1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Utils/LoopUtils.h" 29 30 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 31 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 32 #else 33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 34 #endif 35 36 using namespace llvm; 37 38 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 39 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 40 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 41 "controls the budget that is considered cheap (default = 4)")); 42 43 using namespace PatternMatch; 44 45 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 46 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 47 /// creating a new one. 48 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 49 Instruction::CastOps Op, 50 BasicBlock::iterator IP) { 51 // This function must be called with the builder having a valid insertion 52 // point. It doesn't need to be the actual IP where the uses of the returned 53 // cast will be added, but it must dominate such IP. 54 // We use this precondition to produce a cast that will dominate all its 55 // uses. In particular, this is crucial for the case where the builder's 56 // insertion point *is* the point where we were asked to put the cast. 57 // Since we don't know the builder's insertion point is actually 58 // where the uses will be added (only that it dominates it), we are 59 // not allowed to move it. 60 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 61 62 Value *Ret = nullptr; 63 64 // Check to see if there is already a cast! 65 for (User *U : V->users()) { 66 if (U->getType() != Ty) 67 continue; 68 CastInst *CI = dyn_cast<CastInst>(U); 69 if (!CI || CI->getOpcode() != Op) 70 continue; 71 72 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 73 // the cast must also properly dominate the Builder's insertion point. 74 if (IP->getParent() == CI->getParent() && &*BIP != CI && 75 (&*IP == CI || CI->comesBefore(&*IP))) { 76 Ret = CI; 77 break; 78 } 79 } 80 81 // Create a new cast. 82 if (!Ret) { 83 SCEVInsertPointGuard Guard(Builder, this); 84 Builder.SetInsertPoint(&*IP); 85 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 86 } 87 88 // We assert at the end of the function since IP might point to an 89 // instruction with different dominance properties than a cast 90 // (an invoke for example) and not dominate BIP (but the cast does). 91 assert(!isa<Instruction>(Ret) || 92 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 93 94 return Ret; 95 } 96 97 BasicBlock::iterator 98 SCEVExpander::findInsertPointAfter(Instruction *I, 99 Instruction *MustDominate) const { 100 BasicBlock::iterator IP = ++I->getIterator(); 101 if (auto *II = dyn_cast<InvokeInst>(I)) 102 IP = II->getNormalDest()->begin(); 103 104 while (isa<PHINode>(IP)) 105 ++IP; 106 107 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 108 ++IP; 109 } else if (isa<CatchSwitchInst>(IP)) { 110 IP = MustDominate->getParent()->getFirstInsertionPt(); 111 } else { 112 assert(!IP->isEHPad() && "unexpected eh pad!"); 113 } 114 115 // Adjust insert point to be after instructions inserted by the expander, so 116 // we can re-use already inserted instructions. Avoid skipping past the 117 // original \p MustDominate, in case it is an inserted instruction. 118 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 119 ++IP; 120 121 return IP; 122 } 123 124 BasicBlock::iterator 125 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 126 // Cast the argument at the beginning of the entry block, after 127 // any bitcasts of other arguments. 128 if (Argument *A = dyn_cast<Argument>(V)) { 129 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 130 while ((isa<BitCastInst>(IP) && 131 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 132 cast<BitCastInst>(IP)->getOperand(0) != A) || 133 isa<DbgInfoIntrinsic>(IP)) 134 ++IP; 135 return IP; 136 } 137 138 // Cast the instruction immediately after the instruction. 139 if (Instruction *I = dyn_cast<Instruction>(V)) 140 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 141 142 // Otherwise, this must be some kind of a constant, 143 // so let's plop this cast into the function's entry block. 144 assert(isa<Constant>(V) && 145 "Expected the cast argument to be a global/constant"); 146 return Builder.GetInsertBlock() 147 ->getParent() 148 ->getEntryBlock() 149 .getFirstInsertionPt(); 150 } 151 152 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 153 /// which must be possible with a noop cast, doing what we can to share 154 /// the casts. 155 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 156 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 157 assert((Op == Instruction::BitCast || 158 Op == Instruction::PtrToInt || 159 Op == Instruction::IntToPtr) && 160 "InsertNoopCastOfTo cannot perform non-noop casts!"); 161 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 162 "InsertNoopCastOfTo cannot change sizes!"); 163 164 // inttoptr only works for integral pointers. For non-integral pointers, we 165 // can create a GEP on i8* null with the integral value as index. Note that 166 // it is safe to use GEP of null instead of inttoptr here, because only 167 // expressions already based on a GEP of null should be converted to pointers 168 // during expansion. 169 if (Op == Instruction::IntToPtr) { 170 auto *PtrTy = cast<PointerType>(Ty); 171 if (DL.isNonIntegralPointerType(PtrTy)) { 172 auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 173 assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 && 174 "alloc size of i8 must by 1 byte for the GEP to be correct"); 175 auto *GEP = Builder.CreateGEP( 176 Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep"); 177 return Builder.CreateBitCast(GEP, Ty); 178 } 179 } 180 // Short-circuit unnecessary bitcasts. 181 if (Op == Instruction::BitCast) { 182 if (V->getType() == Ty) 183 return V; 184 if (CastInst *CI = dyn_cast<CastInst>(V)) { 185 if (CI->getOperand(0)->getType() == Ty) 186 return CI->getOperand(0); 187 } 188 } 189 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 190 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 191 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 192 if (CastInst *CI = dyn_cast<CastInst>(V)) 193 if ((CI->getOpcode() == Instruction::PtrToInt || 194 CI->getOpcode() == Instruction::IntToPtr) && 195 SE.getTypeSizeInBits(CI->getType()) == 196 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 197 return CI->getOperand(0); 198 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 199 if ((CE->getOpcode() == Instruction::PtrToInt || 200 CE->getOpcode() == Instruction::IntToPtr) && 201 SE.getTypeSizeInBits(CE->getType()) == 202 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 203 return CE->getOperand(0); 204 } 205 206 // Fold a cast of a constant. 207 if (Constant *C = dyn_cast<Constant>(V)) 208 return ConstantExpr::getCast(Op, C, Ty); 209 210 // Try to reuse existing cast, or insert one. 211 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 212 } 213 214 /// InsertBinop - Insert the specified binary operator, doing a small amount 215 /// of work to avoid inserting an obviously redundant operation, and hoisting 216 /// to an outer loop when the opportunity is there and it is safe. 217 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 218 Value *LHS, Value *RHS, 219 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 220 // Fold a binop with constant operands. 221 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 222 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 223 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 224 return Res; 225 226 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 227 unsigned ScanLimit = 6; 228 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 229 // Scanning starts from the last instruction before the insertion point. 230 BasicBlock::iterator IP = Builder.GetInsertPoint(); 231 if (IP != BlockBegin) { 232 --IP; 233 for (; ScanLimit; --IP, --ScanLimit) { 234 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 235 // generated code. 236 if (isa<DbgInfoIntrinsic>(IP)) 237 ScanLimit++; 238 239 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 240 // Ensure that no-wrap flags match. 241 if (isa<OverflowingBinaryOperator>(I)) { 242 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 243 return true; 244 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 245 return true; 246 } 247 // Conservatively, do not use any instruction which has any of exact 248 // flags installed. 249 if (isa<PossiblyExactOperator>(I) && I->isExact()) 250 return true; 251 return false; 252 }; 253 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 254 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 255 return &*IP; 256 if (IP == BlockBegin) break; 257 } 258 } 259 260 // Save the original insertion point so we can restore it when we're done. 261 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 262 SCEVInsertPointGuard Guard(Builder, this); 263 264 if (IsSafeToHoist) { 265 // Move the insertion point out of as many loops as we can. 266 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 267 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 268 BasicBlock *Preheader = L->getLoopPreheader(); 269 if (!Preheader) break; 270 271 // Ok, move up a level. 272 Builder.SetInsertPoint(Preheader->getTerminator()); 273 } 274 } 275 276 // If we haven't found this binop, insert it. 277 // TODO: Use the Builder, which will make CreateBinOp below fold with 278 // InstSimplifyFolder. 279 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 280 BO->setDebugLoc(Loc); 281 if (Flags & SCEV::FlagNUW) 282 BO->setHasNoUnsignedWrap(); 283 if (Flags & SCEV::FlagNSW) 284 BO->setHasNoSignedWrap(); 285 286 return BO; 287 } 288 289 /// FactorOutConstant - Test if S is divisible by Factor, using signed 290 /// division. If so, update S with Factor divided out and return true. 291 /// S need not be evenly divisible if a reasonable remainder can be 292 /// computed. 293 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 294 const SCEV *Factor, ScalarEvolution &SE, 295 const DataLayout &DL) { 296 // Everything is divisible by one. 297 if (Factor->isOne()) 298 return true; 299 300 // x/x == 1. 301 if (S == Factor) { 302 S = SE.getConstant(S->getType(), 1); 303 return true; 304 } 305 306 // For a Constant, check for a multiple of the given factor. 307 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 308 // 0/x == 0. 309 if (C->isZero()) 310 return true; 311 // Check for divisibility. 312 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 313 ConstantInt *CI = 314 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 315 // If the quotient is zero and the remainder is non-zero, reject 316 // the value at this scale. It will be considered for subsequent 317 // smaller scales. 318 if (!CI->isZero()) { 319 const SCEV *Div = SE.getConstant(CI); 320 S = Div; 321 Remainder = SE.getAddExpr( 322 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 323 return true; 324 } 325 } 326 } 327 328 // In a Mul, check if there is a constant operand which is a multiple 329 // of the given factor. 330 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 331 // Size is known, check if there is a constant operand which is a multiple 332 // of the given factor. If so, we can factor it. 333 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 334 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 335 if (!C->getAPInt().srem(FC->getAPInt())) { 336 SmallVector<const SCEV *, 4> NewMulOps(M->operands()); 337 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 338 S = SE.getMulExpr(NewMulOps); 339 return true; 340 } 341 } 342 343 // In an AddRec, check if both start and step are divisible. 344 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 345 const SCEV *Step = A->getStepRecurrence(SE); 346 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 347 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 348 return false; 349 if (!StepRem->isZero()) 350 return false; 351 const SCEV *Start = A->getStart(); 352 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 353 return false; 354 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 355 A->getNoWrapFlags(SCEV::FlagNW)); 356 return true; 357 } 358 359 return false; 360 } 361 362 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 363 /// is the number of SCEVAddRecExprs present, which are kept at the end of 364 /// the list. 365 /// 366 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 367 Type *Ty, 368 ScalarEvolution &SE) { 369 unsigned NumAddRecs = 0; 370 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 371 ++NumAddRecs; 372 // Group Ops into non-addrecs and addrecs. 