xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyCFG.cpp (revision 43e29d03f416d7dda52112a29600a7c82ee1a91e)
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/Sequence.h"
20 #include "llvm/ADT/SetOperations.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/ProfDataUtils.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <climits>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <map>
84 #include <optional>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
97 
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool>
117     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
118                 cl::desc("Hoist common instructions up to the parent block"));
119 
120 static cl::opt<unsigned>
121     HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden,
122                          cl::init(20),
123                          cl::desc("Allow reordering across at most this many "
124                                   "instructions when hoisting"));
125 
126 static cl::opt<bool>
127     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
128                cl::desc("Sink common instructions down to the end block"));
129 
130 static cl::opt<bool> HoistCondStores(
131     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
132     cl::desc("Hoist conditional stores if an unconditional store precedes"));
133 
134 static cl::opt<bool> MergeCondStores(
135     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
136     cl::desc("Hoist conditional stores even if an unconditional store does not "
137              "precede - hoist multiple conditional stores into a single "
138              "predicated store"));
139 
140 static cl::opt<bool> MergeCondStoresAggressively(
141     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
142     cl::desc("When merging conditional stores, do so even if the resultant "
143              "basic blocks are unlikely to be if-converted as a result"));
144 
145 static cl::opt<bool> SpeculateOneExpensiveInst(
146     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
147     cl::desc("Allow exactly one expensive instruction to be speculatively "
148              "executed"));
149 
150 static cl::opt<unsigned> MaxSpeculationDepth(
151     "max-speculation-depth", cl::Hidden, cl::init(10),
152     cl::desc("Limit maximum recursion depth when calculating costs of "
153              "speculatively executed instructions"));
154 
155 static cl::opt<int>
156     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
157                       cl::init(10),
158                       cl::desc("Max size of a block which is still considered "
159                                "small enough to thread through"));
160 
161 // Two is chosen to allow one negation and a logical combine.
162 static cl::opt<unsigned>
163     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
164                         cl::init(2),
165                         cl::desc("Maximum cost of combining conditions when "
166                                  "folding branches"));
167 
168 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
169     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
170     cl::init(2),
171     cl::desc("Multiplier to apply to threshold when determining whether or not "
172              "to fold branch to common destination when vector operations are "
173              "present"));
174 
175 static cl::opt<bool> EnableMergeCompatibleInvokes(
176     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
177     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
178 
179 static cl::opt<unsigned> MaxSwitchCasesPerResult(
180     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
181     cl::desc("Limit cases to analyze when converting a switch to select"));
182 
183 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
184 STATISTIC(NumLinearMaps,
185           "Number of switch instructions turned into linear mapping");
186 STATISTIC(NumLookupTables,
187           "Number of switch instructions turned into lookup tables");
188 STATISTIC(
189     NumLookupTablesHoles,
190     "Number of switch instructions turned into lookup tables (holes checked)");
191 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
192 STATISTIC(NumFoldValueComparisonIntoPredecessors,
193           "Number of value comparisons folded into predecessor basic blocks");
194 STATISTIC(NumFoldBranchToCommonDest,
195           "Number of branches folded into predecessor basic block");
196 STATISTIC(
197     NumHoistCommonCode,
198     "Number of common instruction 'blocks' hoisted up to the begin block");
199 STATISTIC(NumHoistCommonInstrs,
200           "Number of common instructions hoisted up to the begin block");
201 STATISTIC(NumSinkCommonCode,
202           "Number of common instruction 'blocks' sunk down to the end block");
203 STATISTIC(NumSinkCommonInstrs,
204           "Number of common instructions sunk down to the end block");
205 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
206 STATISTIC(NumInvokes,
207           "Number of invokes with empty resume blocks simplified into calls");
208 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
209 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
210 
211 namespace {
212 
213 // The first field contains the value that the switch produces when a certain
214 // case group is selected, and the second field is a vector containing the
215 // cases composing the case group.
216 using SwitchCaseResultVectorTy =
217     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
218 
219 // The first field contains the phi node that generates a result of the switch
220 // and the second field contains the value generated for a certain case in the
221 // switch for that PHI.
222 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
223 
224 /// ValueEqualityComparisonCase - Represents a case of a switch.
225 struct ValueEqualityComparisonCase {
226   ConstantInt *Value;
227   BasicBlock *Dest;
228 
229   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
230       : Value(Value), Dest(Dest) {}
231 
232   bool operator<(ValueEqualityComparisonCase RHS) const {
233     // Comparing pointers is ok as we only rely on the order for uniquing.
234     return Value < RHS.Value;
235   }
236 
237   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
238 };
239 
240 class SimplifyCFGOpt {
241   const TargetTransformInfo &TTI;
242   DomTreeUpdater *DTU;
243   const DataLayout &DL;
244   ArrayRef<WeakVH> LoopHeaders;
245   const SimplifyCFGOptions &Options;
246   bool Resimplify;
247 
248   Value *isValueEqualityComparison(Instruction *TI);
249   BasicBlock *GetValueEqualityComparisonCases(
250       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
251   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
252                                                      BasicBlock *Pred,
253                                                      IRBuilder<> &Builder);
254   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
255                                                     Instruction *PTI,
256                                                     IRBuilder<> &Builder);
257   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
258                                            IRBuilder<> &Builder);
259 
260   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
261   bool simplifySingleResume(ResumeInst *RI);
262   bool simplifyCommonResume(ResumeInst *RI);
263   bool simplifyCleanupReturn(CleanupReturnInst *RI);
264   bool simplifyUnreachable(UnreachableInst *UI);
265   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
266   bool simplifyIndirectBr(IndirectBrInst *IBI);
267   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
268   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
269   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
270 
271   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
272                                              IRBuilder<> &Builder);
273 
274   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
275                              bool EqTermsOnly);
276   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
277                               const TargetTransformInfo &TTI);
278   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
279                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
280                                   uint32_t TrueWeight, uint32_t FalseWeight);
281   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
282                                  const DataLayout &DL);
283   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
284   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
285   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
286 
287 public:
288   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
289                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
290                  const SimplifyCFGOptions &Opts)
291       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
292     assert((!DTU || !DTU->hasPostDomTree()) &&
293            "SimplifyCFG is not yet capable of maintaining validity of a "
294            "PostDomTree, so don't ask for it.");
295   }
296 
297   bool simplifyOnce(BasicBlock *BB);
298   bool run(BasicBlock *BB);
299 
300   // Helper to set Resimplify and return change indication.
301   bool requestResimplify() {
302     Resimplify = true;
303     return true;
304   }
305 };
306 
307 } // end anonymous namespace
308 
309 /// Return true if all the PHI nodes in the basic block \p BB
310 /// receive compatible (identical) incoming values when coming from
311 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
312 ///
313 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
314 /// is provided, and *both* of the values are present in the set,
315 /// then they are considered equal.
316 static bool IncomingValuesAreCompatible(
317     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
318     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
319   assert(IncomingBlocks.size() == 2 &&
320          "Only for a pair of incoming blocks at the time!");
321 
322   // FIXME: it is okay if one of the incoming values is an `undef` value,
323   //        iff the other incoming value is guaranteed to be a non-poison value.
324   // FIXME: it is okay if one of the incoming values is a `poison` value.
325   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
326     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
327     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
328     if (IV0 == IV1)
329       return true;
330     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
331         EquivalenceSet->contains(IV1))
332       return true;
333     return false;
334   });
335 }
336 
337 /// Return true if it is safe to merge these two
338 /// terminator instructions together.
339 static bool
340 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
341                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
342   if (SI1 == SI2)
343     return false; // Can't merge with self!
344 
345   // It is not safe to merge these two switch instructions if they have a common
346   // successor, and if that successor has a PHI node, and if *that* PHI node has
347   // conflicting incoming values from the two switch blocks.
348   BasicBlock *SI1BB = SI1->getParent();
349   BasicBlock *SI2BB = SI2->getParent();
350 
351   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
352   bool Fail = false;
353   for (BasicBlock *Succ : successors(SI2BB)) {
354     if (!SI1Succs.count(Succ))
355       continue;
356     if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
357       continue;
358     Fail = true;
359     if (FailBlocks)
360       FailBlocks->insert(Succ);
361     else
362       break;
363   }
364 
365   return !Fail;
366 }
367 
368 /// Update PHI nodes in Succ to indicate that there will now be entries in it
369 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
370 /// will be the same as those coming in from ExistPred, an existing predecessor
371 /// of Succ.
372 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
373                                   BasicBlock *ExistPred,
374                                   MemorySSAUpdater *MSSAU = nullptr) {
375   for (PHINode &PN : Succ->phis())
376     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
377   if (MSSAU)
378     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
379       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
380 }
381 
382 /// Compute an abstract "cost" of speculating the given instruction,
383 /// which is assumed to be safe to speculate. TCC_Free means cheap,
384 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
385 /// expensive.
386 static InstructionCost computeSpeculationCost(const User *I,
387                                               const TargetTransformInfo &TTI) {
388   assert((!isa<Instruction>(I) ||
389           isSafeToSpeculativelyExecute(cast<Instruction>(I))) &&
390          "Instruction is not safe to speculatively execute!");
391   return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency);
392 }
393 
394 /// If we have a merge point of an "if condition" as accepted above,
395 /// return true if the specified value dominates the block.  We
396 /// don't handle the true generality of domination here, just a special case
397 /// which works well enough for us.
398 ///
399 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
400 /// see if V (which must be an instruction) and its recursive operands
401 /// that do not dominate BB have a combined cost lower than Budget and
402 /// are non-trapping.  If both are true, the instruction is inserted into the
403 /// set and true is returned.
404 ///
405 /// The cost for most non-trapping instructions is defined as 1 except for
406 /// Select whose cost is 2.
407 ///
408 /// After this function returns, Cost is increased by the cost of
409 /// V plus its non-dominating operands.  If that cost is greater than
410 /// Budget, false is returned and Cost is undefined.
411 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
412                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
413                                 InstructionCost &Cost,
414                                 InstructionCost Budget,
415                                 const TargetTransformInfo &TTI,
416                                 unsigned Depth = 0) {
417   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
418   // so limit the recursion depth.
419   // TODO: While this recursion limit does prevent pathological behavior, it
420   // would be better to track visited instructions to avoid cycles.
421   if (Depth == MaxSpeculationDepth)
422     return false;
423 
424   Instruction *I = dyn_cast<Instruction>(V);
425   if (!I) {
426     // Non-instructions dominate all instructions and can be executed
427     // unconditionally.
428     return true;
429   }
430   BasicBlock *PBB = I->getParent();
431 
432   // We don't want to allow weird loops that might have the "if condition" in
433   // the bottom of this block.
434   if (PBB == BB)
435     return false;
436 
437   // If this instruction is defined in a block that contains an unconditional
438   // branch to BB, then it must be in the 'conditional' part of the "if
439   // statement".  If not, it definitely dominates the region.
440   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
441   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
442     return true;
443 
444   // If we have seen this instruction before, don't count it again.
445   if (AggressiveInsts.count(I))
446     return true;
447 
448   // Okay, it looks like the instruction IS in the "condition".  Check to
449   // see if it's a cheap instruction to unconditionally compute, and if it
450   // only uses stuff defined outside of the condition.  If so, hoist it out.
451   if (!isSafeToSpeculativelyExecute(I))
452     return false;
453 
454   Cost += computeSpeculationCost(I, TTI);
455 
456   // Allow exactly one instruction to be speculated regardless of its cost
457   // (as long as it is safe to do so).
458   // This is intended to flatten the CFG even if the instruction is a division
459   // or other expensive operation. The speculation of an expensive instruction
460   // is expected to be undone in CodeGenPrepare if the speculation has not
461   // enabled further IR optimizations.
462   if (Cost > Budget &&
463       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
464        !Cost.isValid()))
465     return false;
466 
467   // Okay, we can only really hoist these out if their operands do
468   // not take us over the cost threshold.
469   for (Use &Op : I->operands())
470     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
471                              Depth + 1))
472       return false;
473   // Okay, it's safe to do this!  Remember this instruction.
474   AggressiveInsts.insert(I);
475   return true;
476 }
477 
478 /// Extract ConstantInt from value, looking through IntToPtr
479 /// and PointerNullValue. Return NULL if value is not a constant int.
480 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
481   // Normal constant int.
482   ConstantInt *CI = dyn_cast<ConstantInt>(V);
483   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() ||
484       DL.isNonIntegralPointerType(V->getType()))
485     return CI;
486 
487   // This is some kind of pointer constant. Turn it into a pointer-sized
488   // ConstantInt if possible.
489   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
490 
491   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
492   if (isa<ConstantPointerNull>(V))
493     return ConstantInt::get(PtrTy, 0);
494 
495   // IntToPtr const int.
496   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
497     if (CE->getOpcode() == Instruction::IntToPtr)
498       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
499         // The constant is very likely to have the right type already.
500         if (CI->getType() == PtrTy)
501           return CI;
502         else
503           return cast<ConstantInt>(
504               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
505       }
506   return nullptr;
507 }
508 
509 namespace {
510 
511 /// Given a chain of or (||) or and (&&) comparison of a value against a
512 /// constant, this will try to recover the information required for a switch
513 /// structure.
514 /// It will depth-first traverse the chain of comparison, seeking for patterns
515 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
516 /// representing the different cases for the switch.
517 /// Note that if the chain is composed of '||' it will build the set of elements
518 /// that matches the comparisons (i.e. any of this value validate the chain)
519 /// while for a chain of '&&' it will build the set elements that make the test
520 /// fail.
521 struct ConstantComparesGatherer {
522   const DataLayout &DL;
523 
524   /// Value found for the switch comparison
525   Value *CompValue = nullptr;
526 
527   /// Extra clause to be checked before the switch
528   Value *Extra = nullptr;
529 
530   /// Set of integers to match in switch
531   SmallVector<ConstantInt *, 8> Vals;
532 
533   /// Number of comparisons matched in the and/or chain
534   unsigned UsedICmps = 0;
535 
536   /// Construct and compute the result for the comparison instruction Cond
537   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
538     gather(Cond);
539   }
540 
541   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
542   ConstantComparesGatherer &
543   operator=(const ConstantComparesGatherer &) = delete;
544 
545 private:
546   /// Try to set the current value used for the comparison, it succeeds only if
547   /// it wasn't set before or if the new value is the same as the old one
548   bool setValueOnce(Value *NewVal) {
549     if (CompValue && CompValue != NewVal)
550       return false;
551     CompValue = NewVal;
552     return (CompValue != nullptr);
553   }
554 
555   /// Try to match Instruction "I" as a comparison against a constant and
556   /// populates the array Vals with the set of values that match (or do not
557   /// match depending on isEQ).
558   /// Return false on failure. On success, the Value the comparison matched
559   /// against is placed in CompValue.
560   /// If CompValue is already set, the function is expected to fail if a match
561   /// is found but the value compared to is different.
562   bool matchInstruction(Instruction *I, bool isEQ) {
563     // If this is an icmp against a constant, handle this as one of the cases.
564     ICmpInst *ICI;
565     ConstantInt *C;
566     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
567           (C = GetConstantInt(I->getOperand(1), DL)))) {
568       return false;
569     }
570 
571     Value *RHSVal;
572     const APInt *RHSC;
573 
574     // Pattern match a special case
575     // (x & ~2^z) == y --> x == y || x == y|2^z
576     // This undoes a transformation done by instcombine to fuse 2 compares.
577     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
578       // It's a little bit hard to see why the following transformations are
579       // correct. Here is a CVC3 program to verify them for 64-bit values:
580 
581       /*
582          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
583          x    : BITVECTOR(64);
584          y    : BITVECTOR(64);
585          z    : BITVECTOR(64);
586          mask : BITVECTOR(64) = BVSHL(ONE, z);
587          QUERY( (y & ~mask = y) =>
588                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
589          );
590          QUERY( (y |  mask = y) =>
591                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
592          );
593       */
594 
595       // Please note that each pattern must be a dual implication (<--> or
596       // iff). One directional implication can create spurious matches. If the
597       // implication is only one-way, an unsatisfiable condition on the left
598       // side can imply a satisfiable condition on the right side. Dual
599       // implication ensures that satisfiable conditions are transformed to
600       // other satisfiable conditions and unsatisfiable conditions are
601       // transformed to other unsatisfiable conditions.
602 
603       // Here is a concrete example of a unsatisfiable condition on the left
604       // implying a satisfiable condition on the right:
605       //
606       // mask = (1 << z)
607       // (x & ~mask) == y  --> (x == y || x == (y | mask))
608       //
609       // Substituting y = 3, z = 0 yields:
610       // (x & -2) == 3 --> (x == 3 || x == 2)
611 
612       // Pattern match a special case:
613       /*
614         QUERY( (y & ~mask = y) =>
615                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
616         );
617       */
618       if (match(ICI->getOperand(0),
619                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
620         APInt Mask = ~*RHSC;
621         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
622           // If we already have a value for the switch, it has to match!
623           if (!setValueOnce(RHSVal))
624             return false;
625 
626           Vals.push_back(C);
627           Vals.push_back(
628               ConstantInt::get(C->getContext(),
629                                C->getValue() | Mask));
630           UsedICmps++;
631           return true;
632         }
633       }
634 
635       // Pattern match a special case:
636       /*
637         QUERY( (y |  mask = y) =>
638                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
639         );
640       */
641       if (match(ICI->getOperand(0),
642                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
643         APInt Mask = *RHSC;
644         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
645           // If we already have a value for the switch, it has to match!
646           if (!setValueOnce(RHSVal))
647             return false;
648 
649           Vals.push_back(C);
650           Vals.push_back(ConstantInt::get(C->getContext(),
651                                           C->getValue() & ~Mask));
652           UsedICmps++;
653           return true;
654         }
655       }
656 
657       // If we already have a value for the switch, it has to match!
658       if (!setValueOnce(ICI->getOperand(0)))
659         return false;
660 
661       UsedICmps++;
662       Vals.push_back(C);
663       return ICI->getOperand(0);
664     }
665 
666     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
667     ConstantRange Span =
668         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
669 
670     // Shift the range if the compare is fed by an add. This is the range
671     // compare idiom as emitted by instcombine.
672     Value *CandidateVal = I->getOperand(0);
673     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
674       Span = Span.subtract(*RHSC);
675       CandidateVal = RHSVal;
676     }
677 
678     // If this is an and/!= check, then we are looking to build the set of
679     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
680     // x != 0 && x != 1.
681     if (!isEQ)
682       Span = Span.inverse();
683 
684     // If there are a ton of values, we don't want to make a ginormous switch.
685     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
686       return false;
687     }
688 
689     // If we already have a value for the switch, it has to match!
690     if (!setValueOnce(CandidateVal))
691       return false;
692 
693     // Add all values from the range to the set
694     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
695       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
696 
697     UsedICmps++;
698     return true;
699   }
700 
701   /// Given a potentially 'or'd or 'and'd together collection of icmp
702   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
703   /// the value being compared, and stick the list constants into the Vals
704   /// vector.
705   /// One "Extra" case is allowed to differ from the other.
706   void gather(Value *V) {
707     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
708 
709     // Keep a stack (SmallVector for efficiency) for depth-first traversal
710     SmallVector<Value *, 8> DFT;
711     SmallPtrSet<Value *, 8> Visited;
712 
713     // Initialize
714     Visited.insert(V);
715     DFT.push_back(V);
716 
717     while (!DFT.empty()) {
718       V = DFT.pop_back_val();
719 
720       if (Instruction *I = dyn_cast<Instruction>(V)) {
721         // If it is a || (or && depending on isEQ), process the operands.
722         Value *Op0, *Op1;
723         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
724                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
725           if (Visited.insert(Op1).second)
726             DFT.push_back(Op1);
727           if (Visited.insert(Op0).second)
728             DFT.push_back(Op0);
729 
730           continue;
731         }
732 
733         // Try to match the current instruction
734         if (matchInstruction(I, isEQ))
735           // Match succeed, continue the loop
736           continue;
737       }
738 
739       // One element of the sequence of || (or &&) could not be match as a
740       // comparison against the same value as the others.
741       // We allow only one "Extra" case to be checked before the switch
742       if (!Extra) {
743         Extra = V;
744         continue;
745       }
746       // Failed to parse a proper sequence, abort now
747       CompValue = nullptr;
748       break;
749     }
750   }
751 };
752 
753 } // end anonymous namespace
754 
755 static void EraseTerminatorAndDCECond(Instruction *TI,
756                                       MemorySSAUpdater *MSSAU = nullptr) {
757   Instruction *Cond = nullptr;
758   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
759     Cond = dyn_cast<Instruction>(SI->getCondition());
760   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
761     if (BI->isConditional())
762       Cond = dyn_cast<Instruction>(BI->getCondition());
763   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
764     Cond = dyn_cast<Instruction>(IBI->getAddress());
765   }
766 
767   TI->eraseFromParent();
768   if (Cond)
769     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
770 }
771 
772 /// Return true if the specified terminator checks
773 /// to see if a value is equal to constant integer value.
774 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
775   Value *CV = nullptr;
776   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
777     // Do not permit merging of large switch instructions into their
778     // predecessors unless there is only one predecessor.
779     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
780       CV = SI->getCondition();
781   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
782     if (BI->isConditional() && BI->getCondition()->hasOneUse())
783       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
784         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
785           CV = ICI->getOperand(0);
786       }
787 
788   // Unwrap any lossless ptrtoint cast.
789   if (CV) {
790     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
791       Value *Ptr = PTII->getPointerOperand();
792       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
793         CV = Ptr;
794     }
795   }
796   return CV;
797 }
798 
799 /// Given a value comparison instruction,
800 /// decode all of the 'cases' that it represents and return the 'default' block.
801 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
802     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
803   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
804     Cases.reserve(SI->getNumCases());
805     for (auto Case : SI->cases())
806       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
807                                                   Case.getCaseSuccessor()));
808     return SI->getDefaultDest();
809   }
810 
811   BranchInst *BI = cast<BranchInst>(TI);
812   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
813   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
814   Cases.push_back(ValueEqualityComparisonCase(
815       GetConstantInt(ICI->getOperand(1), DL), Succ));
816   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
817 }
818 
819 /// Given a vector of bb/value pairs, remove any entries
820 /// in the list that match the specified block.
821 static void
822 EliminateBlockCases(BasicBlock *BB,
823                     std::vector<ValueEqualityComparisonCase> &Cases) {
824   llvm::erase_value(Cases, BB);
825 }
826 
827 /// Return true if there are any keys in C1 that exist in C2 as well.
828 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
829                           std::vector<ValueEqualityComparisonCase> &C2) {
830   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
831 
832   // Make V1 be smaller than V2.
833   if (V1->size() > V2->size())
834     std::swap(V1, V2);
835 
836   if (V1->empty())
837     return false;
838   if (V1->size() == 1) {
839     // Just scan V2.
840     ConstantInt *TheVal = (*V1)[0].Value;
841     for (const ValueEqualityComparisonCase &VECC : *V2)
842       if (TheVal == VECC.Value)
843         return true;
844   }
845 
846   // Otherwise, just sort both lists and compare element by element.
847   array_pod_sort(V1->begin(), V1->end());
848   array_pod_sort(V2->begin(), V2->end());
849   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
850   while (i1 != e1 && i2 != e2) {
851     if ((*V1)[i1].Value == (*V2)[i2].Value)
852       return true;
853     if ((*V1)[i1].Value < (*V2)[i2].Value)
854       ++i1;
855     else
856       ++i2;
857   }
858   return false;
859 }
860 
861 // Set branch weights on SwitchInst. This sets the metadata if there is at
862 // least one non-zero weight.
863 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
864   // Check that there is at least one non-zero weight. Otherwise, pass
865   // nullptr to setMetadata which will erase the existing metadata.
866   MDNode *N = nullptr;
867   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
868     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
869   SI->setMetadata(LLVMContext::MD_prof, N);
870 }
871 
872 // Similar to the above, but for branch and select instructions that take
873 // exactly 2 weights.
874 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
875                              uint32_t FalseWeight) {
876   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
877   // Check that there is at least one non-zero weight. Otherwise, pass
878   // nullptr to setMetadata which will erase the existing metadata.
879   MDNode *N = nullptr;
880   if (TrueWeight || FalseWeight)
881     N = MDBuilder(I->getParent()->getContext())
882             .createBranchWeights(TrueWeight, FalseWeight);
883   I->setMetadata(LLVMContext::MD_prof, N);
884 }
885 
886 /// If TI is known to be a terminator instruction and its block is known to
887 /// only have a single predecessor block, check to see if that predecessor is
888 /// also a value comparison with the same value, and if that comparison
889 /// determines the outcome of this comparison. If so, simplify TI. This does a
890 /// very limited form of jump threading.
891 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
892     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
893   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
894   if (!PredVal)
895     return false; // Not a value comparison in predecessor.
896 
897   Value *ThisVal = isValueEqualityComparison(TI);
898   assert(ThisVal && "This isn't a value comparison!!");
899   if (ThisVal != PredVal)
900     return false; // Different predicates.
901 
902   // TODO: Preserve branch weight metadata, similarly to how
903   // FoldValueComparisonIntoPredecessors preserves it.
904 
905   // Find out information about when control will move from Pred to TI's block.
906   std::vector<ValueEqualityComparisonCase> PredCases;
907   BasicBlock *PredDef =
908       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
909   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
910 
911   // Find information about how control leaves this block.
912   std::vector<ValueEqualityComparisonCase> ThisCases;
913   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
914   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
915 
916   // If TI's block is the default block from Pred's comparison, potentially
917   // simplify TI based on this knowledge.
918   if (PredDef == TI->getParent()) {
919     // If we are here, we know that the value is none of those cases listed in
920     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
921     // can simplify TI.
922     if (!ValuesOverlap(PredCases, ThisCases))
923       return false;
924 
925     if (isa<BranchInst>(TI)) {
926       // Okay, one of the successors of this condbr is dead.  Convert it to a
927       // uncond br.
928       assert(ThisCases.size() == 1 && "Branch can only have one case!");
929       // Insert the new branch.
930       Instruction *NI = Builder.CreateBr(ThisDef);
931       (void)NI;
932 
933       // Remove PHI node entries for the dead edge.
934       ThisCases[0].Dest->removePredecessor(PredDef);
935 
936       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
937                         << "Through successor TI: " << *TI << "Leaving: " << *NI
938                         << "\n");
939 
940       EraseTerminatorAndDCECond(TI);
941 
942       if (DTU)
943         DTU->applyUpdates(
944             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
945 
946       return true;
947     }
948 
949     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
950     // Okay, TI has cases that are statically dead, prune them away.
951     SmallPtrSet<Constant *, 16> DeadCases;
952     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
953       DeadCases.insert(PredCases[i].Value);
954 
955     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
956                       << "Through successor TI: " << *TI);
957 
958     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
959     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
960       --i;
961       auto *Successor = i->getCaseSuccessor();
962       if (DTU)
963         ++NumPerSuccessorCases[Successor];
964       if (DeadCases.count(i->getCaseValue())) {
965         Successor->removePredecessor(PredDef);
966         SI.removeCase(i);
967         if (DTU)
968           --NumPerSuccessorCases[Successor];
969       }
970     }
971 
972     if (DTU) {
973       std::vector<DominatorTree::UpdateType> Updates;
974       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
975         if (I.second == 0)
976           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
977       DTU->applyUpdates(Updates);
978     }
979 
980     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
981     return true;
982   }
983 
984   // Otherwise, TI's block must correspond to some matched value.  Find out
985   // which value (or set of values) this is.
986   ConstantInt *TIV = nullptr;
987   BasicBlock *TIBB = TI->getParent();
988   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
989     if (PredCases[i].Dest == TIBB) {
990       if (TIV)
991         return false; // Cannot handle multiple values coming to this block.
992       TIV = PredCases[i].Value;
993     }
994   assert(TIV && "No edge from pred to succ?");
995 
996   // Okay, we found the one constant that our value can be if we get into TI's
997   // BB.  Find out which successor will unconditionally be branched to.
998   BasicBlock *TheRealDest = nullptr;
999   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
1000     if (ThisCases[i].Value == TIV) {
1001       TheRealDest = ThisCases[i].Dest;
1002       break;
1003     }
1004 
1005   // If not handled by any explicit cases, it is handled by the default case.
1006   if (!TheRealDest)
1007     TheRealDest = ThisDef;
1008 
1009   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1010 
1011   // Remove PHI node entries for dead edges.
1012   BasicBlock *CheckEdge = TheRealDest;
1013   for (BasicBlock *Succ : successors(TIBB))
1014     if (Succ != CheckEdge) {
1015       if (Succ != TheRealDest)
1016         RemovedSuccs.insert(Succ);
1017       Succ->removePredecessor(TIBB);
1018     } else
1019       CheckEdge = nullptr;
1020 
1021   // Insert the new branch.
1022   Instruction *NI = Builder.CreateBr(TheRealDest);
1023   (void)NI;
1024 
1025   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1026                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1027                     << "\n");
1028 
1029   EraseTerminatorAndDCECond(TI);
1030   if (DTU) {
1031     SmallVector<DominatorTree::UpdateType, 2> Updates;
1032     Updates.reserve(RemovedSuccs.size());
1033     for (auto *RemovedSucc : RemovedSuccs)
1034       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1035     DTU->applyUpdates(Updates);
1036   }
1037   return true;
1038 }
1039 
1040 namespace {
1041 
1042 /// This class implements a stable ordering of constant
1043 /// integers that does not depend on their address.  This is important for
1044 /// applications that sort ConstantInt's to ensure uniqueness.
1045 struct ConstantIntOrdering {
1046   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1047     return LHS->getValue().ult(RHS->getValue());
1048   }
1049 };
1050 
1051 } // end anonymous namespace
1052 
1053 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1054                                     ConstantInt *const *P2) {
1055   const ConstantInt *LHS = *P1;
1056   const ConstantInt *RHS = *P2;
1057   if (LHS == RHS)
1058     return 0;
1059   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1060 }
1061 
1062 /// Get Weights of a given terminator, the default weight is at the front
1063 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1064 /// metadata.
