1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <climits> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <set> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "simplifycfg" 87 88 // Chosen as 2 so as to be cheap, but still to have enough power to fold 89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 90 // To catch this, we need to fold a compare and a select, hence '2' being the 91 // minimum reasonable default. 92 static cl::opt<unsigned> PHINodeFoldingThreshold( 93 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 94 cl::desc( 95 "Control the amount of phi node folding to perform (default = 2)")); 96 97 static cl::opt<bool> DupRet( 98 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 99 cl::desc("Duplicate return instructions into unconditional branches")); 100 101 static cl::opt<bool> 102 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 103 cl::desc("Sink common instructions down to the end block")); 104 105 static cl::opt<bool> HoistCondStores( 106 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 107 cl::desc("Hoist conditional stores if an unconditional store precedes")); 108 109 static cl::opt<bool> MergeCondStores( 110 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 111 cl::desc("Hoist conditional stores even if an unconditional store does not " 112 "precede - hoist multiple conditional stores into a single " 113 "predicated store")); 114 115 static cl::opt<bool> MergeCondStoresAggressively( 116 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 117 cl::desc("When merging conditional stores, do so even if the resultant " 118 "basic blocks are unlikely to be if-converted as a result")); 119 120 static cl::opt<bool> SpeculateOneExpensiveInst( 121 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 122 cl::desc("Allow exactly one expensive instruction to be speculatively " 123 "executed")); 124 125 static cl::opt<unsigned> MaxSpeculationDepth( 126 "max-speculation-depth", cl::Hidden, cl::init(10), 127 cl::desc("Limit maximum recursion depth when calculating costs of " 128 "speculatively executed instructions")); 129 130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 131 STATISTIC(NumLinearMaps, 132 "Number of switch instructions turned into linear mapping"); 133 STATISTIC(NumLookupTables, 134 "Number of switch instructions turned into lookup tables"); 135 STATISTIC( 136 NumLookupTablesHoles, 137 "Number of switch instructions turned into lookup tables (holes checked)"); 138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 139 STATISTIC(NumSinkCommons, 140 "Number of common instructions sunk down to the end block"); 141 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 142 143 namespace { 144 145 // The first field contains the value that the switch produces when a certain 146 // case group is selected, and the second field is a vector containing the 147 // cases composing the case group. 148 using SwitchCaseResultVectorTy = 149 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 150 151 // The first field contains the phi node that generates a result of the switch 152 // and the second field contains the value generated for a certain case in the 153 // switch for that PHI. 154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 155 156 /// ValueEqualityComparisonCase - Represents a case of a switch. 157 struct ValueEqualityComparisonCase { 158 ConstantInt *Value; 159 BasicBlock *Dest; 160 161 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 162 : Value(Value), Dest(Dest) {} 163 164 bool operator<(ValueEqualityComparisonCase RHS) const { 165 // Comparing pointers is ok as we only rely on the order for uniquing. 166 return Value < RHS.Value; 167 } 168 169 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 170 }; 171 172 class SimplifyCFGOpt { 173 const TargetTransformInfo &TTI; 174 const DataLayout &DL; 175 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 176 const SimplifyCFGOptions &Options; 177 bool Resimplify; 178 179 Value *isValueEqualityComparison(Instruction *TI); 180 BasicBlock *GetValueEqualityComparisonCases( 181 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 182 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 183 BasicBlock *Pred, 184 IRBuilder<> &Builder); 185 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 186 IRBuilder<> &Builder); 187 188 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 189 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 190 bool SimplifySingleResume(ResumeInst *RI); 191 bool SimplifyCommonResume(ResumeInst *RI); 192 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 193 bool SimplifyUnreachable(UnreachableInst *UI); 194 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 195 bool SimplifyIndirectBr(IndirectBrInst *IBI); 196 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 198 199 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 200 IRBuilder<> &Builder); 201 202 public: 203 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 204 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 205 const SimplifyCFGOptions &Opts) 206 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 207 208 bool run(BasicBlock *BB); 209 bool simplifyOnce(BasicBlock *BB); 210 211 // Helper to set Resimplify and return change indication. 212 bool requestResimplify() { 213 Resimplify = true; 214 return true; 215 } 216 }; 217 218 } // end anonymous namespace 219 220 /// Return true if it is safe to merge these two 221 /// terminator instructions together. 222 static bool 223 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 224 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 225 if (SI1 == SI2) 226 return false; // Can't merge with self! 227 228 // It is not safe to merge these two switch instructions if they have a common 229 // successor, and if that successor has a PHI node, and if *that* PHI node has 230 // conflicting incoming values from the two switch blocks. 231 BasicBlock *SI1BB = SI1->getParent(); 232 BasicBlock *SI2BB = SI2->getParent(); 233 234 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 235 bool Fail = false; 236 for (BasicBlock *Succ : successors(SI2BB)) 237 if (SI1Succs.count(Succ)) 238 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 239 PHINode *PN = cast<PHINode>(BBI); 240 if (PN->getIncomingValueForBlock(SI1BB) != 241 PN->getIncomingValueForBlock(SI2BB)) { 242 if (FailBlocks) 243 FailBlocks->insert(Succ); 244 Fail = true; 245 } 246 } 247 248 return !Fail; 249 } 250 251 /// Return true if it is safe and profitable to merge these two terminator 252 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 253 /// store all PHI nodes in common successors. 254 static bool 255 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 256 Instruction *Cond, 257 SmallVectorImpl<PHINode *> &PhiNodes) { 258 if (SI1 == SI2) 259 return false; // Can't merge with self! 260 assert(SI1->isUnconditional() && SI2->isConditional()); 261 262 // We fold the unconditional branch if we can easily update all PHI nodes in 263 // common successors: 264 // 1> We have a constant incoming value for the conditional branch; 265 // 2> We have "Cond" as the incoming value for the unconditional branch; 266 // 3> SI2->getCondition() and Cond have same operands. 267 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 268 if (!Ci2) 269 return false; 270 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 271 Cond->getOperand(1) == Ci2->getOperand(1)) && 272 !(Cond->getOperand(0) == Ci2->getOperand(1) && 273 Cond->getOperand(1) == Ci2->getOperand(0))) 274 return false; 275 276 BasicBlock *SI1BB = SI1->getParent(); 277 BasicBlock *SI2BB = SI2->getParent(); 278 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 279 for (BasicBlock *Succ : successors(SI2BB)) 280 if (SI1Succs.count(Succ)) 281 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 282 PHINode *PN = cast<PHINode>(BBI); 283 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 284 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 285 return false; 286 PhiNodes.push_back(PN); 287 } 288 return true; 289 } 290 291 /// Update PHI nodes in Succ to indicate that there will now be entries in it 292 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 293 /// will be the same as those coming in from ExistPred, an existing predecessor 294 /// of Succ. 295 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 296 BasicBlock *ExistPred, 297 MemorySSAUpdater *MSSAU = nullptr) { 298 for (PHINode &PN : Succ->phis()) 299 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 300 if (MSSAU) 301 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 302 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 303 } 304 305 /// Compute an abstract "cost" of speculating the given instruction, 306 /// which is assumed to be safe to speculate. TCC_Free means cheap, 307 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 308 /// expensive. 309 static unsigned ComputeSpeculationCost(const User *I, 310 const TargetTransformInfo &TTI) { 311 assert(isSafeToSpeculativelyExecute(I) && 312 "Instruction is not safe to speculatively execute!"); 313 return TTI.getUserCost(I); 314 } 315 316 /// If we have a merge point of an "if condition" as accepted above, 317 /// return true if the specified value dominates the block. We 318 /// don't handle the true generality of domination here, just a special case 319 /// which works well enough for us. 320 /// 321 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 322 /// see if V (which must be an instruction) and its recursive operands 323 /// that do not dominate BB have a combined cost lower than CostRemaining and 324 /// are non-trapping. If both are true, the instruction is inserted into the 325 /// set and true is returned. 326 /// 327 /// The cost for most non-trapping instructions is defined as 1 except for 328 /// Select whose cost is 2. 329 /// 330 /// After this function returns, CostRemaining is decreased by the cost of 331 /// V plus its non-dominating operands. If that cost is greater than 332 /// CostRemaining, false is returned and CostRemaining is undefined. 333 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 334 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 335 unsigned &CostRemaining, 336 const TargetTransformInfo &TTI, 337 unsigned Depth = 0) { 338 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 339 // so limit the recursion depth. 340 // TODO: While this recursion limit does prevent pathological behavior, it 341 // would be better to track visited instructions to avoid cycles. 342 if (Depth == MaxSpeculationDepth) 343 return false; 344 345 Instruction *I = dyn_cast<Instruction>(V); 346 if (!I) { 347 // Non-instructions all dominate instructions, but not all constantexprs 348 // can be executed unconditionally. 349 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 350 if (C->canTrap()) 351 return false; 352 return true; 353 } 354 BasicBlock *PBB = I->getParent(); 355 356 // We don't want to allow weird loops that might have the "if condition" in 357 // the bottom of this block. 358 if (PBB == BB) 359 return false; 360 361 // If this instruction is defined in a block that contains an unconditional 362 // branch to BB, then it must be in the 'conditional' part of the "if 363 // statement". If not, it definitely dominates the region. 364 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 365 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 366 return true; 367 368 // If we have seen this instruction before, don't count it again. 369 if (AggressiveInsts.count(I)) 370 return true; 371 372 // Okay, it looks like the instruction IS in the "condition". Check to 373 // see if it's a cheap instruction to unconditionally compute, and if it 374 // only uses stuff defined outside of the condition. If so, hoist it out. 375 if (!isSafeToSpeculativelyExecute(I)) 376 return false; 377 378 unsigned Cost = ComputeSpeculationCost(I, TTI); 379 380 // Allow exactly one instruction to be speculated regardless of its cost 381 // (as long as it is safe to do so). 382 // This is intended to flatten the CFG even if the instruction is a division 383 // or other expensive operation. The speculation of an expensive instruction 384 // is expected to be undone in CodeGenPrepare if the speculation has not 385 // enabled further IR optimizations. 386 if (Cost > CostRemaining && 387 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 388 return false; 389 390 // Avoid unsigned wrap. 391 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 392 393 // Okay, we can only really hoist these out if their operands do 394 // not take us over the cost threshold. 395 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 396 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 397 Depth + 1)) 398 return false; 399 // Okay, it's safe to do this! Remember this instruction. 400 AggressiveInsts.insert(I); 401 return true; 402 } 403 404 /// Extract ConstantInt from value, looking through IntToPtr 405 /// and PointerNullValue. Return NULL if value is not a constant int. 406 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 407 // Normal constant int. 408 ConstantInt *CI = dyn_cast<ConstantInt>(V); 409 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 410 return CI; 411 412 // This is some kind of pointer constant. Turn it into a pointer-sized 413 // ConstantInt if possible. 414 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 415 416 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 417 if (isa<ConstantPointerNull>(V)) 418 return ConstantInt::get(PtrTy, 0); 419 420 // IntToPtr const int. 421 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 422 if (CE->getOpcode() == Instruction::IntToPtr) 423 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 424 // The constant is very likely to have the right type already. 425 if (CI->getType() == PtrTy) 426 return CI; 427 else 428 return cast<ConstantInt>( 429 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 430 } 431 return nullptr; 432 } 433 434 namespace { 435 436 /// Given a chain of or (||) or and (&&) comparison of a value against a 437 /// constant, this will try to recover the information required for a switch 438 /// structure. 439 /// It will depth-first traverse the chain of comparison, seeking for patterns 440 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 441 /// representing the different cases for the switch. 442 /// Note that if the chain is composed of '||' it will build the set of elements 443 /// that matches the comparisons (i.e. any of this value validate the chain) 444 /// while for a chain of '&&' it will build the set elements that make the test 445 /// fail. 446 struct ConstantComparesGatherer { 447 const DataLayout &DL; 448 449 /// Value found for the switch comparison 450 Value *CompValue = nullptr; 451 452 /// Extra clause to be checked before the switch 453 Value *Extra = nullptr; 454 455 /// Set of integers to match in switch 456 SmallVector<ConstantInt *, 8> Vals; 457 458 /// Number of comparisons matched in the and/or chain 459 unsigned UsedICmps = 0; 460 461 /// Construct and compute the result for the comparison instruction Cond 462 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 463 gather(Cond); 464 } 465 466 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 467 ConstantComparesGatherer & 468 operator=(const ConstantComparesGatherer &) = delete; 469 470 private: 471 /// Try to set the current value used for the comparison, it succeeds only if 472 /// it wasn't set before or if the new value is the same as the old one 473 bool setValueOnce(Value *NewVal) { 474 if (CompValue && CompValue != NewVal) 475 return false; 476 CompValue = NewVal; 477 return (CompValue != nullptr); 478 } 479 480 /// Try to match Instruction "I" as a comparison against a constant and 481 /// populates the array Vals with the set of values that match (or do not 482 /// match depending on isEQ). 483 /// Return false on failure. On success, the Value the comparison matched 484 /// against is placed in CompValue. 485 /// If CompValue is already set, the function is expected to fail if a match 486 /// is found but the value compared to is different. 487 bool matchInstruction(Instruction *I, bool isEQ) { 488 // If this is an icmp against a constant, handle this as one of the cases. 489 ICmpInst *ICI; 490 ConstantInt *C; 491 if (!((ICI = dyn_cast<ICmpInst>(I)) && 492 (C = GetConstantInt(I->getOperand(1), DL)))) { 493 return false; 494 } 495 496 Value *RHSVal; 497 const APInt *RHSC; 498 499 // Pattern match a special case 500 // (x & ~2^z) == y --> x == y || x == y|2^z 501 // This undoes a transformation done by instcombine to fuse 2 compares. 502 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 503 // It's a little bit hard to see why the following transformations are 504 // correct. Here is a CVC3 program to verify them for 64-bit values: 505 506 /* 507 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 508 x : BITVECTOR(64); 509 y : BITVECTOR(64); 510 z : BITVECTOR(64); 511 mask : BITVECTOR(64) = BVSHL(ONE, z); 512 QUERY( (y & ~mask = y) => 513 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 514 ); 515 QUERY( (y | mask = y) => 516 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 517 ); 518 */ 519 520 // Please note that each pattern must be a dual implication (<--> or 521 // iff). One directional implication can create spurious matches. If the 522 // implication is only one-way, an unsatisfiable condition on the left 523 // side can imply a satisfiable condition on the right side. Dual 524 // implication ensures that satisfiable conditions are transformed to 525 // other satisfiable conditions and unsatisfiable conditions are 526 // transformed to other unsatisfiable conditions. 527 528 // Here is a concrete example of a unsatisfiable condition on the left 529 // implying a satisfiable condition on the right: 530 // 531 // mask = (1 << z) 532 // (x & ~mask) == y --> (x == y || x == (y | mask)) 533 // 534 // Substituting y = 3, z = 0 yields: 535 // (x & -2) == 3 --> (x == 3 || x == 2) 536 537 // Pattern match a special case: 538 /* 539 QUERY( (y & ~mask = y) => 540 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 541 ); 542 */ 543 if (match(ICI->getOperand(0), 544 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 545 APInt Mask = ~*RHSC; 546 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 547 // If we already have a value for the switch, it has to match! 548 if (!setValueOnce(RHSVal)) 549 return false; 550 551 Vals.push_back(C); 552 Vals.push_back( 553 ConstantInt::get(C->getContext(), 554 C->getValue() | Mask)); 555 UsedICmps++; 556 return true; 557 } 558 } 559 560 // Pattern match a special case: 561 /* 562 QUERY( (y | mask = y) => 563 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 564 ); 565 */ 566 if (match(ICI->getOperand(0), 567 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 568 APInt Mask = *RHSC; 569 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 570 // If we already have a value for the switch, it has to match! 571 if (!setValueOnce(RHSVal)) 572 return false; 573 574 Vals.push_back(C); 575 Vals.push_back(ConstantInt::get(C->getContext(), 576 C->getValue() & ~Mask)); 577 UsedICmps++; 578 return true; 579 } 580 } 581 582 // If we already have a value for the switch, it has to match! 583 if (!setValueOnce(ICI->getOperand(0))) 584 return false; 585 586 UsedICmps++; 587 Vals.push_back(C); 588 return ICI->getOperand(0); 589 } 590 591 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 592 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 593 ICI->getPredicate(), C->getValue()); 594 595 // Shift the range if the compare is fed by an add. This is the range 596 // compare idiom as emitted by instcombine. 597 Value *CandidateVal = I->getOperand(0); 598 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 599 Span = Span.subtract(*RHSC); 600 CandidateVal = RHSVal; 601 } 602 603 // If this is an and/!= check, then we are looking to build the set of 604 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 605 // x != 0 && x != 1. 606 if (!isEQ) 607 Span = Span.inverse(); 608 609 // If there are a ton of values, we don't want to make a ginormous switch. 610 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 611 return false; 612 } 613 614 // If we already have a value for the switch, it has to match! 615 if (!setValueOnce(CandidateVal)) 616 return false; 617 618 // Add all values from the range to the set 619 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 620 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 621 622 UsedICmps++; 623 return true; 624 } 625 626 /// Given a potentially 'or'd or 'and'd together collection of icmp 627 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 628 /// the value being compared, and stick the list constants into the Vals 629 /// vector. 630 /// One "Extra" case is allowed to differ from the other. 631 void gather(Value *V) { 632 Instruction *I = dyn_cast<Instruction>(V); 633 bool isEQ = (I->getOpcode() == Instruction::Or); 634 635 // Keep a stack (SmallVector for efficiency) for depth-first traversal 636 SmallVector<Value *, 8> DFT; 637 SmallPtrSet<Value *, 8> Visited; 638 639 // Initialize 640 Visited.insert(V); 641 DFT.push_back(V); 642 643 while (!DFT.empty()) { 644 V = DFT.pop_back_val(); 645 646 if (Instruction *I = dyn_cast<Instruction>(V)) { 647 // If it is a || (or && depending on isEQ), process the operands. 648 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 649 if (Visited.insert(I->getOperand(1)).second) 650 DFT.push_back(I->getOperand(1)); 651 if (Visited.insert(I->getOperand(0)).second) 652 DFT.push_back(I->getOperand(0)); 653 continue; 654 } 655 656 // Try to match the current instruction 657 if (matchInstruction(I, isEQ)) 658 // Match succeed, continue the loop 659 continue; 660 } 661 662 // One element of the sequence of || (or &&) could not be match as a 663 // comparison against the same value as the others. 664 // We allow only one "Extra" case to be checked before the switch 665 if (!Extra) { 666 Extra = V; 667 continue; 668 } 669 // Failed to parse a proper sequence, abort now 670 CompValue = nullptr; 671 break; 672 } 673 } 674 }; 675 676 } // end anonymous namespace 677 678 static void EraseTerminatorAndDCECond(Instruction *TI, 679 MemorySSAUpdater *MSSAU = nullptr) { 680 Instruction *Cond = nullptr; 681 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 682 Cond = dyn_cast<Instruction>(SI->getCondition()); 683 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 684 if (BI->isConditional()) 685 Cond = dyn_cast<Instruction>(BI->getCondition()); 686 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 687 Cond = dyn_cast<Instruction>(IBI->getAddress()); 688 } 689 690 TI->eraseFromParent(); 691 if (Cond) 692 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 693 } 694 695 /// Return true if the specified terminator checks 696 /// to see if a value is equal to constant integer value. 697 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 698 Value *CV = nullptr; 699 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 700 // Do not permit merging of large switch instructions into their 701 // predecessors unless there is only one predecessor. 702 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 703 CV = SI->getCondition(); 704 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 705 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 706 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 707 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 708 CV = ICI->getOperand(0); 709 } 710 711 // Unwrap any lossless ptrtoint cast. 712 if (CV) { 713 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 714 Value *Ptr = PTII->getPointerOperand(); 715 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 716 CV = Ptr; 717 } 718 } 719 return CV; 720 } 721 722 /// Given a value comparison instruction, 723 /// decode all of the 'cases' that it represents and return the 'default' block. 724 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 725 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 726 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 727 Cases.reserve(SI->getNumCases()); 728 for (auto Case : SI->cases()) 729 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 730 Case.getCaseSuccessor())); 731 return SI->getDefaultDest(); 732 } 733 734 BranchInst *BI = cast<BranchInst>(TI); 735 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 736 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 737 Cases.push_back(ValueEqualityComparisonCase( 738 GetConstantInt(ICI->getOperand(1), DL), Succ)); 739 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 740 } 741 742 /// Given a vector of bb/value pairs, remove any entries 743 /// in the list that match the specified block. 744 static void 745 EliminateBlockCases(BasicBlock *BB, 746 std::vector<ValueEqualityComparisonCase> &Cases) { 747 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 748 } 749 750 /// Return true if there are any keys in C1 that exist in C2 as well. 751 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 752 std::vector<ValueEqualityComparisonCase> &C2) { 753 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 754 755 // Make V1 be smaller than V2. 756 if (V1->size() > V2->size()) 757 std::swap(V1, V2); 758 759 if (V1->empty()) 760 return false; 761 if (V1->size() == 1) { 762 // Just scan V2. 763 ConstantInt *TheVal = (*V1)[0].Value; 764 for (unsigned i = 0, e = V2->size(); i != e; ++i) 765 if (TheVal == (*V2)[i].Value) 766 return true; 767 } 768 769 // Otherwise, just sort both lists and compare element by element. 770 array_pod_sort(V1->begin(), V1->end()); 771 array_pod_sort(V2->begin(), V2->end()); 772 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 773 while (i1 != e1 && i2 != e2) { 774 if ((*V1)[i1].Value == (*V2)[i2].Value) 775 return true; 776 if ((*V1)[i1].Value < (*V2)[i2].Value) 777 ++i1; 778 else 779 ++i2; 780 } 781 return false; 782 } 783 784 // Set branch weights on SwitchInst. This sets the metadata if there is at 785 // least one non-zero weight. 786 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 787 // Check that there is at least one non-zero weight. Otherwise, pass 788 // nullptr to setMetadata which will erase the existing metadata. 789 MDNode *N = nullptr; 790 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 791 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 792 SI->setMetadata(LLVMContext::MD_prof, N); 793 } 794 795 // Similar to the above, but for branch and select instructions that take 796 // exactly 2 weights. 797 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 798 uint32_t FalseWeight) { 799 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 800 // Check that there is at least one non-zero weight. Otherwise, pass 801 // nullptr to setMetadata which will erase the existing metadata. 802 MDNode *N = nullptr; 803 if (TrueWeight || FalseWeight) 804 N = MDBuilder(I->getParent()->getContext()) 805 .createBranchWeights(TrueWeight, FalseWeight); 806 I->setMetadata(LLVMContext::MD_prof, N); 807 } 808 809 /// If TI is known to be a terminator instruction and its block is known to 810 /// only have a single predecessor block, check to see if that predecessor is 811 /// also a value comparison with the same value, and if that comparison 812 /// determines the outcome of this comparison. If so, simplify TI. This does a 813 /// very limited form of jump threading. 814 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 815 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 816 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 817 if (!PredVal) 818 return false; // Not a value comparison in predecessor. 819 820 Value *ThisVal = isValueEqualityComparison(TI); 821 assert(ThisVal && "This isn't a value comparison!!"); 822 if (ThisVal != PredVal) 823 return false; // Different predicates. 824 825 // TODO: Preserve branch weight metadata, similarly to how 826 // FoldValueComparisonIntoPredecessors preserves it. 827 828 // Find out information about when control will move from Pred to TI's block. 