373 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 374 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 375 // Let ScalarEvolution sort and simplify the non-addrecs list. 376 const SCEV *Sum = NoAddRecs.empty() ? 377 SE.getConstant(Ty, 0) : 378 SE.getAddExpr(NoAddRecs); 379 // If it returned an add, use the operands. Otherwise it simplified 380 // the sum into a single value, so just use that. 381 Ops.clear(); 382 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 383 Ops.append(Add->op_begin(), Add->op_end()); 384 else if (!Sum->isZero()) 385 Ops.push_back(Sum); 386 // Then append the addrecs. 387 Ops.append(AddRecs.begin(), AddRecs.end()); 388 } 389 390 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 391 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 392 /// This helps expose more opportunities for folding parts of the expressions 393 /// into GEP indices. 394 /// 395 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 396 Type *Ty, 397 ScalarEvolution &SE) { 398 // Find the addrecs. 399 SmallVector<const SCEV *, 8> AddRecs; 400 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 401 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 402 const SCEV *Start = A->getStart(); 403 if (Start->isZero()) break; 404 const SCEV *Zero = SE.getConstant(Ty, 0); 405 AddRecs.push_back(SE.getAddRecExpr(Zero, 406 A->getStepRecurrence(SE), 407 A->getLoop(), 408 A->getNoWrapFlags(SCEV::FlagNW))); 409 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 410 Ops[i] = Zero; 411 Ops.append(Add->op_begin(), Add->op_end()); 412 e += Add->getNumOperands(); 413 } else { 414 Ops[i] = Start; 415 } 416 } 417 if (!AddRecs.empty()) { 418 // Add the addrecs onto the end of the list. 419 Ops.append(AddRecs.begin(), AddRecs.end()); 420 // Resort the operand list, moving any constants to the front. 421 SimplifyAddOperands(Ops, Ty, SE); 422 } 423 } 424 425 /// expandAddToGEP - Expand an addition expression with a pointer type into 426 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 427 /// BasicAliasAnalysis and other passes analyze the result. See the rules 428 /// for getelementptr vs. inttoptr in 429 /// http://llvm.org/docs/LangRef.html#pointeraliasing 430 /// for details. 431 /// 432 /// Design note: The correctness of using getelementptr here depends on 433 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 434 /// they may introduce pointer arithmetic which may not be safely converted 435 /// into getelementptr. 436 /// 437 /// Design note: It might seem desirable for this function to be more 438 /// loop-aware. If some of the indices are loop-invariant while others 439 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 440 /// loop-invariant portions of the overall computation outside the loop. 441 /// However, there are a few reasons this is not done here. Hoisting simple 442 /// arithmetic is a low-level optimization that often isn't very 443 /// important until late in the optimization process. In fact, passes 444 /// like InstructionCombining will combine GEPs, even if it means 445 /// pushing loop-invariant computation down into loops, so even if the 446 /// GEPs were split here, the work would quickly be undone. The 447 /// LoopStrengthReduction pass, which is usually run quite late (and 448 /// after the last InstructionCombining pass), takes care of hoisting 449 /// loop-invariant portions of expressions, after considering what 450 /// can be folded using target addressing modes. 451 /// 452 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 453 const SCEV *const *op_end, 454 PointerType *PTy, 455 Type *Ty, 456 Value *V) { 457 SmallVector<Value *, 4> GepIndices; 458 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 459 bool AnyNonZeroIndices = false; 460 461 // Split AddRecs up into parts as either of the parts may be usable 462 // without the other. 463 SplitAddRecs(Ops, Ty, SE); 464 465 Type *IntIdxTy = DL.getIndexType(PTy); 466 467 // For opaque pointers, always generate i8 GEP. 468 if (!PTy->isOpaque()) { 469 // Descend down the pointer's type and attempt to convert the other 470 // operands into GEP indices, at each level. The first index in a GEP 471 // indexes into the array implied by the pointer operand; the rest of 472 // the indices index into the element or field type selected by the 473 // preceding index. 474 Type *ElTy = PTy->getNonOpaquePointerElementType(); 475 for (;;) { 476 // If the scale size is not 0, attempt to factor out a scale for 477 // array indexing. 478 SmallVector<const SCEV *, 8> ScaledOps; 479 if (ElTy->isSized()) { 480 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 481 if (!ElSize->isZero()) { 482 SmallVector<const SCEV *, 8> NewOps; 483 for (const SCEV *Op : Ops) { 484 const SCEV *Remainder = SE.getConstant(Ty, 0); 485 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 486 // Op now has ElSize factored out. 487 ScaledOps.push_back(Op); 488 if (!Remainder->isZero()) 489 NewOps.push_back(Remainder); 490 AnyNonZeroIndices = true; 491 } else { 492 // The operand was not divisible, so add it to the list of 493 // operands we'll scan next iteration. 494 NewOps.push_back(Op); 495 } 496 } 497 // If we made any changes, update Ops. 498 if (!ScaledOps.empty()) { 499 Ops = NewOps; 500 SimplifyAddOperands(Ops, Ty, SE); 501 } 502 } 503 } 504 505 // Record the scaled array index for this level of the type. If 506 // we didn't find any operands that could be factored, tentatively 507 // assume that element zero was selected (since the zero offset 508 // would obviously be folded away). 509 Value *Scaled = 510 ScaledOps.empty() 511 ? Constant::getNullValue(Ty) 512 : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false); 513 GepIndices.push_back(Scaled); 514 515 // Collect struct field index operands. 516 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 517 bool FoundFieldNo = false; 518 // An empty struct has no fields. 519 if (STy->getNumElements() == 0) break; 520 // Field offsets are known. See if a constant offset falls within any of 521 // the struct fields. 522 if (Ops.empty()) 523 break; 524 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 525 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 526 const StructLayout &SL = *DL.getStructLayout(STy); 527 uint64_t FullOffset = C->getValue()->getZExtValue(); 528 if (FullOffset < SL.getSizeInBytes()) { 529 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 530 GepIndices.push_back( 531 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 532 ElTy = STy->getTypeAtIndex(ElIdx); 533 Ops[0] = 534 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 535 AnyNonZeroIndices = true; 536 FoundFieldNo = true; 537 } 538 } 539 // If no struct field offsets were found, tentatively assume that 540 // field zero was selected (since the zero offset would obviously 541 // be folded away). 542 if (!FoundFieldNo) { 543 ElTy = STy->getTypeAtIndex(0u); 544 GepIndices.push_back( 545 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 546 } 547 } 548 549 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 550 ElTy = ATy->getElementType(); 551 else 552 // FIXME: Handle VectorType. 553 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 554 // constant, therefore can not be factored out. The generated IR is less 555 // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 556 break; 557 } 558 } 559 560 // If none of the operands were convertible to proper GEP indices, cast 561 // the base to i8* and do an ugly getelementptr with that. It's still 562 // better than ptrtoint+arithmetic+inttoptr at least. 563 if (!AnyNonZeroIndices) { 564 // Cast the base to i8*. 565 if (!PTy->isOpaque()) 566 V = InsertNoopCastOfTo(V, 567 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 568 569 assert(!isa<Instruction>(V) || 570 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 571 572 // Expand the operands for a plain byte offset. 573 Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false); 574 575 // Fold a GEP with constant operands. 576 if (Constant *CLHS = dyn_cast<Constant>(V)) 577 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 578 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 579 CLHS, CRHS); 580 581 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 582 unsigned ScanLimit = 6; 583 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 584 // Scanning starts from the last instruction before the insertion point. 585 BasicBlock::iterator IP = Builder.GetInsertPoint(); 586 if (IP != BlockBegin) { 587 --IP; 588 for (; ScanLimit; --IP, --ScanLimit) { 589 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 590 // generated code. 591 if (isa<DbgInfoIntrinsic>(IP)) 592 ScanLimit++; 593 if (IP->getOpcode() == Instruction::GetElementPtr && 594 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 595 cast<GEPOperator>(&*IP)->getSourceElementType() == 596 Type::getInt8Ty(Ty->getContext())) 597 return &*IP; 598 if (IP == BlockBegin) break; 599 } 600 } 601 602 // Save the original insertion point so we can restore it when we're done. 603 SCEVInsertPointGuard Guard(Builder, this); 604 605 // Move the insertion point out of as many loops as we can. 606 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 607 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 608 BasicBlock *Preheader = L->getLoopPreheader(); 609 if (!Preheader) break; 610 611 // Ok, move up a level. 612 Builder.SetInsertPoint(Preheader->getTerminator()); 613 } 614 615 // Emit a GEP. 616 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 617 } 618 619 { 620 SCEVInsertPointGuard Guard(Builder, this); 621 622 // Move the insertion point out of as many loops as we can. 623 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 624 if (!L->isLoopInvariant(V)) break; 625 626 bool AnyIndexNotLoopInvariant = any_of( 627 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 628 629 if (AnyIndexNotLoopInvariant) 630 break; 631 632 BasicBlock *Preheader = L->getLoopPreheader(); 633 if (!Preheader) break; 634 635 // Ok, move up a level. 636 Builder.SetInsertPoint(Preheader->getTerminator()); 637 } 638 639 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 640 // because ScalarEvolution may have changed the address arithmetic to 641 // compute a value which is beyond the end of the allocated object. 642 Value *Casted = V; 643 if (V->getType() != PTy) 644 Casted = InsertNoopCastOfTo(Casted, PTy); 645 Value *GEP = Builder.CreateGEP(PTy->getNonOpaquePointerElementType(), 646 Casted, GepIndices, "scevgep"); 647 Ops.push_back(SE.getUnknown(GEP)); 648 } 649 650 return expand(SE.getAddExpr(Ops)); 651 } 652 653 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 654 Value *V) { 655 const SCEV *const Ops[1] = {Op}; 656 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 657 } 658 659 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 660 /// SCEV expansion. If they are nested, this is the most nested. If they are 661 /// neighboring, pick the later. 662 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 663 DominatorTree &DT) { 664 if (!A) return B; 665 if (!B) return A; 666 if (A->contains(B)) return B; 667 if (B->contains(A)) return A; 668 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 669 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 670 return A; // Arbitrarily break the tie. 671 } 672 673 /// getRelevantLoop - Get the most relevant loop associated with the given 674 /// expression, according to PickMostRelevantLoop. 675 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 676 // Test whether we've already computed the most relevant loop for this SCEV. 677 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 678 if (!Pair.second) 679 return Pair.first->second; 680 681 if (isa<SCEVConstant>(S)) 682 // A constant has no relevant loops. 683 return nullptr; 684 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 685 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 686 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 687 // A non-instruction has no relevant loops. 