xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/LoopUtils.h"
30 
31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
33 #else
34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
35 #endif
36 
37 using namespace llvm;
38 
39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
40     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
41     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
42              "controls the budget that is considered cheap (default = 4)"));
43 
44 using namespace PatternMatch;
45 
46 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
47 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
48 /// creating a new one.
49 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
50                                        Instruction::CastOps Op,
51                                        BasicBlock::iterator IP) {
52   // This function must be called with the builder having a valid insertion
53   // point. It doesn't need to be the actual IP where the uses of the returned
54   // cast will be added, but it must dominate such IP.
55   // We use this precondition to produce a cast that will dominate all its
56   // uses. In particular, this is crucial for the case where the builder's
57   // insertion point *is* the point where we were asked to put the cast.
58   // Since we don't know the builder's insertion point is actually
59   // where the uses will be added (only that it dominates it), we are
60   // not allowed to move it.
61   BasicBlock::iterator BIP = Builder.GetInsertPoint();
62 
63   Value *Ret = nullptr;
64 
65   // Check to see if there is already a cast!
66   for (User *U : V->users()) {
67     if (U->getType() != Ty)
68       continue;
69     CastInst *CI = dyn_cast<CastInst>(U);
70     if (!CI || CI->getOpcode() != Op)
71       continue;
72 
73     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
74     // the cast must also properly dominate the Builder's insertion point.
75     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
76         (&*IP == CI || CI->comesBefore(&*IP))) {
77       Ret = CI;
78       break;
79     }
80   }
81 
82   // Create a new cast.
83   if (!Ret) {
84     SCEVInsertPointGuard Guard(Builder, this);
85     Builder.SetInsertPoint(&*IP);
86     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
87   }
88 
89   // We assert at the end of the function since IP might point to an
90   // instruction with different dominance properties than a cast
91   // (an invoke for example) and not dominate BIP (but the cast does).
92   assert(!isa<Instruction>(Ret) ||
93          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
94 
95   return Ret;
96 }
97 
98 BasicBlock::iterator
99 SCEVExpander::findInsertPointAfter(Instruction *I,
100                                    Instruction *MustDominate) const {
101   BasicBlock::iterator IP = ++I->getIterator();
102   if (auto *II = dyn_cast<InvokeInst>(I))
103     IP = II->getNormalDest()->begin();
104 
105   while (isa<PHINode>(IP))
106     ++IP;
107 
108   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
109     ++IP;
110   } else if (isa<CatchSwitchInst>(IP)) {
111     IP = MustDominate->getParent()->getFirstInsertionPt();
112   } else {
113     assert(!IP->isEHPad() && "unexpected eh pad!");
114   }
115 
116   // Adjust insert point to be after instructions inserted by the expander, so
117   // we can re-use already inserted instructions. Avoid skipping past the
118   // original \p MustDominate, in case it is an inserted instruction.
119   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
120     ++IP;
121 
122   return IP;
123 }
124 
125 BasicBlock::iterator
126 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
127   // Cast the argument at the beginning of the entry block, after
128   // any bitcasts of other arguments.
129   if (Argument *A = dyn_cast<Argument>(V)) {
130     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
131     while ((isa<BitCastInst>(IP) &&
132             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
133             cast<BitCastInst>(IP)->getOperand(0) != A) ||
134            isa<DbgInfoIntrinsic>(IP))
135       ++IP;
136     return IP;
137   }
138 
139   // Cast the instruction immediately after the instruction.
140   if (Instruction *I = dyn_cast<Instruction>(V))
141     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
142 
143   // Otherwise, this must be some kind of a constant,
144   // so let's plop this cast into the function's entry block.
145   assert(isa<Constant>(V) &&
146          "Expected the cast argument to be a global/constant");
147   return Builder.GetInsertBlock()
148       ->getParent()
149       ->getEntryBlock()
150       .getFirstInsertionPt();
151 }
152 
153 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
154 /// which must be possible with a noop cast, doing what we can to share
155 /// the casts.
156 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
157   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
158   assert((Op == Instruction::BitCast ||
159           Op == Instruction::PtrToInt ||
160           Op == Instruction::IntToPtr) &&
161          "InsertNoopCastOfTo cannot perform non-noop casts!");
162   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
163          "InsertNoopCastOfTo cannot change sizes!");
164 
165   // inttoptr only works for integral pointers. For non-integral pointers, we
166   // can create a GEP on null with the integral value as index. Note that
167   // it is safe to use GEP of null instead of inttoptr here, because only
168   // expressions already based on a GEP of null should be converted to pointers
169   // during expansion.
170   if (Op == Instruction::IntToPtr) {
171     auto *PtrTy = cast<PointerType>(Ty);
172     if (DL.isNonIntegralPointerType(PtrTy))
173       return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep");
174   }
175   // Short-circuit unnecessary bitcasts.
176   if (Op == Instruction::BitCast) {
177     if (V->getType() == Ty)
178       return V;
179     if (CastInst *CI = dyn_cast<CastInst>(V)) {
180       if (CI->getOperand(0)->getType() == Ty)
181         return CI->getOperand(0);
182     }
183   }
184   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
185   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
186       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
187     if (CastInst *CI = dyn_cast<CastInst>(V))
188       if ((CI->getOpcode() == Instruction::PtrToInt ||
189            CI->getOpcode() == Instruction::IntToPtr) &&
190           SE.getTypeSizeInBits(CI->getType()) ==
191           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
192         return CI->getOperand(0);
193     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
194       if ((CE->getOpcode() == Instruction::PtrToInt ||
195            CE->getOpcode() == Instruction::IntToPtr) &&
196           SE.getTypeSizeInBits(CE->getType()) ==
197           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
198         return CE->getOperand(0);
199   }
200 
201   // Fold a cast of a constant.
202   if (Constant *C = dyn_cast<Constant>(V))
203     return ConstantExpr::getCast(Op, C, Ty);
204 
205   // Try to reuse existing cast, or insert one.
206   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
207 }
208 
209 /// InsertBinop - Insert the specified binary operator, doing a small amount
210 /// of work to avoid inserting an obviously redundant operation, and hoisting
211 /// to an outer loop when the opportunity is there and it is safe.
212 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
213                                  Value *LHS, Value *RHS,
214                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
215   // Fold a binop with constant operands.
216   if (Constant *CLHS = dyn_cast<Constant>(LHS))
217     if (Constant *CRHS = dyn_cast<Constant>(RHS))
218       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
219         return Res;
220 
221   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
222   unsigned ScanLimit = 6;
223   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
224   // Scanning starts from the last instruction before the insertion point.
225   BasicBlock::iterator IP = Builder.GetInsertPoint();
226   if (IP != BlockBegin) {
227     --IP;
228     for (; ScanLimit; --IP, --ScanLimit) {
229       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
230       // generated code.
231       if (isa<DbgInfoIntrinsic>(IP))
232         ScanLimit++;
233 
234       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
235         // Ensure that no-wrap flags match.
236         if (isa<OverflowingBinaryOperator>(I)) {
237           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
238             return true;
239           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
240             return true;
241         }
242         // Conservatively, do not use any instruction which has any of exact
243         // flags installed.
244         if (isa<PossiblyExactOperator>(I) && I->isExact())
245           return true;
246         return false;
247       };
248       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
249           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
250         return &*IP;
251       if (IP == BlockBegin) break;
252     }
253   }
254 
255   // Save the original insertion point so we can restore it when we're done.
256   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
257   SCEVInsertPointGuard Guard(Builder, this);
258 
259   if (IsSafeToHoist) {
260     // Move the insertion point out of as many loops as we can.
261     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
262       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
263       BasicBlock *Preheader = L->getLoopPreheader();
264       if (!Preheader) break;
265 
266       // Ok, move up a level.
267       Builder.SetInsertPoint(Preheader->getTerminator());
268     }
269   }
270 
271   // If we haven't found this binop, insert it.
272   // TODO: Use the Builder, which will make CreateBinOp below fold with
273   // InstSimplifyFolder.
274   Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
275   BO->setDebugLoc(Loc);
276   if (Flags & SCEV::FlagNUW)
277     BO->setHasNoUnsignedWrap();
278   if (Flags & SCEV::FlagNSW)
279     BO->setHasNoSignedWrap();
280 
281   return BO;
282 }
283 
284 /// expandAddToGEP - Expand an addition expression with a pointer type into
285 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
286 /// BasicAliasAnalysis and other passes analyze the result. See the rules
287 /// for getelementptr vs. inttoptr in
288 /// http://llvm.org/docs/LangRef.html#pointeraliasing
289 /// for details.
290 ///
291 /// Design note: The correctness of using getelementptr here depends on
292 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
293 /// they may introduce pointer arithmetic which may not be safely converted
294 /// into getelementptr.
295 ///
296 /// Design note: It might seem desirable for this function to be more
297 /// loop-aware. If some of the indices are loop-invariant while others
298 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
299 /// loop-invariant portions of the overall computation outside the loop.
300 /// However, there are a few reasons this is not done here. Hoisting simple
301 /// arithmetic is a low-level optimization that often isn't very
302 /// important until late in the optimization process. In fact, passes
303 /// like InstructionCombining will combine GEPs, even if it means
304 /// pushing loop-invariant computation down into loops, so even if the
305 /// GEPs were split here, the work would quickly be undone. The
306 /// LoopStrengthReduction pass, which is usually run quite late (and
307 /// after the last InstructionCombining pass), takes care of hoisting
308 /// loop-invariant portions of expressions, after considering what
309 /// can be folded using target addressing modes.
