1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/LoopUtils.h" 30 31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33 #else 34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35 #endif 36 37 using namespace llvm; 38 39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 40 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 41 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 42 "controls the budget that is considered cheap (default = 4)")); 43 44 using namespace PatternMatch; 45 46 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 47 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 48 /// creating a new one. 49 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 50 Instruction::CastOps Op, 51 BasicBlock::iterator IP) { 52 // This function must be called with the builder having a valid insertion 53 // point. It doesn't need to be the actual IP where the uses of the returned 54 // cast will be added, but it must dominate such IP. 55 // We use this precondition to produce a cast that will dominate all its 56 // uses. In particular, this is crucial for the case where the builder's 57 // insertion point *is* the point where we were asked to put the cast. 58 // Since we don't know the builder's insertion point is actually 59 // where the uses will be added (only that it dominates it), we are 60 // not allowed to move it. 61 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 62 63 Value *Ret = nullptr; 64 65 // Check to see if there is already a cast! 66 for (User *U : V->users()) { 67 if (U->getType() != Ty) 68 continue; 69 CastInst *CI = dyn_cast<CastInst>(U); 70 if (!CI || CI->getOpcode() != Op) 71 continue; 72 73 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 74 // the cast must also properly dominate the Builder's insertion point. 75 if (IP->getParent() == CI->getParent() && &*BIP != CI && 76 (&*IP == CI || CI->comesBefore(&*IP))) { 77 Ret = CI; 78 break; 79 } 80 } 81 82 // Create a new cast. 83 if (!Ret) { 84 SCEVInsertPointGuard Guard(Builder, this); 85 Builder.SetInsertPoint(&*IP); 86 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 87 } 88 89 // We assert at the end of the function since IP might point to an 90 // instruction with different dominance properties than a cast 91 // (an invoke for example) and not dominate BIP (but the cast does). 92 assert(!isa<Instruction>(Ret) || 93 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 94 95 return Ret; 96 } 97 98 BasicBlock::iterator 99 SCEVExpander::findInsertPointAfter(Instruction *I, 100 Instruction *MustDominate) const { 101 BasicBlock::iterator IP = ++I->getIterator(); 102 if (auto *II = dyn_cast<InvokeInst>(I)) 103 IP = II->getNormalDest()->begin(); 104 105 while (isa<PHINode>(IP)) 106 ++IP; 107 108 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 109 ++IP; 110 } else if (isa<CatchSwitchInst>(IP)) { 111 IP = MustDominate->getParent()->getFirstInsertionPt(); 112 } else { 113 assert(!IP->isEHPad() && "unexpected eh pad!"); 114 } 115 116 // Adjust insert point to be after instructions inserted by the expander, so 117 // we can re-use already inserted instructions. Avoid skipping past the 118 // original \p MustDominate, in case it is an inserted instruction. 119 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 120 ++IP; 121 122 return IP; 123 } 124 125 BasicBlock::iterator 126 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 127 // Cast the argument at the beginning of the entry block, after 128 // any bitcasts of other arguments. 129 if (Argument *A = dyn_cast<Argument>(V)) { 130 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 131 while ((isa<BitCastInst>(IP) && 132 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 133 cast<BitCastInst>(IP)->getOperand(0) != A) || 134 isa<DbgInfoIntrinsic>(IP)) 135 ++IP; 136 return IP; 137 } 138 139 // Cast the instruction immediately after the instruction. 140 if (Instruction *I = dyn_cast<Instruction>(V)) 141 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 142 143 // Otherwise, this must be some kind of a constant, 144 // so let's plop this cast into the function's entry block. 145 assert(isa<Constant>(V) && 146 "Expected the cast argument to be a global/constant"); 147 return Builder.GetInsertBlock() 148 ->getParent() 149 ->getEntryBlock() 150 .getFirstInsertionPt(); 151 } 152 153 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 154 /// which must be possible with a noop cast, doing what we can to share 155 /// the casts. 156 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 157 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 158 assert((Op == Instruction::BitCast || 159 Op == Instruction::PtrToInt || 160 Op == Instruction::IntToPtr) && 161 "InsertNoopCastOfTo cannot perform non-noop casts!"); 162 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 163 "InsertNoopCastOfTo cannot change sizes!"); 164 165 // inttoptr only works for integral pointers. For non-integral pointers, we 166 // can create a GEP on null with the integral value as index. Note that 167 // it is safe to use GEP of null instead of inttoptr here, because only 168 // expressions already based on a GEP of null should be converted to pointers 169 // during expansion. 170 if (Op == Instruction::IntToPtr) { 171 auto *PtrTy = cast<PointerType>(Ty); 172 if (DL.isNonIntegralPointerType(PtrTy)) 173 return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep"); 174 } 175 // Short-circuit unnecessary bitcasts. 176 if (Op == Instruction::BitCast) { 177 if (V->getType() == Ty) 178 return V; 179 if (CastInst *CI = dyn_cast<CastInst>(V)) { 180 if (CI->getOperand(0)->getType() == Ty) 181 return CI->getOperand(0); 182 } 183 } 184 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 185 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 186 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 187 if (CastInst *CI = dyn_cast<CastInst>(V)) 188 if ((CI->getOpcode() == Instruction::PtrToInt || 189 CI->getOpcode() == Instruction::IntToPtr) && 190 SE.getTypeSizeInBits(CI->getType()) == 191 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 192 return CI->getOperand(0); 193 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 194 if ((CE->getOpcode() == Instruction::PtrToInt || 195 CE->getOpcode() == Instruction::IntToPtr) && 196 SE.getTypeSizeInBits(CE->getType()) == 197 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 198 return CE->getOperand(0); 199 } 200 201 // Fold a cast of a constant. 202 if (Constant *C = dyn_cast<Constant>(V)) 203 return ConstantExpr::getCast(Op, C, Ty); 204 205 // Try to reuse existing cast, or insert one. 206 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 207 } 208 209 /// InsertBinop - Insert the specified binary operator, doing a small amount 210 /// of work to avoid inserting an obviously redundant operation, and hoisting 211 /// to an outer loop when the opportunity is there and it is safe. 212 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 213 Value *LHS, Value *RHS, 214 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 215 // Fold a binop with constant operands. 216 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 217 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 218 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 219 return Res; 220 221 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 222 unsigned ScanLimit = 6; 223 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 224 // Scanning starts from the last instruction before the insertion point. 225 BasicBlock::iterator IP = Builder.GetInsertPoint(); 226 if (IP != BlockBegin) { 227 --IP; 228 for (; ScanLimit; --IP, --ScanLimit) { 229 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 230 // generated code. 231 if (isa<DbgInfoIntrinsic>(IP)) 232 ScanLimit++; 233 234 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 235 // Ensure that no-wrap flags match. 236 if (isa<OverflowingBinaryOperator>(I)) { 237 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 238 return true; 239 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 240 return true; 241 } 242 // Conservatively, do not use any instruction which has any of exact 243 // flags installed. 244 if (isa<PossiblyExactOperator>(I) && I->isExact()) 245 return true; 246 return false; 247 }; 248 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 249 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 250 return &*IP; 251 if (IP == BlockBegin) break; 252 } 253 } 254 255 // Save the original insertion point so we can restore it when we're done. 256 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 257 SCEVInsertPointGuard Guard(Builder, this); 258 259 if (IsSafeToHoist) { 260 // Move the insertion point out of as many loops as we can. 261 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 262 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 263 BasicBlock *Preheader = L->getLoopPreheader(); 264 if (!Preheader) break; 265 266 // Ok, move up a level. 267 Builder.SetInsertPoint(Preheader->getTerminator()); 268 } 269 } 270 271 // If we haven't found this binop, insert it. 272 // TODO: Use the Builder, which will make CreateBinOp below fold with 273 // InstSimplifyFolder. 274 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 275 BO->setDebugLoc(Loc); 276 if (Flags & SCEV::FlagNUW) 277 BO->setHasNoUnsignedWrap(); 278 if (Flags & SCEV::FlagNSW) 279 BO->setHasNoSignedWrap(); 280 281 return BO; 282 } 283 284 /// expandAddToGEP - Expand an addition expression with a pointer type into 285 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 286 /// BasicAliasAnalysis and other passes analyze the result. See the rules 287 /// for getelementptr vs. inttoptr in 288 /// http://llvm.org/docs/LangRef.html#pointeraliasing 289 /// for details. 290 /// 291 /// Design note: The correctness of using getelementptr here depends on 292 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 293 /// they may introduce pointer arithmetic which may not be safely converted 294 /// into getelementptr. 295 /// 296 /// Design note: It might seem desirable for this function to be more 297 /// loop-aware. If some of the indices are loop-invariant while others 298 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 299 /// loop-invariant portions of the overall computation outside the loop. 300 /// However, there are a few reasons this is not done here. Hoisting simple 301 /// arithmetic is a low-level optimization that often isn't very 302 /// important until late in the optimization process. In fact, passes 303 /// like InstructionCombining will combine GEPs, even if it means 304 /// pushing loop-invariant computation down into loops, so even if the 305 /// GEPs were split here, the work would quickly be undone. The 306 /// LoopStrengthReduction pass, which is usually run quite late (and 307 /// after the last InstructionCombining pass), takes care of hoisting 308 /// loop-invariant portions of expressions, after considering what 309 /// can be folded using target addressing modes. 