1065 static void GetBranchWeights(Instruction *TI,
1066                              SmallVectorImpl<uint64_t> &Weights) {
1067   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1068   assert(MD);
1069   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1070     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1071     Weights.push_back(CI->getValue().getZExtValue());
1072   }
1073 
1074   // If TI is a conditional eq, the default case is the false case,
1075   // and the corresponding branch-weight data is at index 2. We swap the
1076   // default weight to be the first entry.
1077   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1078     assert(Weights.size() == 2);
1079     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1080     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1081       std::swap(Weights.front(), Weights.back());
1082   }
1083 }
1084 
1085 /// Keep halving the weights until all can fit in uint32_t.
1086 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1087   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1088   if (Max > UINT_MAX) {
1089     unsigned Offset = 32 - countLeadingZeros(Max);
1090     for (uint64_t &I : Weights)
1091       I >>= Offset;
1092   }
1093 }
1094 
1095 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1096     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1097   Instruction *PTI = PredBlock->getTerminator();
1098 
1099   // If we have bonus instructions, clone them into the predecessor block.
1100   // Note that there may be multiple predecessor blocks, so we cannot move
1101   // bonus instructions to a predecessor block.
1102   for (Instruction &BonusInst : *BB) {
1103     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1104       continue;
1105 
1106     Instruction *NewBonusInst = BonusInst.clone();
1107 
1108     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1109       // Unless the instruction has the same !dbg location as the original
1110       // branch, drop it. When we fold the bonus instructions we want to make
1111       // sure we reset their debug locations in order to avoid stepping on
1112       // dead code caused by folding dead branches.
1113       NewBonusInst->setDebugLoc(DebugLoc());
1114     }
1115 
1116     RemapInstruction(NewBonusInst, VMap,
1117                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1118     VMap[&BonusInst] = NewBonusInst;
1119 
1120     // If we moved a load, we cannot any longer claim any knowledge about
1121     // its potential value. The previous information might have been valid
1122     // only given the branch precondition.
1123     // For an analogous reason, we must also drop all the metadata whose
1124     // semantics we don't understand. We *can* preserve !annotation, because
1125     // it is tied to the instruction itself, not the value or position.
1126     // Similarly strip attributes on call parameters that may cause UB in
1127     // location the call is moved to.
1128     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1129         LLVMContext::MD_annotation);
1130 
1131     NewBonusInst->insertInto(PredBlock, PTI->getIterator());
1132     NewBonusInst->takeName(&BonusInst);
1133     BonusInst.setName(NewBonusInst->getName() + ".old");
1134 
1135     // Update (liveout) uses of bonus instructions,
1136     // now that the bonus instruction has been cloned into predecessor.
1137     // Note that we expect to be in a block-closed SSA form for this to work!
1138     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1139       auto *UI = cast<Instruction>(U.getUser());
1140       auto *PN = dyn_cast<PHINode>(UI);
1141       if (!PN) {
1142         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1143                "If the user is not a PHI node, then it should be in the same "
1144                "block as, and come after, the original bonus instruction.");
1145         continue; // Keep using the original bonus instruction.
1146       }
1147       // Is this the block-closed SSA form PHI node?
1148       if (PN->getIncomingBlock(U) == BB)
1149         continue; // Great, keep using the original bonus instruction.
1150       // The only other alternative is an "use" when coming from
1151       // the predecessor block - here we should refer to the cloned bonus instr.
1152       assert(PN->getIncomingBlock(U) == PredBlock &&
1153              "Not in block-closed SSA form?");
1154       U.set(NewBonusInst);
1155     }
1156   }
1157 }
1158 
1159 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1160     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1161   BasicBlock *BB = TI->getParent();
1162   BasicBlock *Pred = PTI->getParent();
1163 
1164   SmallVector<DominatorTree::UpdateType, 32> Updates;
1165 
1166   // Figure out which 'cases' to copy from SI to PSI.
1167   std::vector<ValueEqualityComparisonCase> BBCases;
1168   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1169 
1170   std::vector<ValueEqualityComparisonCase> PredCases;
1171   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1172 
1173   // Based on whether the default edge from PTI goes to BB or not, fill in
1174   // PredCases and PredDefault with the new switch cases we would like to
1175   // build.
1176   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1177 
1178   // Update the branch weight metadata along the way
1179   SmallVector<uint64_t, 8> Weights;
1180   bool PredHasWeights = hasBranchWeightMD(*PTI);
1181   bool SuccHasWeights = hasBranchWeightMD(*TI);
1182 
1183   if (PredHasWeights) {
1184     GetBranchWeights(PTI, Weights);
1185     // branch-weight metadata is inconsistent here.
1186     if (Weights.size() != 1 + PredCases.size())
1187       PredHasWeights = SuccHasWeights = false;
1188   } else if (SuccHasWeights)
1189     // If there are no predecessor weights but there are successor weights,
1190     // populate Weights with 1, which will later be scaled to the sum of
1191     // successor's weights
1192     Weights.assign(1 + PredCases.size(), 1);
1193 
1194   SmallVector<uint64_t, 8> SuccWeights;
1195   if (SuccHasWeights) {
1196     GetBranchWeights(TI, SuccWeights);
1197     // branch-weight metadata is inconsistent here.
1198     if (SuccWeights.size() != 1 + BBCases.size())
1199       PredHasWeights = SuccHasWeights = false;
1200   } else if (PredHasWeights)
1201     SuccWeights.assign(1 + BBCases.size(), 1);
1202 
1203   if (PredDefault == BB) {
1204     // If this is the default destination from PTI, only the edges in TI
1205     // that don't occur in PTI, or that branch to BB will be activated.
1206     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1207     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1208       if (PredCases[i].Dest != BB)
1209         PTIHandled.insert(PredCases[i].Value);
1210       else {
1211         // The default destination is BB, we don't need explicit targets.
1212         std::swap(PredCases[i], PredCases.back());
1213 
1214         if (PredHasWeights || SuccHasWeights) {
1215           // Increase weight for the default case.
1216           Weights[0] += Weights[i + 1];
1217           std::swap(Weights[i + 1], Weights.back());
1218           Weights.pop_back();
1219         }
1220 
1221         PredCases.pop_back();
1222         --i;
1223         --e;
1224       }
1225 
1226     // Reconstruct the new switch statement we will be building.
1227     if (PredDefault != BBDefault) {
1228       PredDefault->removePredecessor(Pred);
1229       if (DTU && PredDefault != BB)
1230         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1231       PredDefault = BBDefault;
1232       ++NewSuccessors[BBDefault];
1233     }
1234 
1235     unsigned CasesFromPred = Weights.size();
1236     uint64_t ValidTotalSuccWeight = 0;
1237     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1238       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1239         PredCases.push_back(BBCases[i]);
1240         ++NewSuccessors[BBCases[i].Dest];
1241         if (SuccHasWeights || PredHasWeights) {
1242           // The default weight is at index 0, so weight for the ith case
1243           // should be at index i+1. Scale the cases from successor by
1244           // PredDefaultWeight (Weights[0]).
1245           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1246           ValidTotalSuccWeight += SuccWeights[i + 1];
1247         }
1248       }
1249 
1250     if (SuccHasWeights || PredHasWeights) {
1251       ValidTotalSuccWeight += SuccWeights[0];
1252       // Scale the cases from predecessor by ValidTotalSuccWeight.
1253       for (unsigned i = 1; i < CasesFromPred; ++i)
1254         Weights[i] *= ValidTotalSuccWeight;
1255       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1256       Weights[0] *= SuccWeights[0];
1257     }
1258   } else {
1259     // If this is not the default destination from PSI, only the edges
1260     // in SI that occur in PSI with a destination of BB will be
1261     // activated.
1262     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1263     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1264     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1265       if (PredCases[i].Dest == BB) {
1266         PTIHandled.insert(PredCases[i].Value);
1267 
1268         if (PredHasWeights || SuccHasWeights) {
1269           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1270           std::swap(Weights[i + 1], Weights.back());
1271           Weights.pop_back();
1272         }
1273 
1274         std::swap(PredCases[i], PredCases.back());
1275         PredCases.pop_back();
1276         --i;
1277         --e;
1278       }
1279 
1280     // Okay, now we know which constants were sent to BB from the
1281     // predecessor.  Figure out where they will all go now.
1282     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1283       if (PTIHandled.count(BBCases[i].Value)) {
1284         // If this is one we are capable of getting...
1285         if (PredHasWeights || SuccHasWeights)
1286           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1287         PredCases.push_back(BBCases[i]);
1288         ++NewSuccessors[BBCases[i].Dest];
1289         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1290       }
1291 
1292     // If there are any constants vectored to BB that TI doesn't handle,
1293     // they must go to the default destination of TI.
1294     for (ConstantInt *I : PTIHandled) {
1295       if (PredHasWeights || SuccHasWeights)
1296         Weights.push_back(WeightsForHandled[I]);
1297       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1298       ++NewSuccessors[BBDefault];
1299     }
1300   }
1301 
1302   // Okay, at this point, we know which new successor Pred will get.  Make
1303   // sure we update the number of entries in the PHI nodes for these
1304   // successors.
1305   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1306   if (DTU) {
1307     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1308     Updates.reserve(Updates.size() + NewSuccessors.size());
1309   }
1310   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1311        NewSuccessors) {
1312     for (auto I : seq(0, NewSuccessor.second)) {
1313       (void)I;
1314       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1315     }
1316     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1317       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1318   }
1319 
1320   Builder.SetInsertPoint(PTI);
1321   // Convert pointer to int before we switch.
1322   if (CV->getType()->isPointerTy()) {
1323     CV =
1324         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1325   }
1326 
1327   // Now that the successors are updated, create the new Switch instruction.
1328   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1329   NewSI->setDebugLoc(PTI->getDebugLoc());
1330   for (ValueEqualityComparisonCase &V : PredCases)
1331     NewSI->addCase(V.Value, V.Dest);
1332 
1333   if (PredHasWeights || SuccHasWeights) {
1334     // Halve the weights if any of them cannot fit in an uint32_t
1335     FitWeights(Weights);
1336 
1337     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1338 
1339     setBranchWeights(NewSI, MDWeights);
1340   }
1341 
1342   EraseTerminatorAndDCECond(PTI);
1343 
1344   // Okay, last check.  If BB is still a successor of PSI, then we must
1345   // have an infinite loop case.  If so, add an infinitely looping block
1346   // to handle the case to preserve the behavior of the code.
1347   BasicBlock *InfLoopBlock = nullptr;
1348   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1349     if (NewSI->getSuccessor(i) == BB) {
1350       if (!InfLoopBlock) {
1351         // Insert it at the end of the function, because it's either code,
1352         // or it won't matter if it's hot. :)
1353         InfLoopBlock =
1354             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1355         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1356         if (DTU)
1357           Updates.push_back(
1358               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1359       }
1360       NewSI->setSuccessor(i, InfLoopBlock);
1361     }
1362 
1363   if (DTU) {
1364     if (InfLoopBlock)
1365       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1366 
1367     Updates.push_back({DominatorTree::Delete, Pred, BB});
1368 
1369     DTU->applyUpdates(Updates);
1370   }
1371 
1372   ++NumFoldValueComparisonIntoPredecessors;
1373   return true;
1374 }
1375 
1376 /// The specified terminator is a value equality comparison instruction
1377 /// (either a switch or a branch on "X == c").
1378 /// See if any of the predecessors of the terminator block are value comparisons
1379 /// on the same value.  If so, and if safe to do so, fold them together.
1380 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1381                                                          IRBuilder<> &Builder) {
1382   BasicBlock *BB = TI->getParent();
1383   Value *CV = isValueEqualityComparison(TI); // CondVal
1384   assert(CV && "Not a comparison?");
1385 
1386   bool Changed = false;
1387 
1388   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1389   while (!Preds.empty()) {
1390     BasicBlock *Pred = Preds.pop_back_val();
1391     Instruction *PTI = Pred->getTerminator();
1392 
1393     // Don't try to fold into itself.
1394     if (Pred == BB)
1395       continue;
1396 
1397     // See if the predecessor is a comparison with the same value.
1398     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1399     if (PCV != CV)
1400       continue;
1401 
1402     SmallSetVector<BasicBlock *, 4> FailBlocks;
1403     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1404       for (auto *Succ : FailBlocks) {
1405         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1406           return false;
1407       }
1408     }
1409 
1410     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1411     Changed = true;
1412   }
1413   return Changed;
1414 }
1415 
1416 // If we would need to insert a select that uses the value of this invoke
1417 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1418 // can't hoist the invoke, as there is nowhere to put the select in this case.
1419 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1420                                 Instruction *I1, Instruction *I2) {
1421   for (BasicBlock *Succ : successors(BB1)) {
1422     for (const PHINode &PN : Succ->phis()) {
1423       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1424       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1425       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1426         return false;
1427       }
1428     }
1429   }
1430   return true;
1431 }
1432 
1433 // Get interesting characteristics of instructions that `HoistThenElseCodeToIf`
1434 // didn't hoist. They restrict what kind of instructions can be reordered
1435 // across.
1436 enum SkipFlags {
1437   SkipReadMem = 1,
1438   SkipSideEffect = 2,
1439   SkipImplicitControlFlow = 4
1440 };
1441 
1442 static unsigned skippedInstrFlags(Instruction *I) {
1443   unsigned Flags = 0;
1444   if (I->mayReadFromMemory())
1445     Flags |= SkipReadMem;
1446   // We can't arbitrarily move around allocas, e.g. moving allocas (especially
1447   // inalloca) across stacksave/stackrestore boundaries.
1448   if (I->mayHaveSideEffects() || isa<AllocaInst>(I))
1449     Flags |= SkipSideEffect;
1450   if (!isGuaranteedToTransferExecutionToSuccessor(I))
1451     Flags |= SkipImplicitControlFlow;
1452   return Flags;
1453 }
1454 
1455 // Returns true if it is safe to reorder an instruction across preceding
1456 // instructions in a basic block.
1457 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) {
1458   // Don't reorder a store over a load.
1459   if ((Flags & SkipReadMem) && I->mayWriteToMemory())
1460     return false;
1461 
1462   // If we have seen an instruction with side effects, it's unsafe to reorder an
1463   // instruction which reads memory or itself has side effects.
1464   if ((Flags & SkipSideEffect) &&
1465       (I->mayReadFromMemory() || I->mayHaveSideEffects()))
1466     return false;
1467 
1468   // Reordering across an instruction which does not necessarily transfer
1469   // control to the next instruction is speculation.
1470   if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I))
1471     return false;
1472 
1473   // Hoisting of llvm.deoptimize is only legal together with the next return
1474   // instruction, which this pass is not always able to do.
1475   if (auto *CB = dyn_cast<CallBase>(I))
1476     if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize)
1477       return false;
1478 
1479   // It's also unsafe/illegal to hoist an instruction above its instruction
1480   // operands
1481   BasicBlock *BB = I->getParent();
1482   for (Value *Op : I->operands()) {
1483     if (auto *J = dyn_cast<Instruction>(Op))
1484       if (J->getParent() == BB)
1485         return false;
1486   }
1487 
1488   return true;
1489 }
1490 
1491 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1492 
1493 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1494 /// in the two blocks up into the branch block. The caller of this function
1495 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1496 /// only perform hoisting in case both blocks only contain a terminator. In that
1497 /// case, only the original BI will be replaced and selects for PHIs are added.
1498 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1499                                            const TargetTransformInfo &TTI,
1500                                            bool EqTermsOnly) {
1501   // This does very trivial matching, with limited scanning, to find identical
1502   // instructions in the two blocks.  In particular, we don't want to get into
1503   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1504   // such, we currently just scan for obviously identical instructions in an
1505   // identical order, possibly separated by the same number of non-identical
1506   // instructions.
1507   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1508   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1509 
1510   // If either of the blocks has it's address taken, then we can't do this fold,
1511   // because the code we'd hoist would no longer run when we jump into the block
1512   // by it's address.
1513   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1514     return false;
1515 
1516   BasicBlock::iterator BB1_Itr = BB1->begin();
1517   BasicBlock::iterator BB2_Itr = BB2->begin();
1518 
1519   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1520   // Skip debug info if it is not identical.
1521   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1522   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1523   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1524     while (isa<DbgInfoIntrinsic>(I1))
1525       I1 = &*BB1_Itr++;
1526     while (isa<DbgInfoIntrinsic>(I2))
1527       I2 = &*BB2_Itr++;
1528   }
1529   if (isa<PHINode>(I1))
1530     return false;
1531 
1532   BasicBlock *BIParent = BI->getParent();
1533 
1534   bool Changed = false;
1535 
1536   auto _ = make_scope_exit([&]() {
1537     if (Changed)
1538       ++NumHoistCommonCode;
1539   });
1540 
1541   // Check if only hoisting terminators is allowed. This does not add new
1542   // instructions to the hoist location.
1543   if (EqTermsOnly) {
1544     // Skip any debug intrinsics, as they are free to hoist.
1545     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1546     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1547     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1548       return false;
1549     if (!I1NonDbg->isTerminator())
1550       return false;
1551     // Now we know that we only need to hoist debug intrinsics and the
1552     // terminator. Let the loop below handle those 2 cases.
1553   }
1554 
1555   // Count how many instructions were not hoisted so far. There's a limit on how
1556   // many instructions we skip, serving as a compilation time control as well as
1557   // preventing excessive increase of life ranges.
1558   unsigned NumSkipped = 0;
1559 
1560   // Record any skipped instuctions that may read memory, write memory or have
1561   // side effects, or have implicit control flow.
1562   unsigned SkipFlagsBB1 = 0;
1563   unsigned SkipFlagsBB2 = 0;
1564 
1565   for (;;) {
1566     // If we are hoisting the terminator instruction, don't move one (making a
1567     // broken BB), instead clone it, and remove BI.
1568     if (I1->isTerminator() || I2->isTerminator()) {
1569       // If any instructions remain in the block, we cannot hoist terminators.
1570       if (NumSkipped || !I1->isIdenticalToWhenDefined(I2))
1571         return Changed;
1572       goto HoistTerminator;
1573     }
1574 
1575     if (I1->isIdenticalToWhenDefined(I2)) {
1576       // Even if the instructions are identical, it may not be safe to hoist
1577       // them if we have skipped over instructions with side effects or their
1578       // operands weren't hoisted.
1579       if (!isSafeToHoistInstr(I1, SkipFlagsBB1) ||
1580           !isSafeToHoistInstr(I2, SkipFlagsBB2))
1581         return Changed;
1582 
1583       // If we're going to hoist a call, make sure that the two instructions
1584       // we're commoning/hoisting are both marked with musttail, or neither of
1585       // them is marked as such. Otherwise, we might end up in a situation where
1586       // we hoist from a block where the terminator is a `ret` to a block where
1587       // the terminator is a `br`, and `musttail` calls expect to be followed by
1588       // a return.
1589       auto *C1 = dyn_cast<CallInst>(I1);
1590       auto *C2 = dyn_cast<CallInst>(I2);
1591       if (C1 && C2)
1592         if (C1->isMustTailCall() != C2->isMustTailCall())
1593           return Changed;
1594 
1595       if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1596         return Changed;
1597 
1598       // If any of the two call sites has nomerge attribute, stop hoisting.
1599       if (const auto *CB1 = dyn_cast<CallBase>(I1))
1600         if (CB1->cannotMerge())
1601           return Changed;
1602       if (const auto *CB2 = dyn_cast<CallBase>(I2))
1603         if (CB2->cannotMerge())
1604           return Changed;
1605 
1606       if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1607         assert(isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1608         // The debug location is an integral part of a debug info intrinsic
1609         // and can't be separated from it or replaced.  Instead of attempting
1610         // to merge locations, simply hoist both copies of the intrinsic.
1611         BIParent->splice(BI->getIterator(), BB1, I1->getIterator());
1612         BIParent->splice(BI->getIterator(), BB2, I2->getIterator());
1613       } else {
1614         // For a normal instruction, we just move one to right before the
1615         // branch, then replace all uses of the other with the first.  Finally,
1616         // we remove the now redundant second instruction.
1617         BIParent->splice(BI->getIterator(), BB1, I1->getIterator());
1618         if (!I2->use_empty())
1619           I2->replaceAllUsesWith(I1);
1620         I1->andIRFlags(I2);
1621         unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1622                                LLVMContext::MD_range,
1623                                LLVMContext::MD_fpmath,
1624                                LLVMContext::MD_invariant_load,
1625                                LLVMContext::MD_nonnull,
1626                                LLVMContext::MD_invariant_group,
1627                                LLVMContext::MD_align,
1628                                LLVMContext::MD_dereferenceable,
1629                                LLVMContext::MD_dereferenceable_or_null,
1630                                LLVMContext::MD_mem_parallel_loop_access,
1631                                LLVMContext::MD_access_group,
1632                                LLVMContext::MD_preserve_access_index};
1633         combineMetadata(I1, I2, KnownIDs, true);
1634 
1635         // I1 and I2 are being combined into a single instruction.  Its debug
1636         // location is the merged locations of the original instructions.
1637         I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1638 
1639         I2->eraseFromParent();
1640       }
1641       Changed = true;
1642       ++NumHoistCommonInstrs;
1643     } else {
1644       if (NumSkipped >= HoistCommonSkipLimit)
1645         return Changed;
1646       // We are about to skip over a pair of non-identical instructions. Record
1647       // if any have characteristics that would prevent reordering instructions
1648       // across them.
1649       SkipFlagsBB1 |= skippedInstrFlags(I1);
1650       SkipFlagsBB2 |= skippedInstrFlags(I2);
1651       ++NumSkipped;
1652     }
1653 
1654     I1 = &*BB1_Itr++;
1655     I2 = &*BB2_Itr++;
1656     // Skip debug info if it is not identical.
1657     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1658     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1659     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1660       while (isa<DbgInfoIntrinsic>(I1))
1661         I1 = &*BB1_Itr++;
1662       while (isa<DbgInfoIntrinsic>(I2))
1663         I2 = &*BB2_Itr++;
1664     }
1665   }
1666 
1667   return Changed;
1668 
1669 HoistTerminator:
1670   // It may not be possible to hoist an invoke.
1671   // FIXME: Can we define a safety predicate for CallBr?
1672   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1673     return Changed;
1674 
1675   // TODO: callbr hoisting currently disabled pending further study.
1676   if (isa<CallBrInst>(I1))
1677     return Changed;
1678 
1679   for (BasicBlock *Succ : successors(BB1)) {
1680     for (PHINode &PN : Succ->phis()) {
1681       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1682       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1683       if (BB1V == BB2V)
1684         continue;
1685 
1686       // Check for passingValueIsAlwaysUndefined here because we would rather
1687       // eliminate undefined control flow then converting it to a select.
1688       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1689           passingValueIsAlwaysUndefined(BB2V, &PN))
1690         return Changed;
1691     }
1692   }
1693 
1694   // Okay, it is safe to hoist the terminator.
1695   Instruction *NT = I1->clone();
1696   NT->insertInto(BIParent, BI->getIterator());
1697   if (!NT->getType()->isVoidTy()) {
1698     I1->replaceAllUsesWith(NT);
1699     I2->replaceAllUsesWith(NT);
1700     NT->takeName(I1);
1701   }
1702   Changed = true;
1703   ++NumHoistCommonInstrs;
1704 
1705   // Ensure terminator gets a debug location, even an unknown one, in case
1706   // it involves inlinable calls.
1707   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1708 
1709   // PHIs created below will adopt NT's merged DebugLoc.
1710   IRBuilder<NoFolder> Builder(NT);
1711 
1712   // Hoisting one of the terminators from our successor is a great thing.
1713   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1714   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1715   // nodes, so we insert select instruction to compute the final result.
1716   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1717   for (BasicBlock *Succ : successors(BB1)) {
1718     for (PHINode &PN : Succ->phis()) {
1719       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1720       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1721       if (BB1V == BB2V)
1722         continue;
1723 
1724       // These values do not agree.  Insert a select instruction before NT
1725       // that determines the right value.
1726       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1727       if (!SI) {
1728         // Propagate fast-math-flags from phi node to its replacement select.
1729         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1730         if (isa<FPMathOperator>(PN))
1731           Builder.setFastMathFlags(PN.getFastMathFlags());
1732 
1733         SI = cast<SelectInst>(
1734             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1735                                  BB1V->getName() + "." + BB2V->getName(), BI));
1736       }
1737 
1738       // Make the PHI node use the select for all incoming values for BB1/BB2
1739       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1740         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1741           PN.setIncomingValue(i, SI);
1742     }
1743   }
1744 
1745   SmallVector<DominatorTree::UpdateType, 4> Updates;
1746 
1747   // Update any PHI nodes in our new successors.
1748   for (BasicBlock *Succ : successors(BB1)) {
1749     AddPredecessorToBlock(Succ, BIParent, BB1);
1750     if (DTU)
1751       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1752   }
1753 
1754   if (DTU)
1755     for (BasicBlock *Succ : successors(BI))
1756       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1757 
1758   EraseTerminatorAndDCECond(BI);
1759   if (DTU)
1760     DTU->applyUpdates(Updates);
1761   return Changed;
1762 }
1763 
1764 // Check lifetime markers.
1765 static bool isLifeTimeMarker(const Instruction *I) {
1766   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1767     switch (II->getIntrinsicID()) {
1768     default:
1769       break;
1770     case Intrinsic::lifetime_start:
1771     case Intrinsic::lifetime_end:
1772       return true;
1773     }
1774   }
1775   return false;
1776 }
1777 
1778 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1779 // into variables.
1780 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1781                                                 int OpIdx) {
1782   return !isa<IntrinsicInst>(I);
1783 }
1784 
1785 // All instructions in Insts belong to different blocks that all unconditionally
1786 // branch to a common successor. Analyze each instruction and return true if it
1787 // would be possible to sink them into their successor, creating one common
1788 // instruction instead. For every value that would be required to be provided by
1789 // PHI node (because an operand varies in each input block), add to PHIOperands.
1790 static bool canSinkInstructions(
1791     ArrayRef<Instruction *> Insts,
1792     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1793   // Prune out obviously bad instructions to move. Each instruction must have
1794   // exactly zero or one use, and we check later that use is by a single, common
1795   // PHI instruction in the successor.
1796   bool HasUse = !Insts.front()->user_empty();
1797   for (auto *I : Insts) {
1798     // These instructions may change or break semantics if moved.
1799     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1800         I->getType()->isTokenTy())
1801       return false;
1802 
1803     // Do not try to sink an instruction in an infinite loop - it can cause
1804     // this algorithm to infinite loop.
1805     if (I->getParent()->getSingleSuccessor() == I->getParent())
1806       return false;
1807 
1808     // Conservatively return false if I is an inline-asm instruction. Sinking
1809     // and merging inline-asm instructions can potentially create arguments
1810     // that cannot satisfy the inline-asm constraints.
1811     // If the instruction has nomerge attribute, return false.
1812     if (const auto *C = dyn_cast<CallBase>(I))
1813       if (C->isInlineAsm() || C->cannotMerge())
1814         return false;
1815 
1816     // Each instruction must have zero or one use.
1817     if (HasUse && !I->hasOneUse())
1818       return false;
1819     if (!HasUse && !I->user_empty())
1820       return false;
1821   }
1822 
1823   const Instruction *I0 = Insts.front();
1824   for (auto *I : Insts)
1825     if (!I->isSameOperationAs(I0))
1826       return false;
1827 
1828   // All instructions in Insts are known to be the same opcode. If they have a
1829   // use, check that the only user is a PHI or in the same block as the
1830   // instruction, because if a user is in the same block as an instruction we're
1831   // contemplating sinking, it must already be determined to be sinkable.
1832   if (HasUse) {
1833     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1834     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1835     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1836           auto *U = cast<Instruction>(*I->user_begin());
1837           return (PNUse &&
1838                   PNUse->getParent() == Succ &&
1839                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1840                  U->getParent() == I->getParent();
1841         }))
1842       return false;
1843   }
1844 
1845   // Because SROA can't handle speculating stores of selects, try not to sink
1846   // loads, stores or lifetime markers of allocas when we'd have to create a
1847   // PHI for the address operand. Also, because it is likely that loads or
1848   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1849   // them.
1850   // This can cause code churn which can have unintended consequences down
1851   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1852   // FIXME: This is a workaround for a deficiency in SROA - see
1853   // https://llvm.org/bugs/show_bug.cgi?id=30188
1854   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1855         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1856       }))
1857     return false;
1858   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1859         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1860       }))
1861     return false;
1862   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1863         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1864       }))
1865     return false;
1866 
1867   // For calls to be sinkable, they must all be indirect, or have same callee.
1868   // I.e. if we have two direct calls to different callees, we don't want to
1869   // turn that into an indirect call. Likewise, if we have an indirect call,
1870   // and a direct call, we don't actually want to have a single indirect call.
1871   if (isa<CallBase>(I0)) {
1872     auto IsIndirectCall = [](const Instruction *I) {
1873       return cast<CallBase>(I)->isIndirectCall();
1874     };
1875     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1876     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1877     if (HaveIndirectCalls) {
1878       if (!AllCallsAreIndirect)
1879         return false;
1880     } else {
1881       // All callees must be identical.
1882       Value *Callee = nullptr;
1883       for (const Instruction *I : Insts) {
1884         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1885         if (!Callee)
1886           Callee = CurrCallee;
1887         else if (Callee != CurrCallee)
1888           return false;
1889       }
1890     }
1891   }
1892 
1893   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1894     Value *Op = I0->getOperand(OI);
1895     if (Op->getType()->isTokenTy())
1896       // Don't touch any operand of token type.
1897       return false;
1898 
1899     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1900       assert(I->getNumOperands() == I0->getNumOperands());
1901       return I->getOperand(OI) == I0->getOperand(OI);
1902     };
1903     if (!all_of(Insts, SameAsI0)) {
1904       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1905           !canReplaceOperandWithVariable(I0, OI))
1906         // We can't create a PHI from this GEP.
1907         return false;
1908       for (auto *I : Insts)
1909         PHIOperands[I].push_back(I->getOperand(OI));
1910     }
1911   }
1912   return true;
1913 }
1914 
1915 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1916 // instruction of every block in Blocks to their common successor, commoning
1917 // into one instruction.