688 return nullptr; 689 } 690 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 691 const Loop *L = nullptr; 692 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 693 L = AR->getLoop(); 694 for (const SCEV *Op : N->operands()) 695 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 696 return RelevantLoops[N] = L; 697 } 698 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 699 const Loop *Result = getRelevantLoop(C->getOperand()); 700 return RelevantLoops[C] = Result; 701 } 702 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 703 const Loop *Result = PickMostRelevantLoop( 704 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 705 return RelevantLoops[D] = Result; 706 } 707 llvm_unreachable("Unexpected SCEV type!"); 708 } 709 710 namespace { 711 712 /// LoopCompare - Compare loops by PickMostRelevantLoop. 713 class LoopCompare { 714 DominatorTree &DT; 715 public: 716 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 717 718 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 719 std::pair<const Loop *, const SCEV *> RHS) const { 720 // Keep pointer operands sorted at the end. 721 if (LHS.second->getType()->isPointerTy() != 722 RHS.second->getType()->isPointerTy()) 723 return LHS.second->getType()->isPointerTy(); 724 725 // Compare loops with PickMostRelevantLoop. 726 if (LHS.first != RHS.first) 727 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 728 729 // If one operand is a non-constant negative and the other is not, 730 // put the non-constant negative on the right so that a sub can 731 // be used instead of a negate and add. 732 if (LHS.second->isNonConstantNegative()) { 733 if (!RHS.second->isNonConstantNegative()) 734 return false; 735 } else if (RHS.second->isNonConstantNegative()) 736 return true; 737 738 // Otherwise they are equivalent according to this comparison. 739 return false; 740 } 741 }; 742 743 } 744 745 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 746 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 747 748 // Collect all the add operands in a loop, along with their associated loops. 749 // Iterate in reverse so that constants are emitted last, all else equal, and 750 // so that pointer operands are inserted first, which the code below relies on 751 // to form more involved GEPs. 752 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 753 for (const SCEV *Op : reverse(S->operands())) 754 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 755 756 // Sort by loop. Use a stable sort so that constants follow non-constants and 757 // pointer operands precede non-pointer operands. 758 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 759 760 // Emit instructions to add all the operands. Hoist as much as possible 761 // out of loops, and form meaningful getelementptrs where possible. 762 Value *Sum = nullptr; 763 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 764 const Loop *CurLoop = I->first; 765 const SCEV *Op = I->second; 766 if (!Sum) { 767 // This is the first operand. Just expand it. 768 Sum = expand(Op); 769 ++I; 770 continue; 771 } 772 773 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 774 if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 775 // The running sum expression is a pointer. Try to form a getelementptr 776 // at this level with that as the base. 777 SmallVector<const SCEV *, 4> NewOps; 778 for (; I != E && I->first == CurLoop; ++I) { 779 // If the operand is SCEVUnknown and not instructions, peek through 780 // it, to enable more of it to be folded into the GEP. 781 const SCEV *X = I->second; 782 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 783 if (!isa<Instruction>(U->getValue())) 784 X = SE.getSCEV(U->getValue()); 785 NewOps.push_back(X); 786 } 787 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 788 } else if (Op->isNonConstantNegative()) { 789 // Instead of doing a negate and add, just do a subtract. 790 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false); 791 Sum = InsertNoopCastOfTo(Sum, Ty); 792 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 793 /*IsSafeToHoist*/ true); 794 ++I; 795 } else { 796 // A simple add. 797 Value *W = expandCodeForImpl(Op, Ty, false); 798 Sum = InsertNoopCastOfTo(Sum, Ty); 799 // Canonicalize a constant to the RHS. 800 if (isa<Constant>(Sum)) std::swap(Sum, W); 801 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 802 /*IsSafeToHoist*/ true); 803 ++I; 804 } 805 } 806 807 return Sum; 808 } 809 810 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 811 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 812 813 // Collect all the mul operands in a loop, along with their associated loops. 814 // Iterate in reverse so that constants are emitted last, all else equal. 815 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 816 for (const SCEV *Op : reverse(S->operands())) 817 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 818 819 // Sort by loop. Use a stable sort so that constants follow non-constants. 820 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 821 822 // Emit instructions to mul all the operands. Hoist as much as possible 823 // out of loops. 824 Value *Prod = nullptr; 825 auto I = OpsAndLoops.begin(); 826 827 // Expand the calculation of X pow N in the following manner: 828 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 829 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 830 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 831 auto E = I; 832 // Calculate how many times the same operand from the same loop is included 833 // into this power. 834 uint64_t Exponent = 0; 835 const uint64_t MaxExponent = UINT64_MAX >> 1; 836 // No one sane will ever try to calculate such huge exponents, but if we 837 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 838 // below when the power of 2 exceeds our Exponent, and we want it to be 839 // 1u << 31 at most to not deal with unsigned overflow. 840 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 841 ++Exponent; 842 ++E; 843 } 844 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 845 846 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 847 // that are needed into the result. 848 Value *P = expandCodeForImpl(I->second, Ty, false); 849 Value *Result = nullptr; 850 if (Exponent & 1) 851 Result = P; 852 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 853 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 854 /*IsSafeToHoist*/ true); 855 if (Exponent & BinExp) 856 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 857 SCEV::FlagAnyWrap, 858 /*IsSafeToHoist*/ true) 859 : P; 860 } 861 862 I = E; 863 assert(Result && "Nothing was expanded?"); 864 return Result; 865 }; 866 867 while (I != OpsAndLoops.end()) { 868 if (!Prod) { 869 // This is the first operand. Just expand it. 870 Prod = ExpandOpBinPowN(); 871 } else if (I->second->isAllOnesValue()) { 872 // Instead of doing a multiply by negative one, just do a negate. 873 Prod = InsertNoopCastOfTo(Prod, Ty); 874 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 875 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 876 ++I; 877 } else { 878 // A simple mul. 879 Value *W = ExpandOpBinPowN(); 880 Prod = InsertNoopCastOfTo(Prod, Ty); 881 // Canonicalize a constant to the RHS. 882 if (isa<Constant>(Prod)) std::swap(Prod, W); 883 const APInt *RHS; 884 if (match(W, m_Power2(RHS))) { 885 // Canonicalize Prod*(1<<C) to Prod<<C. 886 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 887 auto NWFlags = S->getNoWrapFlags(); 888 // clear nsw flag if shl will produce poison value. 889 if (RHS->logBase2() == RHS->getBitWidth() - 1) 890 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 891 Prod = InsertBinop(Instruction::Shl, Prod, 892 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 893 /*IsSafeToHoist*/ true); 894 } else { 895 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 896 /*IsSafeToHoist*/ true); 897 } 898 } 899 } 900 901 return Prod; 902 } 903 904 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 905 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 906 907 Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false); 908 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 909 const APInt &RHS = SC->getAPInt(); 910 if (RHS.isPowerOf2()) 911 return InsertBinop(Instruction::LShr, LHS, 912 ConstantInt::get(Ty, RHS.logBase2()), 913 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 914 } 915 916 Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false); 917 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 918 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 919 } 920 921 /// Determine if this is a well-behaved chain of instructions leading back to 922 /// the PHI. If so, it may be reused by expanded expressions. 923 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 924 const Loop *L) { 925 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 926 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 927 return false; 928 // If any of the operands don't dominate the insert position, bail. 929 // Addrec operands are always loop-invariant, so this can only happen 930 // if there are instructions which haven't been hoisted. 931 if (L == IVIncInsertLoop) { 932 for (Use &Op : llvm::drop_begin(IncV->operands())) 933 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 934 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 935 return false; 936 } 937 // Advance to the next instruction. 938 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 939 if (!IncV) 940 return false; 941 942 if (IncV->mayHaveSideEffects()) 943 return false; 944 945 if (IncV == PN) 946 return true; 947 948 return isNormalAddRecExprPHI(PN, IncV, L); 949 } 950 951 /// getIVIncOperand returns an induction variable increment's induction 952 /// variable operand. 953 /// 954 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 955 /// operands dominate InsertPos. 956 /// 957 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 958 /// simple patterns generated by getAddRecExprPHILiterally and 959 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 960 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 961 Instruction *InsertPos, 962 bool allowScale) { 963 if (IncV == InsertPos) 964 return nullptr; 965 966 switch (IncV->getOpcode()) { 967 default: 968 return nullptr; 969 // Check for a simple Add/Sub or GEP of a loop invariant step. 970 case Instruction::Add: 971 case Instruction::Sub: { 972 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 973 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 974 return dyn_cast<Instruction>(IncV->getOperand(0)); 975 return nullptr; 976 } 977 case Instruction::BitCast: 978 return dyn_cast<Instruction>(IncV->getOperand(0)); 979 case Instruction::GetElementPtr: 980 for (Use &U : llvm::drop_begin(IncV->operands())) { 981 if (isa<Constant>(U)) 982 continue; 983 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 984 if (!SE.DT.dominates(OInst, InsertPos)) 985 return nullptr; 986 } 987 if (allowScale) { 988 // allow any kind of GEP as long as it can be hoisted. 989 continue; 990 } 991 // This must be a pointer addition of constants (pretty), which is already 992 // handled, or some number of address-size elements (ugly). Ugly geps 993 // have 2 operands. i1* is used by the expander to represent an 994 // address-size element. 995 if (IncV->getNumOperands() != 2) 996 return nullptr; 997 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 998 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 999 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 1000 return nullptr; 1001 break; 1002 } 1003 return dyn_cast<Instruction>(IncV->getOperand(0)); 1004 } 1005 } 1006 1007 /// If the insert point of the current builder or any of the builders on the 1008 /// stack of saved builders has 'I' as its insert point, update it to point to 1009 /// the instruction after 'I'. This is intended to be used when the instruction 1010 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 1011 /// different block, the inconsistent insert point (with a mismatched 1012 /// Instruction and Block) can lead to an instruction being inserted in a block 1013 /// other than its parent. 