310 /// 311 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) { 312 assert(!isa<Instruction>(V) || 313 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 314 315 Value *Idx = expand(Offset); 316 317 // Fold a GEP with constant operands. 318 if (Constant *CLHS = dyn_cast<Constant>(V)) 319 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 320 return Builder.CreatePtrAdd(CLHS, CRHS); 321 322 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 323 unsigned ScanLimit = 6; 324 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 325 // Scanning starts from the last instruction before the insertion point. 326 BasicBlock::iterator IP = Builder.GetInsertPoint(); 327 if (IP != BlockBegin) { 328 --IP; 329 for (; ScanLimit; --IP, --ScanLimit) { 330 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 331 // generated code. 332 if (isa<DbgInfoIntrinsic>(IP)) 333 ScanLimit++; 334 if (IP->getOpcode() == Instruction::GetElementPtr && 335 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 336 cast<GEPOperator>(&*IP)->getSourceElementType() == 337 Builder.getInt8Ty()) 338 return &*IP; 339 if (IP == BlockBegin) break; 340 } 341 } 342 343 // Save the original insertion point so we can restore it when we're done. 344 SCEVInsertPointGuard Guard(Builder, this); 345 346 // Move the insertion point out of as many loops as we can. 347 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 348 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 349 BasicBlock *Preheader = L->getLoopPreheader(); 350 if (!Preheader) break; 351 352 // Ok, move up a level. 353 Builder.SetInsertPoint(Preheader->getTerminator()); 354 } 355 356 // Emit a GEP. 357 return Builder.CreatePtrAdd(V, Idx, "scevgep"); 358 } 359 360 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 361 /// SCEV expansion. If they are nested, this is the most nested. If they are 362 /// neighboring, pick the later. 363 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 364 DominatorTree &DT) { 365 if (!A) return B; 366 if (!B) return A; 367 if (A->contains(B)) return B; 368 if (B->contains(A)) return A; 369 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 370 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 371 return A; // Arbitrarily break the tie. 372 } 373 374 /// getRelevantLoop - Get the most relevant loop associated with the given 375 /// expression, according to PickMostRelevantLoop. 376 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 377 // Test whether we've already computed the most relevant loop for this SCEV. 378 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 379 if (!Pair.second) 380 return Pair.first->second; 381 382 switch (S->getSCEVType()) { 383 case scConstant: 384 case scVScale: 385 return nullptr; // A constant has no relevant loops. 386 case scTruncate: 387 case scZeroExtend: 388 case scSignExtend: 389 case scPtrToInt: 390 case scAddExpr: 391 case scMulExpr: 392 case scUDivExpr: 393 case scAddRecExpr: 394 case scUMaxExpr: 395 case scSMaxExpr: 396 case scUMinExpr: 397 case scSMinExpr: 398 case scSequentialUMinExpr: { 399 const Loop *L = nullptr; 400 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 401 L = AR->getLoop(); 402 for (const SCEV *Op : S->operands()) 403 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 404 return RelevantLoops[S] = L; 405 } 406 case scUnknown: { 407 const SCEVUnknown *U = cast<SCEVUnknown>(S); 408 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 409 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 410 // A non-instruction has no relevant loops. 411 return nullptr; 412 } 413 case scCouldNotCompute: 414 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 415 } 416 llvm_unreachable("Unexpected SCEV type!"); 417 } 418 419 namespace { 420 421 /// LoopCompare - Compare loops by PickMostRelevantLoop. 422 class LoopCompare { 423 DominatorTree &DT; 424 public: 425 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 426 427 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 428 std::pair<const Loop *, const SCEV *> RHS) const { 429 // Keep pointer operands sorted at the end. 430 if (LHS.second->getType()->isPointerTy() != 431 RHS.second->getType()->isPointerTy()) 432 return LHS.second->getType()->isPointerTy(); 433 434 // Compare loops with PickMostRelevantLoop. 435 if (LHS.first != RHS.first) 436 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 437 438 // If one operand is a non-constant negative and the other is not, 439 // put the non-constant negative on the right so that a sub can 440 // be used instead of a negate and add. 441 if (LHS.second->isNonConstantNegative()) { 442 if (!RHS.second->isNonConstantNegative()) 443 return false; 444 } else if (RHS.second->isNonConstantNegative()) 445 return true; 446 447 // Otherwise they are equivalent according to this comparison. 448 return false; 449 } 450 }; 451 452 } 453 454 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 455 // Collect all the add operands in a loop, along with their associated loops. 456 // Iterate in reverse so that constants are emitted last, all else equal, and 457 // so that pointer operands are inserted first, which the code below relies on 458 // to form more involved GEPs. 459 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 460 for (const SCEV *Op : reverse(S->operands())) 461 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 462 463 // Sort by loop. Use a stable sort so that constants follow non-constants and 464 // pointer operands precede non-pointer operands. 465 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 466 467 // Emit instructions to add all the operands. Hoist as much as possible 468 // out of loops, and form meaningful getelementptrs where possible. 469 Value *Sum = nullptr; 470 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 471 const Loop *CurLoop = I->first; 472 const SCEV *Op = I->second; 473 if (!Sum) { 474 // This is the first operand. Just expand it. 475 Sum = expand(Op); 476 ++I; 477 continue; 478 } 479 480 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 481 if (isa<PointerType>(Sum->getType())) { 482 // The running sum expression is a pointer. Try to form a getelementptr 483 // at this level with that as the base. 484 SmallVector<const SCEV *, 4> NewOps; 485 for (; I != E && I->first == CurLoop; ++I) { 486 // If the operand is SCEVUnknown and not instructions, peek through 487 // it, to enable more of it to be folded into the GEP. 488 const SCEV *X = I->second; 489 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 490 if (!isa<Instruction>(U->getValue())) 491 X = SE.getSCEV(U->getValue()); 492 NewOps.push_back(X); 493 } 494 Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum); 495 } else if (Op->isNonConstantNegative()) { 496 // Instead of doing a negate and add, just do a subtract. 497 Value *W = expand(SE.getNegativeSCEV(Op)); 498 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 499 /*IsSafeToHoist*/ true); 500 ++I; 501 } else { 502 // A simple add. 503 Value *W = expand(Op); 504 // Canonicalize a constant to the RHS. 505 if (isa<Constant>(Sum)) 506 std::swap(Sum, W); 507 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 508 /*IsSafeToHoist*/ true); 509 ++I; 510 } 511 } 512 513 return Sum; 514 } 515 516 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 517 Type *Ty = S->getType(); 518 519 // Collect all the mul operands in a loop, along with their associated loops. 520 // Iterate in reverse so that constants are emitted last, all else equal. 521 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 522 for (const SCEV *Op : reverse(S->operands())) 523 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 524 525 // Sort by loop. Use a stable sort so that constants follow non-constants. 526 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 527 528 // Emit instructions to mul all the operands. Hoist as much as possible 529 // out of loops. 530 Value *Prod = nullptr; 531 auto I = OpsAndLoops.begin(); 532 533 // Expand the calculation of X pow N in the following manner: 534 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 535 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 536 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() { 537 auto E = I; 538 // Calculate how many times the same operand from the same loop is included 539 // into this power. 540 uint64_t Exponent = 0; 541 const uint64_t MaxExponent = UINT64_MAX >> 1; 542 // No one sane will ever try to calculate such huge exponents, but if we 543 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 544 // below when the power of 2 exceeds our Exponent, and we want it to be 545 // 1u << 31 at most to not deal with unsigned overflow. 546 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 547 ++Exponent; 548 ++E; 549 } 550 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 551 552 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 553 // that are needed into the result. 554 Value *P = expand(I->second); 555 Value *Result = nullptr; 556 if (Exponent & 1) 557 Result = P; 558 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 559 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 560 /*IsSafeToHoist*/ true); 561 if (Exponent & BinExp) 562 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 563 SCEV::FlagAnyWrap, 564 /*IsSafeToHoist*/ true) 565 : P; 566 } 567 568 I = E; 569 assert(Result && "Nothing was expanded?"); 570 return Result; 571 }; 572 573 while (I != OpsAndLoops.end()) { 574 if (!Prod) { 575 // This is the first operand. Just expand it. 576 Prod = ExpandOpBinPowN(); 577 } else if (I->second->isAllOnesValue()) { 578 // Instead of doing a multiply by negative one, just do a negate. 579 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 580 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 581 ++I; 582 } else { 583 // A simple mul. 584 Value *W = ExpandOpBinPowN(); 585 // Canonicalize a constant to the RHS. 586 if (isa<Constant>(Prod)) std::swap(Prod, W); 587 const APInt *RHS; 588 if (match(W, m_Power2(RHS))) { 589 // Canonicalize Prod*(1<<C) to Prod<<C. 590 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 591 auto NWFlags = S->getNoWrapFlags(); 592 // clear nsw flag if shl will produce poison value. 