1918 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1919   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1920 
1921   // canSinkInstructions returning true guarantees that every block has at
1922   // least one non-terminator instruction.
1923   SmallVector<Instruction*,4> Insts;
1924   for (auto *BB : Blocks) {
1925     Instruction *I = BB->getTerminator();
1926     do {
1927       I = I->getPrevNode();
1928     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1929     if (!isa<DbgInfoIntrinsic>(I))
1930       Insts.push_back(I);
1931   }
1932 
1933   // The only checking we need to do now is that all users of all instructions
1934   // are the same PHI node. canSinkInstructions should have checked this but
1935   // it is slightly over-aggressive - it gets confused by commutative
1936   // instructions so double-check it here.
1937   Instruction *I0 = Insts.front();
1938   if (!I0->user_empty()) {
1939     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1940     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1941           auto *U = cast<Instruction>(*I->user_begin());
1942           return U == PNUse;
1943         }))
1944       return false;
1945   }
1946 
1947   // We don't need to do any more checking here; canSinkInstructions should
1948   // have done it all for us.
1949   SmallVector<Value*, 4> NewOperands;
1950   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1951     // This check is different to that in canSinkInstructions. There, we
1952     // cared about the global view once simplifycfg (and instcombine) have
1953     // completed - it takes into account PHIs that become trivially
1954     // simplifiable.  However here we need a more local view; if an operand
1955     // differs we create a PHI and rely on instcombine to clean up the very
1956     // small mess we may make.
1957     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1958       return I->getOperand(O) != I0->getOperand(O);
1959     });
1960     if (!NeedPHI) {
1961       NewOperands.push_back(I0->getOperand(O));
1962       continue;
1963     }
1964 
1965     // Create a new PHI in the successor block and populate it.
1966     auto *Op = I0->getOperand(O);
1967     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1968     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1969                                Op->getName() + ".sink", &BBEnd->front());
1970     for (auto *I : Insts)
1971       PN->addIncoming(I->getOperand(O), I->getParent());
1972     NewOperands.push_back(PN);
1973   }
1974 
1975   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1976   // and move it to the start of the successor block.
1977   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1978     I0->getOperandUse(O).set(NewOperands[O]);
1979   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1980 
1981   // Update metadata and IR flags, and merge debug locations.
1982   for (auto *I : Insts)
1983     if (I != I0) {
1984       // The debug location for the "common" instruction is the merged locations
1985       // of all the commoned instructions.  We start with the original location
1986       // of the "common" instruction and iteratively merge each location in the
1987       // loop below.
1988       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1989       // However, as N-way merge for CallInst is rare, so we use simplified API
1990       // instead of using complex API for N-way merge.
1991       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1992       combineMetadataForCSE(I0, I, true);
1993       I0->andIRFlags(I);
1994     }
1995 
1996   if (!I0->user_empty()) {
1997     // canSinkLastInstruction checked that all instructions were used by
1998     // one and only one PHI node. Find that now, RAUW it to our common
1999     // instruction and nuke it.
2000     auto *PN = cast<PHINode>(*I0->user_begin());
2001     PN->replaceAllUsesWith(I0);
2002     PN->eraseFromParent();
2003   }
2004 
2005   // Finally nuke all instructions apart from the common instruction.
2006   for (auto *I : Insts) {
2007     if (I == I0)
2008       continue;
2009     // The remaining uses are debug users, replace those with the common inst.
2010     // In most (all?) cases this just introduces a use-before-def.
2011     assert(I->user_empty() && "Inst unexpectedly still has non-dbg users");
2012     I->replaceAllUsesWith(I0);
2013     I->eraseFromParent();
2014   }
2015 
2016   return true;
2017 }
2018 
2019 namespace {
2020 
2021   // LockstepReverseIterator - Iterates through instructions
2022   // in a set of blocks in reverse order from the first non-terminator.
2023   // For example (assume all blocks have size n):
2024   //   LockstepReverseIterator I([B1, B2, B3]);
2025   //   *I-- = [B1[n], B2[n], B3[n]];
2026   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
2027   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
2028   //   ...
2029   class LockstepReverseIterator {
2030     ArrayRef<BasicBlock*> Blocks;
2031     SmallVector<Instruction*,4> Insts;
2032     bool Fail;
2033 
2034   public:
2035     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
2036       reset();
2037     }
2038 
2039     void reset() {
2040       Fail = false;
2041       Insts.clear();
2042       for (auto *BB : Blocks) {
2043         Instruction *Inst = BB->getTerminator();
2044         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2045           Inst = Inst->getPrevNode();
2046         if (!Inst) {
2047           // Block wasn't big enough.
2048           Fail = true;
2049           return;
2050         }
2051         Insts.push_back(Inst);
2052       }
2053     }
2054 
2055     bool isValid() const {
2056       return !Fail;
2057     }
2058 
2059     void operator--() {
2060       if (Fail)
2061         return;
2062       for (auto *&Inst : Insts) {
2063         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2064           Inst = Inst->getPrevNode();
2065         // Already at beginning of block.
2066         if (!Inst) {
2067           Fail = true;
2068           return;
2069         }
2070       }
2071     }
2072 
2073     void operator++() {
2074       if (Fail)
2075         return;
2076       for (auto *&Inst : Insts) {
2077         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2078           Inst = Inst->getNextNode();
2079         // Already at end of block.
2080         if (!Inst) {
2081           Fail = true;
2082           return;
2083         }
2084       }
2085     }
2086 
2087     ArrayRef<Instruction*> operator * () const {
2088       return Insts;
2089     }
2090   };
2091 
2092 } // end anonymous namespace
2093 
2094 /// Check whether BB's predecessors end with unconditional branches. If it is
2095 /// true, sink any common code from the predecessors to BB.
2096 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
2097                                            DomTreeUpdater *DTU) {
2098   // We support two situations:
2099   //   (1) all incoming arcs are unconditional
2100   //   (2) there are non-unconditional incoming arcs
2101   //
2102   // (2) is very common in switch defaults and
2103   // else-if patterns;
2104   //
2105   //   if (a) f(1);
2106   //   else if (b) f(2);
2107   //
2108   // produces:
2109   //
2110   //       [if]
2111   //      /    \
2112   //    [f(1)] [if]
2113   //      |     | \
2114   //      |     |  |
2115   //      |  [f(2)]|
2116   //       \    | /
2117   //        [ end ]
2118   //
2119   // [end] has two unconditional predecessor arcs and one conditional. The
2120   // conditional refers to the implicit empty 'else' arc. This conditional
2121   // arc can also be caused by an empty default block in a switch.
2122   //
2123   // In this case, we attempt to sink code from all *unconditional* arcs.
2124   // If we can sink instructions from these arcs (determined during the scan
2125   // phase below) we insert a common successor for all unconditional arcs and
2126   // connect that to [end], to enable sinking:
2127   //
2128   //       [if]
2129   //      /    \
2130   //    [x(1)] [if]
2131   //      |     | \
2132   //      |     |  \
2133   //      |  [x(2)] |
2134   //       \   /    |
2135   //   [sink.split] |
2136   //         \     /
2137   //         [ end ]
2138   //
2139   SmallVector<BasicBlock*,4> UnconditionalPreds;
2140   bool HaveNonUnconditionalPredecessors = false;
2141   for (auto *PredBB : predecessors(BB)) {
2142     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2143     if (PredBr && PredBr->isUnconditional())
2144       UnconditionalPreds.push_back(PredBB);
2145     else
2146       HaveNonUnconditionalPredecessors = true;
2147   }
2148   if (UnconditionalPreds.size() < 2)
2149     return false;
2150 
2151   // We take a two-step approach to tail sinking. First we scan from the end of
2152   // each block upwards in lockstep. If the n'th instruction from the end of each
2153   // block can be sunk, those instructions are added to ValuesToSink and we
2154   // carry on. If we can sink an instruction but need to PHI-merge some operands
2155   // (because they're not identical in each instruction) we add these to
2156   // PHIOperands.
2157   int ScanIdx = 0;
2158   SmallPtrSet<Value*,4> InstructionsToSink;
2159   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2160   LockstepReverseIterator LRI(UnconditionalPreds);
2161   while (LRI.isValid() &&
2162          canSinkInstructions(*LRI, PHIOperands)) {
2163     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2164                       << "\n");
2165     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2166     ++ScanIdx;
2167     --LRI;
2168   }
2169 
2170   // If no instructions can be sunk, early-return.
2171   if (ScanIdx == 0)
2172     return false;
2173 
2174   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2175 
2176   if (!followedByDeoptOrUnreachable) {
2177     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2178     // actually sink before encountering instruction that is unprofitable to
2179     // sink?
2180     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2181       unsigned NumPHIdValues = 0;
2182       for (auto *I : *LRI)
2183         for (auto *V : PHIOperands[I]) {
2184           if (!InstructionsToSink.contains(V))
2185             ++NumPHIdValues;
2186           // FIXME: this check is overly optimistic. We may end up not sinking
2187           // said instruction, due to the very same profitability check.
2188           // See @creating_too_many_phis in sink-common-code.ll.
2189         }
2190       LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2191       unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2192       if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2193         NumPHIInsts++;
2194 
2195       return NumPHIInsts <= 1;
2196     };
2197 
2198     // We've determined that we are going to sink last ScanIdx instructions,
2199     // and recorded them in InstructionsToSink. Now, some instructions may be
2200     // unprofitable to sink. But that determination depends on the instructions
2201     // that we are going to sink.
2202 
2203     // First, forward scan: find the first instruction unprofitable to sink,
2204     // recording all the ones that are profitable to sink.
2205     // FIXME: would it be better, after we detect that not all are profitable.
2206     // to either record the profitable ones, or erase the unprofitable ones?
2207     // Maybe we need to choose (at runtime) the one that will touch least
2208     // instrs?
2209     LRI.reset();
2210     int Idx = 0;
2211     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2212     while (Idx < ScanIdx) {
2213       if (!ProfitableToSinkInstruction(LRI)) {
2214         // Too many PHIs would be created.
2215         LLVM_DEBUG(
2216             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2217         break;
2218       }
2219       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2220       --LRI;
2221       ++Idx;
2222     }
2223 
2224     // If no instructions can be sunk, early-return.
2225     if (Idx == 0)
2226       return false;
2227 
2228     // Did we determine that (only) some instructions are unprofitable to sink?
2229     if (Idx < ScanIdx) {
2230       // Okay, some instructions are unprofitable.
2231       ScanIdx = Idx;
2232       InstructionsToSink = InstructionsProfitableToSink;
2233 
2234       // But, that may make other instructions unprofitable, too.
2235       // So, do a backward scan, do any earlier instructions become
2236       // unprofitable?
2237       assert(
2238           !ProfitableToSinkInstruction(LRI) &&
2239           "We already know that the last instruction is unprofitable to sink");
2240       ++LRI;
2241       --Idx;
2242       while (Idx >= 0) {
2243         // If we detect that an instruction becomes unprofitable to sink,
2244         // all earlier instructions won't be sunk either,
2245         // so preemptively keep InstructionsProfitableToSink in sync.
2246         // FIXME: is this the most performant approach?
2247         for (auto *I : *LRI)
2248           InstructionsProfitableToSink.erase(I);
2249         if (!ProfitableToSinkInstruction(LRI)) {
2250           // Everything starting with this instruction won't be sunk.
2251           ScanIdx = Idx;
2252           InstructionsToSink = InstructionsProfitableToSink;
2253         }
2254         ++LRI;
2255         --Idx;
2256       }
2257     }
2258 
2259     // If no instructions can be sunk, early-return.
2260     if (ScanIdx == 0)
2261       return false;
2262   }
2263 
2264   bool Changed = false;
2265 
2266   if (HaveNonUnconditionalPredecessors) {
2267     if (!followedByDeoptOrUnreachable) {
2268       // It is always legal to sink common instructions from unconditional
2269       // predecessors. However, if not all predecessors are unconditional,
2270       // this transformation might be pessimizing. So as a rule of thumb,
2271       // don't do it unless we'd sink at least one non-speculatable instruction.
2272       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2273       LRI.reset();
2274       int Idx = 0;
2275       bool Profitable = false;
2276       while (Idx < ScanIdx) {
2277         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2278           Profitable = true;
2279           break;
2280         }
2281         --LRI;
2282         ++Idx;
2283       }
2284       if (!Profitable)
2285         return false;
2286     }
2287 
2288     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2289     // We have a conditional edge and we're going to sink some instructions.
2290     // Insert a new block postdominating all blocks we're going to sink from.
2291     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2292       // Edges couldn't be split.
2293       return false;
2294     Changed = true;
2295   }
2296 
2297   // Now that we've analyzed all potential sinking candidates, perform the
2298   // actual sink. We iteratively sink the last non-terminator of the source
2299   // blocks into their common successor unless doing so would require too
2300   // many PHI instructions to be generated (currently only one PHI is allowed
2301   // per sunk instruction).
2302   //
2303   // We can use InstructionsToSink to discount values needing PHI-merging that will
2304   // actually be sunk in a later iteration. This allows us to be more
2305   // aggressive in what we sink. This does allow a false positive where we
2306   // sink presuming a later value will also be sunk, but stop half way through
2307   // and never actually sink it which means we produce more PHIs than intended.
2308   // This is unlikely in practice though.
2309   int SinkIdx = 0;
2310   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2311     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2312                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2313                       << "\n");
2314 
2315     // Because we've sunk every instruction in turn, the current instruction to
2316     // sink is always at index 0.
2317     LRI.reset();
2318 
2319     if (!sinkLastInstruction(UnconditionalPreds)) {
2320       LLVM_DEBUG(
2321           dbgs()
2322           << "SINK: stopping here, failed to actually sink instruction!\n");
2323       break;
2324     }
2325 
2326     NumSinkCommonInstrs++;
2327     Changed = true;
2328   }
2329   if (SinkIdx != 0)
2330     ++NumSinkCommonCode;
2331   return Changed;
2332 }
2333 
2334 namespace {
2335 
2336 struct CompatibleSets {
2337   using SetTy = SmallVector<InvokeInst *, 2>;
2338 
2339   SmallVector<SetTy, 1> Sets;
2340 
2341   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2342 
2343   SetTy &getCompatibleSet(InvokeInst *II);
2344 
2345   void insert(InvokeInst *II);
2346 };
2347 
2348 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2349   // Perform a linear scan over all the existing sets, see if the new `invoke`
2350   // is compatible with any particular set. Since we know that all the `invokes`
2351   // within a set are compatible, only check the first `invoke` in each set.
2352   // WARNING: at worst, this has quadratic complexity.
2353   for (CompatibleSets::SetTy &Set : Sets) {
2354     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2355       return Set;
2356   }
2357 
2358   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2359   return Sets.emplace_back();
2360 }
2361 
2362 void CompatibleSets::insert(InvokeInst *II) {
2363   getCompatibleSet(II).emplace_back(II);
2364 }
2365 
2366 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2367   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2368 
2369   // Can we theoretically merge these `invoke`s?
2370   auto IsIllegalToMerge = [](InvokeInst *II) {
2371     return II->cannotMerge() || II->isInlineAsm();
2372   };
2373   if (any_of(Invokes, IsIllegalToMerge))
2374     return false;
2375 
2376   // Either both `invoke`s must be   direct,
2377   // or     both `invoke`s must be indirect.
2378   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2379   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2380   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2381   if (HaveIndirectCalls) {
2382     if (!AllCallsAreIndirect)
2383       return false;
2384   } else {
2385     // All callees must be identical.
2386     Value *Callee = nullptr;
2387     for (InvokeInst *II : Invokes) {
2388       Value *CurrCallee = II->getCalledOperand();
2389       assert(CurrCallee && "There is always a called operand.");
2390       if (!Callee)
2391         Callee = CurrCallee;
2392       else if (Callee != CurrCallee)
2393         return false;
2394     }
2395   }
2396 
2397   // Either both `invoke`s must not have a normal destination,
2398   // or     both `invoke`s must     have a normal destination,
2399   auto HasNormalDest = [](InvokeInst *II) {
2400     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2401   };
2402   if (any_of(Invokes, HasNormalDest)) {
2403     // Do not merge `invoke` that does not have a normal destination with one
2404     // that does have a normal destination, even though doing so would be legal.
2405     if (!all_of(Invokes, HasNormalDest))
2406       return false;
2407 
2408     // All normal destinations must be identical.
2409     BasicBlock *NormalBB = nullptr;
2410     for (InvokeInst *II : Invokes) {
2411       BasicBlock *CurrNormalBB = II->getNormalDest();
2412       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2413       if (!NormalBB)
2414         NormalBB = CurrNormalBB;
2415       else if (NormalBB != CurrNormalBB)
2416         return false;
2417     }
2418 
2419     // In the normal destination, the incoming values for these two `invoke`s
2420     // must be compatible.
2421     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2422     if (!IncomingValuesAreCompatible(
2423             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2424             &EquivalenceSet))
2425       return false;
2426   }
2427 
2428 #ifndef NDEBUG
2429   // All unwind destinations must be identical.
2430   // We know that because we have started from said unwind destination.
2431   BasicBlock *UnwindBB = nullptr;
2432   for (InvokeInst *II : Invokes) {
2433     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2434     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2435     if (!UnwindBB)
2436       UnwindBB = CurrUnwindBB;
2437     else
2438       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2439   }
2440 #endif
2441 
2442   // In the unwind destination, the incoming values for these two `invoke`s
2443   // must be compatible.
2444   if (!IncomingValuesAreCompatible(
2445           Invokes.front()->getUnwindDest(),
2446           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2447     return false;
2448 
2449   // Ignoring arguments, these `invoke`s must be identical,
2450   // including operand bundles.
2451   const InvokeInst *II0 = Invokes.front();
2452   for (auto *II : Invokes.drop_front())
2453     if (!II->isSameOperationAs(II0))
2454       return false;
2455 
2456   // Can we theoretically form the data operands for the merged `invoke`?
2457   auto IsIllegalToMergeArguments = [](auto Ops) {
2458     Use &U0 = std::get<0>(Ops);
2459     Use &U1 = std::get<1>(Ops);
2460     if (U0 == U1)
2461       return false;
2462     return U0->getType()->isTokenTy() ||
2463            !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()),
2464                                           U0.getOperandNo());
2465   };
2466   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2467   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2468              IsIllegalToMergeArguments))
2469     return false;
2470 
2471   return true;
2472 }
2473 
2474 } // namespace
2475 
2476 // Merge all invokes in the provided set, all of which are compatible
2477 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2478 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2479                                        DomTreeUpdater *DTU) {
2480   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2481 
2482   SmallVector<DominatorTree::UpdateType, 8> Updates;
2483   if (DTU)
2484     Updates.reserve(2 + 3 * Invokes.size());
2485 
2486   bool HasNormalDest =
2487       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2488 
2489   // Clone one of the invokes into a new basic block.
2490   // Since they are all compatible, it doesn't matter which invoke is cloned.
2491   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2492     InvokeInst *II0 = Invokes.front();
2493     BasicBlock *II0BB = II0->getParent();
2494     BasicBlock *InsertBeforeBlock =
2495         II0->getParent()->getIterator()->getNextNode();
2496     Function *Func = II0BB->getParent();
2497     LLVMContext &Ctx = II0->getContext();
2498 
2499     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2500         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2501 
2502     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2503     // NOTE: all invokes have the same attributes, so no handling needed.
2504     MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end());
2505 
2506     if (!HasNormalDest) {
2507       // This set does not have a normal destination,
2508       // so just form a new block with unreachable terminator.
2509       BasicBlock *MergedNormalDest = BasicBlock::Create(
2510           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2511       new UnreachableInst(Ctx, MergedNormalDest);
2512       MergedInvoke->setNormalDest(MergedNormalDest);
2513     }
2514 
2515     // The unwind destination, however, remainds identical for all invokes here.
2516 
2517     return MergedInvoke;
2518   }();
2519 
2520   if (DTU) {
2521     // Predecessor blocks that contained these invokes will now branch to
2522     // the new block that contains the merged invoke, ...
2523     for (InvokeInst *II : Invokes)
2524       Updates.push_back(
2525           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2526 
2527     // ... which has the new `unreachable` block as normal destination,
2528     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2529     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2530       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2531                          SuccBBOfMergedInvoke});
2532 
2533     // Since predecessor blocks now unconditionally branch to a new block,
2534     // they no longer branch to their original successors.
2535     for (InvokeInst *II : Invokes)
2536       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2537         Updates.push_back(
2538             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2539   }
2540 
2541   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2542 
2543   // Form the merged operands for the merged invoke.
2544   for (Use &U : MergedInvoke->operands()) {
2545     // Only PHI together the indirect callees and data operands.
2546     if (MergedInvoke->isCallee(&U)) {
2547       if (!IsIndirectCall)
2548         continue;
2549     } else if (!MergedInvoke->isDataOperand(&U))
2550       continue;
2551 
2552     // Don't create trivial PHI's with all-identical incoming values.
2553     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2554       return II->getOperand(U.getOperandNo()) != U.get();
2555     });
2556     if (!NeedPHI)
2557       continue;
2558 
2559     // Form a PHI out of all the data ops under this index.
2560     PHINode *PN = PHINode::Create(
2561         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke);
2562     for (InvokeInst *II : Invokes)
2563       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2564 
2565     U.set(PN);
2566   }
2567 
2568   // We've ensured that each PHI node has compatible (identical) incoming values
2569   // when coming from each of the `invoke`s in the current merge set,
2570   // so update the PHI nodes accordingly.
2571   for (BasicBlock *Succ : successors(MergedInvoke))
2572     AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2573                           /*ExistPred=*/Invokes.front()->getParent());
2574 
2575   // And finally, replace the original `invoke`s with an unconditional branch
2576   // to the block with the merged `invoke`. Also, give that merged `invoke`
2577   // the merged debugloc of all the original `invoke`s.
2578   const DILocation *MergedDebugLoc = nullptr;
2579   for (InvokeInst *II : Invokes) {
2580     // Compute the debug location common to all the original `invoke`s.
2581     if (!MergedDebugLoc)
2582       MergedDebugLoc = II->getDebugLoc();
2583     else
2584       MergedDebugLoc =
2585           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2586 
2587     // And replace the old `invoke` with an unconditionally branch
2588     // to the block with the merged `invoke`.
2589     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2590       OrigSuccBB->removePredecessor(II->getParent());
2591     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2592     II->replaceAllUsesWith(MergedInvoke);
2593     II->eraseFromParent();
2594     ++NumInvokesMerged;
2595   }
2596   MergedInvoke->setDebugLoc(MergedDebugLoc);
2597   ++NumInvokeSetsFormed;
2598 
2599   if (DTU)
2600     DTU->applyUpdates(Updates);
2601 }
2602 
2603 /// If this block is a `landingpad` exception handling block, categorize all
2604 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2605 /// being "mergeable" together, and then merge invokes in each set together.
2606 ///
2607 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2608 ///          [...]        [...]
2609 ///            |            |
2610 ///        [invoke0]    [invoke1]
2611 ///           / \          / \
2612 ///     [cont0] [landingpad] [cont1]
2613 /// to:
2614 ///      [...] [...]
2615 ///          \ /
2616 ///       [invoke]
2617 ///          / \
2618 ///     [cont] [landingpad]
2619 ///
2620 /// But of course we can only do that if the invokes share the `landingpad`,
2621 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2622 /// and the invoked functions are "compatible".
2623 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2624   if (!EnableMergeCompatibleInvokes)
2625     return false;
2626 
2627   bool Changed = false;
2628 
2629   // FIXME: generalize to all exception handling blocks?
2630   if (!BB->isLandingPad())
2631     return Changed;
2632 
2633   CompatibleSets Grouper;
2634 
2635   // Record all the predecessors of this `landingpad`. As per verifier,
2636   // the only allowed predecessor is the unwind edge of an `invoke`.
2637   // We want to group "compatible" `invokes` into the same set to be merged.
2638   for (BasicBlock *PredBB : predecessors(BB))
2639     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2640 
2641   // And now, merge `invoke`s that were grouped togeter.
2642   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2643     if (Invokes.size() < 2)
2644       continue;
2645     Changed = true;
2646     MergeCompatibleInvokesImpl(Invokes, DTU);
2647   }
2648 
2649   return Changed;
2650 }
2651 
2652 namespace {
2653 /// Track ephemeral values, which should be ignored for cost-modelling
2654 /// purposes. Requires walking instructions in reverse order.
2655 class EphemeralValueTracker {
2656   SmallPtrSet<const Instruction *, 32> EphValues;
2657 
2658   bool isEphemeral(const Instruction *I) {
2659     if (isa<AssumeInst>(I))
2660       return true;
2661     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2662            all_of(I->users(), [&](const User *U) {
2663              return EphValues.count(cast<Instruction>(U));
2664            });
2665   }
2666 
2667 public:
2668   bool track(const Instruction *I) {
2669     if (isEphemeral(I)) {
2670       EphValues.insert(I);
2671       return true;
2672     }
2673     return false;
2674   }
2675 
2676   bool contains(const Instruction *I) const { return EphValues.contains(I); }
2677 };
2678 } // namespace
2679 
2680 /// Determine if we can hoist sink a sole store instruction out of a
2681 /// conditional block.
2682 ///
2683 /// We are looking for code like the following:
2684 ///   BrBB:
2685 ///     store i32 %add, i32* %arrayidx2
2686 ///     ... // No other stores or function calls (we could be calling a memory
2687 ///     ... // function).
2688 ///     %cmp = icmp ult %x, %y
2689 ///     br i1 %cmp, label %EndBB, label %ThenBB
2690 ///   ThenBB:
2691 ///     store i32 %add5, i32* %arrayidx2
2692 ///     br label EndBB
2693 ///   EndBB:
2694 ///     ...
2695 ///   We are going to transform this into:
2696 ///   BrBB:
2697 ///     store i32 %add, i32* %arrayidx2
2698 ///     ... //
2699 ///     %cmp = icmp ult %x, %y
2700 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2701 ///     store i32 %add.add5, i32* %arrayidx2
2702 ///     ...
2703 ///
2704 /// \return The pointer to the value of the previous store if the store can be
2705 ///         hoisted into the predecessor block. 0 otherwise.
2706 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2707                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2708   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2709   if (!StoreToHoist)
2710     return nullptr;
2711 
2712   // Volatile or atomic.
2713   if (!StoreToHoist->isSimple())
2714     return nullptr;
2715 
2716   Value *StorePtr = StoreToHoist->getPointerOperand();
2717   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2718 
2719   // Look for a store to the same pointer in BrBB.
2720   unsigned MaxNumInstToLookAt = 9;
2721   // Skip pseudo probe intrinsic calls which are not really killing any memory
2722   // accesses.
2723   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2724     if (!MaxNumInstToLookAt)
2725       break;
2726     --MaxNumInstToLookAt;
2727 
2728     // Could be calling an instruction that affects memory like free().
2729     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2730       return nullptr;
2731 
2732     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2733       // Found the previous store to same location and type. Make sure it is
2734       // simple, to avoid introducing a spurious non-atomic write after an
2735       // atomic write.
2736       if (SI->getPointerOperand() == StorePtr &&
2737           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2738         // Found the previous store, return its value operand.
2739         return SI->getValueOperand();
2740       return nullptr; // Unknown store.
2741     }
2742 
2743     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2744       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2745           LI->isSimple()) {
2746         // Local objects (created by an `alloca` instruction) are always
2747         // writable, so once we are past a read from a location it is valid to
2748         // also write to that same location.
2749         // If the address of the local object never escapes the function, that
2750         // means it's never concurrently read or written, hence moving the store
2751         // from under the condition will not introduce a data race.
2752         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2753         if (AI && !PointerMayBeCaptured(AI, false, true))
2754           // Found a previous load, return it.
2755           return LI;
2756       }
2757       // The load didn't work out, but we may still find a store.
2758     }
2759   }
2760 
2761   return nullptr;
2762 }
2763 
2764 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2765 /// converted to selects.
2766 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2767                                            BasicBlock *EndBB,
2768                                            unsigned &SpeculatedInstructions,
2769                                            InstructionCost &Cost,
2770                                            const TargetTransformInfo &TTI) {
2771   TargetTransformInfo::TargetCostKind CostKind =
2772     BB->getParent()->hasMinSize()
2773     ? TargetTransformInfo::TCK_CodeSize
2774     : TargetTransformInfo::TCK_SizeAndLatency;
2775 
2776   bool HaveRewritablePHIs = false;
2777   for (PHINode &PN : EndBB->phis()) {
2778     Value *OrigV = PN.getIncomingValueForBlock(BB);
2779     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2780 
2781     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2782     // Skip PHIs which are trivial.
2783     if (ThenV == OrigV)
2784       continue;
2785 
2786     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2787                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2788 
2789     // Don't convert to selects if we could remove undefined behavior instead.
2790     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2791         passingValueIsAlwaysUndefined(ThenV, &PN))
2792       return false;
2793 
2794     HaveRewritablePHIs = true;
2795     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2796     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2797     if (!OrigCE && !ThenCE)
2798       continue; // Known cheap (FIXME: Maybe not true for aggregates).
2799 
2800     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2801     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2802     InstructionCost MaxCost =
2803         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2804     if (OrigCost + ThenCost > MaxCost)
2805       return false;
2806 
2807     // Account for the cost of an unfolded ConstantExpr which could end up
2808     // getting expanded into Instructions.
2809     // FIXME: This doesn't account for how many operations are combined in the
2810     // constant expression.
2811     ++SpeculatedInstructions;
2812     if (SpeculatedInstructions > 1)
2813       return false;
2814   }
2815 
2816   return HaveRewritablePHIs;
2817 }
2818 
2819 /// Speculate a conditional basic block flattening the CFG.
2820 ///
2821 /// Note that this is a very risky transform currently. Speculating
2822 /// instructions like this is most often not desirable. Instead, there is an MI
2823 /// pass which can do it with full awareness of the resource constraints.
2824 /// However, some cases are "obvious" and we should do directly. An example of
2825 /// this is speculating a single, reasonably cheap instruction.
2826 ///
2827 /// There is only one distinct advantage to flattening the CFG at the IR level:
2828 /// it makes very common but simplistic optimizations such as are common in
2829 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2830 /// modeling their effects with easier to reason about SSA value graphs.