829 std::vector<ValueEqualityComparisonCase> PredCases; 830 BasicBlock *PredDef = 831 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 832 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 833 834 // Find information about how control leaves this block. 835 std::vector<ValueEqualityComparisonCase> ThisCases; 836 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 837 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 838 839 // If TI's block is the default block from Pred's comparison, potentially 840 // simplify TI based on this knowledge. 841 if (PredDef == TI->getParent()) { 842 // If we are here, we know that the value is none of those cases listed in 843 // PredCases. If there are any cases in ThisCases that are in PredCases, we 844 // can simplify TI. 845 if (!ValuesOverlap(PredCases, ThisCases)) 846 return false; 847 848 if (isa<BranchInst>(TI)) { 849 // Okay, one of the successors of this condbr is dead. Convert it to a 850 // uncond br. 851 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 852 // Insert the new branch. 853 Instruction *NI = Builder.CreateBr(ThisDef); 854 (void)NI; 855 856 // Remove PHI node entries for the dead edge. 857 ThisCases[0].Dest->removePredecessor(TI->getParent()); 858 859 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 860 << "Through successor TI: " << *TI << "Leaving: " << *NI 861 << "\n"); 862 863 EraseTerminatorAndDCECond(TI); 864 return true; 865 } 866 867 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 868 // Okay, TI has cases that are statically dead, prune them away. 869 SmallPtrSet<Constant *, 16> DeadCases; 870 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 871 DeadCases.insert(PredCases[i].Value); 872 873 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 874 << "Through successor TI: " << *TI); 875 876 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 877 --i; 878 if (DeadCases.count(i->getCaseValue())) { 879 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 880 SI.removeCase(i); 881 } 882 } 883 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 884 return true; 885 } 886 887 // Otherwise, TI's block must correspond to some matched value. Find out 888 // which value (or set of values) this is. 889 ConstantInt *TIV = nullptr; 890 BasicBlock *TIBB = TI->getParent(); 891 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 892 if (PredCases[i].Dest == TIBB) { 893 if (TIV) 894 return false; // Cannot handle multiple values coming to this block. 895 TIV = PredCases[i].Value; 896 } 897 assert(TIV && "No edge from pred to succ?"); 898 899 // Okay, we found the one constant that our value can be if we get into TI's 900 // BB. Find out which successor will unconditionally be branched to. 901 BasicBlock *TheRealDest = nullptr; 902 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 903 if (ThisCases[i].Value == TIV) { 904 TheRealDest = ThisCases[i].Dest; 905 break; 906 } 907 908 // If not handled by any explicit cases, it is handled by the default case. 909 if (!TheRealDest) 910 TheRealDest = ThisDef; 911 912 // Remove PHI node entries for dead edges. 913 BasicBlock *CheckEdge = TheRealDest; 914 for (BasicBlock *Succ : successors(TIBB)) 915 if (Succ != CheckEdge) 916 Succ->removePredecessor(TIBB); 917 else 918 CheckEdge = nullptr; 919 920 // Insert the new branch. 921 Instruction *NI = Builder.CreateBr(TheRealDest); 922 (void)NI; 923 924 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 925 << "Through successor TI: " << *TI << "Leaving: " << *NI 926 << "\n"); 927 928 EraseTerminatorAndDCECond(TI); 929 return true; 930 } 931 932 namespace { 933 934 /// This class implements a stable ordering of constant 935 /// integers that does not depend on their address. This is important for 936 /// applications that sort ConstantInt's to ensure uniqueness. 937 struct ConstantIntOrdering { 938 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 939 return LHS->getValue().ult(RHS->getValue()); 940 } 941 }; 942 943 } // end anonymous namespace 944 945 static int ConstantIntSortPredicate(ConstantInt *const *P1, 946 ConstantInt *const *P2) { 947 const ConstantInt *LHS = *P1; 948 const ConstantInt *RHS = *P2; 949 if (LHS == RHS) 950 return 0; 951 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 952 } 953 954 static inline bool HasBranchWeights(const Instruction *I) { 955 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 956 if (ProfMD && ProfMD->getOperand(0)) 957 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 958 return MDS->getString().equals("branch_weights"); 959 960 return false; 961 } 962 963 /// Get Weights of a given terminator, the default weight is at the front 964 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 965 /// metadata. 966 static void GetBranchWeights(Instruction *TI, 967 SmallVectorImpl<uint64_t> &Weights) { 968 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 969 assert(MD); 970 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 971 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 972 Weights.push_back(CI->getValue().getZExtValue()); 973 } 974 975 // If TI is a conditional eq, the default case is the false case, 976 // and the corresponding branch-weight data is at index 2. We swap the 977 // default weight to be the first entry. 978 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 979 assert(Weights.size() == 2); 980 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 981 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 982 std::swap(Weights.front(), Weights.back()); 983 } 984 } 985 986 /// Keep halving the weights until all can fit in uint32_t. 987 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 988 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 989 if (Max > UINT_MAX) { 990 unsigned Offset = 32 - countLeadingZeros(Max); 991 for (uint64_t &I : Weights) 992 I >>= Offset; 993 } 994 } 995 996 /// The specified terminator is a value equality comparison instruction 997 /// (either a switch or a branch on "X == c"). 998 /// See if any of the predecessors of the terminator block are value comparisons 999 /// on the same value. If so, and if safe to do so, fold them together. 1000 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1001 IRBuilder<> &Builder) { 1002 BasicBlock *BB = TI->getParent(); 1003 Value *CV = isValueEqualityComparison(TI); // CondVal 1004 assert(CV && "Not a comparison?"); 1005 bool Changed = false; 1006 1007 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1008 while (!Preds.empty()) { 1009 BasicBlock *Pred = Preds.pop_back_val(); 1010 1011 // See if the predecessor is a comparison with the same value. 1012 Instruction *PTI = Pred->getTerminator(); 1013 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1014 1015 if (PCV == CV && TI != PTI) { 1016 SmallSetVector<BasicBlock*, 4> FailBlocks; 1017 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1018 for (auto *Succ : FailBlocks) { 1019 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1020 return false; 1021 } 1022 } 1023 1024 // Figure out which 'cases' to copy from SI to PSI. 1025 std::vector<ValueEqualityComparisonCase> BBCases; 1026 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1027 1028 std::vector<ValueEqualityComparisonCase> PredCases; 1029 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1030 1031 // Based on whether the default edge from PTI goes to BB or not, fill in 1032 // PredCases and PredDefault with the new switch cases we would like to 1033 // build. 1034 SmallVector<BasicBlock *, 8> NewSuccessors; 1035 1036 // Update the branch weight metadata along the way 1037 SmallVector<uint64_t, 8> Weights; 1038 bool PredHasWeights = HasBranchWeights(PTI); 1039 bool SuccHasWeights = HasBranchWeights(TI); 1040 1041 if (PredHasWeights) { 1042 GetBranchWeights(PTI, Weights); 1043 // branch-weight metadata is inconsistent here. 1044 if (Weights.size() != 1 + PredCases.size()) 1045 PredHasWeights = SuccHasWeights = false; 1046 } else if (SuccHasWeights) 1047 // If there are no predecessor weights but there are successor weights, 1048 // populate Weights with 1, which will later be scaled to the sum of 1049 // successor's weights 1050 Weights.assign(1 + PredCases.size(), 1); 1051 1052 SmallVector<uint64_t, 8> SuccWeights; 1053 if (SuccHasWeights) { 1054 GetBranchWeights(TI, SuccWeights); 1055 // branch-weight metadata is inconsistent here. 1056 if (SuccWeights.size() != 1 + BBCases.size()) 1057 PredHasWeights = SuccHasWeights = false; 1058 } else if (PredHasWeights) 1059 SuccWeights.assign(1 + BBCases.size(), 1); 1060 1061 if (PredDefault == BB) { 1062 // If this is the default destination from PTI, only the edges in TI 1063 // that don't occur in PTI, or that branch to BB will be activated. 1064 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1065 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1066 if (PredCases[i].Dest != BB) 1067 PTIHandled.insert(PredCases[i].Value); 1068 else { 1069 // The default destination is BB, we don't need explicit targets. 1070 std::swap(PredCases[i], PredCases.back()); 1071 1072 if (PredHasWeights || SuccHasWeights) { 1073 // Increase weight for the default case. 1074 Weights[0] += Weights[i + 1]; 1075 std::swap(Weights[i + 1], Weights.back()); 1076 Weights.pop_back(); 1077 } 1078 1079 PredCases.pop_back(); 1080 --i; 1081 --e; 1082 } 1083 1084 // Reconstruct the new switch statement we will be building. 1085 if (PredDefault != BBDefault) { 1086 PredDefault->removePredecessor(Pred); 1087 PredDefault = BBDefault; 1088 NewSuccessors.push_back(BBDefault); 1089 } 1090 1091 unsigned CasesFromPred = Weights.size(); 1092 uint64_t ValidTotalSuccWeight = 0; 1093 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1094 if (!PTIHandled.count(BBCases[i].Value) && 1095 BBCases[i].Dest != BBDefault) { 1096 PredCases.push_back(BBCases[i]); 1097 NewSuccessors.push_back(BBCases[i].Dest); 1098 if (SuccHasWeights || PredHasWeights) { 1099 // The default weight is at index 0, so weight for the ith case 1100 // should be at index i+1. Scale the cases from successor by 1101 // PredDefaultWeight (Weights[0]). 1102 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1103 ValidTotalSuccWeight += SuccWeights[i + 1]; 1104 } 1105 } 1106 1107 if (SuccHasWeights || PredHasWeights) { 1108 ValidTotalSuccWeight += SuccWeights[0]; 1109 // Scale the cases from predecessor by ValidTotalSuccWeight. 1110 for (unsigned i = 1; i < CasesFromPred; ++i) 1111 Weights[i] *= ValidTotalSuccWeight; 1112 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1113 Weights[0] *= SuccWeights[0]; 1114 } 1115 } else { 1116 // If this is not the default destination from PSI, only the edges 1117 // in SI that occur in PSI with a destination of BB will be 1118 // activated. 1119 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1120 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1121 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1122 if (PredCases[i].Dest == BB) { 1123 PTIHandled.insert(PredCases[i].Value); 1124 1125 if (PredHasWeights || SuccHasWeights) { 1126 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1127 std::swap(Weights[i + 1], Weights.back()); 1128 Weights.pop_back(); 1129 } 1130 1131 std::swap(PredCases[i], PredCases.back()); 1132 PredCases.pop_back(); 1133 --i; 1134 --e; 1135 } 1136 1137 // Okay, now we know which constants were sent to BB from the 1138 // predecessor. Figure out where they will all go now. 1139 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1140 if (PTIHandled.count(BBCases[i].Value)) { 1141 // If this is one we are capable of getting... 1142 if (PredHasWeights || SuccHasWeights) 1143 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1144 PredCases.push_back(BBCases[i]); 1145 NewSuccessors.push_back(BBCases[i].Dest); 1146 PTIHandled.erase( 1147 BBCases[i].Value); // This constant is taken care of 1148 } 1149 1150 // If there are any constants vectored to BB that TI doesn't handle, 1151 // they must go to the default destination of TI. 1152 for (ConstantInt *I : PTIHandled) { 1153 if (PredHasWeights || SuccHasWeights) 1154 Weights.push_back(WeightsForHandled[I]); 1155 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1156 NewSuccessors.push_back(BBDefault); 1157 } 1158 } 1159 1160 // Okay, at this point, we know which new successor Pred will get. Make 1161 // sure we update the number of entries in the PHI nodes for these 1162 // successors. 1163 for (BasicBlock *NewSuccessor : NewSuccessors) 1164 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1165 1166 Builder.SetInsertPoint(PTI); 1167 // Convert pointer to int before we switch. 1168 if (CV->getType()->isPointerTy()) { 1169 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1170 "magicptr"); 1171 } 1172 1173 // Now that the successors are updated, create the new Switch instruction. 1174 SwitchInst *NewSI = 1175 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1176 NewSI->setDebugLoc(PTI->getDebugLoc()); 1177 for (ValueEqualityComparisonCase &V : PredCases) 1178 NewSI->addCase(V.Value, V.Dest); 1179 1180 if (PredHasWeights || SuccHasWeights) { 1181 // Halve the weights if any of them cannot fit in an uint32_t 1182 FitWeights(Weights); 1183 1184 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1185 1186 setBranchWeights(NewSI, MDWeights); 1187 } 1188 1189 EraseTerminatorAndDCECond(PTI); 1190 1191 // Okay, last check. If BB is still a successor of PSI, then we must 1192 // have an infinite loop case. If so, add an infinitely looping block 1193 // to handle the case to preserve the behavior of the code. 1194 BasicBlock *InfLoopBlock = nullptr; 1195 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1196 if (NewSI->getSuccessor(i) == BB) { 1197 if (!InfLoopBlock) { 1198 // Insert it at the end of the function, because it's either code, 1199 // or it won't matter if it's hot. :) 1200 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1201 BB->getParent()); 1202 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1203 } 1204 NewSI->setSuccessor(i, InfLoopBlock); 1205 } 1206 1207 Changed = true; 1208 } 1209 } 1210 return Changed; 1211 } 1212 1213 // If we would need to insert a select that uses the value of this invoke 1214 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1215 // can't hoist the invoke, as there is nowhere to put the select in this case. 1216 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1217 Instruction *I1, Instruction *I2) { 1218 for (BasicBlock *Succ : successors(BB1)) { 1219 for (const PHINode &PN : Succ->phis()) { 1220 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1221 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1222 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1223 return false; 1224 } 1225 } 1226 } 1227 return true; 1228 } 1229 1230 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1231 1232 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1233 /// in the two blocks up into the branch block. The caller of this function 1234 /// guarantees that BI's block dominates BB1 and BB2. 1235 static bool HoistThenElseCodeToIf(BranchInst *BI, 1236 const TargetTransformInfo &TTI) { 1237 // This does very trivial matching, with limited scanning, to find identical 1238 // instructions in the two blocks. In particular, we don't want to get into 1239 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1240 // such, we currently just scan for obviously identical instructions in an 1241 // identical order. 1242 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1243 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1244 1245 BasicBlock::iterator BB1_Itr = BB1->begin(); 1246 BasicBlock::iterator BB2_Itr = BB2->begin(); 1247 1248 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1249 // Skip debug info if it is not identical. 1250 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1251 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1252 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1253 while (isa<DbgInfoIntrinsic>(I1)) 1254 I1 = &*BB1_Itr++; 1255 while (isa<DbgInfoIntrinsic>(I2)) 1256 I2 = &*BB2_Itr++; 1257 } 1258 // FIXME: Can we define a safety predicate for CallBr? 1259 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1260 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1261 isa<CallBrInst>(I1)) 1262 return false; 1263 1264 BasicBlock *BIParent = BI->getParent(); 1265 1266 bool Changed = false; 1267 do { 1268 // If we are hoisting the terminator instruction, don't move one (making a 1269 // broken BB), instead clone it, and remove BI. 1270 if (I1->isTerminator()) 1271 goto HoistTerminator; 1272 1273 // If we're going to hoist a call, make sure that the two instructions we're 1274 // commoning/hoisting are both marked with musttail, or neither of them is 1275 // marked as such. Otherwise, we might end up in a situation where we hoist 1276 // from a block where the terminator is a `ret` to a block where the terminator 1277 // is a `br`, and `musttail` calls expect to be followed by a return. 1278 auto *C1 = dyn_cast<CallInst>(I1); 1279 auto *C2 = dyn_cast<CallInst>(I2); 1280 if (C1 && C2) 1281 if (C1->isMustTailCall() != C2->isMustTailCall()) 1282 return Changed; 1283 1284 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1285 return Changed; 1286 1287 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1288 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1289 // The debug location is an integral part of a debug info intrinsic 1290 // and can't be separated from it or replaced. Instead of attempting 1291 // to merge locations, simply hoist both copies of the intrinsic. 1292 BIParent->getInstList().splice(BI->getIterator(), 1293 BB1->getInstList(), I1); 1294 BIParent->getInstList().splice(BI->getIterator(), 1295 BB2->getInstList(), I2); 1296 Changed = true; 1297 } else { 1298 // For a normal instruction, we just move one to right before the branch, 1299 // then replace all uses of the other with the first. Finally, we remove 1300 // the now redundant second instruction. 1301 BIParent->getInstList().splice(BI->getIterator(), 1302 BB1->getInstList(), I1); 1303 if (!I2->use_empty()) 1304 I2->replaceAllUsesWith(I1); 1305 I1->andIRFlags(I2); 1306 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1307 LLVMContext::MD_range, 1308 LLVMContext::MD_fpmath, 1309 LLVMContext::MD_invariant_load, 1310 LLVMContext::MD_nonnull, 1311 LLVMContext::MD_invariant_group, 1312 LLVMContext::MD_align, 1313 LLVMContext::MD_dereferenceable, 1314 LLVMContext::MD_dereferenceable_or_null, 1315 LLVMContext::MD_mem_parallel_loop_access, 1316 LLVMContext::MD_access_group}; 1317 combineMetadata(I1, I2, KnownIDs, true); 1318 1319 // I1 and I2 are being combined into a single instruction. Its debug 1320 // location is the merged locations of the original instructions. 1321 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1322 1323 I2->eraseFromParent(); 1324 Changed = true; 1325 } 1326 1327 I1 = &*BB1_Itr++; 1328 I2 = &*BB2_Itr++; 1329 // Skip debug info if it is not identical. 1330 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1331 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1332 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1333 while (isa<DbgInfoIntrinsic>(I1)) 1334 I1 = &*BB1_Itr++; 1335 while (isa<DbgInfoIntrinsic>(I2)) 1336 I2 = &*BB2_Itr++; 1337 } 1338 } while (I1->isIdenticalToWhenDefined(I2)); 1339 1340 return true; 1341 1342 HoistTerminator: 1343 // It may not be possible to hoist an invoke. 1344 // FIXME: Can we define a safety predicate for CallBr? 1345 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1346 return Changed; 1347 1348 // TODO: callbr hoisting currently disabled pending further study. 1349 if (isa<CallBrInst>(I1)) 1350 return Changed; 1351 1352 for (BasicBlock *Succ : successors(BB1)) { 1353 for (PHINode &PN : Succ->phis()) { 1354 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1355 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1356 if (BB1V == BB2V) 1357 continue; 1358 1359 // Check for passingValueIsAlwaysUndefined here because we would rather 1360 // eliminate undefined control flow then converting it to a select. 1361 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1362 passingValueIsAlwaysUndefined(BB2V, &PN)) 1363 return Changed; 1364 1365 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1366 return Changed; 1367 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1368 return Changed; 1369 } 1370 } 1371 1372 // Okay, it is safe to hoist the terminator. 1373 Instruction *NT = I1->clone(); 1374 BIParent->getInstList().insert(BI->getIterator(), NT); 1375 if (!NT->getType()->isVoidTy()) { 1376 I1->replaceAllUsesWith(NT); 1377 I2->replaceAllUsesWith(NT); 1378 NT->takeName(I1); 1379 } 1380 1381 // Ensure terminator gets a debug location, even an unknown one, in case 1382 // it involves inlinable calls. 1383 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1384 1385 // PHIs created below will adopt NT's merged DebugLoc. 1386 IRBuilder<NoFolder> Builder(NT); 1387 1388 // Hoisting one of the terminators from our successor is a great thing. 1389 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1390 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1391 // nodes, so we insert select instruction to compute the final result. 1392 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1393 for (BasicBlock *Succ : successors(BB1)) { 1394 for (PHINode &PN : Succ->phis()) { 1395 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1396 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1397 if (BB1V == BB2V) 1398 continue; 1399 1400 // These values do not agree. Insert a select instruction before NT 1401 // that determines the right value. 1402 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1403 if (!SI) 1404 SI = cast<SelectInst>( 1405 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1406 BB1V->getName() + "." + BB2V->getName(), BI)); 1407 1408 // Make the PHI node use the select for all incoming values for BB1/BB2 1409 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1410 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1411 PN.setIncomingValue(i, SI); 1412 } 1413 } 1414 1415 // Update any PHI nodes in our new successors. 1416 for (BasicBlock *Succ : successors(BB1)) 1417 AddPredecessorToBlock(Succ, BIParent, BB1); 1418 1419 EraseTerminatorAndDCECond(BI); 1420 return true; 1421 } 1422 1423 // All instructions in Insts belong to different blocks that all unconditionally 1424 // branch to a common successor. Analyze each instruction and return true if it 1425 // would be possible to sink them into their successor, creating one common 1426 // instruction instead. For every value that would be required to be provided by 1427 // PHI node (because an operand varies in each input block), add to PHIOperands. 1428 static bool canSinkInstructions( 1429 ArrayRef<Instruction *> Insts, 1430 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1431 // Prune out obviously bad instructions to move. Any non-store instruction 1432 // must have exactly one use, and we check later that use is by a single, 1433 // common PHI instruction in the successor. 1434 for (auto *I : Insts) { 1435 // These instructions may change or break semantics if moved. 1436 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1437 I->getType()->isTokenTy()) 1438 return false; 1439 1440 // Conservatively return false if I is an inline-asm instruction. Sinking 1441 // and merging inline-asm instructions can potentially create arguments 1442 // that cannot satisfy the inline-asm constraints. 1443 if (const auto *C = dyn_cast<CallBase>(I)) 1444 if (C->isInlineAsm()) 1445 return false; 1446 1447 // Everything must have only one use too, apart from stores which 1448 // have no uses. 1449 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1450 return false; 1451 } 1452 1453 const Instruction *I0 = Insts.front(); 1454 for (auto *I : Insts) 1455 if (!I->isSameOperationAs(I0)) 1456 return false; 1457 1458 // All instructions in Insts are known to be the same opcode. If they aren't 1459 // stores, check the only user of each is a PHI or in the same block as the 1460 // instruction, because if a user is in the same block as an instruction 1461 // we're contemplating sinking, it must already be determined to be sinkable. 1462 if (!isa<StoreInst>(I0)) { 1463 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1464 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1465 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1466 auto *U = cast<Instruction>(*I->user_begin()); 1467 return (PNUse && 1468 PNUse->getParent() == Succ && 1469 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1470 U->getParent() == I->getParent(); 1471 })) 1472 return false; 1473 } 1474 1475 // Because SROA can't handle speculating stores of selects, try not 1476 // to sink loads or stores of allocas when we'd have to create a PHI for 1477 // the address operand. Also, because it is likely that loads or stores 1478 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1479 // This can cause code churn which can have unintended consequences down 1480 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1481 // FIXME: This is a workaround for a deficiency in SROA - see 1482 // https://llvm.org/bugs/show_bug.cgi?id=30188 1483 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1484 return isa<AllocaInst>(I->getOperand(1)); 1485 })) 1486 return false; 1487 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1488 return isa<AllocaInst>(I->getOperand(0)); 1489 })) 1490 return false; 1491 1492 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1493 if (I0->getOperand(OI)->getType()->isTokenTy()) 1494 // Don't touch any operand of token type. 1495 return false; 1496 1497 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1498 assert(I->getNumOperands() == I0->getNumOperands()); 1499 return I->getOperand(OI) == I0->getOperand(OI); 1500 }; 1501 if (!all_of(Insts, SameAsI0)) { 1502 if (!canReplaceOperandWithVariable(I0, OI)) 1503 // We can't create a PHI from this GEP. 1504 return false; 1505 // Don't create indirect calls! The called value is the final operand. 1506 if (isa<CallBase>(I0) && OI == OE - 1) { 1507 // FIXME: if the call was *already* indirect, we should do this. 1508 return false; 1509 } 1510 for (auto *I : Insts) 1511 PHIOperands[I].push_back(I->getOperand(OI)); 1512 } 1513 } 1514 return true; 1515 } 1516 1517 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1518 // instruction of every block in Blocks to their common successor, commoning 1519 // into one instruction. 1520 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1521 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1522 1523 // canSinkLastInstruction returning true guarantees that every block has at 1524 // least one non-terminator instruction. 1525 SmallVector<Instruction*,4> Insts; 1526 for (auto *BB : Blocks) { 1527 Instruction *I = BB->getTerminator(); 1528 do { 1529 I = I->getPrevNode(); 1530 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1531 if (!isa<DbgInfoIntrinsic>(I)) 1532 Insts.push_back(I); 1533 } 1534 1535 // The only checking we need to do now is that all users of all instructions 1536 // are the same PHI node. canSinkLastInstruction should have checked this but 1537 // it is slightly over-aggressive - it gets confused by commutative instructions 1538 // so double-check it here. 1539 Instruction *I0 = Insts.front(); 1540 if (!isa<StoreInst>(I0)) { 1541 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1542 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1543 auto *U = cast<Instruction>(*I->user_begin()); 1544 return U == PNUse; 1545 })) 1546 return false; 1547 } 1548 1549 // We don't need to do any more checking here; canSinkLastInstruction should 1550 // have done it all for us. 1551 SmallVector<Value*, 4> NewOperands; 1552 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1553 // This check is different to that in canSinkLastInstruction. There, we 1554 // cared about the global view once simplifycfg (and instcombine) have 1555 // completed - it takes into account PHIs that become trivially 1556 // simplifiable. However here we need a more local view; if an operand 1557 // differs we create a PHI and rely on instcombine to clean up the very 1558 // small mess we may make. 1559 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1560 return I->getOperand(O) != I0->getOperand(O); 1561 }); 1562 if (!NeedPHI) { 1563 NewOperands.push_back(I0->getOperand(O)); 1564 continue; 1565 } 1566 1567 // Create a new PHI in the successor block and populate it. 1568 auto *Op = I0->getOperand(O); 1569 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1570 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1571 Op->getName() + ".sink", &BBEnd->front()); 1572 for (auto *I : Insts) 1573 PN->addIncoming(I->getOperand(O), I->getParent()); 1574 NewOperands.push_back(PN); 1575 } 1576 1577 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1578 // and move it to the start of the successor block. 