single other predecessor of BB's only successor. 2923 PHINode *PHI = nullptr; 2924 BasicBlock *Succ = BB->getSingleSuccessor(); 2925 2926 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2927 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2928 PHI = cast<PHINode>(I); 2929 if (!AlternativeV) 2930 break; 2931 2932 assert(Succ->hasNPredecessors(2)); 2933 auto PredI = pred_begin(Succ); 2934 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2935 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2936 break; 2937 PHI = nullptr; 2938 } 2939 if (PHI) 2940 return PHI; 2941 2942 // If V is not an instruction defined in BB, just return it. 2943 if (!AlternativeV && 2944 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2945 return V; 2946 2947 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2948 PHI->addIncoming(V, BB); 2949 for (BasicBlock *PredBB : predecessors(Succ)) 2950 if (PredBB != BB) 2951 PHI->addIncoming( 2952 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2953 return PHI; 2954 } 2955 2956 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2957 BasicBlock *QTB, BasicBlock *QFB, 2958 BasicBlock *PostBB, Value *Address, 2959 bool InvertPCond, bool InvertQCond, 2960 const DataLayout &DL, 2961 const TargetTransformInfo &TTI) { 2962 // For every pointer, there must be exactly two stores, one coming from 2963 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2964 // store (to any address) in PTB,PFB or QTB,QFB. 2965 // FIXME: We could relax this restriction with a bit more work and performance 2966 // testing. 2967 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2968 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2969 if (!PStore || !QStore) 2970 return false; 2971 2972 // Now check the stores are compatible. 2973 if (!QStore->isUnordered() || !PStore->isUnordered()) 2974 return false; 2975 2976 // Check that sinking the store won't cause program behavior changes. Sinking 2977 // the store out of the Q blocks won't change any behavior as we're sinking 2978 // from a block to its unconditional successor. But we're moving a store from 2979 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2980 // So we need to check that there are no aliasing loads or stores in 2981 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2982 // operations between PStore and the end of its parent block. 2983 // 2984 // The ideal way to do this is to query AliasAnalysis, but we don't 2985 // preserve AA currently so that is dangerous. Be super safe and just 2986 // check there are no other memory operations at all. 2987 for (auto &I : *QFB->getSinglePredecessor()) 2988 if (I.mayReadOrWriteMemory()) 2989 return false; 2990 for (auto &I : *QFB) 2991 if (&I != QStore && I.mayReadOrWriteMemory()) 2992 return false; 2993 if (QTB) 2994 for (auto &I : *QTB) 2995 if (&I != QStore && I.mayReadOrWriteMemory()) 2996 return false; 2997 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2998 I != E; ++I) 2999 if (&*I != PStore && I->mayReadOrWriteMemory()) 3000 return false; 3001 3002 // If we're not in aggressive mode, we only optimize if we have some 3003 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3004 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3005 if (!BB) 3006 return true; 3007 // Heuristic: if the block can be if-converted/phi-folded and the 3008 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3009 // thread this store. 3010 int BudgetRemaining = 3011 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3012 for (auto &I : BB->instructionsWithoutDebug()) { 3013 // Consider terminator instruction to be free. 3014 if (I.isTerminator()) 3015 continue; 3016 // If this is one the stores that we want to speculate out of this BB, 3017 // then don't count it's cost, consider it to be free. 3018 if (auto *S = dyn_cast<StoreInst>(&I)) 3019 if (llvm::find(FreeStores, S)) 3020 continue; 3021 // Else, we have a white-list of instructions that we are ak speculating. 3022 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3023 return false; // Not in white-list - not worthwhile folding. 3024 // And finally, if this is a non-free instruction that we are okay 3025 // speculating, ensure that we consider the speculation budget. 3026 BudgetRemaining -= TTI.getUserCost(&I); 3027 if (BudgetRemaining < 0) 3028 return false; // Eagerly refuse to fold as soon as we're out of budget. 3029 } 3030 assert(BudgetRemaining >= 0 && 3031 "When we run out of budget we will eagerly return from within the " 3032 "per-instruction loop."); 3033 return true; 3034 }; 3035 3036 const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore}; 3037 if (!MergeCondStoresAggressively && 3038 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3039 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3040 return false; 3041 3042 // If PostBB has more than two predecessors, we need to split it so we can 3043 // sink the store. 3044 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3045 // We know that QFB's only successor is PostBB. And QFB has a single 3046 // predecessor. If QTB exists, then its only successor is also PostBB. 3047 // If QTB does not exist, then QFB's only predecessor has a conditional 3048 // branch to QFB and PostBB. 3049 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3050 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3051 "condstore.split"); 3052 if (!NewBB) 3053 return false; 3054 PostBB = NewBB; 3055 } 3056 3057 // OK, we're going to sink the stores to PostBB. The store has to be 3058 // conditional though, so first create the predicate. 3059 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3060 ->getCondition(); 3061 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3062 ->getCondition(); 3063 3064 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3065 PStore->getParent()); 3066 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3067 QStore->getParent(), PPHI); 3068 3069 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3070 3071 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3072 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3073 3074 if (InvertPCond) 3075 PPred = QB.CreateNot(PPred); 3076 if (InvertQCond) 3077 QPred = QB.CreateNot(QPred); 3078 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3079 3080 auto *T = 3081 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3082 QB.SetInsertPoint(T); 3083 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3084 AAMDNodes AAMD; 3085 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3086 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3087 SI->setAAMetadata(AAMD); 3088 unsigned PAlignment = PStore->getAlignment(); 3089 unsigned QAlignment = QStore->getAlignment(); 3090 unsigned TypeAlignment = 3091 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3092 unsigned MinAlignment; 3093 unsigned MaxAlignment; 3094 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3095 // Choose the minimum alignment. If we could prove both stores execute, we 3096 // could use biggest one. In this case, though, we only know that one of the 3097 // stores executes. And we don't know it's safe to take the alignment from a 3098 // store that doesn't execute. 3099 if (MinAlignment != 0) { 3100 // Choose the minimum of all non-zero alignments. 3101 SI->setAlignment(Align(MinAlignment)); 3102 } else if (MaxAlignment != 0) { 3103 // Choose the minimal alignment between the non-zero alignment and the ABI 3104 // default alignment for the type of the stored value. 3105 SI->setAlignment(Align(std::min(MaxAlignment, TypeAlignment))); 3106 } else { 3107 // If both alignments are zero, use ABI default alignment for the type of 3108 // the stored value. 3109 SI->setAlignment(Align(TypeAlignment)); 3110 } 3111 3112 QStore->eraseFromParent(); 3113 PStore->eraseFromParent(); 3114 3115 return true; 3116 } 3117 3118 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3119 const DataLayout &DL, 3120 const TargetTransformInfo &TTI) { 3121 // The intention here is to find diamonds or triangles (see below) where each 3122 // conditional block contains a store to the same address. Both of these 3123 // stores are conditional, so they can't be unconditionally sunk. But it may 3124 // be profitable to speculatively sink the stores into one merged store at the 3125 // end, and predicate the merged store on the union of the two conditions of 3126 // PBI and QBI. 3127 // 3128 // This can reduce the number of stores executed if both of the conditions are 3129 // true, and can allow the blocks to become small enough to be if-converted. 3130 // This optimization will also chain, so that ladders of test-and-set 3131 // sequences can be if-converted away. 3132 // 3133 // We only deal with simple diamonds or triangles: 3134 // 3135 // PBI or PBI or a combination of the two 3136 // / \ | \ 3137 // PTB PFB | PFB 3138 // \ / | / 3139 // QBI QBI 3140 // / \ | \ 3141 // QTB QFB | QFB 3142 // \ / | / 3143 // PostBB PostBB 3144 // 3145 // We model triangles as a type of diamond with a nullptr "true" block. 3146 // Triangles are canonicalized so that the fallthrough edge is represented by 3147 // a true condition, as in the diagram above. 3148 BasicBlock *PTB = PBI->getSuccessor(0); 3149 BasicBlock *PFB = PBI->getSuccessor(1); 3150 BasicBlock *QTB = QBI->getSuccessor(0); 3151 BasicBlock *QFB = QBI->getSuccessor(1); 3152 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3153 3154 // Make sure we have a good guess for PostBB. If QTB's only successor is 3155 // QFB, then QFB is a better PostBB. 3156 if (QTB->getSingleSuccessor() == QFB) 3157 PostBB = QFB; 3158 3159 // If we couldn't find a good PostBB, stop. 3160 if (!PostBB) 3161 return false; 3162 3163 bool InvertPCond = false, InvertQCond = false; 3164 // Canonicalize fallthroughs to the true branches. 3165 if (PFB == QBI->getParent()) { 3166 std::swap(PFB, PTB); 3167 InvertPCond = true; 3168 } 3169 if (QFB == PostBB) { 3170 std::swap(QFB, QTB); 3171 InvertQCond = true; 3172 } 3173 3174 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3175 // and QFB may not. Model fallthroughs as a nullptr block. 3176 if (PTB == QBI->getParent()) 3177 PTB = nullptr; 3178 if (QTB == PostBB) 3179 QTB = nullptr; 3180 3181 // Legality bailouts. We must have at least the non-fallthrough blocks and 3182 // the post-dominating block, and the non-fallthroughs must only have one 3183 // predecessor. 3184 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3185 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3186 }; 3187 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3188 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3189 return false; 3190 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3191 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3192 return false; 3193 if (!QBI->getParent()->hasNUses(2)) 3194 return false; 3195 3196 // OK, this is a sequence of two diamonds or triangles. 3197 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3198 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3199 for (auto *BB : {PTB, PFB}) { 3200 if (!BB) 3201 continue; 3202 for (auto &I : *BB) 3203 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3204 PStoreAddresses.insert(SI->getPointerOperand()); 3205 } 3206 for (auto *BB : {QTB, QFB}) { 3207 if (!BB) 3208 continue; 3209 for (auto &I : *BB) 3210 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3211 QStoreAddresses.insert(SI->getPointerOperand()); 3212 } 3213 3214 set_intersect(PStoreAddresses, QStoreAddresses); 3215 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3216 // clear what it contains. 3217 auto &CommonAddresses = PStoreAddresses; 3218 3219 bool Changed = false; 3220 for (auto *Address : CommonAddresses) 3221 Changed |= mergeConditionalStoreToAddress( 3222 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI); 3223 return Changed; 3224 } 3225 3226 3227 /// If the previous block ended with a widenable branch, determine if reusing 3228 /// the target block is profitable and legal. This will have the effect of 3229 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3230 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 3231 // TODO: This can be generalized in two important ways: 3232 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3233 // values from the PBI edge. 3234 // 2) We can sink side effecting instructions into BI's fallthrough 3235 // successor provided they doesn't contribute to computation of 3236 // BI's condition. 3237 Value *CondWB, *WC; 3238 BasicBlock *IfTrueBB, *IfFalseBB; 3239 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3240 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3241 return false; 3242 if (!IfFalseBB->phis().empty()) 3243 return false; // TODO 3244 // Use lambda to lazily compute expensive condition after cheap ones. 3245 auto NoSideEffects = [](BasicBlock &BB) { 3246 return !llvm::any_of(BB, [](const Instruction &I) { 3247 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3248 }); 3249 }; 3250 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3251 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3252 NoSideEffects(*BI->getParent())) { 3253 BI->getSuccessor(1)->removePredecessor(BI->getParent()); 3254 BI->setSuccessor(1, IfFalseBB); 3255 return true; 3256 } 3257 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3258 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3259 NoSideEffects(*BI->getParent())) { 3260 BI->getSuccessor(0)->removePredecessor(BI->getParent()); 3261 BI->setSuccessor(0, IfFalseBB); 3262 return true; 3263 } 3264 return false; 3265 } 3266 3267 /// If we have a conditional branch as a predecessor of another block, 3268 /// this function tries to simplify it. We know 3269 /// that PBI and BI are both conditional branches, and BI is in one of the 3270 /// successor blocks of PBI - PBI branches to BI. 3271 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3272 const DataLayout &DL, 3273 const TargetTransformInfo &TTI) { 3274 assert(PBI->isConditional() && BI->isConditional()); 3275 BasicBlock *BB = BI->getParent(); 3276 3277 // If this block ends with a branch instruction, and if there is a 3278 // predecessor that ends on a branch of the same condition, make 3279 // this conditional branch redundant. 3280 if (PBI->getCondition() == BI->getCondition() && 3281 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3282 // Okay, the outcome of this conditional branch is statically 3283 // knowable. If this block had a single pred, handle specially. 3284 if (BB->getSinglePredecessor()) { 3285 // Turn this into a branch on constant. 3286 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3287 BI->setCondition( 3288 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3289 return true; // Nuke the branch on constant. 3290 } 3291 3292 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3293 // in the constant and simplify the block result. Subsequent passes of 3294 // simplifycfg will thread the block. 3295 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3296 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3297 PHINode *NewPN = PHINode::Create( 3298 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3299 BI->getCondition()->getName() + ".pr", &BB->front()); 3300 // Okay, we're going to insert the PHI node. Since PBI is not the only 3301 // predecessor, compute the PHI'd conditional value for all of the preds. 3302 // Any predecessor where the condition is not computable we keep symbolic. 