2831 ///
2832 ///
2833 /// An illustration of this transform is turning this IR:
2834 /// \code
2835 ///   BB:
2836 ///     %cmp = icmp ult %x, %y
2837 ///     br i1 %cmp, label %EndBB, label %ThenBB
2838 ///   ThenBB:
2839 ///     %sub = sub %x, %y
2840 ///     br label BB2
2841 ///   EndBB:
2842 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2843 ///     ...
2844 /// \endcode
2845 ///
2846 /// Into this IR:
2847 /// \code
2848 ///   BB:
2849 ///     %cmp = icmp ult %x, %y
2850 ///     %sub = sub %x, %y
2851 ///     %cond = select i1 %cmp, 0, %sub
2852 ///     ...
2853 /// \endcode
2854 ///
2855 /// \returns true if the conditional block is removed.
2856 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2857                                             const TargetTransformInfo &TTI) {
2858   // Be conservative for now. FP select instruction can often be expensive.
2859   Value *BrCond = BI->getCondition();
2860   if (isa<FCmpInst>(BrCond))
2861     return false;
2862 
2863   BasicBlock *BB = BI->getParent();
2864   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2865   InstructionCost Budget =
2866       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2867 
2868   // If ThenBB is actually on the false edge of the conditional branch, remember
2869   // to swap the select operands later.
2870   bool Invert = false;
2871   if (ThenBB != BI->getSuccessor(0)) {
2872     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2873     Invert = true;
2874   }
2875   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2876 
2877   // If the branch is non-unpredictable, and is predicted to *not* branch to
2878   // the `then` block, then avoid speculating it.
2879   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2880     uint64_t TWeight, FWeight;
2881     if (extractBranchWeights(*BI, TWeight, FWeight) &&
2882         (TWeight + FWeight) != 0) {
2883       uint64_t EndWeight = Invert ? TWeight : FWeight;
2884       BranchProbability BIEndProb =
2885           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2886       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2887       if (BIEndProb >= Likely)
2888         return false;
2889     }
2890   }
2891 
2892   // Keep a count of how many times instructions are used within ThenBB when
2893   // they are candidates for sinking into ThenBB. Specifically:
2894   // - They are defined in BB, and
2895   // - They have no side effects, and
2896   // - All of their uses are in ThenBB.
2897   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2898 
2899   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2900 
2901   unsigned SpeculatedInstructions = 0;
2902   Value *SpeculatedStoreValue = nullptr;
2903   StoreInst *SpeculatedStore = nullptr;
2904   EphemeralValueTracker EphTracker;
2905   for (Instruction &I : reverse(drop_end(*ThenBB))) {
2906     // Skip debug info.
2907     if (isa<DbgInfoIntrinsic>(I)) {
2908       SpeculatedDbgIntrinsics.push_back(&I);
2909       continue;
2910     }
2911 
2912     // Skip pseudo probes. The consequence is we lose track of the branch
2913     // probability for ThenBB, which is fine since the optimization here takes
2914     // place regardless of the branch probability.
2915     if (isa<PseudoProbeInst>(I)) {
2916       // The probe should be deleted so that it will not be over-counted when
2917       // the samples collected on the non-conditional path are counted towards
2918       // the conditional path. We leave it for the counts inference algorithm to
2919       // figure out a proper count for an unknown probe.
2920       SpeculatedDbgIntrinsics.push_back(&I);
2921       continue;
2922     }
2923 
2924     // Ignore ephemeral values, they will be dropped by the transform.
2925     if (EphTracker.track(&I))
2926       continue;
2927 
2928     // Only speculatively execute a single instruction (not counting the
2929     // terminator) for now.
2930     ++SpeculatedInstructions;
2931     if (SpeculatedInstructions > 1)
2932       return false;
2933 
2934     // Don't hoist the instruction if it's unsafe or expensive.
2935     if (!isSafeToSpeculativelyExecute(&I) &&
2936         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2937                                   &I, BB, ThenBB, EndBB))))
2938       return false;
2939     if (!SpeculatedStoreValue &&
2940         computeSpeculationCost(&I, TTI) >
2941             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2942       return false;
2943 
2944     // Store the store speculation candidate.
2945     if (SpeculatedStoreValue)
2946       SpeculatedStore = cast<StoreInst>(&I);
2947 
2948     // Do not hoist the instruction if any of its operands are defined but not
2949     // used in BB. The transformation will prevent the operand from
2950     // being sunk into the use block.
2951     for (Use &Op : I.operands()) {
2952       Instruction *OpI = dyn_cast<Instruction>(Op);
2953       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2954         continue; // Not a candidate for sinking.
2955 
2956       ++SinkCandidateUseCounts[OpI];
2957     }
2958   }
2959 
2960   // Consider any sink candidates which are only used in ThenBB as costs for
2961   // speculation. Note, while we iterate over a DenseMap here, we are summing
2962   // and so iteration order isn't significant.
2963   for (const auto &[Inst, Count] : SinkCandidateUseCounts)
2964     if (Inst->hasNUses(Count)) {
2965       ++SpeculatedInstructions;
2966       if (SpeculatedInstructions > 1)
2967         return false;
2968     }
2969 
2970   // Check that we can insert the selects and that it's not too expensive to do
2971   // so.
2972   bool Convert = SpeculatedStore != nullptr;
2973   InstructionCost Cost = 0;
2974   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2975                                             SpeculatedInstructions,
2976                                             Cost, TTI);
2977   if (!Convert || Cost > Budget)
2978     return false;
2979 
2980   // If we get here, we can hoist the instruction and if-convert.
2981   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2982 
2983   // Insert a select of the value of the speculated store.
2984   if (SpeculatedStoreValue) {
2985     IRBuilder<NoFolder> Builder(BI);
2986     Value *OrigV = SpeculatedStore->getValueOperand();
2987     Value *TrueV = SpeculatedStore->getValueOperand();
2988     Value *FalseV = SpeculatedStoreValue;
2989     if (Invert)
2990       std::swap(TrueV, FalseV);
2991     Value *S = Builder.CreateSelect(
2992         BrCond, TrueV, FalseV, "spec.store.select", BI);
2993     SpeculatedStore->setOperand(0, S);
2994     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2995                                          SpeculatedStore->getDebugLoc());
2996     // The value stored is still conditional, but the store itself is now
2997     // unconditonally executed, so we must be sure that any linked dbg.assign
2998     // intrinsics are tracking the new stored value (the result of the
2999     // select). If we don't, and the store were to be removed by another pass
3000     // (e.g. DSE), then we'd eventually end up emitting a location describing
3001     // the conditional value, unconditionally.
3002     //
3003     // === Before this transformation ===
3004     // pred:
3005     //   store %one, %x.dest, !DIAssignID !1
3006     //   dbg.assign %one, "x", ..., !1, ...
3007     //   br %cond if.then
3008     //
3009     // if.then:
3010     //   store %two, %x.dest, !DIAssignID !2
3011     //   dbg.assign %two, "x", ..., !2, ...
3012     //
3013     // === After this transformation ===
3014     // pred:
3015     //   store %one, %x.dest, !DIAssignID !1
3016     //   dbg.assign %one, "x", ..., !1
3017     ///  ...
3018     //   %merge = select %cond, %two, %one
3019     //   store %merge, %x.dest, !DIAssignID !2
3020     //   dbg.assign %merge, "x", ..., !2
3021     for (auto *DAI : at::getAssignmentMarkers(SpeculatedStore)) {
3022       if (any_of(DAI->location_ops(), [&](Value *V) { return V == OrigV; }))
3023         DAI->replaceVariableLocationOp(OrigV, S);
3024     }
3025   }
3026 
3027   // Metadata can be dependent on the condition we are hoisting above.
3028   // Conservatively strip all metadata on the instruction. Drop the debug loc
3029   // to avoid making it appear as if the condition is a constant, which would
3030   // be misleading while debugging.
3031   // Similarly strip attributes that maybe dependent on condition we are
3032   // hoisting above.
3033   for (auto &I : make_early_inc_range(*ThenBB)) {
3034     if (!SpeculatedStoreValue || &I != SpeculatedStore) {
3035       // Don't update the DILocation of dbg.assign intrinsics.
3036       if (!isa<DbgAssignIntrinsic>(&I))
3037         I.setDebugLoc(DebugLoc());
3038     }
3039     I.dropUndefImplyingAttrsAndUnknownMetadata();
3040 
3041     // Drop ephemeral values.
3042     if (EphTracker.contains(&I)) {
3043       I.replaceAllUsesWith(PoisonValue::get(I.getType()));
3044       I.eraseFromParent();
3045     }
3046   }
3047 
3048   // Hoist the instructions.
3049   BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(),
3050              std::prev(ThenBB->end()));
3051 
3052   // Insert selects and rewrite the PHI operands.
3053   IRBuilder<NoFolder> Builder(BI);
3054   for (PHINode &PN : EndBB->phis()) {
3055     unsigned OrigI = PN.getBasicBlockIndex(BB);
3056     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
3057     Value *OrigV = PN.getIncomingValue(OrigI);
3058     Value *ThenV = PN.getIncomingValue(ThenI);
3059 
3060     // Skip PHIs which are trivial.
3061     if (OrigV == ThenV)
3062       continue;
3063 
3064     // Create a select whose true value is the speculatively executed value and
3065     // false value is the pre-existing value. Swap them if the branch
3066     // destinations were inverted.
3067     Value *TrueV = ThenV, *FalseV = OrigV;
3068     if (Invert)
3069       std::swap(TrueV, FalseV);
3070     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
3071     PN.setIncomingValue(OrigI, V);
3072     PN.setIncomingValue(ThenI, V);
3073   }
3074 
3075   // Remove speculated dbg intrinsics.
3076   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
3077   // dbg value for the different flows and inserting it after the select.
3078   for (Instruction *I : SpeculatedDbgIntrinsics) {
3079     // We still want to know that an assignment took place so don't remove
3080     // dbg.assign intrinsics.
3081     if (!isa<DbgAssignIntrinsic>(I))
3082       I->eraseFromParent();
3083   }
3084 
3085   ++NumSpeculations;
3086   return true;
3087 }
3088 
3089 /// Return true if we can thread a branch across this block.
3090 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
3091   int Size = 0;
3092   EphemeralValueTracker EphTracker;
3093 
3094   // Walk the loop in reverse so that we can identify ephemeral values properly
3095   // (values only feeding assumes).
3096   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
3097     // Can't fold blocks that contain noduplicate or convergent calls.
3098     if (CallInst *CI = dyn_cast<CallInst>(&I))
3099       if (CI->cannotDuplicate() || CI->isConvergent())
3100         return false;
3101 
3102     // Ignore ephemeral values which are deleted during codegen.
3103     // We will delete Phis while threading, so Phis should not be accounted in
3104     // block's size.
3105     if (!EphTracker.track(&I) && !isa<PHINode>(I)) {
3106       if (Size++ > MaxSmallBlockSize)
3107         return false; // Don't clone large BB's.
3108     }
3109 
3110     // We can only support instructions that do not define values that are
3111     // live outside of the current basic block.
3112     for (User *U : I.users()) {
3113       Instruction *UI = cast<Instruction>(U);
3114       if (UI->getParent() != BB || isa<PHINode>(UI))
3115         return false;
3116     }
3117 
3118     // Looks ok, continue checking.
3119   }
3120 
3121   return true;
3122 }
3123 
3124 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
3125                                         BasicBlock *To) {
3126   // Don't look past the block defining the value, we might get the value from
3127   // a previous loop iteration.
3128   auto *I = dyn_cast<Instruction>(V);
3129   if (I && I->getParent() == To)
3130     return nullptr;
3131 
3132   // We know the value if the From block branches on it.
3133   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
3134   if (BI && BI->isConditional() && BI->getCondition() == V &&
3135       BI->getSuccessor(0) != BI->getSuccessor(1))
3136     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
3137                                      : ConstantInt::getFalse(BI->getContext());
3138 
3139   return nullptr;
3140 }
3141 
3142 /// If we have a conditional branch on something for which we know the constant
3143 /// value in predecessors (e.g. a phi node in the current block), thread edges
3144 /// from the predecessor to their ultimate destination.
3145 static std::optional<bool>
3146 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3147                                             const DataLayout &DL,
3148                                             AssumptionCache *AC) {
3149   SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3150   BasicBlock *BB = BI->getParent();
3151   Value *Cond = BI->getCondition();
3152   PHINode *PN = dyn_cast<PHINode>(Cond);
3153   if (PN && PN->getParent() == BB) {
3154     // Degenerate case of a single entry PHI.
3155     if (PN->getNumIncomingValues() == 1) {
3156       FoldSingleEntryPHINodes(PN->getParent());
3157       return true;
3158     }
3159 
3160     for (Use &U : PN->incoming_values())
3161       if (auto *CB = dyn_cast<ConstantInt>(U))
3162         KnownValues[CB].insert(PN->getIncomingBlock(U));
3163   } else {
3164     for (BasicBlock *Pred : predecessors(BB)) {
3165       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3166         KnownValues[CB].insert(Pred);
3167     }
3168   }
3169 
3170   if (KnownValues.empty())
3171     return false;
3172 
3173   // Now we know that this block has multiple preds and two succs.
3174   // Check that the block is small enough and values defined in the block are
3175   // not used outside of it.
3176   if (!BlockIsSimpleEnoughToThreadThrough(BB))
3177     return false;
3178 
3179   for (const auto &Pair : KnownValues) {
3180     // Okay, we now know that all edges from PredBB should be revectored to
3181     // branch to RealDest.
3182     ConstantInt *CB = Pair.first;
3183     ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3184     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3185 
3186     if (RealDest == BB)
3187       continue; // Skip self loops.
3188 
3189     // Skip if the predecessor's terminator is an indirect branch.
3190     if (any_of(PredBBs, [](BasicBlock *PredBB) {
3191           return isa<IndirectBrInst>(PredBB->getTerminator());
3192         }))
3193       continue;
3194 
3195     LLVM_DEBUG({
3196       dbgs() << "Condition " << *Cond << " in " << BB->getName()
3197              << " has value " << *Pair.first << " in predecessors:\n";
3198       for (const BasicBlock *PredBB : Pair.second)
3199         dbgs() << "  " << PredBB->getName() << "\n";
3200       dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3201     });
3202 
3203     // Split the predecessors we are threading into a new edge block. We'll
3204     // clone the instructions into this block, and then redirect it to RealDest.
3205     BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3206 
3207     // TODO: These just exist to reduce test diff, we can drop them if we like.
3208     EdgeBB->setName(RealDest->getName() + ".critedge");
3209     EdgeBB->moveBefore(RealDest);
3210 
3211     // Update PHI nodes.
3212     AddPredecessorToBlock(RealDest, EdgeBB, BB);
3213 
3214     // BB may have instructions that are being threaded over.  Clone these
3215     // instructions into EdgeBB.  We know that there will be no uses of the
3216     // cloned instructions outside of EdgeBB.
3217     BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3218     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3219     TranslateMap[Cond] = CB;
3220     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3221       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3222         TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3223         continue;
3224       }
3225       // Clone the instruction.
3226       Instruction *N = BBI->clone();
3227       if (BBI->hasName())
3228         N->setName(BBI->getName() + ".c");
3229 
3230       // Update operands due to translation.
3231       for (Use &Op : N->operands()) {
3232         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3233         if (PI != TranslateMap.end())
3234           Op = PI->second;
3235       }
3236 
3237       // Check for trivial simplification.
3238       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3239         if (!BBI->use_empty())
3240           TranslateMap[&*BBI] = V;
3241         if (!N->mayHaveSideEffects()) {
3242           N->deleteValue(); // Instruction folded away, don't need actual inst
3243           N = nullptr;
3244         }
3245       } else {
3246         if (!BBI->use_empty())
3247           TranslateMap[&*BBI] = N;
3248       }
3249       if (N) {
3250         // Insert the new instruction into its new home.
3251         N->insertInto(EdgeBB, InsertPt);
3252 
3253         // Register the new instruction with the assumption cache if necessary.
3254         if (auto *Assume = dyn_cast<AssumeInst>(N))
3255           if (AC)
3256             AC->registerAssumption(Assume);
3257       }
3258     }
3259 
3260     BB->removePredecessor(EdgeBB);
3261     BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3262     EdgeBI->setSuccessor(0, RealDest);
3263     EdgeBI->setDebugLoc(BI->getDebugLoc());
3264 
3265     if (DTU) {
3266       SmallVector<DominatorTree::UpdateType, 2> Updates;
3267       Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3268       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3269       DTU->applyUpdates(Updates);
3270     }
3271 
3272     // For simplicity, we created a separate basic block for the edge. Merge
3273     // it back into the predecessor if possible. This not only avoids
3274     // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3275     // bypass the check for trivial cycles above.
3276     MergeBlockIntoPredecessor(EdgeBB, DTU);
3277 
3278     // Signal repeat, simplifying any other constants.
3279     return std::nullopt;
3280   }
3281 
3282   return false;
3283 }
3284 
3285 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3286                                                     DomTreeUpdater *DTU,
3287                                                     const DataLayout &DL,
3288                                                     AssumptionCache *AC) {
3289   std::optional<bool> Result;
3290   bool EverChanged = false;
3291   do {
3292     // Note that None means "we changed things, but recurse further."
3293     Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3294     EverChanged |= Result == std::nullopt || *Result;
3295   } while (Result == std::nullopt);
3296   return EverChanged;
3297 }
3298 
3299 /// Given a BB that starts with the specified two-entry PHI node,
3300 /// see if we can eliminate it.
3301 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3302                                 DomTreeUpdater *DTU, const DataLayout &DL) {
3303   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3304   // statement", which has a very simple dominance structure.  Basically, we
3305   // are trying to find the condition that is being branched on, which
3306   // subsequently causes this merge to happen.  We really want control
3307   // dependence information for this check, but simplifycfg can't keep it up
3308   // to date, and this catches most of the cases we care about anyway.
3309   BasicBlock *BB = PN->getParent();
3310 
3311   BasicBlock *IfTrue, *IfFalse;
3312   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3313   if (!DomBI)
3314     return false;
3315   Value *IfCond = DomBI->getCondition();
3316   // Don't bother if the branch will be constant folded trivially.
3317   if (isa<ConstantInt>(IfCond))
3318     return false;
3319 
3320   BasicBlock *DomBlock = DomBI->getParent();
3321   SmallVector<BasicBlock *, 2> IfBlocks;
3322   llvm::copy_if(
3323       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3324         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3325       });
3326   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3327          "Will have either one or two blocks to speculate.");
3328 
3329   // If the branch is non-unpredictable, see if we either predictably jump to
3330   // the merge bb (if we have only a single 'then' block), or if we predictably
3331   // jump to one specific 'then' block (if we have two of them).
3332   // It isn't beneficial to speculatively execute the code
3333   // from the block that we know is predictably not entered.
3334   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
3335     uint64_t TWeight, FWeight;
3336     if (extractBranchWeights(*DomBI, TWeight, FWeight) &&
3337         (TWeight + FWeight) != 0) {
3338       BranchProbability BITrueProb =
3339           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3340       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3341       BranchProbability BIFalseProb = BITrueProb.getCompl();
3342       if (IfBlocks.size() == 1) {
3343         BranchProbability BIBBProb =
3344             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3345         if (BIBBProb >= Likely)
3346           return false;
3347       } else {
3348         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3349           return false;
3350       }
3351     }
3352   }
3353 
3354   // Don't try to fold an unreachable block. For example, the phi node itself
3355   // can't be the candidate if-condition for a select that we want to form.
3356   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3357     if (IfCondPhiInst->getParent() == BB)
3358       return false;
3359 
3360   // Okay, we found that we can merge this two-entry phi node into a select.
3361   // Doing so would require us to fold *all* two entry phi nodes in this block.
3362   // At some point this becomes non-profitable (particularly if the target
3363   // doesn't support cmov's).  Only do this transformation if there are two or
3364   // fewer PHI nodes in this block.
3365   unsigned NumPhis = 0;
3366   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3367     if (NumPhis > 2)
3368       return false;
3369 
3370   // Loop over the PHI's seeing if we can promote them all to select
3371   // instructions.  While we are at it, keep track of the instructions
3372   // that need to be moved to the dominating block.
3373   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3374   InstructionCost Cost = 0;
3375   InstructionCost Budget =
3376       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3377 
3378   bool Changed = false;
3379   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3380     PHINode *PN = cast<PHINode>(II++);
3381     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3382       PN->replaceAllUsesWith(V);
3383       PN->eraseFromParent();
3384       Changed = true;
3385       continue;
3386     }
3387 
3388     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
3389                              Cost, Budget, TTI) ||
3390         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
3391                              Cost, Budget, TTI))
3392       return Changed;
3393   }
3394 
3395   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3396   // we ran out of PHIs then we simplified them all.
3397   PN = dyn_cast<PHINode>(BB->begin());
3398   if (!PN)
3399     return true;
3400 
3401   // Return true if at least one of these is a 'not', and another is either
3402   // a 'not' too, or a constant.
3403   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3404     if (!match(V0, m_Not(m_Value())))
3405       std::swap(V0, V1);
3406     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3407     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3408   };
3409 
3410   // Don't fold i1 branches on PHIs which contain binary operators or
3411   // (possibly inverted) select form of or/ands,  unless one of
3412   // the incoming values is an 'not' and another one is freely invertible.
3413   // These can often be turned into switches and other things.
3414   auto IsBinOpOrAnd = [](Value *V) {
3415     return match(
3416         V, m_CombineOr(
3417                m_BinOp(),
3418                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3419                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3420   };
3421   if (PN->getType()->isIntegerTy(1) &&
3422       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3423        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3424       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3425                                  PN->getIncomingValue(1)))
3426     return Changed;
3427 
3428   // If all PHI nodes are promotable, check to make sure that all instructions
3429   // in the predecessor blocks can be promoted as well. If not, we won't be able
3430   // to get rid of the control flow, so it's not worth promoting to select
3431   // instructions.
3432   for (BasicBlock *IfBlock : IfBlocks)
3433     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3434       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3435         // This is not an aggressive instruction that we can promote.
3436         // Because of this, we won't be able to get rid of the control flow, so
3437         // the xform is not worth it.
3438         return Changed;
3439       }
3440 
3441   // If either of the blocks has it's address taken, we can't do this fold.
3442   if (any_of(IfBlocks,
3443              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3444     return Changed;
3445 
3446   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
3447                     << "  T: " << IfTrue->getName()
3448                     << "  F: " << IfFalse->getName() << "\n");
3449 
3450   // If we can still promote the PHI nodes after this gauntlet of tests,
3451   // do all of the PHI's now.
3452 
3453   // Move all 'aggressive' instructions, which are defined in the
3454   // conditional parts of the if's up to the dominating block.
3455   for (BasicBlock *IfBlock : IfBlocks)
3456       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3457 
3458   IRBuilder<NoFolder> Builder(DomBI);
3459   // Propagate fast-math-flags from phi nodes to replacement selects.
3460   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3461   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3462     if (isa<FPMathOperator>(PN))
3463       Builder.setFastMathFlags(PN->getFastMathFlags());
3464 
3465     // Change the PHI node into a select instruction.
3466     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3467     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3468 
3469     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3470     PN->replaceAllUsesWith(Sel);
3471     Sel->takeName(PN);
3472     PN->eraseFromParent();
3473   }
3474 
3475   // At this point, all IfBlocks are empty, so our if statement
3476   // has been flattened.  Change DomBlock to jump directly to our new block to
3477   // avoid other simplifycfg's kicking in on the diamond.
3478   Builder.CreateBr(BB);
3479 
3480   SmallVector<DominatorTree::UpdateType, 3> Updates;
3481   if (DTU) {
3482     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3483     for (auto *Successor : successors(DomBlock))
3484       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3485   }
3486 
3487   DomBI->eraseFromParent();
3488   if (DTU)
3489     DTU->applyUpdates(Updates);
3490 
3491   return true;
3492 }
3493 
3494 static Value *createLogicalOp(IRBuilderBase &Builder,
3495                               Instruction::BinaryOps Opc, Value *LHS,
3496                               Value *RHS, const Twine &Name = "") {
3497   // Try to relax logical op to binary op.
3498   if (impliesPoison(RHS, LHS))
3499     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3500   if (Opc == Instruction::And)
3501     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3502   if (Opc == Instruction::Or)
3503     return Builder.CreateLogicalOr(LHS, RHS, Name);
3504   llvm_unreachable("Invalid logical opcode");
3505 }
3506 
3507 /// Return true if either PBI or BI has branch weight available, and store
3508 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3509 /// not have branch weight, use 1:1 as its weight.
3510 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3511                                    uint64_t &PredTrueWeight,
3512                                    uint64_t &PredFalseWeight,
3513                                    uint64_t &SuccTrueWeight,
3514                                    uint64_t &SuccFalseWeight) {
3515   bool PredHasWeights =
3516       extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight);
3517   bool SuccHasWeights =
3518       extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight);
3519   if (PredHasWeights || SuccHasWeights) {
3520     if (!PredHasWeights)
3521       PredTrueWeight = PredFalseWeight = 1;
3522     if (!SuccHasWeights)
3523       SuccTrueWeight = SuccFalseWeight = 1;
3524     return true;
3525   } else {
3526     return false;
3527   }
3528 }
3529 
3530 /// Determine if the two branches share a common destination and deduce a glue
3531 /// that joins the branches' conditions to arrive at the common destination if
3532 /// that would be profitable.
3533 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>>
3534 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3535                                           const TargetTransformInfo *TTI) {
3536   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3537          "Both blocks must end with a conditional branches.");
3538   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3539          "PredBB must be a predecessor of BB.");
3540 
3541   // We have the potential to fold the conditions together, but if the
3542   // predecessor branch is predictable, we may not want to merge them.
3543   uint64_t PTWeight, PFWeight;
3544   BranchProbability PBITrueProb, Likely;
3545   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3546       extractBranchWeights(*PBI, PTWeight, PFWeight) &&
3547       (PTWeight + PFWeight) != 0) {
3548     PBITrueProb =
3549         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3550     Likely = TTI->getPredictableBranchThreshold();
3551   }
3552 
3553   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3554     // Speculate the 2nd condition unless the 1st is probably true.
3555     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3556       return {{BI->getSuccessor(0), Instruction::Or, false}};
3557   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3558     // Speculate the 2nd condition unless the 1st is probably false.
3559     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3560       return {{BI->getSuccessor(1), Instruction::And, false}};
3561   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3562     // Speculate the 2nd condition unless the 1st is probably true.
3563     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3564       return {{BI->getSuccessor(1), Instruction::And, true}};
3565   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3566     // Speculate the 2nd condition unless the 1st is probably false.
3567     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3568       return {{BI->getSuccessor(0), Instruction::Or, true}};
3569   }
3570   return std::nullopt;
3571 }
3572 
3573 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3574                                              DomTreeUpdater *DTU,
3575                                              MemorySSAUpdater *MSSAU,
3576                                              const TargetTransformInfo *TTI) {
3577   BasicBlock *BB = BI->getParent();
3578   BasicBlock *PredBlock = PBI->getParent();
3579 
3580   // Determine if the two branches share a common destination.
3581   BasicBlock *CommonSucc;
3582   Instruction::BinaryOps Opc;
3583   bool InvertPredCond;
3584   std::tie(CommonSucc, Opc, InvertPredCond) =
3585       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3586 
3587   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3588 
3589   IRBuilder<> Builder(PBI);
3590   // The builder is used to create instructions to eliminate the branch in BB.
3591   // If BB's terminator has !annotation metadata, add it to the new
3592   // instructions.
3593   Builder.CollectMetadataToCopy(BB->getTerminator(),
3594                                 {LLVMContext::MD_annotation});
3595 
3596   // If we need to invert the condition in the pred block to match, do so now.
3597   if (InvertPredCond) {
3598     Value *NewCond = PBI->getCondition();
3599     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3600       CmpInst *CI = cast<CmpInst>(NewCond);
3601       CI->setPredicate(CI->getInversePredicate());
3602     } else {
3603       NewCond =
3604           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3605     }
3606 
3607     PBI->setCondition(NewCond);
3608     PBI->swapSuccessors();
3609   }
3610 
3611   BasicBlock *UniqueSucc =
3612       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3613 
3614   // Before cloning instructions, notify the successor basic block that it
3615   // is about to have a new predecessor. This will update PHI nodes,
3616   // which will allow us to update live-out uses of bonus instructions.
3617   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3618 
3619   // Try to update branch weights.
3620   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3621   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3622                              SuccTrueWeight, SuccFalseWeight)) {
3623     SmallVector<uint64_t, 8> NewWeights;
3624 
3625     if (PBI->getSuccessor(0) == BB) {
3626       // PBI: br i1 %x, BB, FalseDest
3627       // BI:  br i1 %y, UniqueSucc, FalseDest
3628       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3629       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3630       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3631       //               TrueWeight for PBI * FalseWeight for BI.
3632       // We assume that total weights of a BranchInst can fit into 32 bits.
3633       // Therefore, we will not have overflow using 64-bit arithmetic.
3634       NewWeights.push_back(PredFalseWeight *
3635                                (SuccFalseWeight + SuccTrueWeight) +
3636                            PredTrueWeight * SuccFalseWeight);
3637     } else {
3638       // PBI: br i1 %x, TrueDest, BB
3639       // BI:  br i1 %y, TrueDest, UniqueSucc
3640       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3641       //              FalseWeight for PBI * TrueWeight for BI.
3642       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3643                            PredFalseWeight * SuccTrueWeight);
3644       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3645       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3646     }
3647 
3648     // Halve the weights if any of them cannot fit in an uint32_t
3649     FitWeights(NewWeights);
3650 
3651     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3652     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3653 
3654     // TODO: If BB is reachable from all paths through PredBlock, then we
3655     // could replace PBI's branch probabilities with BI's.
3656   } else
3657     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3658 
3659   // Now, update the CFG.
3660   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3661 
3662   if (DTU)
3663     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3664                        {DominatorTree::Delete, PredBlock, BB}});
3665 
3666   // If BI was a loop latch, it may have had associated loop metadata.
3667   // We need to copy it to the new latch, that is, PBI.