1579 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1580 I0->getOperandUse(O).set(NewOperands[O]); 1581 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1582 1583 // Update metadata and IR flags, and merge debug locations. 1584 for (auto *I : Insts) 1585 if (I != I0) { 1586 // The debug location for the "common" instruction is the merged locations 1587 // of all the commoned instructions. We start with the original location 1588 // of the "common" instruction and iteratively merge each location in the 1589 // loop below. 1590 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1591 // However, as N-way merge for CallInst is rare, so we use simplified API 1592 // instead of using complex API for N-way merge. 1593 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1594 combineMetadataForCSE(I0, I, true); 1595 I0->andIRFlags(I); 1596 } 1597 1598 if (!isa<StoreInst>(I0)) { 1599 // canSinkLastInstruction checked that all instructions were used by 1600 // one and only one PHI node. Find that now, RAUW it to our common 1601 // instruction and nuke it. 1602 assert(I0->hasOneUse()); 1603 auto *PN = cast<PHINode>(*I0->user_begin()); 1604 PN->replaceAllUsesWith(I0); 1605 PN->eraseFromParent(); 1606 } 1607 1608 // Finally nuke all instructions apart from the common instruction. 1609 for (auto *I : Insts) 1610 if (I != I0) 1611 I->eraseFromParent(); 1612 1613 return true; 1614 } 1615 1616 namespace { 1617 1618 // LockstepReverseIterator - Iterates through instructions 1619 // in a set of blocks in reverse order from the first non-terminator. 1620 // For example (assume all blocks have size n): 1621 // LockstepReverseIterator I([B1, B2, B3]); 1622 // *I-- = [B1[n], B2[n], B3[n]]; 1623 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1624 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1625 // ... 1626 class LockstepReverseIterator { 1627 ArrayRef<BasicBlock*> Blocks; 1628 SmallVector<Instruction*,4> Insts; 1629 bool Fail; 1630 1631 public: 1632 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1633 reset(); 1634 } 1635 1636 void reset() { 1637 Fail = false; 1638 Insts.clear(); 1639 for (auto *BB : Blocks) { 1640 Instruction *Inst = BB->getTerminator(); 1641 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1642 Inst = Inst->getPrevNode(); 1643 if (!Inst) { 1644 // Block wasn't big enough. 1645 Fail = true; 1646 return; 1647 } 1648 Insts.push_back(Inst); 1649 } 1650 } 1651 1652 bool isValid() const { 1653 return !Fail; 1654 } 1655 1656 void operator--() { 1657 if (Fail) 1658 return; 1659 for (auto *&Inst : Insts) { 1660 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1661 Inst = Inst->getPrevNode(); 1662 // Already at beginning of block. 1663 if (!Inst) { 1664 Fail = true; 1665 return; 1666 } 1667 } 1668 } 1669 1670 ArrayRef<Instruction*> operator * () const { 1671 return Insts; 1672 } 1673 }; 1674 1675 } // end anonymous namespace 1676 1677 /// Check whether BB's predecessors end with unconditional branches. If it is 1678 /// true, sink any common code from the predecessors to BB. 1679 /// We also allow one predecessor to end with conditional branch (but no more 1680 /// than one). 1681 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1682 // We support two situations: 1683 // (1) all incoming arcs are unconditional 1684 // (2) one incoming arc is conditional 1685 // 1686 // (2) is very common in switch defaults and 1687 // else-if patterns; 1688 // 1689 // if (a) f(1); 1690 // else if (b) f(2); 1691 // 1692 // produces: 1693 // 1694 // [if] 1695 // / \ 1696 // [f(1)] [if] 1697 // | | \ 1698 // | | | 1699 // | [f(2)]| 1700 // \ | / 1701 // [ end ] 1702 // 1703 // [end] has two unconditional predecessor arcs and one conditional. The 1704 // conditional refers to the implicit empty 'else' arc. This conditional 1705 // arc can also be caused by an empty default block in a switch. 1706 // 1707 // In this case, we attempt to sink code from all *unconditional* arcs. 1708 // If we can sink instructions from these arcs (determined during the scan 1709 // phase below) we insert a common successor for all unconditional arcs and 1710 // connect that to [end], to enable sinking: 1711 // 1712 // [if] 1713 // / \ 1714 // [x(1)] [if] 1715 // | | \ 1716 // | | \ 1717 // | [x(2)] | 1718 // \ / | 1719 // [sink.split] | 1720 // \ / 1721 // [ end ] 1722 // 1723 SmallVector<BasicBlock*,4> UnconditionalPreds; 1724 Instruction *Cond = nullptr; 1725 for (auto *B : predecessors(BB)) { 1726 auto *T = B->getTerminator(); 1727 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1728 UnconditionalPreds.push_back(B); 1729 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1730 Cond = T; 1731 else 1732 return false; 1733 } 1734 if (UnconditionalPreds.size() < 2) 1735 return false; 1736 1737 bool Changed = false; 1738 // We take a two-step approach to tail sinking. First we scan from the end of 1739 // each block upwards in lockstep. If the n'th instruction from the end of each 1740 // block can be sunk, those instructions are added to ValuesToSink and we 1741 // carry on. If we can sink an instruction but need to PHI-merge some operands 1742 // (because they're not identical in each instruction) we add these to 1743 // PHIOperands. 1744 unsigned ScanIdx = 0; 1745 SmallPtrSet<Value*,4> InstructionsToSink; 1746 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1747 LockstepReverseIterator LRI(UnconditionalPreds); 1748 while (LRI.isValid() && 1749 canSinkInstructions(*LRI, PHIOperands)) { 1750 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1751 << "\n"); 1752 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1753 ++ScanIdx; 1754 --LRI; 1755 } 1756 1757 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1758 unsigned NumPHIdValues = 0; 1759 for (auto *I : *LRI) 1760 for (auto *V : PHIOperands[I]) 1761 if (InstructionsToSink.count(V) == 0) 1762 ++NumPHIdValues; 1763 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1764 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1765 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1766 NumPHIInsts++; 1767 1768 return NumPHIInsts <= 1; 1769 }; 1770 1771 if (ScanIdx > 0 && Cond) { 1772 // Check if we would actually sink anything first! This mutates the CFG and 1773 // adds an extra block. The goal in doing this is to allow instructions that 1774 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1775 // (such as trunc, add) can be sunk and predicated already. So we check that 1776 // we're going to sink at least one non-speculatable instruction. 1777 LRI.reset(); 1778 unsigned Idx = 0; 1779 bool Profitable = false; 1780 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1781 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1782 Profitable = true; 1783 break; 1784 } 1785 --LRI; 1786 ++Idx; 1787 } 1788 if (!Profitable) 1789 return false; 1790 1791 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1792 // We have a conditional edge and we're going to sink some instructions. 1793 // Insert a new block postdominating all blocks we're going to sink from. 1794 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1795 // Edges couldn't be split. 1796 return false; 1797 Changed = true; 1798 } 1799 1800 // Now that we've analyzed all potential sinking candidates, perform the 1801 // actual sink. We iteratively sink the last non-terminator of the source 1802 // blocks into their common successor unless doing so would require too 1803 // many PHI instructions to be generated (currently only one PHI is allowed 1804 // per sunk instruction). 1805 // 1806 // We can use InstructionsToSink to discount values needing PHI-merging that will 1807 // actually be sunk in a later iteration. This allows us to be more 1808 // aggressive in what we sink. This does allow a false positive where we 1809 // sink presuming a later value will also be sunk, but stop half way through 1810 // and never actually sink it which means we produce more PHIs than intended. 1811 // This is unlikely in practice though. 1812 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1813 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1814 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1815 << "\n"); 1816 1817 // Because we've sunk every instruction in turn, the current instruction to 1818 // sink is always at index 0. 1819 LRI.reset(); 1820 if (!ProfitableToSinkInstruction(LRI)) { 1821 // Too many PHIs would be created. 1822 LLVM_DEBUG( 1823 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1824 break; 1825 } 1826 1827 if (!sinkLastInstruction(UnconditionalPreds)) 1828 return Changed; 1829 NumSinkCommons++; 1830 Changed = true; 1831 } 1832 return Changed; 1833 } 1834 1835 /// Determine if we can hoist sink a sole store instruction out of a 1836 /// conditional block. 1837 /// 1838 /// We are looking for code like the following: 1839 /// BrBB: 1840 /// store i32 %add, i32* %arrayidx2 1841 /// ... // No other stores or function calls (we could be calling a memory 1842 /// ... // function). 1843 /// %cmp = icmp ult %x, %y 1844 /// br i1 %cmp, label %EndBB, label %ThenBB 1845 /// ThenBB: 1846 /// store i32 %add5, i32* %arrayidx2 1847 /// br label EndBB 1848 /// EndBB: 1849 /// ... 1850 /// We are going to transform this into: 1851 /// BrBB: 1852 /// store i32 %add, i32* %arrayidx2 1853 /// ... // 1854 /// %cmp = icmp ult %x, %y 1855 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1856 /// store i32 %add.add5, i32* %arrayidx2 1857 /// ... 1858 /// 1859 /// \return The pointer to the value of the previous store if the store can be 1860 /// hoisted into the predecessor block. 0 otherwise. 1861 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1862 BasicBlock *StoreBB, BasicBlock *EndBB) { 1863 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1864 if (!StoreToHoist) 1865 return nullptr; 1866 1867 // Volatile or atomic. 1868 if (!StoreToHoist->isSimple()) 1869 return nullptr; 1870 1871 Value *StorePtr = StoreToHoist->getPointerOperand(); 1872 1873 // Look for a store to the same pointer in BrBB. 1874 unsigned MaxNumInstToLookAt = 9; 1875 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1876 if (!MaxNumInstToLookAt) 1877 break; 1878 --MaxNumInstToLookAt; 1879 1880 // Could be calling an instruction that affects memory like free(). 1881 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1882 return nullptr; 1883 1884 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1885 // Found the previous store make sure it stores to the same location. 1886 if (SI->getPointerOperand() == StorePtr) 1887 // Found the previous store, return its value operand. 1888 return SI->getValueOperand(); 1889 return nullptr; // Unknown store. 1890 } 1891 } 1892 1893 return nullptr; 1894 } 1895 1896 /// Speculate a conditional basic block flattening the CFG. 1897 /// 1898 /// Note that this is a very risky transform currently. Speculating 1899 /// instructions like this is most often not desirable. Instead, there is an MI 1900 /// pass which can do it with full awareness of the resource constraints. 1901 /// However, some cases are "obvious" and we should do directly. An example of 1902 /// this is speculating a single, reasonably cheap instruction. 1903 /// 1904 /// There is only one distinct advantage to flattening the CFG at the IR level: 1905 /// it makes very common but simplistic optimizations such as are common in 1906 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1907 /// modeling their effects with easier to reason about SSA value graphs. 1908 /// 1909 /// 1910 /// An illustration of this transform is turning this IR: 1911 /// \code 1912 /// BB: 1913 /// %cmp = icmp ult %x, %y 1914 /// br i1 %cmp, label %EndBB, label %ThenBB 1915 /// ThenBB: 1916 /// %sub = sub %x, %y 1917 /// br label BB2 1918 /// EndBB: 1919 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1920 /// ... 1921 /// \endcode 1922 /// 1923 /// Into this IR: 1924 /// \code 1925 /// BB: 1926 /// %cmp = icmp ult %x, %y 1927 /// %sub = sub %x, %y 1928 /// %cond = select i1 %cmp, 0, %sub 1929 /// ... 1930 /// \endcode 1931 /// 1932 /// \returns true if the conditional block is removed. 1933 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1934 const TargetTransformInfo &TTI) { 1935 // Be conservative for now. FP select instruction can often be expensive. 1936 Value *BrCond = BI->getCondition(); 1937 if (isa<FCmpInst>(BrCond)) 1938 return false; 1939 1940 BasicBlock *BB = BI->getParent(); 1941 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1942 1943 // If ThenBB is actually on the false edge of the conditional branch, remember 1944 // to swap the select operands later. 1945 bool Invert = false; 1946 if (ThenBB != BI->getSuccessor(0)) { 1947 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1948 Invert = true; 1949 } 1950 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1951 1952 // Keep a count of how many times instructions are used within ThenBB when 1953 // they are candidates for sinking into ThenBB. Specifically: 1954 // - They are defined in BB, and 1955 // - They have no side effects, and 1956 // - All of their uses are in ThenBB. 1957 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1958 1959 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1960 1961 unsigned SpeculationCost = 0; 1962 Value *SpeculatedStoreValue = nullptr; 1963 StoreInst *SpeculatedStore = nullptr; 1964 for (BasicBlock::iterator BBI = ThenBB->begin(), 1965 BBE = std::prev(ThenBB->end()); 1966 BBI != BBE; ++BBI) { 1967 Instruction *I = &*BBI; 1968 // Skip debug info. 1969 if (isa<DbgInfoIntrinsic>(I)) { 1970 SpeculatedDbgIntrinsics.push_back(I); 1971 continue; 1972 } 1973 1974 // Only speculatively execute a single instruction (not counting the 1975 // terminator) for now. 1976 ++SpeculationCost; 1977 if (SpeculationCost > 1) 1978 return false; 1979 1980 // Don't hoist the instruction if it's unsafe or expensive. 1981 if (!isSafeToSpeculativelyExecute(I) && 1982 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1983 I, BB, ThenBB, EndBB)))) 1984 return false; 1985 if (!SpeculatedStoreValue && 1986 ComputeSpeculationCost(I, TTI) > 1987 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1988 return false; 1989 1990 // Store the store speculation candidate. 1991 if (SpeculatedStoreValue) 1992 SpeculatedStore = cast<StoreInst>(I); 1993 1994 // Do not hoist the instruction if any of its operands are defined but not 1995 // used in BB. The transformation will prevent the operand from 1996 // being sunk into the use block. 1997 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1998 Instruction *OpI = dyn_cast<Instruction>(*i); 1999 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2000 continue; // Not a candidate for sinking. 2001 2002 ++SinkCandidateUseCounts[OpI]; 2003 } 2004 } 2005 2006 // Consider any sink candidates which are only used in ThenBB as costs for 2007 // speculation. Note, while we iterate over a DenseMap here, we are summing 2008 // and so iteration order isn't significant. 2009 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2010 I = SinkCandidateUseCounts.begin(), 2011 E = SinkCandidateUseCounts.end(); 2012 I != E; ++I) 2013 if (I->first->hasNUses(I->second)) { 2014 ++SpeculationCost; 2015 if (SpeculationCost > 1) 2016 return false; 2017 } 2018 2019 // Check that the PHI nodes can be converted to selects. 2020 bool HaveRewritablePHIs = false; 2021 for (PHINode &PN : EndBB->phis()) { 2022 Value *OrigV = PN.getIncomingValueForBlock(BB); 2023 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2024 2025 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2026 // Skip PHIs which are trivial. 2027 if (ThenV == OrigV) 2028 continue; 2029 2030 // Don't convert to selects if we could remove undefined behavior instead. 2031 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2032 passingValueIsAlwaysUndefined(ThenV, &PN)) 2033 return false; 2034 2035 HaveRewritablePHIs = true; 2036 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2037 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2038 if (!OrigCE && !ThenCE) 2039 continue; // Known safe and cheap. 2040 2041 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2042 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2043 return false; 2044 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2045 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2046 unsigned MaxCost = 2047 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2048 if (OrigCost + ThenCost > MaxCost) 2049 return false; 2050 2051 // Account for the cost of an unfolded ConstantExpr which could end up 2052 // getting expanded into Instructions. 2053 // FIXME: This doesn't account for how many operations are combined in the 2054 // constant expression. 2055 ++SpeculationCost; 2056 if (SpeculationCost > 1) 2057 return false; 2058 } 2059 2060 // If there are no PHIs to process, bail early. This helps ensure idempotence 2061 // as well. 2062 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2063 return false; 2064 2065 // If we get here, we can hoist the instruction and if-convert. 2066 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2067 2068 // Insert a select of the value of the speculated store. 2069 if (SpeculatedStoreValue) { 2070 IRBuilder<NoFolder> Builder(BI); 2071 Value *TrueV = SpeculatedStore->getValueOperand(); 2072 Value *FalseV = SpeculatedStoreValue; 2073 if (Invert) 2074 std::swap(TrueV, FalseV); 2075 Value *S = Builder.CreateSelect( 2076 BrCond, TrueV, FalseV, "spec.store.select", BI); 2077 SpeculatedStore->setOperand(0, S); 2078 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2079 SpeculatedStore->getDebugLoc()); 2080 } 2081 2082 // Metadata can be dependent on the condition we are hoisting above. 2083 // Conservatively strip all metadata on the instruction. 2084 for (auto &I : *ThenBB) 2085 I.dropUnknownNonDebugMetadata(); 2086 2087 // Hoist the instructions. 2088 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2089 ThenBB->begin(), std::prev(ThenBB->end())); 2090 2091 // Insert selects and rewrite the PHI operands. 2092 IRBuilder<NoFolder> Builder(BI); 2093 for (PHINode &PN : EndBB->phis()) { 2094 unsigned OrigI = PN.getBasicBlockIndex(BB); 2095 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2096 Value *OrigV = PN.getIncomingValue(OrigI); 2097 Value *ThenV = PN.getIncomingValue(ThenI); 2098 2099 // Skip PHIs which are trivial. 2100 if (OrigV == ThenV) 2101 continue; 2102 2103 // Create a select whose true value is the speculatively executed value and 2104 // false value is the preexisting value. Swap them if the branch 2105 // destinations were inverted. 2106 Value *TrueV = ThenV, *FalseV = OrigV; 2107 if (Invert) 2108 std::swap(TrueV, FalseV); 2109 Value *V = Builder.CreateSelect( 2110 BrCond, TrueV, FalseV, "spec.select", BI); 2111 PN.setIncomingValue(OrigI, V); 2112 PN.setIncomingValue(ThenI, V); 2113 } 2114 2115 // Remove speculated dbg intrinsics. 2116 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2117 // dbg value for the different flows and inserting it after the select. 2118 for (Instruction *I : SpeculatedDbgIntrinsics) 2119 I->eraseFromParent(); 2120 2121 ++NumSpeculations; 2122 return true; 2123 } 2124 2125 /// Return true if we can thread a branch across this block. 2126 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2127 unsigned Size = 0; 2128 2129 for (Instruction &I : BB->instructionsWithoutDebug()) { 2130 if (Size > 10) 2131 return false; // Don't clone large BB's. 2132 ++Size; 2133 2134 // We can only support instructions that do not define values that are 2135 // live outside of the current basic block. 2136 for (User *U : I.users()) { 2137 Instruction *UI = cast<Instruction>(U); 2138 if (UI->getParent() != BB || isa<PHINode>(UI)) 2139 return false; 2140 } 2141 2142 // Looks ok, continue checking. 2143 } 2144 2145 return true; 2146 } 2147 2148 /// If we have a conditional branch on a PHI node value that is defined in the 2149 /// same block as the branch and if any PHI entries are constants, thread edges 2150 /// corresponding to that entry to be branches to their ultimate destination. 2151 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2152 AssumptionCache *AC) { 2153 BasicBlock *BB = BI->getParent(); 2154 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2155 // NOTE: we currently cannot transform this case if the PHI node is used 2156 // outside of the block. 2157 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2158 return false; 2159 2160 // Degenerate case of a single entry PHI. 2161 if (PN->getNumIncomingValues() == 1) { 2162 FoldSingleEntryPHINodes(PN->getParent()); 2163 return true; 2164 } 2165 2166 // Now we know that this block has multiple preds and two succs. 2167 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2168 return false; 2169 2170 // Can't fold blocks that contain noduplicate or convergent calls. 2171 if (any_of(*BB, [](const Instruction &I) { 2172 const CallInst *CI = dyn_cast<CallInst>(&I); 2173 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2174 })) 2175 return false; 2176 2177 // Okay, this is a simple enough basic block. See if any phi values are 2178 // constants. 2179 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2180 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2181 if (!CB || !CB->getType()->isIntegerTy(1)) 2182 continue; 2183 2184 // Okay, we now know that all edges from PredBB should be revectored to 2185 // branch to RealDest. 2186 BasicBlock *PredBB = PN->getIncomingBlock(i); 2187 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2188 2189 if (RealDest == BB) 2190 continue; // Skip self loops. 2191 // Skip if the predecessor's terminator is an indirect branch. 2192 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2193 continue; 2194 2195 // The dest block might have PHI nodes, other predecessors and other 2196 // difficult cases. Instead of being smart about this, just insert a new 2197 // block that jumps to the destination block, effectively splitting 2198 // the edge we are about to create. 2199 BasicBlock *EdgeBB = 2200 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2201 RealDest->getParent(), RealDest); 2202 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2203 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2204 2205 // Update PHI nodes. 2206 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2207 2208 // BB may have instructions that are being threaded over. Clone these 2209 // instructions into EdgeBB. We know that there will be no uses of the 2210 // cloned instructions outside of EdgeBB. 2211 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2212 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2213 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2214 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2215 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2216 continue; 2217 } 2218 // Clone the instruction. 2219 Instruction *N = BBI->clone(); 2220 if (BBI->hasName()) 2221 N->setName(BBI->getName() + ".c"); 2222 2223 // Update operands due to translation. 2224 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2225 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2226 if (PI != TranslateMap.end()) 2227 *i = PI->second; 2228 } 2229 2230 // Check for trivial simplification. 2231 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2232 if (!BBI->use_empty()) 2233 TranslateMap[&*BBI] = V; 2234 if (!N->mayHaveSideEffects()) { 2235 N->deleteValue(); // Instruction folded away, don't need actual inst 2236 N = nullptr; 2237 } 2238 } else { 2239 if (!BBI->use_empty()) 2240 TranslateMap[&*BBI] = N; 2241 } 2242 // Insert the new instruction into its new home. 2243 if (N) 2244 EdgeBB->getInstList().insert(InsertPt, N); 2245 2246 // Register the new instruction with the assumption cache if necessary. 2247 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2248 if (II->getIntrinsicID() == Intrinsic::assume) 2249 AC->registerAssumption(II); 2250 } 2251 2252 // Loop over all of the edges from PredBB to BB, changing them to branch 2253 // to EdgeBB instead. 2254 Instruction *PredBBTI = PredBB->getTerminator(); 2255 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2256 if (PredBBTI->getSuccessor(i) == BB) { 2257 BB->removePredecessor(PredBB); 2258 PredBBTI->setSuccessor(i, EdgeBB); 2259 } 2260 2261 // Recurse, simplifying any other constants. 2262 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2263 } 2264 2265 return false; 2266 } 2267 2268 /// Given a BB that starts with the specified two-entry PHI node, 2269 /// see if we can eliminate it. 2270 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2271 const DataLayout &DL) { 2272 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2273 // statement", which has a very simple dominance structure. Basically, we 2274 // are trying to find the condition that is being branched on, which 2275 // subsequently causes this merge to happen. We really want control 2276 // dependence information for this check, but simplifycfg can't keep it up 2277 // to date, and this catches most of the cases we care about anyway. 2278 BasicBlock *BB = PN->getParent(); 2279 const Function *Fn = BB->getParent(); 2280 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2281 return false; 2282 2283 BasicBlock *IfTrue, *IfFalse; 2284 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2285 if (!IfCond || 2286 // Don't bother if the branch will be constant folded trivially. 2287 isa<ConstantInt>(IfCond)) 2288 return false; 2289 2290 // Okay, we found that we can merge this two-entry phi node into a select. 2291 // Doing so would require us to fold *all* two entry phi nodes in this block. 2292 // At some point this becomes non-profitable (particularly if the target 2293 // doesn't support cmov's). Only do this transformation if there are two or 2294 // fewer PHI nodes in this block. 2295 unsigned NumPhis = 0; 2296 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2297 if (NumPhis > 2) 2298 return false; 2299 2300 // Loop over the PHI's seeing if we can promote them all to select 2301 // instructions. While we are at it, keep track of the instructions 2302 // that need to be moved to the dominating block. 2303 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2304 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2305 MaxCostVal1 = PHINodeFoldingThreshold; 2306 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2307 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2308 2309 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2310 PHINode *PN = cast<PHINode>(II++); 2311 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2312 PN->replaceAllUsesWith(V); 2313 PN->eraseFromParent(); 2314 continue; 2315 } 2316 2317 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2318 MaxCostVal0, TTI) || 2319 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2320 MaxCostVal1, TTI)) 2321 return false; 2322 } 2323 2324 // If we folded the first phi, PN dangles at this point. Refresh it. If 2325 // we ran out of PHIs then we simplified them all. 2326 PN = dyn_cast<PHINode>(BB->begin()); 2327 if (!PN) 2328 return true; 2329 2330 // Don't fold i1 branches on PHIs which contain binary operators. These can 2331 // often be turned into switches and other things. 2332 if (PN->getType()->isIntegerTy(1) && 2333 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2334 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2335 isa<BinaryOperator>(IfCond))) 2336 return false; 2337 2338 // If all PHI nodes are promotable, check to make sure that all instructions 2339 // in the predecessor blocks can be promoted as well. If not, we won't be able 2340 // to get rid of the control flow, so it's not worth promoting to select 2341 // instructions. 