593 if (RHS->logBase2() == RHS->getBitWidth() - 1) 594 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 595 Prod = InsertBinop(Instruction::Shl, Prod, 596 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 597 /*IsSafeToHoist*/ true); 598 } else { 599 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 600 /*IsSafeToHoist*/ true); 601 } 602 } 603 } 604 605 return Prod; 606 } 607 608 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 609 Value *LHS = expand(S->getLHS()); 610 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 611 const APInt &RHS = SC->getAPInt(); 612 if (RHS.isPowerOf2()) 613 return InsertBinop(Instruction::LShr, LHS, 614 ConstantInt::get(SC->getType(), RHS.logBase2()), 615 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 616 } 617 618 Value *RHS = expand(S->getRHS()); 619 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 620 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 621 } 622 623 /// Determine if this is a well-behaved chain of instructions leading back to 624 /// the PHI. If so, it may be reused by expanded expressions. 625 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 626 const Loop *L) { 627 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 628 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 629 return false; 630 // If any of the operands don't dominate the insert position, bail. 631 // Addrec operands are always loop-invariant, so this can only happen 632 // if there are instructions which haven't been hoisted. 633 if (L == IVIncInsertLoop) { 634 for (Use &Op : llvm::drop_begin(IncV->operands())) 635 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 636 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 637 return false; 638 } 639 // Advance to the next instruction. 640 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 641 if (!IncV) 642 return false; 643 644 if (IncV->mayHaveSideEffects()) 645 return false; 646 647 if (IncV == PN) 648 return true; 649 650 return isNormalAddRecExprPHI(PN, IncV, L); 651 } 652 653 /// getIVIncOperand returns an induction variable increment's induction 654 /// variable operand. 655 /// 656 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 657 /// operands dominate InsertPos. 658 /// 659 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 660 /// simple patterns generated by getAddRecExprPHILiterally and 661 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 662 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 663 Instruction *InsertPos, 664 bool allowScale) { 665 if (IncV == InsertPos) 666 return nullptr; 667 668 switch (IncV->getOpcode()) { 669 default: 670 return nullptr; 671 // Check for a simple Add/Sub or GEP of a loop invariant step. 672 case Instruction::Add: 673 case Instruction::Sub: { 674 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 675 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 676 return dyn_cast<Instruction>(IncV->getOperand(0)); 677 return nullptr; 678 } 679 case Instruction::BitCast: 680 return dyn_cast<Instruction>(IncV->getOperand(0)); 681 case Instruction::GetElementPtr: 682 for (Use &U : llvm::drop_begin(IncV->operands())) { 683 if (isa<Constant>(U)) 684 continue; 685 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 686 if (!SE.DT.dominates(OInst, InsertPos)) 687 return nullptr; 688 } 689 if (allowScale) { 690 // allow any kind of GEP as long as it can be hoisted. 691 continue; 692 } 693 // GEPs produced by SCEVExpander use i8 element type. 694 if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 695 return nullptr; 696 break; 697 } 698 return dyn_cast<Instruction>(IncV->getOperand(0)); 699 } 700 } 701 702 /// If the insert point of the current builder or any of the builders on the 703 /// stack of saved builders has 'I' as its insert point, update it to point to 704 /// the instruction after 'I'. This is intended to be used when the instruction 705 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 706 /// different block, the inconsistent insert point (with a mismatched 707 /// Instruction and Block) can lead to an instruction being inserted in a block 708 /// other than its parent. 709 void SCEVExpander::fixupInsertPoints(Instruction *I) { 710 BasicBlock::iterator It(*I); 711 BasicBlock::iterator NewInsertPt = std::next(It); 712 if (Builder.GetInsertPoint() == It) 713 Builder.SetInsertPoint(&*NewInsertPt); 714 for (auto *InsertPtGuard : InsertPointGuards) 715 if (InsertPtGuard->GetInsertPoint() == It) 716 InsertPtGuard->SetInsertPoint(NewInsertPt); 717 } 718 719 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 720 /// it available to other uses in this loop. Recursively hoist any operands, 721 /// until we reach a value that dominates InsertPos. 722 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 723 bool RecomputePoisonFlags) { 724 auto FixupPoisonFlags = [this](Instruction *I) { 725 // Drop flags that are potentially inferred from old context and infer flags 726 // in new context. 727 I->dropPoisonGeneratingFlags(); 728 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 729 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 730 auto *BO = cast<BinaryOperator>(I); 731 BO->setHasNoUnsignedWrap( 732 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 733 BO->setHasNoSignedWrap( 734 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 735 } 736 }; 737 738 if (SE.DT.dominates(IncV, InsertPos)) { 739 if (RecomputePoisonFlags) 740 FixupPoisonFlags(IncV); 741 return true; 742 } 743 744 // InsertPos must itself dominate IncV so that IncV's new position satisfies 745 // its existing users. 746 if (isa<PHINode>(InsertPos) || 747 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 748 return false; 749 750 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 751 return false; 752 753 // Check that the chain of IV operands leading back to Phi can be hoisted. 754 SmallVector<Instruction*, 4> IVIncs; 755 for(;;) { 756 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 757 if (!Oper) 758 return false; 759 // IncV is safe to hoist. 760 IVIncs.push_back(IncV); 761 IncV = Oper; 762 if (SE.DT.dominates(IncV, InsertPos)) 763 break; 764 } 765 for (Instruction *I : llvm::reverse(IVIncs)) { 766 fixupInsertPoints(I); 767 I->moveBefore(InsertPos); 768 if (RecomputePoisonFlags) 769 FixupPoisonFlags(I); 770 } 771 return true; 772 } 773 774 /// Determine if this cyclic phi is in a form that would have been generated by 775 /// LSR. We don't care if the phi was actually expanded in this pass, as long 776 /// as it is in a low-cost form, for example, no implied multiplication. This 777 /// should match any patterns generated by getAddRecExprPHILiterally and 778 /// expandAddtoGEP. 779 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 780 const Loop *L) { 781 for(Instruction *IVOper = IncV; 782 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 783 /*allowScale=*/false));) { 784 if (IVOper == PN) 785 return true; 786 } 787 return false; 788 } 789 790 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 791 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 792 /// need to materialize IV increments elsewhere to handle difficult situations. 793 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 794 bool useSubtract) { 795 Value *IncV; 796 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 797 if (PN->getType()->isPointerTy()) { 798 IncV = expandAddToGEP(SE.getSCEV(StepV), PN); 799 } else { 800 IncV = useSubtract ? 801 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 802 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 803 } 804 return IncV; 805 } 806 807 /// Check whether we can cheaply express the requested SCEV in terms of 808 /// the available PHI SCEV by truncation and/or inversion of the step. 809 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 810 const SCEVAddRecExpr *Phi, 811 const SCEVAddRecExpr *Requested, 812 bool &InvertStep) { 813 // We can't transform to match a pointer PHI. 814 Type *PhiTy = Phi->getType(); 815 Type *RequestedTy = Requested->getType(); 816 if (PhiTy->isPointerTy() || RequestedTy->isPointerTy()) 817 return false; 818 819 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 820 return false; 821 822 // Try truncate it if necessary. 823 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 824 if (!Phi) 825 return false; 826 827 // Check whether truncation will help. 828 if (Phi == Requested) { 829 InvertStep = false; 830 return true; 831 } 832 833 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 834 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 835 InvertStep = true; 836 return true; 837 } 838 839 return false; 840 } 841 842 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 843 if (!isa<IntegerType>(AR->getType())) 844 return false; 845 846 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 847 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 848 const SCEV *Step = AR->getStepRecurrence(SE); 849 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 850 SE.getSignExtendExpr(AR, WideTy)); 851 const SCEV *ExtendAfterOp = 852 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 853 return ExtendAfterOp == OpAfterExtend; 854 } 855 856 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 857 if (!isa<IntegerType>(AR->getType())) 858 return false; 859 860 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 861 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 862 const SCEV *Step = AR->getStepRecurrence(SE); 863 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 864 SE.getZeroExtendExpr(AR, WideTy)); 865 const SCEV *ExtendAfterOp = 866 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 867 return ExtendAfterOp == OpAfterExtend; 868 } 869 870 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 871 /// the base addrec, which is the addrec without any non-loop-dominating 872 /// values, and return the PHI. 873 PHINode * 874 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 875 const Loop *L, Type *&TruncTy, 876 bool &InvertStep) { 877 assert((!IVIncInsertLoop || IVIncInsertPos) && 878 "Uninitialized insert position"); 879 880 // Reuse a previously-inserted PHI, if present. 