1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/LoopUtils.h" 30 31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33 #else 34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35 #endif 36 37 using namespace llvm; 38 39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 40 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 41 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 42 "controls the budget that is considered cheap (default = 4)")); 43 44 using namespace PatternMatch; 45 46 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 47 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 48 /// creating a new one. 49 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 50 Instruction::CastOps Op, 51 BasicBlock::iterator IP) { 52 // This function must be called with the builder having a valid insertion 53 // point. It doesn't need to be the actual IP where the uses of the returned 54 // cast will be added, but it must dominate such IP. 55 // We use this precondition to produce a cast that will dominate all its 56 // uses. In particular, this is crucial for the case where the builder's 57 // insertion point *is* the point where we were asked to put the cast. 58 // Since we don't know the builder's insertion point is actually 59 // where the uses will be added (only that it dominates it), we are 60 // not allowed to move it. 61 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 62 63 Value *Ret = nullptr; 64 65 // Check to see if there is already a cast! 66 for (User *U : V->users()) { 67 if (U->getType() != Ty) 68 continue; 69 CastInst *CI = dyn_cast<CastInst>(U); 70 if (!CI || CI->getOpcode() != Op) 71 continue; 72 73 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 74 // the cast must also properly dominate the Builder's insertion point. 75 if (IP->getParent() == CI->getParent() && &*BIP != CI && 76 (&*IP == CI || CI->comesBefore(&*IP))) { 77 Ret = CI; 78 break; 79 } 80 } 81 82 // Create a new cast. 83 if (!Ret) { 84 SCEVInsertPointGuard Guard(Builder, this); 85 Builder.SetInsertPoint(&*IP); 86 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 87 } 88 89 // We assert at the end of the function since IP might point to an 90 // instruction with different dominance properties than a cast 91 // (an invoke for example) and not dominate BIP (but the cast does). 92 assert(!isa<Instruction>(Ret) || 93 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 94 95 return Ret; 96 } 97 98 BasicBlock::iterator 99 SCEVExpander::findInsertPointAfter(Instruction *I, 100 Instruction *MustDominate) const { 101 BasicBlock::iterator IP = ++I->getIterator(); 102 if (auto *II = dyn_cast<InvokeInst>(I)) 103 IP = II->getNormalDest()->begin(); 104 105 while (isa<PHINode>(IP)) 106 ++IP; 107 108 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 109 ++IP; 110 } else if (isa<CatchSwitchInst>(IP)) { 111 IP = MustDominate->getParent()->getFirstInsertionPt(); 112 } else { 113 assert(!IP->isEHPad() && "unexpected eh pad!"); 114 } 115 116 // Adjust insert point to be after instructions inserted by the expander, so 117 // we can re-use already inserted instructions. Avoid skipping past the 118 // original \p MustDominate, in case it is an inserted instruction. 119 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 120 ++IP; 121 122 return IP; 123 } 124 125 BasicBlock::iterator 126 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 127 // Cast the argument at the beginning of the entry block, after 128 // any bitcasts of other arguments. 129 if (Argument *A = dyn_cast<Argument>(V)) { 130 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 131 while ((isa<BitCastInst>(IP) && 132 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 133 cast<BitCastInst>(IP)->getOperand(0) != A) || 134 isa<DbgInfoIntrinsic>(IP)) 135 ++IP; 136 return IP; 137 } 138 139 // Cast the instruction immediately after the instruction. 140 if (Instruction *I = dyn_cast<Instruction>(V)) 141 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 142 143 // Otherwise, this must be some kind of a constant, 144 // so let's plop this cast into the function's entry block. 145 assert(isa<Constant>(V) && 146 "Expected the cast argument to be a global/constant"); 147 return Builder.GetInsertBlock() 148 ->getParent() 149 ->getEntryBlock() 150 .getFirstInsertionPt(); 151 } 152 153 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 154 /// which must be possible with a noop cast, doing what we can to share 155 /// the casts. 156 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 157 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 158 assert((Op == Instruction::BitCast || 159 Op == Instruction::PtrToInt || 160 Op == Instruction::IntToPtr) && 161 "InsertNoopCastOfTo cannot perform non-noop casts!"); 162 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 163 "InsertNoopCastOfTo cannot change sizes!"); 164 165 // inttoptr only works for integral pointers. For non-integral pointers, we 166 // can create a GEP on i8* null with the integral value as index. Note that 167 // it is safe to use GEP of null instead of inttoptr here, because only 168 // expressions already based on a GEP of null should be converted to pointers 169 // during expansion. 170 if (Op == Instruction::IntToPtr) { 171 auto *PtrTy = cast<PointerType>(Ty); 172 if (DL.isNonIntegralPointerType(PtrTy)) { 173 auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 174 assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 && 175 "alloc size of i8 must by 1 byte for the GEP to be correct"); 176 auto *GEP = Builder.CreateGEP( 177 Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep"); 178 return Builder.CreateBitCast(GEP, Ty); 179 } 180 } 181 // Short-circuit unnecessary bitcasts. 