2342 BasicBlock *DomBlock = nullptr; 2343 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2344 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2345 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2346 IfBlock1 = nullptr; 2347 } else { 2348 DomBlock = *pred_begin(IfBlock1); 2349 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2350 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2351 // This is not an aggressive instruction that we can promote. 2352 // Because of this, we won't be able to get rid of the control flow, so 2353 // the xform is not worth it. 2354 return false; 2355 } 2356 } 2357 2358 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2359 IfBlock2 = nullptr; 2360 } else { 2361 DomBlock = *pred_begin(IfBlock2); 2362 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2363 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2364 // This is not an aggressive instruction that we can promote. 2365 // Because of this, we won't be able to get rid of the control flow, so 2366 // the xform is not worth it. 2367 return false; 2368 } 2369 } 2370 2371 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2372 << " T: " << IfTrue->getName() 2373 << " F: " << IfFalse->getName() << "\n"); 2374 2375 // If we can still promote the PHI nodes after this gauntlet of tests, 2376 // do all of the PHI's now. 2377 Instruction *InsertPt = DomBlock->getTerminator(); 2378 IRBuilder<NoFolder> Builder(InsertPt); 2379 2380 // Move all 'aggressive' instructions, which are defined in the 2381 // conditional parts of the if's up to the dominating block. 2382 if (IfBlock1) 2383 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2384 if (IfBlock2) 2385 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2386 2387 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2388 // Change the PHI node into a select instruction. 2389 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2390 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2391 2392 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2393 PN->replaceAllUsesWith(Sel); 2394 Sel->takeName(PN); 2395 PN->eraseFromParent(); 2396 } 2397 2398 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2399 // has been flattened. Change DomBlock to jump directly to our new block to 2400 // avoid other simplifycfg's kicking in on the diamond. 2401 Instruction *OldTI = DomBlock->getTerminator(); 2402 Builder.SetInsertPoint(OldTI); 2403 Builder.CreateBr(BB); 2404 OldTI->eraseFromParent(); 2405 return true; 2406 } 2407 2408 /// If we found a conditional branch that goes to two returning blocks, 2409 /// try to merge them together into one return, 2410 /// introducing a select if the return values disagree. 2411 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2412 IRBuilder<> &Builder) { 2413 assert(BI->isConditional() && "Must be a conditional branch"); 2414 BasicBlock *TrueSucc = BI->getSuccessor(0); 2415 BasicBlock *FalseSucc = BI->getSuccessor(1); 2416 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2417 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2418 2419 // Check to ensure both blocks are empty (just a return) or optionally empty 2420 // with PHI nodes. If there are other instructions, merging would cause extra 2421 // computation on one path or the other. 2422 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2423 return false; 2424 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2425 return false; 2426 2427 Builder.SetInsertPoint(BI); 2428 // Okay, we found a branch that is going to two return nodes. If 2429 // there is no return value for this function, just change the 2430 // branch into a return. 2431 if (FalseRet->getNumOperands() == 0) { 2432 TrueSucc->removePredecessor(BI->getParent()); 2433 FalseSucc->removePredecessor(BI->getParent()); 2434 Builder.CreateRetVoid(); 2435 EraseTerminatorAndDCECond(BI); 2436 return true; 2437 } 2438 2439 // Otherwise, figure out what the true and false return values are 2440 // so we can insert a new select instruction. 2441 Value *TrueValue = TrueRet->getReturnValue(); 2442 Value *FalseValue = FalseRet->getReturnValue(); 2443 2444 // Unwrap any PHI nodes in the return blocks. 2445 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2446 if (TVPN->getParent() == TrueSucc) 2447 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2448 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2449 if (FVPN->getParent() == FalseSucc) 2450 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2451 2452 // In order for this transformation to be safe, we must be able to 2453 // unconditionally execute both operands to the return. This is 2454 // normally the case, but we could have a potentially-trapping 2455 // constant expression that prevents this transformation from being 2456 // safe. 2457 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2458 if (TCV->canTrap()) 2459 return false; 2460 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2461 if (FCV->canTrap()) 2462 return false; 2463 2464 // Okay, we collected all the mapped values and checked them for sanity, and 2465 // defined to really do this transformation. First, update the CFG. 2466 TrueSucc->removePredecessor(BI->getParent()); 2467 FalseSucc->removePredecessor(BI->getParent()); 2468 2469 // Insert select instructions where needed. 2470 Value *BrCond = BI->getCondition(); 2471 if (TrueValue) { 2472 // Insert a select if the results differ. 2473 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2474 } else if (isa<UndefValue>(TrueValue)) { 2475 TrueValue = FalseValue; 2476 } else { 2477 TrueValue = 2478 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2479 } 2480 } 2481 2482 Value *RI = 2483 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2484 2485 (void)RI; 2486 2487 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2488 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2489 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2490 2491 EraseTerminatorAndDCECond(BI); 2492 2493 return true; 2494 } 2495 2496 /// Return true if the given instruction is available 2497 /// in its predecessor block. If yes, the instruction will be removed. 2498 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2499 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2500 return false; 2501 for (Instruction &I : *PB) { 2502 Instruction *PBI = &I; 2503 // Check whether Inst and PBI generate the same value. 2504 if (Inst->isIdenticalTo(PBI)) { 2505 Inst->replaceAllUsesWith(PBI); 2506 Inst->eraseFromParent(); 2507 return true; 2508 } 2509 } 2510 return false; 2511 } 2512 2513 /// Return true if either PBI or BI has branch weight available, and store 2514 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2515 /// not have branch weight, use 1:1 as its weight. 2516 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2517 uint64_t &PredTrueWeight, 2518 uint64_t &PredFalseWeight, 2519 uint64_t &SuccTrueWeight, 2520 uint64_t &SuccFalseWeight) { 2521 bool PredHasWeights = 2522 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2523 bool SuccHasWeights = 2524 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2525 if (PredHasWeights || SuccHasWeights) { 2526 if (!PredHasWeights) 2527 PredTrueWeight = PredFalseWeight = 1; 2528 if (!SuccHasWeights) 2529 SuccTrueWeight = SuccFalseWeight = 1; 2530 return true; 2531 } else { 2532 return false; 2533 } 2534 } 2535 2536 /// If this basic block is simple enough, and if a predecessor branches to us 2537 /// and one of our successors, fold the block into the predecessor and use 2538 /// logical operations to pick the right destination. 2539 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2540 unsigned BonusInstThreshold) { 2541 BasicBlock *BB = BI->getParent(); 2542 2543 const unsigned PredCount = pred_size(BB); 2544 2545 Instruction *Cond = nullptr; 2546 if (BI->isConditional()) 2547 Cond = dyn_cast<Instruction>(BI->getCondition()); 2548 else { 2549 // For unconditional branch, check for a simple CFG pattern, where 2550 // BB has a single predecessor and BB's successor is also its predecessor's 2551 // successor. If such pattern exists, check for CSE between BB and its 2552 // predecessor. 2553 if (BasicBlock *PB = BB->getSinglePredecessor()) 2554 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2555 if (PBI->isConditional() && 2556 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2557 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2558 for (auto I = BB->instructionsWithoutDebug().begin(), 2559 E = BB->instructionsWithoutDebug().end(); 2560 I != E;) { 2561 Instruction *Curr = &*I++; 2562 if (isa<CmpInst>(Curr)) { 2563 Cond = Curr; 2564 break; 2565 } 2566 // Quit if we can't remove this instruction. 2567 if (!tryCSEWithPredecessor(Curr, PB)) 2568 return false; 2569 } 2570 } 2571 2572 if (!Cond) 2573 return false; 2574 } 2575 2576 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2577 Cond->getParent() != BB || !Cond->hasOneUse()) 2578 return false; 2579 2580 // Make sure the instruction after the condition is the cond branch. 2581 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2582 2583 // Ignore dbg intrinsics. 2584 while (isa<DbgInfoIntrinsic>(CondIt)) 2585 ++CondIt; 2586 2587 if (&*CondIt != BI) 2588 return false; 2589 2590 // Only allow this transformation if computing the condition doesn't involve 2591 // too many instructions and these involved instructions can be executed 2592 // unconditionally. We denote all involved instructions except the condition 2593 // as "bonus instructions", and only allow this transformation when the 2594 // number of the bonus instructions we'll need to create when cloning into 2595 // each predecessor does not exceed a certain threshold. 2596 unsigned NumBonusInsts = 0; 2597 for (auto I = BB->begin(); Cond != &*I; ++I) { 2598 // Ignore dbg intrinsics. 2599 if (isa<DbgInfoIntrinsic>(I)) 2600 continue; 2601 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2602 return false; 2603 // I has only one use and can be executed unconditionally. 2604 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2605 if (User == nullptr || User->getParent() != BB) 2606 return false; 2607 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2608 // to use any other instruction, User must be an instruction between next(I) 2609 // and Cond. 2610 2611 // Account for the cost of duplicating this instruction into each 2612 // predecessor. 2613 NumBonusInsts += PredCount; 2614 // Early exits once we reach the limit. 2615 if (NumBonusInsts > BonusInstThreshold) 2616 return false; 2617 } 2618 2619 // Cond is known to be a compare or binary operator. Check to make sure that 2620 // neither operand is a potentially-trapping constant expression. 2621 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2622 if (CE->canTrap()) 2623 return false; 2624 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2625 if (CE->canTrap()) 2626 return false; 2627 2628 // Finally, don't infinitely unroll conditional loops. 2629 BasicBlock *TrueDest = BI->getSuccessor(0); 2630 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2631 if (TrueDest == BB || FalseDest == BB) 2632 return false; 2633 2634 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2635 BasicBlock *PredBlock = *PI; 2636 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2637 2638 // Check that we have two conditional branches. If there is a PHI node in 2639 // the common successor, verify that the same value flows in from both 2640 // blocks. 2641 SmallVector<PHINode *, 4> PHIs; 2642 if (!PBI || PBI->isUnconditional() || 2643 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2644 (!BI->isConditional() && 2645 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2646 continue; 2647 2648 // Determine if the two branches share a common destination. 2649 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2650 bool InvertPredCond = false; 2651 2652 if (BI->isConditional()) { 2653 if (PBI->getSuccessor(0) == TrueDest) { 2654 Opc = Instruction::Or; 2655 } else if (PBI->getSuccessor(1) == FalseDest) { 2656 Opc = Instruction::And; 2657 } else if (PBI->getSuccessor(0) == FalseDest) { 2658 Opc = Instruction::And; 2659 InvertPredCond = true; 2660 } else if (PBI->getSuccessor(1) == TrueDest) { 2661 Opc = Instruction::Or; 2662 InvertPredCond = true; 2663 } else { 2664 continue; 2665 } 2666 } else { 2667 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2668 continue; 2669 } 2670 2671 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2672 IRBuilder<> Builder(PBI); 2673 2674 // If we need to invert the condition in the pred block to match, do so now. 2675 if (InvertPredCond) { 2676 Value *NewCond = PBI->getCondition(); 2677 2678 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2679 CmpInst *CI = cast<CmpInst>(NewCond); 2680 CI->setPredicate(CI->getInversePredicate()); 2681 } else { 2682 NewCond = 2683 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2684 } 2685 2686 PBI->setCondition(NewCond); 2687 PBI->swapSuccessors(); 2688 } 2689 2690 // If we have bonus instructions, clone them into the predecessor block. 2691 // Note that there may be multiple predecessor blocks, so we cannot move 2692 // bonus instructions to a predecessor block. 2693 ValueToValueMapTy VMap; // maps original values to cloned values 2694 // We already make sure Cond is the last instruction before BI. Therefore, 2695 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2696 // instructions. 2697 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2698 if (isa<DbgInfoIntrinsic>(BonusInst)) 2699 continue; 2700 Instruction *NewBonusInst = BonusInst->clone(); 2701 RemapInstruction(NewBonusInst, VMap, 2702 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2703 VMap[&*BonusInst] = NewBonusInst; 2704 2705 // If we moved a load, we cannot any longer claim any knowledge about 2706 // its potential value. The previous information might have been valid 2707 // only given the branch precondition. 2708 // For an analogous reason, we must also drop all the metadata whose 2709 // semantics we don't understand. 2710 NewBonusInst->dropUnknownNonDebugMetadata(); 2711 2712 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2713 NewBonusInst->takeName(&*BonusInst); 2714 BonusInst->setName(BonusInst->getName() + ".old"); 2715 } 2716 2717 // Clone Cond into the predecessor basic block, and or/and the 2718 // two conditions together. 2719 Instruction *CondInPred = Cond->clone(); 2720 RemapInstruction(CondInPred, VMap, 2721 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2722 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2723 CondInPred->takeName(Cond); 2724 Cond->setName(CondInPred->getName() + ".old"); 2725 2726 if (BI->isConditional()) { 2727 Instruction *NewCond = cast<Instruction>( 2728 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2729 PBI->setCondition(NewCond); 2730 2731 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2732 bool HasWeights = 2733 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2734 SuccTrueWeight, SuccFalseWeight); 2735 SmallVector<uint64_t, 8> NewWeights; 2736 2737 if (PBI->getSuccessor(0) == BB) { 2738 if (HasWeights) { 2739 // PBI: br i1 %x, BB, FalseDest 2740 // BI: br i1 %y, TrueDest, FalseDest 2741 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2742 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2743 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2744 // TrueWeight for PBI * FalseWeight for BI. 2745 // We assume that total weights of a BranchInst can fit into 32 bits. 2746 // Therefore, we will not have overflow using 64-bit arithmetic. 2747 NewWeights.push_back(PredFalseWeight * 2748 (SuccFalseWeight + SuccTrueWeight) + 2749 PredTrueWeight * SuccFalseWeight); 2750 } 2751 AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU); 2752 PBI->setSuccessor(0, TrueDest); 2753 } 2754 if (PBI->getSuccessor(1) == BB) { 2755 if (HasWeights) { 2756 // PBI: br i1 %x, TrueDest, BB 2757 // BI: br i1 %y, TrueDest, FalseDest 2758 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2759 // FalseWeight for PBI * TrueWeight for BI. 2760 NewWeights.push_back(PredTrueWeight * 2761 (SuccFalseWeight + SuccTrueWeight) + 2762 PredFalseWeight * SuccTrueWeight); 2763 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2764 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2765 } 2766 AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU); 2767 PBI->setSuccessor(1, FalseDest); 2768 } 2769 if (NewWeights.size() == 2) { 2770 // Halve the weights if any of them cannot fit in an uint32_t 2771 FitWeights(NewWeights); 2772 2773 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2774 NewWeights.end()); 2775 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2776 } else 2777 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2778 } else { 2779 // Update PHI nodes in the common successors. 2780 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2781 ConstantInt *PBI_C = cast<ConstantInt>( 2782 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2783 assert(PBI_C->getType()->isIntegerTy(1)); 2784 Instruction *MergedCond = nullptr; 2785 if (PBI->getSuccessor(0) == TrueDest) { 2786 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2787 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2788 // is false: !PBI_Cond and BI_Value 2789 Instruction *NotCond = cast<Instruction>( 2790 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2791 MergedCond = cast<Instruction>( 2792 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2793 "and.cond")); 2794 if (PBI_C->isOne()) 2795 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2796 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2797 } else { 2798 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2799 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2800 // is false: PBI_Cond and BI_Value 2801 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2802 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2803 if (PBI_C->isOne()) { 2804 Instruction *NotCond = cast<Instruction>( 2805 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2806 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2807 Instruction::Or, NotCond, MergedCond, "or.cond")); 2808 } 2809 } 2810 // Update PHI Node. 2811 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 2812 } 2813 2814 // PBI is changed to branch to TrueDest below. Remove itself from 2815 // potential phis from all other successors. 2816 if (MSSAU) 2817 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 2818 2819 // Change PBI from Conditional to Unconditional. 2820 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2821 EraseTerminatorAndDCECond(PBI, MSSAU); 2822 PBI = New_PBI; 2823 } 2824 2825 // If BI was a loop latch, it may have had associated loop metadata. 2826 // We need to copy it to the new latch, that is, PBI. 2827 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2828 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2829 2830 // TODO: If BB is reachable from all paths through PredBlock, then we 2831 // could replace PBI's branch probabilities with BI's. 2832 2833 // Copy any debug value intrinsics into the end of PredBlock. 2834 for (Instruction &I : *BB) 2835 if (isa<DbgInfoIntrinsic>(I)) 2836 I.clone()->insertBefore(PBI); 2837 2838 return true; 2839 } 2840 return false; 2841 } 2842 2843 // If there is only one store in BB1 and BB2, return it, otherwise return 2844 // nullptr. 2845 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2846 StoreInst *S = nullptr; 2847 for (auto *BB : {BB1, BB2}) { 2848 if (!BB) 2849 continue; 2850 for (auto &I : *BB) 2851 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2852 if (S) 2853 // Multiple stores seen. 2854 return nullptr; 2855 else 2856 S = SI; 2857 } 2858 } 2859 return S; 2860 } 2861 2862 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2863 Value *AlternativeV = nullptr) { 2864 // PHI is going to be a PHI node that allows the value V that is defined in 2865 // BB to be referenced in BB's only successor. 2866 // 2867 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2868 // doesn't matter to us what the other operand is (it'll never get used). We 2869 // could just create a new PHI with an undef incoming value, but that could 2870 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2871 // other PHI. So here we directly look for some PHI in BB's successor with V 2872 // as an incoming operand. If we find one, we use it, else we create a new 2873 // one. 2874 // 2875 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2876 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2877 // where OtherBB is the single other predecessor of BB's only successor. 2878 PHINode *PHI = nullptr; 2879 BasicBlock *Succ = BB->getSingleSuccessor(); 2880 2881 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2882 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2883 PHI = cast<PHINode>(I); 2884 if (!AlternativeV) 2885 break; 2886 2887 assert(Succ->hasNPredecessors(2)); 2888 auto PredI = pred_begin(Succ); 2889 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2890 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2891 break; 2892 PHI = nullptr; 2893 } 2894 if (PHI) 2895 return PHI; 2896 2897 // If V is not an instruction defined in BB, just return it. 2898 if (!AlternativeV && 2899 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2900 return V; 2901 2902 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2903 PHI->addIncoming(V, BB); 2904 for (BasicBlock *PredBB : predecessors(Succ)) 2905 if (PredBB != BB) 2906 PHI->addIncoming( 2907 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2908 return PHI; 2909 } 2910 2911 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2912 BasicBlock *QTB, BasicBlock *QFB, 2913 BasicBlock *PostBB, Value *Address, 2914 bool InvertPCond, bool InvertQCond, 2915 const DataLayout &DL) { 2916 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2917 return Operator::getOpcode(&I) == Instruction::BitCast && 2918 I.getType()->isPointerTy(); 2919 }; 2920 2921 // If we're not in aggressive mode, we only optimize if we have some 2922 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2923 auto IsWorthwhile = [&](BasicBlock *BB) { 2924 if (!BB) 2925 return true; 2926 // Heuristic: if the block can be if-converted/phi-folded and the 2927 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2928 // thread this store. 2929 unsigned N = 0; 2930 for (auto &I : BB->instructionsWithoutDebug()) { 2931 // Cheap instructions viable for folding. 2932 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2933 isa<StoreInst>(I)) 2934 ++N; 2935 // Free instructions. 2936 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2937 continue; 2938 else 2939 return false; 2940 } 2941 // The store we want to merge is counted in N, so add 1 to make sure 2942 // we're counting the instructions that would be left. 2943 return N <= (PHINodeFoldingThreshold + 1); 2944 }; 2945 2946 if (!MergeCondStoresAggressively && 2947 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2948 !IsWorthwhile(QFB))) 2949 return false; 2950 2951 // For every pointer, there must be exactly two stores, one coming from 2952 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2953 // store (to any address) in PTB,PFB or QTB,QFB. 2954 // FIXME: We could relax this restriction with a bit more work and performance 2955 // testing. 2956 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2957 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2958 if (!PStore || !QStore) 2959 return false; 2960 2961 // Now check the stores are compatible. 2962 if (!QStore->isUnordered() || !PStore->isUnordered()) 2963 return false; 2964 2965 // Check that sinking the store won't cause program behavior changes. Sinking 2966 // the store out of the Q blocks won't change any behavior as we're sinking 2967 // from a block to its unconditional successor. But we're moving a store from 2968 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2969 // So we need to check that there are no aliasing loads or stores in 2970 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2971 // operations between PStore and the end of its parent block. 2972 // 2973 // The ideal way to do this is to query AliasAnalysis, but we don't 2974 // preserve AA currently so that is dangerous. Be super safe and just 2975 // check there are no other memory operations at all. 2976 for (auto &I : *QFB->getSinglePredecessor()) 2977 if (I.mayReadOrWriteMemory()) 2978 return false; 2979 for (auto &I : *QFB) 2980 if (&I != QStore && I.mayReadOrWriteMemory()) 2981 return false; 2982 if (QTB) 2983 for (auto &I : *QTB) 2984 if (&I != QStore && I.mayReadOrWriteMemory()) 2985 return false; 2986 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2987 I != E; ++I) 2988 if (&*I != PStore && I->mayReadOrWriteMemory()) 2989 return false; 2990 2991 // If PostBB has more than two predecessors, we need to split it so we can 2992 // sink the store. 2993 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 2994 // We know that QFB's only successor is PostBB. And QFB has a single 2995 // predecessor. If QTB exists, then its only successor is also PostBB. 2996 // If QTB does not exist, then QFB's only predecessor has a conditional 2997 // branch to QFB and PostBB. 2998 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 2999 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3000 "condstore.split"); 3001 if (!NewBB) 3002 return false; 3003 PostBB = NewBB; 3004 } 3005 3006 // OK, we're going to sink the stores to PostBB. The store has to be 3007 // conditional though, so first create the predicate. 3008 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3009 ->getCondition(); 3010 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3011 ->getCondition(); 3012 3013 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3014 PStore->getParent()); 3015 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3016 QStore->getParent(), PPHI); 3017 3018 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3019 3020 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3021 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3022 3023 if (InvertPCond) 3024 PPred = QB.CreateNot(PPred); 3025 if (InvertQCond) 3026 QPred = QB.CreateNot(QPred); 3027 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3028 3029 auto *T = 3030 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3031 QB.SetInsertPoint(T); 3032 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3033 AAMDNodes AAMD; 3034 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3035 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3036 SI->setAAMetadata(AAMD); 3037 unsigned PAlignment = PStore->getAlignment(); 3038 unsigned QAlignment = QStore->getAlignment(); 3039 unsigned TypeAlignment = 3040 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3041 unsigned MinAlignment; 3042 unsigned MaxAlignment; 3043 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3044 // Choose the minimum alignment. If we could prove both stores execute, we 3045 // could use biggest one. In this case, though, we only know that one of the 3046 // stores executes. And we don't know it's safe to take the alignment from a 3047 // store that doesn't execute. 3048 if (MinAlignment != 0) { 3049 // Choose the minimum of all non-zero alignments. 3050 SI->setAlignment(MinAlignment); 3051 } else if (MaxAlignment != 0) { 3052 // Choose the minimal alignment between the non-zero alignment and the ABI 3053 // default alignment for the type of the stored value. 3054 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3055 } else { 3056 // If both alignments are zero, use ABI default alignment for the type of 3057 // the stored value. 