881 BasicBlock *LatchBlock = L->getLoopLatch(); 882 if (LatchBlock) { 883 PHINode *AddRecPhiMatch = nullptr; 884 Instruction *IncV = nullptr; 885 TruncTy = nullptr; 886 InvertStep = false; 887 888 // Only try partially matching scevs that need truncation and/or 889 // step-inversion if we know this loop is outside the current loop. 890 bool TryNonMatchingSCEV = 891 IVIncInsertLoop && 892 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 893 894 for (PHINode &PN : L->getHeader()->phis()) { 895 if (!SE.isSCEVable(PN.getType())) 896 continue; 897 898 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 899 // PHI has no meaning at all. 900 if (!PN.isComplete()) { 901 SCEV_DEBUG_WITH_TYPE( 902 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 903 continue; 904 } 905 906 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 907 if (!PhiSCEV) 908 continue; 909 910 bool IsMatchingSCEV = PhiSCEV == Normalized; 911 // We only handle truncation and inversion of phi recurrences for the 912 // expanded expression if the expanded expression's loop dominates the 913 // loop we insert to. Check now, so we can bail out early. 914 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 915 continue; 916 917 // TODO: this possibly can be reworked to avoid this cast at all. 918 Instruction *TempIncV = 919 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 920 if (!TempIncV) 921 continue; 922 923 // Check whether we can reuse this PHI node. 924 if (LSRMode) { 925 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 926 continue; 927 } else { 928 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 929 continue; 930 } 931 932 // Stop if we have found an exact match SCEV. 933 if (IsMatchingSCEV) { 934 IncV = TempIncV; 935 TruncTy = nullptr; 936 InvertStep = false; 937 AddRecPhiMatch = &PN; 938 break; 939 } 940 941 // Try whether the phi can be translated into the requested form 942 // (truncated and/or offset by a constant). 943 if ((!TruncTy || InvertStep) && 944 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 945 // Record the phi node. But don't stop we might find an exact match 946 // later. 947 AddRecPhiMatch = &PN; 948 IncV = TempIncV; 949 TruncTy = Normalized->getType(); 950 } 951 } 952 953 if (AddRecPhiMatch) { 954 // Ok, the add recurrence looks usable. 955 // Remember this PHI, even in post-inc mode. 956 InsertedValues.insert(AddRecPhiMatch); 957 // Remember the increment. 958 rememberInstruction(IncV); 959 // Those values were not actually inserted but re-used. 960 ReusedValues.insert(AddRecPhiMatch); 961 ReusedValues.insert(IncV); 962 return AddRecPhiMatch; 963 } 964 } 965 966 // Save the original insertion point so we can restore it when we're done. 967 SCEVInsertPointGuard Guard(Builder, this); 968 969 // Another AddRec may need to be recursively expanded below. For example, if 970 // this AddRec is quadratic, the StepV may itself be an AddRec in this 971 // loop. Remove this loop from the PostIncLoops set before expanding such 972 // AddRecs. Otherwise, we cannot find a valid position for the step 973 // (i.e. StepV can never dominate its loop header). Ideally, we could do 974 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 975 // so it's not worth implementing SmallPtrSet::swap. 976 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 977 PostIncLoops.clear(); 978 979 // Expand code for the start value into the loop preheader. 980 assert(L->getLoopPreheader() && 981 "Can't expand add recurrences without a loop preheader!"); 982 Value *StartV = 983 expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator()); 984 985 // StartV must have been be inserted into L's preheader to dominate the new 986 // phi. 987 assert(!isa<Instruction>(StartV) || 988 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 989 L->getHeader())); 990 991 // Expand code for the step value. Do this before creating the PHI so that PHI 992 // reuse code doesn't see an incomplete PHI. 993 const SCEV *Step = Normalized->getStepRecurrence(SE); 994 Type *ExpandTy = Normalized->getType(); 995 // If the stride is negative, insert a sub instead of an add for the increment 996 // (unless it's a constant, because subtracts of constants are canonicalized 997 // to adds). 998 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 999 if (useSubtract) 1000 Step = SE.getNegativeSCEV(Step); 1001 // Expand the step somewhere that dominates the loop header. 1002 Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 1003 1004 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1005 // we actually do emit an addition. It does not apply if we emit a 1006 // subtraction. 1007 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1008 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1009 1010 // Create the PHI. 1011 BasicBlock *Header = L->getHeader(); 1012 Builder.SetInsertPoint(Header, Header->begin()); 1013 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1014 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1015 Twine(IVName) + ".iv"); 1016 1017 // Create the step instructions and populate the PHI. 1018 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1019 BasicBlock *Pred = *HPI; 1020 1021 // Add a start value. 1022 if (!L->contains(Pred)) { 1023 PN->addIncoming(StartV, Pred); 1024 continue; 1025 } 1026 1027 // Create a step value and add it to the PHI. 1028 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1029 // instructions at IVIncInsertPos. 1030 Instruction *InsertPos = L == IVIncInsertLoop ? 1031 IVIncInsertPos : Pred->getTerminator(); 1032 Builder.SetInsertPoint(InsertPos); 1033 Value *IncV = expandIVInc(PN, StepV, L, useSubtract); 1034 1035 if (isa<OverflowingBinaryOperator>(IncV)) { 1036 if (IncrementIsNUW) 1037 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1038 if (IncrementIsNSW) 1039 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1040 } 1041 PN->addIncoming(IncV, Pred); 1042 } 1043 1044 // After expanding subexpressions, restore the PostIncLoops set so the caller 1045 // can ensure that IVIncrement dominates the current uses. 1046 PostIncLoops = SavedPostIncLoops; 1047 1048 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1049 // effective when we are able to use an IV inserted here, so record it. 1050 InsertedValues.insert(PN); 1051 InsertedIVs.push_back(PN); 1052 return PN; 1053 } 1054 1055 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1056 const Loop *L = S->getLoop(); 1057 1058 // Determine a normalized form of this expression, which is the expression 1059 // before any post-inc adjustment is made. 1060 const SCEVAddRecExpr *Normalized = S; 1061 if (PostIncLoops.count(L)) { 1062 PostIncLoopSet Loops; 1063 Loops.insert(L); 1064 Normalized = cast<SCEVAddRecExpr>( 1065 normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 1066 } 1067 1068 [[maybe_unused]] const SCEV *Start = Normalized->getStart(); 1069 const SCEV *Step = Normalized->getStepRecurrence(SE); 1070 assert(SE.properlyDominates(Start, L->getHeader()) && 1071 "Start does not properly dominate loop header"); 1072 assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header"); 1073 1074 // In some cases, we decide to reuse an existing phi node but need to truncate 1075 // it and/or invert the step. 1076 Type *TruncTy = nullptr; 1077 bool InvertStep = false; 1078 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep); 1079 1080 // Accommodate post-inc mode, if necessary. 1081 Value *Result; 1082 if (!PostIncLoops.count(L)) 1083 Result = PN; 1084 else { 1085 // In PostInc mode, use the post-incremented value. 1086 BasicBlock *LatchBlock = L->getLoopLatch(); 1087 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1088 Result = PN->getIncomingValueForBlock(LatchBlock); 1089 1090 // We might be introducing a new use of the post-inc IV that is not poison 1091 // safe, in which case we should drop poison generating flags. Only keep 1092 // those flags for which SCEV has proven that they always hold. 1093 if (isa<OverflowingBinaryOperator>(Result)) { 1094 auto *I = cast<Instruction>(Result); 1095 if (!S->hasNoUnsignedWrap()) 1096 I->setHasNoUnsignedWrap(false); 1097 if (!S->hasNoSignedWrap()) 1098 I->setHasNoSignedWrap(false); 1099 } 1100 1101 // For an expansion to use the postinc form, the client must call 1102 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1103 // or dominated by IVIncInsertPos. 1104 if (isa<Instruction>(Result) && 1105 !SE.DT.dominates(cast<Instruction>(Result), 1106 &*Builder.GetInsertPoint())) { 1107 // The induction variable's postinc expansion does not dominate this use. 1108 // IVUsers tries to prevent this case, so it is rare. However, it can 1109 // happen when an IVUser outside the loop is not dominated by the latch 1110 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1111 // all cases. Consider a phi outside whose operand is replaced during 1112 // expansion with the value of the postinc user. Without fundamentally 1113 // changing the way postinc users are tracked, the only remedy is 1114 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1115 // but hopefully expandCodeFor handles that. 1116 bool useSubtract = 1117 !S->getType()->isPointerTy() && Step->isNonConstantNegative(); 1118 if (useSubtract) 1119 Step = SE.getNegativeSCEV(Step); 1120 Value *StepV; 1121 { 1122 // Expand the step somewhere that dominates the loop header. 1123 SCEVInsertPointGuard Guard(Builder, this); 1124 StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 1125 } 1126 Result = expandIVInc(PN, StepV, L, useSubtract); 1127 } 1128 } 1129 1130 // We have decided to reuse an induction variable of a dominating loop. Apply 1131 // truncation and/or inversion of the step. 1132 if (TruncTy) { 1133 // Truncate the result. 1134 if (TruncTy != Result->getType()) 1135 Result = Builder.CreateTrunc(Result, TruncTy); 1136 1137 // Invert the result. 1138 if (InvertStep) 1139 Result = Builder.CreateSub(expand(Normalized->getStart()), Result); 1140 } 1141 1142 return Result; 1143 } 1144 1145 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1146 // In canonical mode we compute the addrec as an expression of a canonical IV 1147 // using evaluateAtIteration and expand the resulting SCEV expression. This 1148 // way we avoid introducing new IVs to carry on the computation of the addrec 1149 // throughout the loop. 1150 // 1151 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1152 // type wider than the addrec itself. Emitting a canonical IV of the 1153 // proper type might produce non-legal types, for example expanding an i64 1154 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1155 // back to non-canonical mode for nested addrecs. 1156 if (!CanonicalMode || (S->getNumOperands() > 2)) 1157 return expandAddRecExprLiterally(S); 1158 1159 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1160 const Loop *L = S->getLoop(); 1161 1162 // First check for an existing canonical IV in a suitable type. 1163 PHINode *CanonicalIV = nullptr; 1164 if (PHINode *PN = L->getCanonicalInductionVariable()) 1165 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1166 CanonicalIV = PN; 1167 1168 // Rewrite an AddRec in terms of the canonical induction variable, if 1169 // its type is more narrow. 