3303 for (pred_iterator PI = PB; PI != PE; ++PI) { 3304 BasicBlock *P = *PI; 3305 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3306 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3307 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3308 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3309 NewPN->addIncoming( 3310 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3311 P); 3312 } else { 3313 NewPN->addIncoming(BI->getCondition(), P); 3314 } 3315 } 3316 3317 BI->setCondition(NewPN); 3318 return true; 3319 } 3320 } 3321 3322 // If the previous block ended with a widenable branch, determine if reusing 3323 // the target block is profitable and legal. This will have the effect of 3324 // "widening" PBI, but doesn't require us to reason about hosting safety. 3325 if (tryWidenCondBranchToCondBranch(PBI, BI)) 3326 return true; 3327 3328 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3329 if (CE->canTrap()) 3330 return false; 3331 3332 // If both branches are conditional and both contain stores to the same 3333 // address, remove the stores from the conditionals and create a conditional 3334 // merged store at the end. 3335 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI)) 3336 return true; 3337 3338 // If this is a conditional branch in an empty block, and if any 3339 // predecessors are a conditional branch to one of our destinations, 3340 // fold the conditions into logical ops and one cond br. 3341 3342 // Ignore dbg intrinsics. 3343 if (&*BB->instructionsWithoutDebug().begin() != BI) 3344 return false; 3345 3346 int PBIOp, BIOp; 3347 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3348 PBIOp = 0; 3349 BIOp = 0; 3350 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3351 PBIOp = 0; 3352 BIOp = 1; 3353 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3354 PBIOp = 1; 3355 BIOp = 0; 3356 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3357 PBIOp = 1; 3358 BIOp = 1; 3359 } else { 3360 return false; 3361 } 3362 3363 // Check to make sure that the other destination of this branch 3364 // isn't BB itself. If so, this is an infinite loop that will 3365 // keep getting unwound. 3366 if (PBI->getSuccessor(PBIOp) == BB) 3367 return false; 3368 3369 // Do not perform this transformation if it would require 3370 // insertion of a large number of select instructions. For targets 3371 // without predication/cmovs, this is a big pessimization. 3372 3373 // Also do not perform this transformation if any phi node in the common 3374 // destination block can trap when reached by BB or PBB (PR17073). In that 3375 // case, it would be unsafe to hoist the operation into a select instruction. 3376 3377 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3378 unsigned NumPhis = 0; 3379 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3380 ++II, ++NumPhis) { 3381 if (NumPhis > 2) // Disable this xform. 3382 return false; 3383 3384 PHINode *PN = cast<PHINode>(II); 3385 Value *BIV = PN->getIncomingValueForBlock(BB); 3386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3387 if (CE->canTrap()) 3388 return false; 3389 3390 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3391 Value *PBIV = PN->getIncomingValue(PBBIdx); 3392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3393 if (CE->canTrap()) 3394 return false; 3395 } 3396 3397 // Finally, if everything is ok, fold the branches to logical ops. 3398 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3399 3400 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3401 << "AND: " << *BI->getParent()); 3402 3403 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3404 // branch in it, where one edge (OtherDest) goes back to itself but the other 3405 // exits. We don't *know* that the program avoids the infinite loop 3406 // (even though that seems likely). If we do this xform naively, we'll end up 3407 // recursively unpeeling the loop. Since we know that (after the xform is 3408 // done) that the block *is* infinite if reached, we just make it an obviously 3409 // infinite loop with no cond branch. 3410 if (OtherDest == BB) { 3411 // Insert it at the end of the function, because it's either code, 3412 // or it won't matter if it's hot. :) 3413 BasicBlock *InfLoopBlock = 3414 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3415 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3416 OtherDest = InfLoopBlock; 3417 } 3418 3419 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3420 3421 // BI may have other predecessors. Because of this, we leave 3422 // it alone, but modify PBI. 3423 3424 // Make sure we get to CommonDest on True&True directions. 3425 Value *PBICond = PBI->getCondition(); 3426 IRBuilder<NoFolder> Builder(PBI); 3427 if (PBIOp) 3428 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3429 3430 Value *BICond = BI->getCondition(); 3431 if (BIOp) 3432 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3433 3434 // Merge the conditions. 3435 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3436 3437 // Modify PBI to branch on the new condition to the new dests. 3438 PBI->setCondition(Cond); 3439 PBI->setSuccessor(0, CommonDest); 3440 PBI->setSuccessor(1, OtherDest); 3441 3442 // Update branch weight for PBI. 3443 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3444 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3445 bool HasWeights = 3446 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3447 SuccTrueWeight, SuccFalseWeight); 3448 if (HasWeights) { 3449 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3450 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3451 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3452 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3453 // The weight to CommonDest should be PredCommon * SuccTotal + 3454 // PredOther * SuccCommon. 3455 // The weight to OtherDest should be PredOther * SuccOther. 3456 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3457 PredOther * SuccCommon, 3458 PredOther * SuccOther}; 3459 // Halve the weights if any of them cannot fit in an uint32_t 3460 FitWeights(NewWeights); 3461 3462 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3463 } 3464 3465 // OtherDest may have phi nodes. If so, add an entry from PBI's 3466 // block that are identical to the entries for BI's block. 3467 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3468 3469 // We know that the CommonDest already had an edge from PBI to 3470 // it. If it has PHIs though, the PHIs may have different 3471 // entries for BB and PBI's BB. If so, insert a select to make 3472 // them agree. 3473 for (PHINode &PN : CommonDest->phis()) { 3474 Value *BIV = PN.getIncomingValueForBlock(BB); 3475 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3476 Value *PBIV = PN.getIncomingValue(PBBIdx); 3477 if (BIV != PBIV) { 3478 // Insert a select in PBI to pick the right value. 3479 SelectInst *NV = cast<SelectInst>( 3480 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3481 PN.setIncomingValue(PBBIdx, NV); 3482 // Although the select has the same condition as PBI, the original branch 3483 // weights for PBI do not apply to the new select because the select's 3484 // 'logical' edges are incoming edges of the phi that is eliminated, not 3485 // the outgoing edges of PBI. 3486 if (HasWeights) { 3487 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3488 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3489 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3490 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3491 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3492 // The weight to PredOtherDest should be PredOther * SuccCommon. 3493 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3494 PredOther * SuccCommon}; 3495 3496 FitWeights(NewWeights); 3497 3498 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3499 } 3500 } 3501 } 3502 3503 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3504 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3505 3506 // This basic block is probably dead. We know it has at least 3507 // one fewer predecessor. 3508 return true; 3509 } 3510 3511 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3512 // true or to FalseBB if Cond is false. 3513 // Takes care of updating the successors and removing the old terminator. 3514 // Also makes sure not to introduce new successors by assuming that edges to 3515 // non-successor TrueBBs and FalseBBs aren't reachable. 3516 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3517 BasicBlock *TrueBB, BasicBlock *FalseBB, 3518 uint32_t TrueWeight, 3519 uint32_t FalseWeight) { 3520 // Remove any superfluous successor edges from the CFG. 3521 // First, figure out which successors to preserve. 3522 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3523 // successor. 3524 BasicBlock *KeepEdge1 = TrueBB; 3525 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3526 3527 // Then remove the rest. 3528 for (BasicBlock *Succ : successors(OldTerm)) { 3529 // Make sure only to keep exactly one copy of each edge. 3530 if (Succ == KeepEdge1) 3531 KeepEdge1 = nullptr; 3532 else if (Succ == KeepEdge2) 3533 KeepEdge2 = nullptr; 3534 else 3535 Succ->removePredecessor(OldTerm->getParent(), 3536 /*KeepOneInputPHIs=*/true); 3537 } 3538 3539 IRBuilder<> Builder(OldTerm); 3540 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3541 3542 // Insert an appropriate new terminator. 3543 if (!KeepEdge1 && !KeepEdge2) { 3544 if (TrueBB == FalseBB) 3545 // We were only looking for one successor, and it was present. 3546 // Create an unconditional branch to it. 3547 Builder.CreateBr(TrueBB); 3548 else { 3549 // We found both of the successors we were looking for. 3550 // Create a conditional branch sharing the condition of the select. 3551 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3552 if (TrueWeight != FalseWeight) 3553 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3554 } 3555 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3556 // Neither of the selected blocks were successors, so this 3557 // terminator must be unreachable. 3558 new UnreachableInst(OldTerm->getContext(), OldTerm); 3559 } else { 3560 // One of the selected values was a successor, but the other wasn't. 3561 // Insert an unconditional branch to the one that was found; 3562 // the edge to the one that wasn't must be unreachable. 3563 if (!KeepEdge1) 3564 // Only TrueBB was found. 3565 Builder.CreateBr(TrueBB); 3566 else 3567 // Only FalseBB was found. 3568 Builder.CreateBr(FalseBB); 3569 } 3570 3571 EraseTerminatorAndDCECond(OldTerm); 3572 return true; 3573 } 3574 3575 // Replaces 3576 // (switch (select cond, X, Y)) on constant X, Y 3577 // with a branch - conditional if X and Y lead to distinct BBs, 3578 // unconditional otherwise. 3579 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3580 // Check for constant integer values in the select. 3581 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3582 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3583 if (!TrueVal || !FalseVal) 3584 return false; 3585 3586 // Find the relevant condition and destinations. 3587 Value *Condition = Select->getCondition(); 3588 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3589 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3590 3591 // Get weight for TrueBB and FalseBB. 3592 uint32_t TrueWeight = 0, FalseWeight = 0; 3593 SmallVector<uint64_t, 8> Weights; 3594 bool HasWeights = HasBranchWeights(SI); 3595 if (HasWeights) { 3596 GetBranchWeights(SI, Weights); 3597 if (Weights.size() == 1 + SI->getNumCases()) { 3598 TrueWeight = 3599 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3600 FalseWeight = 3601 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3602 } 3603 } 3604 3605 // Perform the actual simplification. 3606 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3607 FalseWeight); 3608 } 3609 3610 // Replaces 3611 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3612 // blockaddress(@fn, BlockB))) 3613 // with 3614 // (br cond, BlockA, BlockB). 3615 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3616 // Check that both operands of the select are block addresses. 3617 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3618 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3619 if (!TBA || !FBA) 3620 return false; 3621 3622 // Extract the actual blocks. 3623 BasicBlock *TrueBB = TBA->getBasicBlock(); 3624 BasicBlock *FalseBB = FBA->getBasicBlock(); 3625 3626 // Perform the actual simplification. 3627 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3628 0); 3629 } 3630 3631 /// This is called when we find an icmp instruction 3632 /// (a seteq/setne with a constant) as the only instruction in a 3633 /// block that ends with an uncond branch. We are looking for a very specific 3634 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3635 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3636 /// default value goes to an uncond block with a seteq in it, we get something 3637 /// like: 3638 /// 3639 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3640 /// DEFAULT: 3641 /// %tmp = icmp eq i8 %A, 92 3642 /// br label %end 3643 /// end: 3644 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3645 /// 3646 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3647 /// the PHI, merging the third icmp into the switch. 3648 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3649 ICmpInst *ICI, IRBuilder<> &Builder) { 3650 BasicBlock *BB = ICI->getParent(); 3651 3652 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3653 // complex. 3654 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3655 return false; 3656 3657 Value *V = ICI->getOperand(0); 3658 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3659 3660 // The pattern we're looking for is where our only predecessor is a switch on 3661 // 'V' and this block is the default case for the switch. In this case we can 3662 // fold the compared value into the switch to simplify things. 3663 BasicBlock *Pred = BB->getSinglePredecessor(); 3664 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3665 return false; 3666 3667 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3668 if (SI->getCondition() != V) 3669 return false; 3670 3671 // If BB is reachable on a non-default case, then we simply know the value of 3672 // V in this block. Substitute it and constant fold the icmp instruction 3673 // away. 3674 if (SI->getDefaultDest() != BB) { 3675 ConstantInt *VVal = SI->findCaseDest(BB); 3676 assert(VVal && "Should have a unique destination value"); 3677 ICI->setOperand(0, VVal); 3678 3679 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3680 ICI->replaceAllUsesWith(V); 3681 ICI->eraseFromParent(); 3682 } 3683 // BB is now empty, so it is likely to simplify away. 3684 return requestResimplify(); 3685 } 3686 3687 // Ok, the block is reachable from the default dest. If the constant we're 3688 // comparing exists in one of the other edges, then we can constant fold ICI 3689 // and zap it. 3690 if (SI->findCaseValue(Cst) != SI->case_default()) { 3691 Value *V; 3692 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3693 V = ConstantInt::getFalse(BB->getContext()); 3694 else 3695 V = ConstantInt::getTrue(BB->getContext()); 3696 3697 ICI->replaceAllUsesWith(V); 3698 ICI->eraseFromParent(); 3699 // BB is now empty, so it is likely to simplify away. 3700 return requestResimplify(); 3701 } 3702 3703 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3704 // the block. 