1014 void SCEVExpander::fixupInsertPoints(Instruction *I) { 1015 BasicBlock::iterator It(*I); 1016 BasicBlock::iterator NewInsertPt = std::next(It); 1017 if (Builder.GetInsertPoint() == It) 1018 Builder.SetInsertPoint(&*NewInsertPt); 1019 for (auto *InsertPtGuard : InsertPointGuards) 1020 if (InsertPtGuard->GetInsertPoint() == It) 1021 InsertPtGuard->SetInsertPoint(NewInsertPt); 1022 } 1023 1024 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1025 /// it available to other uses in this loop. Recursively hoist any operands, 1026 /// until we reach a value that dominates InsertPos. 1027 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 1028 if (SE.DT.dominates(IncV, InsertPos)) 1029 return true; 1030 1031 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1032 // its existing users. 1033 if (isa<PHINode>(InsertPos) || 1034 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1035 return false; 1036 1037 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1038 return false; 1039 1040 // Check that the chain of IV operands leading back to Phi can be hoisted. 1041 SmallVector<Instruction*, 4> IVIncs; 1042 for(;;) { 1043 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1044 if (!Oper) 1045 return false; 1046 // IncV is safe to hoist. 1047 IVIncs.push_back(IncV); 1048 IncV = Oper; 1049 if (SE.DT.dominates(IncV, InsertPos)) 1050 break; 1051 } 1052 for (Instruction *I : llvm::reverse(IVIncs)) { 1053 fixupInsertPoints(I); 1054 I->moveBefore(InsertPos); 1055 } 1056 return true; 1057 } 1058 1059 /// Determine if this cyclic phi is in a form that would have been generated by 1060 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1061 /// as it is in a low-cost form, for example, no implied multiplication. This 1062 /// should match any patterns generated by getAddRecExprPHILiterally and 1063 /// expandAddtoGEP. 1064 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1065 const Loop *L) { 1066 for(Instruction *IVOper = IncV; 1067 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1068 /*allowScale=*/false));) { 1069 if (IVOper == PN) 1070 return true; 1071 } 1072 return false; 1073 } 1074 1075 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1076 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1077 /// need to materialize IV increments elsewhere to handle difficult situations. 1078 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1079 Type *ExpandTy, Type *IntTy, 1080 bool useSubtract) { 1081 Value *IncV; 1082 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1083 if (ExpandTy->isPointerTy()) { 1084 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1085 // If the step isn't constant, don't use an implicitly scaled GEP, because 1086 // that would require a multiply inside the loop. 1087 if (!isa<ConstantInt>(StepV)) 1088 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1089 GEPPtrTy->getAddressSpace()); 1090 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1091 if (IncV->getType() != PN->getType()) 1092 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1093 } else { 1094 IncV = useSubtract ? 1095 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1096 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1097 } 1098 return IncV; 1099 } 1100 1101 /// Check whether we can cheaply express the requested SCEV in terms of 1102 /// the available PHI SCEV by truncation and/or inversion of the step. 1103 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1104 const SCEVAddRecExpr *Phi, 1105 const SCEVAddRecExpr *Requested, 1106 bool &InvertStep) { 1107 // We can't transform to match a pointer PHI. 1108 if (Phi->getType()->isPointerTy()) 1109 return false; 1110 1111 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1112 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1113 1114 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1115 return false; 1116 1117 // Try truncate it if necessary. 1118 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1119 if (!Phi) 1120 return false; 1121 1122 // Check whether truncation will help. 1123 if (Phi == Requested) { 1124 InvertStep = false; 1125 return true; 1126 } 1127 1128 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1129 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 1130 InvertStep = true; 1131 return true; 1132 } 1133 1134 return false; 1135 } 1136 1137 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1138 if (!isa<IntegerType>(AR->getType())) 1139 return false; 1140 1141 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1142 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1143 const SCEV *Step = AR->getStepRecurrence(SE); 1144 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1145 SE.getSignExtendExpr(AR, WideTy)); 1146 const SCEV *ExtendAfterOp = 1147 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1148 return ExtendAfterOp == OpAfterExtend; 1149 } 1150 1151 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1152 if (!isa<IntegerType>(AR->getType())) 1153 return false; 1154 1155 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1156 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1157 const SCEV *Step = AR->getStepRecurrence(SE); 1158 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1159 SE.getZeroExtendExpr(AR, WideTy)); 1160 const SCEV *ExtendAfterOp = 1161 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1162 return ExtendAfterOp == OpAfterExtend; 1163 } 1164 1165 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1166 /// the base addrec, which is the addrec without any non-loop-dominating 1167 /// values, and return the PHI. 1168 PHINode * 1169 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1170 const Loop *L, 1171 Type *ExpandTy, 1172 Type *IntTy, 1173 Type *&TruncTy, 1174 bool &InvertStep) { 1175 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1176 1177 // Reuse a previously-inserted PHI, if present. 1178 BasicBlock *LatchBlock = L->getLoopLatch(); 1179 if (LatchBlock) { 1180 PHINode *AddRecPhiMatch = nullptr; 1181 Instruction *IncV = nullptr; 1182 TruncTy = nullptr; 1183 InvertStep = false; 1184 1185 // Only try partially matching scevs that need truncation and/or 1186 // step-inversion if we know this loop is outside the current loop. 1187 bool TryNonMatchingSCEV = 1188 IVIncInsertLoop && 1189 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1190 1191 for (PHINode &PN : L->getHeader()->phis()) { 1192 if (!SE.isSCEVable(PN.getType())) 1193 continue; 1194 1195 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 1196 // PHI has no meaning at all. 1197 if (!PN.isComplete()) { 1198 SCEV_DEBUG_WITH_TYPE( 1199 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 1200 continue; 1201 } 1202 1203 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1204 if (!PhiSCEV) 1205 continue; 1206 1207 bool IsMatchingSCEV = PhiSCEV == Normalized; 1208 // We only handle truncation and inversion of phi recurrences for the 1209 // expanded expression if the expanded expression's loop dominates the 1210 // loop we insert to. Check now, so we can bail out early. 1211 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1212 continue; 1213 1214 // TODO: this possibly can be reworked to avoid this cast at all. 1215 Instruction *TempIncV = 1216 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1217 if (!TempIncV) 1218 continue; 1219 1220 // Check whether we can reuse this PHI node. 1221 if (LSRMode) { 1222 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1223 continue; 1224 } else { 1225 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1226 continue; 1227 } 1228 1229 // Stop if we have found an exact match SCEV. 1230 if (IsMatchingSCEV) { 1231 IncV = TempIncV; 1232 TruncTy = nullptr; 1233 InvertStep = false; 1234 AddRecPhiMatch = &PN; 1235 break; 1236 } 1237 1238 // Try whether the phi can be translated into the requested form 1239 // (truncated and/or offset by a constant). 1240 if ((!TruncTy || InvertStep) && 1241 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1242 // Record the phi node. But don't stop we might find an exact match 1243 // later. 1244 AddRecPhiMatch = &PN; 1245 IncV = TempIncV; 1246 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1247 } 1248 } 1249 1250 if (AddRecPhiMatch) { 1251 // Ok, the add recurrence looks usable. 1252 // Remember this PHI, even in post-inc mode. 1253 InsertedValues.insert(AddRecPhiMatch); 1254 // Remember the increment. 1255 rememberInstruction(IncV); 1256 // Those values were not actually inserted but re-used. 1257 ReusedValues.insert(AddRecPhiMatch); 1258 ReusedValues.insert(IncV); 1259 return AddRecPhiMatch; 1260 } 1261 } 1262 1263 // Save the original insertion point so we can restore it when we're done. 1264 SCEVInsertPointGuard Guard(Builder, this); 1265 1266 // Another AddRec may need to be recursively expanded below. For example, if 1267 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1268 // loop. Remove this loop from the PostIncLoops set before expanding such 1269 // AddRecs. Otherwise, we cannot find a valid position for the step 1270 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1271 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1272 // so it's not worth implementing SmallPtrSet::swap. 1273 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1274 PostIncLoops.clear(); 1275 1276 // Expand code for the start value into the loop preheader. 1277 assert(L->getLoopPreheader() && 1278 "Can't expand add recurrences without a loop preheader!"); 1279 Value *StartV = 1280 expandCodeForImpl(Normalized->getStart(), ExpandTy, 1281 L->getLoopPreheader()->getTerminator(), false); 1282 1283 // StartV must have been be inserted into L's preheader to dominate the new 1284 // phi. 1285 assert(!isa<Instruction>(StartV) || 1286 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1287 L->getHeader())); 1288 1289 // Expand code for the step value. Do this before creating the PHI so that PHI 1290 // reuse code doesn't see an incomplete PHI. 1291 const SCEV *Step = Normalized->getStepRecurrence(SE); 1292 // If the stride is negative, insert a sub instead of an add for the increment 1293 // (unless it's a constant, because subtracts of constants are canonicalized 1294 // to adds). 1295 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1296 if (useSubtract) 1297 Step = SE.getNegativeSCEV(Step); 1298 // Expand the step somewhere that dominates the loop header. 1299 Value *StepV = expandCodeForImpl( 1300 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1301 1302 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1303 // we actually do emit an addition. It does not apply if we emit a 1304 // subtraction. 1305 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1306 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1307 1308 // Create the PHI. 1309 BasicBlock *Header = L->getHeader(); 1310 Builder.SetInsertPoint(Header, Header->begin()); 1311 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1312 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1313 Twine(IVName) + ".iv"); 1314 1315 // Create the step instructions and populate the PHI. 1316 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1317 BasicBlock *Pred = *HPI; 1318 1319 // Add a start value. 1320 if (!L->contains(Pred)) { 1321 PN->addIncoming(StartV, Pred); 1322 continue; 1323 } 1324 1325 // Create a step value and add it to the PHI. 1326 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1327 // instructions at IVIncInsertPos. 1328 Instruction *InsertPos = L == IVIncInsertLoop ? 1329 IVIncInsertPos : Pred->getTerminator(); 1330 Builder.SetInsertPoint(InsertPos); 1331 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1332 1333 if (isa<OverflowingBinaryOperator>(IncV)) { 1334 if (IncrementIsNUW) 1335 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1336 if (IncrementIsNSW) 1337 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1338 } 1339 PN->addIncoming(IncV, Pred); 1340 } 1341 1342 // After expanding subexpressions, restore the PostIncLoops set so the caller 1343 // can ensure that IVIncrement dominates the current uses. 1344 PostIncLoops = SavedPostIncLoops; 1345 1346 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1347 // effective when we are able to use an IV inserted here, so record it. 1348 InsertedValues.insert(PN); 1349 InsertedIVs.push_back(PN); 1350 return PN; 1351 } 1352 1353 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1354 Type *STy = S->getType(); 1355 Type *IntTy = SE.getEffectiveSCEVType(STy); 1356 const Loop *L = S->getLoop(); 1357 1358 // Determine a normalized form of this expression, which is the expression 1359 // before any post-inc adjustment is made. 1360 const SCEVAddRecExpr *Normalized = S; 1361 if (PostIncLoops.count(L)) { 1362 PostIncLoopSet Loops; 1363 Loops.insert(L); 1364 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1365 } 1366 1367 // Strip off any non-loop-dominating component from the addrec start. 