1170 if (CanonicalIV && 1171 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1172 !S->getType()->isPointerTy()) { 1173 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1174 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1175 NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 1176 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1177 S->getNoWrapFlags(SCEV::FlagNW))); 1178 BasicBlock::iterator NewInsertPt = 1179 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1180 V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt); 1181 return V; 1182 } 1183 1184 // {X,+,F} --> X + {0,+,F} 1185 if (!S->getStart()->isZero()) { 1186 if (isa<PointerType>(S->getType())) { 1187 Value *StartV = expand(SE.getPointerBase(S)); 1188 return expandAddToGEP(SE.removePointerBase(S), StartV); 1189 } 1190 1191 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1192 NewOps[0] = SE.getConstant(Ty, 0); 1193 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1194 S->getNoWrapFlags(SCEV::FlagNW)); 1195 1196 // Just do a normal add. Pre-expand the operands to suppress folding. 1197 // 1198 // The LHS and RHS values are factored out of the expand call to make the 1199 // output independent of the argument evaluation order. 1200 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1201 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1202 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1203 } 1204 1205 // If we don't yet have a canonical IV, create one. 1206 if (!CanonicalIV) { 1207 // Create and insert the PHI node for the induction variable in the 1208 // specified loop. 1209 BasicBlock *Header = L->getHeader(); 1210 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1211 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar"); 1212 CanonicalIV->insertBefore(Header->begin()); 1213 rememberInstruction(CanonicalIV); 1214 1215 SmallSet<BasicBlock *, 4> PredSeen; 1216 Constant *One = ConstantInt::get(Ty, 1); 1217 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1218 BasicBlock *HP = *HPI; 1219 if (!PredSeen.insert(HP).second) { 1220 // There must be an incoming value for each predecessor, even the 1221 // duplicates! 1222 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1223 continue; 1224 } 1225 1226 if (L->contains(HP)) { 1227 // Insert a unit add instruction right before the terminator 1228 // corresponding to the back-edge. 1229 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1230 "indvar.next", 1231 HP->getTerminator()); 1232 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1233 rememberInstruction(Add); 1234 CanonicalIV->addIncoming(Add, HP); 1235 } else { 1236 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1237 } 1238 } 1239 } 1240 1241 // {0,+,1} --> Insert a canonical induction variable into the loop! 1242 if (S->isAffine() && S->getOperand(1)->isOne()) { 1243 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1244 "IVs with types different from the canonical IV should " 1245 "already have been handled!"); 1246 return CanonicalIV; 1247 } 1248 1249 // {0,+,F} --> {0,+,1} * F 1250 1251 // If this is a simple linear addrec, emit it now as a special case. 1252 if (S->isAffine()) // {0,+,F} --> i*F 1253 return 1254 expand(SE.getTruncateOrNoop( 1255 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1256 SE.getNoopOrAnyExtend(S->getOperand(1), 1257 CanonicalIV->getType())), 1258 Ty)); 1259 1260 // If this is a chain of recurrences, turn it into a closed form, using the 1261 // folders, then expandCodeFor the closed form. This allows the folders to 1262 // simplify the expression without having to build a bunch of special code 1263 // into this folder. 1264 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1265 1266 // Promote S up to the canonical IV type, if the cast is foldable. 1267 const SCEV *NewS = S; 1268 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1269 if (isa<SCEVAddRecExpr>(Ext)) 1270 NewS = Ext; 1271 1272 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1273 1274 // Truncate the result down to the original type, if needed. 1275 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1276 return expand(T); 1277 } 1278 1279 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1280 Value *V = expand(S->getOperand()); 1281 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1282 GetOptimalInsertionPointForCastOf(V)); 1283 } 1284 1285 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1286 Value *V = expand(S->getOperand()); 1287 return Builder.CreateTrunc(V, S->getType()); 1288 } 1289 1290 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1291 Value *V = expand(S->getOperand()); 1292 return Builder.CreateZExt(V, S->getType(), "", 1293 SE.isKnownNonNegative(S->getOperand())); 1294 } 1295 1296 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1297 Value *V = expand(S->getOperand()); 1298 return Builder.CreateSExt(V, S->getType()); 1299 } 1300 1301 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1302 Intrinsic::ID IntrinID, Twine Name, 1303 bool IsSequential) { 1304 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1305 Type *Ty = LHS->getType(); 1306 if (IsSequential) 1307 LHS = Builder.CreateFreeze(LHS); 1308 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1309 Value *RHS = expand(S->getOperand(i)); 1310 if (IsSequential && i != 0) 1311 RHS = Builder.CreateFreeze(RHS); 1312 Value *Sel; 1313 if (Ty->isIntegerTy()) 1314 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1315 /*FMFSource=*/nullptr, Name); 1316 else { 1317 Value *ICmp = 1318 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1319 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1320 } 1321 LHS = Sel; 1322 } 1323 return LHS; 1324 } 1325 1326 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1327 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1328 } 1329 1330 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1331 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1332 } 1333 1334 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1335 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1336 } 1337 1338 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1339 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1340 } 1341 1342 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1343 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1344 } 1345 1346 Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 1347 return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 1348 } 1349 1350 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1351 BasicBlock::iterator IP) { 1352 setInsertPoint(IP); 1353 Value *V = expandCodeFor(SH, Ty); 1354 return V; 1355 } 1356 1357 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1358 // Expand the code for this SCEV. 1359 Value *V = expand(SH); 1360 1361 if (Ty) { 1362 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1363 "non-trivial casts should be done with the SCEVs directly!"); 1364 V = InsertNoopCastOfTo(V, Ty); 1365 } 1366 return V; 1367 } 1368 1369 Value *SCEVExpander::FindValueInExprValueMap( 1370 const SCEV *S, const Instruction *InsertPt, 1371 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1372 // If the expansion is not in CanonicalMode, and the SCEV contains any 1373 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1374 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1375 return nullptr; 1376 1377 // If S is a constant, it may be worse to reuse an existing Value. 1378 if (isa<SCEVConstant>(S)) 1379 return nullptr; 1380 1381 for (Value *V : SE.getSCEVValues(S)) { 1382 Instruction *EntInst = dyn_cast<Instruction>(V); 1383 if (!EntInst) 1384 continue; 1385 1386 // Choose a Value from the set which dominates the InsertPt. 1387 // InsertPt should be inside the Value's parent loop so as not to break 1388 // the LCSSA form. 1389 assert(EntInst->getFunction() == InsertPt->getFunction()); 1390 if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) || 1391 !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1392 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1393 continue; 1394 1395 // Make sure reusing the instruction is poison-safe. 1396 if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts)) 1397 return V; 1398 DropPoisonGeneratingInsts.clear(); 1399 } 1400 return nullptr; 1401 } 1402 1403 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1404 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1405 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1406 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1407 // the expansion will try to reuse Value from ExprValueMap, and only when it 1408 // fails, expand the SCEV literally. 1409 Value *SCEVExpander::expand(const SCEV *S) { 1410 // Compute an insertion point for this SCEV object. Hoist the instructions 1411 // as far out in the loop nest as possible. 1412 BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 1413 1414 // We can move insertion point only if there is no div or rem operations 1415 // otherwise we are risky to move it over the check for zero denominator. 1416 auto SafeToHoist = [](const SCEV *S) { 1417 return !SCEVExprContains(S, [](const SCEV *S) { 1418 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1419 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1420 // Division by non-zero constants can be hoisted. 1421 return SC->getValue()->isZero(); 1422 // All other divisions should not be moved as they may be 1423 // divisions by zero and should be kept within the 1424 // conditions of the surrounding loops that guard their 1425 // execution (see PR35406). 1426 return true; 1427 } 1428 return false; 1429 }); 1430 }; 1431 if (SafeToHoist(S)) { 1432 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1433 L = L->getParentLoop()) { 1434 if (SE.isLoopInvariant(S, L)) { 1435 if (!L) break; 1436 if (BasicBlock *Preheader = L->getLoopPreheader()) { 1437 InsertPt = Preheader->getTerminator()->getIterator(); 1438 } else { 1439 // LSR sets the insertion point for AddRec start/step values to the 1440 // block start to simplify value reuse, even though it's an invalid 1441 // position. SCEVExpander must correct for this in all cases. 