3705 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3706 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3707 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3708 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3709 return false; 3710 3711 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3712 // true in the PHI. 3713 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3714 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3715 3716 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3717 std::swap(DefaultCst, NewCst); 3718 3719 // Replace ICI (which is used by the PHI for the default value) with true or 3720 // false depending on if it is EQ or NE. 3721 ICI->replaceAllUsesWith(DefaultCst); 3722 ICI->eraseFromParent(); 3723 3724 // Okay, the switch goes to this block on a default value. Add an edge from 3725 // the switch to the merge point on the compared value. 3726 BasicBlock *NewBB = 3727 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3728 { 3729 SwitchInstProfUpdateWrapper SIW(*SI); 3730 auto W0 = SIW.getSuccessorWeight(0); 3731 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3732 if (W0) { 3733 NewW = ((uint64_t(*W0) + 1) >> 1); 3734 SIW.setSuccessorWeight(0, *NewW); 3735 } 3736 SIW.addCase(Cst, NewBB, NewW); 3737 } 3738 3739 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3740 Builder.SetInsertPoint(NewBB); 3741 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3742 Builder.CreateBr(SuccBlock); 3743 PHIUse->addIncoming(NewCst, NewBB); 3744 return true; 3745 } 3746 3747 /// The specified branch is a conditional branch. 3748 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3749 /// fold it into a switch instruction if so. 3750 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3751 const DataLayout &DL) { 3752 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3753 if (!Cond) 3754 return false; 3755 3756 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3757 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3758 // 'setne's and'ed together, collect them. 3759 3760 // Try to gather values from a chain of and/or to be turned into a switch 3761 ConstantComparesGatherer ConstantCompare(Cond, DL); 3762 // Unpack the result 3763 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3764 Value *CompVal = ConstantCompare.CompValue; 3765 unsigned UsedICmps = ConstantCompare.UsedICmps; 3766 Value *ExtraCase = ConstantCompare.Extra; 3767 3768 // If we didn't have a multiply compared value, fail. 3769 if (!CompVal) 3770 return false; 3771 3772 // Avoid turning single icmps into a switch. 3773 if (UsedICmps <= 1) 3774 return false; 3775 3776 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3777 3778 // There might be duplicate constants in the list, which the switch 3779 // instruction can't handle, remove them now. 3780 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3781 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3782 3783 // If Extra was used, we require at least two switch values to do the 3784 // transformation. A switch with one value is just a conditional branch. 3785 if (ExtraCase && Values.size() < 2) 3786 return false; 3787 3788 // TODO: Preserve branch weight metadata, similarly to how 3789 // FoldValueComparisonIntoPredecessors preserves it. 3790 3791 // Figure out which block is which destination. 3792 BasicBlock *DefaultBB = BI->getSuccessor(1); 3793 BasicBlock *EdgeBB = BI->getSuccessor(0); 3794 if (!TrueWhenEqual) 3795 std::swap(DefaultBB, EdgeBB); 3796 3797 BasicBlock *BB = BI->getParent(); 3798 3799 // MSAN does not like undefs as branch condition which can be introduced 3800 // with "explicit branch". 3801 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 3802 return false; 3803 3804 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3805 << " cases into SWITCH. BB is:\n" 3806 << *BB); 3807 3808 // If there are any extra values that couldn't be folded into the switch 3809 // then we evaluate them with an explicit branch first. Split the block 3810 // right before the condbr to handle it. 3811 if (ExtraCase) { 3812 BasicBlock *NewBB = 3813 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3814 // Remove the uncond branch added to the old block. 3815 Instruction *OldTI = BB->getTerminator(); 3816 Builder.SetInsertPoint(OldTI); 3817 3818 if (TrueWhenEqual) 3819 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3820 else 3821 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3822 3823 OldTI->eraseFromParent(); 3824 3825 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3826 // for the edge we just added. 3827 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3828 3829 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3830 << "\nEXTRABB = " << *BB); 3831 BB = NewBB; 3832 } 3833 3834 Builder.SetInsertPoint(BI); 3835 // Convert pointer to int before we switch. 3836 if (CompVal->getType()->isPointerTy()) { 3837 CompVal = Builder.CreatePtrToInt( 3838 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3839 } 3840 3841 // Create the new switch instruction now. 3842 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3843 3844 // Add all of the 'cases' to the switch instruction. 3845 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3846 New->addCase(Values[i], EdgeBB); 3847 3848 // We added edges from PI to the EdgeBB. As such, if there were any 3849 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3850 // the number of edges added. 3851 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3852 PHINode *PN = cast<PHINode>(BBI); 3853 Value *InVal = PN->getIncomingValueForBlock(BB); 3854 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3855 PN->addIncoming(InVal, BB); 3856 } 3857 3858 // Erase the old branch instruction. 3859 EraseTerminatorAndDCECond(BI); 3860 3861 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3862 return true; 3863 } 3864 3865 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3866 if (isa<PHINode>(RI->getValue())) 3867 return SimplifyCommonResume(RI); 3868 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3869 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3870 // The resume must unwind the exception that caused control to branch here. 3871 return SimplifySingleResume(RI); 3872 3873 return false; 3874 } 3875 3876 // Simplify resume that is shared by several landing pads (phi of landing pad). 3877 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3878 BasicBlock *BB = RI->getParent(); 3879 3880 // Check that there are no other instructions except for debug intrinsics 3881 // between the phi of landing pads (RI->getValue()) and resume instruction. 3882 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3883 E = RI->getIterator(); 3884 while (++I != E) 3885 if (!isa<DbgInfoIntrinsic>(I)) 3886 return false; 3887 3888 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3889 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3890 3891 // Check incoming blocks to see if any of them are trivial. 3892 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3893 Idx++) { 3894 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3895 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3896 3897 // If the block has other successors, we can not delete it because 3898 // it has other dependents. 3899 if (IncomingBB->getUniqueSuccessor() != BB) 3900 continue; 3901 3902 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3903 // Not the landing pad that caused the control to branch here. 3904 if (IncomingValue != LandingPad) 3905 continue; 3906 3907 bool isTrivial = true; 3908 3909 I = IncomingBB->getFirstNonPHI()->getIterator(); 3910 E = IncomingBB->getTerminator()->getIterator(); 3911 while (++I != E) 3912 if (!isa<DbgInfoIntrinsic>(I)) { 3913 isTrivial = false; 3914 break; 3915 } 3916 3917 if (isTrivial) 3918 TrivialUnwindBlocks.insert(IncomingBB); 3919 } 3920 3921 // If no trivial unwind blocks, don't do any simplifications. 3922 if (TrivialUnwindBlocks.empty()) 3923 return false; 3924 3925 // Turn all invokes that unwind here into calls. 3926 for (auto *TrivialBB : TrivialUnwindBlocks) { 3927 // Blocks that will be simplified should be removed from the phi node. 3928 // Note there could be multiple edges to the resume block, and we need 3929 // to remove them all. 3930 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3931 BB->removePredecessor(TrivialBB, true); 3932 3933 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3934 PI != PE;) { 3935 BasicBlock *Pred = *PI++; 3936 removeUnwindEdge(Pred); 3937 } 3938 3939 // In each SimplifyCFG run, only the current processed block can be erased. 3940 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3941 // of erasing TrivialBB, we only remove the branch to the common resume 3942 // block so that we can later erase the resume block since it has no 3943 // predecessors. 3944 TrivialBB->getTerminator()->eraseFromParent(); 3945 new UnreachableInst(RI->getContext(), TrivialBB); 3946 } 3947 3948 // Delete the resume block if all its predecessors have been removed. 3949 if (pred_empty(BB)) 3950 BB->eraseFromParent(); 3951 3952 return !TrivialUnwindBlocks.empty(); 3953 } 3954 3955 // Simplify resume that is only used by a single (non-phi) landing pad. 3956 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3957 BasicBlock *BB = RI->getParent(); 3958 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 3959 assert(RI->getValue() == LPInst && 3960 "Resume must unwind the exception that caused control to here"); 3961 3962 // Check that there are no other instructions except for debug intrinsics. 3963 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3964 while (++I != E) 3965 if (!isa<DbgInfoIntrinsic>(I)) 3966 return false; 3967 3968 // Turn all invokes that unwind here into calls and delete the basic block. 3969 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3970 BasicBlock *Pred = *PI++; 3971 removeUnwindEdge(Pred); 3972 } 3973 3974 // The landingpad is now unreachable. Zap it. 3975 if (LoopHeaders) 3976 LoopHeaders->erase(BB); 3977 BB->eraseFromParent(); 3978 return true; 3979 } 3980 3981 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3982 // If this is a trivial cleanup pad that executes no instructions, it can be 3983 // eliminated. If the cleanup pad continues to the caller, any predecessor 3984 // that is an EH pad will be updated to continue to the caller and any 3985 // predecessor that terminates with an invoke instruction will have its invoke 3986 // instruction converted to a call instruction. If the cleanup pad being 3987 // simplified does not continue to the caller, each predecessor will be 3988 // updated to continue to the unwind destination of the cleanup pad being 3989 // simplified. 3990 BasicBlock *BB = RI->getParent(); 3991 CleanupPadInst *CPInst = RI->getCleanupPad(); 3992 if (CPInst->getParent() != BB) 3993 // This isn't an empty cleanup. 3994 return false; 3995 3996 // We cannot kill the pad if it has multiple uses. This typically arises 3997 // from unreachable basic blocks. 3998 if (!CPInst->hasOneUse()) 3999 return false; 4000 4001 // Check that there are no other instructions except for benign intrinsics. 4002 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 4003 while (++I != E) { 4004 auto *II = dyn_cast<IntrinsicInst>(I); 4005 if (!II) 4006 return false; 4007 4008 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4009 switch (IntrinsicID) { 4010 case Intrinsic::dbg_declare: 4011 case Intrinsic::dbg_value: 4012 case Intrinsic::dbg_label: 4013 case Intrinsic::lifetime_end: 4014 break; 4015 default: 4016 return false; 4017 } 4018 } 4019 4020 // If the cleanup return we are simplifying unwinds to the caller, this will 4021 // set UnwindDest to nullptr. 4022 BasicBlock *UnwindDest = RI->getUnwindDest(); 4023 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4024 4025 // We're about to remove BB from the control flow. Before we do, sink any 4026 // PHINodes into the unwind destination. Doing this before changing the 4027 // control flow avoids some potentially slow checks, since we can currently 4028 // be certain that UnwindDest and BB have no common predecessors (since they 4029 // are both EH pads). 4030 if (UnwindDest) { 4031 // First, go through the PHI nodes in UnwindDest and update any nodes that 4032 // reference the block we are removing 4033 for (BasicBlock::iterator I = UnwindDest->begin(), 4034 IE = DestEHPad->getIterator(); 4035 I != IE; ++I) { 4036 PHINode *DestPN = cast<PHINode>(I); 4037 4038 int Idx = DestPN->getBasicBlockIndex(BB); 4039 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4040 assert(Idx != -1); 4041 // This PHI node has an incoming value that corresponds to a control 4042 // path through the cleanup pad we are removing. If the incoming 4043 // value is in the cleanup pad, it must be a PHINode (because we 4044 // verified above that the block is otherwise empty). Otherwise, the 4045 // value is either a constant or a value that dominates the cleanup 4046 // pad being removed. 4047 // 4048 // Because BB and UnwindDest are both EH pads, all of their 4049 // predecessors must unwind to these blocks, and since no instruction 4050 // can have multiple unwind destinations, there will be no overlap in 4051 // incoming blocks between SrcPN and DestPN. 4052 Value *SrcVal = DestPN->getIncomingValue(Idx); 4053 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4054 4055 // Remove the entry for the block we are deleting. 4056 DestPN->removeIncomingValue(Idx, false); 4057 4058 if (SrcPN && SrcPN->getParent() == BB) { 4059 // If the incoming value was a PHI node in the cleanup pad we are 4060 // removing, we need to merge that PHI node's incoming values into 4061 // DestPN. 4062 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4063 SrcIdx != SrcE; ++SrcIdx) { 4064 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4065 SrcPN->getIncomingBlock(SrcIdx)); 4066 } 4067 } else { 4068 // Otherwise, the incoming value came from above BB and 4069 // so we can just reuse it. We must associate all of BB's 4070 // predecessors with this value. 4071 for (auto *pred : predecessors(BB)) { 4072 DestPN->addIncoming(SrcVal, pred); 4073 } 4074 } 4075 } 4076 4077 // Sink any remaining PHI nodes directly into UnwindDest. 4078 Instruction *InsertPt = DestEHPad; 4079 for (BasicBlock::iterator I = BB->begin(), 4080 IE = BB->getFirstNonPHI()->getIterator(); 4081 I != IE;) { 4082 // The iterator must be incremented here because the instructions are 4083 // being moved to another block. 4084 PHINode *PN = cast<PHINode>(I++); 4085 if (PN->use_empty()) 4086 // If the PHI node has no uses, just leave it. It will be erased 4087 // when we erase BB below. 4088 continue; 4089 4090 // Otherwise, sink this PHI node into UnwindDest. 4091 // Any predecessors to UnwindDest which are not already represented 4092 // must be back edges which inherit the value from the path through 4093 // BB. In this case, the PHI value must reference itself. 4094 for (auto *pred : predecessors(UnwindDest)) 4095 if (pred != BB) 4096 PN->addIncoming(PN, pred); 4097 PN->moveBefore(InsertPt); 4098 } 4099 } 4100 4101 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4102 // The iterator must be updated here because we are removing this pred. 4103 BasicBlock *PredBB = *PI++; 4104 if (UnwindDest == nullptr) { 4105 removeUnwindEdge(PredBB); 4106 } else { 4107 Instruction *TI = PredBB->getTerminator(); 4108 TI->replaceUsesOfWith(BB, UnwindDest); 4109 } 4110 } 4111 4112 // The cleanup pad is now unreachable. Zap it. 4113 BB->eraseFromParent(); 4114 return true; 4115 } 4116 4117 // Try to merge two cleanuppads together. 