1368 const SCEV *Start = Normalized->getStart(); 1369 const SCEV *PostLoopOffset = nullptr; 1370 if (!SE.properlyDominates(Start, L->getHeader())) { 1371 PostLoopOffset = Start; 1372 Start = SE.getConstant(Normalized->getType(), 0); 1373 Normalized = cast<SCEVAddRecExpr>( 1374 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1375 Normalized->getLoop(), 1376 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1377 } 1378 1379 // Strip off any non-loop-dominating component from the addrec step. 1380 const SCEV *Step = Normalized->getStepRecurrence(SE); 1381 const SCEV *PostLoopScale = nullptr; 1382 if (!SE.dominates(Step, L->getHeader())) { 1383 PostLoopScale = Step; 1384 Step = SE.getConstant(Normalized->getType(), 1); 1385 if (!Start->isZero()) { 1386 // The normalization below assumes that Start is constant zero, so if 1387 // it isn't re-associate Start to PostLoopOffset. 1388 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1389 PostLoopOffset = Start; 1390 Start = SE.getConstant(Normalized->getType(), 0); 1391 } 1392 Normalized = 1393 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1394 Start, Step, Normalized->getLoop(), 1395 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1396 } 1397 1398 // Expand the core addrec. If we need post-loop scaling, force it to 1399 // expand to an integer type to avoid the need for additional casting. 1400 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1401 // We can't use a pointer type for the addrec if the pointer type is 1402 // non-integral. 1403 Type *AddRecPHIExpandTy = 1404 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1405 1406 // In some cases, we decide to reuse an existing phi node but need to truncate 1407 // it and/or invert the step. 1408 Type *TruncTy = nullptr; 1409 bool InvertStep = false; 1410 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1411 IntTy, TruncTy, InvertStep); 1412 1413 // Accommodate post-inc mode, if necessary. 1414 Value *Result; 1415 if (!PostIncLoops.count(L)) 1416 Result = PN; 1417 else { 1418 // In PostInc mode, use the post-incremented value. 1419 BasicBlock *LatchBlock = L->getLoopLatch(); 1420 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1421 Result = PN->getIncomingValueForBlock(LatchBlock); 1422 1423 // We might be introducing a new use of the post-inc IV that is not poison 1424 // safe, in which case we should drop poison generating flags. Only keep 1425 // those flags for which SCEV has proven that they always hold. 1426 if (isa<OverflowingBinaryOperator>(Result)) { 1427 auto *I = cast<Instruction>(Result); 1428 if (!S->hasNoUnsignedWrap()) 1429 I->setHasNoUnsignedWrap(false); 1430 if (!S->hasNoSignedWrap()) 1431 I->setHasNoSignedWrap(false); 1432 } 1433 1434 // For an expansion to use the postinc form, the client must call 1435 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1436 // or dominated by IVIncInsertPos. 1437 if (isa<Instruction>(Result) && 1438 !SE.DT.dominates(cast<Instruction>(Result), 1439 &*Builder.GetInsertPoint())) { 1440 // The induction variable's postinc expansion does not dominate this use. 1441 // IVUsers tries to prevent this case, so it is rare. However, it can 1442 // happen when an IVUser outside the loop is not dominated by the latch 1443 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1444 // all cases. Consider a phi outside whose operand is replaced during 1445 // expansion with the value of the postinc user. Without fundamentally 1446 // changing the way postinc users are tracked, the only remedy is 1447 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1448 // but hopefully expandCodeFor handles that. 1449 bool useSubtract = 1450 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1451 if (useSubtract) 1452 Step = SE.getNegativeSCEV(Step); 1453 Value *StepV; 1454 { 1455 // Expand the step somewhere that dominates the loop header. 1456 SCEVInsertPointGuard Guard(Builder, this); 1457 StepV = expandCodeForImpl( 1458 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1459 } 1460 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1461 } 1462 } 1463 1464 // We have decided to reuse an induction variable of a dominating loop. Apply 1465 // truncation and/or inversion of the step. 1466 if (TruncTy) { 1467 Type *ResTy = Result->getType(); 1468 // Normalize the result type. 1469 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1470 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1471 // Truncate the result. 1472 if (TruncTy != Result->getType()) 1473 Result = Builder.CreateTrunc(Result, TruncTy); 1474 1475 // Invert the result. 1476 if (InvertStep) 1477 Result = Builder.CreateSub( 1478 expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result); 1479 } 1480 1481 // Re-apply any non-loop-dominating scale. 1482 if (PostLoopScale) { 1483 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1484 Result = InsertNoopCastOfTo(Result, IntTy); 1485 Result = Builder.CreateMul(Result, 1486 expandCodeForImpl(PostLoopScale, IntTy, false)); 1487 } 1488 1489 // Re-apply any non-loop-dominating offset. 1490 if (PostLoopOffset) { 1491 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1492 if (Result->getType()->isIntegerTy()) { 1493 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false); 1494 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1495 } else { 1496 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1497 } 1498 } else { 1499 Result = InsertNoopCastOfTo(Result, IntTy); 1500 Result = Builder.CreateAdd( 1501 Result, expandCodeForImpl(PostLoopOffset, IntTy, false)); 1502 } 1503 } 1504 1505 return Result; 1506 } 1507 1508 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1509 // In canonical mode we compute the addrec as an expression of a canonical IV 1510 // using evaluateAtIteration and expand the resulting SCEV expression. This 1511 // way we avoid introducing new IVs to carry on the comutation of the addrec 1512 // throughout the loop. 1513 // 1514 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1515 // type wider than the addrec itself. Emitting a canonical IV of the 1516 // proper type might produce non-legal types, for example expanding an i64 1517 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1518 // back to non-canonical mode for nested addrecs. 1519 if (!CanonicalMode || (S->getNumOperands() > 2)) 1520 return expandAddRecExprLiterally(S); 1521 1522 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1523 const Loop *L = S->getLoop(); 1524 1525 // First check for an existing canonical IV in a suitable type. 1526 PHINode *CanonicalIV = nullptr; 1527 if (PHINode *PN = L->getCanonicalInductionVariable()) 1528 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1529 CanonicalIV = PN; 1530 1531 // Rewrite an AddRec in terms of the canonical induction variable, if 1532 // its type is more narrow. 1533 if (CanonicalIV && 1534 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1535 !S->getType()->isPointerTy()) { 1536 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1537 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1538 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1539 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1540 S->getNoWrapFlags(SCEV::FlagNW))); 1541 BasicBlock::iterator NewInsertPt = 1542 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1543 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1544 &*NewInsertPt, false); 1545 return V; 1546 } 1547 1548 // {X,+,F} --> X + {0,+,F} 1549 if (!S->getStart()->isZero()) { 1550 if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) { 1551 Value *StartV = expand(SE.getPointerBase(S)); 1552 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1553 return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV); 1554 } 1555 1556 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1557 NewOps[0] = SE.getConstant(Ty, 0); 1558 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1559 S->getNoWrapFlags(SCEV::FlagNW)); 1560 1561 // Just do a normal add. Pre-expand the operands to suppress folding. 1562 // 1563 // The LHS and RHS values are factored out of the expand call to make the 1564 // output independent of the argument evaluation order. 1565 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1566 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1567 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1568 } 1569 1570 // If we don't yet have a canonical IV, create one. 1571 if (!CanonicalIV) { 1572 // Create and insert the PHI node for the induction variable in the 1573 // specified loop. 1574 BasicBlock *Header = L->getHeader(); 1575 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1576 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1577 &Header->front()); 1578 rememberInstruction(CanonicalIV); 1579 1580 SmallSet<BasicBlock *, 4> PredSeen; 1581 Constant *One = ConstantInt::get(Ty, 1); 1582 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1583 BasicBlock *HP = *HPI; 1584 if (!PredSeen.insert(HP).second) { 1585 // There must be an incoming value for each predecessor, even the 1586 // duplicates! 1587 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1588 continue; 1589 } 1590 1591 if (L->contains(HP)) { 1592 // Insert a unit add instruction right before the terminator 1593 // corresponding to the back-edge. 1594 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1595 "indvar.next", 1596 HP->getTerminator()); 1597 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1598 rememberInstruction(Add); 1599 CanonicalIV->addIncoming(Add, HP); 1600 } else { 1601 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1602 } 1603 } 1604 } 1605 1606 // {0,+,1} --> Insert a canonical induction variable into the loop! 1607 if (S->isAffine() && S->getOperand(1)->isOne()) { 1608 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1609 "IVs with types different from the canonical IV should " 1610 "already have been handled!"); 1611 return CanonicalIV; 1612 } 1613 1614 // {0,+,F} --> {0,+,1} * F 1615 1616 // If this is a simple linear addrec, emit it now as a special case. 1617 if (S->isAffine()) // {0,+,F} --> i*F 1618 return 1619 expand(SE.getTruncateOrNoop( 1620 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1621 SE.getNoopOrAnyExtend(S->getOperand(1), 1622 CanonicalIV->getType())), 1623 Ty)); 1624 1625 // If this is a chain of recurrences, turn it into a closed form, using the 1626 // folders, then expandCodeFor the closed form. This allows the folders to 1627 // simplify the expression without having to build a bunch of special code 1628 // into this folder. 1629 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1630 1631 // Promote S up to the canonical IV type, if the cast is foldable. 1632 const SCEV *NewS = S; 1633 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1634 if (isa<SCEVAddRecExpr>(Ext)) 1635 NewS = Ext; 1636 1637 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1638 1639 // Truncate the result down to the original type, if needed. 