182 if (Op == Instruction::BitCast) { 183 if (V->getType() == Ty) 184 return V; 185 if (CastInst *CI = dyn_cast<CastInst>(V)) { 186 if (CI->getOperand(0)->getType() == Ty) 187 return CI->getOperand(0); 188 } 189 } 190 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 191 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 192 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 193 if (CastInst *CI = dyn_cast<CastInst>(V)) 194 if ((CI->getOpcode() == Instruction::PtrToInt || 195 CI->getOpcode() == Instruction::IntToPtr) && 196 SE.getTypeSizeInBits(CI->getType()) == 197 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 198 return CI->getOperand(0); 199 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 200 if ((CE->getOpcode() == Instruction::PtrToInt || 201 CE->getOpcode() == Instruction::IntToPtr) && 202 SE.getTypeSizeInBits(CE->getType()) == 203 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 204 return CE->getOperand(0); 205 } 206 207 // Fold a cast of a constant. 208 if (Constant *C = dyn_cast<Constant>(V)) 209 return ConstantExpr::getCast(Op, C, Ty); 210 211 // Try to reuse existing cast, or insert one. 212 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 213 } 214 215 /// InsertBinop - Insert the specified binary operator, doing a small amount 216 /// of work to avoid inserting an obviously redundant operation, and hoisting 217 /// to an outer loop when the opportunity is there and it is safe. 218 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 219 Value *LHS, Value *RHS, 220 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 221 // Fold a binop with constant operands. 222 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 223 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 224 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 225 return Res; 226 227 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 228 unsigned ScanLimit = 6; 229 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 230 // Scanning starts from the last instruction before the insertion point. 231 BasicBlock::iterator IP = Builder.GetInsertPoint(); 232 if (IP != BlockBegin) { 233 --IP; 234 for (; ScanLimit; --IP, --ScanLimit) { 235 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 236 // generated code. 237 if (isa<DbgInfoIntrinsic>(IP)) 238 ScanLimit++; 239 240 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 241 // Ensure that no-wrap flags match. 242 if (isa<OverflowingBinaryOperator>(I)) { 243 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 244 return true; 245 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 246 return true; 247 } 248 // Conservatively, do not use any instruction which has any of exact 249 // flags installed. 250 if (isa<PossiblyExactOperator>(I) && I->isExact()) 251 return true; 252 return false; 253 }; 254 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 255 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 256 return &*IP; 257 if (IP == BlockBegin) break; 258 } 259 } 260 261 // Save the original insertion point so we can restore it when we're done. 262 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 263 SCEVInsertPointGuard Guard(Builder, this); 264 265 if (IsSafeToHoist) { 266 // Move the insertion point out of as many loops as we can. 267 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 268 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 269 BasicBlock *Preheader = L->getLoopPreheader(); 270 if (!Preheader) break; 271 272 // Ok, move up a level. 273 Builder.SetInsertPoint(Preheader->getTerminator()); 274 } 275 } 276 277 // If we haven't found this binop, insert it. 278 // TODO: Use the Builder, which will make CreateBinOp below fold with 279 // InstSimplifyFolder. 280 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 281 BO->setDebugLoc(Loc); 282 if (Flags & SCEV::FlagNUW) 283 BO->setHasNoUnsignedWrap(); 284 if (Flags & SCEV::FlagNSW) 285 BO->setHasNoSignedWrap(); 286 287 return BO; 288 } 289 290 /// FactorOutConstant - Test if S is divisible by Factor, using signed 291 /// division. If so, update S with Factor divided out and return true. 292 /// S need not be evenly divisible if a reasonable remainder can be 293 /// computed. 294 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 295 const SCEV *Factor, ScalarEvolution &SE, 296 const DataLayout &DL) { 297 // Everything is divisible by one. 298 if (Factor->isOne()) 299 return true; 300 301 // x/x == 1. 302 if (S == Factor) { 303 S = SE.getConstant(S->getType(), 1); 304 return true; 305 } 306 307 // For a Constant, check for a multiple of the given factor. 308 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 309 // 0/x == 0. 310 if (C->isZero()) 311 return true; 312 // Check for divisibility. 313 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 314 ConstantInt *CI = 315 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 316 // If the quotient is zero and the remainder is non-zero, reject 317 // the value at this scale. It will be considered for subsequent 318 // smaller scales. 319 if (!CI->isZero()) { 320 const SCEV *Div = SE.getConstant(CI); 321 S = Div; 322 Remainder = SE.getAddExpr( 323 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 324 return true; 325 } 326 } 327 } 328 329 // In a Mul, check if there is a constant operand which is a multiple 330 // of the given factor. 331 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 332 // Size is known, check if there is a constant operand which is a multiple 333 // of the given factor. If so, we can factor it. 334 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 335 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 336 if (!C->getAPInt().srem(FC->getAPInt())) { 337 SmallVector<const SCEV *, 4> NewMulOps(M->operands()); 338 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 339 S = SE.getMulExpr(NewMulOps); 340 return true; 341 } 342 } 343 344 // In an AddRec, check if both start and step are divisible. 