1442 InsertPt = L->getHeader()->getFirstInsertionPt(); 1443 } 1444 } else { 1445 // If the SCEV is computable at this level, insert it into the header 1446 // after the PHIs (and after any other instructions that we've inserted 1447 // there) so that it is guaranteed to dominate any user inside the loop. 1448 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1449 InsertPt = L->getHeader()->getFirstInsertionPt(); 1450 1451 while (InsertPt != Builder.GetInsertPoint() && 1452 (isInsertedInstruction(&*InsertPt) || 1453 isa<DbgInfoIntrinsic>(&*InsertPt))) { 1454 InsertPt = std::next(InsertPt); 1455 } 1456 break; 1457 } 1458 } 1459 } 1460 1461 // Check to see if we already expanded this here. 1462 auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt)); 1463 if (I != InsertedExpressions.end()) 1464 return I->second; 1465 1466 SCEVInsertPointGuard Guard(Builder, this); 1467 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); 1468 1469 // Expand the expression into instructions. 1470 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1471 Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts); 1472 if (!V) { 1473 V = visit(S); 1474 V = fixupLCSSAFormFor(V); 1475 } else { 1476 for (Instruction *I : DropPoisonGeneratingInsts) { 1477 I->dropPoisonGeneratingFlagsAndMetadata(); 1478 // See if we can re-infer from first principles any of the flags we just 1479 // dropped. 1480 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 1481 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 1482 auto *BO = cast<BinaryOperator>(I); 1483 BO->setHasNoUnsignedWrap( 1484 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 1485 BO->setHasNoSignedWrap( 1486 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 1487 } 1488 if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) { 1489 auto *Src = NNI->getOperand(0); 1490 if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src, 1491 Constant::getNullValue(Src->getType()), I, 1492 DL).value_or(false)) 1493 NNI->setNonNeg(true); 1494 } 1495 } 1496 } 1497 // Remember the expanded value for this SCEV at this location. 1498 // 1499 // This is independent of PostIncLoops. The mapped value simply materializes 1500 // the expression at this insertion point. If the mapped value happened to be 1501 // a postinc expansion, it could be reused by a non-postinc user, but only if 1502 // its insertion point was already at the head of the loop. 1503 InsertedExpressions[std::make_pair(S, &*InsertPt)] = V; 1504 return V; 1505 } 1506 1507 void SCEVExpander::rememberInstruction(Value *I) { 1508 auto DoInsert = [this](Value *V) { 1509 if (!PostIncLoops.empty()) 1510 InsertedPostIncValues.insert(V); 1511 else 1512 InsertedValues.insert(V); 1513 }; 1514 DoInsert(I); 1515 } 1516 1517 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1518 /// replace them with their most canonical representative. Return the number of 1519 /// phis eliminated. 1520 /// 1521 /// This does not depend on any SCEVExpander state but should be used in 1522 /// the same context that SCEVExpander is used. 1523 unsigned 1524 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1525 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1526 const TargetTransformInfo *TTI) { 1527 // Find integer phis in order of increasing width. 1528 SmallVector<PHINode*, 8> Phis; 1529 for (PHINode &PN : L->getHeader()->phis()) 1530 Phis.push_back(&PN); 1531 1532 if (TTI) 1533 // Use stable_sort to preserve order of equivalent PHIs, so the order 1534 // of the sorted Phis is the same from run to run on the same loop. 1535 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1536 // Put pointers at the back and make sure pointer < pointer = false. 1537 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1538 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1539 return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1540 LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 1541 }); 1542 1543 unsigned NumElim = 0; 1544 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1545 // Process phis from wide to narrow. Map wide phis to their truncation 1546 // so narrow phis can reuse them. 1547 for (PHINode *Phi : Phis) { 1548 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1549 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1550 return V; 1551 if (!SE.isSCEVable(PN->getType())) 1552 return nullptr; 1553 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1554 if (!Const) 1555 return nullptr; 1556 return Const->getValue(); 1557 }; 1558 1559 // Fold constant phis. They may be congruent to other constant phis and 1560 // would confuse the logic below that expects proper IVs. 1561 if (Value *V = SimplifyPHINode(Phi)) { 1562 if (V->getType() != Phi->getType()) 1563 continue; 1564 SE.forgetValue(Phi); 1565 Phi->replaceAllUsesWith(V); 1566 DeadInsts.emplace_back(Phi); 1567 ++NumElim; 1568 SCEV_DEBUG_WITH_TYPE(DebugType, 1569 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1570 << '\n'); 1571 continue; 1572 } 1573 1574 if (!SE.isSCEVable(Phi->getType())) 1575 continue; 1576 1577 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1578 if (!OrigPhiRef) { 1579 OrigPhiRef = Phi; 1580 if (Phi->getType()->isIntegerTy() && TTI && 1581 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1582 // Make sure we only rewrite using simple induction variables; 1583 // otherwise, we can make the trip count of a loop unanalyzable 1584 // to SCEV. 1585 const SCEV *PhiExpr = SE.getSCEV(Phi); 1586 if (isa<SCEVAddRecExpr>(PhiExpr)) { 1587 // This phi can be freely truncated to the narrowest phi type. Map the 1588 // truncated expression to it so it will be reused for narrow types. 1589 const SCEV *TruncExpr = 1590 SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 1591 ExprToIVMap[TruncExpr] = Phi; 1592 } 1593 } 1594 continue; 1595 } 1596 1597 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1598 // sense. 1599 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1600 continue; 1601 1602 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1603 Instruction *OrigInc = dyn_cast<Instruction>( 1604 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1605 Instruction *IsomorphicInc = 1606 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1607 1608 if (OrigInc && IsomorphicInc) { 1609 // If this phi has the same width but is more canonical, replace the 1610 // original with it. As part of the "more canonical" determination, 1611 // respect a prior decision to use an IV chain. 1612 if (OrigPhiRef->getType() == Phi->getType() && 1613 !(ChainedPhis.count(Phi) || 1614 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 1615 (ChainedPhis.count(Phi) || 1616 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1617 std::swap(OrigPhiRef, Phi); 1618 std::swap(OrigInc, IsomorphicInc); 1619 } 1620 // Replacing the congruent phi is sufficient because acyclic 1621 // redundancy elimination, CSE/GVN, should handle the 1622 // rest. However, once SCEV proves that a phi is congruent, 1623 // it's often the head of an IV user cycle that is isomorphic 1624 // with the original phi. It's worth eagerly cleaning up the 1625 // common case of a single IV increment so that DeleteDeadPHIs 1626 // can remove cycles that had postinc uses. 1627 // Because we may potentially introduce a new use of OrigIV that didn't 1628 // exist before at this point, its poison flags need readjustment. 1629 const SCEV *TruncExpr = 1630 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1631 if (OrigInc != IsomorphicInc && 1632 TruncExpr == SE.getSCEV(IsomorphicInc) && 1633 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 1634 hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) { 1635 SCEV_DEBUG_WITH_TYPE( 1636 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1637 << *IsomorphicInc << '\n'); 1638 Value *NewInc = OrigInc; 1639 if (OrigInc->getType() != IsomorphicInc->getType()) { 1640 BasicBlock::iterator IP; 1641 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1642 IP = PN->getParent()->getFirstInsertionPt(); 1643 else 1644 IP = OrigInc->getNextNonDebugInstruction()->getIterator(); 1645 1646 IRBuilder<> Builder(IP->getParent(), IP); 1647 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1648 NewInc = Builder.CreateTruncOrBitCast( 1649 OrigInc, IsomorphicInc->getType(), IVName); 1650 } 1651 IsomorphicInc->replaceAllUsesWith(NewInc); 1652 DeadInsts.emplace_back(IsomorphicInc); 1653 } 1654 } 1655 } 1656 SCEV_DEBUG_WITH_TYPE(DebugType, 1657 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1658 << '\n'); 1659 SCEV_DEBUG_WITH_TYPE( 1660 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 1661 ++NumElim; 1662 Value *NewIV = OrigPhiRef; 1663 if (OrigPhiRef->getType() != Phi->getType()) { 1664 IRBuilder<> Builder(L->getHeader(), 1665 L->getHeader()->getFirstInsertionPt()); 1666 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1667 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1668 } 1669 Phi->replaceAllUsesWith(NewIV); 1670 DeadInsts.emplace_back(Phi); 1671 } 1672 return NumElim; 1673 } 1674 1675 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S, 1676 const Instruction *At, 1677 Loop *L) { 1678 using namespace llvm::PatternMatch; 1679 1680 SmallVector<BasicBlock *, 4> ExitingBlocks; 1681 L->getExitingBlocks(ExitingBlocks); 1682 1683 // Look for suitable value in simple conditions at the loop exits. 1684 for (BasicBlock *BB : ExitingBlocks) { 1685 ICmpInst::Predicate Pred; 1686 Instruction *LHS, *RHS; 1687 1688 if (!match(BB->getTerminator(), 1689 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1690 m_BasicBlock(), m_BasicBlock()))) 1691 continue; 1692 1693 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1694 return true; 1695 1696 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1697 return true; 1698 } 1699 1700 // Use expand's logic which is used for reusing a previous Value in 1701 // ExprValueMap. Note that we don't currently model the cost of 1702 // needing to drop poison generating flags on the instruction if we 1703 // want to reuse it. We effectively assume that has zero cost. 1704 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1705 return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr; 1706 } 1707 1708 template<typename T> static InstructionCost costAndCollectOperands( 1709 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1710 TargetTransformInfo::TargetCostKind CostKind, 1711 SmallVectorImpl<SCEVOperand> &Worklist) { 1712 1713 const T *S = cast<T>(WorkItem.S); 1714 InstructionCost Cost = 0; 1715 // Object to help map SCEV operands to expanded IR instructions. 