3668   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3669     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3670 
3671   ValueToValueMapTy VMap; // maps original values to cloned values
3672   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3673 
3674   // Now that the Cond was cloned into the predecessor basic block,
3675   // or/and the two conditions together.
3676   Value *BICond = VMap[BI->getCondition()];
3677   PBI->setCondition(
3678       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3679 
3680   // Copy any debug value intrinsics into the end of PredBlock.
3681   for (Instruction &I : *BB) {
3682     if (isa<DbgInfoIntrinsic>(I)) {
3683       Instruction *NewI = I.clone();
3684       RemapInstruction(NewI, VMap,
3685                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3686       NewI->insertBefore(PBI);
3687     }
3688   }
3689 
3690   ++NumFoldBranchToCommonDest;
3691   return true;
3692 }
3693 
3694 /// Return if an instruction's type or any of its operands' types are a vector
3695 /// type.
3696 static bool isVectorOp(Instruction &I) {
3697   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3698            return U->getType()->isVectorTy();
3699          });
3700 }
3701 
3702 /// If this basic block is simple enough, and if a predecessor branches to us
3703 /// and one of our successors, fold the block into the predecessor and use
3704 /// logical operations to pick the right destination.
3705 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3706                                   MemorySSAUpdater *MSSAU,
3707                                   const TargetTransformInfo *TTI,
3708                                   unsigned BonusInstThreshold) {
3709   // If this block ends with an unconditional branch,
3710   // let SpeculativelyExecuteBB() deal with it.
3711   if (!BI->isConditional())
3712     return false;
3713 
3714   BasicBlock *BB = BI->getParent();
3715   TargetTransformInfo::TargetCostKind CostKind =
3716     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3717                                   : TargetTransformInfo::TCK_SizeAndLatency;
3718 
3719   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3720 
3721   if (!Cond ||
3722       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
3723        !isa<SelectInst>(Cond)) ||
3724       Cond->getParent() != BB || !Cond->hasOneUse())
3725     return false;
3726 
3727   // Finally, don't infinitely unroll conditional loops.
3728   if (is_contained(successors(BB), BB))
3729     return false;
3730 
3731   // With which predecessors will we want to deal with?
3732   SmallVector<BasicBlock *, 8> Preds;
3733   for (BasicBlock *PredBlock : predecessors(BB)) {
3734     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3735 
3736     // Check that we have two conditional branches.  If there is a PHI node in
3737     // the common successor, verify that the same value flows in from both
3738     // blocks.
3739     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3740       continue;
3741 
3742     // Determine if the two branches share a common destination.
3743     BasicBlock *CommonSucc;
3744     Instruction::BinaryOps Opc;
3745     bool InvertPredCond;
3746     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3747       std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe;
3748     else
3749       continue;
3750 
3751     // Check the cost of inserting the necessary logic before performing the
3752     // transformation.
3753     if (TTI) {
3754       Type *Ty = BI->getCondition()->getType();
3755       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3756       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3757                              !isa<CmpInst>(PBI->getCondition())))
3758         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3759 
3760       if (Cost > BranchFoldThreshold)
3761         continue;
3762     }
3763 
3764     // Ok, we do want to deal with this predecessor. Record it.
3765     Preds.emplace_back(PredBlock);
3766   }
3767 
3768   // If there aren't any predecessors into which we can fold,
3769   // don't bother checking the cost.
3770   if (Preds.empty())
3771     return false;
3772 
3773   // Only allow this transformation if computing the condition doesn't involve
3774   // too many instructions and these involved instructions can be executed
3775   // unconditionally. We denote all involved instructions except the condition
3776   // as "bonus instructions", and only allow this transformation when the
3777   // number of the bonus instructions we'll need to create when cloning into
3778   // each predecessor does not exceed a certain threshold.
3779   unsigned NumBonusInsts = 0;
3780   bool SawVectorOp = false;
3781   const unsigned PredCount = Preds.size();
3782   for (Instruction &I : *BB) {
3783     // Don't check the branch condition comparison itself.
3784     if (&I == Cond)
3785       continue;
3786     // Ignore dbg intrinsics, and the terminator.
3787     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3788       continue;
3789     // I must be safe to execute unconditionally.
3790     if (!isSafeToSpeculativelyExecute(&I))
3791       return false;
3792     SawVectorOp |= isVectorOp(I);
3793 
3794     // Account for the cost of duplicating this instruction into each
3795     // predecessor. Ignore free instructions.
3796     if (!TTI || TTI->getInstructionCost(&I, CostKind) !=
3797                     TargetTransformInfo::TCC_Free) {
3798       NumBonusInsts += PredCount;
3799 
3800       // Early exits once we reach the limit.
3801       if (NumBonusInsts >
3802           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3803         return false;
3804     }
3805 
3806     auto IsBCSSAUse = [BB, &I](Use &U) {
3807       auto *UI = cast<Instruction>(U.getUser());
3808       if (auto *PN = dyn_cast<PHINode>(UI))
3809         return PN->getIncomingBlock(U) == BB;
3810       return UI->getParent() == BB && I.comesBefore(UI);
3811     };
3812 
3813     // Does this instruction require rewriting of uses?
3814     if (!all_of(I.uses(), IsBCSSAUse))
3815       return false;
3816   }
3817   if (NumBonusInsts >
3818       BonusInstThreshold *
3819           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3820     return false;
3821 
3822   // Ok, we have the budget. Perform the transformation.
3823   for (BasicBlock *PredBlock : Preds) {
3824     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3825     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3826   }
3827   return false;
3828 }
3829 
3830 // If there is only one store in BB1 and BB2, return it, otherwise return
3831 // nullptr.
3832 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3833   StoreInst *S = nullptr;
3834   for (auto *BB : {BB1, BB2}) {
3835     if (!BB)
3836       continue;
3837     for (auto &I : *BB)
3838       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3839         if (S)
3840           // Multiple stores seen.
3841           return nullptr;
3842         else
3843           S = SI;
3844       }
3845   }
3846   return S;
3847 }
3848 
3849 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3850                                               Value *AlternativeV = nullptr) {
3851   // PHI is going to be a PHI node that allows the value V that is defined in
3852   // BB to be referenced in BB's only successor.
3853   //
3854   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3855   // doesn't matter to us what the other operand is (it'll never get used). We
3856   // could just create a new PHI with an undef incoming value, but that could
3857   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3858   // other PHI. So here we directly look for some PHI in BB's successor with V
3859   // as an incoming operand. If we find one, we use it, else we create a new
3860   // one.
3861   //
3862   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3863   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3864   // where OtherBB is the single other predecessor of BB's only successor.
3865   PHINode *PHI = nullptr;
3866   BasicBlock *Succ = BB->getSingleSuccessor();
3867 
3868   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3869     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3870       PHI = cast<PHINode>(I);
3871       if (!AlternativeV)
3872         break;
3873 
3874       assert(Succ->hasNPredecessors(2));
3875       auto PredI = pred_begin(Succ);
3876       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3877       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3878         break;
3879       PHI = nullptr;
3880     }
3881   if (PHI)
3882     return PHI;
3883 
3884   // If V is not an instruction defined in BB, just return it.
3885   if (!AlternativeV &&
3886       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3887     return V;
3888 
3889   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3890   PHI->addIncoming(V, BB);
3891   for (BasicBlock *PredBB : predecessors(Succ))
3892     if (PredBB != BB)
3893       PHI->addIncoming(
3894           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3895   return PHI;
3896 }
3897 
3898 static bool mergeConditionalStoreToAddress(
3899     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3900     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3901     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3902   // For every pointer, there must be exactly two stores, one coming from
3903   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3904   // store (to any address) in PTB,PFB or QTB,QFB.
3905   // FIXME: We could relax this restriction with a bit more work and performance
3906   // testing.
3907   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3908   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3909   if (!PStore || !QStore)
3910     return false;
3911 
3912   // Now check the stores are compatible.
3913   if (!QStore->isUnordered() || !PStore->isUnordered() ||
3914       PStore->getValueOperand()->getType() !=
3915           QStore->getValueOperand()->getType())
3916     return false;
3917 
3918   // Check that sinking the store won't cause program behavior changes. Sinking
3919   // the store out of the Q blocks won't change any behavior as we're sinking
3920   // from a block to its unconditional successor. But we're moving a store from
3921   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3922   // So we need to check that there are no aliasing loads or stores in
3923   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3924   // operations between PStore and the end of its parent block.
3925   //
3926   // The ideal way to do this is to query AliasAnalysis, but we don't
3927   // preserve AA currently so that is dangerous. Be super safe and just
3928   // check there are no other memory operations at all.
3929   for (auto &I : *QFB->getSinglePredecessor())
3930     if (I.mayReadOrWriteMemory())
3931       return false;
3932   for (auto &I : *QFB)
3933     if (&I != QStore && I.mayReadOrWriteMemory())
3934       return false;
3935   if (QTB)
3936     for (auto &I : *QTB)
3937       if (&I != QStore && I.mayReadOrWriteMemory())
3938         return false;
3939   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3940        I != E; ++I)
3941     if (&*I != PStore && I->mayReadOrWriteMemory())
3942       return false;
3943 
3944   // If we're not in aggressive mode, we only optimize if we have some
3945   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3946   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3947     if (!BB)
3948       return true;
3949     // Heuristic: if the block can be if-converted/phi-folded and the
3950     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3951     // thread this store.
3952     InstructionCost Cost = 0;
3953     InstructionCost Budget =
3954         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3955     for (auto &I : BB->instructionsWithoutDebug(false)) {
3956       // Consider terminator instruction to be free.
3957       if (I.isTerminator())
3958         continue;
3959       // If this is one the stores that we want to speculate out of this BB,
3960       // then don't count it's cost, consider it to be free.
3961       if (auto *S = dyn_cast<StoreInst>(&I))
3962         if (llvm::find(FreeStores, S))
3963           continue;
3964       // Else, we have a white-list of instructions that we are ak speculating.
3965       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3966         return false; // Not in white-list - not worthwhile folding.
3967       // And finally, if this is a non-free instruction that we are okay
3968       // speculating, ensure that we consider the speculation budget.
3969       Cost +=
3970           TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3971       if (Cost > Budget)
3972         return false; // Eagerly refuse to fold as soon as we're out of budget.
3973     }
3974     assert(Cost <= Budget &&
3975            "When we run out of budget we will eagerly return from within the "
3976            "per-instruction loop.");
3977     return true;
3978   };
3979 
3980   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3981   if (!MergeCondStoresAggressively &&
3982       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3983        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3984     return false;
3985 
3986   // If PostBB has more than two predecessors, we need to split it so we can
3987   // sink the store.
3988   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3989     // We know that QFB's only successor is PostBB. And QFB has a single
3990     // predecessor. If QTB exists, then its only successor is also PostBB.
3991     // If QTB does not exist, then QFB's only predecessor has a conditional
3992     // branch to QFB and PostBB.
3993     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3994     BasicBlock *NewBB =
3995         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3996     if (!NewBB)
3997       return false;
3998     PostBB = NewBB;
3999   }
4000 
4001   // OK, we're going to sink the stores to PostBB. The store has to be
4002   // conditional though, so first create the predicate.
4003   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
4004                      ->getCondition();
4005   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
4006                      ->getCondition();
4007 
4008   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
4009                                                 PStore->getParent());
4010   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
4011                                                 QStore->getParent(), PPHI);
4012 
4013   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
4014 
4015   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
4016   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
4017 
4018   if (InvertPCond)
4019     PPred = QB.CreateNot(PPred);
4020   if (InvertQCond)
4021     QPred = QB.CreateNot(QPred);
4022   Value *CombinedPred = QB.CreateOr(PPred, QPred);
4023 
4024   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
4025                                       /*Unreachable=*/false,
4026                                       /*BranchWeights=*/nullptr, DTU);
4027   QB.SetInsertPoint(T);
4028   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
4029   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
4030   // Choose the minimum alignment. If we could prove both stores execute, we
4031   // could use biggest one.  In this case, though, we only know that one of the
4032   // stores executes.  And we don't know it's safe to take the alignment from a
4033   // store that doesn't execute.
4034   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
4035 
4036   QStore->eraseFromParent();
4037   PStore->eraseFromParent();
4038 
4039   return true;
4040 }
4041 
4042 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
4043                                    DomTreeUpdater *DTU, const DataLayout &DL,
4044                                    const TargetTransformInfo &TTI) {
4045   // The intention here is to find diamonds or triangles (see below) where each
4046   // conditional block contains a store to the same address. Both of these
4047   // stores are conditional, so they can't be unconditionally sunk. But it may
4048   // be profitable to speculatively sink the stores into one merged store at the
4049   // end, and predicate the merged store on the union of the two conditions of
4050   // PBI and QBI.
4051   //
4052   // This can reduce the number of stores executed if both of the conditions are
4053   // true, and can allow the blocks to become small enough to be if-converted.
4054   // This optimization will also chain, so that ladders of test-and-set
4055   // sequences can be if-converted away.
4056   //
4057   // We only deal with simple diamonds or triangles:
4058   //
4059   //     PBI       or      PBI        or a combination of the two
4060   //    /   \               | \
4061   //   PTB  PFB             |  PFB
4062   //    \   /               | /
4063   //     QBI                QBI
4064   //    /  \                | \
4065   //   QTB  QFB             |  QFB
4066   //    \  /                | /
4067   //    PostBB            PostBB
4068   //
4069   // We model triangles as a type of diamond with a nullptr "true" block.
4070   // Triangles are canonicalized so that the fallthrough edge is represented by
4071   // a true condition, as in the diagram above.
4072   BasicBlock *PTB = PBI->getSuccessor(0);
4073   BasicBlock *PFB = PBI->getSuccessor(1);
4074   BasicBlock *QTB = QBI->getSuccessor(0);
4075   BasicBlock *QFB = QBI->getSuccessor(1);
4076   BasicBlock *PostBB = QFB->getSingleSuccessor();
4077 
4078   // Make sure we have a good guess for PostBB. If QTB's only successor is
4079   // QFB, then QFB is a better PostBB.
4080   if (QTB->getSingleSuccessor() == QFB)
4081     PostBB = QFB;
4082 
4083   // If we couldn't find a good PostBB, stop.
4084   if (!PostBB)
4085     return false;
4086 
4087   bool InvertPCond = false, InvertQCond = false;
4088   // Canonicalize fallthroughs to the true branches.
4089   if (PFB == QBI->getParent()) {
4090     std::swap(PFB, PTB);
4091     InvertPCond = true;
4092   }
4093   if (QFB == PostBB) {
4094     std::swap(QFB, QTB);
4095     InvertQCond = true;
4096   }
4097 
4098   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
4099   // and QFB may not. Model fallthroughs as a nullptr block.
4100   if (PTB == QBI->getParent())
4101     PTB = nullptr;
4102   if (QTB == PostBB)
4103     QTB = nullptr;
4104 
4105   // Legality bailouts. We must have at least the non-fallthrough blocks and
4106   // the post-dominating block, and the non-fallthroughs must only have one
4107   // predecessor.
4108   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
4109     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
4110   };
4111   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
4112       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
4113     return false;
4114   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
4115       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
4116     return false;
4117   if (!QBI->getParent()->hasNUses(2))
4118     return false;
4119 
4120   // OK, this is a sequence of two diamonds or triangles.
4121   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
4122   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
4123   for (auto *BB : {PTB, PFB}) {
4124     if (!BB)
4125       continue;
4126     for (auto &I : *BB)
4127       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4128         PStoreAddresses.insert(SI->getPointerOperand());
4129   }
4130   for (auto *BB : {QTB, QFB}) {
4131     if (!BB)
4132       continue;
4133     for (auto &I : *BB)
4134       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4135         QStoreAddresses.insert(SI->getPointerOperand());
4136   }
4137 
4138   set_intersect(PStoreAddresses, QStoreAddresses);
4139   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4140   // clear what it contains.
4141   auto &CommonAddresses = PStoreAddresses;
4142 
4143   bool Changed = false;
4144   for (auto *Address : CommonAddresses)
4145     Changed |=
4146         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4147                                        InvertPCond, InvertQCond, DTU, DL, TTI);
4148   return Changed;
4149 }
4150 
4151 /// If the previous block ended with a widenable branch, determine if reusing
4152 /// the target block is profitable and legal.  This will have the effect of
4153 /// "widening" PBI, but doesn't require us to reason about hosting safety.
4154 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4155                                            DomTreeUpdater *DTU) {
4156   // TODO: This can be generalized in two important ways:
4157   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4158   //    values from the PBI edge.
4159   // 2) We can sink side effecting instructions into BI's fallthrough
4160   //    successor provided they doesn't contribute to computation of
4161   //    BI's condition.
4162   Value *CondWB, *WC;
4163   BasicBlock *IfTrueBB, *IfFalseBB;
4164   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
4165       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
4166     return false;
4167   if (!IfFalseBB->phis().empty())
4168     return false; // TODO
4169   // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which
4170   // may undo the transform done here.
4171   // TODO: There might be a more fine-grained solution to this.
4172   if (!llvm::succ_empty(IfFalseBB))
4173     return false;
4174   // Use lambda to lazily compute expensive condition after cheap ones.
4175   auto NoSideEffects = [](BasicBlock &BB) {
4176     return llvm::none_of(BB, [](const Instruction &I) {
4177         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4178       });
4179   };
4180   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4181       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4182       NoSideEffects(*BI->getParent())) {
4183     auto *OldSuccessor = BI->getSuccessor(1);
4184     OldSuccessor->removePredecessor(BI->getParent());
4185     BI->setSuccessor(1, IfFalseBB);
4186     if (DTU)
4187       DTU->applyUpdates(
4188           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4189            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4190     return true;
4191   }
4192   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4193       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4194       NoSideEffects(*BI->getParent())) {
4195     auto *OldSuccessor = BI->getSuccessor(0);
4196     OldSuccessor->removePredecessor(BI->getParent());
4197     BI->setSuccessor(0, IfFalseBB);
4198     if (DTU)
4199       DTU->applyUpdates(
4200           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4201            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4202     return true;
4203   }
4204   return false;
4205 }
4206 
4207 /// If we have a conditional branch as a predecessor of another block,
4208 /// this function tries to simplify it.  We know
4209 /// that PBI and BI are both conditional branches, and BI is in one of the
4210 /// successor blocks of PBI - PBI branches to BI.
4211 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4212                                            DomTreeUpdater *DTU,
4213                                            const DataLayout &DL,
4214                                            const TargetTransformInfo &TTI) {
4215   assert(PBI->isConditional() && BI->isConditional());
4216   BasicBlock *BB = BI->getParent();
4217 
4218   // If this block ends with a branch instruction, and if there is a
4219   // predecessor that ends on a branch of the same condition, make
4220   // this conditional branch redundant.
4221   if (PBI->getCondition() == BI->getCondition() &&
4222       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4223     // Okay, the outcome of this conditional branch is statically
4224     // knowable.  If this block had a single pred, handle specially, otherwise
4225     // FoldCondBranchOnValueKnownInPredecessor() will handle it.
4226     if (BB->getSinglePredecessor()) {
4227       // Turn this into a branch on constant.
4228       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4229       BI->setCondition(
4230           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4231       return true; // Nuke the branch on constant.
4232     }
4233   }
4234 
4235   // If the previous block ended with a widenable branch, determine if reusing
4236   // the target block is profitable and legal.  This will have the effect of
4237   // "widening" PBI, but doesn't require us to reason about hosting safety.
4238   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4239     return true;
4240 
4241   // If both branches are conditional and both contain stores to the same
4242   // address, remove the stores from the conditionals and create a conditional
4243   // merged store at the end.
4244   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4245     return true;
4246 
4247   // If this is a conditional branch in an empty block, and if any
4248   // predecessors are a conditional branch to one of our destinations,
4249   // fold the conditions into logical ops and one cond br.
4250 
4251   // Ignore dbg intrinsics.
4252   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4253     return false;
4254 
4255   int PBIOp, BIOp;
4256   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4257     PBIOp = 0;
4258     BIOp = 0;
4259   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4260     PBIOp = 0;
4261     BIOp = 1;
4262   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4263     PBIOp = 1;
4264     BIOp = 0;
4265   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4266     PBIOp = 1;
4267     BIOp = 1;
4268   } else {
4269     return false;
4270   }
4271 
4272   // Check to make sure that the other destination of this branch
4273   // isn't BB itself.  If so, this is an infinite loop that will
4274   // keep getting unwound.
4275   if (PBI->getSuccessor(PBIOp) == BB)
4276     return false;
4277 
4278   // Do not perform this transformation if it would require
4279   // insertion of a large number of select instructions. For targets
4280   // without predication/cmovs, this is a big pessimization.
4281 
4282   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4283   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4284   unsigned NumPhis = 0;
4285   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4286        ++II, ++NumPhis) {
4287     if (NumPhis > 2) // Disable this xform.
4288       return false;
4289   }
4290 
4291   // Finally, if everything is ok, fold the branches to logical ops.
4292   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4293 
4294   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4295                     << "AND: " << *BI->getParent());
4296 
4297   SmallVector<DominatorTree::UpdateType, 5> Updates;
4298 
4299   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4300   // branch in it, where one edge (OtherDest) goes back to itself but the other
4301   // exits.  We don't *know* that the program avoids the infinite loop
4302   // (even though that seems likely).  If we do this xform naively, we'll end up
4303   // recursively unpeeling the loop.  Since we know that (after the xform is
4304   // done) that the block *is* infinite if reached, we just make it an obviously
4305   // infinite loop with no cond branch.
4306   if (OtherDest == BB) {
4307     // Insert it at the end of the function, because it's either code,
4308     // or it won't matter if it's hot. :)
4309     BasicBlock *InfLoopBlock =
4310         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4311     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4312     if (DTU)
4313       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4314     OtherDest = InfLoopBlock;
4315   }
4316 
4317   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4318 
4319   // BI may have other predecessors.  Because of this, we leave
4320   // it alone, but modify PBI.
4321 
4322   // Make sure we get to CommonDest on True&True directions.
4323   Value *PBICond = PBI->getCondition();
4324   IRBuilder<NoFolder> Builder(PBI);
4325   if (PBIOp)
4326     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4327 
4328   Value *BICond = BI->getCondition();
4329   if (BIOp)
4330     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4331 
4332   // Merge the conditions.
4333   Value *Cond =
4334       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4335 
4336   // Modify PBI to branch on the new condition to the new dests.
4337   PBI->setCondition(Cond);
4338   PBI->setSuccessor(0, CommonDest);
4339   PBI->setSuccessor(1, OtherDest);
4340 
4341   if (DTU) {
4342     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4343     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4344 
4345     DTU->applyUpdates(Updates);
4346   }
4347 
4348   // Update branch weight for PBI.
4349   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4350   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4351   bool HasWeights =
4352       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4353                              SuccTrueWeight, SuccFalseWeight);
4354   if (HasWeights) {
4355     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4356     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4357     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4358     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4359     // The weight to CommonDest should be PredCommon * SuccTotal +
4360     //                                    PredOther * SuccCommon.
4361     // The weight to OtherDest should be PredOther * SuccOther.
4362     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4363                                   PredOther * SuccCommon,
4364                               PredOther * SuccOther};
4365     // Halve the weights if any of them cannot fit in an uint32_t
4366     FitWeights(NewWeights);
4367 
4368     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
4369   }
4370 
4371   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4372   // block that are identical to the entries for BI's block.
4373   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4374 
4375   // We know that the CommonDest already had an edge from PBI to
4376   // it.  If it has PHIs though, the PHIs may have different
4377   // entries for BB and PBI's BB.  If so, insert a select to make
4378   // them agree.
4379   for (PHINode &PN : CommonDest->phis()) {
4380     Value *BIV = PN.getIncomingValueForBlock(BB);
4381     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4382     Value *PBIV = PN.getIncomingValue(PBBIdx);
4383     if (BIV != PBIV) {
4384       // Insert a select in PBI to pick the right value.
4385       SelectInst *NV = cast<SelectInst>(
4386           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4387       PN.setIncomingValue(PBBIdx, NV);
4388       // Although the select has the same condition as PBI, the original branch
4389       // weights for PBI do not apply to the new select because the select's
4390       // 'logical' edges are incoming edges of the phi that is eliminated, not
4391       // the outgoing edges of PBI.
4392       if (HasWeights) {
4393         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4394         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4395         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4396         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4397         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4398         // The weight to PredOtherDest should be PredOther * SuccCommon.
4399         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4400                                   PredOther * SuccCommon};
4401 
4402         FitWeights(NewWeights);
4403 
4404         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
4405       }
4406     }
4407   }
4408 
4409   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4410   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4411 
4412   // This basic block is probably dead.  We know it has at least
4413   // one fewer predecessor.
4414   return true;
4415 }
4416 
4417 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4418 // true or to FalseBB if Cond is false.
4419 // Takes care of updating the successors and removing the old terminator.
4420 // Also makes sure not to introduce new successors by assuming that edges to
4421 // non-successor TrueBBs and FalseBBs aren't reachable.
4422 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4423                                                 Value *Cond, BasicBlock *TrueBB,
4424                                                 BasicBlock *FalseBB,
4425                                                 uint32_t TrueWeight,
4426                                                 uint32_t FalseWeight) {
4427   auto *BB = OldTerm->getParent();
4428   // Remove any superfluous successor edges from the CFG.
4429   // First, figure out which successors to preserve.
4430   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4431   // successor.
4432   BasicBlock *KeepEdge1 = TrueBB;
4433   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4434 
4435   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4436 
4437   // Then remove the rest.
4438   for (BasicBlock *Succ : successors(OldTerm)) {
4439     // Make sure only to keep exactly one copy of each edge.
4440     if (Succ == KeepEdge1)
4441       KeepEdge1 = nullptr;
4442     else if (Succ == KeepEdge2)
4443       KeepEdge2 = nullptr;
4444     else {
4445       Succ->removePredecessor(BB,
4446                               /*KeepOneInputPHIs=*/true);
4447 
4448       if (Succ != TrueBB && Succ != FalseBB)
4449         RemovedSuccessors.insert(Succ);
4450     }
4451   }
4452 
4453   IRBuilder<> Builder(OldTerm);
4454   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4455 
4456   // Insert an appropriate new terminator.
4457   if (!KeepEdge1 && !KeepEdge2) {
4458     if (TrueBB == FalseBB) {
4459       // We were only looking for one successor, and it was present.
4460       // Create an unconditional branch to it.
4461       Builder.CreateBr(TrueBB);
4462     } else {
4463       // We found both of the successors we were looking for.
4464       // Create a conditional branch sharing the condition of the select.
4465       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4466       if (TrueWeight != FalseWeight)
4467         setBranchWeights(NewBI, TrueWeight, FalseWeight);
4468     }
4469   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4470     // Neither of the selected blocks were successors, so this
4471     // terminator must be unreachable.
4472     new UnreachableInst(OldTerm->getContext(), OldTerm);
4473   } else {
4474     // One of the selected values was a successor, but the other wasn't.
4475     // Insert an unconditional branch to the one that was found;
4476     // the edge to the one that wasn't must be unreachable.
4477     if (!KeepEdge1) {
4478       // Only TrueBB was found.
4479       Builder.CreateBr(TrueBB);
4480     } else {
4481       // Only FalseBB was found.
4482       Builder.CreateBr(FalseBB);
4483     }
4484   }
4485 
4486   EraseTerminatorAndDCECond(OldTerm);
4487 
4488   if (DTU) {
4489     SmallVector<DominatorTree::UpdateType, 2> Updates;
4490     Updates.reserve(RemovedSuccessors.size());
4491     for (auto *RemovedSuccessor : RemovedSuccessors)
4492       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4493     DTU->applyUpdates(Updates);
4494   }
4495 
4496   return true;
4497 }
4498 
4499 // Replaces
4500 //   (switch (select cond, X, Y)) on constant X, Y
4501 // with a branch - conditional if X and Y lead to distinct BBs,
4502 // unconditional otherwise.
4503 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4504                                             SelectInst *Select) {
4505   // Check for constant integer values in the select.
4506   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4507   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4508   if (!TrueVal || !FalseVal)
4509     return false;
4510 
4511   // Find the relevant condition and destinations.
4512   Value *Condition = Select->getCondition();
4513   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4514   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4515 
4516   // Get weight for TrueBB and FalseBB.
4517   uint32_t TrueWeight = 0, FalseWeight = 0;
4518   SmallVector<uint64_t, 8> Weights;
4519   bool HasWeights = hasBranchWeightMD(*SI);
4520   if (HasWeights) {
4521     GetBranchWeights(SI, Weights);
4522     if (Weights.size() == 1 + SI->getNumCases()) {
4523       TrueWeight =
4524           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4525       FalseWeight =
4526           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4527     }
4528   }
4529 
4530   // Perform the actual simplification.
4531   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4532                                     FalseWeight);
4533 }
4534 
4535 // Replaces
4536 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4537 //                             blockaddress(@fn, BlockB)))
4538 // with
4539 //   (br cond, BlockA, BlockB).
4540 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4541                                                 SelectInst *SI) {
4542   // Check that both operands of the select are block addresses.
4543   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4544   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4545   if (!TBA || !FBA)
4546     return false;
4547 
4548   // Extract the actual blocks.
4549   BasicBlock *TrueBB = TBA->getBasicBlock();
4550   BasicBlock *FalseBB = FBA->getBasicBlock();
4551 
4552   // Perform the actual simplification.
4553   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4554                                     0);
4555 }
4556 
4557 /// This is called when we find an icmp instruction
4558 /// (a seteq/setne with a constant) as the only instruction in a
4559 /// block that ends with an uncond branch.  We are looking for a very specific
4560 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4561 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4562 /// default value goes to an uncond block with a seteq in it, we get something
4563 /// like:
4564 ///
4565 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4566 /// DEFAULT:
4567 ///   %tmp = icmp eq i8 %A, 92
4568 ///   br label %end
4569 /// end:
4570 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4571 ///
4572 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4573 /// the PHI, merging the third icmp into the switch.
4574 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4575     ICmpInst *ICI, IRBuilder<> &Builder) {
4576   BasicBlock *BB = ICI->getParent();
4577 
4578   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4579   // complex.