345 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 346 const SCEV *Step = A->getStepRecurrence(SE); 347 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 348 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 349 return false; 350 if (!StepRem->isZero()) 351 return false; 352 const SCEV *Start = A->getStart(); 353 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 354 return false; 355 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 356 A->getNoWrapFlags(SCEV::FlagNW)); 357 return true; 358 } 359 360 return false; 361 } 362 363 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 364 /// is the number of SCEVAddRecExprs present, which are kept at the end of 365 /// the list. 366 /// 367 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 368 Type *Ty, 369 ScalarEvolution &SE) { 370 unsigned NumAddRecs = 0; 371 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 372 ++NumAddRecs; 373 // Group Ops into non-addrecs and addrecs. 374 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 375 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 376 // Let ScalarEvolution sort and simplify the non-addrecs list. 377 const SCEV *Sum = NoAddRecs.empty() ? 378 SE.getConstant(Ty, 0) : 379 SE.getAddExpr(NoAddRecs); 380 // If it returned an add, use the operands. Otherwise it simplified 381 // the sum into a single value, so just use that. 382 Ops.clear(); 383 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 384 append_range(Ops, Add->operands()); 385 else if (!Sum->isZero()) 386 Ops.push_back(Sum); 387 // Then append the addrecs. 388 Ops.append(AddRecs.begin(), AddRecs.end()); 389 } 390 391 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 392 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 393 /// This helps expose more opportunities for folding parts of the expressions 394 /// into GEP indices. 395 /// 396 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 397 Type *Ty, 398 ScalarEvolution &SE) { 399 // Find the addrecs. 400 SmallVector<const SCEV *, 8> AddRecs; 401 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 402 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 403 const SCEV *Start = A->getStart(); 404 if (Start->isZero()) break; 405 const SCEV *Zero = SE.getConstant(Ty, 0); 406 AddRecs.push_back(SE.getAddRecExpr(Zero, 407 A->getStepRecurrence(SE), 408 A->getLoop(), 409 A->getNoWrapFlags(SCEV::FlagNW))); 410 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 411 Ops[i] = Zero; 412 append_range(Ops, Add->operands()); 413 e += Add->getNumOperands(); 414 } else { 415 Ops[i] = Start; 416 } 417 } 418 if (!AddRecs.empty()) { 419 // Add the addrecs onto the end of the list. 420 Ops.append(AddRecs.begin(), AddRecs.end()); 421 // Resort the operand list, moving any constants to the front. 422 SimplifyAddOperands(Ops, Ty, SE); 423 } 424 } 425 426 /// expandAddToGEP - Expand an addition expression with a pointer type into 427 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 428 /// BasicAliasAnalysis and other passes analyze the result. See the rules 429 /// for getelementptr vs. inttoptr in 430 /// http://llvm.org/docs/LangRef.html#pointeraliasing 431 /// for details. 432 /// 433 /// Design note: The correctness of using getelementptr here depends on 434 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 435 /// they may introduce pointer arithmetic which may not be safely converted 436 /// into getelementptr. 437 /// 438 /// Design note: It might seem desirable for this function to be more 439 /// loop-aware. If some of the indices are loop-invariant while others 440 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 441 /// loop-invariant portions of the overall computation outside the loop. 442 /// However, there are a few reasons this is not done here. Hoisting simple 443 /// arithmetic is a low-level optimization that often isn't very 444 /// important until late in the optimization process. In fact, passes 445 /// like InstructionCombining will combine GEPs, even if it means 446 /// pushing loop-invariant computation down into loops, so even if the 447 /// GEPs were split here, the work would quickly be undone. The 448 /// LoopStrengthReduction pass, which is usually run quite late (and 449 /// after the last InstructionCombining pass), takes care of hoisting 450 /// loop-invariant portions of expressions, after considering what 451 /// can be folded using target addressing modes. 452 /// 453 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 454 const SCEV *const *op_end, 455 PointerType *PTy, 456 Type *Ty, 457 Value *V) { 458 SmallVector<Value *, 4> GepIndices; 459 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 460 bool AnyNonZeroIndices = false; 461 462 // Split AddRecs up into parts as either of the parts may be usable 463 // without the other. 464 SplitAddRecs(Ops, Ty, SE); 465 466 Type *IntIdxTy = DL.getIndexType(PTy); 467 468 // For opaque pointers, always generate i8 GEP. 469 if (!PTy->isOpaque()) { 470 // Descend down the pointer's type and attempt to convert the other 471 // operands into GEP indices, at each level. The first index in a GEP 472 // indexes into the array implied by the pointer operand; the rest of 473 // the indices index into the element or field type selected by the 474 // preceding index. 475 Type *ElTy = PTy->getNonOpaquePointerElementType(); 476 for (;;) { 477 // If the scale size is not 0, attempt to factor out a scale for 478 // array indexing. 479 SmallVector<const SCEV *, 8> ScaledOps; 480 if (ElTy->isSized()) { 481 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 482 if (!ElSize->isZero()) { 483 SmallVector<const SCEV *, 8> NewOps; 484 for (const SCEV *Op : Ops) { 485 const SCEV *Remainder = SE.getConstant(Ty, 0); 486 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 487 // Op now has ElSize factored out. 488 ScaledOps.push_back(Op); 489 if (!Remainder->isZero()) 490 NewOps.push_back(Remainder); 491 AnyNonZeroIndices = true; 492 } else { 493 // The operand was not divisible, so add it to the list of 494 // operands we'll scan next iteration. 