310 ///
311 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) {
312   assert(!isa<Instruction>(V) ||
313          SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
314 
315   Value *Idx = expand(Offset);
316 
317   // Fold a GEP with constant operands.
318   if (Constant *CLHS = dyn_cast<Constant>(V))
319     if (Constant *CRHS = dyn_cast<Constant>(Idx))
320       return Builder.CreatePtrAdd(CLHS, CRHS);
321 
322   // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
323   unsigned ScanLimit = 6;
324   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
325   // Scanning starts from the last instruction before the insertion point.
326   BasicBlock::iterator IP = Builder.GetInsertPoint();
327   if (IP != BlockBegin) {
328     --IP;
329     for (; ScanLimit; --IP, --ScanLimit) {
330       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
331       // generated code.
332       if (isa<DbgInfoIntrinsic>(IP))
333         ScanLimit++;
334       if (IP->getOpcode() == Instruction::GetElementPtr &&
335           IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
336           cast<GEPOperator>(&*IP)->getSourceElementType() ==
337               Builder.getInt8Ty())
338         return &*IP;
339       if (IP == BlockBegin) break;
340     }
341   }
342 
343   // Save the original insertion point so we can restore it when we're done.
344   SCEVInsertPointGuard Guard(Builder, this);
345 
346   // Move the insertion point out of as many loops as we can.
347   while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
348     if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
349     BasicBlock *Preheader = L->getLoopPreheader();
350     if (!Preheader) break;
351 
352     // Ok, move up a level.
353     Builder.SetInsertPoint(Preheader->getTerminator());
354   }
355 
356   // Emit a GEP.
357   return Builder.CreatePtrAdd(V, Idx, "scevgep");
358 }
359 
360 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
361 /// SCEV expansion. If they are nested, this is the most nested. If they are
362 /// neighboring, pick the later.
363 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
364                                         DominatorTree &DT) {
365   if (!A) return B;
366   if (!B) return A;
367   if (A->contains(B)) return B;
368   if (B->contains(A)) return A;
369   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
370   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
371   return A; // Arbitrarily break the tie.
372 }
373 
374 /// getRelevantLoop - Get the most relevant loop associated with the given
375 /// expression, according to PickMostRelevantLoop.
376 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
377   // Test whether we've already computed the most relevant loop for this SCEV.
378   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
379   if (!Pair.second)
380     return Pair.first->second;
381 
382   switch (S->getSCEVType()) {
383   case scConstant:
384   case scVScale:
385     return nullptr; // A constant has no relevant loops.
386   case scTruncate:
387   case scZeroExtend:
388   case scSignExtend:
389   case scPtrToInt:
390   case scAddExpr:
391   case scMulExpr:
392   case scUDivExpr:
393   case scAddRecExpr:
394   case scUMaxExpr:
395   case scSMaxExpr:
396   case scUMinExpr:
397   case scSMinExpr:
398   case scSequentialUMinExpr: {
399     const Loop *L = nullptr;
400     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
401       L = AR->getLoop();
402     for (const SCEV *Op : S->operands())
403       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
404     return RelevantLoops[S] = L;
405   }
406   case scUnknown: {
407     const SCEVUnknown *U = cast<SCEVUnknown>(S);
408     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
409       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
410     // A non-instruction has no relevant loops.
411     return nullptr;
412   }
413   case scCouldNotCompute:
414     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
415   }
416   llvm_unreachable("Unexpected SCEV type!");
417 }
418 
419 namespace {
420 
421 /// LoopCompare - Compare loops by PickMostRelevantLoop.
422 class LoopCompare {
423   DominatorTree &DT;
424 public:
425   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
426 
427   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
428                   std::pair<const Loop *, const SCEV *> RHS) const {
429     // Keep pointer operands sorted at the end.
430     if (LHS.second->getType()->isPointerTy() !=
431         RHS.second->getType()->isPointerTy())
432       return LHS.second->getType()->isPointerTy();
433 
434     // Compare loops with PickMostRelevantLoop.
435     if (LHS.first != RHS.first)
436       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
437 
438     // If one operand is a non-constant negative and the other is not,
439     // put the non-constant negative on the right so that a sub can
440     // be used instead of a negate and add.
441     if (LHS.second->isNonConstantNegative()) {
442       if (!RHS.second->isNonConstantNegative())
443         return false;
444     } else if (RHS.second->isNonConstantNegative())
445       return true;
446 
447     // Otherwise they are equivalent according to this comparison.
448     return false;
449   }
450 };
451 
452 }
453 
454 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
455   // Collect all the add operands in a loop, along with their associated loops.
456   // Iterate in reverse so that constants are emitted last, all else equal, and
457   // so that pointer operands are inserted first, which the code below relies on
458   // to form more involved GEPs.
459   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
460   for (const SCEV *Op : reverse(S->operands()))
461     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
462 
463   // Sort by loop. Use a stable sort so that constants follow non-constants and
464   // pointer operands precede non-pointer operands.
465   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
466 
467   // Emit instructions to add all the operands. Hoist as much as possible
468   // out of loops, and form meaningful getelementptrs where possible.
469   Value *Sum = nullptr;
470   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
471     const Loop *CurLoop = I->first;
472     const SCEV *Op = I->second;
473     if (!Sum) {
474       // This is the first operand. Just expand it.
475       Sum = expand(Op);
476       ++I;
477       continue;
478     }
479 
480     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
481     if (isa<PointerType>(Sum->getType())) {
482       // The running sum expression is a pointer. Try to form a getelementptr
483       // at this level with that as the base.
484       SmallVector<const SCEV *, 4> NewOps;
485       for (; I != E && I->first == CurLoop; ++I) {
486         // If the operand is SCEVUnknown and not instructions, peek through
487         // it, to enable more of it to be folded into the GEP.
488         const SCEV *X = I->second;
489         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
490           if (!isa<Instruction>(U->getValue()))
491             X = SE.getSCEV(U->getValue());
492         NewOps.push_back(X);
493       }
494       Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum);
495     } else if (Op->isNonConstantNegative()) {
496       // Instead of doing a negate and add, just do a subtract.
497       Value *W = expand(SE.getNegativeSCEV(Op));
498       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
499                         /*IsSafeToHoist*/ true);
500       ++I;
501     } else {
502       // A simple add.
503       Value *W = expand(Op);
504       // Canonicalize a constant to the RHS.
505       if (isa<Constant>(Sum))
506         std::swap(Sum, W);
507       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
508                         /*IsSafeToHoist*/ true);
509       ++I;
510     }
511   }
512 
513   return Sum;
514 }
515 
516 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
517   Type *Ty = S->getType();
518 
519   // Collect all the mul operands in a loop, along with their associated loops.
520   // Iterate in reverse so that constants are emitted last, all else equal.
521   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
522   for (const SCEV *Op : reverse(S->operands()))
523     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
524 
525   // Sort by loop. Use a stable sort so that constants follow non-constants.
526   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
527 
528   // Emit instructions to mul all the operands. Hoist as much as possible
529   // out of loops.
530   Value *Prod = nullptr;
531   auto I = OpsAndLoops.begin();
532 
533   // Expand the calculation of X pow N in the following manner:
534   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
535   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
536   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() {
537     auto E = I;
538     // Calculate how many times the same operand from the same loop is included
539     // into this power.
540     uint64_t Exponent = 0;
541     const uint64_t MaxExponent = UINT64_MAX >> 1;
542     // No one sane will ever try to calculate such huge exponents, but if we
543     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
544     // below when the power of 2 exceeds our Exponent, and we want it to be
545     // 1u << 31 at most to not deal with unsigned overflow.
546     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
547       ++Exponent;
548       ++E;
549     }
550     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
551 
552     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
553     // that are needed into the result.
554     Value *P = expand(I->second);
555     Value *Result = nullptr;
556     if (Exponent & 1)
557       Result = P;
558     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
559       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
560                       /*IsSafeToHoist*/ true);
561       if (Exponent & BinExp)
562         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
563                                       SCEV::FlagAnyWrap,
564                                       /*IsSafeToHoist*/ true)
565                         : P;
566     }
567 
568     I = E;
569     assert(Result && "Nothing was expanded?");
570     return Result;
571   };
572 
573   while (I != OpsAndLoops.end()) {
574     if (!Prod) {
575       // This is the first operand. Just expand it.
576       Prod = ExpandOpBinPowN();
577     } else if (I->second->isAllOnesValue()) {
578       // Instead of doing a multiply by negative one, just do a negate.
579       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
580                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
581       ++I;
582     } else {
583       // A simple mul.
584       Value *W = ExpandOpBinPowN();
585       // Canonicalize a constant to the RHS.
586       if (isa<Constant>(Prod)) std::swap(Prod, W);
587       const APInt *RHS;
588       if (match(W, m_Power2(RHS))) {
589         // Canonicalize Prod*(1<<C) to Prod<<C.
590         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
591         auto NWFlags = S->getNoWrapFlags();
592         // clear nsw flag if shl will produce poison value.
593         if (RHS->logBase2() == RHS->getBitWidth() - 1)
594           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
595         Prod = InsertBinop(Instruction::Shl, Prod,
596                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
597                            /*IsSafeToHoist*/ true);
598       } else {
599         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
600                            /*IsSafeToHoist*/ true);
601       }
602     }
603   }
604 
605   return Prod;
606 }
607 
608 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
609   Value *LHS = expand(S->getLHS());
610   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
611     const APInt &RHS = SC->getAPInt();
612     if (RHS.isPowerOf2())
613       return InsertBinop(Instruction::LShr, LHS,
614                          ConstantInt::get(SC->getType(), RHS.logBase2()),
615                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
616   }
617 
618   Value *RHS = expand(S->getRHS());
619   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
620                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
621 }
622 
623 /// Determine if this is a well-behaved chain of instructions leading back to
624 /// the PHI. If so, it may be reused by expanded expressions.