1640 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1641 return expand(T); 1642 } 1643 1644 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1645 Value *V = 1646 expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false); 1647 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1648 GetOptimalInsertionPointForCastOf(V)); 1649 } 1650 1651 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1652 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1653 Value *V = expandCodeForImpl( 1654 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1655 false); 1656 return Builder.CreateTrunc(V, Ty); 1657 } 1658 1659 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1660 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1661 Value *V = expandCodeForImpl( 1662 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1663 false); 1664 return Builder.CreateZExt(V, Ty); 1665 } 1666 1667 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1668 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1669 Value *V = expandCodeForImpl( 1670 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1671 false); 1672 return Builder.CreateSExt(V, Ty); 1673 } 1674 1675 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1676 Intrinsic::ID IntrinID, Twine Name, 1677 bool IsSequential) { 1678 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1679 Type *Ty = LHS->getType(); 1680 if (IsSequential) 1681 LHS = Builder.CreateFreeze(LHS); 1682 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1683 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1684 if (IsSequential && i != 0) 1685 RHS = Builder.CreateFreeze(RHS); 1686 Value *Sel; 1687 if (Ty->isIntegerTy()) 1688 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1689 /*FMFSource=*/nullptr, Name); 1690 else { 1691 Value *ICmp = 1692 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1693 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1694 } 1695 LHS = Sel; 1696 } 1697 return LHS; 1698 } 1699 1700 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1701 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1702 } 1703 1704 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1705 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1706 } 1707 1708 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1709 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1710 } 1711 1712 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1713 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1714 } 1715 1716 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1717 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1718 } 1719 1720 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1721 Instruction *IP, bool Root) { 1722 setInsertPoint(IP); 1723 Value *V = expandCodeForImpl(SH, Ty, Root); 1724 return V; 1725 } 1726 1727 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) { 1728 // Expand the code for this SCEV. 1729 Value *V = expand(SH); 1730 1731 if (PreserveLCSSA) { 1732 if (auto *Inst = dyn_cast<Instruction>(V)) { 1733 // Create a temporary instruction to at the current insertion point, so we 1734 // can hand it off to the helper to create LCSSA PHIs if required for the 1735 // new use. 1736 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 1737 // would accept a insertion point and return an LCSSA phi for that 1738 // insertion point, so there is no need to insert & remove the temporary 1739 // instruction. 1740 Instruction *Tmp; 1741 if (Inst->getType()->isIntegerTy()) 1742 Tmp = cast<Instruction>(Builder.CreateIntToPtr( 1743 Inst, Inst->getType()->getPointerTo(), "tmp.lcssa.user")); 1744 else { 1745 assert(Inst->getType()->isPointerTy()); 1746 Tmp = cast<Instruction>(Builder.CreatePtrToInt( 1747 Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user")); 1748 } 1749 V = fixupLCSSAFormFor(Tmp, 0); 1750 1751 // Clean up temporary instruction. 1752 InsertedValues.erase(Tmp); 1753 InsertedPostIncValues.erase(Tmp); 1754 Tmp->eraseFromParent(); 1755 } 1756 } 1757 1758 InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V; 1759 if (Ty) { 1760 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1761 "non-trivial casts should be done with the SCEVs directly!"); 1762 V = InsertNoopCastOfTo(V, Ty); 1763 } 1764 return V; 1765 } 1766 1767 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1768 const Instruction *InsertPt) { 1769 // If the expansion is not in CanonicalMode, and the SCEV contains any 1770 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1771 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1772 return nullptr; 1773 1774 // If S is a constant, it may be worse to reuse an existing Value. 1775 if (isa<SCEVConstant>(S)) 1776 return nullptr; 1777 1778 // Choose a Value from the set which dominates the InsertPt. 1779 // InsertPt should be inside the Value's parent loop so as not to break 1780 // the LCSSA form. 1781 for (Value *V : SE.getSCEVValues(S)) { 1782 Instruction *EntInst = dyn_cast<Instruction>(V); 1783 if (!EntInst) 1784 continue; 1785 1786 assert(EntInst->getFunction() == InsertPt->getFunction()); 1787 if (S->getType() == V->getType() && 1788 SE.DT.dominates(EntInst, InsertPt) && 1789 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1790 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1791 return V; 1792 } 1793 return nullptr; 1794 } 1795 1796 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1797 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1798 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1799 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1800 // the expansion will try to reuse Value from ExprValueMap, and only when it 1801 // fails, expand the SCEV literally. 1802 Value *SCEVExpander::expand(const SCEV *S) { 1803 // Compute an insertion point for this SCEV object. Hoist the instructions 1804 // as far out in the loop nest as possible. 1805 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1806 1807 // We can move insertion point only if there is no div or rem operations 1808 // otherwise we are risky to move it over the check for zero denominator. 1809 auto SafeToHoist = [](const SCEV *S) { 1810 return !SCEVExprContains(S, [](const SCEV *S) { 1811 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1812 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1813 // Division by non-zero constants can be hoisted. 1814 return SC->getValue()->isZero(); 1815 // All other divisions should not be moved as they may be 1816 // divisions by zero and should be kept within the 1817 // conditions of the surrounding loops that guard their 1818 // execution (see PR35406). 1819 return true; 1820 } 1821 return false; 1822 }); 1823 }; 1824 if (SafeToHoist(S)) { 1825 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1826 L = L->getParentLoop()) { 1827 if (SE.isLoopInvariant(S, L)) { 1828 if (!L) break; 1829 if (BasicBlock *Preheader = L->getLoopPreheader()) 1830 InsertPt = Preheader->getTerminator(); 1831 else 1832 // LSR sets the insertion point for AddRec start/step values to the 1833 // block start to simplify value reuse, even though it's an invalid 1834 // position. SCEVExpander must correct for this in all cases. 1835 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1836 } else { 1837 // If the SCEV is computable at this level, insert it into the header 1838 // after the PHIs (and after any other instructions that we've inserted 1839 // there) so that it is guaranteed to dominate any user inside the loop. 1840 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1841 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1842 1843 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1844 (isInsertedInstruction(InsertPt) || 1845 isa<DbgInfoIntrinsic>(InsertPt))) { 1846 InsertPt = &*std::next(InsertPt->getIterator()); 1847 } 1848 break; 1849 } 1850 } 1851 } 1852 1853 // Check to see if we already expanded this here. 1854 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1855 if (I != InsertedExpressions.end()) 1856 return I->second; 1857 1858 SCEVInsertPointGuard Guard(Builder, this); 1859 Builder.SetInsertPoint(InsertPt); 1860 1861 // Expand the expression into instructions. 1862 Value *V = FindValueInExprValueMap(S, InsertPt); 1863 if (!V) 1864 V = visit(S); 1865 else { 1866 // If we're reusing an existing instruction, we are effectively CSEing two 1867 // copies of the instruction (with potentially different flags). As such, 1868 // we need to drop any poison generating flags unless we can prove that 1869 // said flags must be valid for all new users. 1870 if (auto *I = dyn_cast<Instruction>(V)) 1871 if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)) 1872 I->dropPoisonGeneratingFlags(); 1873 } 1874 // Remember the expanded value for this SCEV at this location. 1875 // 1876 // This is independent of PostIncLoops. The mapped value simply materializes 1877 // the expression at this insertion point. If the mapped value happened to be 1878 // a postinc expansion, it could be reused by a non-postinc user, but only if 1879 // its insertion point was already at the head of the loop. 1880 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1881 return V; 1882 } 1883 1884 void SCEVExpander::rememberInstruction(Value *I) { 1885 auto DoInsert = [this](Value *V) { 1886 if (!PostIncLoops.empty()) 1887 InsertedPostIncValues.insert(V); 1888 else 1889 InsertedValues.insert(V); 1890 }; 1891 DoInsert(I); 1892 1893 if (!PreserveLCSSA) 1894 return; 1895 1896 if (auto *Inst = dyn_cast<Instruction>(I)) { 1897 // A new instruction has been added, which might introduce new uses outside 1898 // a defining loop. Fix LCSSA from for each operand of the new instruction, 1899 // if required. 1900 for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd; 1901 OpIdx++) 1902 fixupLCSSAFormFor(Inst, OpIdx); 1903 } 1904 } 1905 1906 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1907 /// replace them with their most canonical representative. Return the number of 1908 /// phis eliminated. 1909 /// 1910 /// This does not depend on any SCEVExpander state but should be used in 1911 /// the same context that SCEVExpander is used. 1912 unsigned 1913 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1914 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1915 const TargetTransformInfo *TTI) { 1916 // Find integer phis in order of increasing width. 1917 SmallVector<PHINode*, 8> Phis; 1918 for (PHINode &PN : L->getHeader()->phis()) 1919 Phis.push_back(&PN); 1920 1921 if (TTI) 1922 // Use stable_sort to preserve order of equivalent PHIs, so the order 1923 // of the sorted Phis is the same from run to run on the same loop. 1924 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1925 // Put pointers at the back and make sure pointer < pointer = false. 1926 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1927 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1928 return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() < 1929 LHS->getType()->getPrimitiveSizeInBits().getFixedSize(); 1930 }); 1931 1932 unsigned NumElim = 0; 1933 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1934 // Process phis from wide to narrow. Map wide phis to their truncation 1935 // so narrow phis can reuse them. 1936 for (PHINode *Phi : Phis) { 1937 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1938 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1939 return V; 1940 if (!SE.isSCEVable(PN->getType())) 1941 return nullptr; 1942 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1943 if (!Const) 1944 return nullptr; 1945 return Const->getValue(); 1946 }; 1947 1948 // Fold constant phis. They may be congruent to other constant phis and 1949 // would confuse the logic below that expects proper IVs. 1950 if (Value *V = SimplifyPHINode(Phi)) { 1951 if (V->getType() != Phi->getType()) 1952 continue; 1953 Phi->replaceAllUsesWith(V); 1954 DeadInsts.emplace_back(Phi); 1955 ++NumElim; 1956 SCEV_DEBUG_WITH_TYPE(DebugType, 1957 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1958 << '\n'); 1959 continue; 1960 } 1961 1962 if (!SE.isSCEVable(Phi->getType())) 1963 continue; 1964 1965 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1966 if (!OrigPhiRef) { 1967 OrigPhiRef = Phi; 1968 if (Phi->getType()->isIntegerTy() && TTI && 1969 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1970 // This phi can be freely truncated to the narrowest phi type. Map the 1971 // truncated expression to it so it will be reused for narrow types. 1972 const SCEV *TruncExpr = 1973 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 1974 ExprToIVMap[TruncExpr] = Phi; 1975 } 1976 continue; 1977 } 1978 1979 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1980 // sense. 1981 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1982 continue; 1983 1984 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1985 Instruction *OrigInc = dyn_cast<Instruction>( 1986 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1987 Instruction *IsomorphicInc = 1988 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1989 1990 if (OrigInc && IsomorphicInc) { 1991 // If this phi has the same width but is more canonical, replace the 1992 // original with it. As part of the "more canonical" determination, 1993 // respect a prior decision to use an IV chain. 1994 if (OrigPhiRef->getType() == Phi->getType() && 1995 !