495 NewOps.push_back(Op); 496 } 497 } 498 // If we made any changes, update Ops. 499 if (!ScaledOps.empty()) { 500 Ops = NewOps; 501 SimplifyAddOperands(Ops, Ty, SE); 502 } 503 } 504 } 505 506 // Record the scaled array index for this level of the type. If 507 // we didn't find any operands that could be factored, tentatively 508 // assume that element zero was selected (since the zero offset 509 // would obviously be folded away). 510 Value *Scaled = 511 ScaledOps.empty() 512 ? Constant::getNullValue(Ty) 513 : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty); 514 GepIndices.push_back(Scaled); 515 516 // Collect struct field index operands. 517 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 518 bool FoundFieldNo = false; 519 // An empty struct has no fields. 520 if (STy->getNumElements() == 0) break; 521 // Field offsets are known. See if a constant offset falls within any of 522 // the struct fields. 523 if (Ops.empty()) 524 break; 525 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 526 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 527 const StructLayout &SL = *DL.getStructLayout(STy); 528 uint64_t FullOffset = C->getValue()->getZExtValue(); 529 if (FullOffset < SL.getSizeInBytes()) { 530 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 531 GepIndices.push_back( 532 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 533 ElTy = STy->getTypeAtIndex(ElIdx); 534 Ops[0] = 535 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 536 AnyNonZeroIndices = true; 537 FoundFieldNo = true; 538 } 539 } 540 // If no struct field offsets were found, tentatively assume that 541 // field zero was selected (since the zero offset would obviously 542 // be folded away). 543 if (!FoundFieldNo) { 544 ElTy = STy->getTypeAtIndex(0u); 545 GepIndices.push_back( 546 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 547 } 548 } 549 550 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 551 ElTy = ATy->getElementType(); 552 else 553 // FIXME: Handle VectorType. 554 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 555 // constant, therefore can not be factored out. The generated IR is less 556 // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 557 break; 558 } 559 } 560 561 // If none of the operands were convertible to proper GEP indices, cast 562 // the base to i8* and do an ugly getelementptr with that. It's still 563 // better than ptrtoint+arithmetic+inttoptr at least. 564 if (!AnyNonZeroIndices) { 565 // Cast the base to i8*. 566 if (!PTy->isOpaque()) 567 V = InsertNoopCastOfTo(V, 568 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 569 570 assert(!isa<Instruction>(V) || 571 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 572 573 // Expand the operands for a plain byte offset. 574 Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty); 575 576 // Fold a GEP with constant operands. 577 if (Constant *CLHS = dyn_cast<Constant>(V)) 578 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 579 return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS); 580 581 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 582 unsigned ScanLimit = 6; 583 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 584 // Scanning starts from the last instruction before the insertion point. 585 BasicBlock::iterator IP = Builder.GetInsertPoint(); 586 if (IP != BlockBegin) { 587 --IP; 588 for (; ScanLimit; --IP, --ScanLimit) { 589 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 590 // generated code. 591 if (isa<DbgInfoIntrinsic>(IP)) 592 ScanLimit++; 593 if (IP->getOpcode() == Instruction::GetElementPtr && 594 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 595 cast<GEPOperator>(&*IP)->getSourceElementType() == 596 Type::getInt8Ty(Ty->getContext())) 597 return &*IP; 598 if (IP == BlockBegin) break; 599 } 600 } 601 602 // Save the original insertion point so we can restore it when we're done. 603 SCEVInsertPointGuard Guard(Builder, this); 604 605 // Move the insertion point out of as many loops as we can. 606 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 607 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 608 BasicBlock *Preheader = L->getLoopPreheader(); 609 if (!Preheader) break; 610 611 // Ok, move up a level. 612 Builder.SetInsertPoint(Preheader->getTerminator()); 613 } 614 615 // Emit a GEP. 616 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 617 } 618 619 { 620 SCEVInsertPointGuard Guard(Builder, this); 621 622 // Move the insertion point out of as many loops as we can. 623 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 624 if (!L->isLoopInvariant(V)) break; 625 626 bool AnyIndexNotLoopInvariant = any_of( 627 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 628 629 if (AnyIndexNotLoopInvariant) 630 break; 631 632 BasicBlock *Preheader = L->getLoopPreheader(); 633 if (!Preheader) break; 634 635 // Ok, move up a level. 636 Builder.SetInsertPoint(Preheader->getTerminator()); 637 } 638 639 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 640 // because ScalarEvolution may have changed the address arithmetic to 641 // compute a value which is beyond the end of the allocated object. 642 Value *Casted = V; 643 if (V->getType() != PTy) 644 Casted = InsertNoopCastOfTo(Casted, PTy); 645 Value *GEP = Builder.CreateGEP(PTy->getNonOpaquePointerElementType(), 646 Casted, GepIndices, "scevgep"); 647 Ops.push_back(SE.getUnknown(GEP)); 648 } 649 650 return expand(SE.getAddExpr(Ops)); 651 } 652 653 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 654 Value *V) { 655 const SCEV *const Ops[1] = {Op}; 656 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 657 } 658 659 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 660 /// SCEV expansion. If they are nested, this is the most nested. If they are 661 /// neighboring, pick the later. 662 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 663 DominatorTree &DT) { 664 if (!A) return B; 665 if (!B) return A; 666 if (A->contains(B)) return B; 667 if (B->contains(A)) return A; 668 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 669 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 670 return A; // Arbitrarily break the tie. 671 } 672 673 /// getRelevantLoop - Get the most relevant loop associated with the given 674 /// expression, according to PickMostRelevantLoop. 