625 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
626                                          const Loop *L) {
627   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
628       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
629     return false;
630   // If any of the operands don't dominate the insert position, bail.
631   // Addrec operands are always loop-invariant, so this can only happen
632   // if there are instructions which haven't been hoisted.
633   if (L == IVIncInsertLoop) {
634     for (Use &Op : llvm::drop_begin(IncV->operands()))
635       if (Instruction *OInst = dyn_cast<Instruction>(Op))
636         if (!SE.DT.dominates(OInst, IVIncInsertPos))
637           return false;
638   }
639   // Advance to the next instruction.
640   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
641   if (!IncV)
642     return false;
643 
644   if (IncV->mayHaveSideEffects())
645     return false;
646 
647   if (IncV == PN)
648     return true;
649 
650   return isNormalAddRecExprPHI(PN, IncV, L);
651 }
652 
653 /// getIVIncOperand returns an induction variable increment's induction
654 /// variable operand.
655 ///
656 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
657 /// operands dominate InsertPos.
658 ///
659 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
660 /// simple patterns generated by getAddRecExprPHILiterally and
661 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
662 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
663                                            Instruction *InsertPos,
664                                            bool allowScale) {
665   if (IncV == InsertPos)
666     return nullptr;
667 
668   switch (IncV->getOpcode()) {
669   default:
670     return nullptr;
671   // Check for a simple Add/Sub or GEP of a loop invariant step.
672   case Instruction::Add:
673   case Instruction::Sub: {
674     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
675     if (!OInst || SE.DT.dominates(OInst, InsertPos))
676       return dyn_cast<Instruction>(IncV->getOperand(0));
677     return nullptr;
678   }
679   case Instruction::BitCast:
680     return dyn_cast<Instruction>(IncV->getOperand(0));
681   case Instruction::GetElementPtr:
682     for (Use &U : llvm::drop_begin(IncV->operands())) {
683       if (isa<Constant>(U))
684         continue;
685       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
686         if (!SE.DT.dominates(OInst, InsertPos))
687           return nullptr;
688       }
689       if (allowScale) {
690         // allow any kind of GEP as long as it can be hoisted.
691         continue;
692       }
693       // GEPs produced by SCEVExpander use i8 element type.
694       if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8))
695         return nullptr;
696       break;
697     }
698     return dyn_cast<Instruction>(IncV->getOperand(0));
699   }
700 }
701 
702 /// If the insert point of the current builder or any of the builders on the
703 /// stack of saved builders has 'I' as its insert point, update it to point to
704 /// the instruction after 'I'.  This is intended to be used when the instruction
705 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
706 /// different block, the inconsistent insert point (with a mismatched
707 /// Instruction and Block) can lead to an instruction being inserted in a block
708 /// other than its parent.
709 void SCEVExpander::fixupInsertPoints(Instruction *I) {
710   BasicBlock::iterator It(*I);
711   BasicBlock::iterator NewInsertPt = std::next(It);
712   if (Builder.GetInsertPoint() == It)
713     Builder.SetInsertPoint(&*NewInsertPt);
714   for (auto *InsertPtGuard : InsertPointGuards)
715     if (InsertPtGuard->GetInsertPoint() == It)
716       InsertPtGuard->SetInsertPoint(NewInsertPt);
717 }
718 
719 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
720 /// it available to other uses in this loop. Recursively hoist any operands,
721 /// until we reach a value that dominates InsertPos.
722 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos,
723                               bool RecomputePoisonFlags) {
724   auto FixupPoisonFlags = [this](Instruction *I) {
725     // Drop flags that are potentially inferred from old context and infer flags
726     // in new context.
727     I->dropPoisonGeneratingFlags();
728     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
729       if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
730         auto *BO = cast<BinaryOperator>(I);
731         BO->setHasNoUnsignedWrap(
732             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
733         BO->setHasNoSignedWrap(
734             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
735       }
736   };
737 
738   if (SE.DT.dominates(IncV, InsertPos)) {
739     if (RecomputePoisonFlags)
740       FixupPoisonFlags(IncV);
741     return true;
742   }
743 
744   // InsertPos must itself dominate IncV so that IncV's new position satisfies
745   // its existing users.
746   if (isa<PHINode>(InsertPos) ||
747       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
748     return false;
749 
750   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
751     return false;
752 
753   // Check that the chain of IV operands leading back to Phi can be hoisted.
754   SmallVector<Instruction*, 4> IVIncs;
755   for(;;) {
756     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
757     if (!Oper)
758       return false;
759     // IncV is safe to hoist.
760     IVIncs.push_back(IncV);
761     IncV = Oper;
762     if (SE.DT.dominates(IncV, InsertPos))
763       break;
764   }
765   for (Instruction *I : llvm::reverse(IVIncs)) {
766     fixupInsertPoints(I);
767     I->moveBefore(InsertPos);
768     if (RecomputePoisonFlags)
769       FixupPoisonFlags(I);
770   }
771   return true;
772 }
773 
774 /// Determine if this cyclic phi is in a form that would have been generated by
775 /// LSR. We don't care if the phi was actually expanded in this pass, as long
776 /// as it is in a low-cost form, for example, no implied multiplication. This
777 /// should match any patterns generated by getAddRecExprPHILiterally and
778 /// expandAddtoGEP.
779 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
780                                            const Loop *L) {
781   for(Instruction *IVOper = IncV;
782       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
783                                 /*allowScale=*/false));) {
784     if (IVOper == PN)
785       return true;
786   }
787   return false;
788 }
789 
790 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
791 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
792 /// need to materialize IV increments elsewhere to handle difficult situations.
793 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
794                                  bool useSubtract) {
795   Value *IncV;
796   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
797   if (PN->getType()->isPointerTy()) {
798     IncV = expandAddToGEP(SE.getSCEV(StepV), PN);
799   } else {
800     IncV = useSubtract ?
801       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
802       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
803   }
804   return IncV;
805 }
806 
807 /// Check whether we can cheaply express the requested SCEV in terms of
808 /// the available PHI SCEV by truncation and/or inversion of the step.
809 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
810                                     const SCEVAddRecExpr *Phi,
811                                     const SCEVAddRecExpr *Requested,
812                                     bool &InvertStep) {
813   // We can't transform to match a pointer PHI.
814   Type *PhiTy = Phi->getType();
815   Type *RequestedTy = Requested->getType();
816   if (PhiTy->isPointerTy() || RequestedTy->isPointerTy())
817     return false;
818 
819   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
820     return false;
821 
822   // Try truncate it if necessary.
823   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
824   if (!Phi)
825     return false;
826 
827   // Check whether truncation will help.
828   if (Phi == Requested) {
829     InvertStep = false;
830     return true;
831   }
832 
833   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
834   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
835     InvertStep = true;
836     return true;
837   }
838 
839   return false;
840 }
841 
842 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
843   if (!isa<IntegerType>(AR->getType()))
844     return false;
845 
846   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
847   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
848   const SCEV *Step = AR->getStepRecurrence(SE);
849   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
850                                             SE.getSignExtendExpr(AR, WideTy));
851   const SCEV *ExtendAfterOp =
852     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
853   return ExtendAfterOp == OpAfterExtend;
854 }
855 
856 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
857   if (!isa<IntegerType>(AR->getType()))
858     return false;
859 
860   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
861   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
862   const SCEV *Step = AR->getStepRecurrence(SE);
863   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
864                                             SE.getZeroExtendExpr(AR, WideTy));
865   const SCEV *ExtendAfterOp =
866     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
867   return ExtendAfterOp == OpAfterExtend;
868 }
869 
870 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
871 /// the base addrec, which is the addrec without any non-loop-dominating
872 /// values, and return the PHI.
873 PHINode *
874 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
875                                         const Loop *L, Type *&TruncTy,
876                                         bool &InvertStep) {
877   assert((!IVIncInsertLoop || IVIncInsertPos) &&
878          "Uninitialized insert position");
879 
880   // Reuse a previously-inserted PHI, if present.
881   BasicBlock *LatchBlock = L->getLoopLatch();
882   if (LatchBlock) {
883     PHINode *AddRecPhiMatch = nullptr;
884     Instruction *IncV = nullptr;
885     TruncTy = nullptr;
886     InvertStep = false;
887 
888     // Only try partially matching scevs that need truncation and/or
889     // step-inversion if we know this loop is outside the current loop.
890     bool TryNonMatchingSCEV =
891         IVIncInsertLoop &&
892         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
893 
894     for (PHINode &PN : L->getHeader()->phis()) {
895       if (!SE.isSCEVable(PN.getType()))
896         continue;
897 
898       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
899       // PHI has no meaning at all.
900       if (!PN.isComplete()) {
901         SCEV_DEBUG_WITH_TYPE(
902             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
903         continue;
904       }
905 
906       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
907       if (!PhiSCEV)
908         continue;
909 
910       bool IsMatchingSCEV = PhiSCEV == Normalized;
911       // We only handle truncation and inversion of phi recurrences for the
912       // expanded expression if the expanded expression's loop dominates the
913       // loop we insert to. Check now, so we can bail out early.
914       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
915           continue;
916 
917       // TODO: this possibly can be reworked to avoid this cast at all.
918       Instruction *TempIncV =
919           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
920       if (!TempIncV)
921         continue;
922 
923       // Check whether we can reuse this PHI node.