(ChainedPhis.count(Phi) || 1996 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 1997 (ChainedPhis.count(Phi) || 1998 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1999 std::swap(OrigPhiRef, Phi); 2000 std::swap(OrigInc, IsomorphicInc); 2001 } 2002 // Replacing the congruent phi is sufficient because acyclic 2003 // redundancy elimination, CSE/GVN, should handle the 2004 // rest. However, once SCEV proves that a phi is congruent, 2005 // it's often the head of an IV user cycle that is isomorphic 2006 // with the original phi. It's worth eagerly cleaning up the 2007 // common case of a single IV increment so that DeleteDeadPHIs 2008 // can remove cycles that had postinc uses. 2009 const SCEV *TruncExpr = 2010 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2011 if (OrigInc != IsomorphicInc && 2012 TruncExpr == SE.getSCEV(IsomorphicInc) && 2013 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2014 hoistIVInc(OrigInc, IsomorphicInc)) { 2015 SCEV_DEBUG_WITH_TYPE( 2016 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2017 << *IsomorphicInc << '\n'); 2018 Value *NewInc = OrigInc; 2019 if (OrigInc->getType() != IsomorphicInc->getType()) { 2020 Instruction *IP = nullptr; 2021 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2022 IP = &*PN->getParent()->getFirstInsertionPt(); 2023 else 2024 IP = OrigInc->getNextNode(); 2025 2026 IRBuilder<> Builder(IP); 2027 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2028 NewInc = Builder.CreateTruncOrBitCast( 2029 OrigInc, IsomorphicInc->getType(), IVName); 2030 } 2031 IsomorphicInc->replaceAllUsesWith(NewInc); 2032 DeadInsts.emplace_back(IsomorphicInc); 2033 } 2034 } 2035 } 2036 SCEV_DEBUG_WITH_TYPE(DebugType, 2037 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 2038 << '\n'); 2039 SCEV_DEBUG_WITH_TYPE( 2040 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 2041 ++NumElim; 2042 Value *NewIV = OrigPhiRef; 2043 if (OrigPhiRef->getType() != Phi->getType()) { 2044 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2045 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2046 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2047 } 2048 Phi->replaceAllUsesWith(NewIV); 2049 DeadInsts.emplace_back(Phi); 2050 } 2051 return NumElim; 2052 } 2053 2054 Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S, 2055 const Instruction *At, 2056 Loop *L) { 2057 using namespace llvm::PatternMatch; 2058 2059 SmallVector<BasicBlock *, 4> ExitingBlocks; 2060 L->getExitingBlocks(ExitingBlocks); 2061 2062 // Look for suitable value in simple conditions at the loop exits. 2063 for (BasicBlock *BB : ExitingBlocks) { 2064 ICmpInst::Predicate Pred; 2065 Instruction *LHS, *RHS; 2066 2067 if (!match(BB->getTerminator(), 2068 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2069 m_BasicBlock(), m_BasicBlock()))) 2070 continue; 2071 2072 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2073 return LHS; 2074 2075 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2076 return RHS; 2077 } 2078 2079 // Use expand's logic which is used for reusing a previous Value in 2080 // ExprValueMap. Note that we don't currently model the cost of 2081 // needing to drop poison generating flags on the instruction if we 2082 // want to reuse it. We effectively assume that has zero cost. 2083 return FindValueInExprValueMap(S, At); 2084 } 2085 2086 template<typename T> static InstructionCost costAndCollectOperands( 2087 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 2088 TargetTransformInfo::TargetCostKind CostKind, 2089 SmallVectorImpl<SCEVOperand> &Worklist) { 2090 2091 const T *S = cast<T>(WorkItem.S); 2092 InstructionCost Cost = 0; 2093 // Object to help map SCEV operands to expanded IR instructions. 2094 struct OperationIndices { 2095 OperationIndices(unsigned Opc, size_t min, size_t max) : 2096 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 2097 unsigned Opcode; 2098 size_t MinIdx; 2099 size_t MaxIdx; 2100 }; 2101 2102 // Collect the operations of all the instructions that will be needed to 2103 // expand the SCEVExpr. This is so that when we come to cost the operands, 2104 // we know what the generated user(s) will be. 2105 SmallVector<OperationIndices, 2> Operations; 2106 2107 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 2108 Operations.emplace_back(Opcode, 0, 0); 2109 return TTI.getCastInstrCost(Opcode, S->getType(), 2110 S->getOperand(0)->getType(), 2111 TTI::CastContextHint::None, CostKind); 2112 }; 2113 2114 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 2115 unsigned MinIdx = 0, 2116 unsigned MaxIdx = 1) -> InstructionCost { 2117 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2118 return NumRequired * 2119 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 2120 }; 2121 2122 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 2123 unsigned MaxIdx) -> InstructionCost { 2124 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2125 Type *OpType = S->getOperand(0)->getType(); 2126 return NumRequired * TTI.getCmpSelInstrCost( 2127 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 2128 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2129 }; 2130 2131 switch (S->getSCEVType()) { 2132 case scCouldNotCompute: 2133 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2134 case scUnknown: 2135 case scConstant: 2136 return 0; 2137 case scPtrToInt: 2138 Cost = CastCost(Instruction::PtrToInt); 2139 break; 2140 case scTruncate: 2141 Cost = CastCost(Instruction::Trunc); 2142 break; 2143 case scZeroExtend: 2144 Cost = CastCost(Instruction::ZExt); 2145 break; 2146 case scSignExtend: 2147 Cost = CastCost(Instruction::SExt); 2148 break; 2149 case scUDivExpr: { 2150 unsigned Opcode = Instruction::UDiv; 2151 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 2152 if (SC->getAPInt().isPowerOf2()) 2153 Opcode = Instruction::LShr; 2154 Cost = ArithCost(Opcode, 1); 2155 break; 2156 } 2157 case scAddExpr: 2158 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 2159 break; 2160 case scMulExpr: 2161 // TODO: this is a very pessimistic cost modelling for Mul, 2162 // because of Bin Pow algorithm actually used by the expander, 2163 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2164 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 2165 break; 2166 case scSMaxExpr: 2167 case scUMaxExpr: 2168 case scSMinExpr: 2169 case scUMinExpr: 2170 case scSequentialUMinExpr: { 2171 // FIXME: should this ask the cost for Intrinsic's? 2172 // The reduction tree. 2173 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 2174 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 2175 switch (S->getSCEVType()) { 2176 case scSequentialUMinExpr: { 2177 // The safety net against poison. 2178 // FIXME: this is broken. 2179 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 2180 Cost += ArithCost(Instruction::Or, 2181 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 2182 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 2183 break; 2184 } 2185 default: 2186 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 2187 "Unhandled SCEV expression type?"); 2188 break; 2189 } 2190 break; 2191 } 2192 case scAddRecExpr: { 2193 // In this polynominal, we may have some zero operands, and we shouldn't 2194 // really charge for those. So how many non-zero coeffients are there? 2195 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 2196 return !Op->isZero(); 2197 }); 2198 2199 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2200 assert(!(*std::prev(S->operands().end()))->isZero() && 2201 "Last operand should not be zero"); 2202 2203 // Ignoring constant term (operand 0), how many of the coeffients are u> 1? 2204 int NumNonZeroDegreeNonOneTerms = 2205 llvm::count_if(S->operands(), [](const SCEV *Op) { 2206 auto *SConst = dyn_cast<SCEVConstant>(Op); 2207 return !SConst || SConst->getAPInt().ugt(1); 2208 }); 2209 2210 // Much like with normal add expr, the polynominal will require 2211 // one less addition than the number of it's terms. 2212 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 2213 /*MinIdx*/ 1, /*MaxIdx*/ 1); 2214 // Here, *each* one of those will require a multiplication. 2215 InstructionCost MulCost = 2216 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 2217 Cost = AddCost + MulCost; 2218 2219 // What is the degree of this polynominal? 2220 int PolyDegree = S->getNumOperands() - 1; 2221 assert(PolyDegree >= 1 && "Should be at least affine."); 2222 2223 // The final term will be: 2224 // Op_{PolyDegree} * x ^ {PolyDegree} 2225 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2226 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2227 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2228 // FIXME: this is conservatively correct, but might be overly pessimistic. 2229 Cost += MulCost * (PolyDegree - 1); 2230 break; 2231 } 2232 } 2233 2234 for (auto &CostOp : Operations) { 2235 for (auto SCEVOp : enumerate(S->operands())) { 2236 // Clamp the index to account for multiple IR operations being chained. 2237 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 2238 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 2239 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 2240 } 2241 } 2242 return Cost; 2243 } 2244 2245 bool SCEVExpander::isHighCostExpansionHelper( 2246 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 2247 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 2248 SmallPtrSetImpl<const SCEV *> &Processed, 2249 SmallVectorImpl<SCEVOperand> &Worklist) { 2250 if (Cost > Budget) 2251 return true; // Already run out of budget, give up. 2252 2253 const SCEV *S = WorkItem.S; 2254 // Was the cost of expansion of this expression already accounted for? 2255 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 2256 return false; // We have already accounted for this expression. 2257 2258 // If we can find an existing value for this scev available at the point "At" 2259 // then consider the expression cheap. 2260 if (getRelatedExistingExpansion(S, &At, L)) 2261 return false; // Consider the expression to be free. 2262 2263 TargetTransformInfo::TargetCostKind CostKind = 2264 L->getHeader()->getParent()->hasMinSize() 2265 ? TargetTransformInfo::TCK_CodeSize 2266 : TargetTransformInfo::TCK_RecipThroughput; 2267 2268 switch (S->getSCEVType()) { 2269 case scCouldNotCompute: 2270 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2271 case scUnknown: 2272 // Assume to be zero-cost. 2273 return false; 2274 case scConstant: { 2275 // Only evalulate the costs of constants when optimizing for size. 2276 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2277 return false; 2278 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2279 Type *Ty = S->getType(); 2280 Cost += TTI.getIntImmCostInst( 2281 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2282 return Cost > Budget; 2283 } 2284 case scTruncate: 2285 case scPtrToInt: 2286 case scZeroExtend: 2287 case scSignExtend: { 2288 Cost += 2289 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2290 return false; // Will answer upon next entry into this function. 2291 } 2292 case scUDivExpr: { 2293 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2294 // HowManyLessThans produced to compute a precise expression, rather than a 2295 // UDiv from the user's code. If we can't find a UDiv in the code with some 2296 // simple searching, we need to account for it's cost. 2297 2298 // At the beginning of this function we already tried to find existing 2299 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2300 // pattern involving division. This is just a simple search heuristic. 2301 if (getRelatedExistingExpansion( 2302 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2303 return false; // Consider it to be free. 2304 2305 Cost += 2306 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2307 return false; // Will answer upon next entry into this function. 2308 } 2309 case scAddExpr: 2310 case scMulExpr: 2311 case scUMaxExpr: 2312 case scSMaxExpr: 2313 case scUMinExpr: 2314 case scSMinExpr: 2315 case scSequentialUMinExpr: { 2316 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2317 "Nary expr should have more than 1 operand."); 2318 // The simple nary expr will require one less op (or pair of ops) 2319 // than the number of it's terms. 