1716 struct OperationIndices { 1717 OperationIndices(unsigned Opc, size_t min, size_t max) : 1718 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1719 unsigned Opcode; 1720 size_t MinIdx; 1721 size_t MaxIdx; 1722 }; 1723 1724 // Collect the operations of all the instructions that will be needed to 1725 // expand the SCEVExpr. This is so that when we come to cost the operands, 1726 // we know what the generated user(s) will be. 1727 SmallVector<OperationIndices, 2> Operations; 1728 1729 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1730 Operations.emplace_back(Opcode, 0, 0); 1731 return TTI.getCastInstrCost(Opcode, S->getType(), 1732 S->getOperand(0)->getType(), 1733 TTI::CastContextHint::None, CostKind); 1734 }; 1735 1736 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1737 unsigned MinIdx = 0, 1738 unsigned MaxIdx = 1) -> InstructionCost { 1739 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1740 return NumRequired * 1741 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1742 }; 1743 1744 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1745 unsigned MaxIdx) -> InstructionCost { 1746 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1747 Type *OpType = S->getType(); 1748 return NumRequired * TTI.getCmpSelInstrCost( 1749 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1750 CmpInst::BAD_ICMP_PREDICATE, CostKind); 1751 }; 1752 1753 switch (S->getSCEVType()) { 1754 case scCouldNotCompute: 1755 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1756 case scUnknown: 1757 case scConstant: 1758 case scVScale: 1759 return 0; 1760 case scPtrToInt: 1761 Cost = CastCost(Instruction::PtrToInt); 1762 break; 1763 case scTruncate: 1764 Cost = CastCost(Instruction::Trunc); 1765 break; 1766 case scZeroExtend: 1767 Cost = CastCost(Instruction::ZExt); 1768 break; 1769 case scSignExtend: 1770 Cost = CastCost(Instruction::SExt); 1771 break; 1772 case scUDivExpr: { 1773 unsigned Opcode = Instruction::UDiv; 1774 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1775 if (SC->getAPInt().isPowerOf2()) 1776 Opcode = Instruction::LShr; 1777 Cost = ArithCost(Opcode, 1); 1778 break; 1779 } 1780 case scAddExpr: 1781 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1782 break; 1783 case scMulExpr: 1784 // TODO: this is a very pessimistic cost modelling for Mul, 1785 // because of Bin Pow algorithm actually used by the expander, 1786 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1787 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1788 break; 1789 case scSMaxExpr: 1790 case scUMaxExpr: 1791 case scSMinExpr: 1792 case scUMinExpr: 1793 case scSequentialUMinExpr: { 1794 // FIXME: should this ask the cost for Intrinsic's? 1795 // The reduction tree. 1796 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1797 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 1798 switch (S->getSCEVType()) { 1799 case scSequentialUMinExpr: { 1800 // The safety net against poison. 1801 // FIXME: this is broken. 1802 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 1803 Cost += ArithCost(Instruction::Or, 1804 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 1805 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 1806 break; 1807 } 1808 default: 1809 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 1810 "Unhandled SCEV expression type?"); 1811 break; 1812 } 1813 break; 1814 } 1815 case scAddRecExpr: { 1816 // In this polynominal, we may have some zero operands, and we shouldn't 1817 // really charge for those. So how many non-zero coefficients are there? 1818 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 1819 return !Op->isZero(); 1820 }); 1821 1822 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 1823 assert(!(*std::prev(S->operands().end()))->isZero() && 1824 "Last operand should not be zero"); 1825 1826 // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 1827 int NumNonZeroDegreeNonOneTerms = 1828 llvm::count_if(S->operands(), [](const SCEV *Op) { 1829 auto *SConst = dyn_cast<SCEVConstant>(Op); 1830 return !SConst || SConst->getAPInt().ugt(1); 1831 }); 1832 1833 // Much like with normal add expr, the polynominal will require 1834 // one less addition than the number of it's terms. 1835 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 1836 /*MinIdx*/ 1, /*MaxIdx*/ 1); 1837 // Here, *each* one of those will require a multiplication. 1838 InstructionCost MulCost = 1839 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 1840 Cost = AddCost + MulCost; 1841 1842 // What is the degree of this polynominal? 1843 int PolyDegree = S->getNumOperands() - 1; 1844 assert(PolyDegree >= 1 && "Should be at least affine."); 1845 1846 // The final term will be: 1847 // Op_{PolyDegree} * x ^ {PolyDegree} 1848 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 1849 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 1850 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 1851 // FIXME: this is conservatively correct, but might be overly pessimistic. 1852 Cost += MulCost * (PolyDegree - 1); 1853 break; 1854 } 1855 } 1856 1857 for (auto &CostOp : Operations) { 1858 for (auto SCEVOp : enumerate(S->operands())) { 1859 // Clamp the index to account for multiple IR operations being chained. 1860 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1861 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1862 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1863 } 1864 } 1865 return Cost; 1866 } 1867 1868 bool SCEVExpander::isHighCostExpansionHelper( 1869 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1870 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1871 SmallPtrSetImpl<const SCEV *> &Processed, 1872 SmallVectorImpl<SCEVOperand> &Worklist) { 1873 if (Cost > Budget) 1874 return true; // Already run out of budget, give up. 1875 1876 const SCEV *S = WorkItem.S; 1877 // Was the cost of expansion of this expression already accounted for? 1878 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 1879 return false; // We have already accounted for this expression. 1880 1881 // If we can find an existing value for this scev available at the point "At" 1882 // then consider the expression cheap. 1883 if (hasRelatedExistingExpansion(S, &At, L)) 1884 return false; // Consider the expression to be free. 1885 1886 TargetTransformInfo::TargetCostKind CostKind = 1887 L->getHeader()->getParent()->hasMinSize() 1888 ? TargetTransformInfo::TCK_CodeSize 1889 : TargetTransformInfo::TCK_RecipThroughput; 1890 1891 switch (S->getSCEVType()) { 1892 case scCouldNotCompute: 1893 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1894 case scUnknown: 1895 case scVScale: 1896 // Assume to be zero-cost. 1897 return false; 1898 case scConstant: { 1899 // Only evalulate the costs of constants when optimizing for size. 1900 if (CostKind != TargetTransformInfo::TCK_CodeSize) 1901 return false; 1902 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 1903 Type *Ty = S->getType(); 1904 Cost += TTI.getIntImmCostInst( 1905 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 1906 return Cost > Budget; 1907 } 1908 case scTruncate: 1909 case scPtrToInt: 1910 case scZeroExtend: 1911 case scSignExtend: { 1912 Cost += 1913 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 1914 return false; // Will answer upon next entry into this function. 1915 } 1916 case scUDivExpr: { 1917 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 1918 // HowManyLessThans produced to compute a precise expression, rather than a 1919 // UDiv from the user's code. If we can't find a UDiv in the code with some 1920 // simple searching, we need to account for it's cost. 1921 1922 // At the beginning of this function we already tried to find existing 1923 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 1924 // pattern involving division. This is just a simple search heuristic. 1925 if (hasRelatedExistingExpansion( 1926 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 1927 return false; // Consider it to be free. 1928 1929 Cost += 1930 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 1931 return false; // Will answer upon next entry into this function. 1932 } 1933 case scAddExpr: 1934 case scMulExpr: 1935 case scUMaxExpr: 1936 case scSMaxExpr: 1937 case scUMinExpr: 1938 case scSMinExpr: 1939 case scSequentialUMinExpr: { 1940 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 1941 "Nary expr should have more than 1 operand."); 1942 // The simple nary expr will require one less op (or pair of ops) 1943 // than the number of it's terms. 1944 Cost += 1945 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 1946 return Cost > Budget; 1947 } 1948 case scAddRecExpr: { 1949 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 1950 "Polynomial should be at least linear"); 1951 Cost += costAndCollectOperands<SCEVAddRecExpr>( 1952 WorkItem, TTI, CostKind, Worklist); 1953 return Cost > Budget; 1954 } 1955 } 1956 llvm_unreachable("Unknown SCEV kind!"); 1957 } 1958 1959 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 1960 Instruction *IP) { 1961 assert(IP); 1962 switch (Pred->getKind()) { 1963 case SCEVPredicate::P_Union: 1964 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 1965 case SCEVPredicate::P_Compare: 1966 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 1967 case SCEVPredicate::P_Wrap: { 1968 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 1969 return expandWrapPredicate(AddRecPred, IP); 1970 } 1971 } 1972 llvm_unreachable("Unknown SCEV predicate type"); 1973 } 1974 1975 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 1976 Instruction *IP) { 1977 Value *Expr0 = expand(Pred->getLHS(), IP); 1978 Value *Expr1 = expand(Pred->getRHS(), IP); 1979 1980 Builder.SetInsertPoint(IP); 1981 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 1982 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 1983 return I; 1984 } 1985 1986 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 1987 Instruction *Loc, bool Signed) { 1988 assert(AR->isAffine() && "Cannot generate RT check for " 1989 "non-affine expression"); 1990 1991 // FIXME: It is highly suspicious that we're ignoring the predicates here. 1992 SmallVector<const SCEVPredicate *, 4> Pred; 1993 const SCEV *ExitCount = 1994 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 1995 1996 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 1997 1998 const SCEV *Step = AR->getStepRecurrence(SE); 1999 const SCEV *Start = AR->getStart(); 2000 2001 Type *ARTy = AR->getType(); 2002 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2003 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2004 2005 // The expression {Start,+,Step} has nusw/nssw if 2006 // Step < 0, Start - |Step| * Backedge <= Start 2007 // Step >= 0, Start + |Step| * Backedge > Start 2008 // and |Step| * Backedge doesn't unsigned overflow. 