3058 SI->setAlignment(TypeAlignment); 3059 } 3060 3061 QStore->eraseFromParent(); 3062 PStore->eraseFromParent(); 3063 3064 return true; 3065 } 3066 3067 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3068 const DataLayout &DL) { 3069 // The intention here is to find diamonds or triangles (see below) where each 3070 // conditional block contains a store to the same address. Both of these 3071 // stores are conditional, so they can't be unconditionally sunk. But it may 3072 // be profitable to speculatively sink the stores into one merged store at the 3073 // end, and predicate the merged store on the union of the two conditions of 3074 // PBI and QBI. 3075 // 3076 // This can reduce the number of stores executed if both of the conditions are 3077 // true, and can allow the blocks to become small enough to be if-converted. 3078 // This optimization will also chain, so that ladders of test-and-set 3079 // sequences can be if-converted away. 3080 // 3081 // We only deal with simple diamonds or triangles: 3082 // 3083 // PBI or PBI or a combination of the two 3084 // / \ | \ 3085 // PTB PFB | PFB 3086 // \ / | / 3087 // QBI QBI 3088 // / \ | \ 3089 // QTB QFB | QFB 3090 // \ / | / 3091 // PostBB PostBB 3092 // 3093 // We model triangles as a type of diamond with a nullptr "true" block. 3094 // Triangles are canonicalized so that the fallthrough edge is represented by 3095 // a true condition, as in the diagram above. 3096 BasicBlock *PTB = PBI->getSuccessor(0); 3097 BasicBlock *PFB = PBI->getSuccessor(1); 3098 BasicBlock *QTB = QBI->getSuccessor(0); 3099 BasicBlock *QFB = QBI->getSuccessor(1); 3100 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3101 3102 // Make sure we have a good guess for PostBB. If QTB's only successor is 3103 // QFB, then QFB is a better PostBB. 3104 if (QTB->getSingleSuccessor() == QFB) 3105 PostBB = QFB; 3106 3107 // If we couldn't find a good PostBB, stop. 3108 if (!PostBB) 3109 return false; 3110 3111 bool InvertPCond = false, InvertQCond = false; 3112 // Canonicalize fallthroughs to the true branches. 3113 if (PFB == QBI->getParent()) { 3114 std::swap(PFB, PTB); 3115 InvertPCond = true; 3116 } 3117 if (QFB == PostBB) { 3118 std::swap(QFB, QTB); 3119 InvertQCond = true; 3120 } 3121 3122 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3123 // and QFB may not. Model fallthroughs as a nullptr block. 3124 if (PTB == QBI->getParent()) 3125 PTB = nullptr; 3126 if (QTB == PostBB) 3127 QTB = nullptr; 3128 3129 // Legality bailouts. We must have at least the non-fallthrough blocks and 3130 // the post-dominating block, and the non-fallthroughs must only have one 3131 // predecessor. 3132 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3133 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3134 }; 3135 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3136 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3137 return false; 3138 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3139 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3140 return false; 3141 if (!QBI->getParent()->hasNUses(2)) 3142 return false; 3143 3144 // OK, this is a sequence of two diamonds or triangles. 3145 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3146 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3147 for (auto *BB : {PTB, PFB}) { 3148 if (!BB) 3149 continue; 3150 for (auto &I : *BB) 3151 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3152 PStoreAddresses.insert(SI->getPointerOperand()); 3153 } 3154 for (auto *BB : {QTB, QFB}) { 3155 if (!BB) 3156 continue; 3157 for (auto &I : *BB) 3158 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3159 QStoreAddresses.insert(SI->getPointerOperand()); 3160 } 3161 3162 set_intersect(PStoreAddresses, QStoreAddresses); 3163 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3164 // clear what it contains. 3165 auto &CommonAddresses = PStoreAddresses; 3166 3167 bool Changed = false; 3168 for (auto *Address : CommonAddresses) 3169 Changed |= mergeConditionalStoreToAddress( 3170 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3171 return Changed; 3172 } 3173 3174 /// If we have a conditional branch as a predecessor of another block, 3175 /// this function tries to simplify it. We know 3176 /// that PBI and BI are both conditional branches, and BI is in one of the 3177 /// successor blocks of PBI - PBI branches to BI. 3178 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3179 const DataLayout &DL) { 3180 assert(PBI->isConditional() && BI->isConditional()); 3181 BasicBlock *BB = BI->getParent(); 3182 3183 // If this block ends with a branch instruction, and if there is a 3184 // predecessor that ends on a branch of the same condition, make 3185 // this conditional branch redundant. 3186 if (PBI->getCondition() == BI->getCondition() && 3187 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3188 // Okay, the outcome of this conditional branch is statically 3189 // knowable. If this block had a single pred, handle specially. 3190 if (BB->getSinglePredecessor()) { 3191 // Turn this into a branch on constant. 3192 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3193 BI->setCondition( 3194 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3195 return true; // Nuke the branch on constant. 3196 } 3197 3198 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3199 // in the constant and simplify the block result. Subsequent passes of 3200 // simplifycfg will thread the block. 3201 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3202 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3203 PHINode *NewPN = PHINode::Create( 3204 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3205 BI->getCondition()->getName() + ".pr", &BB->front()); 3206 // Okay, we're going to insert the PHI node. Since PBI is not the only 3207 // predecessor, compute the PHI'd conditional value for all of the preds. 3208 // Any predecessor where the condition is not computable we keep symbolic. 3209 for (pred_iterator PI = PB; PI != PE; ++PI) { 3210 BasicBlock *P = *PI; 3211 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3212 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3213 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3214 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3215 NewPN->addIncoming( 3216 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3217 P); 3218 } else { 3219 NewPN->addIncoming(BI->getCondition(), P); 3220 } 3221 } 3222 3223 BI->setCondition(NewPN); 3224 return true; 3225 } 3226 } 3227 3228 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3229 if (CE->canTrap()) 3230 return false; 3231 3232 // If both branches are conditional and both contain stores to the same 3233 // address, remove the stores from the conditionals and create a conditional 3234 // merged store at the end. 3235 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3236 return true; 3237 3238 // If this is a conditional branch in an empty block, and if any 3239 // predecessors are a conditional branch to one of our destinations, 3240 // fold the conditions into logical ops and one cond br. 3241 3242 // Ignore dbg intrinsics. 3243 if (&*BB->instructionsWithoutDebug().begin() != BI) 3244 return false; 3245 3246 int PBIOp, BIOp; 3247 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3248 PBIOp = 0; 3249 BIOp = 0; 3250 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3251 PBIOp = 0; 3252 BIOp = 1; 3253 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3254 PBIOp = 1; 3255 BIOp = 0; 3256 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3257 PBIOp = 1; 3258 BIOp = 1; 3259 } else { 3260 return false; 3261 } 3262 3263 // Check to make sure that the other destination of this branch 3264 // isn't BB itself. If so, this is an infinite loop that will 3265 // keep getting unwound. 3266 if (PBI->getSuccessor(PBIOp) == BB) 3267 return false; 3268 3269 // Do not perform this transformation if it would require 3270 // insertion of a large number of select instructions. For targets 3271 // without predication/cmovs, this is a big pessimization. 3272 3273 // Also do not perform this transformation if any phi node in the common 3274 // destination block can trap when reached by BB or PBB (PR17073). In that 3275 // case, it would be unsafe to hoist the operation into a select instruction. 3276 3277 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3278 unsigned NumPhis = 0; 3279 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3280 ++II, ++NumPhis) { 3281 if (NumPhis > 2) // Disable this xform. 3282 return false; 3283 3284 PHINode *PN = cast<PHINode>(II); 3285 Value *BIV = PN->getIncomingValueForBlock(BB); 3286 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3287 if (CE->canTrap()) 3288 return false; 3289 3290 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3291 Value *PBIV = PN->getIncomingValue(PBBIdx); 3292 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3293 if (CE->canTrap()) 3294 return false; 3295 } 3296 3297 // Finally, if everything is ok, fold the branches to logical ops. 3298 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3299 3300 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3301 << "AND: " << *BI->getParent()); 3302 3303 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3304 // branch in it, where one edge (OtherDest) goes back to itself but the other 3305 // exits. We don't *know* that the program avoids the infinite loop 3306 // (even though that seems likely). If we do this xform naively, we'll end up 3307 // recursively unpeeling the loop. Since we know that (after the xform is 3308 // done) that the block *is* infinite if reached, we just make it an obviously 3309 // infinite loop with no cond branch. 3310 if (OtherDest == BB) { 3311 // Insert it at the end of the function, because it's either code, 3312 // or it won't matter if it's hot. :) 3313 BasicBlock *InfLoopBlock = 3314 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3315 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3316 OtherDest = InfLoopBlock; 3317 } 3318 3319 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3320 3321 // BI may have other predecessors. Because of this, we leave 3322 // it alone, but modify PBI. 3323 3324 // Make sure we get to CommonDest on True&True directions. 3325 Value *PBICond = PBI->getCondition(); 3326 IRBuilder<NoFolder> Builder(PBI); 3327 if (PBIOp) 3328 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3329 3330 Value *BICond = BI->getCondition(); 3331 if (BIOp) 3332 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3333 3334 // Merge the conditions. 3335 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3336 3337 // Modify PBI to branch on the new condition to the new dests. 3338 PBI->setCondition(Cond); 3339 PBI->setSuccessor(0, CommonDest); 3340 PBI->setSuccessor(1, OtherDest); 3341 3342 // Update branch weight for PBI. 3343 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3344 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3345 bool HasWeights = 3346 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3347 SuccTrueWeight, SuccFalseWeight); 3348 if (HasWeights) { 3349 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3350 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3351 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3352 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3353 // The weight to CommonDest should be PredCommon * SuccTotal + 3354 // PredOther * SuccCommon. 3355 // The weight to OtherDest should be PredOther * SuccOther. 3356 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3357 PredOther * SuccCommon, 3358 PredOther * SuccOther}; 3359 // Halve the weights if any of them cannot fit in an uint32_t 3360 FitWeights(NewWeights); 3361 3362 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3363 } 3364 3365 // OtherDest may have phi nodes. If so, add an entry from PBI's 3366 // block that are identical to the entries for BI's block. 3367 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3368 3369 // We know that the CommonDest already had an edge from PBI to 3370 // it. If it has PHIs though, the PHIs may have different 3371 // entries for BB and PBI's BB. If so, insert a select to make 3372 // them agree. 3373 for (PHINode &PN : CommonDest->phis()) { 3374 Value *BIV = PN.getIncomingValueForBlock(BB); 3375 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3376 Value *PBIV = PN.getIncomingValue(PBBIdx); 3377 if (BIV != PBIV) { 3378 // Insert a select in PBI to pick the right value. 3379 SelectInst *NV = cast<SelectInst>( 3380 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3381 PN.setIncomingValue(PBBIdx, NV); 3382 // Although the select has the same condition as PBI, the original branch 3383 // weights for PBI do not apply to the new select because the select's 3384 // 'logical' edges are incoming edges of the phi that is eliminated, not 3385 // the outgoing edges of PBI. 3386 if (HasWeights) { 3387 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3388 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3389 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3390 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3391 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3392 // The weight to PredOtherDest should be PredOther * SuccCommon. 3393 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3394 PredOther * SuccCommon}; 3395 3396 FitWeights(NewWeights); 3397 3398 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3399 } 3400 } 3401 } 3402 3403 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3404 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3405 3406 // This basic block is probably dead. We know it has at least 3407 // one fewer predecessor. 3408 return true; 3409 } 3410 3411 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3412 // true or to FalseBB if Cond is false. 3413 // Takes care of updating the successors and removing the old terminator. 3414 // Also makes sure not to introduce new successors by assuming that edges to 3415 // non-successor TrueBBs and FalseBBs aren't reachable. 3416 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3417 BasicBlock *TrueBB, BasicBlock *FalseBB, 3418 uint32_t TrueWeight, 3419 uint32_t FalseWeight) { 3420 // Remove any superfluous successor edges from the CFG. 3421 // First, figure out which successors to preserve. 3422 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3423 // successor. 3424 BasicBlock *KeepEdge1 = TrueBB; 3425 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3426 3427 // Then remove the rest. 3428 for (BasicBlock *Succ : successors(OldTerm)) { 3429 // Make sure only to keep exactly one copy of each edge. 3430 if (Succ == KeepEdge1) 3431 KeepEdge1 = nullptr; 3432 else if (Succ == KeepEdge2) 3433 KeepEdge2 = nullptr; 3434 else 3435 Succ->removePredecessor(OldTerm->getParent(), 3436 /*KeepOneInputPHIs=*/true); 3437 } 3438 3439 IRBuilder<> Builder(OldTerm); 3440 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3441 3442 // Insert an appropriate new terminator. 3443 if (!KeepEdge1 && !KeepEdge2) { 3444 if (TrueBB == FalseBB) 3445 // We were only looking for one successor, and it was present. 3446 // Create an unconditional branch to it. 3447 Builder.CreateBr(TrueBB); 3448 else { 3449 // We found both of the successors we were looking for. 3450 // Create a conditional branch sharing the condition of the select. 3451 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3452 if (TrueWeight != FalseWeight) 3453 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3454 } 3455 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3456 // Neither of the selected blocks were successors, so this 3457 // terminator must be unreachable. 3458 new UnreachableInst(OldTerm->getContext(), OldTerm); 3459 } else { 3460 // One of the selected values was a successor, but the other wasn't. 3461 // Insert an unconditional branch to the one that was found; 3462 // the edge to the one that wasn't must be unreachable. 3463 if (!KeepEdge1) 3464 // Only TrueBB was found. 3465 Builder.CreateBr(TrueBB); 3466 else 3467 // Only FalseBB was found. 3468 Builder.CreateBr(FalseBB); 3469 } 3470 3471 EraseTerminatorAndDCECond(OldTerm); 3472 return true; 3473 } 3474 3475 // Replaces 3476 // (switch (select cond, X, Y)) on constant X, Y 3477 // with a branch - conditional if X and Y lead to distinct BBs, 3478 // unconditional otherwise. 3479 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3480 // Check for constant integer values in the select. 3481 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3482 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3483 if (!TrueVal || !FalseVal) 3484 return false; 3485 3486 // Find the relevant condition and destinations. 3487 Value *Condition = Select->getCondition(); 3488 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3489 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3490 3491 // Get weight for TrueBB and FalseBB. 3492 uint32_t TrueWeight = 0, FalseWeight = 0; 3493 SmallVector<uint64_t, 8> Weights; 3494 bool HasWeights = HasBranchWeights(SI); 3495 if (HasWeights) { 3496 GetBranchWeights(SI, Weights); 3497 if (Weights.size() == 1 + SI->getNumCases()) { 3498 TrueWeight = 3499 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3500 FalseWeight = 3501 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3502 } 3503 } 3504 3505 // Perform the actual simplification. 3506 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3507 FalseWeight); 3508 } 3509 3510 // Replaces 3511 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3512 // blockaddress(@fn, BlockB))) 3513 // with 3514 // (br cond, BlockA, BlockB). 3515 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3516 // Check that both operands of the select are block addresses. 3517 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3518 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3519 if (!TBA || !FBA) 3520 return false; 3521 3522 // Extract the actual blocks. 3523 BasicBlock *TrueBB = TBA->getBasicBlock(); 3524 BasicBlock *FalseBB = FBA->getBasicBlock(); 3525 3526 // Perform the actual simplification. 3527 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3528 0); 3529 } 3530 3531 /// This is called when we find an icmp instruction 3532 /// (a seteq/setne with a constant) as the only instruction in a 3533 /// block that ends with an uncond branch. We are looking for a very specific 3534 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3535 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3536 /// default value goes to an uncond block with a seteq in it, we get something 3537 /// like: 3538 /// 3539 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3540 /// DEFAULT: 3541 /// %tmp = icmp eq i8 %A, 92 3542 /// br label %end 3543 /// end: 3544 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3545 /// 3546 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3547 /// the PHI, merging the third icmp into the switch. 3548 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3549 ICmpInst *ICI, IRBuilder<> &Builder) { 3550 BasicBlock *BB = ICI->getParent(); 3551 3552 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3553 // complex. 3554 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3555 return false; 3556 3557 Value *V = ICI->getOperand(0); 3558 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3559 3560 // The pattern we're looking for is where our only predecessor is a switch on 3561 // 'V' and this block is the default case for the switch. In this case we can 3562 // fold the compared value into the switch to simplify things. 3563 BasicBlock *Pred = BB->getSinglePredecessor(); 3564 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3565 return false; 3566 3567 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3568 if (SI->getCondition() != V) 3569 return false; 3570 3571 // If BB is reachable on a non-default case, then we simply know the value of 3572 // V in this block. Substitute it and constant fold the icmp instruction 3573 // away. 3574 if (SI->getDefaultDest() != BB) { 3575 ConstantInt *VVal = SI->findCaseDest(BB); 3576 assert(VVal && "Should have a unique destination value"); 3577 ICI->setOperand(0, VVal); 3578 3579 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3580 ICI->replaceAllUsesWith(V); 3581 ICI->eraseFromParent(); 3582 } 3583 // BB is now empty, so it is likely to simplify away. 3584 return requestResimplify(); 3585 } 3586 3587 // Ok, the block is reachable from the default dest. If the constant we're 3588 // comparing exists in one of the other edges, then we can constant fold ICI 3589 // and zap it. 3590 if (SI->findCaseValue(Cst) != SI->case_default()) { 3591 Value *V; 3592 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3593 V = ConstantInt::getFalse(BB->getContext()); 3594 else 3595 V = ConstantInt::getTrue(BB->getContext()); 3596 3597 ICI->replaceAllUsesWith(V); 3598 ICI->eraseFromParent(); 3599 // BB is now empty, so it is likely to simplify away. 3600 return requestResimplify(); 3601 } 3602 3603 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3604 // the block. 3605 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3606 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3607 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3608 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3609 return false; 3610 3611 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3612 // true in the PHI. 3613 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3614 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3615 3616 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3617 std::swap(DefaultCst, NewCst); 3618 3619 // Replace ICI (which is used by the PHI for the default value) with true or 3620 // false depending on if it is EQ or NE. 3621 ICI->replaceAllUsesWith(DefaultCst); 3622 ICI->eraseFromParent(); 3623 3624 // Okay, the switch goes to this block on a default value. Add an edge from 3625 // the switch to the merge point on the compared value. 3626 BasicBlock *NewBB = 3627 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3628 { 3629 SwitchInstProfUpdateWrapper SIW(*SI); 3630 auto W0 = SIW.getSuccessorWeight(0); 3631 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3632 if (W0) { 3633 NewW = ((uint64_t(*W0) + 1) >> 1); 3634 SIW.setSuccessorWeight(0, *NewW); 3635 } 3636 SIW.addCase(Cst, NewBB, NewW); 3637 } 3638 3639 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3640 Builder.SetInsertPoint(NewBB); 3641 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3642 Builder.CreateBr(SuccBlock); 3643 PHIUse->addIncoming(NewCst, NewBB); 3644 return true; 3645 } 3646 3647 /// The specified branch is a conditional branch. 3648 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3649 /// fold it into a switch instruction if so. 3650 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3651 const DataLayout &DL) { 3652 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3653 if (!Cond) 3654 return false; 3655 3656 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3657 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3658 // 'setne's and'ed together, collect them. 3659 3660 // Try to gather values from a chain of and/or to be turned into a switch 3661 ConstantComparesGatherer ConstantCompare(Cond, DL); 3662 // Unpack the result 3663 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3664 Value *CompVal = ConstantCompare.CompValue; 3665 unsigned UsedICmps = ConstantCompare.UsedICmps; 3666 Value *ExtraCase = ConstantCompare.Extra; 3667 3668 // If we didn't have a multiply compared value, fail. 3669 if (!CompVal) 3670 return false; 3671 3672 // Avoid turning single icmps into a switch. 3673 if (UsedICmps <= 1) 3674 return false; 3675 3676 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3677 3678 // There might be duplicate constants in the list, which the switch 3679 // instruction can't handle, remove them now. 3680 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3681 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3682 3683 // If Extra was used, we require at least two switch values to do the 3684 // transformation. A switch with one value is just a conditional branch. 3685 if (ExtraCase && Values.size() < 2) 3686 return false; 3687 3688 // TODO: Preserve branch weight metadata, similarly to how 3689 // FoldValueComparisonIntoPredecessors preserves it. 3690 3691 // Figure out which block is which destination. 3692 BasicBlock *DefaultBB = BI->getSuccessor(1); 3693 BasicBlock *EdgeBB = BI->getSuccessor(0); 3694 if (!TrueWhenEqual) 3695 std::swap(DefaultBB, EdgeBB); 3696 3697 BasicBlock *BB = BI->getParent(); 3698 3699 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3700 << " cases into SWITCH. BB is:\n" 3701 << *BB); 3702 3703 // If there are any extra values that couldn't be folded into the switch 3704 // then we evaluate them with an explicit branch first. Split the block 3705 // right before the condbr to handle it. 3706 if (ExtraCase) { 3707 BasicBlock *NewBB = 3708 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3709 // Remove the uncond branch added to the old block. 3710 Instruction *OldTI = BB->getTerminator(); 3711 Builder.SetInsertPoint(OldTI); 3712 3713 if (TrueWhenEqual) 3714 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3715 else 3716 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3717 3718 OldTI->eraseFromParent(); 3719 3720 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3721 // for the edge we just added. 3722 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3723 3724 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3725 << "\nEXTRABB = " << *BB); 3726 BB = NewBB; 3727 } 3728 3729 Builder.SetInsertPoint(BI); 3730 // Convert pointer to int before we switch. 3731 if (CompVal->getType()->isPointerTy()) { 3732 CompVal = Builder.CreatePtrToInt( 3733 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3734 } 3735 3736 // Create the new switch instruction now. 3737 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3738 3739 // Add all of the 'cases' to the switch instruction. 3740 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3741 New->addCase(Values[i], EdgeBB); 3742 3743 // We added edges from PI to the EdgeBB. As such, if there were any 3744 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3745 // the number of edges added. 3746 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3747 PHINode *PN = cast<PHINode>(BBI); 3748 Value *InVal = PN->getIncomingValueForBlock(BB); 3749 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3750 PN->addIncoming(InVal, BB); 3751 } 3752 3753 // Erase the old branch instruction. 3754 EraseTerminatorAndDCECond(BI); 3755 3756 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3757 return true; 3758 } 3759 3760 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3761 if (isa<PHINode>(RI->getValue())) 3762 return SimplifyCommonResume(RI); 3763 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3764 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3765 // The resume must unwind the exception that caused control to branch here. 3766 return SimplifySingleResume(RI); 3767 3768 return false; 3769 } 3770 3771 // Simplify resume that is shared by several landing pads (phi of landing pad). 3772 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3773 BasicBlock *BB = RI->getParent(); 3774 3775 // Check that there are no other instructions except for debug intrinsics 3776 // between the phi of landing pads (RI->getValue()) and resume instruction. 3777 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3778 E = RI->getIterator(); 3779 while (++I != E) 3780 if (!isa<DbgInfoIntrinsic>(I)) 3781 return false; 3782 3783 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3784 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3785 3786 // Check incoming blocks to see if any of them are trivial. 3787 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3788 Idx++) { 3789 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3790 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3791 3792 // If the block has other successors, we can not delete it because 3793 // it has other dependents. 3794 if (IncomingBB->getUniqueSuccessor() != BB) 3795 continue; 3796 3797 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3798 // Not the landing pad that caused the control to branch here. 3799 if (IncomingValue != LandingPad) 3800 continue; 3801 3802 bool isTrivial = true; 3803 3804 I = IncomingBB->getFirstNonPHI()->getIterator(); 3805 E = IncomingBB->getTerminator()->getIterator(); 3806 while (++I != E) 3807 if (!isa<DbgInfoIntrinsic>(I)) { 3808 isTrivial = false; 3809 break; 3810 } 3811 3812 if (isTrivial) 3813 TrivialUnwindBlocks.insert(IncomingBB); 3814 } 3815 3816 // If no trivial unwind blocks, don't do any simplifications. 