924       if (LSRMode) {
925         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
926           continue;
927       } else {
928         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
929           continue;
930       }
931 
932       // Stop if we have found an exact match SCEV.
933       if (IsMatchingSCEV) {
934         IncV = TempIncV;
935         TruncTy = nullptr;
936         InvertStep = false;
937         AddRecPhiMatch = &PN;
938         break;
939       }
940 
941       // Try whether the phi can be translated into the requested form
942       // (truncated and/or offset by a constant).
943       if ((!TruncTy || InvertStep) &&
944           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
945         // Record the phi node. But don't stop we might find an exact match
946         // later.
947         AddRecPhiMatch = &PN;
948         IncV = TempIncV;
949         TruncTy = Normalized->getType();
950       }
951     }
952 
953     if (AddRecPhiMatch) {
954       // Ok, the add recurrence looks usable.
955       // Remember this PHI, even in post-inc mode.
956       InsertedValues.insert(AddRecPhiMatch);
957       // Remember the increment.
958       rememberInstruction(IncV);
959       // Those values were not actually inserted but re-used.
960       ReusedValues.insert(AddRecPhiMatch);
961       ReusedValues.insert(IncV);
962       return AddRecPhiMatch;
963     }
964   }
965 
966   // Save the original insertion point so we can restore it when we're done.
967   SCEVInsertPointGuard Guard(Builder, this);
968 
969   // Another AddRec may need to be recursively expanded below. For example, if
970   // this AddRec is quadratic, the StepV may itself be an AddRec in this
971   // loop. Remove this loop from the PostIncLoops set before expanding such
972   // AddRecs. Otherwise, we cannot find a valid position for the step
973   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
974   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
975   // so it's not worth implementing SmallPtrSet::swap.
976   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
977   PostIncLoops.clear();
978 
979   // Expand code for the start value into the loop preheader.
980   assert(L->getLoopPreheader() &&
981          "Can't expand add recurrences without a loop preheader!");
982   Value *StartV =
983       expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator());
984 
985   // StartV must have been be inserted into L's preheader to dominate the new
986   // phi.
987   assert(!isa<Instruction>(StartV) ||
988          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
989                                  L->getHeader()));
990 
991   // Expand code for the step value. Do this before creating the PHI so that PHI
992   // reuse code doesn't see an incomplete PHI.
993   const SCEV *Step = Normalized->getStepRecurrence(SE);
994   Type *ExpandTy = Normalized->getType();
995   // If the stride is negative, insert a sub instead of an add for the increment
996   // (unless it's a constant, because subtracts of constants are canonicalized
997   // to adds).
998   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
999   if (useSubtract)
1000     Step = SE.getNegativeSCEV(Step);
1001   // Expand the step somewhere that dominates the loop header.
1002   Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt());
1003 
1004   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1005   // we actually do emit an addition.  It does not apply if we emit a
1006   // subtraction.
1007   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1008   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1009 
1010   // Create the PHI.
1011   BasicBlock *Header = L->getHeader();
1012   Builder.SetInsertPoint(Header, Header->begin());
1013   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1014   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1015                                   Twine(IVName) + ".iv");
1016 
1017   // Create the step instructions and populate the PHI.
1018   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1019     BasicBlock *Pred = *HPI;
1020 
1021     // Add a start value.
1022     if (!L->contains(Pred)) {
1023       PN->addIncoming(StartV, Pred);
1024       continue;
1025     }
1026 
1027     // Create a step value and add it to the PHI.
1028     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1029     // instructions at IVIncInsertPos.
1030     Instruction *InsertPos = L == IVIncInsertLoop ?
1031       IVIncInsertPos : Pred->getTerminator();
1032     Builder.SetInsertPoint(InsertPos);
1033     Value *IncV = expandIVInc(PN, StepV, L, useSubtract);
1034 
1035     if (isa<OverflowingBinaryOperator>(IncV)) {
1036       if (IncrementIsNUW)
1037         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1038       if (IncrementIsNSW)
1039         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1040     }
1041     PN->addIncoming(IncV, Pred);
1042   }
1043 
1044   // After expanding subexpressions, restore the PostIncLoops set so the caller
1045   // can ensure that IVIncrement dominates the current uses.
1046   PostIncLoops = SavedPostIncLoops;
1047 
1048   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1049   // effective when we are able to use an IV inserted here, so record it.
1050   InsertedValues.insert(PN);
1051   InsertedIVs.push_back(PN);
1052   return PN;
1053 }
1054 
1055 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1056   const Loop *L = S->getLoop();
1057 
1058   // Determine a normalized form of this expression, which is the expression
1059   // before any post-inc adjustment is made.
1060   const SCEVAddRecExpr *Normalized = S;
1061   if (PostIncLoops.count(L)) {
1062     PostIncLoopSet Loops;
1063     Loops.insert(L);
1064     Normalized = cast<SCEVAddRecExpr>(
1065         normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false));
1066   }
1067 
1068   [[maybe_unused]] const SCEV *Start = Normalized->getStart();
1069   const SCEV *Step = Normalized->getStepRecurrence(SE);
1070   assert(SE.properlyDominates(Start, L->getHeader()) &&
1071          "Start does not properly dominate loop header");
1072   assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header");
1073 
1074   // In some cases, we decide to reuse an existing phi node but need to truncate
1075   // it and/or invert the step.
1076   Type *TruncTy = nullptr;
1077   bool InvertStep = false;
1078   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep);
1079 
1080   // Accommodate post-inc mode, if necessary.
1081   Value *Result;
1082   if (!PostIncLoops.count(L))
1083     Result = PN;
1084   else {
1085     // In PostInc mode, use the post-incremented value.
1086     BasicBlock *LatchBlock = L->getLoopLatch();
1087     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1088     Result = PN->getIncomingValueForBlock(LatchBlock);
1089 
1090     // We might be introducing a new use of the post-inc IV that is not poison
1091     // safe, in which case we should drop poison generating flags. Only keep
1092     // those flags for which SCEV has proven that they always hold.
1093     if (isa<OverflowingBinaryOperator>(Result)) {
1094       auto *I = cast<Instruction>(Result);
1095       if (!S->hasNoUnsignedWrap())
1096         I->setHasNoUnsignedWrap(false);
1097       if (!S->hasNoSignedWrap())
1098         I->setHasNoSignedWrap(false);
1099     }
1100 
1101     // For an expansion to use the postinc form, the client must call
1102     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1103     // or dominated by IVIncInsertPos.
1104     if (isa<Instruction>(Result) &&
1105         !SE.DT.dominates(cast<Instruction>(Result),
1106                          &*Builder.GetInsertPoint())) {
1107       // The induction variable's postinc expansion does not dominate this use.
1108       // IVUsers tries to prevent this case, so it is rare. However, it can
1109       // happen when an IVUser outside the loop is not dominated by the latch
1110       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1111       // all cases. Consider a phi outside whose operand is replaced during
1112       // expansion with the value of the postinc user. Without fundamentally
1113       // changing the way postinc users are tracked, the only remedy is
1114       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1115       // but hopefully expandCodeFor handles that.
1116       bool useSubtract =
1117           !S->getType()->isPointerTy() && Step->isNonConstantNegative();
1118       if (useSubtract)
1119         Step = SE.getNegativeSCEV(Step);
1120       Value *StepV;
1121       {
1122         // Expand the step somewhere that dominates the loop header.
1123         SCEVInsertPointGuard Guard(Builder, this);
1124         StepV = expand(Step, L->getHeader()->getFirstInsertionPt());
1125       }
1126       Result = expandIVInc(PN, StepV, L, useSubtract);
1127     }
1128   }
1129 
1130   // We have decided to reuse an induction variable of a dominating loop. Apply
1131   // truncation and/or inversion of the step.
1132   if (TruncTy) {
1133     // Truncate the result.
1134     if (TruncTy != Result->getType())
1135       Result = Builder.CreateTrunc(Result, TruncTy);
1136 
1137     // Invert the result.
1138     if (InvertStep)
1139       Result = Builder.CreateSub(expand(Normalized->getStart()), Result);
1140   }
1141 
1142   return Result;
1143 }
1144 
1145 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1146   // In canonical mode we compute the addrec as an expression of a canonical IV
1147   // using evaluateAtIteration and expand the resulting SCEV expression. This
1148   // way we avoid introducing new IVs to carry on the computation of the addrec
1149   // throughout the loop.
1150   //
1151   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1152   // type wider than the addrec itself. Emitting a canonical IV of the
1153   // proper type might produce non-legal types, for example expanding an i64
1154   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1155   // back to non-canonical mode for nested addrecs.
1156   if (!CanonicalMode || (S->getNumOperands() > 2))
1157     return expandAddRecExprLiterally(S);
1158 
1159   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1160   const Loop *L = S->getLoop();
1161 
1162   // First check for an existing canonical IV in a suitable type.
1163   PHINode *CanonicalIV = nullptr;
1164   if (PHINode *PN = L->getCanonicalInductionVariable())
1165     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1166       CanonicalIV = PN;
1167 
1168   // Rewrite an AddRec in terms of the canonical induction variable, if
1169   // its type is more narrow.