675 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 676 // Test whether we've already computed the most relevant loop for this SCEV. 677 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 678 if (!Pair.second) 679 return Pair.first->second; 680 681 switch (S->getSCEVType()) { 682 case scConstant: 683 return nullptr; // A constant has no relevant loops. 684 case scTruncate: 685 case scZeroExtend: 686 case scSignExtend: 687 case scPtrToInt: 688 case scAddExpr: 689 case scMulExpr: 690 case scUDivExpr: 691 case scAddRecExpr: 692 case scUMaxExpr: 693 case scSMaxExpr: 694 case scUMinExpr: 695 case scSMinExpr: 696 case scSequentialUMinExpr: { 697 const Loop *L = nullptr; 698 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 699 L = AR->getLoop(); 700 for (const SCEV *Op : S->operands()) 701 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 702 return RelevantLoops[S] = L; 703 } 704 case scUnknown: { 705 const SCEVUnknown *U = cast<SCEVUnknown>(S); 706 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 707 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 708 // A non-instruction has no relevant loops. 709 return nullptr; 710 } 711 case scCouldNotCompute: 712 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 713 } 714 llvm_unreachable("Unexpected SCEV type!"); 715 } 716 717 namespace { 718 719 /// LoopCompare - Compare loops by PickMostRelevantLoop. 720 class LoopCompare { 721 DominatorTree &DT; 722 public: 723 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 724 725 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 726 std::pair<const Loop *, const SCEV *> RHS) const { 727 // Keep pointer operands sorted at the end. 728 if (LHS.second->getType()->isPointerTy() != 729 RHS.second->getType()->isPointerTy()) 730 return LHS.second->getType()->isPointerTy(); 731 732 // Compare loops with PickMostRelevantLoop. 733 if (LHS.first != RHS.first) 734 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 735 736 // If one operand is a non-constant negative and the other is not, 737 // put the non-constant negative on the right so that a sub can 738 // be used instead of a negate and add. 739 if (LHS.second->isNonConstantNegative()) { 740 if (!RHS.second->isNonConstantNegative()) 741 return false; 742 } else if (RHS.second->isNonConstantNegative()) 743 return true; 744 745 // Otherwise they are equivalent according to this comparison. 746 return false; 747 } 748 }; 749 750 } 751 752 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 753 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 754 755 // Collect all the add operands in a loop, along with their associated loops. 756 // Iterate in reverse so that constants are emitted last, all else equal, and 757 // so that pointer operands are inserted first, which the code below relies on 758 // to form more involved GEPs. 759 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 760 for (const SCEV *Op : reverse(S->operands())) 761 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 762 763 // Sort by loop. Use a stable sort so that constants follow non-constants and 764 // pointer operands precede non-pointer operands. 765 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 766 767 // Emit instructions to add all the operands. Hoist as much as possible 768 // out of loops, and form meaningful getelementptrs where possible. 769 Value *Sum = nullptr; 770 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 771 const Loop *CurLoop = I->first; 772 const SCEV *Op = I->second; 773 if (!Sum) { 774 // This is the first operand. Just expand it. 775 Sum = expand(Op); 776 ++I; 777 continue; 778 } 779 780 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 781 if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 782 // The running sum expression is a pointer. Try to form a getelementptr 783 // at this level with that as the base. 784 SmallVector<const SCEV *, 4> NewOps; 785 for (; I != E && I->first == CurLoop; ++I) { 786 // If the operand is SCEVUnknown and not instructions, peek through 787 // it, to enable more of it to be folded into the GEP. 788 const SCEV *X = I->second; 789 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 790 if (!isa<Instruction>(U->getValue())) 791 X = SE.getSCEV(U->getValue()); 792 NewOps.push_back(X); 793 } 794 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 795 } else if (Op->isNonConstantNegative()) { 796 // Instead of doing a negate and add, just do a subtract. 797 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty); 798 Sum = InsertNoopCastOfTo(Sum, Ty); 799 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 800 /*IsSafeToHoist*/ true); 801 ++I; 802 } else { 803 // A simple add. 804 Value *W = expandCodeForImpl(Op, Ty); 805 Sum = InsertNoopCastOfTo(Sum, Ty); 806 // Canonicalize a constant to the RHS. 807 if (isa<Constant>(Sum)) std::swap(Sum, W); 808 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 809 /*IsSafeToHoist*/ true); 810 ++I; 811 } 812 } 813 814 return Sum; 815 } 816 817 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 818 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 819 820 // Collect all the mul operands in a loop, along with their associated loops. 821 // Iterate in reverse so that constants are emitted last, all else equal. 822 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 823 for (const SCEV *Op : reverse(S->operands())) 824 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 825 826 // Sort by loop. Use a stable sort so that constants follow non-constants. 827 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 828 829 // Emit instructions to mul all the operands. Hoist as much as possible 830 // out of loops. 