3817 if (TrivialUnwindBlocks.empty()) 3818 return false; 3819 3820 // Turn all invokes that unwind here into calls. 3821 for (auto *TrivialBB : TrivialUnwindBlocks) { 3822 // Blocks that will be simplified should be removed from the phi node. 3823 // Note there could be multiple edges to the resume block, and we need 3824 // to remove them all. 3825 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3826 BB->removePredecessor(TrivialBB, true); 3827 3828 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3829 PI != PE;) { 3830 BasicBlock *Pred = *PI++; 3831 removeUnwindEdge(Pred); 3832 } 3833 3834 // In each SimplifyCFG run, only the current processed block can be erased. 3835 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3836 // of erasing TrivialBB, we only remove the branch to the common resume 3837 // block so that we can later erase the resume block since it has no 3838 // predecessors. 3839 TrivialBB->getTerminator()->eraseFromParent(); 3840 new UnreachableInst(RI->getContext(), TrivialBB); 3841 } 3842 3843 // Delete the resume block if all its predecessors have been removed. 3844 if (pred_empty(BB)) 3845 BB->eraseFromParent(); 3846 3847 return !TrivialUnwindBlocks.empty(); 3848 } 3849 3850 // Simplify resume that is only used by a single (non-phi) landing pad. 3851 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3852 BasicBlock *BB = RI->getParent(); 3853 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3854 assert(RI->getValue() == LPInst && 3855 "Resume must unwind the exception that caused control to here"); 3856 3857 // Check that there are no other instructions except for debug intrinsics. 3858 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3859 while (++I != E) 3860 if (!isa<DbgInfoIntrinsic>(I)) 3861 return false; 3862 3863 // Turn all invokes that unwind here into calls and delete the basic block. 3864 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3865 BasicBlock *Pred = *PI++; 3866 removeUnwindEdge(Pred); 3867 } 3868 3869 // The landingpad is now unreachable. Zap it. 3870 if (LoopHeaders) 3871 LoopHeaders->erase(BB); 3872 BB->eraseFromParent(); 3873 return true; 3874 } 3875 3876 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3877 // If this is a trivial cleanup pad that executes no instructions, it can be 3878 // eliminated. If the cleanup pad continues to the caller, any predecessor 3879 // that is an EH pad will be updated to continue to the caller and any 3880 // predecessor that terminates with an invoke instruction will have its invoke 3881 // instruction converted to a call instruction. If the cleanup pad being 3882 // simplified does not continue to the caller, each predecessor will be 3883 // updated to continue to the unwind destination of the cleanup pad being 3884 // simplified. 3885 BasicBlock *BB = RI->getParent(); 3886 CleanupPadInst *CPInst = RI->getCleanupPad(); 3887 if (CPInst->getParent() != BB) 3888 // This isn't an empty cleanup. 3889 return false; 3890 3891 // We cannot kill the pad if it has multiple uses. This typically arises 3892 // from unreachable basic blocks. 3893 if (!CPInst->hasOneUse()) 3894 return false; 3895 3896 // Check that there are no other instructions except for benign intrinsics. 3897 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3898 while (++I != E) { 3899 auto *II = dyn_cast<IntrinsicInst>(I); 3900 if (!II) 3901 return false; 3902 3903 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3904 switch (IntrinsicID) { 3905 case Intrinsic::dbg_declare: 3906 case Intrinsic::dbg_value: 3907 case Intrinsic::dbg_label: 3908 case Intrinsic::lifetime_end: 3909 break; 3910 default: 3911 return false; 3912 } 3913 } 3914 3915 // If the cleanup return we are simplifying unwinds to the caller, this will 3916 // set UnwindDest to nullptr. 3917 BasicBlock *UnwindDest = RI->getUnwindDest(); 3918 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3919 3920 // We're about to remove BB from the control flow. Before we do, sink any 3921 // PHINodes into the unwind destination. Doing this before changing the 3922 // control flow avoids some potentially slow checks, since we can currently 3923 // be certain that UnwindDest and BB have no common predecessors (since they 3924 // are both EH pads). 3925 if (UnwindDest) { 3926 // First, go through the PHI nodes in UnwindDest and update any nodes that 3927 // reference the block we are removing 3928 for (BasicBlock::iterator I = UnwindDest->begin(), 3929 IE = DestEHPad->getIterator(); 3930 I != IE; ++I) { 3931 PHINode *DestPN = cast<PHINode>(I); 3932 3933 int Idx = DestPN->getBasicBlockIndex(BB); 3934 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3935 assert(Idx != -1); 3936 // This PHI node has an incoming value that corresponds to a control 3937 // path through the cleanup pad we are removing. If the incoming 3938 // value is in the cleanup pad, it must be a PHINode (because we 3939 // verified above that the block is otherwise empty). Otherwise, the 3940 // value is either a constant or a value that dominates the cleanup 3941 // pad being removed. 3942 // 3943 // Because BB and UnwindDest are both EH pads, all of their 3944 // predecessors must unwind to these blocks, and since no instruction 3945 // can have multiple unwind destinations, there will be no overlap in 3946 // incoming blocks between SrcPN and DestPN. 3947 Value *SrcVal = DestPN->getIncomingValue(Idx); 3948 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3949 3950 // Remove the entry for the block we are deleting. 3951 DestPN->removeIncomingValue(Idx, false); 3952 3953 if (SrcPN && SrcPN->getParent() == BB) { 3954 // If the incoming value was a PHI node in the cleanup pad we are 3955 // removing, we need to merge that PHI node's incoming values into 3956 // DestPN. 3957 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3958 SrcIdx != SrcE; ++SrcIdx) { 3959 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3960 SrcPN->getIncomingBlock(SrcIdx)); 3961 } 3962 } else { 3963 // Otherwise, the incoming value came from above BB and 3964 // so we can just reuse it. We must associate all of BB's 3965 // predecessors with this value. 3966 for (auto *pred : predecessors(BB)) { 3967 DestPN->addIncoming(SrcVal, pred); 3968 } 3969 } 3970 } 3971 3972 // Sink any remaining PHI nodes directly into UnwindDest. 3973 Instruction *InsertPt = DestEHPad; 3974 for (BasicBlock::iterator I = BB->begin(), 3975 IE = BB->getFirstNonPHI()->getIterator(); 3976 I != IE;) { 3977 // The iterator must be incremented here because the instructions are 3978 // being moved to another block. 3979 PHINode *PN = cast<PHINode>(I++); 3980 if (PN->use_empty()) 3981 // If the PHI node has no uses, just leave it. It will be erased 3982 // when we erase BB below. 3983 continue; 3984 3985 // Otherwise, sink this PHI node into UnwindDest. 3986 // Any predecessors to UnwindDest which are not already represented 3987 // must be back edges which inherit the value from the path through 3988 // BB. In this case, the PHI value must reference itself. 3989 for (auto *pred : predecessors(UnwindDest)) 3990 if (pred != BB) 3991 PN->addIncoming(PN, pred); 3992 PN->moveBefore(InsertPt); 3993 } 3994 } 3995 3996 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3997 // The iterator must be updated here because we are removing this pred. 3998 BasicBlock *PredBB = *PI++; 3999 if (UnwindDest == nullptr) { 4000 removeUnwindEdge(PredBB); 4001 } else { 4002 Instruction *TI = PredBB->getTerminator(); 4003 TI->replaceUsesOfWith(BB, UnwindDest); 4004 } 4005 } 4006 4007 // The cleanup pad is now unreachable. Zap it. 4008 BB->eraseFromParent(); 4009 return true; 4010 } 4011 4012 // Try to merge two cleanuppads together. 4013 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4014 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4015 // with. 4016 BasicBlock *UnwindDest = RI->getUnwindDest(); 4017 if (!UnwindDest) 4018 return false; 4019 4020 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4021 // be safe to merge without code duplication. 4022 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4023 return false; 4024 4025 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4026 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4027 if (!SuccessorCleanupPad) 4028 return false; 4029 4030 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4031 // Replace any uses of the successor cleanupad with the predecessor pad 4032 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4033 // funclet bundle operands. 4034 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4035 // Remove the old cleanuppad. 4036 SuccessorCleanupPad->eraseFromParent(); 4037 // Now, we simply replace the cleanupret with a branch to the unwind 4038 // destination. 4039 BranchInst::Create(UnwindDest, RI->getParent()); 4040 RI->eraseFromParent(); 4041 4042 return true; 4043 } 4044 4045 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4046 // It is possible to transiantly have an undef cleanuppad operand because we 4047 // have deleted some, but not all, dead blocks. 4048 // Eventually, this block will be deleted. 4049 if (isa<UndefValue>(RI->getOperand(0))) 4050 return false; 4051 4052 if (mergeCleanupPad(RI)) 4053 return true; 4054 4055 if (removeEmptyCleanup(RI)) 4056 return true; 4057 4058 return false; 4059 } 4060 4061 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4062 BasicBlock *BB = RI->getParent(); 4063 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4064 return false; 4065 4066 // Find predecessors that end with branches. 4067 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4068 SmallVector<BranchInst *, 8> CondBranchPreds; 4069 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4070 BasicBlock *P = *PI; 4071 Instruction *PTI = P->getTerminator(); 4072 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4073 if (BI->isUnconditional()) 4074 UncondBranchPreds.push_back(P); 4075 else 4076 CondBranchPreds.push_back(BI); 4077 } 4078 } 4079 4080 // If we found some, do the transformation! 4081 if (!UncondBranchPreds.empty() && DupRet) { 4082 while (!UncondBranchPreds.empty()) { 4083 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4084 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4085 << "INTO UNCOND BRANCH PRED: " << *Pred); 4086 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4087 } 4088 4089 // If we eliminated all predecessors of the block, delete the block now. 4090 if (pred_empty(BB)) { 4091 // We know there are no successors, so just nuke the block. 4092 if (LoopHeaders) 4093 LoopHeaders->erase(BB); 4094 BB->eraseFromParent(); 4095 } 4096 4097 return true; 4098 } 4099 4100 // Check out all of the conditional branches going to this return 4101 // instruction. If any of them just select between returns, change the 4102 // branch itself into a select/return pair. 4103 while (!CondBranchPreds.empty()) { 4104 BranchInst *BI = CondBranchPreds.pop_back_val(); 4105 4106 // Check to see if the non-BB successor is also a return block. 4107 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4108 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4109 SimplifyCondBranchToTwoReturns(BI, Builder)) 4110 return true; 4111 } 4112 return false; 4113 } 4114 4115 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4116 BasicBlock *BB = UI->getParent(); 4117 4118 bool Changed = false; 4119 4120 // If there are any instructions immediately before the unreachable that can 4121 // be removed, do so. 4122 while (UI->getIterator() != BB->begin()) { 4123 BasicBlock::iterator BBI = UI->getIterator(); 4124 --BBI; 4125 // Do not delete instructions that can have side effects which might cause 4126 // the unreachable to not be reachable; specifically, calls and volatile 4127 // operations may have this effect. 4128 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4129 break; 4130 4131 if (BBI->mayHaveSideEffects()) { 4132 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4133 if (SI->isVolatile()) 4134 break; 4135 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4136 if (LI->isVolatile()) 4137 break; 4138 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4139 if (RMWI->isVolatile()) 4140 break; 4141 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4142 if (CXI->isVolatile()) 4143 break; 4144 } else if (isa<CatchPadInst>(BBI)) { 4145 // A catchpad may invoke exception object constructors and such, which 4146 // in some languages can be arbitrary code, so be conservative by 4147 // default. 4148 // For CoreCLR, it just involves a type test, so can be removed. 4149 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4150 EHPersonality::CoreCLR) 4151 break; 4152 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4153 !isa<LandingPadInst>(BBI)) { 4154 break; 4155 } 4156 // Note that deleting LandingPad's here is in fact okay, although it 4157 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4158 // all the predecessors of this block will be the unwind edges of Invokes, 4159 // and we can therefore guarantee this block will be erased. 4160 } 4161 4162 // Delete this instruction (any uses are guaranteed to be dead) 4163 if (!BBI->use_empty()) 4164 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4165 BBI->eraseFromParent(); 4166 Changed = true; 4167 } 4168 4169 // If the unreachable instruction is the first in the block, take a gander 4170 // at all of the predecessors of this instruction, and simplify them. 4171 if (&BB->front() != UI) 4172 return Changed; 4173 4174 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4175 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4176 Instruction *TI = Preds[i]->getTerminator(); 4177 IRBuilder<> Builder(TI); 4178 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4179 if (BI->isUnconditional()) { 4180 if (BI->getSuccessor(0) == BB) { 4181 new UnreachableInst(TI->getContext(), TI); 4182 TI->eraseFromParent(); 4183 Changed = true; 4184 } 4185 } else { 4186 Value* Cond = BI->getCondition(); 4187 if (BI->getSuccessor(0) == BB) { 4188 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4189 Builder.CreateBr(BI->getSuccessor(1)); 4190 EraseTerminatorAndDCECond(BI); 4191 } else if (BI->getSuccessor(1) == BB) { 4192 Builder.CreateAssumption(Cond); 4193 Builder.CreateBr(BI->getSuccessor(0)); 4194 EraseTerminatorAndDCECond(BI); 4195 Changed = true; 4196 } 4197 } 4198 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4199 SwitchInstProfUpdateWrapper SU(*SI); 4200 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4201 if (i->getCaseSuccessor() != BB) { 4202 ++i; 4203 continue; 4204 } 4205 BB->removePredecessor(SU->getParent()); 4206 i = SU.removeCase(i); 4207 e = SU->case_end(); 4208 Changed = true; 4209 } 4210 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4211 if (II->getUnwindDest() == BB) { 4212 removeUnwindEdge(TI->getParent()); 4213 Changed = true; 4214 } 4215 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4216 if (CSI->getUnwindDest() == BB) { 4217 removeUnwindEdge(TI->getParent()); 4218 Changed = true; 4219 continue; 4220 } 4221 4222 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4223 E = CSI->handler_end(); 4224 I != E; ++I) { 4225 if (*I == BB) { 4226 CSI->removeHandler(I); 4227 --I; 4228 --E; 4229 Changed = true; 4230 } 4231 } 4232 if (CSI->getNumHandlers() == 0) { 4233 BasicBlock *CatchSwitchBB = CSI->getParent(); 4234 if (CSI->hasUnwindDest()) { 4235 // Redirect preds to the unwind dest 4236 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4237 } else { 4238 // Rewrite all preds to unwind to caller (or from invoke to call). 4239 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4240 for (BasicBlock *EHPred : EHPreds) 4241 removeUnwindEdge(EHPred); 4242 } 4243 // The catchswitch is no longer reachable. 4244 new UnreachableInst(CSI->getContext(), CSI); 4245 CSI->eraseFromParent(); 4246 Changed = true; 4247 } 4248 } else if (isa<CleanupReturnInst>(TI)) { 4249 new UnreachableInst(TI->getContext(), TI); 4250 TI->eraseFromParent(); 4251 Changed = true; 4252 } 4253 } 4254 4255 // If this block is now dead, remove it. 4256 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4257 // We know there are no successors, so just nuke the block. 4258 if (LoopHeaders) 4259 LoopHeaders->erase(BB); 4260 BB->eraseFromParent(); 4261 return true; 4262 } 4263 4264 return Changed; 4265 } 4266 4267 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4268 assert(Cases.size() >= 1); 4269 4270 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4271 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4272 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4273 return false; 4274 } 4275 return true; 4276 } 4277 4278 /// Turn a switch with two reachable destinations into an integer range 4279 /// comparison and branch. 4280 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4281 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4282 4283 bool HasDefault = 4284 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4285 4286 // Partition the cases into two sets with different destinations. 4287 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4288 BasicBlock *DestB = nullptr; 4289 SmallVector<ConstantInt *, 16> CasesA; 4290 SmallVector<ConstantInt *, 16> CasesB; 4291 4292 for (auto Case : SI->cases()) { 4293 BasicBlock *Dest = Case.getCaseSuccessor(); 4294 if (!DestA) 4295 DestA = Dest; 4296 if (Dest == DestA) { 4297 CasesA.push_back(Case.getCaseValue()); 4298 continue; 4299 } 4300 if (!DestB) 4301 DestB = Dest; 4302 if (Dest == DestB) { 4303 CasesB.push_back(Case.getCaseValue()); 4304 continue; 4305 } 4306 return false; // More than two destinations. 4307 } 4308 4309 assert(DestA && DestB && 4310 "Single-destination switch should have been folded."); 4311 assert(DestA != DestB); 4312 assert(DestB != SI->getDefaultDest()); 4313 assert(!CasesB.empty() && "There must be non-default cases."); 4314 assert(!CasesA.empty() || HasDefault); 4315 4316 // Figure out if one of the sets of cases form a contiguous range. 4317 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4318 BasicBlock *ContiguousDest = nullptr; 4319 BasicBlock *OtherDest = nullptr; 4320 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4321 ContiguousCases = &CasesA; 4322 ContiguousDest = DestA; 4323 OtherDest = DestB; 4324 } else if (CasesAreContiguous(CasesB)) { 4325 ContiguousCases = &CasesB; 4326 ContiguousDest = DestB; 4327 OtherDest = DestA; 4328 } else 4329 return false; 4330 4331 // Start building the compare and branch. 4332 4333 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4334 Constant *NumCases = 4335 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4336 4337 Value *Sub = SI->getCondition(); 4338 if (!Offset->isNullValue()) 4339 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4340 4341 Value *Cmp; 4342 // If NumCases overflowed, then all possible values jump to the successor. 4343 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4344 Cmp = ConstantInt::getTrue(SI->getContext()); 4345 else 4346 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4347 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4348 4349 // Update weight for the newly-created conditional branch. 4350 if (HasBranchWeights(SI)) { 4351 SmallVector<uint64_t, 8> Weights; 4352 GetBranchWeights(SI, Weights); 4353 if (Weights.size() == 1 + SI->getNumCases()) { 4354 uint64_t TrueWeight = 0; 4355 uint64_t FalseWeight = 0; 4356 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4357 if (SI->getSuccessor(I) == ContiguousDest) 4358 TrueWeight += Weights[I]; 4359 else 4360 FalseWeight += Weights[I]; 4361 } 4362 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4363 TrueWeight /= 2; 4364 FalseWeight /= 2; 4365 } 4366 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4367 } 4368 } 4369 4370 // Prune obsolete incoming values off the successors' PHI nodes. 4371 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4372 unsigned PreviousEdges = ContiguousCases->size(); 4373 if (ContiguousDest == SI->getDefaultDest()) 4374 ++PreviousEdges; 4375 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4376 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4377 } 4378 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4379 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4380 if (OtherDest == SI->getDefaultDest()) 4381 ++PreviousEdges; 4382 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4383 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4384 } 4385 4386 // Drop the switch. 4387 SI->eraseFromParent(); 4388 4389 return true; 4390 } 4391 4392 /// Compute masked bits for the condition of a switch 4393 /// and use it to remove dead cases. 4394 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4395 const DataLayout &DL) { 4396 Value *Cond = SI->getCondition(); 4397 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4398 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4399 4400 // We can also eliminate cases by determining that their values are outside of 4401 // the limited range of the condition based on how many significant (non-sign) 4402 // bits are in the condition value. 4403 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4404 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4405 4406 // Gather dead cases. 4407 SmallVector<ConstantInt *, 8> DeadCases; 4408 for (auto &Case : SI->cases()) { 4409 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4410 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4411 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4412 DeadCases.push_back(Case.getCaseValue()); 4413 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4414 << " is dead.\n"); 4415 } 4416 } 4417 4418 // If we can prove that the cases must cover all possible values, the 4419 // default destination becomes dead and we can remove it. If we know some 4420 // of the bits in the value, we can use that to more precisely compute the 4421 // number of possible unique case values. 4422 bool HasDefault = 4423 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4424 const unsigned NumUnknownBits = 4425 Bits - (Known.Zero | Known.One).countPopulation(); 4426 assert(NumUnknownBits <= Bits); 4427 if (HasDefault && DeadCases.empty() && 4428 NumUnknownBits < 64 /* avoid overflow */ && 4429 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4430 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4431 BasicBlock *NewDefault = 4432 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4433 SI->setDefaultDest(&*NewDefault); 4434 SplitBlock(&*NewDefault, &NewDefault->front()); 4435 auto *OldTI = NewDefault->getTerminator(); 4436 new UnreachableInst(SI->getContext(), OldTI); 4437 EraseTerminatorAndDCECond(OldTI); 4438 return true; 4439 } 4440 4441 if (DeadCases.empty()) 4442 return false; 4443 4444 SwitchInstProfUpdateWrapper SIW(*SI); 4445 for (ConstantInt *DeadCase : DeadCases) { 4446 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4447 assert(CaseI != SI->case_default() && 4448 "Case was not found. Probably mistake in DeadCases forming."); 4449 // Prune unused values from PHI nodes. 4450 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4451 SIW.removeCase(CaseI); 4452 } 4453 4454 return true; 4455 } 4456 4457 /// If BB would be eligible for simplification by 4458 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4459 /// by an unconditional branch), look at the phi node for BB in the successor 4460 /// block and see if the incoming value is equal to CaseValue. If so, return 4461 /// the phi node, and set PhiIndex to BB's index in the phi node. 4462 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4463 BasicBlock *BB, int *PhiIndex) { 4464 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4465 return nullptr; // BB must be empty to be a candidate for simplification. 4466 if (!BB->getSinglePredecessor()) 4467 return nullptr; // BB must be dominated by the switch. 4468 4469 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4470 if (!Branch || !Branch->isUnconditional()) 4471 return nullptr; // Terminator must be unconditional branch. 4472 4473 BasicBlock *Succ = Branch->getSuccessor(0); 4474 4475 for (PHINode &PHI : Succ->phis()) { 4476 int Idx = PHI.getBasicBlockIndex(BB); 4477 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4478 4479 Value *InValue = PHI.getIncomingValue(Idx); 4480 if (InValue != CaseValue) 4481 continue; 4482 4483 *PhiIndex = Idx; 4484 return &PHI; 4485 } 4486 4487 return nullptr; 4488 } 4489 4490 /// Try to forward the condition of a switch instruction to a phi node 4491 /// dominated by the switch, if that would mean that some of the destination 4492 /// blocks of the switch can be folded away. Return true if a change is made. 4493 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4494 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4495 4496 ForwardingNodesMap ForwardingNodes; 4497 BasicBlock *SwitchBlock = SI->getParent(); 4498 bool Changed = false; 4499 for (auto &Case : SI->cases()) { 4500 ConstantInt *CaseValue = Case.getCaseValue(); 4501 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4502 4503 // Replace phi operands in successor blocks that are using the constant case 4504 // value rather than the switch condition variable: 4505 // switchbb: 4506 // switch i32 %x, label %default [ 4507 // i32 17, label %succ 4508 // ... 4509 // succ: 4510 // %r = phi i32 ... [ 17, %switchbb ] ... 4511 // --> 4512 // %r = phi i32 ... [ %x, %switchbb ] ... 4513 4514 for (PHINode &Phi : CaseDest->phis()) { 4515 // This only works if there is exactly 1 incoming edge from the switch to 4516 // a phi. If there is >1, that means multiple cases of the switch map to 1 4517 // value in the phi, and that phi value is not the switch condition. Thus, 4518 // this transform would not make sense (the phi would be invalid because 4519 // a phi can't have different incoming values from the same block). 4520 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4521 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4522 count(Phi.blocks(), SwitchBlock) == 1) { 4523 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4524 Changed = true; 4525 } 4526 } 4527 4528 // Collect phi nodes that are indirectly using this switch's case constants. 4529 int PhiIdx; 4530 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4531 ForwardingNodes[Phi].push_back(PhiIdx); 4532 } 4533 4534 for (auto &ForwardingNode : ForwardingNodes) { 4535 PHINode *Phi = ForwardingNode.first; 4536 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4537 if (Indexes.size() < 2) 4538 continue; 4539 4540 for (int Index : Indexes) 4541 Phi->setIncomingValue(Index, SI->getCondition()); 4542 Changed = true; 4543 } 4544 4545 return Changed; 4546 } 4547 4548 /// Return true if the backend will be able to handle 4549 /// initializing an array of constants like C. 4550 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4551 if (C->isThreadDependent()) 4552 return false; 4553 if (C->isDLLImportDependent()) 4554 return false; 4555 4556 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4557 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4558 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4559 return false; 4560 4561 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4562 if (!CE->isGEPWithNoNotionalOverIndexing()) 4563 return false; 4564 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4565 return false; 4566 } 4567 4568 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4569 return false; 4570 4571 return true; 4572 } 4573 4574 /// If V is a Constant, return it. Otherwise, try to look up 4575 /// its constant value in ConstantPool, returning 0 if it's not there. 4576 static Constant * 4577 LookupConstant(Value *V, 4578 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4579 if (Constant *C = dyn_cast<Constant>(V)) 4580 return C; 4581 return ConstantPool.lookup(V); 4582 } 4583 4584 /// Try to fold instruction I into a constant. This works for 4585 /// simple instructions such as binary operations where both operands are 4586 /// constant or can be replaced by constants from the ConstantPool. Returns the 4587 /// resulting constant on success, 0 otherwise. 