1170   if (CanonicalIV &&
1171       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1172       !S->getType()->isPointerTy()) {
1173     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1174     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1175       NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType());
1176     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1177                                        S->getNoWrapFlags(SCEV::FlagNW)));
1178     BasicBlock::iterator NewInsertPt =
1179         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1180     V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt);
1181     return V;
1182   }
1183 
1184   // {X,+,F} --> X + {0,+,F}
1185   if (!S->getStart()->isZero()) {
1186     if (isa<PointerType>(S->getType())) {
1187       Value *StartV = expand(SE.getPointerBase(S));
1188       return expandAddToGEP(SE.removePointerBase(S), StartV);
1189     }
1190 
1191     SmallVector<const SCEV *, 4> NewOps(S->operands());
1192     NewOps[0] = SE.getConstant(Ty, 0);
1193     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1194                                         S->getNoWrapFlags(SCEV::FlagNW));
1195 
1196     // Just do a normal add. Pre-expand the operands to suppress folding.
1197     //
1198     // The LHS and RHS values are factored out of the expand call to make the
1199     // output independent of the argument evaluation order.
1200     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1201     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1202     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1203   }
1204 
1205   // If we don't yet have a canonical IV, create one.
1206   if (!CanonicalIV) {
1207     // Create and insert the PHI node for the induction variable in the
1208     // specified loop.
1209     BasicBlock *Header = L->getHeader();
1210     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1211     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar");
1212     CanonicalIV->insertBefore(Header->begin());
1213     rememberInstruction(CanonicalIV);
1214 
1215     SmallSet<BasicBlock *, 4> PredSeen;
1216     Constant *One = ConstantInt::get(Ty, 1);
1217     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1218       BasicBlock *HP = *HPI;
1219       if (!PredSeen.insert(HP).second) {
1220         // There must be an incoming value for each predecessor, even the
1221         // duplicates!
1222         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1223         continue;
1224       }
1225 
1226       if (L->contains(HP)) {
1227         // Insert a unit add instruction right before the terminator
1228         // corresponding to the back-edge.
1229         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1230                                                      "indvar.next",
1231                                                      HP->getTerminator());
1232         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1233         rememberInstruction(Add);
1234         CanonicalIV->addIncoming(Add, HP);
1235       } else {
1236         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1237       }
1238     }
1239   }
1240 
1241   // {0,+,1} --> Insert a canonical induction variable into the loop!
1242   if (S->isAffine() && S->getOperand(1)->isOne()) {
1243     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1244            "IVs with types different from the canonical IV should "
1245            "already have been handled!");
1246     return CanonicalIV;
1247   }
1248 
1249   // {0,+,F} --> {0,+,1} * F
1250 
1251   // If this is a simple linear addrec, emit it now as a special case.
1252   if (S->isAffine())    // {0,+,F} --> i*F
1253     return
1254       expand(SE.getTruncateOrNoop(
1255         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1256                       SE.getNoopOrAnyExtend(S->getOperand(1),
1257                                             CanonicalIV->getType())),
1258         Ty));
1259 
1260   // If this is a chain of recurrences, turn it into a closed form, using the
1261   // folders, then expandCodeFor the closed form.  This allows the folders to
1262   // simplify the expression without having to build a bunch of special code
1263   // into this folder.
1264   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1265 
1266   // Promote S up to the canonical IV type, if the cast is foldable.
1267   const SCEV *NewS = S;
1268   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1269   if (isa<SCEVAddRecExpr>(Ext))
1270     NewS = Ext;
1271 
1272   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1273 
1274   // Truncate the result down to the original type, if needed.
1275   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1276   return expand(T);
1277 }
1278 
1279 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1280   Value *V = expand(S->getOperand());
1281   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1282                            GetOptimalInsertionPointForCastOf(V));
1283 }
1284 
1285 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1286   Value *V = expand(S->getOperand());
1287   return Builder.CreateTrunc(V, S->getType());
1288 }
1289 
1290 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1291   Value *V = expand(S->getOperand());
1292   return Builder.CreateZExt(V, S->getType(), "",
1293                             SE.isKnownNonNegative(S->getOperand()));
1294 }
1295 
1296 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1297   Value *V = expand(S->getOperand());
1298   return Builder.CreateSExt(V, S->getType());
1299 }
1300 
1301 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
1302                                       Intrinsic::ID IntrinID, Twine Name,
1303                                       bool IsSequential) {
1304   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1305   Type *Ty = LHS->getType();
1306   if (IsSequential)
1307     LHS = Builder.CreateFreeze(LHS);
1308   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1309     Value *RHS = expand(S->getOperand(i));
1310     if (IsSequential && i != 0)
1311       RHS = Builder.CreateFreeze(RHS);
1312     Value *Sel;
1313     if (Ty->isIntegerTy())
1314       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
1315                                     /*FMFSource=*/nullptr, Name);
1316     else {
1317       Value *ICmp =
1318           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
1319       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1320     }
1321     LHS = Sel;
1322   }
1323   return LHS;
1324 }
1325 
1326 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1327   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
1328 }
1329 
1330 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1331   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
1332 }
1333 
1334 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1335   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
1336 }
1337 
1338 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1339   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
1340 }
1341 
1342 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1343   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
1344 }
1345 
1346 Value *SCEVExpander::visitVScale(const SCEVVScale *S) {
1347   return Builder.CreateVScale(ConstantInt::get(S->getType(), 1));
1348 }
1349 
1350 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1351                                    BasicBlock::iterator IP) {
1352   setInsertPoint(IP);
1353   Value *V = expandCodeFor(SH, Ty);
1354   return V;
1355 }
1356 
1357 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1358   // Expand the code for this SCEV.
1359   Value *V = expand(SH);
1360 
1361   if (Ty) {
1362     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1363            "non-trivial casts should be done with the SCEVs directly!");
1364     V = InsertNoopCastOfTo(V, Ty);
1365   }
1366   return V;
1367 }
1368 
1369 Value *SCEVExpander::FindValueInExprValueMap(
1370     const SCEV *S, const Instruction *InsertPt,
1371     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
1372   // If the expansion is not in CanonicalMode, and the SCEV contains any
1373   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1374   if (!CanonicalMode && SE.containsAddRecurrence(S))
1375     return nullptr;
1376 
1377   // If S is a constant, it may be worse to reuse an existing Value.
1378   if (isa<SCEVConstant>(S))
1379     return nullptr;
1380 
1381   for (Value *V : SE.getSCEVValues(S)) {
1382     Instruction *EntInst = dyn_cast<Instruction>(V);
1383     if (!EntInst)
1384       continue;
1385 
1386     // Choose a Value from the set which dominates the InsertPt.
1387     // InsertPt should be inside the Value's parent loop so as not to break
1388     // the LCSSA form.
1389     assert(EntInst->getFunction() == InsertPt->getFunction());
1390     if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) ||
1391         !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1392           SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1393       continue;
1394 
1395     // Make sure reusing the instruction is poison-safe.
1396     if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts))
1397       return V;
1398     DropPoisonGeneratingInsts.clear();
1399   }
1400   return nullptr;
1401 }
1402 
1403 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1404 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1405 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1406 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1407 // the expansion will try to reuse Value from ExprValueMap, and only when it
1408 // fails, expand the SCEV literally.
1409 Value *SCEVExpander::expand(const SCEV *S) {
1410   // Compute an insertion point for this SCEV object. Hoist the instructions
1411   // as far out in the loop nest as possible.
1412   BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
1413 
1414   // We can move insertion point only if there is no div or rem operations
1415   // otherwise we are risky to move it over the check for zero denominator.
1416   auto SafeToHoist = [](const SCEV *S) {
1417     return !SCEVExprContains(S, [](const SCEV *S) {
1418               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1419                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1420                   // Division by non-zero constants can be hoisted.
1421                   return SC->getValue()->isZero();
1422                 // All other divisions should not be moved as they may be
1423                 // divisions by zero and should be kept within the
1424                 // conditions of the surrounding loops that guard their
1425                 // execution (see PR35406).
1426                 return true;
1427               }
1428               return false;
1429             });
1430   };
1431   if (SafeToHoist(S)) {
1432     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1433          L = L->getParentLoop()) {
1434       if (SE.isLoopInvariant(S, L)) {
1435         if (!L) break;
1436         if (BasicBlock *Preheader = L->getLoopPreheader()) {
1437           InsertPt = Preheader->getTerminator()->getIterator();
1438         } else {
1439           // LSR sets the insertion point for AddRec start/step values to the
1440           // block start to simplify value reuse, even though it's an invalid
1441           // position. SCEVExpander must correct for this in all cases.
1442           InsertPt = L->getHeader()->getFirstInsertionPt();
1443         }
1444       } else {
1445         // If the SCEV is computable at this level, insert it into the header
1446         // after the PHIs (and after any other instructions that we've inserted
1447         // there) so that it is guaranteed to dominate any user inside the loop.
1448         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1449           InsertPt = L->getHeader()->getFirstInsertionPt();
1450 
1451         while (InsertPt != Builder.GetInsertPoint() &&
1452                (isInsertedInstruction(&*InsertPt) ||
1453                 isa<DbgInfoIntrinsic>(&*InsertPt))) {
1454           InsertPt = std::next(InsertPt);
1455         }
1456         break;
1457       }
1458     }
1459   }
1460 
1461   // Check to see if we already expanded this here.
1462   auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt));
1463   if (I != InsertedExpressions.end())
1464     return I->second;
1465 
1466   SCEVInsertPointGuard Guard(Builder, this);
1467   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1468 
1469   // Expand the expression into instructions.
1470   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1471   Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts);
1472   if (!V) {
1473     V = visit(S);
1474     V = fixupLCSSAFormFor(V);
1475   } else {
1476     for (Instruction *I : DropPoisonGeneratingInsts) {
1477       I->dropPoisonGeneratingFlagsAndMetadata();
1478       // See if we can re-infer from first principles any of the flags we just
1479       // dropped.