4580   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4581     return false;
4582 
4583   Value *V = ICI->getOperand(0);
4584   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4585 
4586   // The pattern we're looking for is where our only predecessor is a switch on
4587   // 'V' and this block is the default case for the switch.  In this case we can
4588   // fold the compared value into the switch to simplify things.
4589   BasicBlock *Pred = BB->getSinglePredecessor();
4590   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4591     return false;
4592 
4593   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4594   if (SI->getCondition() != V)
4595     return false;
4596 
4597   // If BB is reachable on a non-default case, then we simply know the value of
4598   // V in this block.  Substitute it and constant fold the icmp instruction
4599   // away.
4600   if (SI->getDefaultDest() != BB) {
4601     ConstantInt *VVal = SI->findCaseDest(BB);
4602     assert(VVal && "Should have a unique destination value");
4603     ICI->setOperand(0, VVal);
4604 
4605     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
4606       ICI->replaceAllUsesWith(V);
4607       ICI->eraseFromParent();
4608     }
4609     // BB is now empty, so it is likely to simplify away.
4610     return requestResimplify();
4611   }
4612 
4613   // Ok, the block is reachable from the default dest.  If the constant we're
4614   // comparing exists in one of the other edges, then we can constant fold ICI
4615   // and zap it.
4616   if (SI->findCaseValue(Cst) != SI->case_default()) {
4617     Value *V;
4618     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4619       V = ConstantInt::getFalse(BB->getContext());
4620     else
4621       V = ConstantInt::getTrue(BB->getContext());
4622 
4623     ICI->replaceAllUsesWith(V);
4624     ICI->eraseFromParent();
4625     // BB is now empty, so it is likely to simplify away.
4626     return requestResimplify();
4627   }
4628 
4629   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4630   // the block.
4631   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4632   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4633   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4634       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4635     return false;
4636 
4637   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4638   // true in the PHI.
4639   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4640   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4641 
4642   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4643     std::swap(DefaultCst, NewCst);
4644 
4645   // Replace ICI (which is used by the PHI for the default value) with true or
4646   // false depending on if it is EQ or NE.
4647   ICI->replaceAllUsesWith(DefaultCst);
4648   ICI->eraseFromParent();
4649 
4650   SmallVector<DominatorTree::UpdateType, 2> Updates;
4651 
4652   // Okay, the switch goes to this block on a default value.  Add an edge from
4653   // the switch to the merge point on the compared value.
4654   BasicBlock *NewBB =
4655       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4656   {
4657     SwitchInstProfUpdateWrapper SIW(*SI);
4658     auto W0 = SIW.getSuccessorWeight(0);
4659     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4660     if (W0) {
4661       NewW = ((uint64_t(*W0) + 1) >> 1);
4662       SIW.setSuccessorWeight(0, *NewW);
4663     }
4664     SIW.addCase(Cst, NewBB, NewW);
4665     if (DTU)
4666       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4667   }
4668 
4669   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4670   Builder.SetInsertPoint(NewBB);
4671   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4672   Builder.CreateBr(SuccBlock);
4673   PHIUse->addIncoming(NewCst, NewBB);
4674   if (DTU) {
4675     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4676     DTU->applyUpdates(Updates);
4677   }
4678   return true;
4679 }
4680 
4681 /// The specified branch is a conditional branch.
4682 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4683 /// fold it into a switch instruction if so.
4684 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4685                                                IRBuilder<> &Builder,
4686                                                const DataLayout &DL) {
4687   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4688   if (!Cond)
4689     return false;
4690 
4691   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4692   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4693   // 'setne's and'ed together, collect them.
4694 
4695   // Try to gather values from a chain of and/or to be turned into a switch
4696   ConstantComparesGatherer ConstantCompare(Cond, DL);
4697   // Unpack the result
4698   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4699   Value *CompVal = ConstantCompare.CompValue;
4700   unsigned UsedICmps = ConstantCompare.UsedICmps;
4701   Value *ExtraCase = ConstantCompare.Extra;
4702 
4703   // If we didn't have a multiply compared value, fail.
4704   if (!CompVal)
4705     return false;
4706 
4707   // Avoid turning single icmps into a switch.
4708   if (UsedICmps <= 1)
4709     return false;
4710 
4711   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4712 
4713   // There might be duplicate constants in the list, which the switch
4714   // instruction can't handle, remove them now.
4715   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4716   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4717 
4718   // If Extra was used, we require at least two switch values to do the
4719   // transformation.  A switch with one value is just a conditional branch.
4720   if (ExtraCase && Values.size() < 2)
4721     return false;
4722 
4723   // TODO: Preserve branch weight metadata, similarly to how
4724   // FoldValueComparisonIntoPredecessors preserves it.
4725 
4726   // Figure out which block is which destination.
4727   BasicBlock *DefaultBB = BI->getSuccessor(1);
4728   BasicBlock *EdgeBB = BI->getSuccessor(0);
4729   if (!TrueWhenEqual)
4730     std::swap(DefaultBB, EdgeBB);
4731 
4732   BasicBlock *BB = BI->getParent();
4733 
4734   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4735                     << " cases into SWITCH.  BB is:\n"
4736                     << *BB);
4737 
4738   SmallVector<DominatorTree::UpdateType, 2> Updates;
4739 
4740   // If there are any extra values that couldn't be folded into the switch
4741   // then we evaluate them with an explicit branch first. Split the block
4742   // right before the condbr to handle it.
4743   if (ExtraCase) {
4744     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4745                                    /*MSSAU=*/nullptr, "switch.early.test");
4746 
4747     // Remove the uncond branch added to the old block.
4748     Instruction *OldTI = BB->getTerminator();
4749     Builder.SetInsertPoint(OldTI);
4750 
4751     // There can be an unintended UB if extra values are Poison. Before the
4752     // transformation, extra values may not be evaluated according to the
4753     // condition, and it will not raise UB. But after transformation, we are
4754     // evaluating extra values before checking the condition, and it will raise
4755     // UB. It can be solved by adding freeze instruction to extra values.
4756     AssumptionCache *AC = Options.AC;
4757 
4758     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4759       ExtraCase = Builder.CreateFreeze(ExtraCase);
4760 
4761     if (TrueWhenEqual)
4762       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4763     else
4764       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4765 
4766     OldTI->eraseFromParent();
4767 
4768     if (DTU)
4769       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4770 
4771     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4772     // for the edge we just added.
4773     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4774 
4775     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4776                       << "\nEXTRABB = " << *BB);
4777     BB = NewBB;
4778   }
4779 
4780   Builder.SetInsertPoint(BI);
4781   // Convert pointer to int before we switch.
4782   if (CompVal->getType()->isPointerTy()) {
4783     CompVal = Builder.CreatePtrToInt(
4784         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4785   }
4786 
4787   // Create the new switch instruction now.
4788   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4789 
4790   // Add all of the 'cases' to the switch instruction.
4791   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4792     New->addCase(Values[i], EdgeBB);
4793 
4794   // We added edges from PI to the EdgeBB.  As such, if there were any
4795   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4796   // the number of edges added.
4797   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4798     PHINode *PN = cast<PHINode>(BBI);
4799     Value *InVal = PN->getIncomingValueForBlock(BB);
4800     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4801       PN->addIncoming(InVal, BB);
4802   }
4803 
4804   // Erase the old branch instruction.
4805   EraseTerminatorAndDCECond(BI);
4806   if (DTU)
4807     DTU->applyUpdates(Updates);
4808 
4809   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4810   return true;
4811 }
4812 
4813 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4814   if (isa<PHINode>(RI->getValue()))
4815     return simplifyCommonResume(RI);
4816   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4817            RI->getValue() == RI->getParent()->getFirstNonPHI())
4818     // The resume must unwind the exception that caused control to branch here.
4819     return simplifySingleResume(RI);
4820 
4821   return false;
4822 }
4823 
4824 // Check if cleanup block is empty
4825 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4826   for (Instruction &I : R) {
4827     auto *II = dyn_cast<IntrinsicInst>(&I);
4828     if (!II)
4829       return false;
4830 
4831     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4832     switch (IntrinsicID) {
4833     case Intrinsic::dbg_declare:
4834     case Intrinsic::dbg_value:
4835     case Intrinsic::dbg_label:
4836     case Intrinsic::lifetime_end:
4837       break;
4838     default:
4839       return false;
4840     }
4841   }
4842   return true;
4843 }
4844 
4845 // Simplify resume that is shared by several landing pads (phi of landing pad).
4846 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4847   BasicBlock *BB = RI->getParent();
4848 
4849   // Check that there are no other instructions except for debug and lifetime
4850   // intrinsics between the phi's and resume instruction.
4851   if (!isCleanupBlockEmpty(
4852           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4853     return false;
4854 
4855   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4856   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4857 
4858   // Check incoming blocks to see if any of them are trivial.
4859   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4860        Idx++) {
4861     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4862     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4863 
4864     // If the block has other successors, we can not delete it because
4865     // it has other dependents.
4866     if (IncomingBB->getUniqueSuccessor() != BB)
4867       continue;
4868 
4869     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4870     // Not the landing pad that caused the control to branch here.
4871     if (IncomingValue != LandingPad)
4872       continue;
4873 
4874     if (isCleanupBlockEmpty(
4875             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4876       TrivialUnwindBlocks.insert(IncomingBB);
4877   }
4878 
4879   // If no trivial unwind blocks, don't do any simplifications.
4880   if (TrivialUnwindBlocks.empty())
4881     return false;
4882 
4883   // Turn all invokes that unwind here into calls.
4884   for (auto *TrivialBB : TrivialUnwindBlocks) {
4885     // Blocks that will be simplified should be removed from the phi node.
4886     // Note there could be multiple edges to the resume block, and we need
4887     // to remove them all.
4888     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4889       BB->removePredecessor(TrivialBB, true);
4890 
4891     for (BasicBlock *Pred :
4892          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4893       removeUnwindEdge(Pred, DTU);
4894       ++NumInvokes;
4895     }
4896 
4897     // In each SimplifyCFG run, only the current processed block can be erased.
4898     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4899     // of erasing TrivialBB, we only remove the branch to the common resume
4900     // block so that we can later erase the resume block since it has no
4901     // predecessors.
4902     TrivialBB->getTerminator()->eraseFromParent();
4903     new UnreachableInst(RI->getContext(), TrivialBB);
4904     if (DTU)
4905       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4906   }
4907 
4908   // Delete the resume block if all its predecessors have been removed.
4909   if (pred_empty(BB))
4910     DeleteDeadBlock(BB, DTU);
4911 
4912   return !TrivialUnwindBlocks.empty();
4913 }
4914 
4915 // Simplify resume that is only used by a single (non-phi) landing pad.
4916 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4917   BasicBlock *BB = RI->getParent();
4918   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4919   assert(RI->getValue() == LPInst &&
4920          "Resume must unwind the exception that caused control to here");
4921 
4922   // Check that there are no other instructions except for debug intrinsics.
4923   if (!isCleanupBlockEmpty(
4924           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4925     return false;
4926 
4927   // Turn all invokes that unwind here into calls and delete the basic block.
4928   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4929     removeUnwindEdge(Pred, DTU);
4930     ++NumInvokes;
4931   }
4932 
4933   // The landingpad is now unreachable.  Zap it.
4934   DeleteDeadBlock(BB, DTU);
4935   return true;
4936 }
4937 
4938 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4939   // If this is a trivial cleanup pad that executes no instructions, it can be
4940   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4941   // that is an EH pad will be updated to continue to the caller and any
4942   // predecessor that terminates with an invoke instruction will have its invoke
4943   // instruction converted to a call instruction.  If the cleanup pad being
4944   // simplified does not continue to the caller, each predecessor will be
4945   // updated to continue to the unwind destination of the cleanup pad being
4946   // simplified.
4947   BasicBlock *BB = RI->getParent();
4948   CleanupPadInst *CPInst = RI->getCleanupPad();
4949   if (CPInst->getParent() != BB)
4950     // This isn't an empty cleanup.
4951     return false;
4952 
4953   // We cannot kill the pad if it has multiple uses.  This typically arises
4954   // from unreachable basic blocks.
4955   if (!CPInst->hasOneUse())
4956     return false;
4957 
4958   // Check that there are no other instructions except for benign intrinsics.
4959   if (!isCleanupBlockEmpty(
4960           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4961     return false;
4962 
4963   // If the cleanup return we are simplifying unwinds to the caller, this will
4964   // set UnwindDest to nullptr.
4965   BasicBlock *UnwindDest = RI->getUnwindDest();
4966   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4967 
4968   // We're about to remove BB from the control flow.  Before we do, sink any
4969   // PHINodes into the unwind destination.  Doing this before changing the
4970   // control flow avoids some potentially slow checks, since we can currently
4971   // be certain that UnwindDest and BB have no common predecessors (since they
4972   // are both EH pads).
4973   if (UnwindDest) {
4974     // First, go through the PHI nodes in UnwindDest and update any nodes that
4975     // reference the block we are removing
4976     for (PHINode &DestPN : UnwindDest->phis()) {
4977       int Idx = DestPN.getBasicBlockIndex(BB);
4978       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4979       assert(Idx != -1);
4980       // This PHI node has an incoming value that corresponds to a control
4981       // path through the cleanup pad we are removing.  If the incoming
4982       // value is in the cleanup pad, it must be a PHINode (because we
4983       // verified above that the block is otherwise empty).  Otherwise, the
4984       // value is either a constant or a value that dominates the cleanup
4985       // pad being removed.
4986       //
4987       // Because BB and UnwindDest are both EH pads, all of their
4988       // predecessors must unwind to these blocks, and since no instruction
4989       // can have multiple unwind destinations, there will be no overlap in
4990       // incoming blocks between SrcPN and DestPN.
4991       Value *SrcVal = DestPN.getIncomingValue(Idx);
4992       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4993 
4994       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4995       for (auto *Pred : predecessors(BB)) {
4996         Value *Incoming =
4997             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4998         DestPN.addIncoming(Incoming, Pred);
4999       }
5000     }
5001 
5002     // Sink any remaining PHI nodes directly into UnwindDest.
5003     Instruction *InsertPt = DestEHPad;
5004     for (PHINode &PN : make_early_inc_range(BB->phis())) {
5005       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
5006         // If the PHI node has no uses or all of its uses are in this basic
5007         // block (meaning they are debug or lifetime intrinsics), just leave
5008         // it.  It will be erased when we erase BB below.
5009         continue;
5010 
5011       // Otherwise, sink this PHI node into UnwindDest.
5012       // Any predecessors to UnwindDest which are not already represented
5013       // must be back edges which inherit the value from the path through
5014       // BB.  In this case, the PHI value must reference itself.
5015       for (auto *pred : predecessors(UnwindDest))
5016         if (pred != BB)
5017           PN.addIncoming(&PN, pred);
5018       PN.moveBefore(InsertPt);
5019       // Also, add a dummy incoming value for the original BB itself,
5020       // so that the PHI is well-formed until we drop said predecessor.
5021       PN.addIncoming(PoisonValue::get(PN.getType()), BB);
5022     }
5023   }
5024 
5025   std::vector<DominatorTree::UpdateType> Updates;
5026 
5027   // We use make_early_inc_range here because we will remove all predecessors.
5028   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
5029     if (UnwindDest == nullptr) {
5030       if (DTU) {
5031         DTU->applyUpdates(Updates);
5032         Updates.clear();
5033       }
5034       removeUnwindEdge(PredBB, DTU);
5035       ++NumInvokes;
5036     } else {
5037       BB->removePredecessor(PredBB);
5038       Instruction *TI = PredBB->getTerminator();
5039       TI->replaceUsesOfWith(BB, UnwindDest);
5040       if (DTU) {
5041         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
5042         Updates.push_back({DominatorTree::Delete, PredBB, BB});
5043       }
5044     }
5045   }
5046 
5047   if (DTU)
5048     DTU->applyUpdates(Updates);
5049 
5050   DeleteDeadBlock(BB, DTU);
5051 
5052   return true;
5053 }
5054 
5055 // Try to merge two cleanuppads together.
5056 static bool mergeCleanupPad(CleanupReturnInst *RI) {
5057   // Skip any cleanuprets which unwind to caller, there is nothing to merge
5058   // with.
5059   BasicBlock *UnwindDest = RI->getUnwindDest();
5060   if (!UnwindDest)
5061     return false;
5062 
5063   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
5064   // be safe to merge without code duplication.
5065   if (UnwindDest->getSinglePredecessor() != RI->getParent())
5066     return false;
5067 
5068   // Verify that our cleanuppad's unwind destination is another cleanuppad.
5069   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
5070   if (!SuccessorCleanupPad)
5071     return false;
5072 
5073   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
5074   // Replace any uses of the successor cleanupad with the predecessor pad
5075   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
5076   // funclet bundle operands.
5077   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
5078   // Remove the old cleanuppad.
5079   SuccessorCleanupPad->eraseFromParent();
5080   // Now, we simply replace the cleanupret with a branch to the unwind
5081   // destination.
5082   BranchInst::Create(UnwindDest, RI->getParent());
5083   RI->eraseFromParent();
5084 
5085   return true;
5086 }
5087 
5088 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
5089   // It is possible to transiantly have an undef cleanuppad operand because we
5090   // have deleted some, but not all, dead blocks.
5091   // Eventually, this block will be deleted.
5092   if (isa<UndefValue>(RI->getOperand(0)))
5093     return false;
5094 
5095   if (mergeCleanupPad(RI))
5096     return true;
5097 
5098   if (removeEmptyCleanup(RI, DTU))
5099     return true;
5100 
5101   return false;
5102 }
5103 
5104 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
5105 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
5106   BasicBlock *BB = UI->getParent();
5107 
5108   bool Changed = false;
5109 
5110   // If there are any instructions immediately before the unreachable that can
5111   // be removed, do so.
5112   while (UI->getIterator() != BB->begin()) {
5113     BasicBlock::iterator BBI = UI->getIterator();
5114     --BBI;
5115 
5116     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
5117       break; // Can not drop any more instructions. We're done here.
5118     // Otherwise, this instruction can be freely erased,
5119     // even if it is not side-effect free.
5120 
5121     // Note that deleting EH's here is in fact okay, although it involves a bit
5122     // of subtle reasoning. If this inst is an EH, all the predecessors of this
5123     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5124     // and we can therefore guarantee this block will be erased.
5125 
5126     // Delete this instruction (any uses are guaranteed to be dead)
5127     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5128     BBI->eraseFromParent();
5129     Changed = true;
5130   }
5131 
5132   // If the unreachable instruction is the first in the block, take a gander
5133   // at all of the predecessors of this instruction, and simplify them.
5134   if (&BB->front() != UI)
5135     return Changed;
5136 
5137   std::vector<DominatorTree::UpdateType> Updates;
5138 
5139   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5140   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
5141     auto *Predecessor = Preds[i];
5142     Instruction *TI = Predecessor->getTerminator();
5143     IRBuilder<> Builder(TI);
5144     if (auto *BI = dyn_cast<BranchInst>(TI)) {
5145       // We could either have a proper unconditional branch,
5146       // or a degenerate conditional branch with matching destinations.
5147       if (all_of(BI->successors(),
5148                  [BB](auto *Successor) { return Successor == BB; })) {
5149         new UnreachableInst(TI->getContext(), TI);
5150         TI->eraseFromParent();
5151         Changed = true;
5152       } else {
5153         assert(BI->isConditional() && "Can't get here with an uncond branch.");
5154         Value* Cond = BI->getCondition();
5155         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5156                "The destinations are guaranteed to be different here.");
5157         if (BI->getSuccessor(0) == BB) {
5158           Builder.CreateAssumption(Builder.CreateNot(Cond));
5159           Builder.CreateBr(BI->getSuccessor(1));
5160         } else {
5161           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5162           Builder.CreateAssumption(Cond);
5163           Builder.CreateBr(BI->getSuccessor(0));
5164         }
5165         EraseTerminatorAndDCECond(BI);
5166         Changed = true;
5167       }
5168       if (DTU)
5169         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5170     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5171       SwitchInstProfUpdateWrapper SU(*SI);
5172       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5173         if (i->getCaseSuccessor() != BB) {
5174           ++i;
5175           continue;
5176         }
5177         BB->removePredecessor(SU->getParent());
5178         i = SU.removeCase(i);
5179         e = SU->case_end();
5180         Changed = true;
5181       }
5182       // Note that the default destination can't be removed!
5183       if (DTU && SI->getDefaultDest() != BB)
5184         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5185     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5186       if (II->getUnwindDest() == BB) {
5187         if (DTU) {
5188           DTU->applyUpdates(Updates);
5189           Updates.clear();
5190         }
5191         auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU));
5192         if (!CI->doesNotThrow())
5193           CI->setDoesNotThrow();
5194         Changed = true;
5195       }
5196     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5197       if (CSI->getUnwindDest() == BB) {
5198         if (DTU) {
5199           DTU->applyUpdates(Updates);
5200           Updates.clear();
5201         }
5202         removeUnwindEdge(TI->getParent(), DTU);
5203         Changed = true;
5204         continue;
5205       }
5206 
5207       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5208                                              E = CSI->handler_end();
5209            I != E; ++I) {
5210         if (*I == BB) {
5211           CSI->removeHandler(I);
5212           --I;
5213           --E;
5214           Changed = true;
5215         }
5216       }
5217       if (DTU)
5218         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5219       if (CSI->getNumHandlers() == 0) {
5220         if (CSI->hasUnwindDest()) {
5221           // Redirect all predecessors of the block containing CatchSwitchInst
5222           // to instead branch to the CatchSwitchInst's unwind destination.
5223           if (DTU) {
5224             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5225               Updates.push_back({DominatorTree::Insert,
5226                                  PredecessorOfPredecessor,
5227                                  CSI->getUnwindDest()});
5228               Updates.push_back({DominatorTree::Delete,
5229                                  PredecessorOfPredecessor, Predecessor});
5230             }
5231           }
5232           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5233         } else {
5234           // Rewrite all preds to unwind to caller (or from invoke to call).
5235           if (DTU) {
5236             DTU->applyUpdates(Updates);
5237             Updates.clear();
5238           }
5239           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5240           for (BasicBlock *EHPred : EHPreds)
5241             removeUnwindEdge(EHPred, DTU);
5242         }
5243         // The catchswitch is no longer reachable.
5244         new UnreachableInst(CSI->getContext(), CSI);
5245         CSI->eraseFromParent();
5246         Changed = true;
5247       }
5248     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5249       (void)CRI;
5250       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5251              "Expected to always have an unwind to BB.");
5252       if (DTU)
5253         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5254       new UnreachableInst(TI->getContext(), TI);
5255       TI->eraseFromParent();
5256       Changed = true;
5257     }
5258   }
5259 
5260   if (DTU)
5261     DTU->applyUpdates(Updates);
5262 
5263   // If this block is now dead, remove it.
5264   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5265     DeleteDeadBlock(BB, DTU);
5266     return true;
5267   }
5268 
5269   return Changed;
5270 }
5271 
5272 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5273   assert(Cases.size() >= 1);
5274 
5275   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
5276   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5277     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5278       return false;
5279   }
5280   return true;
5281 }
5282 
5283 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5284                                            DomTreeUpdater *DTU) {
5285   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5286   auto *BB = Switch->getParent();
5287   auto *OrigDefaultBlock = Switch->getDefaultDest();
5288   OrigDefaultBlock->removePredecessor(BB);
5289   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5290       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5291       OrigDefaultBlock);
5292   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5293   Switch->setDefaultDest(&*NewDefaultBlock);
5294   if (DTU) {
5295     SmallVector<DominatorTree::UpdateType, 2> Updates;
5296     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5297     if (!is_contained(successors(BB), OrigDefaultBlock))
5298       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5299     DTU->applyUpdates(Updates);
5300   }
5301 }
5302 
5303 /// Turn a switch into an integer range comparison and branch.
5304 /// Switches with more than 2 destinations are ignored.
5305 /// Switches with 1 destination are also ignored.
5306 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5307                                              IRBuilder<> &Builder) {
5308   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5309 
5310   bool HasDefault =
5311       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5312 
5313   auto *BB = SI->getParent();
5314 
5315   // Partition the cases into two sets with different destinations.
5316   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5317   BasicBlock *DestB = nullptr;
5318   SmallVector<ConstantInt *, 16> CasesA;
5319   SmallVector<ConstantInt *, 16> CasesB;
5320 
5321   for (auto Case : SI->cases()) {
5322     BasicBlock *Dest = Case.getCaseSuccessor();
5323     if (!DestA)
5324       DestA = Dest;
5325     if (Dest == DestA) {
5326       CasesA.push_back(Case.getCaseValue());
5327       continue;
5328     }
5329     if (!DestB)
5330       DestB = Dest;
5331     if (Dest == DestB) {
5332       CasesB.push_back(Case.getCaseValue());
5333       continue;
5334     }
5335     return false; // More than two destinations.
5336   }
5337   if (!DestB)
5338     return false; // All destinations are the same and the default is unreachable
5339 
5340   assert(DestA && DestB &&
5341          "Single-destination switch should have been folded.");
5342   assert(DestA != DestB);
5343   assert(DestB != SI->getDefaultDest());
5344   assert(!CasesB.empty() && "There must be non-default cases.");
5345   assert(!CasesA.empty() || HasDefault);
5346 
5347   // Figure out if one of the sets of cases form a contiguous range.
5348   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5349   BasicBlock *ContiguousDest = nullptr;
5350   BasicBlock *OtherDest = nullptr;
5351   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
5352     ContiguousCases = &CasesA;
5353     ContiguousDest = DestA;
5354     OtherDest = DestB;
5355   } else if (CasesAreContiguous(CasesB)) {
5356     ContiguousCases = &CasesB;
5357     ContiguousDest = DestB;
5358     OtherDest = DestA;
5359   } else
5360     return false;
5361 
5362   // Start building the compare and branch.
5363 
5364   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5365   Constant *NumCases =
5366       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5367 
5368   Value *Sub = SI->getCondition();
5369   if (!Offset->isNullValue())
5370     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5371 
5372   Value *Cmp;
5373   // If NumCases overflowed, then all possible values jump to the successor.
5374   if (NumCases->isNullValue() && !ContiguousCases->empty())
5375     Cmp = ConstantInt::getTrue(SI->getContext());
5376   else
5377     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5378   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5379 
5380   // Update weight for the newly-created conditional branch.
5381   if (hasBranchWeightMD(*SI)) {
5382     SmallVector<uint64_t, 8> Weights;
5383     GetBranchWeights(SI, Weights);
5384     if (Weights.size() == 1 + SI->getNumCases()) {
5385       uint64_t TrueWeight = 0;
5386       uint64_t FalseWeight = 0;
5387       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5388         if (SI->getSuccessor(I) == ContiguousDest)
5389           TrueWeight += Weights[I];
5390         else
5391           FalseWeight += Weights[I];
5392       }
5393       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5394         TrueWeight /= 2;
5395         FalseWeight /= 2;
5396       }
5397       setBranchWeights(NewBI, TrueWeight, FalseWeight);
5398     }
5399   }
5400 
5401   // Prune obsolete incoming values off the successors' PHI nodes.
5402   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5403     unsigned PreviousEdges = ContiguousCases->size();
5404     if (ContiguousDest == SI->getDefaultDest())
5405       ++PreviousEdges;
5406     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5407       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5408   }
5409   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5410     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5411     if (OtherDest == SI->getDefaultDest())
5412       ++PreviousEdges;
5413     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5414       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5415   }
5416 
5417   // Clean up the default block - it may have phis or other instructions before
5418   // the unreachable terminator.
5419   if (!HasDefault)
5420     createUnreachableSwitchDefault(SI, DTU);
5421 
5422   auto *UnreachableDefault = SI->getDefaultDest();
5423 
5424   // Drop the switch.
5425   SI->eraseFromParent();
5426 
5427   if (!HasDefault && DTU)
5428     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5429 
5430   return true;
5431 }
5432 
5433 /// Compute masked bits for the condition of a switch
5434 /// and use it to remove dead cases.
5435 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5436                                      AssumptionCache *AC,
5437                                      const DataLayout &DL) {
5438   Value *Cond = SI->getCondition();
5439   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5440 
5441   // We can also eliminate cases by determining that their values are outside of
5442   // the limited range of the condition based on how many significant (non-sign)
5443   // bits are in the condition value.
5444   unsigned MaxSignificantBitsInCond =
5445       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5446 
5447   // Gather dead cases.
5448   SmallVector<ConstantInt *, 8> DeadCases;
5449   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5450   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5451   for (const auto &Case : SI->cases()) {
5452     auto *Successor = Case.getCaseSuccessor();
5453     if (DTU) {
5454       if (!NumPerSuccessorCases.count(Successor))
5455         UniqueSuccessors.push_back(Successor);
5456       ++NumPerSuccessorCases[Successor];
5457     }
5458     const APInt &CaseVal = Case.getCaseValue()->getValue();
5459     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5460         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5461       DeadCases.push_back(Case.getCaseValue());
5462       if (DTU)
5463         --NumPerSuccessorCases[Successor];
5464       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5465                         << " is dead.\n");
5466     }
5467   }
5468 
5469   // If we can prove that the cases must cover all possible values, the
5470   // default destination becomes dead and we can remove it.  If we know some
5471   // of the bits in the value, we can use that to more precisely compute the
5472   // number of possible unique case values.
5473   bool HasDefault =
5474       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5475   const unsigned NumUnknownBits =
5476       Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
5477   assert(NumUnknownBits <= Known.getBitWidth());
5478   if (HasDefault && DeadCases.empty() &&
5479       NumUnknownBits < 64 /* avoid overflow */ &&
5480       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5481     createUnreachableSwitchDefault(SI, DTU);
5482     return true;
5483   }
5484 
5485   if (DeadCases.empty())
5486     return false;
5487 
5488   SwitchInstProfUpdateWrapper SIW(*SI);
5489   for (ConstantInt *DeadCase : DeadCases) {
5490     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5491     assert(CaseI != SI->case_default() &&
5492            "Case was not found. Probably mistake in DeadCases forming.");
5493     // Prune unused values from PHI nodes.