4588 static Constant * 4589 ConstantFold(Instruction *I, const DataLayout &DL, 4590 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4591 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4592 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4593 if (!A) 4594 return nullptr; 4595 if (A->isAllOnesValue()) 4596 return LookupConstant(Select->getTrueValue(), ConstantPool); 4597 if (A->isNullValue()) 4598 return LookupConstant(Select->getFalseValue(), ConstantPool); 4599 return nullptr; 4600 } 4601 4602 SmallVector<Constant *, 4> COps; 4603 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4604 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4605 COps.push_back(A); 4606 else 4607 return nullptr; 4608 } 4609 4610 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4611 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4612 COps[1], DL); 4613 } 4614 4615 return ConstantFoldInstOperands(I, COps, DL); 4616 } 4617 4618 /// Try to determine the resulting constant values in phi nodes 4619 /// at the common destination basic block, *CommonDest, for one of the case 4620 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4621 /// case), of a switch instruction SI. 4622 static bool 4623 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4624 BasicBlock **CommonDest, 4625 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4626 const DataLayout &DL, const TargetTransformInfo &TTI) { 4627 // The block from which we enter the common destination. 4628 BasicBlock *Pred = SI->getParent(); 4629 4630 // If CaseDest is empty except for some side-effect free instructions through 4631 // which we can constant-propagate the CaseVal, continue to its successor. 4632 SmallDenseMap<Value *, Constant *> ConstantPool; 4633 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4634 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4635 if (I.isTerminator()) { 4636 // If the terminator is a simple branch, continue to the next block. 4637 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4638 return false; 4639 Pred = CaseDest; 4640 CaseDest = I.getSuccessor(0); 4641 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4642 // Instruction is side-effect free and constant. 4643 4644 // If the instruction has uses outside this block or a phi node slot for 4645 // the block, it is not safe to bypass the instruction since it would then 4646 // no longer dominate all its uses. 4647 for (auto &Use : I.uses()) { 4648 User *User = Use.getUser(); 4649 if (Instruction *I = dyn_cast<Instruction>(User)) 4650 if (I->getParent() == CaseDest) 4651 continue; 4652 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4653 if (Phi->getIncomingBlock(Use) == CaseDest) 4654 continue; 4655 return false; 4656 } 4657 4658 ConstantPool.insert(std::make_pair(&I, C)); 4659 } else { 4660 break; 4661 } 4662 } 4663 4664 // If we did not have a CommonDest before, use the current one. 4665 if (!*CommonDest) 4666 *CommonDest = CaseDest; 4667 // If the destination isn't the common one, abort. 4668 if (CaseDest != *CommonDest) 4669 return false; 4670 4671 // Get the values for this case from phi nodes in the destination block. 4672 for (PHINode &PHI : (*CommonDest)->phis()) { 4673 int Idx = PHI.getBasicBlockIndex(Pred); 4674 if (Idx == -1) 4675 continue; 4676 4677 Constant *ConstVal = 4678 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4679 if (!ConstVal) 4680 return false; 4681 4682 // Be conservative about which kinds of constants we support. 4683 if (!ValidLookupTableConstant(ConstVal, TTI)) 4684 return false; 4685 4686 Res.push_back(std::make_pair(&PHI, ConstVal)); 4687 } 4688 4689 return Res.size() > 0; 4690 } 4691 4692 // Helper function used to add CaseVal to the list of cases that generate 4693 // Result. Returns the updated number of cases that generate this result. 4694 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4695 SwitchCaseResultVectorTy &UniqueResults, 4696 Constant *Result) { 4697 for (auto &I : UniqueResults) { 4698 if (I.first == Result) { 4699 I.second.push_back(CaseVal); 4700 return I.second.size(); 4701 } 4702 } 4703 UniqueResults.push_back( 4704 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4705 return 1; 4706 } 4707 4708 // Helper function that initializes a map containing 4709 // results for the PHI node of the common destination block for a switch 4710 // instruction. Returns false if multiple PHI nodes have been found or if 4711 // there is not a common destination block for the switch. 4712 static bool 4713 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4714 SwitchCaseResultVectorTy &UniqueResults, 4715 Constant *&DefaultResult, const DataLayout &DL, 4716 const TargetTransformInfo &TTI, 4717 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4718 for (auto &I : SI->cases()) { 4719 ConstantInt *CaseVal = I.getCaseValue(); 4720 4721 // Resulting value at phi nodes for this case value. 4722 SwitchCaseResultsTy Results; 4723 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4724 DL, TTI)) 4725 return false; 4726 4727 // Only one value per case is permitted. 4728 if (Results.size() > 1) 4729 return false; 4730 4731 // Add the case->result mapping to UniqueResults. 4732 const uintptr_t NumCasesForResult = 4733 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4734 4735 // Early out if there are too many cases for this result. 4736 if (NumCasesForResult > MaxCasesPerResult) 4737 return false; 4738 4739 // Early out if there are too many unique results. 4740 if (UniqueResults.size() > MaxUniqueResults) 4741 return false; 4742 4743 // Check the PHI consistency. 4744 if (!PHI) 4745 PHI = Results[0].first; 4746 else if (PHI != Results[0].first) 4747 return false; 4748 } 4749 // Find the default result value. 4750 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4751 BasicBlock *DefaultDest = SI->getDefaultDest(); 4752 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4753 DL, TTI); 4754 // If the default value is not found abort unless the default destination 4755 // is unreachable. 4756 DefaultResult = 4757 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4758 if ((!DefaultResult && 4759 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4760 return false; 4761 4762 return true; 4763 } 4764 4765 // Helper function that checks if it is possible to transform a switch with only 4766 // two cases (or two cases + default) that produces a result into a select. 4767 // Example: 4768 // switch (a) { 4769 // case 10: %0 = icmp eq i32 %a, 10 4770 // return 10; %1 = select i1 %0, i32 10, i32 4 4771 // case 20: ----> %2 = icmp eq i32 %a, 20 4772 // return 2; %3 = select i1 %2, i32 2, i32 %1 4773 // default: 4774 // return 4; 4775 // } 4776 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4777 Constant *DefaultResult, Value *Condition, 4778 IRBuilder<> &Builder) { 4779 assert(ResultVector.size() == 2 && 4780 "We should have exactly two unique results at this point"); 4781 // If we are selecting between only two cases transform into a simple 4782 // select or a two-way select if default is possible. 4783 if (ResultVector[0].second.size() == 1 && 4784 ResultVector[1].second.size() == 1) { 4785 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4786 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4787 4788 bool DefaultCanTrigger = DefaultResult; 4789 Value *SelectValue = ResultVector[1].first; 4790 if (DefaultCanTrigger) { 4791 Value *const ValueCompare = 4792 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4793 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4794 DefaultResult, "switch.select"); 4795 } 4796 Value *const ValueCompare = 4797 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4798 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4799 SelectValue, "switch.select"); 4800 } 4801 4802 return nullptr; 4803 } 4804 4805 // Helper function to cleanup a switch instruction that has been converted into 4806 // a select, fixing up PHI nodes and basic blocks. 4807 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4808 Value *SelectValue, 4809 IRBuilder<> &Builder) { 4810 BasicBlock *SelectBB = SI->getParent(); 4811 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4812 PHI->removeIncomingValue(SelectBB); 4813 PHI->addIncoming(SelectValue, SelectBB); 4814 4815 Builder.CreateBr(PHI->getParent()); 4816 4817 // Remove the switch. 4818 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4819 BasicBlock *Succ = SI->getSuccessor(i); 4820 4821 if (Succ == PHI->getParent()) 4822 continue; 4823 Succ->removePredecessor(SelectBB); 4824 } 4825 SI->eraseFromParent(); 4826 } 4827 4828 /// If the switch is only used to initialize one or more 4829 /// phi nodes in a common successor block with only two different 4830 /// constant values, replace the switch with select. 4831 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4832 const DataLayout &DL, 4833 const TargetTransformInfo &TTI) { 4834 Value *const Cond = SI->getCondition(); 4835 PHINode *PHI = nullptr; 4836 BasicBlock *CommonDest = nullptr; 4837 Constant *DefaultResult; 4838 SwitchCaseResultVectorTy UniqueResults; 4839 // Collect all the cases that will deliver the same value from the switch. 4840 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4841 DL, TTI, 2, 1)) 4842 return false; 4843 // Selects choose between maximum two values. 4844 if (UniqueResults.size() != 2) 4845 return false; 4846 assert(PHI != nullptr && "PHI for value select not found"); 4847 4848 Builder.SetInsertPoint(SI); 4849 Value *SelectValue = 4850 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4851 if (SelectValue) { 4852 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4853 return true; 4854 } 4855 // The switch couldn't be converted into a select. 4856 return false; 4857 } 4858 4859 namespace { 4860 4861 /// This class represents a lookup table that can be used to replace a switch. 4862 class SwitchLookupTable { 4863 public: 4864 /// Create a lookup table to use as a switch replacement with the contents 4865 /// of Values, using DefaultValue to fill any holes in the table. 4866 SwitchLookupTable( 4867 Module &M, uint64_t TableSize, ConstantInt *Offset, 4868 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4869 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4870 4871 /// Build instructions with Builder to retrieve the value at 4872 /// the position given by Index in the lookup table. 4873 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4874 4875 /// Return true if a table with TableSize elements of 4876 /// type ElementType would fit in a target-legal register. 4877 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4878 Type *ElementType); 4879 4880 private: 4881 // Depending on the contents of the table, it can be represented in 4882 // different ways. 4883 enum { 4884 // For tables where each element contains the same value, we just have to 4885 // store that single value and return it for each lookup. 4886 SingleValueKind, 4887 4888 // For tables where there is a linear relationship between table index 4889 // and values. We calculate the result with a simple multiplication 4890 // and addition instead of a table lookup. 4891 LinearMapKind, 4892 4893 // For small tables with integer elements, we can pack them into a bitmap 4894 // that fits into a target-legal register. Values are retrieved by 4895 // shift and mask operations. 4896 BitMapKind, 4897 4898 // The table is stored as an array of values. Values are retrieved by load 4899 // instructions from the table. 4900 ArrayKind 4901 } Kind; 4902 4903 // For SingleValueKind, this is the single value. 4904 Constant *SingleValue = nullptr; 4905 4906 // For BitMapKind, this is the bitmap. 4907 ConstantInt *BitMap = nullptr; 4908 IntegerType *BitMapElementTy = nullptr; 4909 4910 // For LinearMapKind, these are the constants used to derive the value. 4911 ConstantInt *LinearOffset = nullptr; 4912 ConstantInt *LinearMultiplier = nullptr; 4913 4914 // For ArrayKind, this is the array. 4915 GlobalVariable *Array = nullptr; 4916 }; 4917 4918 } // end anonymous namespace 4919 4920 SwitchLookupTable::SwitchLookupTable( 4921 Module &M, uint64_t TableSize, ConstantInt *Offset, 4922 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4923 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4924 assert(Values.size() && "Can't build lookup table without values!"); 4925 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4926 4927 // If all values in the table are equal, this is that value. 4928 SingleValue = Values.begin()->second; 4929 4930 Type *ValueType = Values.begin()->second->getType(); 4931 4932 // Build up the table contents. 4933 SmallVector<Constant *, 64> TableContents(TableSize); 4934 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4935 ConstantInt *CaseVal = Values[I].first; 4936 Constant *CaseRes = Values[I].second; 4937 assert(CaseRes->getType() == ValueType); 4938 4939 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4940 TableContents[Idx] = CaseRes; 4941 4942 if (CaseRes != SingleValue) 4943 SingleValue = nullptr; 4944 } 4945 4946 // Fill in any holes in the table with the default result. 4947 if (Values.size() < TableSize) { 4948 assert(DefaultValue && 4949 "Need a default value to fill the lookup table holes."); 4950 assert(DefaultValue->getType() == ValueType); 4951 for (uint64_t I = 0; I < TableSize; ++I) { 4952 if (!TableContents[I]) 4953 TableContents[I] = DefaultValue; 4954 } 4955 4956 if (DefaultValue != SingleValue) 4957 SingleValue = nullptr; 4958 } 4959 4960 // If each element in the table contains the same value, we only need to store 4961 // that single value. 4962 if (SingleValue) { 4963 Kind = SingleValueKind; 4964 return; 4965 } 4966 4967 // Check if we can derive the value with a linear transformation from the 4968 // table index. 4969 if (isa<IntegerType>(ValueType)) { 4970 bool LinearMappingPossible = true; 4971 APInt PrevVal; 4972 APInt DistToPrev; 4973 assert(TableSize >= 2 && "Should be a SingleValue table."); 4974 // Check if there is the same distance between two consecutive values. 4975 for (uint64_t I = 0; I < TableSize; ++I) { 4976 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4977 if (!ConstVal) { 4978 // This is an undef. We could deal with it, but undefs in lookup tables 4979 // are very seldom. It's probably not worth the additional complexity. 4980 LinearMappingPossible = false; 4981 break; 4982 } 4983 const APInt &Val = ConstVal->getValue(); 4984 if (I != 0) { 4985 APInt Dist = Val - PrevVal; 4986 if (I == 1) { 4987 DistToPrev = Dist; 4988 } else if (Dist != DistToPrev) { 4989 LinearMappingPossible = false; 4990 break; 4991 } 4992 } 4993 PrevVal = Val; 4994 } 4995 if (LinearMappingPossible) { 4996 LinearOffset = cast<ConstantInt>(TableContents[0]); 4997 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4998 Kind = LinearMapKind; 4999 ++NumLinearMaps; 5000 return; 5001 } 5002 } 5003 5004 // If the type is integer and the table fits in a register, build a bitmap. 5005 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5006 IntegerType *IT = cast<IntegerType>(ValueType); 5007 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5008 for (uint64_t I = TableSize; I > 0; --I) { 5009 TableInt <<= IT->getBitWidth(); 5010 // Insert values into the bitmap. Undef values are set to zero. 5011 if (!isa<UndefValue>(TableContents[I - 1])) { 5012 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5013 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5014 } 5015 } 5016 BitMap = ConstantInt::get(M.getContext(), TableInt); 5017 BitMapElementTy = IT; 5018 Kind = BitMapKind; 5019 ++NumBitMaps; 5020 return; 5021 } 5022 5023 // Store the table in an array. 5024 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5025 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5026 5027 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5028 GlobalVariable::PrivateLinkage, Initializer, 5029 "switch.table." + FuncName); 5030 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5031 // Set the alignment to that of an array items. We will be only loading one 5032 // value out of it. 5033 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5034 Kind = ArrayKind; 5035 } 5036 5037 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5038 switch (Kind) { 5039 case SingleValueKind: 5040 return SingleValue; 5041 case LinearMapKind: { 5042 // Derive the result value from the input value. 5043 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5044 false, "switch.idx.cast"); 5045 if (!LinearMultiplier->isOne()) 5046 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5047 if (!LinearOffset->isZero()) 5048 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5049 return Result; 5050 } 5051 case BitMapKind: { 5052 // Type of the bitmap (e.g. i59). 5053 IntegerType *MapTy = BitMap->getType(); 5054 5055 // Cast Index to the same type as the bitmap. 5056 // Note: The Index is <= the number of elements in the table, so 5057 // truncating it to the width of the bitmask is safe. 5058 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5059 5060 // Multiply the shift amount by the element width. 5061 ShiftAmt = Builder.CreateMul( 5062 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5063 "switch.shiftamt"); 5064 5065 // Shift down. 5066 Value *DownShifted = 5067 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5068 // Mask off. 5069 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5070 } 5071 case ArrayKind: { 5072 // Make sure the table index will not overflow when treated as signed. 5073 IntegerType *IT = cast<IntegerType>(Index->getType()); 5074 uint64_t TableSize = 5075 Array->getInitializer()->getType()->getArrayNumElements(); 5076 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5077 Index = Builder.CreateZExt( 5078 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5079 "switch.tableidx.zext"); 5080 5081 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5082 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5083 GEPIndices, "switch.gep"); 5084 return Builder.CreateLoad( 5085 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5086 "switch.load"); 5087 } 5088 } 5089 llvm_unreachable("Unknown lookup table kind!"); 5090 } 5091 5092 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5093 uint64_t TableSize, 5094 Type *ElementType) { 5095 auto *IT = dyn_cast<IntegerType>(ElementType); 5096 if (!IT) 5097 return false; 5098 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5099 // are <= 15, we could try to narrow the type. 5100 5101 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5102 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5103 return false; 5104 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5105 } 5106 5107 /// Determine whether a lookup table should be built for this switch, based on 5108 /// the number of cases, size of the table, and the types of the results. 5109 static bool 5110 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5111 const TargetTransformInfo &TTI, const DataLayout &DL, 5112 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5113 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5114 return false; // TableSize overflowed, or mul below might overflow. 5115 5116 bool AllTablesFitInRegister = true; 5117 bool HasIllegalType = false; 5118 for (const auto &I : ResultTypes) { 5119 Type *Ty = I.second; 5120 5121 // Saturate this flag to true. 5122 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5123 5124 // Saturate this flag to false. 5125 AllTablesFitInRegister = 5126 AllTablesFitInRegister && 5127 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5128 5129 // If both flags saturate, we're done. NOTE: This *only* works with 5130 // saturating flags, and all flags have to saturate first due to the 5131 // non-deterministic behavior of iterating over a dense map. 5132 if (HasIllegalType && !AllTablesFitInRegister) 5133 break; 5134 } 5135 5136 // If each table would fit in a register, we should build it anyway. 5137 if (AllTablesFitInRegister) 5138 return true; 5139 5140 // Don't build a table that doesn't fit in-register if it has illegal types. 5141 if (HasIllegalType) 5142 return false; 5143 5144 // The table density should be at least 40%. This is the same criterion as for 5145 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5146 // FIXME: Find the best cut-off. 5147 return SI->getNumCases() * 10 >= TableSize * 4; 5148 } 5149 5150 /// Try to reuse the switch table index compare. Following pattern: 5151 /// \code 5152 /// if (idx < tablesize) 5153 /// r = table[idx]; // table does not contain default_value 5154 /// else 5155 /// r = default_value; 5156 /// if (r != default_value) 5157 /// ... 5158 /// \endcode 5159 /// Is optimized to: 5160 /// \code 5161 /// cond = idx < tablesize; 5162 /// if (cond) 5163 /// r = table[idx]; 5164 /// else 5165 /// r = default_value; 5166 /// if (cond) 5167 /// ... 5168 /// \endcode 5169 /// Jump threading will then eliminate the second if(cond). 5170 static void reuseTableCompare( 5171 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5172 Constant *DefaultValue, 5173 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5174 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5175 if (!CmpInst) 5176 return; 5177 5178 // We require that the compare is in the same block as the phi so that jump 5179 // threading can do its work afterwards. 5180 if (CmpInst->getParent() != PhiBlock) 5181 return; 5182 5183 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5184 if (!CmpOp1) 5185 return; 5186 5187 Value *RangeCmp = RangeCheckBranch->getCondition(); 5188 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5189 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5190 5191 // Check if the compare with the default value is constant true or false. 5192 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5193 DefaultValue, CmpOp1, true); 5194 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5195 return; 5196 5197 // Check if the compare with the case values is distinct from the default 5198 // compare result. 5199 for (auto ValuePair : Values) { 5200 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5201 ValuePair.second, CmpOp1, true); 5202 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5203 return; 5204 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5205 "Expect true or false as compare result."); 5206 } 5207 5208 // Check if the branch instruction dominates the phi node. It's a simple 5209 // dominance check, but sufficient for our needs. 5210 // Although this check is invariant in the calling loops, it's better to do it 5211 // at this late stage. Practically we do it at most once for a switch. 5212 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5213 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5214 BasicBlock *Pred = *PI; 5215 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5216 return; 5217 } 5218 5219 if (DefaultConst == FalseConst) { 5220 // The compare yields the same result. We can replace it. 5221 CmpInst->replaceAllUsesWith(RangeCmp); 5222 ++NumTableCmpReuses; 5223 } else { 5224 // The compare yields the same result, just inverted. We can replace it. 5225 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5226 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5227 RangeCheckBranch); 5228 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5229 ++NumTableCmpReuses; 5230 } 5231 } 5232 5233 /// If the switch is only used to initialize one or more phi nodes in a common 5234 /// successor block with different constant values, replace the switch with 5235 /// lookup tables. 5236 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5237 const DataLayout &DL, 5238 const TargetTransformInfo &TTI) { 5239 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5240 5241 Function *Fn = SI->getParent()->getParent(); 5242 // Only build lookup table when we have a target that supports it or the 5243 // attribute is not set. 5244 if (!TTI.shouldBuildLookupTables() || 5245 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5246 return false; 5247 5248 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5249 // split off a dense part and build a lookup table for that. 5250 5251 // FIXME: This creates arrays of GEPs to constant strings, which means each 5252 // GEP needs a runtime relocation in PIC code. We should just build one big 5253 // string and lookup indices into that. 5254 5255 // Ignore switches with less than three cases. Lookup tables will not make 5256 // them faster, so we don't analyze them. 5257 if (SI->getNumCases() < 3) 5258 return false; 5259 5260 // Figure out the corresponding result for each case value and phi node in the 5261 // common destination, as well as the min and max case values. 5262 assert(!empty(SI->cases())); 5263 SwitchInst::CaseIt CI = SI->case_begin(); 5264 ConstantInt *MinCaseVal = CI->getCaseValue(); 5265 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5266 5267 BasicBlock *CommonDest = nullptr; 5268 5269 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5270 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5271 5272 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5273 SmallDenseMap<PHINode *, Type *> ResultTypes; 5274 SmallVector<PHINode *, 4> PHIs; 5275 5276 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5277 ConstantInt *CaseVal = CI->getCaseValue(); 5278 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5279 MinCaseVal = CaseVal; 5280 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5281 MaxCaseVal = CaseVal; 5282 5283 // Resulting value at phi nodes for this case value. 5284 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5285 ResultsTy Results; 5286 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5287 Results, DL, TTI)) 5288 return false; 5289 5290 // Append the result from this case to the list for each phi. 5291 for (const auto &I : Results) { 5292 PHINode *PHI = I.first; 5293 Constant *Value = I.second; 5294 if (!ResultLists.count(PHI)) 5295 PHIs.push_back(PHI); 5296 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5297 } 5298 } 5299 5300 // Keep track of the result types. 5301 for (PHINode *PHI : PHIs) { 5302 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5303 } 5304 5305 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5306 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5307 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5308 bool TableHasHoles = (NumResults < TableSize); 5309 5310 // If the table has holes, we need a constant result for the default case 5311 // or a bitmask that fits in a register. 5312 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5313 bool HasDefaultResults = 5314 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5315 DefaultResultsList, DL, TTI); 5316 5317 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5318 if (NeedMask) { 5319 // As an extra penalty for the validity test we require more cases. 5320 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5321 return false; 5322 if (!DL.fitsInLegalInteger(TableSize)) 5323 return false; 5324 } 5325 5326 for (const auto &I : DefaultResultsList) { 5327 PHINode *PHI = I.first; 5328 Constant *Result = I.second; 5329 DefaultResults[PHI] = Result; 5330 } 5331 5332 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5333 return false; 5334 5335 // Create the BB that does the lookups. 5336 Module &Mod = *CommonDest->getParent()->getParent(); 5337 BasicBlock *LookupBB = BasicBlock::Create( 5338 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5339 5340 // Compute the table index value. 5341 Builder.SetInsertPoint(SI); 5342 Value *TableIndex; 5343 if (MinCaseVal->isNullValue()) 5344 TableIndex = SI->getCondition(); 5345 else 5346 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5347 "switch.tableidx"); 5348 5349 // Compute the maximum table size representable by the integer type we are 5350 // switching upon. 5351 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5352 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5353 assert(MaxTableSize >= TableSize && 5354 "It is impossible for a switch to have more entries than the max " 5355 "representable value of its input integer type's size."); 5356 5357 // If the default destination is unreachable, or if the lookup table covers 5358 // all values of the conditional variable, branch directly to the lookup table 5359 // BB. Otherwise, check that the condition is within the case range. 