1480       if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
1481         if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
1482           auto *BO = cast<BinaryOperator>(I);
1483           BO->setHasNoUnsignedWrap(
1484             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
1485           BO->setHasNoSignedWrap(
1486             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
1487         }
1488       if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) {
1489         auto *Src = NNI->getOperand(0);
1490         if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src,
1491                                     Constant::getNullValue(Src->getType()), I,
1492                                     DL).value_or(false))
1493           NNI->setNonNeg(true);
1494       }
1495     }
1496   }
1497   // Remember the expanded value for this SCEV at this location.
1498   //
1499   // This is independent of PostIncLoops. The mapped value simply materializes
1500   // the expression at this insertion point. If the mapped value happened to be
1501   // a postinc expansion, it could be reused by a non-postinc user, but only if
1502   // its insertion point was already at the head of the loop.
1503   InsertedExpressions[std::make_pair(S, &*InsertPt)] = V;
1504   return V;
1505 }
1506 
1507 void SCEVExpander::rememberInstruction(Value *I) {
1508   auto DoInsert = [this](Value *V) {
1509     if (!PostIncLoops.empty())
1510       InsertedPostIncValues.insert(V);
1511     else
1512       InsertedValues.insert(V);
1513   };
1514   DoInsert(I);
1515 }
1516 
1517 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1518 /// replace them with their most canonical representative. Return the number of
1519 /// phis eliminated.
1520 ///
1521 /// This does not depend on any SCEVExpander state but should be used in
1522 /// the same context that SCEVExpander is used.
1523 unsigned
1524 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1525                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1526                                   const TargetTransformInfo *TTI) {
1527   // Find integer phis in order of increasing width.
1528   SmallVector<PHINode*, 8> Phis;
1529   for (PHINode &PN : L->getHeader()->phis())
1530     Phis.push_back(&PN);
1531 
1532   if (TTI)
1533     // Use stable_sort to preserve order of equivalent PHIs, so the order
1534     // of the sorted Phis is the same from run to run on the same loop.
1535     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
1536       // Put pointers at the back and make sure pointer < pointer = false.
1537       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1538         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1539       return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() <
1540              LHS->getType()->getPrimitiveSizeInBits().getFixedValue();
1541     });
1542 
1543   unsigned NumElim = 0;
1544   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1545   // Process phis from wide to narrow. Map wide phis to their truncation
1546   // so narrow phis can reuse them.
1547   for (PHINode *Phi : Phis) {
1548     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1549       if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1550         return V;
1551       if (!SE.isSCEVable(PN->getType()))
1552         return nullptr;
1553       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1554       if (!Const)
1555         return nullptr;
1556       return Const->getValue();
1557     };
1558 
1559     // Fold constant phis. They may be congruent to other constant phis and
1560     // would confuse the logic below that expects proper IVs.
1561     if (Value *V = SimplifyPHINode(Phi)) {
1562       if (V->getType() != Phi->getType())
1563         continue;
1564       SE.forgetValue(Phi);
1565       Phi->replaceAllUsesWith(V);
1566       DeadInsts.emplace_back(Phi);
1567       ++NumElim;
1568       SCEV_DEBUG_WITH_TYPE(DebugType,
1569                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1570                                   << '\n');
1571       continue;
1572     }
1573 
1574     if (!SE.isSCEVable(Phi->getType()))
1575       continue;
1576 
1577     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1578     if (!OrigPhiRef) {
1579       OrigPhiRef = Phi;
1580       if (Phi->getType()->isIntegerTy() && TTI &&
1581           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1582         // Make sure we only rewrite using simple induction variables;
1583         // otherwise, we can make the trip count of a loop unanalyzable
1584         // to SCEV.
1585         const SCEV *PhiExpr = SE.getSCEV(Phi);
1586         if (isa<SCEVAddRecExpr>(PhiExpr)) {
1587           // This phi can be freely truncated to the narrowest phi type. Map the
1588           // truncated expression to it so it will be reused for narrow types.
1589           const SCEV *TruncExpr =
1590               SE.getTruncateExpr(PhiExpr, Phis.back()->getType());
1591           ExprToIVMap[TruncExpr] = Phi;
1592         }
1593       }
1594       continue;
1595     }
1596 
1597     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1598     // sense.
1599     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1600       continue;
1601 
1602     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1603       Instruction *OrigInc = dyn_cast<Instruction>(
1604           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1605       Instruction *IsomorphicInc =
1606           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1607 
1608       if (OrigInc && IsomorphicInc) {
1609         // If this phi has the same width but is more canonical, replace the
1610         // original with it. As part of the "more canonical" determination,
1611         // respect a prior decision to use an IV chain.
1612         if (OrigPhiRef->getType() == Phi->getType() &&
1613             !(ChainedPhis.count(Phi) ||
1614               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1615             (ChainedPhis.count(Phi) ||
1616              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1617           std::swap(OrigPhiRef, Phi);
1618           std::swap(OrigInc, IsomorphicInc);
1619         }
1620         // Replacing the congruent phi is sufficient because acyclic
1621         // redundancy elimination, CSE/GVN, should handle the
1622         // rest. However, once SCEV proves that a phi is congruent,
1623         // it's often the head of an IV user cycle that is isomorphic
1624         // with the original phi. It's worth eagerly cleaning up the
1625         // common case of a single IV increment so that DeleteDeadPHIs
1626         // can remove cycles that had postinc uses.
1627         // Because we may potentially introduce a new use of OrigIV that didn't
1628         // exist before at this point, its poison flags need readjustment.
1629         const SCEV *TruncExpr =
1630             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1631         if (OrigInc != IsomorphicInc &&
1632             TruncExpr == SE.getSCEV(IsomorphicInc) &&
1633             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
1634             hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) {
1635           SCEV_DEBUG_WITH_TYPE(
1636               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1637                                 << *IsomorphicInc << '\n');
1638           Value *NewInc = OrigInc;
1639           if (OrigInc->getType() != IsomorphicInc->getType()) {
1640             BasicBlock::iterator IP;
1641             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1642               IP = PN->getParent()->getFirstInsertionPt();
1643             else
1644               IP = OrigInc->getNextNonDebugInstruction()->getIterator();
1645 
1646             IRBuilder<> Builder(IP->getParent(), IP);
1647             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1648             NewInc = Builder.CreateTruncOrBitCast(
1649                 OrigInc, IsomorphicInc->getType(), IVName);
1650           }
1651           IsomorphicInc->replaceAllUsesWith(NewInc);
1652           DeadInsts.emplace_back(IsomorphicInc);
1653         }
1654       }
1655     }
1656     SCEV_DEBUG_WITH_TYPE(DebugType,
1657                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
1658                                 << '\n');
1659     SCEV_DEBUG_WITH_TYPE(
1660         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
1661     ++NumElim;
1662     Value *NewIV = OrigPhiRef;
1663     if (OrigPhiRef->getType() != Phi->getType()) {
1664       IRBuilder<> Builder(L->getHeader(),
1665                           L->getHeader()->getFirstInsertionPt());
1666       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1667       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1668     }
1669     Phi->replaceAllUsesWith(NewIV);
1670     DeadInsts.emplace_back(Phi);
1671   }
1672   return NumElim;
1673 }
1674 
1675 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S,
1676                                                const Instruction *At,
1677                                                Loop *L) {
1678   using namespace llvm::PatternMatch;
1679 
1680   SmallVector<BasicBlock *, 4> ExitingBlocks;
1681   L->getExitingBlocks(ExitingBlocks);
1682 
1683   // Look for suitable value in simple conditions at the loop exits.
1684   for (BasicBlock *BB : ExitingBlocks) {
1685     ICmpInst::Predicate Pred;
1686     Instruction *LHS, *RHS;
1687 
1688     if (!match(BB->getTerminator(),
1689                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
1690                     m_BasicBlock(), m_BasicBlock())))
1691       continue;
1692 
1693     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
1694       return true;
1695 
1696     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
1697       return true;
1698   }
1699 
1700   // Use expand's logic which is used for reusing a previous Value in
1701   // ExprValueMap.  Note that we don't currently model the cost of
1702   // needing to drop poison generating flags on the instruction if we
1703   // want to reuse it.  We effectively assume that has zero cost.
1704   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1705   return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr;
1706 }
1707 
1708 template<typename T> static InstructionCost costAndCollectOperands(
1709   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
1710   TargetTransformInfo::TargetCostKind CostKind,
1711   SmallVectorImpl<SCEVOperand> &Worklist) {
1712 
1713   const T *S = cast<T>(WorkItem.S);
1714   InstructionCost Cost = 0;
1715   // Object to help map SCEV operands to expanded IR instructions.
1716   struct OperationIndices {
1717     OperationIndices(unsigned Opc, size_t min, size_t max) :
1718       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
1719     unsigned Opcode;
1720     size_t MinIdx;
1721     size_t MaxIdx;
1722   };
1723 
1724   // Collect the operations of all the instructions that will be needed to
1725   // expand the SCEVExpr. This is so that when we come to cost the operands,
1726   // we know what the generated user(s) will be.