4118 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4119 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4120 // with. 4121 BasicBlock *UnwindDest = RI->getUnwindDest(); 4122 if (!UnwindDest) 4123 return false; 4124 4125 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4126 // be safe to merge without code duplication. 4127 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4128 return false; 4129 4130 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4131 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4132 if (!SuccessorCleanupPad) 4133 return false; 4134 4135 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4136 // Replace any uses of the successor cleanupad with the predecessor pad 4137 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4138 // funclet bundle operands. 4139 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4140 // Remove the old cleanuppad. 4141 SuccessorCleanupPad->eraseFromParent(); 4142 // Now, we simply replace the cleanupret with a branch to the unwind 4143 // destination. 4144 BranchInst::Create(UnwindDest, RI->getParent()); 4145 RI->eraseFromParent(); 4146 4147 return true; 4148 } 4149 4150 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4151 // It is possible to transiantly have an undef cleanuppad operand because we 4152 // have deleted some, but not all, dead blocks. 4153 // Eventually, this block will be deleted. 4154 if (isa<UndefValue>(RI->getOperand(0))) 4155 return false; 4156 4157 if (mergeCleanupPad(RI)) 4158 return true; 4159 4160 if (removeEmptyCleanup(RI)) 4161 return true; 4162 4163 return false; 4164 } 4165 4166 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4167 BasicBlock *BB = RI->getParent(); 4168 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4169 return false; 4170 4171 // Find predecessors that end with branches. 4172 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4173 SmallVector<BranchInst *, 8> CondBranchPreds; 4174 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4175 BasicBlock *P = *PI; 4176 Instruction *PTI = P->getTerminator(); 4177 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4178 if (BI->isUnconditional()) 4179 UncondBranchPreds.push_back(P); 4180 else 4181 CondBranchPreds.push_back(BI); 4182 } 4183 } 4184 4185 // If we found some, do the transformation! 4186 if (!UncondBranchPreds.empty() && DupRet) { 4187 while (!UncondBranchPreds.empty()) { 4188 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4189 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4190 << "INTO UNCOND BRANCH PRED: " << *Pred); 4191 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4192 } 4193 4194 // If we eliminated all predecessors of the block, delete the block now. 4195 if (pred_empty(BB)) { 4196 // We know there are no successors, so just nuke the block. 4197 if (LoopHeaders) 4198 LoopHeaders->erase(BB); 4199 BB->eraseFromParent(); 4200 } 4201 4202 return true; 4203 } 4204 4205 // Check out all of the conditional branches going to this return 4206 // instruction. If any of them just select between returns, change the 4207 // branch itself into a select/return pair. 4208 while (!CondBranchPreds.empty()) { 4209 BranchInst *BI = CondBranchPreds.pop_back_val(); 4210 4211 // Check to see if the non-BB successor is also a return block. 4212 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4213 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4214 SimplifyCondBranchToTwoReturns(BI, Builder)) 4215 return true; 4216 } 4217 return false; 4218 } 4219 4220 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4221 BasicBlock *BB = UI->getParent(); 4222 4223 bool Changed = false; 4224 4225 // If there are any instructions immediately before the unreachable that can 4226 // be removed, do so. 4227 while (UI->getIterator() != BB->begin()) { 4228 BasicBlock::iterator BBI = UI->getIterator(); 4229 --BBI; 4230 // Do not delete instructions that can have side effects which might cause 4231 // the unreachable to not be reachable; specifically, calls and volatile 4232 // operations may have this effect. 4233 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4234 break; 4235 4236 if (BBI->mayHaveSideEffects()) { 4237 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4238 if (SI->isVolatile()) 4239 break; 4240 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4241 if (LI->isVolatile()) 4242 break; 4243 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4244 if (RMWI->isVolatile()) 4245 break; 4246 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4247 if (CXI->isVolatile()) 4248 break; 4249 } else if (isa<CatchPadInst>(BBI)) { 4250 // A catchpad may invoke exception object constructors and such, which 4251 // in some languages can be arbitrary code, so be conservative by 4252 // default. 4253 // For CoreCLR, it just involves a type test, so can be removed. 4254 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4255 EHPersonality::CoreCLR) 4256 break; 4257 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4258 !isa<LandingPadInst>(BBI)) { 4259 break; 4260 } 4261 // Note that deleting LandingPad's here is in fact okay, although it 4262 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4263 // all the predecessors of this block will be the unwind edges of Invokes, 4264 // and we can therefore guarantee this block will be erased. 4265 } 4266 4267 // Delete this instruction (any uses are guaranteed to be dead) 4268 if (!BBI->use_empty()) 4269 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4270 BBI->eraseFromParent(); 4271 Changed = true; 4272 } 4273 4274 // If the unreachable instruction is the first in the block, take a gander 4275 // at all of the predecessors of this instruction, and simplify them. 4276 if (&BB->front() != UI) 4277 return Changed; 4278 4279 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4280 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4281 Instruction *TI = Preds[i]->getTerminator(); 4282 IRBuilder<> Builder(TI); 4283 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4284 if (BI->isUnconditional()) { 4285 assert(BI->getSuccessor(0) == BB && "Incorrect CFG"); 4286 new UnreachableInst(TI->getContext(), TI); 4287 TI->eraseFromParent(); 4288 Changed = true; 4289 } else { 4290 Value* Cond = BI->getCondition(); 4291 if (BI->getSuccessor(0) == BB) { 4292 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4293 Builder.CreateBr(BI->getSuccessor(1)); 4294 } else { 4295 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4296 Builder.CreateAssumption(Cond); 4297 Builder.CreateBr(BI->getSuccessor(0)); 4298 } 4299 EraseTerminatorAndDCECond(BI); 4300 Changed = true; 4301 } 4302 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4303 SwitchInstProfUpdateWrapper SU(*SI); 4304 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4305 if (i->getCaseSuccessor() != BB) { 4306 ++i; 4307 continue; 4308 } 4309 BB->removePredecessor(SU->getParent()); 4310 i = SU.removeCase(i); 4311 e = SU->case_end(); 4312 Changed = true; 4313 } 4314 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4315 if (II->getUnwindDest() == BB) { 4316 removeUnwindEdge(TI->getParent()); 4317 Changed = true; 4318 } 4319 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4320 if (CSI->getUnwindDest() == BB) { 4321 removeUnwindEdge(TI->getParent()); 4322 Changed = true; 4323 continue; 4324 } 4325 4326 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4327 E = CSI->handler_end(); 4328 I != E; ++I) { 4329 if (*I == BB) { 4330 CSI->removeHandler(I); 4331 --I; 4332 --E; 4333 Changed = true; 4334 } 4335 } 4336 if (CSI->getNumHandlers() == 0) { 4337 BasicBlock *CatchSwitchBB = CSI->getParent(); 4338 if (CSI->hasUnwindDest()) { 4339 // Redirect preds to the unwind dest 4340 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4341 } else { 4342 // Rewrite all preds to unwind to caller (or from invoke to call). 4343 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4344 for (BasicBlock *EHPred : EHPreds) 4345 removeUnwindEdge(EHPred); 4346 } 4347 // The catchswitch is no longer reachable. 4348 new UnreachableInst(CSI->getContext(), CSI); 4349 CSI->eraseFromParent(); 4350 Changed = true; 4351 } 4352 } else if (isa<CleanupReturnInst>(TI)) { 4353 new UnreachableInst(TI->getContext(), TI); 4354 TI->eraseFromParent(); 4355 Changed = true; 4356 } 4357 } 4358 4359 // If this block is now dead, remove it. 4360 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4361 // We know there are no successors, so just nuke the block. 4362 if (LoopHeaders) 4363 LoopHeaders->erase(BB); 4364 BB->eraseFromParent(); 4365 return true; 4366 } 4367 4368 return Changed; 4369 } 4370 4371 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4372 assert(Cases.size() >= 1); 4373 4374 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4375 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4376 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4377 return false; 4378 } 4379 return true; 4380 } 4381 4382 static void createUnreachableSwitchDefault(SwitchInst *Switch) { 4383 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4384 BasicBlock *NewDefaultBlock = 4385 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), ""); 4386 Switch->setDefaultDest(&*NewDefaultBlock); 4387 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front()); 4388 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4389 new UnreachableInst(Switch->getContext(), NewTerminator); 4390 EraseTerminatorAndDCECond(NewTerminator); 4391 } 4392 4393 /// Turn a switch with two reachable destinations into an integer range 4394 /// comparison and branch. 4395 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4396 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4397 4398 bool HasDefault = 4399 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4400 4401 // Partition the cases into two sets with different destinations. 4402 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4403 BasicBlock *DestB = nullptr; 4404 SmallVector<ConstantInt *, 16> CasesA; 4405 SmallVector<ConstantInt *, 16> CasesB; 4406 4407 for (auto Case : SI->cases()) { 4408 BasicBlock *Dest = Case.getCaseSuccessor(); 4409 if (!DestA) 4410 DestA = Dest; 4411 if (Dest == DestA) { 4412 CasesA.push_back(Case.getCaseValue()); 4413 continue; 4414 } 4415 if (!DestB) 4416 DestB = Dest; 4417 if (Dest == DestB) { 4418 CasesB.push_back(Case.getCaseValue()); 4419 continue; 4420 } 4421 return false; // More than two destinations. 4422 } 4423 4424 assert(DestA && DestB && 4425 "Single-destination switch should have been folded."); 4426 assert(DestA != DestB); 4427 assert(DestB != SI->getDefaultDest()); 4428 assert(!CasesB.empty() && "There must be non-default cases."); 4429 assert(!CasesA.empty() || HasDefault); 4430 4431 // Figure out if one of the sets of cases form a contiguous range. 4432 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4433 BasicBlock *ContiguousDest = nullptr; 4434 BasicBlock *OtherDest = nullptr; 4435 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4436 ContiguousCases = &CasesA; 4437 ContiguousDest = DestA; 4438 OtherDest = DestB; 4439 } else if (CasesAreContiguous(CasesB)) { 4440 ContiguousCases = &CasesB; 4441 ContiguousDest = DestB; 4442 OtherDest = DestA; 4443 } else 4444 return false; 4445 4446 // Start building the compare and branch. 4447 4448 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4449 Constant *NumCases = 4450 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4451 4452 Value *Sub = SI->getCondition(); 4453 if (!Offset->isNullValue()) 4454 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4455 4456 Value *Cmp; 4457 // If NumCases overflowed, then all possible values jump to the successor. 4458 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4459 Cmp = ConstantInt::getTrue(SI->getContext()); 4460 else 4461 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4462 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4463 4464 // Update weight for the newly-created conditional branch. 4465 if (HasBranchWeights(SI)) { 4466 SmallVector<uint64_t, 8> Weights; 4467 GetBranchWeights(SI, Weights); 4468 if (Weights.size() == 1 + SI->getNumCases()) { 4469 uint64_t TrueWeight = 0; 4470 uint64_t FalseWeight = 0; 4471 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4472 if (SI->getSuccessor(I) == ContiguousDest) 4473 TrueWeight += Weights[I]; 4474 else 4475 FalseWeight += Weights[I]; 4476 } 4477 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4478 TrueWeight /= 2; 4479 FalseWeight /= 2; 4480 } 4481 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4482 } 4483 } 4484 4485 // Prune obsolete incoming values off the successors' PHI nodes. 4486 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4487 unsigned PreviousEdges = ContiguousCases->size(); 4488 if (ContiguousDest == SI->getDefaultDest()) 4489 ++PreviousEdges; 4490 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4491 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4492 } 4493 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4494 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4495 if (OtherDest == SI->getDefaultDest()) 4496 ++PreviousEdges; 4497 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4498 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4499 } 4500 4501 // Clean up the default block - it may have phis or other instructions before 4502 // the unreachable terminator. 4503 if (!HasDefault) 4504 createUnreachableSwitchDefault(SI); 4505 4506 // Drop the switch. 4507 SI->eraseFromParent(); 4508 4509 return true; 4510 } 4511 4512 /// Compute masked bits for the condition of a switch 4513 /// and use it to remove dead cases. 4514 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4515 const DataLayout &DL) { 4516 Value *Cond = SI->getCondition(); 4517 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4518 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4519 4520 // We can also eliminate cases by determining that their values are outside of 4521 // the limited range of the condition based on how many significant (non-sign) 4522 // bits are in the condition value. 4523 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4524 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4525 4526 // Gather dead cases. 4527 SmallVector<ConstantInt *, 8> DeadCases; 4528 for (auto &Case : SI->cases()) { 4529 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4530 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4531 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4532 DeadCases.push_back(Case.getCaseValue()); 4533 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4534 << " is dead.\n"); 4535 } 4536 } 4537 4538 // If we can prove that the cases must cover all possible values, the 4539 // default destination becomes dead and we can remove it. If we know some 4540 // of the bits in the value, we can use that to more precisely compute the 4541 // number of possible unique case values. 