2320 Cost += 2321 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2322 return Cost > Budget; 2323 } 2324 case scAddRecExpr: { 2325 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2326 "Polynomial should be at least linear"); 2327 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2328 WorkItem, TTI, CostKind, Worklist); 2329 return Cost > Budget; 2330 } 2331 } 2332 llvm_unreachable("Unknown SCEV kind!"); 2333 } 2334 2335 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2336 Instruction *IP) { 2337 assert(IP); 2338 switch (Pred->getKind()) { 2339 case SCEVPredicate::P_Union: 2340 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2341 case SCEVPredicate::P_Compare: 2342 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2343 case SCEVPredicate::P_Wrap: { 2344 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2345 return expandWrapPredicate(AddRecPred, IP); 2346 } 2347 } 2348 llvm_unreachable("Unknown SCEV predicate type"); 2349 } 2350 2351 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2352 Instruction *IP) { 2353 Value *Expr0 = 2354 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false); 2355 Value *Expr1 = 2356 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false); 2357 2358 Builder.SetInsertPoint(IP); 2359 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2360 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2361 return I; 2362 } 2363 2364 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2365 Instruction *Loc, bool Signed) { 2366 assert(AR->isAffine() && "Cannot generate RT check for " 2367 "non-affine expression"); 2368 2369 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2370 SmallVector<const SCEVPredicate *, 4> Pred; 2371 const SCEV *ExitCount = 2372 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2373 2374 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2375 2376 const SCEV *Step = AR->getStepRecurrence(SE); 2377 const SCEV *Start = AR->getStart(); 2378 2379 Type *ARTy = AR->getType(); 2380 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2381 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2382 2383 // The expression {Start,+,Step} has nusw/nssw if 2384 // Step < 0, Start - |Step| * Backedge <= Start 2385 // Step >= 0, Start + |Step| * Backedge > Start 2386 // and |Step| * Backedge doesn't unsigned overflow. 2387 2388 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2389 Builder.SetInsertPoint(Loc); 2390 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false); 2391 2392 IntegerType *Ty = 2393 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2394 2395 Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false); 2396 Value *NegStepValue = 2397 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false); 2398 Value *StartValue = expandCodeForImpl(Start, ARTy, Loc, false); 2399 2400 ConstantInt *Zero = 2401 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2402 2403 Builder.SetInsertPoint(Loc); 2404 // Compute |Step| 2405 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2406 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2407 2408 // Compute |Step| * Backedge 2409 // Compute: 2410 // 1. Start + |Step| * Backedge < Start 2411 // 2. Start - |Step| * Backedge > Start 2412 // 2413 // And select either 1. or 2. depending on whether step is positive or 2414 // negative. If Step is known to be positive or negative, only create 2415 // either 1. or 2. 2416 auto ComputeEndCheck = [&]() -> Value * { 2417 // Checking <u 0 is always false. 2418 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2419 return ConstantInt::getFalse(Loc->getContext()); 2420 2421 // Get the backedge taken count and truncate or extended to the AR type. 2422 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2423 2424 Value *MulV, *OfMul; 2425 if (Step->isOne()) { 2426 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2427 // needed, there is never an overflow, so to avoid artificially inflating 2428 // the cost of the check, directly emit the optimized IR. 2429 MulV = TruncTripCount; 2430 OfMul = ConstantInt::getFalse(MulV->getContext()); 2431 } else { 2432 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2433 Intrinsic::umul_with_overflow, Ty); 2434 CallInst *Mul = 2435 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2436 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2437 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2438 } 2439 2440 Value *Add = nullptr, *Sub = nullptr; 2441 bool NeedPosCheck = !SE.isKnownNegative(Step); 2442 bool NeedNegCheck = !SE.isKnownPositive(Step); 2443 2444 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) { 2445 StartValue = InsertNoopCastOfTo( 2446 StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace())); 2447 Value *NegMulV = Builder.CreateNeg(MulV); 2448 if (NeedPosCheck) 2449 Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV); 2450 if (NeedNegCheck) 2451 Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV); 2452 } else { 2453 if (NeedPosCheck) 2454 Add = Builder.CreateAdd(StartValue, MulV); 2455 if (NeedNegCheck) 2456 Sub = Builder.CreateSub(StartValue, MulV); 2457 } 2458 2459 Value *EndCompareLT = nullptr; 2460 Value *EndCompareGT = nullptr; 2461 Value *EndCheck = nullptr; 2462 if (NeedPosCheck) 2463 EndCheck = EndCompareLT = Builder.CreateICmp( 2464 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2465 if (NeedNegCheck) 2466 EndCheck = EndCompareGT = Builder.CreateICmp( 2467 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2468 if (NeedPosCheck && NeedNegCheck) { 2469 // Select the answer based on the sign of Step. 2470 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2471 } 2472 return Builder.CreateOr(EndCheck, OfMul); 2473 }; 2474 Value *EndCheck = ComputeEndCheck(); 2475 2476 // If the backedge taken count type is larger than the AR type, 2477 // check that we don't drop any bits by truncating it. If we are 2478 // dropping bits, then we have overflow (unless the step is zero). 2479 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2480 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2481 auto *BackedgeCheck = 2482 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2483 ConstantInt::get(Loc->getContext(), MaxVal)); 2484 BackedgeCheck = Builder.CreateAnd( 2485 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2486 2487 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2488 } 2489 2490 return EndCheck; 2491 } 2492 2493 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2494 Instruction *IP) { 2495 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2496 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2497 2498 // Add a check for NUSW 2499 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2500 NUSWCheck = generateOverflowCheck(A, IP, false); 2501 2502 // Add a check for NSSW 2503 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2504 NSSWCheck = generateOverflowCheck(A, IP, true); 2505 2506 if (NUSWCheck && NSSWCheck) 2507 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2508 2509 if (NUSWCheck) 2510 return NUSWCheck; 2511 2512 if (NSSWCheck) 2513 return NSSWCheck; 2514 2515 return ConstantInt::getFalse(IP->getContext()); 2516 } 2517 2518 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2519 Instruction *IP) { 2520 // Loop over all checks in this set. 2521 SmallVector<Value *> Checks; 2522 for (auto Pred : Union->getPredicates()) { 2523 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2524 Builder.SetInsertPoint(IP); 2525 } 2526 2527 if (Checks.empty()) 2528 return ConstantInt::getFalse(IP->getContext()); 2529 return Builder.CreateOr(Checks); 2530 } 2531 2532 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) { 2533 assert(PreserveLCSSA); 2534 SmallVector<Instruction *, 1> ToUpdate; 2535 2536 auto *OpV = User->getOperand(OpIdx); 2537 auto *OpI = dyn_cast<Instruction>(OpV); 2538 if (!OpI) 2539 return OpV; 2540 2541 Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent()); 2542 Loop *UseLoop = SE.LI.getLoopFor(User->getParent()); 2543 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2544 return OpV; 2545 2546 ToUpdate.push_back(OpI); 2547 SmallVector<PHINode *, 16> PHIsToRemove; 2548 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); 2549 for (PHINode *PN : PHIsToRemove) { 2550 if (!PN->use_empty()) 2551 continue; 2552 InsertedValues.erase(PN); 2553 InsertedPostIncValues.erase(PN); 2554 PN->eraseFromParent(); 2555 } 2556 2557 return User->getOperand(OpIdx); 2558 } 2559 2560 namespace { 2561 // Search for a SCEV subexpression that is not safe to expand. Any expression 2562 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2563 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2564 // instruction, but the important thing is that we prove the denominator is 2565 // nonzero before expansion. 2566 // 2567 // IVUsers already checks that IV-derived expressions are safe. So this check is 2568 // only needed when the expression includes some subexpression that is not IV 2569 // derived. 2570 // 2571 // Currently, we only allow division by a value provably non-zero here. 2572 // 2573 // We cannot generally expand recurrences unless the step dominates the loop 2574 // header. The expander handles the special case of affine recurrences by 2575 // scaling the recurrence outside the loop, but this technique isn't generally 2576 // applicable. Expanding a nested recurrence outside a loop requires computing 2577 // binomial coefficients. This could be done, but the recurrence has to be in a 2578 // perfectly reduced form, which can't be guaranteed. 2579 struct SCEVFindUnsafe { 2580 ScalarEvolution &SE; 2581 bool CanonicalMode; 2582 bool IsUnsafe = false; 2583 2584 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2585 : SE(SE), CanonicalMode(CanonicalMode) {} 2586 2587 bool follow(const SCEV *S) { 2588 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2589 if (!SE.isKnownNonZero(D->getRHS())) { 2590 IsUnsafe = true; 2591 return false; 2592 } 2593 } 2594 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2595 const SCEV *Step = AR->getStepRecurrence(SE); 2596 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2597 IsUnsafe = true; 2598 return false; 2599 } 2600 2601 // For non-affine addrecs or in non-canonical mode we need a preheader 2602 // to insert into. 2603 if (!AR->getLoop()->getLoopPreheader() && 2604 (!CanonicalMode || !AR->isAffine())) { 2605 IsUnsafe = true; 2606 return false; 2607 } 2608 } 2609 return true; 2610 } 2611 bool isDone() const { return IsUnsafe; } 2612 }; 2613 } // namespace 2614 2615 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2616 SCEVFindUnsafe Search(SE, CanonicalMode); 2617 visitAll(S, Search); 2618 return !Search.IsUnsafe; 2619 } 2620 2621 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2622 const Instruction *InsertionPoint) const { 2623 if (!isSafeToExpand(S)) 2624 return false; 2625 // We have to prove that the expanded site of S dominates InsertionPoint. 2626 // This is easy when not in the same block, but hard when S is an instruction 2627 // to be expanded somewhere inside the same block as our insertion point. 2628 // What we really need here is something analogous to an OrderedBasicBlock, 2629 // but for the moment, we paper over the problem by handling two common and 2630 // cheap to check cases. 2631 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2632 return true; 2633 if (SE.dominates(S, InsertionPoint->getParent())) { 2634 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2635 return true; 2636 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2637 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2638 return true; 2639 } 2640 return false; 2641 } 2642 2643 void SCEVExpanderCleaner::cleanup() { 2644 // Result is used, nothing to remove. 2645 if (ResultUsed) 2646 return; 2647 2648 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2649 #ifndef NDEBUG 2650 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2651 InsertedInstructions.end()); 2652 (void)InsertedSet; 2653 #endif 2654 // Remove sets with value handles. 2655 Expander.clear(); 2656 2657 // Remove all inserted instructions. 2658 for (Instruction *I : reverse(InsertedInstructions)) { 2659 #ifndef NDEBUG 2660 assert(all_of(I->users(), 2661 [&InsertedSet](Value *U) { 2662 return InsertedSet.contains(cast<Instruction>(U)); 2663 }) && 2664 "removed instruction should only be used by instructions inserted " 2665 "during expansion"); 2666 #endif 2667 assert(!I->getType()->isVoidTy() && 2668 "inserted instruction should have non-void types"); 2669 I->replaceAllUsesWith(UndefValue::get(I->getType())); 2670 I->eraseFromParent(); 2671 } 2672 } 2673