1727   SmallVector<OperationIndices, 2> Operations;
1728 
1729   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
1730     Operations.emplace_back(Opcode, 0, 0);
1731     return TTI.getCastInstrCost(Opcode, S->getType(),
1732                                 S->getOperand(0)->getType(),
1733                                 TTI::CastContextHint::None, CostKind);
1734   };
1735 
1736   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
1737                        unsigned MinIdx = 0,
1738                        unsigned MaxIdx = 1) -> InstructionCost {
1739     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1740     return NumRequired *
1741       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
1742   };
1743 
1744   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
1745                         unsigned MaxIdx) -> InstructionCost {
1746     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1747     Type *OpType = S->getType();
1748     return NumRequired * TTI.getCmpSelInstrCost(
1749                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
1750                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
1751   };
1752 
1753   switch (S->getSCEVType()) {
1754   case scCouldNotCompute:
1755     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1756   case scUnknown:
1757   case scConstant:
1758   case scVScale:
1759     return 0;
1760   case scPtrToInt:
1761     Cost = CastCost(Instruction::PtrToInt);
1762     break;
1763   case scTruncate:
1764     Cost = CastCost(Instruction::Trunc);
1765     break;
1766   case scZeroExtend:
1767     Cost = CastCost(Instruction::ZExt);
1768     break;
1769   case scSignExtend:
1770     Cost = CastCost(Instruction::SExt);
1771     break;
1772   case scUDivExpr: {
1773     unsigned Opcode = Instruction::UDiv;
1774     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1775       if (SC->getAPInt().isPowerOf2())
1776         Opcode = Instruction::LShr;
1777     Cost = ArithCost(Opcode, 1);
1778     break;
1779   }
1780   case scAddExpr:
1781     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
1782     break;
1783   case scMulExpr:
1784     // TODO: this is a very pessimistic cost modelling for Mul,
1785     // because of Bin Pow algorithm actually used by the expander,
1786     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
1787     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
1788     break;
1789   case scSMaxExpr:
1790   case scUMaxExpr:
1791   case scSMinExpr:
1792   case scUMinExpr:
1793   case scSequentialUMinExpr: {
1794     // FIXME: should this ask the cost for Intrinsic's?
1795     // The reduction tree.
1796     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
1797     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
1798     switch (S->getSCEVType()) {
1799     case scSequentialUMinExpr: {
1800       // The safety net against poison.
1801       // FIXME: this is broken.
1802       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
1803       Cost += ArithCost(Instruction::Or,
1804                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
1805       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
1806       break;
1807     }
1808     default:
1809       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
1810              "Unhandled SCEV expression type?");
1811       break;
1812     }
1813     break;
1814   }
1815   case scAddRecExpr: {
1816     // In this polynominal, we may have some zero operands, and we shouldn't
1817     // really charge for those. So how many non-zero coefficients are there?
1818     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
1819                                     return !Op->isZero();
1820                                   });
1821 
1822     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
1823     assert(!(*std::prev(S->operands().end()))->isZero() &&
1824            "Last operand should not be zero");
1825 
1826     // Ignoring constant term (operand 0), how many of the coefficients are u> 1?
1827     int NumNonZeroDegreeNonOneTerms =
1828       llvm::count_if(S->operands(), [](const SCEV *Op) {
1829                       auto *SConst = dyn_cast<SCEVConstant>(Op);
1830                       return !SConst || SConst->getAPInt().ugt(1);
1831                     });
1832 
1833     // Much like with normal add expr, the polynominal will require
1834     // one less addition than the number of it's terms.
1835     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
1836                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
1837     // Here, *each* one of those will require a multiplication.
1838     InstructionCost MulCost =
1839         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
1840     Cost = AddCost + MulCost;
1841 
1842     // What is the degree of this polynominal?
1843     int PolyDegree = S->getNumOperands() - 1;
1844     assert(PolyDegree >= 1 && "Should be at least affine.");
1845 
1846     // The final term will be:
1847     //   Op_{PolyDegree} * x ^ {PolyDegree}
1848     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
1849     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
1850     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
1851     // FIXME: this is conservatively correct, but might be overly pessimistic.
1852     Cost += MulCost * (PolyDegree - 1);
1853     break;
1854   }
1855   }
1856 
1857   for (auto &CostOp : Operations) {
1858     for (auto SCEVOp : enumerate(S->operands())) {
1859       // Clamp the index to account for multiple IR operations being chained.
1860       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
1861       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
1862       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
1863     }
1864   }
1865   return Cost;
1866 }
1867 
1868 bool SCEVExpander::isHighCostExpansionHelper(
1869     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
1870     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
1871     SmallPtrSetImpl<const SCEV *> &Processed,
1872     SmallVectorImpl<SCEVOperand> &Worklist) {
1873   if (Cost > Budget)
1874     return true; // Already run out of budget, give up.
1875 
1876   const SCEV *S = WorkItem.S;
1877   // Was the cost of expansion of this expression already accounted for?
1878   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
1879     return false; // We have already accounted for this expression.
1880 
1881   // If we can find an existing value for this scev available at the point "At"
1882   // then consider the expression cheap.
1883   if (hasRelatedExistingExpansion(S, &At, L))
1884     return false; // Consider the expression to be free.
1885 
1886   TargetTransformInfo::TargetCostKind CostKind =
1887       L->getHeader()->getParent()->hasMinSize()
1888           ? TargetTransformInfo::TCK_CodeSize
1889           : TargetTransformInfo::TCK_RecipThroughput;
1890 
1891   switch (S->getSCEVType()) {
1892   case scCouldNotCompute:
1893     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1894   case scUnknown:
1895   case scVScale:
1896     // Assume to be zero-cost.
1897     return false;
1898   case scConstant: {
1899     // Only evalulate the costs of constants when optimizing for size.
1900     if (CostKind != TargetTransformInfo::TCK_CodeSize)
1901       return false;
1902     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
1903     Type *Ty = S->getType();
1904     Cost += TTI.getIntImmCostInst(
1905         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
1906     return Cost > Budget;
1907   }
1908   case scTruncate:
1909   case scPtrToInt:
1910   case scZeroExtend:
1911   case scSignExtend: {
1912     Cost +=
1913         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
1914     return false; // Will answer upon next entry into this function.
1915   }
1916   case scUDivExpr: {
1917     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
1918     // HowManyLessThans produced to compute a precise expression, rather than a
1919     // UDiv from the user's code. If we can't find a UDiv in the code with some
1920     // simple searching, we need to account for it's cost.
1921 
1922     // At the beginning of this function we already tried to find existing
1923     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
1924     // pattern involving division. This is just a simple search heuristic.
1925     if (hasRelatedExistingExpansion(
1926             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
1927       return false; // Consider it to be free.
1928 
1929     Cost +=
1930         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
1931     return false; // Will answer upon next entry into this function.
1932   }
1933   case scAddExpr:
1934   case scMulExpr:
1935   case scUMaxExpr:
1936   case scSMaxExpr:
1937   case scUMinExpr:
1938   case scSMinExpr:
1939   case scSequentialUMinExpr: {
1940     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
1941            "Nary expr should have more than 1 operand.");
1942     // The simple nary expr will require one less op (or pair of ops)
1943     // than the number of it's terms.
1944     Cost +=
1945         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
1946     return Cost > Budget;
1947   }
1948   case scAddRecExpr: {
1949     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
1950            "Polynomial should be at least linear");
1951     Cost += costAndCollectOperands<SCEVAddRecExpr>(
1952         WorkItem, TTI, CostKind, Worklist);
1953     return Cost > Budget;
1954   }
1955   }
1956   llvm_unreachable("Unknown SCEV kind!");
1957 }
1958 
1959 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
1960                                             Instruction *IP) {
1961   assert(IP);
1962   switch (Pred->getKind()) {
1963   case SCEVPredicate::P_Union:
1964     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
1965   case SCEVPredicate::P_Compare:
1966     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
1967   case SCEVPredicate::P_Wrap: {
1968     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
1969     return expandWrapPredicate(AddRecPred, IP);
1970   }
1971   }
1972   llvm_unreachable("Unknown SCEV predicate type");
1973 }
1974 
1975 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
1976                                             Instruction *IP) {
1977   Value *Expr0 = expand(Pred->getLHS(), IP);
1978   Value *Expr1 = expand(Pred->getRHS(), IP);
1979 
1980   Builder.SetInsertPoint(IP);
1981   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
1982   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
1983   return I;
1984 }
1985 
1986 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
1987                                            Instruction *Loc, bool Signed) {
1988   assert(AR->isAffine() && "Cannot generate RT check for "
1989                            "non-affine expression");
1990 
1991   // FIXME: It is highly suspicious that we're ignoring the predicates here.
1992   SmallVector<const SCEVPredicate *, 4> Pred;
1993   const SCEV *ExitCount =
1994       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
1995 
1996   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
1997 
1998   const SCEV *Step = AR->getStepRecurrence(SE);
1999   const SCEV *Start = AR->getStart();
2000 
2001   Type *ARTy = AR->getType();
2002   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2003   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2004 
2005   // The expression {Start,+,Step} has nusw/nssw if
2006   //   Step < 0, Start - |Step| * Backedge <= Start
2007   //   Step >= 0, Start + |Step| * Backedge > Start
2008   // and |Step| * Backedge doesn't unsigned overflow.
2009 
2010   Builder.SetInsertPoint(Loc);
2011   Value *TripCountVal = expand(ExitCount, Loc);
2012 
2013   IntegerType *Ty =
2014       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2015 
2016   Value *StepValue = expand(Step, Loc);
2017   Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc);
2018   Value *StartValue = expand(Start, Loc);
2019 
2020   ConstantInt *Zero =
2021       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2022 
2023   Builder.SetInsertPoint(Loc);
2024   // Compute |Step|
2025   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2026   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2027 
2028   // Compute |Step| * Backedge
2029   // Compute:
2030   //   1. Start + |Step| * Backedge < Start
2031   //   2. Start - |Step| * Backedge > Start
2032   //
2033   // And select either 1. or 2. depending on whether step is positive or
2034   // negative. If Step is known to be positive or negative, only create
2035   // either 1. or 2.