5494     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5495     SIW.removeCase(CaseI);
5496   }
5497 
5498   if (DTU) {
5499     std::vector<DominatorTree::UpdateType> Updates;
5500     for (auto *Successor : UniqueSuccessors)
5501       if (NumPerSuccessorCases[Successor] == 0)
5502         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5503     DTU->applyUpdates(Updates);
5504   }
5505 
5506   return true;
5507 }
5508 
5509 /// If BB would be eligible for simplification by
5510 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5511 /// by an unconditional branch), look at the phi node for BB in the successor
5512 /// block and see if the incoming value is equal to CaseValue. If so, return
5513 /// the phi node, and set PhiIndex to BB's index in the phi node.
5514 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5515                                               BasicBlock *BB, int *PhiIndex) {
5516   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5517     return nullptr; // BB must be empty to be a candidate for simplification.
5518   if (!BB->getSinglePredecessor())
5519     return nullptr; // BB must be dominated by the switch.
5520 
5521   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5522   if (!Branch || !Branch->isUnconditional())
5523     return nullptr; // Terminator must be unconditional branch.
5524 
5525   BasicBlock *Succ = Branch->getSuccessor(0);
5526 
5527   for (PHINode &PHI : Succ->phis()) {
5528     int Idx = PHI.getBasicBlockIndex(BB);
5529     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5530 
5531     Value *InValue = PHI.getIncomingValue(Idx);
5532     if (InValue != CaseValue)
5533       continue;
5534 
5535     *PhiIndex = Idx;
5536     return &PHI;
5537   }
5538 
5539   return nullptr;
5540 }
5541 
5542 /// Try to forward the condition of a switch instruction to a phi node
5543 /// dominated by the switch, if that would mean that some of the destination
5544 /// blocks of the switch can be folded away. Return true if a change is made.
5545 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5546   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5547 
5548   ForwardingNodesMap ForwardingNodes;
5549   BasicBlock *SwitchBlock = SI->getParent();
5550   bool Changed = false;
5551   for (const auto &Case : SI->cases()) {
5552     ConstantInt *CaseValue = Case.getCaseValue();
5553     BasicBlock *CaseDest = Case.getCaseSuccessor();
5554 
5555     // Replace phi operands in successor blocks that are using the constant case
5556     // value rather than the switch condition variable:
5557     //   switchbb:
5558     //   switch i32 %x, label %default [
5559     //     i32 17, label %succ
5560     //   ...
5561     //   succ:
5562     //     %r = phi i32 ... [ 17, %switchbb ] ...
5563     // -->
5564     //     %r = phi i32 ... [ %x, %switchbb ] ...
5565 
5566     for (PHINode &Phi : CaseDest->phis()) {
5567       // This only works if there is exactly 1 incoming edge from the switch to
5568       // a phi. If there is >1, that means multiple cases of the switch map to 1
5569       // value in the phi, and that phi value is not the switch condition. Thus,
5570       // this transform would not make sense (the phi would be invalid because
5571       // a phi can't have different incoming values from the same block).
5572       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5573       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5574           count(Phi.blocks(), SwitchBlock) == 1) {
5575         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5576         Changed = true;
5577       }
5578     }
5579 
5580     // Collect phi nodes that are indirectly using this switch's case constants.
5581     int PhiIdx;
5582     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5583       ForwardingNodes[Phi].push_back(PhiIdx);
5584   }
5585 
5586   for (auto &ForwardingNode : ForwardingNodes) {
5587     PHINode *Phi = ForwardingNode.first;
5588     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5589     if (Indexes.size() < 2)
5590       continue;
5591 
5592     for (int Index : Indexes)
5593       Phi->setIncomingValue(Index, SI->getCondition());
5594     Changed = true;
5595   }
5596 
5597   return Changed;
5598 }
5599 
5600 /// Return true if the backend will be able to handle
5601 /// initializing an array of constants like C.
5602 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5603   if (C->isThreadDependent())
5604     return false;
5605   if (C->isDLLImportDependent())
5606     return false;
5607 
5608   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5609       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5610       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5611     return false;
5612 
5613   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5614     // Pointer casts and in-bounds GEPs will not prohibit the backend from
5615     // materializing the array of constants.
5616     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5617     if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5618       return false;
5619   }
5620 
5621   if (!TTI.shouldBuildLookupTablesForConstant(C))
5622     return false;
5623 
5624   return true;
5625 }
5626 
5627 /// If V is a Constant, return it. Otherwise, try to look up
5628 /// its constant value in ConstantPool, returning 0 if it's not there.
5629 static Constant *
5630 LookupConstant(Value *V,
5631                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5632   if (Constant *C = dyn_cast<Constant>(V))
5633     return C;
5634   return ConstantPool.lookup(V);
5635 }
5636 
5637 /// Try to fold instruction I into a constant. This works for
5638 /// simple instructions such as binary operations where both operands are
5639 /// constant or can be replaced by constants from the ConstantPool. Returns the
5640 /// resulting constant on success, 0 otherwise.
5641 static Constant *
5642 ConstantFold(Instruction *I, const DataLayout &DL,
5643              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5644   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5645     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5646     if (!A)
5647       return nullptr;
5648     if (A->isAllOnesValue())
5649       return LookupConstant(Select->getTrueValue(), ConstantPool);
5650     if (A->isNullValue())
5651       return LookupConstant(Select->getFalseValue(), ConstantPool);
5652     return nullptr;
5653   }
5654 
5655   SmallVector<Constant *, 4> COps;
5656   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5657     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5658       COps.push_back(A);
5659     else
5660       return nullptr;
5661   }
5662 
5663   return ConstantFoldInstOperands(I, COps, DL);
5664 }
5665 
5666 /// Try to determine the resulting constant values in phi nodes
5667 /// at the common destination basic block, *CommonDest, for one of the case
5668 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5669 /// case), of a switch instruction SI.
5670 static bool
5671 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5672                BasicBlock **CommonDest,
5673                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5674                const DataLayout &DL, const TargetTransformInfo &TTI) {
5675   // The block from which we enter the common destination.
5676   BasicBlock *Pred = SI->getParent();
5677 
5678   // If CaseDest is empty except for some side-effect free instructions through
5679   // which we can constant-propagate the CaseVal, continue to its successor.
5680   SmallDenseMap<Value *, Constant *> ConstantPool;
5681   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5682   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5683     if (I.isTerminator()) {
5684       // If the terminator is a simple branch, continue to the next block.
5685       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5686         return false;
5687       Pred = CaseDest;
5688       CaseDest = I.getSuccessor(0);
5689     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5690       // Instruction is side-effect free and constant.
5691 
5692       // If the instruction has uses outside this block or a phi node slot for
5693       // the block, it is not safe to bypass the instruction since it would then
5694       // no longer dominate all its uses.
5695       for (auto &Use : I.uses()) {
5696         User *User = Use.getUser();
5697         if (Instruction *I = dyn_cast<Instruction>(User))
5698           if (I->getParent() == CaseDest)
5699             continue;
5700         if (PHINode *Phi = dyn_cast<PHINode>(User))
5701           if (Phi->getIncomingBlock(Use) == CaseDest)
5702             continue;
5703         return false;
5704       }
5705 
5706       ConstantPool.insert(std::make_pair(&I, C));
5707     } else {
5708       break;
5709     }
5710   }
5711 
5712   // If we did not have a CommonDest before, use the current one.
5713   if (!*CommonDest)
5714     *CommonDest = CaseDest;
5715   // If the destination isn't the common one, abort.
5716   if (CaseDest != *CommonDest)
5717     return false;
5718 
5719   // Get the values for this case from phi nodes in the destination block.
5720   for (PHINode &PHI : (*CommonDest)->phis()) {
5721     int Idx = PHI.getBasicBlockIndex(Pred);
5722     if (Idx == -1)
5723       continue;
5724 
5725     Constant *ConstVal =
5726         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5727     if (!ConstVal)
5728       return false;
5729 
5730     // Be conservative about which kinds of constants we support.
5731     if (!ValidLookupTableConstant(ConstVal, TTI))
5732       return false;
5733 
5734     Res.push_back(std::make_pair(&PHI, ConstVal));
5735   }
5736 
5737   return Res.size() > 0;
5738 }
5739 
5740 // Helper function used to add CaseVal to the list of cases that generate
5741 // Result. Returns the updated number of cases that generate this result.
5742 static size_t mapCaseToResult(ConstantInt *CaseVal,
5743                               SwitchCaseResultVectorTy &UniqueResults,
5744                               Constant *Result) {
5745   for (auto &I : UniqueResults) {
5746     if (I.first == Result) {
5747       I.second.push_back(CaseVal);
5748       return I.second.size();
5749     }
5750   }
5751   UniqueResults.push_back(
5752       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5753   return 1;
5754 }
5755 
5756 // Helper function that initializes a map containing
5757 // results for the PHI node of the common destination block for a switch
5758 // instruction. Returns false if multiple PHI nodes have been found or if
5759 // there is not a common destination block for the switch.
5760 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
5761                                   BasicBlock *&CommonDest,
5762                                   SwitchCaseResultVectorTy &UniqueResults,
5763                                   Constant *&DefaultResult,
5764                                   const DataLayout &DL,
5765                                   const TargetTransformInfo &TTI,
5766                                   uintptr_t MaxUniqueResults) {
5767   for (const auto &I : SI->cases()) {
5768     ConstantInt *CaseVal = I.getCaseValue();
5769 
5770     // Resulting value at phi nodes for this case value.
5771     SwitchCaseResultsTy Results;
5772     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5773                         DL, TTI))
5774       return false;
5775 
5776     // Only one value per case is permitted.
5777     if (Results.size() > 1)
5778       return false;
5779 
5780     // Add the case->result mapping to UniqueResults.
5781     const size_t NumCasesForResult =
5782         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5783 
5784     // Early out if there are too many cases for this result.
5785     if (NumCasesForResult > MaxSwitchCasesPerResult)
5786       return false;
5787 
5788     // Early out if there are too many unique results.
5789     if (UniqueResults.size() > MaxUniqueResults)
5790       return false;
5791 
5792     // Check the PHI consistency.
5793     if (!PHI)
5794       PHI = Results[0].first;
5795     else if (PHI != Results[0].first)
5796       return false;
5797   }
5798   // Find the default result value.
5799   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5800   BasicBlock *DefaultDest = SI->getDefaultDest();
5801   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5802                  DL, TTI);
5803   // If the default value is not found abort unless the default destination
5804   // is unreachable.
5805   DefaultResult =
5806       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5807   if ((!DefaultResult &&
5808        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5809     return false;
5810 
5811   return true;
5812 }
5813 
5814 // Helper function that checks if it is possible to transform a switch with only
5815 // two cases (or two cases + default) that produces a result into a select.
5816 // TODO: Handle switches with more than 2 cases that map to the same result.
5817 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
5818                                  Constant *DefaultResult, Value *Condition,
5819                                  IRBuilder<> &Builder) {
5820   // If we are selecting between only two cases transform into a simple
5821   // select or a two-way select if default is possible.
5822   // Example:
5823   // switch (a) {                  %0 = icmp eq i32 %a, 10
5824   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
5825   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
5826   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
5827   // }
5828   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5829       ResultVector[1].second.size() == 1) {
5830     ConstantInt *FirstCase = ResultVector[0].second[0];
5831     ConstantInt *SecondCase = ResultVector[1].second[0];
5832     Value *SelectValue = ResultVector[1].first;
5833     if (DefaultResult) {
5834       Value *ValueCompare =
5835           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5836       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5837                                          DefaultResult, "switch.select");
5838     }
5839     Value *ValueCompare =
5840         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5841     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5842                                 SelectValue, "switch.select");
5843   }
5844 
5845   // Handle the degenerate case where two cases have the same result value.
5846   if (ResultVector.size() == 1 && DefaultResult) {
5847     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
5848     unsigned CaseCount = CaseValues.size();
5849     // n bits group cases map to the same result:
5850     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
5851     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
5852     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
5853     if (isPowerOf2_32(CaseCount)) {
5854       ConstantInt *MinCaseVal = CaseValues[0];
5855       // Find mininal value.
5856       for (auto *Case : CaseValues)
5857         if (Case->getValue().slt(MinCaseVal->getValue()))
5858           MinCaseVal = Case;
5859 
5860       // Mark the bits case number touched.
5861       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
5862       for (auto *Case : CaseValues)
5863         BitMask |= (Case->getValue() - MinCaseVal->getValue());
5864 
5865       // Check if cases with the same result can cover all number
5866       // in touched bits.
5867       if (BitMask.countPopulation() == Log2_32(CaseCount)) {
5868         if (!MinCaseVal->isNullValue())
5869           Condition = Builder.CreateSub(Condition, MinCaseVal);
5870         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
5871         Value *Cmp = Builder.CreateICmpEQ(
5872             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
5873         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5874       }
5875     }
5876 
5877     // Handle the degenerate case where two cases have the same value.
5878     if (CaseValues.size() == 2) {
5879       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
5880                                          "switch.selectcmp.case1");
5881       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
5882                                          "switch.selectcmp.case2");
5883       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5884       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5885     }
5886   }
5887 
5888   return nullptr;
5889 }
5890 
5891 // Helper function to cleanup a switch instruction that has been converted into
5892 // a select, fixing up PHI nodes and basic blocks.
5893 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
5894                                         Value *SelectValue,
5895                                         IRBuilder<> &Builder,
5896                                         DomTreeUpdater *DTU) {
5897   std::vector<DominatorTree::UpdateType> Updates;
5898 
5899   BasicBlock *SelectBB = SI->getParent();
5900   BasicBlock *DestBB = PHI->getParent();
5901 
5902   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5903     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5904   Builder.CreateBr(DestBB);
5905 
5906   // Remove the switch.
5907 
5908   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5909     PHI->removeIncomingValue(SelectBB);
5910   PHI->addIncoming(SelectValue, SelectBB);
5911 
5912   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5913   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5914     BasicBlock *Succ = SI->getSuccessor(i);
5915 
5916     if (Succ == DestBB)
5917       continue;
5918     Succ->removePredecessor(SelectBB);
5919     if (DTU && RemovedSuccessors.insert(Succ).second)
5920       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5921   }
5922   SI->eraseFromParent();
5923   if (DTU)
5924     DTU->applyUpdates(Updates);
5925 }
5926 
5927 /// If a switch is only used to initialize one or more phi nodes in a common
5928 /// successor block with only two different constant values, try to replace the
5929 /// switch with a select. Returns true if the fold was made.
5930 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5931                               DomTreeUpdater *DTU, const DataLayout &DL,
5932                               const TargetTransformInfo &TTI) {
5933   Value *const Cond = SI->getCondition();
5934   PHINode *PHI = nullptr;
5935   BasicBlock *CommonDest = nullptr;
5936   Constant *DefaultResult;
5937   SwitchCaseResultVectorTy UniqueResults;
5938   // Collect all the cases that will deliver the same value from the switch.
5939   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5940                              DL, TTI, /*MaxUniqueResults*/ 2))
5941     return false;
5942 
5943   assert(PHI != nullptr && "PHI for value select not found");
5944   Builder.SetInsertPoint(SI);
5945   Value *SelectValue =
5946       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
5947   if (!SelectValue)
5948     return false;
5949 
5950   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
5951   return true;
5952 }
5953 
5954 namespace {
5955 
5956 /// This class represents a lookup table that can be used to replace a switch.
5957 class SwitchLookupTable {
5958 public:
5959   /// Create a lookup table to use as a switch replacement with the contents
5960   /// of Values, using DefaultValue to fill any holes in the table.
5961   SwitchLookupTable(
5962       Module &M, uint64_t TableSize, ConstantInt *Offset,
5963       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5964       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5965 
5966   /// Build instructions with Builder to retrieve the value at
5967   /// the position given by Index in the lookup table.
5968   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5969 
5970   /// Return true if a table with TableSize elements of
5971   /// type ElementType would fit in a target-legal register.
5972   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5973                                  Type *ElementType);
5974 
5975 private:
5976   // Depending on the contents of the table, it can be represented in
5977   // different ways.
5978   enum {
5979     // For tables where each element contains the same value, we just have to
5980     // store that single value and return it for each lookup.
5981     SingleValueKind,
5982 
5983     // For tables where there is a linear relationship between table index
5984     // and values. We calculate the result with a simple multiplication
5985     // and addition instead of a table lookup.
5986     LinearMapKind,
5987 
5988     // For small tables with integer elements, we can pack them into a bitmap
5989     // that fits into a target-legal register. Values are retrieved by
5990     // shift and mask operations.
5991     BitMapKind,
5992 
5993     // The table is stored as an array of values. Values are retrieved by load
5994     // instructions from the table.
5995     ArrayKind
5996   } Kind;
5997 
5998   // For SingleValueKind, this is the single value.
5999   Constant *SingleValue = nullptr;
6000 
6001   // For BitMapKind, this is the bitmap.
6002   ConstantInt *BitMap = nullptr;
6003   IntegerType *BitMapElementTy = nullptr;
6004 
6005   // For LinearMapKind, these are the constants used to derive the value.
6006   ConstantInt *LinearOffset = nullptr;
6007   ConstantInt *LinearMultiplier = nullptr;
6008 
6009   // For ArrayKind, this is the array.
6010   GlobalVariable *Array = nullptr;
6011 };
6012 
6013 } // end anonymous namespace
6014 
6015 SwitchLookupTable::SwitchLookupTable(
6016     Module &M, uint64_t TableSize, ConstantInt *Offset,
6017     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6018     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
6019   assert(Values.size() && "Can't build lookup table without values!");
6020   assert(TableSize >= Values.size() && "Can't fit values in table!");
6021 
6022   // If all values in the table are equal, this is that value.
6023   SingleValue = Values.begin()->second;
6024 
6025   Type *ValueType = Values.begin()->second->getType();
6026 
6027   // Build up the table contents.
6028   SmallVector<Constant *, 64> TableContents(TableSize);
6029   for (size_t I = 0, E = Values.size(); I != E; ++I) {
6030     ConstantInt *CaseVal = Values[I].first;
6031     Constant *CaseRes = Values[I].second;
6032     assert(CaseRes->getType() == ValueType);
6033 
6034     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
6035     TableContents[Idx] = CaseRes;
6036 
6037     if (CaseRes != SingleValue)
6038       SingleValue = nullptr;
6039   }
6040 
6041   // Fill in any holes in the table with the default result.
6042   if (Values.size() < TableSize) {
6043     assert(DefaultValue &&
6044            "Need a default value to fill the lookup table holes.");
6045     assert(DefaultValue->getType() == ValueType);
6046     for (uint64_t I = 0; I < TableSize; ++I) {
6047       if (!TableContents[I])
6048         TableContents[I] = DefaultValue;
6049     }
6050 
6051     if (DefaultValue != SingleValue)
6052       SingleValue = nullptr;
6053   }
6054 
6055   // If each element in the table contains the same value, we only need to store
6056   // that single value.
6057   if (SingleValue) {
6058     Kind = SingleValueKind;
6059     return;
6060   }
6061 
6062   // Check if we can derive the value with a linear transformation from the
6063   // table index.
6064   if (isa<IntegerType>(ValueType)) {
6065     bool LinearMappingPossible = true;
6066     APInt PrevVal;
6067     APInt DistToPrev;
6068     assert(TableSize >= 2 && "Should be a SingleValue table.");
6069     // Check if there is the same distance between two consecutive values.
6070     for (uint64_t I = 0; I < TableSize; ++I) {
6071       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
6072       if (!ConstVal) {
6073         // This is an undef. We could deal with it, but undefs in lookup tables
6074         // are very seldom. It's probably not worth the additional complexity.
6075         LinearMappingPossible = false;
6076         break;
6077       }
6078       const APInt &Val = ConstVal->getValue();
6079       if (I != 0) {
6080         APInt Dist = Val - PrevVal;
6081         if (I == 1) {
6082           DistToPrev = Dist;
6083         } else if (Dist != DistToPrev) {
6084           LinearMappingPossible = false;
6085           break;
6086         }
6087       }
6088       PrevVal = Val;
6089     }
6090     if (LinearMappingPossible) {
6091       LinearOffset = cast<ConstantInt>(TableContents[0]);
6092       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
6093       Kind = LinearMapKind;
6094       ++NumLinearMaps;
6095       return;
6096     }
6097   }
6098 
6099   // If the type is integer and the table fits in a register, build a bitmap.
6100   if (WouldFitInRegister(DL, TableSize, ValueType)) {
6101     IntegerType *IT = cast<IntegerType>(ValueType);
6102     APInt TableInt(TableSize * IT->getBitWidth(), 0);
6103     for (uint64_t I = TableSize; I > 0; --I) {
6104       TableInt <<= IT->getBitWidth();
6105       // Insert values into the bitmap. Undef values are set to zero.
6106       if (!isa<UndefValue>(TableContents[I - 1])) {
6107         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
6108         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
6109       }
6110     }
6111     BitMap = ConstantInt::get(M.getContext(), TableInt);
6112     BitMapElementTy = IT;
6113     Kind = BitMapKind;
6114     ++NumBitMaps;
6115     return;
6116   }
6117 
6118   // Store the table in an array.
6119   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
6120   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
6121 
6122   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6123                              GlobalVariable::PrivateLinkage, Initializer,
6124                              "switch.table." + FuncName);
6125   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6126   // Set the alignment to that of an array items. We will be only loading one
6127   // value out of it.
6128   Array->setAlignment(DL.getPrefTypeAlign(ValueType));
6129   Kind = ArrayKind;
6130 }
6131 
6132 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
6133   switch (Kind) {
6134   case SingleValueKind:
6135     return SingleValue;
6136   case LinearMapKind: {
6137     // Derive the result value from the input value.
6138     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6139                                           false, "switch.idx.cast");
6140     if (!LinearMultiplier->isOne())
6141       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
6142     if (!LinearOffset->isZero())
6143       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
6144     return Result;
6145   }
6146   case BitMapKind: {
6147     // Type of the bitmap (e.g. i59).
6148     IntegerType *MapTy = BitMap->getType();
6149 
6150     // Cast Index to the same type as the bitmap.
6151     // Note: The Index is <= the number of elements in the table, so
6152     // truncating it to the width of the bitmask is safe.
6153     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6154 
6155     // Multiply the shift amount by the element width.
6156     ShiftAmt = Builder.CreateMul(
6157         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6158         "switch.shiftamt");
6159 
6160     // Shift down.
6161     Value *DownShifted =
6162         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6163     // Mask off.
6164     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6165   }
6166   case ArrayKind: {
6167     // Make sure the table index will not overflow when treated as signed.
6168     IntegerType *IT = cast<IntegerType>(Index->getType());
6169     uint64_t TableSize =
6170         Array->getInitializer()->getType()->getArrayNumElements();
6171     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6172       Index = Builder.CreateZExt(
6173           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6174           "switch.tableidx.zext");
6175 
6176     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6177     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6178                                            GEPIndices, "switch.gep");
6179     return Builder.CreateLoad(
6180         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6181         "switch.load");
6182   }
6183   }
6184   llvm_unreachable("Unknown lookup table kind!");
6185 }
6186 
6187 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
6188                                            uint64_t TableSize,
6189                                            Type *ElementType) {
6190   auto *IT = dyn_cast<IntegerType>(ElementType);
6191   if (!IT)
6192     return false;
6193   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6194   // are <= 15, we could try to narrow the type.
6195 
6196   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6197   if (TableSize >= UINT_MAX / IT->getBitWidth())
6198     return false;
6199   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6200 }
6201 
6202 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6203                                       const DataLayout &DL) {
6204   // Allow any legal type.
6205   if (TTI.isTypeLegal(Ty))
6206     return true;
6207 
6208   auto *IT = dyn_cast<IntegerType>(Ty);
6209   if (!IT)
6210     return false;
6211 
6212   // Also allow power of 2 integer types that have at least 8 bits and fit in
6213   // a register. These types are common in frontend languages and targets
6214   // usually support loads of these types.
6215   // TODO: We could relax this to any integer that fits in a register and rely
6216   // on ABI alignment and padding in the table to allow the load to be widened.
6217   // Or we could widen the constants and truncate the load.
6218   unsigned BitWidth = IT->getBitWidth();
6219   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6220          DL.fitsInLegalInteger(IT->getBitWidth());
6221 }
6222 
6223 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6224   // 40% is the default density for building a jump table in optsize/minsize
6225   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6226   // function was based on.
6227   const uint64_t MinDensity = 40;
6228 
6229   if (CaseRange >= UINT64_MAX / 100)
6230     return false; // Avoid multiplication overflows below.
6231 
6232   return NumCases * 100 >= CaseRange * MinDensity;
6233 }
6234 
6235 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6236   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6237   uint64_t Range = Diff + 1;
6238   if (Range < Diff)
6239     return false; // Overflow.
6240 
6241   return isSwitchDense(Values.size(), Range);
6242 }
6243 
6244 /// Determine whether a lookup table should be built for this switch, based on
6245 /// the number of cases, size of the table, and the types of the results.
6246 // TODO: We could support larger than legal types by limiting based on the
6247 // number of loads required and/or table size. If the constants are small we
6248 // could use smaller table entries and extend after the load.
6249 static bool
6250 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6251                        const TargetTransformInfo &TTI, const DataLayout &DL,
6252                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6253   if (SI->getNumCases() > TableSize)
6254     return false; // TableSize overflowed.
6255 
6256   bool AllTablesFitInRegister = true;
6257   bool HasIllegalType = false;
6258   for (const auto &I : ResultTypes) {
6259     Type *Ty = I.second;
6260 
6261     // Saturate this flag to true.
6262     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6263 
6264     // Saturate this flag to false.
6265     AllTablesFitInRegister =
6266         AllTablesFitInRegister &&
6267         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
6268 
6269     // If both flags saturate, we're done. NOTE: This *only* works with
6270     // saturating flags, and all flags have to saturate first due to the
6271     // non-deterministic behavior of iterating over a dense map.
6272     if (HasIllegalType && !AllTablesFitInRegister)
6273       break;
6274   }
6275 
6276   // If each table would fit in a register, we should build it anyway.
6277   if (AllTablesFitInRegister)
6278     return true;
6279 
6280   // Don't build a table that doesn't fit in-register if it has illegal types.
6281   if (HasIllegalType)
6282     return false;
6283 
6284   return isSwitchDense(SI->getNumCases(), TableSize);
6285 }
6286 
6287 static bool ShouldUseSwitchConditionAsTableIndex(
6288     ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6289     bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6290     const DataLayout &DL, const TargetTransformInfo &TTI) {
6291   if (MinCaseVal.isNullValue())
6292     return true;
6293   if (MinCaseVal.isNegative() ||
6294       MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6295       !HasDefaultResults)
6296     return false;
6297   return all_of(ResultTypes, [&](const auto &KV) {
6298     return SwitchLookupTable::WouldFitInRegister(
6299         DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6300         KV.second /* ResultType */);
6301   });
6302 }
6303 
6304 /// Try to reuse the switch table index compare. Following pattern:
6305 /// \code
6306 ///     if (idx < tablesize)
6307 ///        r = table[idx]; // table does not contain default_value
6308 ///     else
6309 ///        r = default_value;
6310 ///     if (r != default_value)
6311 ///        ...
6312 /// \endcode
6313 /// Is optimized to:
6314 /// \code
6315 ///     cond = idx < tablesize;
6316 ///     if (cond)
6317 ///        r = table[idx];
6318 ///     else
6319 ///        r = default_value;
6320 ///     if (cond)
6321 ///        ...
6322 /// \endcode
6323 /// Jump threading will then eliminate the second if(cond).
6324 static void reuseTableCompare(
6325     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6326     Constant *DefaultValue,
6327     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6328   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6329   if (!CmpInst)
6330     return;
6331 
6332   // We require that the compare is in the same block as the phi so that jump
6333   // threading can do its work afterwards.
6334   if (CmpInst->getParent() != PhiBlock)
6335     return;
6336 
6337   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6338   if (!CmpOp1)
6339     return;
6340 
6341   Value *RangeCmp = RangeCheckBranch->getCondition();
6342   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6343   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6344 
6345   // Check if the compare with the default value is constant true or false.
6346   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6347                                                  DefaultValue, CmpOp1, true);
6348   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6349     return;
6350 
6351   // Check if the compare with the case values is distinct from the default
6352   // compare result.
6353   for (auto ValuePair : Values) {
6354     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6355                                                 ValuePair.second, CmpOp1, true);
6356     if (!CaseConst || CaseConst == DefaultConst ||
6357         (CaseConst != TrueConst && CaseConst != FalseConst))
6358       return;
6359   }
6360 
6361   // Check if the branch instruction dominates the phi node. It's a simple
6362   // dominance check, but sufficient for our needs.
6363   // Although this check is invariant in the calling loops, it's better to do it
6364   // at this late stage. Practically we do it at most once for a switch.
6365   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6366   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6367     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6368       return;
6369   }
6370 
6371   if (DefaultConst == FalseConst) {
6372     // The compare yields the same result. We can replace it.
6373     CmpInst->replaceAllUsesWith(RangeCmp);
6374     ++NumTableCmpReuses;
6375   } else {
6376     // The compare yields the same result, just inverted. We can replace it.
6377     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6378         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6379         RangeCheckBranch);
6380     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6381     ++NumTableCmpReuses;
6382   }
6383 }
6384 
6385 /// If the switch is only used to initialize one or more phi nodes in a common
6386 /// successor block with different constant values, replace the switch with
6387 /// lookup tables.
6388 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6389                                 DomTreeUpdater *DTU, const DataLayout &DL,
6390                                 const TargetTransformInfo &TTI) {
6391   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6392 
6393   BasicBlock *BB = SI->getParent();
6394   Function *Fn = BB->getParent();
6395   // Only build lookup table when we have a target that supports it or the
6396   // attribute is not set.
6397   if (!TTI.shouldBuildLookupTables() ||
6398       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6399     return false;
6400 
6401   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6402   // split off a dense part and build a lookup table for that.
6403 
6404   // FIXME: This creates arrays of GEPs to constant strings, which means each
6405   // GEP needs a runtime relocation in PIC code. We should just build one big
6406   // string and lookup indices into that.
6407 
6408   // Ignore switches with less than three cases. Lookup tables will not make
6409   // them faster, so we don't analyze them.