831 Value *Prod = nullptr; 832 auto I = OpsAndLoops.begin(); 833 834 // Expand the calculation of X pow N in the following manner: 835 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 836 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 837 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 838 auto E = I; 839 // Calculate how many times the same operand from the same loop is included 840 // into this power. 841 uint64_t Exponent = 0; 842 const uint64_t MaxExponent = UINT64_MAX >> 1; 843 // No one sane will ever try to calculate such huge exponents, but if we 844 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 845 // below when the power of 2 exceeds our Exponent, and we want it to be 846 // 1u << 31 at most to not deal with unsigned overflow. 847 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 848 ++Exponent; 849 ++E; 850 } 851 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 852 853 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 854 // that are needed into the result. 855 Value *P = expandCodeForImpl(I->second, Ty); 856 Value *Result = nullptr; 857 if (Exponent & 1) 858 Result = P; 859 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 860 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 861 /*IsSafeToHoist*/ true); 862 if (Exponent & BinExp) 863 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 864 SCEV::FlagAnyWrap, 865 /*IsSafeToHoist*/ true) 866 : P; 867 } 868 869 I = E; 870 assert(Result && "Nothing was expanded?"); 871 return Result; 872 }; 873 874 while (I != OpsAndLoops.end()) { 875 if (!Prod) { 876 // This is the first operand. Just expand it. 877 Prod = ExpandOpBinPowN(); 878 } else if (I->second->isAllOnesValue()) { 879 // Instead of doing a multiply by negative one, just do a negate. 880 Prod = InsertNoopCastOfTo(Prod, Ty); 881 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 882 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 883 ++I; 884 } else { 885 // A simple mul. 886 Value *W = ExpandOpBinPowN(); 887 Prod = InsertNoopCastOfTo(Prod, Ty); 888 // Canonicalize a constant to the RHS. 889 if (isa<Constant>(Prod)) std::swap(Prod, W); 890 const APInt *RHS; 891 if (match(W, m_Power2(RHS))) { 892 // Canonicalize Prod*(1<<C) to Prod<<C. 893 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 894 auto NWFlags = S->getNoWrapFlags(); 895 // clear nsw flag if shl will produce poison value. 896 if (RHS->logBase2() == RHS->getBitWidth() - 1) 897 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 898 Prod = InsertBinop(Instruction::Shl, Prod, 899 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 900 /*IsSafeToHoist*/ true); 901 } else { 902 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 903 /*IsSafeToHoist*/ true); 904 } 905 } 906 } 907 908 return Prod; 909 } 910 911 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 912 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 913 914 Value *LHS = expandCodeForImpl(S->getLHS(), Ty); 915 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 916 const APInt &RHS = SC->getAPInt(); 917 if (RHS.isPowerOf2()) 918 return InsertBinop(Instruction::LShr, LHS, 919 ConstantInt::get(Ty, RHS.logBase2()), 920 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 921 } 922 923 Value *RHS = expandCodeForImpl(S->getRHS(), Ty); 924 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 925 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 926 } 927 928 /// Determine if this is a well-behaved chain of instructions leading back to 929 /// the PHI. If so, it may be reused by expanded expressions. 930 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 931 const Loop *L) { 932 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 933 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 934 return false; 935 // If any of the operands don't dominate the insert position, bail. 936 // Addrec operands are always loop-invariant, so this can only happen 937 // if there are instructions which haven't been hoisted. 938 if (L == IVIncInsertLoop) { 939 for (Use &Op : llvm::drop_begin(IncV->operands())) 940 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 941 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 942 return false; 943 } 944 // Advance to the next instruction. 945 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 946 if (!IncV) 947 return false; 948 949 if (IncV->mayHaveSideEffects()) 950 return false; 951 952 if (IncV == PN) 953 return true; 954 955 return isNormalAddRecExprPHI(PN, IncV, L); 956 } 957 958 /// getIVIncOperand returns an induction variable increment's induction 959 /// variable operand. 960 /// 961 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 962 /// operands dominate InsertPos. 963 /// 964 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 965 /// simple patterns generated by getAddRecExprPHILiterally and 966 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 967 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 968 Instruction *InsertPos, 969 bool allowScale) { 970 if (IncV == InsertPos) 971 return nullptr; 972 973 switch (IncV->getOpcode()) { 974 default: 975 return nullptr; 976 // Check for a simple Add/Sub or GEP of a loop invariant step. 977 case Instruction::Add: 978 case Instruction::Sub: { 979 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 980 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 981 return dyn_cast<Instruction>(IncV->getOperand(0)); 982 return nullptr; 983 } 984 case Instruction::BitCast: 985 return dyn_cast<Instruction>(IncV->getOperand(0)); 986 case Instruction::GetElementPtr: 987 for (Use &U : llvm::drop_begin(IncV->operands())) { 988 if (isa<Constant>(U)) 989 continue; 990 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 991 if (!SE.DT.dominates(OInst, InsertPos)) 992 return nullptr; 993 } 994 if (allowScale) { 995 // allow any kind of GEP as long as it can be hoisted. 996 continue; 997 } 998 // This must be a pointer addition of constants (pretty), which is already 999 // handled, or some number of address-size elements (ugly). Ugly geps 1000 // have 2 operands. i1* is used by the expander to represent an 1001 // address-size element. 