2009 2010 Builder.SetInsertPoint(Loc); 2011 Value *TripCountVal = expand(ExitCount, Loc); 2012 2013 IntegerType *Ty = 2014 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2015 2016 Value *StepValue = expand(Step, Loc); 2017 Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc); 2018 Value *StartValue = expand(Start, Loc); 2019 2020 ConstantInt *Zero = 2021 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2022 2023 Builder.SetInsertPoint(Loc); 2024 // Compute |Step| 2025 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2026 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2027 2028 // Compute |Step| * Backedge 2029 // Compute: 2030 // 1. Start + |Step| * Backedge < Start 2031 // 2. Start - |Step| * Backedge > Start 2032 // 2033 // And select either 1. or 2. depending on whether step is positive or 2034 // negative. If Step is known to be positive or negative, only create 2035 // either 1. or 2. 2036 auto ComputeEndCheck = [&]() -> Value * { 2037 // Checking <u 0 is always false. 2038 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2039 return ConstantInt::getFalse(Loc->getContext()); 2040 2041 // Get the backedge taken count and truncate or extended to the AR type. 2042 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2043 2044 Value *MulV, *OfMul; 2045 if (Step->isOne()) { 2046 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2047 // needed, there is never an overflow, so to avoid artificially inflating 2048 // the cost of the check, directly emit the optimized IR. 2049 MulV = TruncTripCount; 2050 OfMul = ConstantInt::getFalse(MulV->getContext()); 2051 } else { 2052 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2053 Intrinsic::umul_with_overflow, Ty); 2054 CallInst *Mul = 2055 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2056 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2057 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2058 } 2059 2060 Value *Add = nullptr, *Sub = nullptr; 2061 bool NeedPosCheck = !SE.isKnownNegative(Step); 2062 bool NeedNegCheck = !SE.isKnownPositive(Step); 2063 2064 if (isa<PointerType>(ARTy)) { 2065 Value *NegMulV = Builder.CreateNeg(MulV); 2066 if (NeedPosCheck) 2067 Add = Builder.CreatePtrAdd(StartValue, MulV); 2068 if (NeedNegCheck) 2069 Sub = Builder.CreatePtrAdd(StartValue, NegMulV); 2070 } else { 2071 if (NeedPosCheck) 2072 Add = Builder.CreateAdd(StartValue, MulV); 2073 if (NeedNegCheck) 2074 Sub = Builder.CreateSub(StartValue, MulV); 2075 } 2076 2077 Value *EndCompareLT = nullptr; 2078 Value *EndCompareGT = nullptr; 2079 Value *EndCheck = nullptr; 2080 if (NeedPosCheck) 2081 EndCheck = EndCompareLT = Builder.CreateICmp( 2082 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2083 if (NeedNegCheck) 2084 EndCheck = EndCompareGT = Builder.CreateICmp( 2085 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2086 if (NeedPosCheck && NeedNegCheck) { 2087 // Select the answer based on the sign of Step. 2088 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2089 } 2090 return Builder.CreateOr(EndCheck, OfMul); 2091 }; 2092 Value *EndCheck = ComputeEndCheck(); 2093 2094 // If the backedge taken count type is larger than the AR type, 2095 // check that we don't drop any bits by truncating it. If we are 2096 // dropping bits, then we have overflow (unless the step is zero). 2097 if (SrcBits > DstBits) { 2098 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2099 auto *BackedgeCheck = 2100 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2101 ConstantInt::get(Loc->getContext(), MaxVal)); 2102 BackedgeCheck = Builder.CreateAnd( 2103 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2104 2105 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2106 } 2107 2108 return EndCheck; 2109 } 2110 2111 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2112 Instruction *IP) { 2113 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2114 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2115 2116 // Add a check for NUSW 2117 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2118 NUSWCheck = generateOverflowCheck(A, IP, false); 2119 2120 // Add a check for NSSW 2121 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2122 NSSWCheck = generateOverflowCheck(A, IP, true); 2123 2124 if (NUSWCheck && NSSWCheck) 2125 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2126 2127 if (NUSWCheck) 2128 return NUSWCheck; 2129 2130 if (NSSWCheck) 2131 return NSSWCheck; 2132 2133 return ConstantInt::getFalse(IP->getContext()); 2134 } 2135 2136 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2137 Instruction *IP) { 2138 // Loop over all checks in this set. 2139 SmallVector<Value *> Checks; 2140 for (const auto *Pred : Union->getPredicates()) { 2141 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2142 Builder.SetInsertPoint(IP); 2143 } 2144 2145 if (Checks.empty()) 2146 return ConstantInt::getFalse(IP->getContext()); 2147 return Builder.CreateOr(Checks); 2148 } 2149 2150 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2151 auto *DefI = dyn_cast<Instruction>(V); 2152 if (!PreserveLCSSA || !DefI) 2153 return V; 2154 2155 Instruction *InsertPt = &*Builder.GetInsertPoint(); 2156 Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2157 Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2158 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2159 return V; 2160 2161 // Create a temporary instruction to at the current insertion point, so we 2162 // can hand it off to the helper to create LCSSA PHIs if required for the 2163 // new use. 2164 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2165 // would accept a insertion point and return an LCSSA phi for that 2166 // insertion point, so there is no need to insert & remove the temporary 2167 // instruction. 2168 Type *ToTy; 2169 if (DefI->getType()->isIntegerTy()) 2170 ToTy = PointerType::get(DefI->getContext(), 0); 2171 else 2172 ToTy = Type::getInt32Ty(DefI->getContext()); 2173 Instruction *User = 2174 CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2175 auto RemoveUserOnExit = 2176 make_scope_exit([User]() { User->eraseFromParent(); }); 2177 2178 SmallVector<Instruction *, 1> ToUpdate; 2179 ToUpdate.push_back(DefI); 2180 SmallVector<PHINode *, 16> PHIsToRemove; 2181 SmallVector<PHINode *, 16> InsertedPHIs; 2182 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 2183 &InsertedPHIs); 2184 for (PHINode *PN : InsertedPHIs) 2185 rememberInstruction(PN); 2186 for (PHINode *PN : PHIsToRemove) { 2187 if (!PN->use_empty()) 2188 continue; 2189 InsertedValues.erase(PN); 2190 InsertedPostIncValues.erase(PN); 2191 PN->eraseFromParent(); 2192 } 2193 2194 return User->getOperand(0); 2195 } 2196 2197 namespace { 2198 // Search for a SCEV subexpression that is not safe to expand. Any expression 2199 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2200 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2201 // instruction, but the important thing is that we prove the denominator is 2202 // nonzero before expansion. 2203 // 2204 // IVUsers already checks that IV-derived expressions are safe. So this check is 2205 // only needed when the expression includes some subexpression that is not IV 2206 // derived. 2207 // 2208 // Currently, we only allow division by a value provably non-zero here. 2209 // 2210 // We cannot generally expand recurrences unless the step dominates the loop 2211 // header. The expander handles the special case of affine recurrences by 2212 // scaling the recurrence outside the loop, but this technique isn't generally 2213 // applicable. Expanding a nested recurrence outside a loop requires computing 2214 // binomial coefficients. This could be done, but the recurrence has to be in a 2215 // perfectly reduced form, which can't be guaranteed. 2216 struct SCEVFindUnsafe { 2217 ScalarEvolution &SE; 2218 bool CanonicalMode; 2219 bool IsUnsafe = false; 2220 2221 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2222 : SE(SE), CanonicalMode(CanonicalMode) {} 2223 2224 bool follow(const SCEV *S) { 2225 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2226 if (!SE.isKnownNonZero(D->getRHS())) { 2227 IsUnsafe = true; 2228 return false; 2229 } 2230 } 2231 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2232 // For non-affine addrecs or in non-canonical mode we need a preheader 2233 // to insert into. 2234 if (!AR->getLoop()->getLoopPreheader() && 2235 (!CanonicalMode || !AR->isAffine())) { 2236 IsUnsafe = true; 2237 return false; 2238 } 2239 } 2240 return true; 2241 } 2242 bool isDone() const { return IsUnsafe; } 2243 }; 2244 } // namespace 2245 2246 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2247 SCEVFindUnsafe Search(SE, CanonicalMode); 2248 visitAll(S, Search); 2249 return !Search.IsUnsafe; 2250 } 2251 2252 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2253 const Instruction *InsertionPoint) const { 2254 if (!isSafeToExpand(S)) 2255 return false; 2256 // We have to prove that the expanded site of S dominates InsertionPoint. 2257 // This is easy when not in the same block, but hard when S is an instruction 2258 // to be expanded somewhere inside the same block as our insertion point. 2259 // What we really need here is something analogous to an OrderedBasicBlock, 2260 // but for the moment, we paper over the problem by handling two common and 2261 // cheap to check cases. 2262 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2263 return true; 2264 if (SE.dominates(S, InsertionPoint->getParent())) { 2265 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2266 return true; 2267 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2268 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2269 return true; 2270 } 2271 return false; 2272 } 2273 2274 void SCEVExpanderCleaner::cleanup() { 2275 // Result is used, nothing to remove. 2276 if (ResultUsed) 2277 return; 2278 2279 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2280 #ifndef NDEBUG 2281 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2282 InsertedInstructions.end()); 2283 (void)InsertedSet; 2284 #endif 2285 // Remove sets with value handles. 2286 Expander.clear(); 2287 2288 // Remove all inserted instructions. 2289 for (Instruction *I : reverse(InsertedInstructions)) { 2290 #ifndef NDEBUG 2291 assert(all_of(I->users(), 2292 [&InsertedSet](Value *U) { 2293 return InsertedSet.contains(cast<Instruction>(U)); 2294 }) && 2295 "removed instruction should only be used by instructions inserted " 2296 "during expansion"); 2297 #endif 2298 assert(!I->getType()->isVoidTy() && 2299 "inserted instruction should have non-void types"); 2300 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2301 I->eraseFromParent(); 2302 } 2303 } 2304