4542 bool HasDefault = 4543 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4544 const unsigned NumUnknownBits = 4545 Bits - (Known.Zero | Known.One).countPopulation(); 4546 assert(NumUnknownBits <= Bits); 4547 if (HasDefault && DeadCases.empty() && 4548 NumUnknownBits < 64 /* avoid overflow */ && 4549 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4550 createUnreachableSwitchDefault(SI); 4551 return true; 4552 } 4553 4554 if (DeadCases.empty()) 4555 return false; 4556 4557 SwitchInstProfUpdateWrapper SIW(*SI); 4558 for (ConstantInt *DeadCase : DeadCases) { 4559 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4560 assert(CaseI != SI->case_default() && 4561 "Case was not found. Probably mistake in DeadCases forming."); 4562 // Prune unused values from PHI nodes. 4563 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4564 SIW.removeCase(CaseI); 4565 } 4566 4567 return true; 4568 } 4569 4570 /// If BB would be eligible for simplification by 4571 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4572 /// by an unconditional branch), look at the phi node for BB in the successor 4573 /// block and see if the incoming value is equal to CaseValue. If so, return 4574 /// the phi node, and set PhiIndex to BB's index in the phi node. 4575 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4576 BasicBlock *BB, int *PhiIndex) { 4577 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4578 return nullptr; // BB must be empty to be a candidate for simplification. 4579 if (!BB->getSinglePredecessor()) 4580 return nullptr; // BB must be dominated by the switch. 4581 4582 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4583 if (!Branch || !Branch->isUnconditional()) 4584 return nullptr; // Terminator must be unconditional branch. 4585 4586 BasicBlock *Succ = Branch->getSuccessor(0); 4587 4588 for (PHINode &PHI : Succ->phis()) { 4589 int Idx = PHI.getBasicBlockIndex(BB); 4590 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4591 4592 Value *InValue = PHI.getIncomingValue(Idx); 4593 if (InValue != CaseValue) 4594 continue; 4595 4596 *PhiIndex = Idx; 4597 return &PHI; 4598 } 4599 4600 return nullptr; 4601 } 4602 4603 /// Try to forward the condition of a switch instruction to a phi node 4604 /// dominated by the switch, if that would mean that some of the destination 4605 /// blocks of the switch can be folded away. Return true if a change is made. 4606 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4607 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4608 4609 ForwardingNodesMap ForwardingNodes; 4610 BasicBlock *SwitchBlock = SI->getParent(); 4611 bool Changed = false; 4612 for (auto &Case : SI->cases()) { 4613 ConstantInt *CaseValue = Case.getCaseValue(); 4614 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4615 4616 // Replace phi operands in successor blocks that are using the constant case 4617 // value rather than the switch condition variable: 4618 // switchbb: 4619 // switch i32 %x, label %default [ 4620 // i32 17, label %succ 4621 // ... 4622 // succ: 4623 // %r = phi i32 ... [ 17, %switchbb ] ... 4624 // --> 4625 // %r = phi i32 ... [ %x, %switchbb ] ... 4626 4627 for (PHINode &Phi : CaseDest->phis()) { 4628 // This only works if there is exactly 1 incoming edge from the switch to 4629 // a phi. If there is >1, that means multiple cases of the switch map to 1 4630 // value in the phi, and that phi value is not the switch condition. Thus, 4631 // this transform would not make sense (the phi would be invalid because 4632 // a phi can't have different incoming values from the same block). 4633 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4634 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4635 count(Phi.blocks(), SwitchBlock) == 1) { 4636 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4637 Changed = true; 4638 } 4639 } 4640 4641 // Collect phi nodes that are indirectly using this switch's case constants. 4642 int PhiIdx; 4643 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4644 ForwardingNodes[Phi].push_back(PhiIdx); 4645 } 4646 4647 for (auto &ForwardingNode : ForwardingNodes) { 4648 PHINode *Phi = ForwardingNode.first; 4649 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4650 if (Indexes.size() < 2) 4651 continue; 4652 4653 for (int Index : Indexes) 4654 Phi->setIncomingValue(Index, SI->getCondition()); 4655 Changed = true; 4656 } 4657 4658 return Changed; 4659 } 4660 4661 /// Return true if the backend will be able to handle 4662 /// initializing an array of constants like C. 4663 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4664 if (C->isThreadDependent()) 4665 return false; 4666 if (C->isDLLImportDependent()) 4667 return false; 4668 4669 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4670 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4671 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4672 return false; 4673 4674 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4675 if (!CE->isGEPWithNoNotionalOverIndexing()) 4676 return false; 4677 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4678 return false; 4679 } 4680 4681 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4682 return false; 4683 4684 return true; 4685 } 4686 4687 /// If V is a Constant, return it. Otherwise, try to look up 4688 /// its constant value in ConstantPool, returning 0 if it's not there. 4689 static Constant * 4690 LookupConstant(Value *V, 4691 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4692 if (Constant *C = dyn_cast<Constant>(V)) 4693 return C; 4694 return ConstantPool.lookup(V); 4695 } 4696 4697 /// Try to fold instruction I into a constant. This works for 4698 /// simple instructions such as binary operations where both operands are 4699 /// constant or can be replaced by constants from the ConstantPool. Returns the 4700 /// resulting constant on success, 0 otherwise. 4701 static Constant * 4702 ConstantFold(Instruction *I, const DataLayout &DL, 4703 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4704 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4705 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4706 if (!A) 4707 return nullptr; 4708 if (A->isAllOnesValue()) 4709 return LookupConstant(Select->getTrueValue(), ConstantPool); 4710 if (A->isNullValue()) 4711 return LookupConstant(Select->getFalseValue(), ConstantPool); 4712 return nullptr; 4713 } 4714 4715 SmallVector<Constant *, 4> COps; 4716 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4717 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4718 COps.push_back(A); 4719 else 4720 return nullptr; 4721 } 4722 4723 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4724 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4725 COps[1], DL); 4726 } 4727 4728 return ConstantFoldInstOperands(I, COps, DL); 4729 } 4730 4731 /// Try to determine the resulting constant values in phi nodes 4732 /// at the common destination basic block, *CommonDest, for one of the case 4733 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4734 /// case), of a switch instruction SI. 4735 static bool 4736 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4737 BasicBlock **CommonDest, 4738 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4739 const DataLayout &DL, const TargetTransformInfo &TTI) { 4740 // The block from which we enter the common destination. 4741 BasicBlock *Pred = SI->getParent(); 4742 4743 // If CaseDest is empty except for some side-effect free instructions through 4744 // which we can constant-propagate the CaseVal, continue to its successor. 4745 SmallDenseMap<Value *, Constant *> ConstantPool; 4746 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4747 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4748 if (I.isTerminator()) { 4749 // If the terminator is a simple branch, continue to the next block. 4750 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4751 return false; 4752 Pred = CaseDest; 4753 CaseDest = I.getSuccessor(0); 4754 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4755 // Instruction is side-effect free and constant. 4756 4757 // If the instruction has uses outside this block or a phi node slot for 4758 // the block, it is not safe to bypass the instruction since it would then 4759 // no longer dominate all its uses. 4760 for (auto &Use : I.uses()) { 4761 User *User = Use.getUser(); 4762 if (Instruction *I = dyn_cast<Instruction>(User)) 4763 if (I->getParent() == CaseDest) 4764 continue; 4765 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4766 if (Phi->getIncomingBlock(Use) == CaseDest) 4767 continue; 4768 return false; 4769 } 4770 4771 ConstantPool.insert(std::make_pair(&I, C)); 4772 } else { 4773 break; 4774 } 4775 } 4776 4777 // If we did not have a CommonDest before, use the current one. 4778 if (!*CommonDest) 4779 *CommonDest = CaseDest; 4780 // If the destination isn't the common one, abort. 4781 if (CaseDest != *CommonDest) 4782 return false; 4783 4784 // Get the values for this case from phi nodes in the destination block. 4785 for (PHINode &PHI : (*CommonDest)->phis()) { 4786 int Idx = PHI.getBasicBlockIndex(Pred); 4787 if (Idx == -1) 4788 continue; 4789 4790 Constant *ConstVal = 4791 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4792 if (!ConstVal) 4793 return false; 4794 4795 // Be conservative about which kinds of constants we support. 4796 if (!ValidLookupTableConstant(ConstVal, TTI)) 4797 return false; 4798 4799 Res.push_back(std::make_pair(&PHI, ConstVal)); 4800 } 4801 4802 return Res.size() > 0; 4803 } 4804 4805 // Helper function used to add CaseVal to the list of cases that generate 4806 // Result. Returns the updated number of cases that generate this result. 4807 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4808 SwitchCaseResultVectorTy &UniqueResults, 4809 Constant *Result) { 4810 for (auto &I : UniqueResults) { 4811 if (I.first == Result) { 4812 I.second.push_back(CaseVal); 4813 return I.second.size(); 4814 } 4815 } 4816 UniqueResults.push_back( 4817 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4818 return 1; 4819 } 4820 4821 // Helper function that initializes a map containing 4822 // results for the PHI node of the common destination block for a switch 4823 // instruction. Returns false if multiple PHI nodes have been found or if 4824 // there is not a common destination block for the switch. 4825 static bool 4826 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4827 SwitchCaseResultVectorTy &UniqueResults, 4828 Constant *&DefaultResult, const DataLayout &DL, 4829 const TargetTransformInfo &TTI, 4830 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4831 for (auto &I : SI->cases()) { 4832 ConstantInt *CaseVal = I.getCaseValue(); 4833 4834 // Resulting value at phi nodes for this case value. 4835 SwitchCaseResultsTy Results; 4836 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4837 DL, TTI)) 4838 return false; 4839 4840 // Only one value per case is permitted. 4841 if (Results.size() > 1) 4842 return false; 4843 4844 // Add the case->result mapping to UniqueResults. 4845 const uintptr_t NumCasesForResult = 4846 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4847 4848 // Early out if there are too many cases for this result. 4849 if (NumCasesForResult > MaxCasesPerResult) 4850 return false; 4851 4852 // Early out if there are too many unique results. 4853 if (UniqueResults.size() > MaxUniqueResults) 4854 return false; 4855 4856 // Check the PHI consistency. 4857 if (!PHI) 4858 PHI = Results[0].first; 4859 else if (PHI != Results[0].first) 4860 return false; 4861 } 4862 // Find the default result value. 4863 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4864 BasicBlock *DefaultDest = SI->getDefaultDest(); 4865 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4866 DL, TTI); 4867 // If the default value is not found abort unless the default destination 4868 // is unreachable. 4869 DefaultResult = 4870 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4871 if ((!DefaultResult && 4872 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4873 return false; 4874 4875 return true; 4876 } 4877 4878 // Helper function that checks if it is possible to transform a switch with only 4879 // two cases (or two cases + default) that produces a result into a select. 4880 // Example: 4881 // switch (a) { 4882 // case 10: %0 = icmp eq i32 %a, 10 4883 // return 10; %1 = select i1 %0, i32 10, i32 4 4884 // case 20: ----> %2 = icmp eq i32 %a, 20 4885 // return 2; %3 = select i1 %2, i32 2, i32 %1 4886 // default: 4887 // return 4; 4888 // } 4889 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4890 Constant *DefaultResult, Value *Condition, 4891 IRBuilder<> &Builder) { 4892 assert(ResultVector.size() == 2 && 4893 "We should have exactly two unique results at this point"); 4894 // If we are selecting between only two cases transform into a simple 4895 // select or a two-way select if default is possible. 4896 if (ResultVector[0].second.size() == 1 && 4897 ResultVector[1].second.size() == 1) { 4898 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4899 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4900 4901 bool DefaultCanTrigger = DefaultResult; 4902 Value *SelectValue = ResultVector[1].first; 4903 if (DefaultCanTrigger) { 4904 Value *const ValueCompare = 4905 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4906 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4907 DefaultResult, "switch.select"); 4908 } 4909 Value *const ValueCompare = 4910 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4911 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4912 SelectValue, "switch.select"); 4913 } 4914 4915 return nullptr; 4916 } 4917 4918 // Helper function to cleanup a switch instruction that has been converted into 4919 // a select, fixing up PHI nodes and basic blocks. 4920 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4921 Value *SelectValue, 4922 IRBuilder<> &Builder) { 4923 BasicBlock *SelectBB = SI->getParent(); 4924 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4925 PHI->removeIncomingValue(SelectBB); 4926 PHI->addIncoming(SelectValue, SelectBB); 4927 4928 Builder.CreateBr(PHI->getParent()); 4929 4930 // Remove the switch. 4931 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4932 BasicBlock *Succ = SI->getSuccessor(i); 4933 4934 if (Succ == PHI->getParent()) 4935 continue; 4936 Succ->removePredecessor(SelectBB); 4937 } 4938 SI->eraseFromParent(); 4939 } 4940 4941 /// If the switch is only used to initialize one or more 4942 /// phi nodes in a common successor block with only two different 4943 /// constant values, replace the switch with select. 4944 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4945 const DataLayout &DL, 4946 const TargetTransformInfo &TTI) { 4947 Value *const Cond = SI->getCondition(); 4948 PHINode *PHI = nullptr; 4949 BasicBlock *CommonDest = nullptr; 4950 Constant *DefaultResult; 4951 SwitchCaseResultVectorTy UniqueResults; 4952 // Collect all the cases that will deliver the same value from the switch. 4953 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4954 DL, TTI, 2, 1)) 4955 return false; 4956 // Selects choose between maximum two values. 4957 if (UniqueResults.size() != 2) 4958 return false; 4959 assert(PHI != nullptr && "PHI for value select not found"); 4960 4961 Builder.SetInsertPoint(SI); 4962 Value *SelectValue = 4963 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4964 if (SelectValue) { 4965 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4966 return true; 4967 } 4968 // The switch couldn't be converted into a select. 4969 return false; 4970 } 4971 4972 namespace { 4973 4974 /// This class represents a lookup table that can be used to replace a switch. 