1002 if (IncV->getNumOperands() != 2) 1003 return nullptr; 1004 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 1005 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 1006 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 1007 return nullptr; 1008 break; 1009 } 1010 return dyn_cast<Instruction>(IncV->getOperand(0)); 1011 } 1012 } 1013 1014 /// If the insert point of the current builder or any of the builders on the 1015 /// stack of saved builders has 'I' as its insert point, update it to point to 1016 /// the instruction after 'I'. This is intended to be used when the instruction 1017 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 1018 /// different block, the inconsistent insert point (with a mismatched 1019 /// Instruction and Block) can lead to an instruction being inserted in a block 1020 /// other than its parent. 1021 void SCEVExpander::fixupInsertPoints(Instruction *I) { 1022 BasicBlock::iterator It(*I); 1023 BasicBlock::iterator NewInsertPt = std::next(It); 1024 if (Builder.GetInsertPoint() == It) 1025 Builder.SetInsertPoint(&*NewInsertPt); 1026 for (auto *InsertPtGuard : InsertPointGuards) 1027 if (InsertPtGuard->GetInsertPoint() == It) 1028 InsertPtGuard->SetInsertPoint(NewInsertPt); 1029 } 1030 1031 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1032 /// it available to other uses in this loop. Recursively hoist any operands, 1033 /// until we reach a value that dominates InsertPos. 1034 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 1035 bool RecomputePoisonFlags) { 1036 auto FixupPoisonFlags = [this](Instruction *I) { 1037 // Drop flags that are potentially inferred from old context and infer flags 1038 // in new context. 1039 I->dropPoisonGeneratingFlags(); 1040 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 1041 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 1042 auto *BO = cast<BinaryOperator>(I); 1043 BO->setHasNoUnsignedWrap( 1044 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 1045 BO->setHasNoSignedWrap( 1046 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 1047 } 1048 }; 1049 1050 if (SE.DT.dominates(IncV, InsertPos)) { 1051 if (RecomputePoisonFlags) 1052 FixupPoisonFlags(IncV); 1053 return true; 1054 } 1055 1056 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1057 // its existing users. 1058 if (isa<PHINode>(InsertPos) || 1059 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1060 return false; 1061 1062 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1063 return false; 1064 1065 // Check that the chain of IV operands leading back to Phi can be hoisted. 1066 SmallVector<Instruction*, 4> IVIncs; 1067 for(;;) { 1068 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1069 if (!Oper) 1070 return false; 1071 // IncV is safe to hoist. 1072 IVIncs.push_back(IncV); 1073 IncV = Oper; 1074 if (SE.DT.dominates(IncV, InsertPos)) 1075 break; 1076 } 1077 for (Instruction *I : llvm::reverse(IVIncs)) { 1078 fixupInsertPoints(I); 1079 I->moveBefore(InsertPos); 1080 if (RecomputePoisonFlags) 1081 FixupPoisonFlags(I); 1082 } 1083 return true; 1084 } 1085 1086 /// Determine if this cyclic phi is in a form that would have been generated by 1087 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1088 /// as it is in a low-cost form, for example, no implied multiplication. This 1089 /// should match any patterns generated by getAddRecExprPHILiterally and 1090 /// expandAddtoGEP. 1091 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1092 const Loop *L) { 1093 for(Instruction *IVOper = IncV; 1094 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1095 /*allowScale=*/false));) { 1096 if (IVOper == PN) 1097 return true; 1098 } 1099 return false; 1100 } 1101 1102 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1103 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1104 /// need to materialize IV increments elsewhere to handle difficult situations. 1105 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1106 Type *ExpandTy, Type *IntTy, 1107 bool useSubtract) { 1108 Value *IncV; 1109 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1110 if (ExpandTy->isPointerTy()) { 1111 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1112 // If the step isn't constant, don't use an implicitly scaled GEP, because 1113 // that would require a multiply inside the loop. 1114 if (!isa<ConstantInt>(StepV)) 1115 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1116 GEPPtrTy->getAddressSpace()); 1117 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1118 if (IncV->getType() != PN->getType()) 1119 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1120 } else { 1121 IncV = useSubtract ? 1122 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1123 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1124 } 1125 return IncV; 1126 } 1127 1128 /// Check whether we can cheaply express the requested SCEV in terms of 1129 /// the available PHI SCEV by truncation and/or inversion of the step. 1130 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1131 const SCEVAddRecExpr *Phi, 1132 const SCEVAddRecExpr *Requested, 1133 bool &InvertStep) { 1134 // We can't transform to match a pointer PHI. 1135 if (Phi->getType()->isPointerTy()) 1136 return false; 1137 1138 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1139 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1140 1141 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1142 return false; 1143 1144 // Try truncate it if necessary. 