5360 const bool DefaultIsReachable = 5361 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5362 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5363 BranchInst *RangeCheckBranch = nullptr; 5364 5365 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5366 Builder.CreateBr(LookupBB); 5367 // Note: We call removeProdecessor later since we need to be able to get the 5368 // PHI value for the default case in case we're using a bit mask. 5369 } else { 5370 Value *Cmp = Builder.CreateICmpULT( 5371 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5372 RangeCheckBranch = 5373 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5374 } 5375 5376 // Populate the BB that does the lookups. 5377 Builder.SetInsertPoint(LookupBB); 5378 5379 if (NeedMask) { 5380 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5381 // re-purposed to do the hole check, and we create a new LookupBB. 5382 BasicBlock *MaskBB = LookupBB; 5383 MaskBB->setName("switch.hole_check"); 5384 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5385 CommonDest->getParent(), CommonDest); 5386 5387 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5388 // unnecessary illegal types. 5389 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5390 APInt MaskInt(TableSizePowOf2, 0); 5391 APInt One(TableSizePowOf2, 1); 5392 // Build bitmask; fill in a 1 bit for every case. 5393 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5394 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5395 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5396 .getLimitedValue(); 5397 MaskInt |= One << Idx; 5398 } 5399 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5400 5401 // Get the TableIndex'th bit of the bitmask. 5402 // If this bit is 0 (meaning hole) jump to the default destination, 5403 // else continue with table lookup. 5404 IntegerType *MapTy = TableMask->getType(); 5405 Value *MaskIndex = 5406 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5407 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5408 Value *LoBit = Builder.CreateTrunc( 5409 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5410 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5411 5412 Builder.SetInsertPoint(LookupBB); 5413 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5414 } 5415 5416 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5417 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5418 // do not delete PHINodes here. 5419 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5420 /*KeepOneInputPHIs=*/true); 5421 } 5422 5423 bool ReturnedEarly = false; 5424 for (PHINode *PHI : PHIs) { 5425 const ResultListTy &ResultList = ResultLists[PHI]; 5426 5427 // If using a bitmask, use any value to fill the lookup table holes. 5428 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5429 StringRef FuncName = Fn->getName(); 5430 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5431 FuncName); 5432 5433 Value *Result = Table.BuildLookup(TableIndex, Builder); 5434 5435 // If the result is used to return immediately from the function, we want to 5436 // do that right here. 5437 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5438 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5439 Builder.CreateRet(Result); 5440 ReturnedEarly = true; 5441 break; 5442 } 5443 5444 // Do a small peephole optimization: re-use the switch table compare if 5445 // possible. 5446 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5447 BasicBlock *PhiBlock = PHI->getParent(); 5448 // Search for compare instructions which use the phi. 5449 for (auto *User : PHI->users()) { 5450 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5451 } 5452 } 5453 5454 PHI->addIncoming(Result, LookupBB); 5455 } 5456 5457 if (!ReturnedEarly) 5458 Builder.CreateBr(CommonDest); 5459 5460 // Remove the switch. 5461 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5462 BasicBlock *Succ = SI->getSuccessor(i); 5463 5464 if (Succ == SI->getDefaultDest()) 5465 continue; 5466 Succ->removePredecessor(SI->getParent()); 5467 } 5468 SI->eraseFromParent(); 5469 5470 ++NumLookupTables; 5471 if (NeedMask) 5472 ++NumLookupTablesHoles; 5473 return true; 5474 } 5475 5476 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5477 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5478 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5479 uint64_t Range = Diff + 1; 5480 uint64_t NumCases = Values.size(); 5481 // 40% is the default density for building a jump table in optsize/minsize mode. 5482 uint64_t MinDensity = 40; 5483 5484 return NumCases * 100 >= Range * MinDensity; 5485 } 5486 5487 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5488 /// of cases. 5489 /// 5490 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5491 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5492 /// 5493 /// This converts a sparse switch into a dense switch which allows better 5494 /// lowering and could also allow transforming into a lookup table. 5495 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5496 const DataLayout &DL, 5497 const TargetTransformInfo &TTI) { 5498 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5499 if (CondTy->getIntegerBitWidth() > 64 || 5500 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5501 return false; 5502 // Only bother with this optimization if there are more than 3 switch cases; 5503 // SDAG will only bother creating jump tables for 4 or more cases. 5504 if (SI->getNumCases() < 4) 5505 return false; 5506 5507 // This transform is agnostic to the signedness of the input or case values. We 5508 // can treat the case values as signed or unsigned. We can optimize more common 5509 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5510 // as signed. 5511 SmallVector<int64_t,4> Values; 5512 for (auto &C : SI->cases()) 5513 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5514 llvm::sort(Values); 5515 5516 // If the switch is already dense, there's nothing useful to do here. 5517 if (isSwitchDense(Values)) 5518 return false; 5519 5520 // First, transform the values such that they start at zero and ascend. 5521 int64_t Base = Values[0]; 5522 for (auto &V : Values) 5523 V -= (uint64_t)(Base); 5524 5525 // Now we have signed numbers that have been shifted so that, given enough 5526 // precision, there are no negative values. Since the rest of the transform 5527 // is bitwise only, we switch now to an unsigned representation. 5528 5529 // This transform can be done speculatively because it is so cheap - it 5530 // results in a single rotate operation being inserted. 5531 // FIXME: It's possible that optimizing a switch on powers of two might also 5532 // be beneficial - flag values are often powers of two and we could use a CLZ 5533 // as the key function. 5534 5535 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5536 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5537 // less than 64. 5538 unsigned Shift = 64; 5539 for (auto &V : Values) 5540 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5541 assert(Shift < 64); 5542 if (Shift > 0) 5543 for (auto &V : Values) 5544 V = (int64_t)((uint64_t)V >> Shift); 5545 5546 if (!isSwitchDense(Values)) 5547 // Transform didn't create a dense switch. 5548 return false; 5549 5550 // The obvious transform is to shift the switch condition right and emit a 5551 // check that the condition actually cleanly divided by GCD, i.e. 5552 // C & (1 << Shift - 1) == 0 5553 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5554 // 5555 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5556 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5557 // are nonzero then the switch condition will be very large and will hit the 5558 // default case. 5559 5560 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5561 Builder.SetInsertPoint(SI); 5562 auto *ShiftC = ConstantInt::get(Ty, Shift); 5563 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5564 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5565 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5566 auto *Rot = Builder.CreateOr(LShr, Shl); 5567 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5568 5569 for (auto Case : SI->cases()) { 5570 auto *Orig = Case.getCaseValue(); 5571 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5572 Case.setValue( 5573 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5574 } 5575 return true; 5576 } 5577 5578 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5579 BasicBlock *BB = SI->getParent(); 5580 5581 if (isValueEqualityComparison(SI)) { 5582 // If we only have one predecessor, and if it is a branch on this value, 5583 // see if that predecessor totally determines the outcome of this switch. 5584 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5585 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5586 return requestResimplify(); 5587 5588 Value *Cond = SI->getCondition(); 5589 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5590 if (SimplifySwitchOnSelect(SI, Select)) 5591 return requestResimplify(); 5592 5593 // If the block only contains the switch, see if we can fold the block 5594 // away into any preds. 5595 if (SI == &*BB->instructionsWithoutDebug().begin()) 5596 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5597 return requestResimplify(); 5598 } 5599 5600 // Try to transform the switch into an icmp and a branch. 5601 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5602 return requestResimplify(); 5603 5604 // Remove unreachable cases. 5605 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5606 return requestResimplify(); 5607 5608 if (switchToSelect(SI, Builder, DL, TTI)) 5609 return requestResimplify(); 5610 5611 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5612 return requestResimplify(); 5613 5614 // The conversion from switch to lookup tables results in difficult-to-analyze 5615 // code and makes pruning branches much harder. This is a problem if the 5616 // switch expression itself can still be restricted as a result of inlining or 5617 // CVP. Therefore, only apply this transformation during late stages of the 5618 // optimisation pipeline. 5619 if (Options.ConvertSwitchToLookupTable && 5620 SwitchToLookupTable(SI, Builder, DL, TTI)) 5621 return requestResimplify(); 5622 5623 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5624 return requestResimplify(); 5625 5626 return false; 5627 } 5628 5629 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5630 BasicBlock *BB = IBI->getParent(); 5631 bool Changed = false; 5632 5633 // Eliminate redundant destinations. 5634 SmallPtrSet<Value *, 8> Succs; 5635 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5636 BasicBlock *Dest = IBI->getDestination(i); 5637 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5638 Dest->removePredecessor(BB); 5639 IBI->removeDestination(i); 5640 --i; 5641 --e; 5642 Changed = true; 5643 } 5644 } 5645 5646 if (IBI->getNumDestinations() == 0) { 5647 // If the indirectbr has no successors, change it to unreachable. 5648 new UnreachableInst(IBI->getContext(), IBI); 5649 EraseTerminatorAndDCECond(IBI); 5650 return true; 5651 } 5652 5653 if (IBI->getNumDestinations() == 1) { 5654 // If the indirectbr has one successor, change it to a direct branch. 5655 BranchInst::Create(IBI->getDestination(0), IBI); 5656 EraseTerminatorAndDCECond(IBI); 5657 return true; 5658 } 5659 5660 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5661 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5662 return requestResimplify(); 5663 } 5664 return Changed; 5665 } 5666 5667 /// Given an block with only a single landing pad and a unconditional branch 5668 /// try to find another basic block which this one can be merged with. This 5669 /// handles cases where we have multiple invokes with unique landing pads, but 5670 /// a shared handler. 5671 /// 5672 /// We specifically choose to not worry about merging non-empty blocks 5673 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5674 /// practice, the optimizer produces empty landing pad blocks quite frequently 5675 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5676 /// sinking in this file) 5677 /// 5678 /// This is primarily a code size optimization. We need to avoid performing 5679 /// any transform which might inhibit optimization (such as our ability to 5680 /// specialize a particular handler via tail commoning). We do this by not 5681 /// merging any blocks which require us to introduce a phi. Since the same 5682 /// values are flowing through both blocks, we don't lose any ability to 5683 /// specialize. If anything, we make such specialization more likely. 5684 /// 5685 /// TODO - This transformation could remove entries from a phi in the target 5686 /// block when the inputs in the phi are the same for the two blocks being 5687 /// merged. In some cases, this could result in removal of the PHI entirely. 5688 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5689 BasicBlock *BB) { 5690 auto Succ = BB->getUniqueSuccessor(); 5691 assert(Succ); 5692 // If there's a phi in the successor block, we'd likely have to introduce 5693 // a phi into the merged landing pad block. 5694 if (isa<PHINode>(*Succ->begin())) 5695 return false; 5696 5697 for (BasicBlock *OtherPred : predecessors(Succ)) { 5698 if (BB == OtherPred) 5699 continue; 5700 BasicBlock::iterator I = OtherPred->begin(); 5701 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5702 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5703 continue; 5704 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5705 ; 5706 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5707 if (!BI2 || !BI2->isIdenticalTo(BI)) 5708 continue; 5709 5710 // We've found an identical block. Update our predecessors to take that 5711 // path instead and make ourselves dead. 5712 SmallPtrSet<BasicBlock *, 16> Preds; 5713 Preds.insert(pred_begin(BB), pred_end(BB)); 5714 for (BasicBlock *Pred : Preds) { 5715 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5716 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5717 "unexpected successor"); 5718 II->setUnwindDest(OtherPred); 5719 } 5720 5721 // The debug info in OtherPred doesn't cover the merged control flow that 5722 // used to go through BB. We need to delete it or update it. 5723 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5724 Instruction &Inst = *I; 5725 I++; 5726 if (isa<DbgInfoIntrinsic>(Inst)) 5727 Inst.eraseFromParent(); 5728 } 5729 5730 SmallPtrSet<BasicBlock *, 16> Succs; 5731 Succs.insert(succ_begin(BB), succ_end(BB)); 5732 for (BasicBlock *Succ : Succs) { 5733 Succ->removePredecessor(BB); 5734 } 5735 5736 IRBuilder<> Builder(BI); 5737 Builder.CreateUnreachable(); 5738 BI->eraseFromParent(); 5739 return true; 5740 } 5741 return false; 5742 } 5743 5744 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5745 IRBuilder<> &Builder) { 5746 BasicBlock *BB = BI->getParent(); 5747 BasicBlock *Succ = BI->getSuccessor(0); 5748 5749 // If the Terminator is the only non-phi instruction, simplify the block. 5750 // If LoopHeader is provided, check if the block or its successor is a loop 5751 // header. (This is for early invocations before loop simplify and 5752 // vectorization to keep canonical loop forms for nested loops. These blocks 5753 // can be eliminated when the pass is invoked later in the back-end.) 5754 // Note that if BB has only one predecessor then we do not introduce new 5755 // backedge, so we can eliminate BB. 5756 bool NeedCanonicalLoop = 5757 Options.NeedCanonicalLoop && 5758 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5759 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5760 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5761 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5762 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5763 return true; 5764 5765 // If the only instruction in the block is a seteq/setne comparison against a 5766 // constant, try to simplify the block. 5767 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5768 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5769 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5770 ; 5771 if (I->isTerminator() && 5772 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5773 return true; 5774 } 5775 5776 // See if we can merge an empty landing pad block with another which is 5777 // equivalent. 5778 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5779 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5780 ; 5781 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5782 return true; 5783 } 5784 5785 // If this basic block is ONLY a compare and a branch, and if a predecessor 5786 // branches to us and our successor, fold the comparison into the 5787 // predecessor and use logical operations to update the incoming value 5788 // for PHI nodes in common successor. 5789 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5790 return requestResimplify(); 5791 return false; 5792 } 5793 5794 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5795 BasicBlock *PredPred = nullptr; 5796 for (auto *P : predecessors(BB)) { 5797 BasicBlock *PPred = P->getSinglePredecessor(); 5798 if (!PPred || (PredPred && PredPred != PPred)) 5799 return nullptr; 5800 PredPred = PPred; 5801 } 5802 return PredPred; 5803 } 5804 5805 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5806 BasicBlock *BB = BI->getParent(); 5807 const Function *Fn = BB->getParent(); 5808 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5809 return false; 5810 5811 // Conditional branch 5812 if (isValueEqualityComparison(BI)) { 5813 // If we only have one predecessor, and if it is a branch on this value, 5814 // see if that predecessor totally determines the outcome of this 5815 // switch. 5816 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5817 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5818 return requestResimplify(); 5819 5820 // This block must be empty, except for the setcond inst, if it exists. 5821 // Ignore dbg intrinsics. 5822 auto I = BB->instructionsWithoutDebug().begin(); 5823 if (&*I == BI) { 5824 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5825 return requestResimplify(); 5826 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5827 ++I; 5828 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5829 return requestResimplify(); 5830 } 5831 } 5832 5833 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5834 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5835 return true; 5836 5837 // If this basic block has dominating predecessor blocks and the dominating 5838 // blocks' conditions imply BI's condition, we know the direction of BI. 5839 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5840 if (Imp) { 5841 // Turn this into a branch on constant. 5842 auto *OldCond = BI->getCondition(); 5843 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5844 : ConstantInt::getFalse(BB->getContext()); 5845 BI->setCondition(TorF); 5846 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5847 return requestResimplify(); 5848 } 5849 5850 // If this basic block is ONLY a compare and a branch, and if a predecessor 5851 // branches to us and one of our successors, fold the comparison into the 5852 // predecessor and use logical operations to pick the right destination. 5853 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5854 return requestResimplify(); 5855 5856 // We have a conditional branch to two blocks that are only reachable 5857 // from BI. We know that the condbr dominates the two blocks, so see if 5858 // there is any identical code in the "then" and "else" blocks. If so, we 5859 // can hoist it up to the branching block. 5860 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5861 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5862 if (HoistThenElseCodeToIf(BI, TTI)) 5863 return requestResimplify(); 5864 } else { 5865 // If Successor #1 has multiple preds, we may be able to conditionally 5866 // execute Successor #0 if it branches to Successor #1. 5867 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5868 if (Succ0TI->getNumSuccessors() == 1 && 5869 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5870 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5871 return requestResimplify(); 5872 } 5873 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5874 // If Successor #0 has multiple preds, we may be able to conditionally 5875 // execute Successor #1 if it branches to Successor #0. 5876 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5877 if (Succ1TI->getNumSuccessors() == 1 && 5878 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5879 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5880 return requestResimplify(); 5881 } 5882 5883 // If this is a branch on a phi node in the current block, thread control 5884 // through this block if any PHI node entries are constants. 5885 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5886 if (PN->getParent() == BI->getParent()) 5887 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5888 return requestResimplify(); 5889 5890 // Scan predecessor blocks for conditional branches. 5891 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5892 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5893 if (PBI != BI && PBI->isConditional()) 5894 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5895 return requestResimplify(); 5896 5897 // Look for diamond patterns. 5898 if (MergeCondStores) 5899 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5900 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5901 if (PBI != BI && PBI->isConditional()) 5902 if (mergeConditionalStores(PBI, BI, DL)) 5903 return requestResimplify(); 5904 5905 return false; 5906 } 5907 5908 /// Check if passing a value to an instruction will cause undefined behavior. 5909 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5910 Constant *C = dyn_cast<Constant>(V); 5911 if (!C) 5912 return false; 5913 5914 if (I->use_empty()) 5915 return false; 5916 5917 if (C->isNullValue() || isa<UndefValue>(C)) { 5918 // Only look at the first use, avoid hurting compile time with long uselists 5919 User *Use = *I->user_begin(); 5920 5921 // Now make sure that there are no instructions in between that can alter 5922 // control flow (eg. calls) 5923 for (BasicBlock::iterator 5924 i = ++BasicBlock::iterator(I), 5925 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5926 i != UI; ++i) 5927 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5928 return false; 5929 5930 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5931 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5932 if (GEP->getPointerOperand() == I) 5933 return passingValueIsAlwaysUndefined(V, GEP); 5934 5935 // Look through bitcasts. 5936 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5937 return passingValueIsAlwaysUndefined(V, BC); 5938 5939 // Load from null is undefined. 5940 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5941 if (!LI->isVolatile()) 5942 return !NullPointerIsDefined(LI->getFunction(), 5943 LI->getPointerAddressSpace()); 5944 5945 // Store to null is undefined. 5946 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5947 if (!SI->isVolatile()) 5948 return (!NullPointerIsDefined(SI->getFunction(), 5949 SI->getPointerAddressSpace())) && 5950 SI->getPointerOperand() == I; 5951 5952 // A call to null is undefined. 5953 if (auto CS = CallSite(Use)) 5954 return !NullPointerIsDefined(CS->getFunction()) && 5955 CS.getCalledValue() == I; 5956 } 5957 return false; 5958 } 5959 5960 /// If BB has an incoming value that will always trigger undefined behavior 5961 /// (eg. null pointer dereference), remove the branch leading here. 5962 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5963 for (PHINode &PHI : BB->phis()) 5964 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5965 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5966 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 5967 IRBuilder<> Builder(T); 5968 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5969 BB->removePredecessor(PHI.getIncomingBlock(i)); 5970 // Turn uncoditional branches into unreachables and remove the dead 5971 // destination from conditional branches. 5972 if (BI->isUnconditional()) 5973 Builder.CreateUnreachable(); 5974 else 5975 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5976 : BI->getSuccessor(0)); 5977 BI->eraseFromParent(); 5978 return true; 5979 } 5980 // TODO: SwitchInst. 5981 } 5982 5983 return false; 5984 } 5985 5986 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 5987 bool Changed = false; 5988 5989 assert(BB && BB->getParent() && "Block not embedded in function!"); 5990 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5991 5992 // Remove basic blocks that have no predecessors (except the entry block)... 5993 // or that just have themself as a predecessor. These are unreachable. 5994 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5995 BB->getSinglePredecessor() == BB) { 5996 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 5997 DeleteDeadBlock(BB); 5998 return true; 5999 } 6000 6001 // Check to see if we can constant propagate this terminator instruction 6002 // away... 6003 Changed |= ConstantFoldTerminator(BB, true); 6004 6005 // Check for and eliminate duplicate PHI nodes in this block. 6006 Changed |= EliminateDuplicatePHINodes(BB); 6007 6008 // Check for and remove branches that will always cause undefined behavior. 6009 Changed |= removeUndefIntroducingPredecessor(BB); 6010 6011 // Merge basic blocks into their predecessor if there is only one distinct 6012 // pred, and if there is only one distinct successor of the predecessor, and 6013 // if there are no PHI nodes. 6014 if (MergeBlockIntoPredecessor(BB)) 6015 return true; 6016 6017 if (SinkCommon && Options.SinkCommonInsts) 6018 Changed |= SinkCommonCodeFromPredecessors(BB); 6019 6020 IRBuilder<> Builder(BB); 6021 6022 // If there is a trivial two-entry PHI node in this basic block, and we can 6023 // eliminate it, do so now. 6024 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6025 if (PN->getNumIncomingValues() == 2) 6026 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6027 6028 Builder.SetInsertPoint(BB->getTerminator()); 6029 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6030 if (BI->isUnconditional()) { 6031 if (SimplifyUncondBranch(BI, Builder)) 6032 return true; 6033 } else { 6034 if (SimplifyCondBranch(BI, Builder)) 6035 return true; 6036 } 6037 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6038 if (SimplifyReturn(RI, Builder)) 6039 return true; 6040 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6041 if (SimplifyResume(RI, Builder)) 6042 return true; 6043 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6044 if (SimplifyCleanupReturn(RI)) 6045 return true; 6046 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6047 if (SimplifySwitch(SI, Builder)) 6048 return true; 6049 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6050 if (SimplifyUnreachable(UI)) 6051 return true; 6052 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6053 if (SimplifyIndirectBr(IBI)) 6054 return true; 6055 } 6056 6057 return Changed; 6058 } 6059 6060 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6061 bool Changed = false; 6062 6063 // Repeated simplify BB as long as resimplification is requested. 6064 do { 6065 Resimplify = false; 6066 6067 // Perform one round of simplifcation. Resimplify flag will be set if 6068 // another iteration is requested. 6069 Changed |= simplifyOnce(BB); 6070 } while (Resimplify); 6071 6072 return Changed; 6073 } 6074 6075 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6076 const SimplifyCFGOptions &Options, 6077 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6078 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6079 Options) 6080 .run(BB); 6081 } 6082