4975 class SwitchLookupTable { 4976 public: 4977 /// Create a lookup table to use as a switch replacement with the contents 4978 /// of Values, using DefaultValue to fill any holes in the table. 4979 SwitchLookupTable( 4980 Module &M, uint64_t TableSize, ConstantInt *Offset, 4981 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4982 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4983 4984 /// Build instructions with Builder to retrieve the value at 4985 /// the position given by Index in the lookup table. 4986 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4987 4988 /// Return true if a table with TableSize elements of 4989 /// type ElementType would fit in a target-legal register. 4990 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4991 Type *ElementType); 4992 4993 private: 4994 // Depending on the contents of the table, it can be represented in 4995 // different ways. 4996 enum { 4997 // For tables where each element contains the same value, we just have to 4998 // store that single value and return it for each lookup. 4999 SingleValueKind, 5000 5001 // For tables where there is a linear relationship between table index 5002 // and values. We calculate the result with a simple multiplication 5003 // and addition instead of a table lookup. 5004 LinearMapKind, 5005 5006 // For small tables with integer elements, we can pack them into a bitmap 5007 // that fits into a target-legal register. Values are retrieved by 5008 // shift and mask operations. 5009 BitMapKind, 5010 5011 // The table is stored as an array of values. Values are retrieved by load 5012 // instructions from the table. 5013 ArrayKind 5014 } Kind; 5015 5016 // For SingleValueKind, this is the single value. 5017 Constant *SingleValue = nullptr; 5018 5019 // For BitMapKind, this is the bitmap. 5020 ConstantInt *BitMap = nullptr; 5021 IntegerType *BitMapElementTy = nullptr; 5022 5023 // For LinearMapKind, these are the constants used to derive the value. 5024 ConstantInt *LinearOffset = nullptr; 5025 ConstantInt *LinearMultiplier = nullptr; 5026 5027 // For ArrayKind, this is the array. 5028 GlobalVariable *Array = nullptr; 5029 }; 5030 5031 } // end anonymous namespace 5032 5033 SwitchLookupTable::SwitchLookupTable( 5034 Module &M, uint64_t TableSize, ConstantInt *Offset, 5035 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5036 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5037 assert(Values.size() && "Can't build lookup table without values!"); 5038 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5039 5040 // If all values in the table are equal, this is that value. 5041 SingleValue = Values.begin()->second; 5042 5043 Type *ValueType = Values.begin()->second->getType(); 5044 5045 // Build up the table contents. 5046 SmallVector<Constant *, 64> TableContents(TableSize); 5047 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5048 ConstantInt *CaseVal = Values[I].first; 5049 Constant *CaseRes = Values[I].second; 5050 assert(CaseRes->getType() == ValueType); 5051 5052 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5053 TableContents[Idx] = CaseRes; 5054 5055 if (CaseRes != SingleValue) 5056 SingleValue = nullptr; 5057 } 5058 5059 // Fill in any holes in the table with the default result. 5060 if (Values.size() < TableSize) { 5061 assert(DefaultValue && 5062 "Need a default value to fill the lookup table holes."); 5063 assert(DefaultValue->getType() == ValueType); 5064 for (uint64_t I = 0; I < TableSize; ++I) { 5065 if (!TableContents[I]) 5066 TableContents[I] = DefaultValue; 5067 } 5068 5069 if (DefaultValue != SingleValue) 5070 SingleValue = nullptr; 5071 } 5072 5073 // If each element in the table contains the same value, we only need to store 5074 // that single value. 5075 if (SingleValue) { 5076 Kind = SingleValueKind; 5077 return; 5078 } 5079 5080 // Check if we can derive the value with a linear transformation from the 5081 // table index. 5082 if (isa<IntegerType>(ValueType)) { 5083 bool LinearMappingPossible = true; 5084 APInt PrevVal; 5085 APInt DistToPrev; 5086 assert(TableSize >= 2 && "Should be a SingleValue table."); 5087 // Check if there is the same distance between two consecutive values. 5088 for (uint64_t I = 0; I < TableSize; ++I) { 5089 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5090 if (!ConstVal) { 5091 // This is an undef. We could deal with it, but undefs in lookup tables 5092 // are very seldom. It's probably not worth the additional complexity. 5093 LinearMappingPossible = false; 5094 break; 5095 } 5096 const APInt &Val = ConstVal->getValue(); 5097 if (I != 0) { 5098 APInt Dist = Val - PrevVal; 5099 if (I == 1) { 5100 DistToPrev = Dist; 5101 } else if (Dist != DistToPrev) { 5102 LinearMappingPossible = false; 5103 break; 5104 } 5105 } 5106 PrevVal = Val; 5107 } 5108 if (LinearMappingPossible) { 5109 LinearOffset = cast<ConstantInt>(TableContents[0]); 5110 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5111 Kind = LinearMapKind; 5112 ++NumLinearMaps; 5113 return; 5114 } 5115 } 5116 5117 // If the type is integer and the table fits in a register, build a bitmap. 5118 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5119 IntegerType *IT = cast<IntegerType>(ValueType); 5120 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5121 for (uint64_t I = TableSize; I > 0; --I) { 5122 TableInt <<= IT->getBitWidth(); 5123 // Insert values into the bitmap. Undef values are set to zero. 5124 if (!isa<UndefValue>(TableContents[I - 1])) { 5125 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5126 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5127 } 5128 } 5129 BitMap = ConstantInt::get(M.getContext(), TableInt); 5130 BitMapElementTy = IT; 5131 Kind = BitMapKind; 5132 ++NumBitMaps; 5133 return; 5134 } 5135 5136 // Store the table in an array. 5137 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5138 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5139 5140 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5141 GlobalVariable::PrivateLinkage, Initializer, 5142 "switch.table." + FuncName); 5143 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5144 // Set the alignment to that of an array items. We will be only loading one 5145 // value out of it. 5146 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5147 Kind = ArrayKind; 5148 } 5149 5150 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5151 switch (Kind) { 5152 case SingleValueKind: 5153 return SingleValue; 5154 case LinearMapKind: { 5155 // Derive the result value from the input value. 5156 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5157 false, "switch.idx.cast"); 5158 if (!LinearMultiplier->isOne()) 5159 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5160 if (!LinearOffset->isZero()) 5161 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5162 return Result; 5163 } 5164 case BitMapKind: { 5165 // Type of the bitmap (e.g. i59). 5166 IntegerType *MapTy = BitMap->getType(); 5167 5168 // Cast Index to the same type as the bitmap. 5169 // Note: The Index is <= the number of elements in the table, so 5170 // truncating it to the width of the bitmask is safe. 5171 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5172 5173 // Multiply the shift amount by the element width. 5174 ShiftAmt = Builder.CreateMul( 5175 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5176 "switch.shiftamt"); 5177 5178 // Shift down. 5179 Value *DownShifted = 5180 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5181 // Mask off. 5182 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5183 } 5184 case ArrayKind: { 5185 // Make sure the table index will not overflow when treated as signed. 5186 IntegerType *IT = cast<IntegerType>(Index->getType()); 5187 uint64_t TableSize = 5188 Array->getInitializer()->getType()->getArrayNumElements(); 5189 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5190 Index = Builder.CreateZExt( 5191 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5192 "switch.tableidx.zext"); 5193 5194 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5195 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5196 GEPIndices, "switch.gep"); 5197 return Builder.CreateLoad( 5198 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5199 "switch.load"); 5200 } 5201 } 5202 llvm_unreachable("Unknown lookup table kind!"); 5203 } 5204 5205 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5206 uint64_t TableSize, 5207 Type *ElementType) { 5208 auto *IT = dyn_cast<IntegerType>(ElementType); 5209 if (!IT) 5210 return false; 5211 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5212 // are <= 15, we could try to narrow the type. 5213 5214 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5215 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5216 return false; 5217 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5218 } 5219 5220 /// Determine whether a lookup table should be built for this switch, based on 5221 /// the number of cases, size of the table, and the types of the results. 5222 static bool 5223 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5224 const TargetTransformInfo &TTI, const DataLayout &DL, 5225 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5226 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5227 return false; // TableSize overflowed, or mul below might overflow. 5228 5229 bool AllTablesFitInRegister = true; 5230 bool HasIllegalType = false; 5231 for (const auto &I : ResultTypes) { 5232 Type *Ty = I.second; 5233 5234 // Saturate this flag to true. 5235 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5236 5237 // Saturate this flag to false. 5238 AllTablesFitInRegister = 5239 AllTablesFitInRegister && 5240 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5241 5242 // If both flags saturate, we're done. NOTE: This *only* works with 5243 // saturating flags, and all flags have to saturate first due to the 5244 // non-deterministic behavior of iterating over a dense map. 5245 if (HasIllegalType && !AllTablesFitInRegister) 5246 break; 5247 } 5248 5249 // If each table would fit in a register, we should build it anyway. 5250 if (AllTablesFitInRegister) 5251 return true; 5252 5253 // Don't build a table that doesn't fit in-register if it has illegal types. 5254 if (HasIllegalType) 5255 return false; 5256 5257 // The table density should be at least 40%. This is the same criterion as for 5258 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5259 // FIXME: Find the best cut-off. 5260 return SI->getNumCases() * 10 >= TableSize * 4; 5261 } 5262 5263 /// Try to reuse the switch table index compare. Following pattern: 5264 /// \code 5265 /// if (idx < tablesize) 5266 /// r = table[idx]; // table does not contain default_value 5267 /// else 5268 /// r = default_value; 5269 /// if (r != default_value) 5270 /// ... 5271 /// \endcode 5272 /// Is optimized to: 5273 /// \code 5274 /// cond = idx < tablesize; 5275 /// if (cond) 5276 /// r = table[idx]; 5277 /// else 5278 /// r = default_value; 5279 /// if (cond) 5280 /// ... 5281 /// \endcode 5282 /// Jump threading will then eliminate the second if(cond). 5283 static void reuseTableCompare( 5284 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5285 Constant *DefaultValue, 5286 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5287 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5288 if (!CmpInst) 5289 return; 5290 5291 // We require that the compare is in the same block as the phi so that jump 5292 // threading can do its work afterwards. 5293 if (CmpInst->getParent() != PhiBlock) 5294 return; 5295 5296 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5297 if (!CmpOp1) 5298 return; 5299 5300 Value *RangeCmp = RangeCheckBranch->getCondition(); 5301 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5302 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5303 5304 // Check if the compare with the default value is constant true or false. 5305 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5306 DefaultValue, CmpOp1, true); 5307 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5308 return; 5309 5310 // Check if the compare with the case values is distinct from the default 5311 // compare result. 5312 for (auto ValuePair : Values) { 5313 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5314 ValuePair.second, CmpOp1, true); 5315 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5316 return; 5317 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5318 "Expect true or false as compare result."); 5319 } 5320 5321 // Check if the branch instruction dominates the phi node. It's a simple 5322 // dominance check, but sufficient for our needs. 5323 // Although this check is invariant in the calling loops, it's better to do it 5324 // at this late stage. Practically we do it at most once for a switch. 5325 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5326 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5327 BasicBlock *Pred = *PI; 5328 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5329 return; 5330 } 5331 5332 if (DefaultConst == FalseConst) { 5333 // The compare yields the same result. We can replace it. 5334 CmpInst->replaceAllUsesWith(RangeCmp); 5335 ++NumTableCmpReuses; 5336 } else { 5337 // The compare yields the same result, just inverted. We can replace it. 5338 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5339 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5340 RangeCheckBranch); 5341 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5342 ++NumTableCmpReuses; 5343 } 5344 } 5345 5346 /// If the switch is only used to initialize one or more phi nodes in a common 5347 /// successor block with different constant values, replace the switch with 5348 /// lookup tables. 5349 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5350 const DataLayout &DL, 5351 const TargetTransformInfo &TTI) { 5352 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5353 5354 Function *Fn = SI->getParent()->getParent(); 5355 // Only build lookup table when we have a target that supports it or the 5356 // attribute is not set. 5357 if (!TTI.shouldBuildLookupTables() || 5358 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5359 return false; 5360 5361 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5362 // split off a dense part and build a lookup table for that. 5363 5364 // FIXME: This creates arrays of GEPs to constant strings, which means each 5365 // GEP needs a runtime relocation in PIC code. We should just build one big 5366 // string and lookup indices into that. 5367 5368 // Ignore switches with less than three cases. Lookup tables will not make 5369 // them faster, so we don't analyze them. 5370 if (SI->getNumCases() < 3) 5371 return false; 5372 5373 // Figure out the corresponding result for each case value and phi node in the 5374 // common destination, as well as the min and max case values. 5375 assert(!SI->cases().empty()); 5376 SwitchInst::CaseIt CI = SI->case_begin(); 5377 ConstantInt *MinCaseVal = CI->getCaseValue(); 5378 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5379 5380 BasicBlock *CommonDest = nullptr; 5381 5382 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5383 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5384 5385 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5386 SmallDenseMap<PHINode *, Type *> ResultTypes; 5387 SmallVector<PHINode *, 4> PHIs; 5388 5389 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5390 ConstantInt *CaseVal = CI->getCaseValue(); 5391 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5392 MinCaseVal = CaseVal; 5393 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5394 MaxCaseVal = CaseVal; 5395 5396 // Resulting value at phi nodes for this case value. 