6410   if (SI->getNumCases() < 3)
6411     return false;
6412 
6413   // Figure out the corresponding result for each case value and phi node in the
6414   // common destination, as well as the min and max case values.
6415   assert(!SI->cases().empty());
6416   SwitchInst::CaseIt CI = SI->case_begin();
6417   ConstantInt *MinCaseVal = CI->getCaseValue();
6418   ConstantInt *MaxCaseVal = CI->getCaseValue();
6419 
6420   BasicBlock *CommonDest = nullptr;
6421 
6422   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6423   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6424 
6425   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6426   SmallDenseMap<PHINode *, Type *> ResultTypes;
6427   SmallVector<PHINode *, 4> PHIs;
6428 
6429   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6430     ConstantInt *CaseVal = CI->getCaseValue();
6431     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6432       MinCaseVal = CaseVal;
6433     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6434       MaxCaseVal = CaseVal;
6435 
6436     // Resulting value at phi nodes for this case value.
6437     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6438     ResultsTy Results;
6439     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6440                         Results, DL, TTI))
6441       return false;
6442 
6443     // Append the result from this case to the list for each phi.
6444     for (const auto &I : Results) {
6445       PHINode *PHI = I.first;
6446       Constant *Value = I.second;
6447       if (!ResultLists.count(PHI))
6448         PHIs.push_back(PHI);
6449       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6450     }
6451   }
6452 
6453   // Keep track of the result types.
6454   for (PHINode *PHI : PHIs) {
6455     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6456   }
6457 
6458   uint64_t NumResults = ResultLists[PHIs[0]].size();
6459 
6460   // If the table has holes, we need a constant result for the default case
6461   // or a bitmask that fits in a register.
6462   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6463   bool HasDefaultResults =
6464       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6465                      DefaultResultsList, DL, TTI);
6466 
6467   for (const auto &I : DefaultResultsList) {
6468     PHINode *PHI = I.first;
6469     Constant *Result = I.second;
6470     DefaultResults[PHI] = Result;
6471   }
6472 
6473   bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex(
6474       *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6475   uint64_t TableSize;
6476   if (UseSwitchConditionAsTableIndex)
6477     TableSize = MaxCaseVal->getLimitedValue() + 1;
6478   else
6479     TableSize =
6480         (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6481 
6482   bool TableHasHoles = (NumResults < TableSize);
6483   bool NeedMask = (TableHasHoles && !HasDefaultResults);
6484   if (NeedMask) {
6485     // As an extra penalty for the validity test we require more cases.
6486     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6487       return false;
6488     if (!DL.fitsInLegalInteger(TableSize))
6489       return false;
6490   }
6491 
6492   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6493     return false;
6494 
6495   std::vector<DominatorTree::UpdateType> Updates;
6496 
6497   // Create the BB that does the lookups.
6498   Module &Mod = *CommonDest->getParent()->getParent();
6499   BasicBlock *LookupBB = BasicBlock::Create(
6500       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6501 
6502   // Compute the table index value.
6503   Builder.SetInsertPoint(SI);
6504   Value *TableIndex;
6505   ConstantInt *TableIndexOffset;
6506   if (UseSwitchConditionAsTableIndex) {
6507     TableIndexOffset = ConstantInt::get(MaxCaseVal->getType(), 0);
6508     TableIndex = SI->getCondition();
6509   } else {
6510     TableIndexOffset = MinCaseVal;
6511     TableIndex =
6512         Builder.CreateSub(SI->getCondition(), TableIndexOffset, "switch.tableidx");
6513   }
6514 
6515   // Compute the maximum table size representable by the integer type we are
6516   // switching upon.
6517   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6518   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6519   assert(MaxTableSize >= TableSize &&
6520          "It is impossible for a switch to have more entries than the max "
6521          "representable value of its input integer type's size.");
6522 
6523   // If the default destination is unreachable, or if the lookup table covers
6524   // all values of the conditional variable, branch directly to the lookup table
6525   // BB. Otherwise, check that the condition is within the case range.
6526   const bool DefaultIsReachable =
6527       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6528   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6529   BranchInst *RangeCheckBranch = nullptr;
6530 
6531   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6532     Builder.CreateBr(LookupBB);
6533     if (DTU)
6534       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6535     // Note: We call removeProdecessor later since we need to be able to get the
6536     // PHI value for the default case in case we're using a bit mask.
6537   } else {
6538     Value *Cmp = Builder.CreateICmpULT(
6539         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6540     RangeCheckBranch =
6541         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6542     if (DTU)
6543       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6544   }
6545 
6546   // Populate the BB that does the lookups.
6547   Builder.SetInsertPoint(LookupBB);
6548 
6549   if (NeedMask) {
6550     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6551     // re-purposed to do the hole check, and we create a new LookupBB.
6552     BasicBlock *MaskBB = LookupBB;
6553     MaskBB->setName("switch.hole_check");
6554     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6555                                   CommonDest->getParent(), CommonDest);
6556 
6557     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6558     // unnecessary illegal types.
6559     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6560     APInt MaskInt(TableSizePowOf2, 0);
6561     APInt One(TableSizePowOf2, 1);
6562     // Build bitmask; fill in a 1 bit for every case.
6563     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6564     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6565       uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
6566                          .getLimitedValue();
6567       MaskInt |= One << Idx;
6568     }
6569     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6570 
6571     // Get the TableIndex'th bit of the bitmask.
6572     // If this bit is 0 (meaning hole) jump to the default destination,
6573     // else continue with table lookup.
6574     IntegerType *MapTy = TableMask->getType();
6575     Value *MaskIndex =
6576         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6577     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6578     Value *LoBit = Builder.CreateTrunc(
6579         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6580     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6581     if (DTU) {
6582       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6583       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6584     }
6585     Builder.SetInsertPoint(LookupBB);
6586     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6587   }
6588 
6589   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6590     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6591     // do not delete PHINodes here.
6592     SI->getDefaultDest()->removePredecessor(BB,
6593                                             /*KeepOneInputPHIs=*/true);
6594     if (DTU)
6595       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6596   }
6597 
6598   for (PHINode *PHI : PHIs) {
6599     const ResultListTy &ResultList = ResultLists[PHI];
6600 
6601     // If using a bitmask, use any value to fill the lookup table holes.
6602     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6603     StringRef FuncName = Fn->getName();
6604     SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
6605                             DL, FuncName);
6606 
6607     Value *Result = Table.BuildLookup(TableIndex, Builder);
6608 
6609     // Do a small peephole optimization: re-use the switch table compare if
6610     // possible.
6611     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6612       BasicBlock *PhiBlock = PHI->getParent();
6613       // Search for compare instructions which use the phi.
6614       for (auto *User : PHI->users()) {
6615         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6616       }
6617     }
6618 
6619     PHI->addIncoming(Result, LookupBB);
6620   }
6621 
6622   Builder.CreateBr(CommonDest);
6623   if (DTU)
6624     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6625 
6626   // Remove the switch.
6627   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6628   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6629     BasicBlock *Succ = SI->getSuccessor(i);
6630 
6631     if (Succ == SI->getDefaultDest())
6632       continue;
6633     Succ->removePredecessor(BB);
6634     if (DTU && RemovedSuccessors.insert(Succ).second)
6635       Updates.push_back({DominatorTree::Delete, BB, Succ});
6636   }
6637   SI->eraseFromParent();
6638 
6639   if (DTU)
6640     DTU->applyUpdates(Updates);
6641 
6642   ++NumLookupTables;
6643   if (NeedMask)
6644     ++NumLookupTablesHoles;
6645   return true;
6646 }
6647 
6648 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6649 /// of cases.
6650 ///
6651 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6652 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6653 ///
6654 /// This converts a sparse switch into a dense switch which allows better
6655 /// lowering and could also allow transforming into a lookup table.
6656 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6657                               const DataLayout &DL,
6658                               const TargetTransformInfo &TTI) {
6659   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6660   if (CondTy->getIntegerBitWidth() > 64 ||
6661       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6662     return false;
6663   // Only bother with this optimization if there are more than 3 switch cases;
6664   // SDAG will only bother creating jump tables for 4 or more cases.
6665   if (SI->getNumCases() < 4)
6666     return false;
6667 
6668   // This transform is agnostic to the signedness of the input or case values. We
6669   // can treat the case values as signed or unsigned. We can optimize more common
6670   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6671   // as signed.
6672   SmallVector<int64_t,4> Values;
6673   for (const auto &C : SI->cases())
6674     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6675   llvm::sort(Values);
6676 
6677   // If the switch is already dense, there's nothing useful to do here.
6678   if (isSwitchDense(Values))
6679     return false;
6680 
6681   // First, transform the values such that they start at zero and ascend.
6682   int64_t Base = Values[0];
6683   for (auto &V : Values)
6684     V -= (uint64_t)(Base);
6685 
6686   // Now we have signed numbers that have been shifted so that, given enough
6687   // precision, there are no negative values. Since the rest of the transform
6688   // is bitwise only, we switch now to an unsigned representation.
6689 
6690   // This transform can be done speculatively because it is so cheap - it
6691   // results in a single rotate operation being inserted.
6692   // FIXME: It's possible that optimizing a switch on powers of two might also
6693   // be beneficial - flag values are often powers of two and we could use a CLZ
6694   // as the key function.
6695 
6696   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6697   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6698   // less than 64.
6699   unsigned Shift = 64;
6700   for (auto &V : Values)
6701     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6702   assert(Shift < 64);
6703   if (Shift > 0)
6704     for (auto &V : Values)
6705       V = (int64_t)((uint64_t)V >> Shift);
6706 
6707   if (!isSwitchDense(Values))
6708     // Transform didn't create a dense switch.
6709     return false;
6710 
6711   // The obvious transform is to shift the switch condition right and emit a
6712   // check that the condition actually cleanly divided by GCD, i.e.
6713   //   C & (1 << Shift - 1) == 0
6714   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6715   //
6716   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6717   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6718   // are nonzero then the switch condition will be very large and will hit the
6719   // default case.
6720 
6721   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6722   Builder.SetInsertPoint(SI);
6723   auto *ShiftC = ConstantInt::get(Ty, Shift);
6724   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6725   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6726   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6727   auto *Rot = Builder.CreateOr(LShr, Shl);
6728   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6729 
6730   for (auto Case : SI->cases()) {
6731     auto *Orig = Case.getCaseValue();
6732     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6733     Case.setValue(
6734         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6735   }
6736   return true;
6737 }
6738 
6739 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6740   BasicBlock *BB = SI->getParent();
6741 
6742   if (isValueEqualityComparison(SI)) {
6743     // If we only have one predecessor, and if it is a branch on this value,
6744     // see if that predecessor totally determines the outcome of this switch.
6745     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6746       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6747         return requestResimplify();
6748 
6749     Value *Cond = SI->getCondition();
6750     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6751       if (SimplifySwitchOnSelect(SI, Select))
6752         return requestResimplify();
6753 
6754     // If the block only contains the switch, see if we can fold the block
6755     // away into any preds.
6756     if (SI == &*BB->instructionsWithoutDebug(false).begin())
6757       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6758         return requestResimplify();
6759   }
6760 
6761   // Try to transform the switch into an icmp and a branch.
6762   // The conversion from switch to comparison may lose information on
6763   // impossible switch values, so disable it early in the pipeline.
6764   if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
6765     return requestResimplify();
6766 
6767   // Remove unreachable cases.
6768   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6769     return requestResimplify();
6770 
6771   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
6772     return requestResimplify();
6773 
6774   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6775     return requestResimplify();
6776 
6777   // The conversion from switch to lookup tables results in difficult-to-analyze
6778   // code and makes pruning branches much harder. This is a problem if the
6779   // switch expression itself can still be restricted as a result of inlining or
6780   // CVP. Therefore, only apply this transformation during late stages of the
6781   // optimisation pipeline.
6782   if (Options.ConvertSwitchToLookupTable &&
6783       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6784     return requestResimplify();
6785 
6786   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6787     return requestResimplify();
6788 
6789   return false;
6790 }
6791 
6792 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6793   BasicBlock *BB = IBI->getParent();
6794   bool Changed = false;
6795 
6796   // Eliminate redundant destinations.
6797   SmallPtrSet<Value *, 8> Succs;
6798   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6799   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6800     BasicBlock *Dest = IBI->getDestination(i);
6801     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6802       if (!Dest->hasAddressTaken())
6803         RemovedSuccs.insert(Dest);
6804       Dest->removePredecessor(BB);
6805       IBI->removeDestination(i);
6806       --i;
6807       --e;
6808       Changed = true;
6809     }
6810   }
6811 
6812   if (DTU) {
6813     std::vector<DominatorTree::UpdateType> Updates;
6814     Updates.reserve(RemovedSuccs.size());
6815     for (auto *RemovedSucc : RemovedSuccs)
6816       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6817     DTU->applyUpdates(Updates);
6818   }
6819 
6820   if (IBI->getNumDestinations() == 0) {
6821     // If the indirectbr has no successors, change it to unreachable.
6822     new UnreachableInst(IBI->getContext(), IBI);
6823     EraseTerminatorAndDCECond(IBI);
6824     return true;
6825   }
6826 
6827   if (IBI->getNumDestinations() == 1) {
6828     // If the indirectbr has one successor, change it to a direct branch.
6829     BranchInst::Create(IBI->getDestination(0), IBI);
6830     EraseTerminatorAndDCECond(IBI);
6831     return true;
6832   }
6833 
6834   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6835     if (SimplifyIndirectBrOnSelect(IBI, SI))
6836       return requestResimplify();
6837   }
6838   return Changed;
6839 }
6840 
6841 /// Given an block with only a single landing pad and a unconditional branch
6842 /// try to find another basic block which this one can be merged with.  This
6843 /// handles cases where we have multiple invokes with unique landing pads, but
6844 /// a shared handler.
6845 ///
6846 /// We specifically choose to not worry about merging non-empty blocks
6847 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6848 /// practice, the optimizer produces empty landing pad blocks quite frequently
6849 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6850 /// sinking in this file)
6851 ///
6852 /// This is primarily a code size optimization.  We need to avoid performing
6853 /// any transform which might inhibit optimization (such as our ability to
6854 /// specialize a particular handler via tail commoning).  We do this by not
6855 /// merging any blocks which require us to introduce a phi.  Since the same
6856 /// values are flowing through both blocks, we don't lose any ability to
6857 /// specialize.  If anything, we make such specialization more likely.
6858 ///
6859 /// TODO - This transformation could remove entries from a phi in the target
6860 /// block when the inputs in the phi are the same for the two blocks being
6861 /// merged.  In some cases, this could result in removal of the PHI entirely.
6862 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6863                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6864   auto Succ = BB->getUniqueSuccessor();
6865   assert(Succ);
6866   // If there's a phi in the successor block, we'd likely have to introduce
6867   // a phi into the merged landing pad block.
6868   if (isa<PHINode>(*Succ->begin()))
6869     return false;
6870 
6871   for (BasicBlock *OtherPred : predecessors(Succ)) {
6872     if (BB == OtherPred)
6873       continue;
6874     BasicBlock::iterator I = OtherPred->begin();
6875     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6876     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6877       continue;
6878     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6879       ;
6880     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6881     if (!BI2 || !BI2->isIdenticalTo(BI))
6882       continue;
6883 
6884     std::vector<DominatorTree::UpdateType> Updates;
6885 
6886     // We've found an identical block.  Update our predecessors to take that
6887     // path instead and make ourselves dead.
6888     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
6889     for (BasicBlock *Pred : UniquePreds) {
6890       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6891       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6892              "unexpected successor");
6893       II->setUnwindDest(OtherPred);
6894       if (DTU) {
6895         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6896         Updates.push_back({DominatorTree::Delete, Pred, BB});
6897       }
6898     }
6899 
6900     // The debug info in OtherPred doesn't cover the merged control flow that
6901     // used to go through BB.  We need to delete it or update it.
6902     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6903       if (isa<DbgInfoIntrinsic>(Inst))
6904         Inst.eraseFromParent();
6905 
6906     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
6907     for (BasicBlock *Succ : UniqueSuccs) {
6908       Succ->removePredecessor(BB);
6909       if (DTU)
6910         Updates.push_back({DominatorTree::Delete, BB, Succ});
6911     }
6912 
6913     IRBuilder<> Builder(BI);
6914     Builder.CreateUnreachable();
6915     BI->eraseFromParent();
6916     if (DTU)
6917       DTU->applyUpdates(Updates);
6918     return true;
6919   }
6920   return false;
6921 }
6922 
6923 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6924   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6925                                    : simplifyCondBranch(Branch, Builder);
6926 }
6927 
6928 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6929                                           IRBuilder<> &Builder) {
6930   BasicBlock *BB = BI->getParent();
6931   BasicBlock *Succ = BI->getSuccessor(0);
6932 
6933   // If the Terminator is the only non-phi instruction, simplify the block.
6934   // If LoopHeader is provided, check if the block or its successor is a loop
6935   // header. (This is for early invocations before loop simplify and
6936   // vectorization to keep canonical loop forms for nested loops. These blocks
6937   // can be eliminated when the pass is invoked later in the back-end.)
6938   // Note that if BB has only one predecessor then we do not introduce new
6939   // backedge, so we can eliminate BB.
6940   bool NeedCanonicalLoop =
6941       Options.NeedCanonicalLoop &&
6942       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6943        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6944   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6945   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6946       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6947     return true;
6948 
6949   // If the only instruction in the block is a seteq/setne comparison against a
6950   // constant, try to simplify the block.
6951   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6952     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6953       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6954         ;
6955       if (I->isTerminator() &&
6956           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6957         return true;
6958     }
6959 
6960   // See if we can merge an empty landing pad block with another which is
6961   // equivalent.
6962   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6963     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6964       ;
6965     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6966       return true;
6967   }
6968 
6969   // If this basic block is ONLY a compare and a branch, and if a predecessor
6970   // branches to us and our successor, fold the comparison into the
6971   // predecessor and use logical operations to update the incoming value
6972   // for PHI nodes in common successor.
6973   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6974                              Options.BonusInstThreshold))
6975     return requestResimplify();
6976   return false;
6977 }
6978 
6979 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6980   BasicBlock *PredPred = nullptr;
6981   for (auto *P : predecessors(BB)) {
6982     BasicBlock *PPred = P->getSinglePredecessor();
6983     if (!PPred || (PredPred && PredPred != PPred))
6984       return nullptr;
6985     PredPred = PPred;
6986   }
6987   return PredPred;
6988 }
6989 
6990 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6991   assert(
6992       !isa<ConstantInt>(BI->getCondition()) &&
6993       BI->getSuccessor(0) != BI->getSuccessor(1) &&
6994       "Tautological conditional branch should have been eliminated already.");
6995 
6996   BasicBlock *BB = BI->getParent();
6997   if (!Options.SimplifyCondBranch)
6998     return false;
6999 
7000   // Conditional branch
7001   if (isValueEqualityComparison(BI)) {
7002     // If we only have one predecessor, and if it is a branch on this value,
7003     // see if that predecessor totally determines the outcome of this
7004     // switch.
7005     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7006       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
7007         return requestResimplify();
7008 
7009     // This block must be empty, except for the setcond inst, if it exists.
7010     // Ignore dbg and pseudo intrinsics.
7011     auto I = BB->instructionsWithoutDebug(true).begin();
7012     if (&*I == BI) {
7013       if (FoldValueComparisonIntoPredecessors(BI, Builder))
7014         return requestResimplify();
7015     } else if (&*I == cast<Instruction>(BI->getCondition())) {
7016       ++I;
7017       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
7018         return requestResimplify();
7019     }
7020   }
7021 
7022   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
7023   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
7024     return true;
7025 
7026   // If this basic block has dominating predecessor blocks and the dominating
7027   // blocks' conditions imply BI's condition, we know the direction of BI.
7028   std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
7029   if (Imp) {
7030     // Turn this into a branch on constant.
7031     auto *OldCond = BI->getCondition();
7032     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
7033                              : ConstantInt::getFalse(BB->getContext());
7034     BI->setCondition(TorF);
7035     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
7036     return requestResimplify();
7037   }
7038 
7039   // If this basic block is ONLY a compare and a branch, and if a predecessor
7040   // branches to us and one of our successors, fold the comparison into the
7041   // predecessor and use logical operations to pick the right destination.
7042   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7043                              Options.BonusInstThreshold))
7044     return requestResimplify();
7045 
7046   // We have a conditional branch to two blocks that are only reachable
7047   // from BI.  We know that the condbr dominates the two blocks, so see if
7048   // there is any identical code in the "then" and "else" blocks.  If so, we
7049   // can hoist it up to the branching block.
7050   if (BI->getSuccessor(0)->getSinglePredecessor()) {
7051     if (BI->getSuccessor(1)->getSinglePredecessor()) {
7052       if (HoistCommon &&
7053           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
7054         return requestResimplify();
7055     } else {
7056       // If Successor #1 has multiple preds, we may be able to conditionally
7057       // execute Successor #0 if it branches to Successor #1.
7058       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
7059       if (Succ0TI->getNumSuccessors() == 1 &&
7060           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
7061         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
7062           return requestResimplify();
7063     }
7064   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
7065     // If Successor #0 has multiple preds, we may be able to conditionally
7066     // execute Successor #1 if it branches to Successor #0.
7067     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
7068     if (Succ1TI->getNumSuccessors() == 1 &&
7069         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
7070       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
7071         return requestResimplify();
7072   }
7073 
7074   // If this is a branch on something for which we know the constant value in
7075   // predecessors (e.g. a phi node in the current block), thread control
7076   // through this block.
7077   if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
7078     return requestResimplify();
7079 
7080   // Scan predecessor blocks for conditional branches.
7081   for (BasicBlock *Pred : predecessors(BB))
7082     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
7083       if (PBI != BI && PBI->isConditional())
7084         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
7085           return requestResimplify();
7086 
7087   // Look for diamond patterns.
7088   if (MergeCondStores)
7089     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
7090       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
7091         if (PBI != BI && PBI->isConditional())
7092           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
7093             return requestResimplify();
7094 
7095   return false;
7096 }
7097 
7098 /// Check if passing a value to an instruction will cause undefined behavior.
7099 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
7100   Constant *C = dyn_cast<Constant>(V);
7101   if (!C)
7102     return false;
7103 
7104   if (I->use_empty())
7105     return false;
7106 
7107   if (C->isNullValue() || isa<UndefValue>(C)) {
7108     // Only look at the first use, avoid hurting compile time with long uselists
7109     auto *Use = cast<Instruction>(*I->user_begin());
7110     // Bail out if Use is not in the same BB as I or Use == I or Use comes
7111     // before I in the block. The latter two can be the case if Use is a PHI
7112     // node.
7113     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
7114       return false;
7115 
7116     // Now make sure that there are no instructions in between that can alter
7117     // control flow (eg. calls)
7118     auto InstrRange =
7119         make_range(std::next(I->getIterator()), Use->getIterator());
7120     if (any_of(InstrRange, [](Instruction &I) {
7121           return !isGuaranteedToTransferExecutionToSuccessor(&I);
7122         }))
7123       return false;
7124 
7125     // Look through GEPs. A load from a GEP derived from NULL is still undefined
7126     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
7127       if (GEP->getPointerOperand() == I) {
7128         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
7129           PtrValueMayBeModified = true;
7130         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
7131       }
7132 
7133     // Look through bitcasts.
7134     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
7135       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
7136 
7137     // Load from null is undefined.
7138     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
7139       if (!LI->isVolatile())
7140         return !NullPointerIsDefined(LI->getFunction(),
7141                                      LI->getPointerAddressSpace());
7142 
7143     // Store to null is undefined.
7144     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
7145       if (!SI->isVolatile())
7146         return (!NullPointerIsDefined(SI->getFunction(),
7147                                       SI->getPointerAddressSpace())) &&
7148                SI->getPointerOperand() == I;
7149 
7150     if (auto *CB = dyn_cast<CallBase>(Use)) {
7151       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
7152         return false;
7153       // A call to null is undefined.
7154       if (CB->getCalledOperand() == I)
7155         return true;
7156 
7157       if (C->isNullValue()) {
7158         for (const llvm::Use &Arg : CB->args())
7159           if (Arg == I) {
7160             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7161             if (CB->isPassingUndefUB(ArgIdx) &&
7162                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
7163               // Passing null to a nonnnull+noundef argument is undefined.
7164               return !PtrValueMayBeModified;
7165             }
7166           }
7167       } else if (isa<UndefValue>(C)) {
7168         // Passing undef to a noundef argument is undefined.
7169         for (const llvm::Use &Arg : CB->args())
7170           if (Arg == I) {
7171             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7172             if (CB->isPassingUndefUB(ArgIdx)) {
7173               // Passing undef to a noundef argument is undefined.
7174               return true;
7175             }
7176           }
7177       }
7178     }
7179   }
7180   return false;
7181 }
7182 
7183 /// If BB has an incoming value that will always trigger undefined behavior
7184 /// (eg. null pointer dereference), remove the branch leading here.
7185 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
7186                                               DomTreeUpdater *DTU) {
7187   for (PHINode &PHI : BB->phis())
7188     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
7189       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
7190         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
7191         Instruction *T = Predecessor->getTerminator();
7192         IRBuilder<> Builder(T);
7193         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
7194           BB->removePredecessor(Predecessor);
7195           // Turn unconditional branches into unreachables and remove the dead
7196           // destination from conditional branches.
7197           if (BI->isUnconditional())
7198             Builder.CreateUnreachable();
7199           else {
7200             // Preserve guarding condition in assume, because it might not be
7201             // inferrable from any dominating condition.
7202             Value *Cond = BI->getCondition();
7203             if (BI->getSuccessor(0) == BB)
7204               Builder.CreateAssumption(Builder.CreateNot(Cond));
7205             else
7206               Builder.CreateAssumption(Cond);
7207             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
7208                                                        : BI->getSuccessor(0));
7209           }
7210           BI->eraseFromParent();
7211           if (DTU)
7212             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
7213           return true;
7214         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
7215           // Redirect all branches leading to UB into
7216           // a newly created unreachable block.
7217           BasicBlock *Unreachable = BasicBlock::Create(
7218               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
7219           Builder.SetInsertPoint(Unreachable);
7220           // The new block contains only one instruction: Unreachable
7221           Builder.CreateUnreachable();
7222           for (const auto &Case : SI->cases())
7223             if (Case.getCaseSuccessor() == BB) {
7224               BB->removePredecessor(Predecessor);
7225               Case.setSuccessor(Unreachable);
7226             }
7227           if (SI->getDefaultDest() == BB) {
7228             BB->removePredecessor(Predecessor);
7229             SI->setDefaultDest(Unreachable);
7230           }
7231 
7232           if (DTU)
7233             DTU->applyUpdates(
7234                 { { DominatorTree::Insert, Predecessor, Unreachable },
7235                   { DominatorTree::Delete, Predecessor, BB } });
7236           return true;
7237         }
7238       }
7239 
7240   return false;
7241 }
7242 
7243 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
7244   bool Changed = false;
7245 
7246   assert(BB && BB->getParent() && "Block not embedded in function!");
7247   assert(BB->getTerminator() && "Degenerate basic block encountered!");
7248 
7249   // Remove basic blocks that have no predecessors (except the entry block)...
7250   // or that just have themself as a predecessor.  These are unreachable.
7251   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
7252       BB->getSinglePredecessor() == BB) {
7253     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
7254     DeleteDeadBlock(BB, DTU);
7255     return true;
7256   }
7257 
7258   // Check to see if we can constant propagate this terminator instruction
7259   // away...
7260   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
7261                                     /*TLI=*/nullptr, DTU);
7262 
7263   // Check for and eliminate duplicate PHI nodes in this block.
7264   Changed |= EliminateDuplicatePHINodes(BB);
7265 
7266   // Check for and remove branches that will always cause undefined behavior.
7267   if (removeUndefIntroducingPredecessor(BB, DTU))
7268     return requestResimplify();
7269 
7270   // Merge basic blocks into their predecessor if there is only one distinct
7271   // pred, and if there is only one distinct successor of the predecessor, and
7272   // if there are no PHI nodes.
7273   if (MergeBlockIntoPredecessor(BB, DTU))
7274     return true;
7275 
7276   if (SinkCommon && Options.SinkCommonInsts)
7277     if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7278         MergeCompatibleInvokes(BB, DTU)) {
7279       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7280       // so we may now how duplicate PHI's.
7281       // Let's rerun EliminateDuplicatePHINodes() first,
7282       // before FoldTwoEntryPHINode() potentially converts them into select's,
7283       // after which we'd need a whole EarlyCSE pass run to cleanup them.
7284       return true;
7285     }
7286 
7287   IRBuilder<> Builder(BB);
7288 
7289   if (Options.FoldTwoEntryPHINode) {
7290     // If there is a trivial two-entry PHI node in this basic block, and we can
7291     // eliminate it, do so now.
7292     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
7293       if (PN->getNumIncomingValues() == 2)
7294         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7295           return true;
7296   }
7297 
7298   Instruction *Terminator = BB->getTerminator();
7299   Builder.SetInsertPoint(Terminator);
7300   switch (Terminator->getOpcode()) {
7301   case Instruction::Br:
7302     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
7303     break;
7304   case Instruction::Resume:
7305     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
7306     break;
7307   case Instruction::CleanupRet:
7308     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
7309     break;
7310   case Instruction::Switch:
7311     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
7312     break;
7313   case Instruction::Unreachable:
7314     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
7315     break;
7316   case Instruction::IndirectBr:
7317     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
7318     break;
7319   }
7320 
7321   return Changed;
7322 }
7323 
7324 bool SimplifyCFGOpt::run(BasicBlock *BB) {
7325   bool Changed = false;
7326 
7327   // Repeated simplify BB as long as resimplification is requested.
7328   do {
7329     Resimplify = false;
7330 
7331     // Perform one round of simplifcation. Resimplify flag will be set if
7332     // another iteration is requested.
7333     Changed |= simplifyOnce(BB);
7334   } while (Resimplify);
7335 
7336   return Changed;
7337 }
7338 
7339 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7340                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7341                        ArrayRef<WeakVH> LoopHeaders) {
7342   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7343                         Options)
7344       .run(BB);
7345 }
7346