2036   auto ComputeEndCheck = [&]() -> Value * {
2037     // Checking <u 0 is always false.
2038     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2039       return ConstantInt::getFalse(Loc->getContext());
2040 
2041     // Get the backedge taken count and truncate or extended to the AR type.
2042     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2043 
2044     Value *MulV, *OfMul;
2045     if (Step->isOne()) {
2046       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2047       // needed, there is never an overflow, so to avoid artificially inflating
2048       // the cost of the check, directly emit the optimized IR.
2049       MulV = TruncTripCount;
2050       OfMul = ConstantInt::getFalse(MulV->getContext());
2051     } else {
2052       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2053                                              Intrinsic::umul_with_overflow, Ty);
2054       CallInst *Mul =
2055           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2056       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2057       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2058     }
2059 
2060     Value *Add = nullptr, *Sub = nullptr;
2061     bool NeedPosCheck = !SE.isKnownNegative(Step);
2062     bool NeedNegCheck = !SE.isKnownPositive(Step);
2063 
2064     if (isa<PointerType>(ARTy)) {
2065       Value *NegMulV = Builder.CreateNeg(MulV);
2066       if (NeedPosCheck)
2067         Add = Builder.CreatePtrAdd(StartValue, MulV);
2068       if (NeedNegCheck)
2069         Sub = Builder.CreatePtrAdd(StartValue, NegMulV);
2070     } else {
2071       if (NeedPosCheck)
2072         Add = Builder.CreateAdd(StartValue, MulV);
2073       if (NeedNegCheck)
2074         Sub = Builder.CreateSub(StartValue, MulV);
2075     }
2076 
2077     Value *EndCompareLT = nullptr;
2078     Value *EndCompareGT = nullptr;
2079     Value *EndCheck = nullptr;
2080     if (NeedPosCheck)
2081       EndCheck = EndCompareLT = Builder.CreateICmp(
2082           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2083     if (NeedNegCheck)
2084       EndCheck = EndCompareGT = Builder.CreateICmp(
2085           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2086     if (NeedPosCheck && NeedNegCheck) {
2087       // Select the answer based on the sign of Step.
2088       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2089     }
2090     return Builder.CreateOr(EndCheck, OfMul);
2091   };
2092   Value *EndCheck = ComputeEndCheck();
2093 
2094   // If the backedge taken count type is larger than the AR type,
2095   // check that we don't drop any bits by truncating it. If we are
2096   // dropping bits, then we have overflow (unless the step is zero).
2097   if (SrcBits > DstBits) {
2098     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2099     auto *BackedgeCheck =
2100         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2101                            ConstantInt::get(Loc->getContext(), MaxVal));
2102     BackedgeCheck = Builder.CreateAnd(
2103         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2104 
2105     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2106   }
2107 
2108   return EndCheck;
2109 }
2110 
2111 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2112                                          Instruction *IP) {
2113   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2114   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2115 
2116   // Add a check for NUSW
2117   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2118     NUSWCheck = generateOverflowCheck(A, IP, false);
2119 
2120   // Add a check for NSSW
2121   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2122     NSSWCheck = generateOverflowCheck(A, IP, true);
2123 
2124   if (NUSWCheck && NSSWCheck)
2125     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2126 
2127   if (NUSWCheck)
2128     return NUSWCheck;
2129 
2130   if (NSSWCheck)
2131     return NSSWCheck;
2132 
2133   return ConstantInt::getFalse(IP->getContext());
2134 }
2135 
2136 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2137                                           Instruction *IP) {
2138   // Loop over all checks in this set.
2139   SmallVector<Value *> Checks;
2140   for (const auto *Pred : Union->getPredicates()) {
2141     Checks.push_back(expandCodeForPredicate(Pred, IP));
2142     Builder.SetInsertPoint(IP);
2143   }
2144 
2145   if (Checks.empty())
2146     return ConstantInt::getFalse(IP->getContext());
2147   return Builder.CreateOr(Checks);
2148 }
2149 
2150 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) {
2151   auto *DefI = dyn_cast<Instruction>(V);
2152   if (!PreserveLCSSA || !DefI)
2153     return V;
2154 
2155   Instruction *InsertPt = &*Builder.GetInsertPoint();
2156   Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent());
2157   Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent());
2158   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2159     return V;
2160 
2161   // Create a temporary instruction to at the current insertion point, so we
2162   // can hand it off to the helper to create LCSSA PHIs if required for the
2163   // new use.
2164   // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
2165   // would accept a insertion point and return an LCSSA phi for that
2166   // insertion point, so there is no need to insert & remove the temporary
2167   // instruction.
2168   Type *ToTy;
2169   if (DefI->getType()->isIntegerTy())
2170     ToTy = PointerType::get(DefI->getContext(), 0);
2171   else
2172     ToTy = Type::getInt32Ty(DefI->getContext());
2173   Instruction *User =
2174       CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt);
2175   auto RemoveUserOnExit =
2176       make_scope_exit([User]() { User->eraseFromParent(); });
2177 
2178   SmallVector<Instruction *, 1> ToUpdate;
2179   ToUpdate.push_back(DefI);
2180   SmallVector<PHINode *, 16> PHIsToRemove;
2181   SmallVector<PHINode *, 16> InsertedPHIs;
2182   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove,
2183                            &InsertedPHIs);
2184   for (PHINode *PN : InsertedPHIs)
2185     rememberInstruction(PN);
2186   for (PHINode *PN : PHIsToRemove) {
2187     if (!PN->use_empty())
2188       continue;
2189     InsertedValues.erase(PN);
2190     InsertedPostIncValues.erase(PN);
2191     PN->eraseFromParent();
2192   }
2193 
2194   return User->getOperand(0);
2195 }
2196 
2197 namespace {
2198 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2199 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2200 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2201 // instruction, but the important thing is that we prove the denominator is
2202 // nonzero before expansion.
2203 //
2204 // IVUsers already checks that IV-derived expressions are safe. So this check is
2205 // only needed when the expression includes some subexpression that is not IV
2206 // derived.
2207 //
2208 // Currently, we only allow division by a value provably non-zero here.
2209 //
2210 // We cannot generally expand recurrences unless the step dominates the loop
2211 // header. The expander handles the special case of affine recurrences by
2212 // scaling the recurrence outside the loop, but this technique isn't generally
2213 // applicable. Expanding a nested recurrence outside a loop requires computing
2214 // binomial coefficients. This could be done, but the recurrence has to be in a
2215 // perfectly reduced form, which can't be guaranteed.
2216 struct SCEVFindUnsafe {
2217   ScalarEvolution &SE;
2218   bool CanonicalMode;
2219   bool IsUnsafe = false;
2220 
2221   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2222       : SE(SE), CanonicalMode(CanonicalMode) {}
2223 
2224   bool follow(const SCEV *S) {
2225     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2226       if (!SE.isKnownNonZero(D->getRHS())) {
2227         IsUnsafe = true;
2228         return false;
2229       }
2230     }
2231     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2232       // For non-affine addrecs or in non-canonical mode we need a preheader
2233       // to insert into.
2234       if (!AR->getLoop()->getLoopPreheader() &&
2235           (!CanonicalMode || !AR->isAffine())) {
2236         IsUnsafe = true;
2237         return false;
2238       }
2239     }
2240     return true;
2241   }
2242   bool isDone() const { return IsUnsafe; }
2243 };
2244 } // namespace
2245 
2246 bool SCEVExpander::isSafeToExpand(const SCEV *S) const {
2247   SCEVFindUnsafe Search(SE, CanonicalMode);
2248   visitAll(S, Search);
2249   return !Search.IsUnsafe;
2250 }
2251 
2252 bool SCEVExpander::isSafeToExpandAt(const SCEV *S,
2253                                     const Instruction *InsertionPoint) const {
2254   if (!isSafeToExpand(S))
2255     return false;
2256   // We have to prove that the expanded site of S dominates InsertionPoint.
2257   // This is easy when not in the same block, but hard when S is an instruction
2258   // to be expanded somewhere inside the same block as our insertion point.
2259   // What we really need here is something analogous to an OrderedBasicBlock,
2260   // but for the moment, we paper over the problem by handling two common and
2261   // cheap to check cases.
2262   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2263     return true;
2264   if (SE.dominates(S, InsertionPoint->getParent())) {
2265     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2266       return true;
2267     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2268       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2269         return true;
2270   }
2271   return false;
2272 }
2273 
2274 void SCEVExpanderCleaner::cleanup() {
2275   // Result is used, nothing to remove.
2276   if (ResultUsed)
2277     return;
2278 
2279   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2280 #ifndef NDEBUG
2281   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2282                                             InsertedInstructions.end());
2283   (void)InsertedSet;
2284 #endif
2285   // Remove sets with value handles.
2286   Expander.clear();
2287 
2288   // Remove all inserted instructions.
2289   for (Instruction *I : reverse(InsertedInstructions)) {
2290 #ifndef NDEBUG
2291     assert(all_of(I->users(),
2292                   [&InsertedSet](Value *U) {
2293                     return InsertedSet.contains(cast<Instruction>(U));
2294                   }) &&
2295            "removed instruction should only be used by instructions inserted "
2296            "during expansion");
2297 #endif
2298     assert(!I->getType()->isVoidTy() &&
2299            "inserted instruction should have non-void types");
2300     I->replaceAllUsesWith(PoisonValue::get(I->getType()));
2301     I->eraseFromParent();
2302   }
2303 }
2304