5397 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5398 ResultsTy Results; 5399 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5400 Results, DL, TTI)) 5401 return false; 5402 5403 // Append the result from this case to the list for each phi. 5404 for (const auto &I : Results) { 5405 PHINode *PHI = I.first; 5406 Constant *Value = I.second; 5407 if (!ResultLists.count(PHI)) 5408 PHIs.push_back(PHI); 5409 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5410 } 5411 } 5412 5413 // Keep track of the result types. 5414 for (PHINode *PHI : PHIs) { 5415 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5416 } 5417 5418 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5419 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5420 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5421 bool TableHasHoles = (NumResults < TableSize); 5422 5423 // If the table has holes, we need a constant result for the default case 5424 // or a bitmask that fits in a register. 5425 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5426 bool HasDefaultResults = 5427 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5428 DefaultResultsList, DL, TTI); 5429 5430 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5431 if (NeedMask) { 5432 // As an extra penalty for the validity test we require more cases. 5433 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5434 return false; 5435 if (!DL.fitsInLegalInteger(TableSize)) 5436 return false; 5437 } 5438 5439 for (const auto &I : DefaultResultsList) { 5440 PHINode *PHI = I.first; 5441 Constant *Result = I.second; 5442 DefaultResults[PHI] = Result; 5443 } 5444 5445 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5446 return false; 5447 5448 // Create the BB that does the lookups. 5449 Module &Mod = *CommonDest->getParent()->getParent(); 5450 BasicBlock *LookupBB = BasicBlock::Create( 5451 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5452 5453 // Compute the table index value. 5454 Builder.SetInsertPoint(SI); 5455 Value *TableIndex; 5456 if (MinCaseVal->isNullValue()) 5457 TableIndex = SI->getCondition(); 5458 else 5459 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5460 "switch.tableidx"); 5461 5462 // Compute the maximum table size representable by the integer type we are 5463 // switching upon. 5464 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5465 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5466 assert(MaxTableSize >= TableSize && 5467 "It is impossible for a switch to have more entries than the max " 5468 "representable value of its input integer type's size."); 5469 5470 // If the default destination is unreachable, or if the lookup table covers 5471 // all values of the conditional variable, branch directly to the lookup table 5472 // BB. Otherwise, check that the condition is within the case range. 5473 const bool DefaultIsReachable = 5474 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5475 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5476 BranchInst *RangeCheckBranch = nullptr; 5477 5478 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5479 Builder.CreateBr(LookupBB); 5480 // Note: We call removeProdecessor later since we need to be able to get the 5481 // PHI value for the default case in case we're using a bit mask. 5482 } else { 5483 Value *Cmp = Builder.CreateICmpULT( 5484 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5485 RangeCheckBranch = 5486 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5487 } 5488 5489 // Populate the BB that does the lookups. 5490 Builder.SetInsertPoint(LookupBB); 5491 5492 if (NeedMask) { 5493 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5494 // re-purposed to do the hole check, and we create a new LookupBB. 5495 BasicBlock *MaskBB = LookupBB; 5496 MaskBB->setName("switch.hole_check"); 5497 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5498 CommonDest->getParent(), CommonDest); 5499 5500 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5501 // unnecessary illegal types. 5502 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5503 APInt MaskInt(TableSizePowOf2, 0); 5504 APInt One(TableSizePowOf2, 1); 5505 // Build bitmask; fill in a 1 bit for every case. 5506 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5507 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5508 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5509 .getLimitedValue(); 5510 MaskInt |= One << Idx; 5511 } 5512 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5513 5514 // Get the TableIndex'th bit of the bitmask. 5515 // If this bit is 0 (meaning hole) jump to the default destination, 5516 // else continue with table lookup. 5517 IntegerType *MapTy = TableMask->getType(); 5518 Value *MaskIndex = 5519 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5520 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5521 Value *LoBit = Builder.CreateTrunc( 5522 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5523 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5524 5525 Builder.SetInsertPoint(LookupBB); 5526 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5527 } 5528 5529 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5530 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5531 // do not delete PHINodes here. 5532 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5533 /*KeepOneInputPHIs=*/true); 5534 } 5535 5536 bool ReturnedEarly = false; 5537 for (PHINode *PHI : PHIs) { 5538 const ResultListTy &ResultList = ResultLists[PHI]; 5539 5540 // If using a bitmask, use any value to fill the lookup table holes. 5541 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5542 StringRef FuncName = Fn->getName(); 5543 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5544 FuncName); 5545 5546 Value *Result = Table.BuildLookup(TableIndex, Builder); 5547 5548 // If the result is used to return immediately from the function, we want to 5549 // do that right here. 5550 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5551 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5552 Builder.CreateRet(Result); 5553 ReturnedEarly = true; 5554 break; 5555 } 5556 5557 // Do a small peephole optimization: re-use the switch table compare if 5558 // possible. 5559 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5560 BasicBlock *PhiBlock = PHI->getParent(); 5561 // Search for compare instructions which use the phi. 5562 for (auto *User : PHI->users()) { 5563 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5564 } 5565 } 5566 5567 PHI->addIncoming(Result, LookupBB); 5568 } 5569 5570 if (!ReturnedEarly) 5571 Builder.CreateBr(CommonDest); 5572 5573 // Remove the switch. 5574 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5575 BasicBlock *Succ = SI->getSuccessor(i); 5576 5577 if (Succ == SI->getDefaultDest()) 5578 continue; 5579 Succ->removePredecessor(SI->getParent()); 5580 } 5581 SI->eraseFromParent(); 5582 5583 ++NumLookupTables; 5584 if (NeedMask) 5585 ++NumLookupTablesHoles; 5586 return true; 5587 } 5588 5589 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5590 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5591 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5592 uint64_t Range = Diff + 1; 5593 uint64_t NumCases = Values.size(); 5594 // 40% is the default density for building a jump table in optsize/minsize mode. 5595 uint64_t MinDensity = 40; 5596 5597 return NumCases * 100 >= Range * MinDensity; 5598 } 5599 5600 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5601 /// of cases. 5602 /// 5603 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5604 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5605 /// 5606 /// This converts a sparse switch into a dense switch which allows better 5607 /// lowering and could also allow transforming into a lookup table. 5608 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5609 const DataLayout &DL, 5610 const TargetTransformInfo &TTI) { 5611 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5612 if (CondTy->getIntegerBitWidth() > 64 || 5613 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5614 return false; 5615 // Only bother with this optimization if there are more than 3 switch cases; 5616 // SDAG will only bother creating jump tables for 4 or more cases. 5617 if (SI->getNumCases() < 4) 5618 return false; 5619 5620 // This transform is agnostic to the signedness of the input or case values. We 5621 // can treat the case values as signed or unsigned. We can optimize more common 5622 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5623 // as signed. 5624 SmallVector<int64_t,4> Values; 5625 for (auto &C : SI->cases()) 5626 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5627 llvm::sort(Values); 5628 5629 // If the switch is already dense, there's nothing useful to do here. 5630 if (isSwitchDense(Values)) 5631 return false; 5632 5633 // First, transform the values such that they start at zero and ascend. 5634 int64_t Base = Values[0]; 5635 for (auto &V : Values) 5636 V -= (uint64_t)(Base); 5637 5638 // Now we have signed numbers that have been shifted so that, given enough 5639 // precision, there are no negative values. Since the rest of the transform 5640 // is bitwise only, we switch now to an unsigned representation. 5641 5642 // This transform can be done speculatively because it is so cheap - it 5643 // results in a single rotate operation being inserted. 5644 // FIXME: It's possible that optimizing a switch on powers of two might also 5645 // be beneficial - flag values are often powers of two and we could use a CLZ 5646 // as the key function. 5647 5648 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5649 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5650 // less than 64. 5651 unsigned Shift = 64; 5652 for (auto &V : Values) 5653 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5654 assert(Shift < 64); 5655 if (Shift > 0) 5656 for (auto &V : Values) 5657 V = (int64_t)((uint64_t)V >> Shift); 5658 5659 if (!isSwitchDense(Values)) 5660 // Transform didn't create a dense switch. 5661 return false; 5662 5663 // The obvious transform is to shift the switch condition right and emit a 5664 // check that the condition actually cleanly divided by GCD, i.e. 5665 // C & (1 << Shift - 1) == 0 5666 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5667 // 5668 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5669 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5670 // are nonzero then the switch condition will be very large and will hit the 5671 // default case. 5672 5673 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5674 Builder.SetInsertPoint(SI); 5675 auto *ShiftC = ConstantInt::get(Ty, Shift); 5676 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5677 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5678 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5679 auto *Rot = Builder.CreateOr(LShr, Shl); 5680 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5681 5682 for (auto Case : SI->cases()) { 5683 auto *Orig = Case.getCaseValue(); 5684 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5685 Case.setValue( 5686 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5687 } 5688 return true; 5689 } 5690 5691 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5692 BasicBlock *BB = SI->getParent(); 5693 5694 if (isValueEqualityComparison(SI)) { 5695 // If we only have one predecessor, and if it is a branch on this value, 5696 // see if that predecessor totally determines the outcome of this switch. 5697 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5698 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5699 return requestResimplify(); 5700 5701 Value *Cond = SI->getCondition(); 5702 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5703 if (SimplifySwitchOnSelect(SI, Select)) 5704 return requestResimplify(); 5705 5706 // If the block only contains the switch, see if we can fold the block 5707 // away into any preds. 5708 if (SI == &*BB->instructionsWithoutDebug().begin()) 5709 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5710 return requestResimplify(); 5711 } 5712 5713 // Try to transform the switch into an icmp and a branch. 5714 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5715 return requestResimplify(); 5716 5717 // Remove unreachable cases. 5718 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5719 return requestResimplify(); 5720 5721 if (switchToSelect(SI, Builder, DL, TTI)) 5722 return requestResimplify(); 5723 5724 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5725 return requestResimplify(); 5726 5727 // The conversion from switch to lookup tables results in difficult-to-analyze 5728 // code and makes pruning branches much harder. This is a problem if the 5729 // switch expression itself can still be restricted as a result of inlining or 5730 // CVP. Therefore, only apply this transformation during late stages of the 5731 // optimisation pipeline. 5732 if (Options.ConvertSwitchToLookupTable && 5733 SwitchToLookupTable(SI, Builder, DL, TTI)) 5734 return requestResimplify(); 5735 5736 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5737 return requestResimplify(); 5738 5739 return false; 5740 } 5741 5742 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5743 BasicBlock *BB = IBI->getParent(); 5744 bool Changed = false; 5745 5746 // Eliminate redundant destinations. 5747 SmallPtrSet<Value *, 8> Succs; 5748 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5749 BasicBlock *Dest = IBI->getDestination(i); 5750 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5751 Dest->removePredecessor(BB); 5752 IBI->removeDestination(i); 5753 --i; 5754 --e; 5755 Changed = true; 5756 } 5757 } 5758 5759 if (IBI->getNumDestinations() == 0) { 5760 // If the indirectbr has no successors, change it to unreachable. 5761 new UnreachableInst(IBI->getContext(), IBI); 5762 EraseTerminatorAndDCECond(IBI); 5763 return true; 5764 } 5765 5766 if (IBI->getNumDestinations() == 1) { 5767 // If the indirectbr has one successor, change it to a direct branch. 5768 BranchInst::Create(IBI->getDestination(0), IBI); 5769 EraseTerminatorAndDCECond(IBI); 5770 return true; 5771 } 5772 5773 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5774 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5775 return requestResimplify(); 5776 } 5777 return Changed; 5778 } 5779 5780 /// Given an block with only a single landing pad and a unconditional branch 5781 /// try to find another basic block which this one can be merged with. This 5782 /// handles cases where we have multiple invokes with unique landing pads, but 5783 /// a shared handler. 5784 /// 5785 /// We specifically choose to not worry about merging non-empty blocks 5786 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5787 /// practice, the optimizer produces empty landing pad blocks quite frequently 5788 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5789 /// sinking in this file) 5790 /// 5791 /// This is primarily a code size optimization. We need to avoid performing 5792 /// any transform which might inhibit optimization (such as our ability to 5793 /// specialize a particular handler via tail commoning). We do this by not 5794 /// merging any blocks which require us to introduce a phi. Since the same 5795 /// values are flowing through both blocks, we don't lose any ability to 5796 /// specialize. If anything, we make such specialization more likely. 5797 /// 5798 /// TODO - This transformation could remove entries from a phi in the target 5799 /// block when the inputs in the phi are the same for the two blocks being 5800 /// merged. In some cases, this could result in removal of the PHI entirely. 5801 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5802 BasicBlock *BB) { 5803 auto Succ = BB->getUniqueSuccessor(); 5804 assert(Succ); 5805 // If there's a phi in the successor block, we'd likely have to introduce 5806 // a phi into the merged landing pad block. 5807 if (isa<PHINode>(*Succ->begin())) 5808 return false; 5809 5810 for (BasicBlock *OtherPred : predecessors(Succ)) { 5811 if (BB == OtherPred) 5812 continue; 5813 BasicBlock::iterator I = OtherPred->begin(); 5814 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5815 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5816 continue; 5817 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5818 ; 5819 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5820 if (!BI2 || !BI2->isIdenticalTo(BI)) 5821 continue; 5822 5823 // We've found an identical block. Update our predecessors to take that 5824 // path instead and make ourselves dead. 5825 SmallPtrSet<BasicBlock *, 16> Preds; 5826 Preds.insert(pred_begin(BB), pred_end(BB)); 5827 for (BasicBlock *Pred : Preds) { 5828 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5829 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5830 "unexpected successor"); 5831 II->setUnwindDest(OtherPred); 5832 } 5833 5834 // The debug info in OtherPred doesn't cover the merged control flow that 5835 // used to go through BB. We need to delete it or update it. 5836 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5837 Instruction &Inst = *I; 5838 I++; 5839 if (isa<DbgInfoIntrinsic>(Inst)) 5840 Inst.eraseFromParent(); 5841 } 5842 5843 SmallPtrSet<BasicBlock *, 16> Succs; 5844 Succs.insert(succ_begin(BB), succ_end(BB)); 5845 for (BasicBlock *Succ : Succs) { 5846 Succ->removePredecessor(BB); 5847 } 5848 5849 IRBuilder<> Builder(BI); 5850 Builder.CreateUnreachable(); 5851 BI->eraseFromParent(); 5852 return true; 5853 } 5854 return false; 5855 } 5856 5857 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5858 IRBuilder<> &Builder) { 5859 BasicBlock *BB = BI->getParent(); 5860 BasicBlock *Succ = BI->getSuccessor(0); 5861 5862 // If the Terminator is the only non-phi instruction, simplify the block. 5863 // If LoopHeader is provided, check if the block or its successor is a loop 5864 // header. (This is for early invocations before loop simplify and 5865 // vectorization to keep canonical loop forms for nested loops. These blocks 5866 // can be eliminated when the pass is invoked later in the back-end.) 5867 // Note that if BB has only one predecessor then we do not introduce new 5868 // backedge, so we can eliminate BB. 5869 bool NeedCanonicalLoop = 5870 Options.NeedCanonicalLoop && 5871 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5872 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5873 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5874 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5875 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5876 return true; 5877 5878 // If the only instruction in the block is a seteq/setne comparison against a 5879 // constant, try to simplify the block. 5880 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5881 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5882 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5883 ; 5884 if (I->isTerminator() && 5885 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5886 return true; 5887 } 5888 5889 // See if we can merge an empty landing pad block with another which is 5890 // equivalent. 5891 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5892 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5893 ; 5894 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5895 return true; 5896 } 5897 5898 // If this basic block is ONLY a compare and a branch, and if a predecessor 5899 // branches to us and our successor, fold the comparison into the 5900 // predecessor and use logical operations to update the incoming value 5901 // for PHI nodes in common successor. 5902 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5903 return requestResimplify(); 5904 return false; 5905 } 5906 5907 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5908 BasicBlock *PredPred = nullptr; 5909 for (auto *P : predecessors(BB)) { 5910 BasicBlock *PPred = P->getSinglePredecessor(); 5911 if (!PPred || (PredPred && PredPred != PPred)) 5912 return nullptr; 5913 PredPred = PPred; 5914 } 5915 return PredPred; 5916 } 5917 5918 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5919 BasicBlock *BB = BI->getParent(); 5920 const Function *Fn = BB->getParent(); 5921 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5922 return false; 5923 5924 // Conditional branch 5925 if (isValueEqualityComparison(BI)) { 5926 // If we only have one predecessor, and if it is a branch on this value, 5927 // see if that predecessor totally determines the outcome of this 5928 // switch. 5929 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5930 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5931 return requestResimplify(); 5932 5933 // This block must be empty, except for the setcond inst, if it exists. 5934 // Ignore dbg intrinsics. 5935 auto I = BB->instructionsWithoutDebug().begin(); 5936 if (&*I == BI) { 5937 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5938 return requestResimplify(); 5939 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5940 ++I; 5941 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5942 return requestResimplify(); 5943 } 5944 } 5945 5946 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5947 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5948 return true; 5949 5950 // If this basic block has dominating predecessor blocks and the dominating 5951 // blocks' conditions imply BI's condition, we know the direction of BI. 5952 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5953 if (Imp) { 5954 // Turn this into a branch on constant. 5955 auto *OldCond = BI->getCondition(); 5956 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5957 : ConstantInt::getFalse(BB->getContext()); 5958 BI->setCondition(TorF); 5959 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5960 return requestResimplify(); 5961 } 5962 5963 // If this basic block is ONLY a compare and a branch, and if a predecessor 5964 // branches to us and one of our successors, fold the comparison into the 5965 // predecessor and use logical operations to pick the right destination. 5966 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5967 return requestResimplify(); 5968 5969 // We have a conditional branch to two blocks that are only reachable 5970 // from BI. We know that the condbr dominates the two blocks, so see if 5971 // there is any identical code in the "then" and "else" blocks. If so, we 5972 // can hoist it up to the branching block. 5973 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5974 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5975 if (HoistThenElseCodeToIf(BI, TTI)) 5976 return requestResimplify(); 5977 } else { 5978 // If Successor #1 has multiple preds, we may be able to conditionally 5979 // execute Successor #0 if it branches to Successor #1. 5980 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5981 if (Succ0TI->getNumSuccessors() == 1 && 5982 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5983 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5984 return requestResimplify(); 5985 } 5986 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5987 // If Successor #0 has multiple preds, we may be able to conditionally 5988 // execute Successor #1 if it branches to Successor #0. 5989 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5990 if (Succ1TI->getNumSuccessors() == 1 && 5991 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5992 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5993 return requestResimplify(); 5994 } 5995 5996 // If this is a branch on a phi node in the current block, thread control 5997 // through this block if any PHI node entries are constants. 5998 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5999 if (PN->getParent() == BI->getParent()) 6000 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 6001 return requestResimplify(); 6002 6003 // Scan predecessor blocks for conditional branches. 6004 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6005 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6006 if (PBI != BI && PBI->isConditional()) 6007 if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI)) 6008 return requestResimplify(); 6009 6010 // Look for diamond patterns. 6011 if (MergeCondStores) 6012 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6013 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6014 if (PBI != BI && PBI->isConditional()) 6015 if (mergeConditionalStores(PBI, BI, DL, TTI)) 6016 return requestResimplify(); 6017 6018 return false; 6019 } 6020 6021 /// Check if passing a value to an instruction will cause undefined behavior. 6022 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 6023 Constant *C = dyn_cast<Constant>(V); 6024 if (!C) 6025 return false; 6026 6027 if (I->use_empty()) 6028 return false; 6029 6030 if (C->isNullValue() || isa<UndefValue>(C)) { 6031 // Only look at the first use, avoid hurting compile time with long uselists 6032 User *Use = *I->user_begin(); 6033 6034 // Now make sure that there are no instructions in between that can alter 6035 // control flow (eg. calls) 6036 for (BasicBlock::iterator 6037 i = ++BasicBlock::iterator(I), 6038 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6039 i != UI; ++i) 6040 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6041 return false; 6042 6043 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6044 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6045 if (GEP->getPointerOperand() == I) 6046 return passingValueIsAlwaysUndefined(V, GEP); 6047 6048 // Look through bitcasts. 6049 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6050 return passingValueIsAlwaysUndefined(V, BC); 6051 6052 // Load from null is undefined. 6053 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6054 if (!LI->isVolatile()) 6055 return !NullPointerIsDefined(LI->getFunction(), 6056 LI->getPointerAddressSpace()); 6057 6058 // Store to null is undefined. 6059 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6060 if (!SI->isVolatile()) 6061 return (!NullPointerIsDefined(SI->getFunction(), 6062 SI->getPointerAddressSpace())) && 6063 SI->getPointerOperand() == I; 6064 6065 // A call to null is undefined. 6066 if (auto CS = CallSite(Use)) 6067 return !NullPointerIsDefined(CS->getFunction()) && 6068 CS.getCalledValue() == I; 6069 } 6070 return false; 6071 } 6072 6073 /// If BB has an incoming value that will always trigger undefined behavior 6074 /// (eg. null pointer dereference), remove the branch leading here. 6075 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 6076 for (PHINode &PHI : BB->phis()) 6077 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6078 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6079 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 6080 IRBuilder<> Builder(T); 6081 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6082 BB->removePredecessor(PHI.getIncomingBlock(i)); 6083 // Turn uncoditional branches into unreachables and remove the dead 6084 // destination from conditional branches. 6085 if (BI->isUnconditional()) 6086 Builder.CreateUnreachable(); 6087 else 6088 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6089 : BI->getSuccessor(0)); 6090 BI->eraseFromParent(); 6091 return true; 6092 } 6093 // TODO: SwitchInst. 6094 } 6095 6096 return false; 6097 } 6098 6099 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6100 bool Changed = false; 6101 6102 assert(BB && BB->getParent() && "Block not embedded in function!"); 6103 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6104 6105 // Remove basic blocks that have no predecessors (except the entry block)... 6106 // or that just have themself as a predecessor. These are unreachable. 6107 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6108 BB->getSinglePredecessor() == BB) { 6109 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6110 DeleteDeadBlock(BB); 6111 return true; 6112 } 6113 6114 // Check to see if we can constant propagate this terminator instruction 6115 // away... 6116 Changed |= ConstantFoldTerminator(BB, true); 6117 6118 // Check for and eliminate duplicate PHI nodes in this block. 6119 Changed |= EliminateDuplicatePHINodes(BB); 6120 6121 // Check for and remove branches that will always cause undefined behavior. 6122 Changed |= removeUndefIntroducingPredecessor(BB); 6123 6124 // Merge basic blocks into their predecessor if there is only one distinct 6125 // pred, and if there is only one distinct successor of the predecessor, and 6126 // if there are no PHI nodes. 6127 if (MergeBlockIntoPredecessor(BB)) 6128 return true; 6129 6130 if (SinkCommon && Options.SinkCommonInsts) 6131 Changed |= SinkCommonCodeFromPredecessors(BB); 6132 6133 IRBuilder<> Builder(BB); 6134 6135 // If there is a trivial two-entry PHI node in this basic block, and we can 6136 // eliminate it, do so now. 6137 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6138 if (PN->getNumIncomingValues() == 2) 6139 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6140 6141 Builder.SetInsertPoint(BB->getTerminator()); 6142 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6143 if (BI->isUnconditional()) { 6144 if (SimplifyUncondBranch(BI, Builder)) 6145 return true; 6146 } else { 6147 if (SimplifyCondBranch(BI, Builder)) 6148 return true; 6149 } 6150 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6151 if (SimplifyReturn(RI, Builder)) 6152 return true; 6153 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6154 if (SimplifyResume(RI, Builder)) 6155 return true; 6156 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6157 if (SimplifyCleanupReturn(RI)) 6158 return true; 6159 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6160 if (SimplifySwitch(SI, Builder)) 6161 return true; 6162 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6163 if (SimplifyUnreachable(UI)) 6164 return true; 6165 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6166 if (SimplifyIndirectBr(IBI)) 6167 return true; 6168 } 6169 6170 return Changed; 6171 } 6172 6173 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6174 bool Changed = false; 6175 6176 // Repeated simplify BB as long as resimplification is requested. 6177 do { 6178 Resimplify = false; 6179 6180 // Perform one round of simplifcation. Resimplify flag will be set if 6181 // another iteration is requested. 6182 Changed |= simplifyOnce(BB); 6183 } while (Resimplify); 6184 6185 return Changed; 6186 } 6187 6188 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6189 const SimplifyCFGOptions &Options, 6190 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6191 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6192 Options) 6193 .run(BB); 6194 } 6195