1145 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1146 if (!Phi) 1147 return false; 1148 1149 // Check whether truncation will help. 1150 if (Phi == Requested) { 1151 InvertStep = false; 1152 return true; 1153 } 1154 1155 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1156 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 1157 InvertStep = true; 1158 return true; 1159 } 1160 1161 return false; 1162 } 1163 1164 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1165 if (!isa<IntegerType>(AR->getType())) 1166 return false; 1167 1168 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1169 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1170 const SCEV *Step = AR->getStepRecurrence(SE); 1171 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1172 SE.getSignExtendExpr(AR, WideTy)); 1173 const SCEV *ExtendAfterOp = 1174 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1175 return ExtendAfterOp == OpAfterExtend; 1176 } 1177 1178 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1179 if (!isa<IntegerType>(AR->getType())) 1180 return false; 1181 1182 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1183 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1184 const SCEV *Step = AR->getStepRecurrence(SE); 1185 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1186 SE.getZeroExtendExpr(AR, WideTy)); 1187 const SCEV *ExtendAfterOp = 1188 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1189 return ExtendAfterOp == OpAfterExtend; 1190 } 1191 1192 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1193 /// the base addrec, which is the addrec without any non-loop-dominating 1194 /// values, and return the PHI. 1195 PHINode * 1196 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1197 const Loop *L, 1198 Type *ExpandTy, 1199 Type *IntTy, 1200 Type *&TruncTy, 1201 bool &InvertStep) { 1202 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1203 1204 // Reuse a previously-inserted PHI, if present. 1205 BasicBlock *LatchBlock = L->getLoopLatch(); 1206 if (LatchBlock) { 1207 PHINode *AddRecPhiMatch = nullptr; 1208 Instruction *IncV = nullptr; 1209 TruncTy = nullptr; 1210 InvertStep = false; 1211 1212 // Only try partially matching scevs that need truncation and/or 1213 // step-inversion if we know this loop is outside the current loop. 1214 bool TryNonMatchingSCEV = 1215 IVIncInsertLoop && 1216 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1217 1218 for (PHINode &PN : L->getHeader()->phis()) { 1219 if (!SE.isSCEVable(PN.getType())) 1220 continue; 1221 1222 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 1223 // PHI has no meaning at all. 1224 if (!PN.isComplete()) { 1225 SCEV_DEBUG_WITH_TYPE( 1226 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 1227 continue; 1228 } 1229 1230 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1231 if (!PhiSCEV) 1232 continue; 1233 1234 bool IsMatchingSCEV = PhiSCEV == Normalized; 1235 // We only handle truncation and inversion of phi recurrences for the 1236 // expanded expression if the expanded expression's loop dominates the 1237 // loop we insert to. Check now, so we can bail out early. 1238 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1239 continue; 1240 1241 // TODO: this possibly can be reworked to avoid this cast at all. 1242 Instruction *TempIncV = 1243 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1244 if (!TempIncV) 1245 continue; 1246 1247 // Check whether we can reuse this PHI node. 1248 if (LSRMode) { 1249 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1250 continue; 1251 } else { 1252 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1253 continue; 1254 } 1255 1256 // Stop if we have found an exact match SCEV. 1257 if (IsMatchingSCEV) { 1258 IncV = TempIncV; 1259 TruncTy = nullptr; 1260 InvertStep = false; 1261 AddRecPhiMatch = &PN; 1262 break; 1263 } 1264 1265 // Try whether the phi can be translated into the requested form 1266 // (truncated and/or offset by a constant). 1267 if ((!TruncTy || InvertStep) && 1268 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1269 // Record the phi node. But don't stop we might find an exact match 1270 // later. 1271 AddRecPhiMatch = &PN; 1272 IncV = TempIncV; 1273 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1274 } 1275 } 1276 1277 if (AddRecPhiMatch) { 1278 // Ok, the add recurrence looks usable. 1279 // Remember this PHI, even in post-inc mode. 1280 InsertedValues.insert(AddRecPhiMatch); 1281 // Remember the increment. 1282 rememberInstruction(IncV); 1283 // Those values were not actually inserted but re-used. 1284 ReusedValues.insert(AddRecPhiMatch); 1285 ReusedValues.insert(IncV); 1286 return AddRecPhiMatch; 1287 } 1288 } 1289 1290 // Save the original insertion point so we can restore it when we're done. 1291 SCEVInsertPointGuard Guard(Builder, this); 1292 1293 // Another AddRec may need to be recursively expanded below. For example, if 1294 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1295 // loop. Remove this loop from the PostIncLoops set before expanding such 1296 // AddRecs. Otherwise, we cannot find a valid position for the step 1297 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1298 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1299 // so it's not worth implementing SmallPtrSet::swap. 1300 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1301 PostIncLoops.clear(); 1302 1303 // Expand code for the start value into the loop preheader. 1304 assert(L->getLoopPreheader() && 1305 "Can't expand add recurrences without a loop preheader!"); 1306 Value *StartV = 1307 expandCodeForImpl(Normalized->getStart(), ExpandTy, 1308 L->getLoopPreheader()->getTerminator()); 1309 1310 // StartV must have been be inserted into L's preheader to dominate the new 1311 // phi. 1312 assert(!isa<Instruction>(StartV) || 1313 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1314 L->getHeader())); 1315 1316 // Expand code for the step value. Do this before creating the PHI so that PHI 1317 // reuse code doesn't see an incomplete PHI. 1318 const SCEV *Step = Normalized->getStepRecurrence(SE); 1319 // If the stride is negative, insert a sub instead of an add for the increment 1320 // (unless it's a constant, because subtracts of constants are canonicalized 1321 // to adds). 1322 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1323 if (useSubtract) 1324 Step = SE.getNegativeSCEV(Step); 1325 // Expand the step somewhere that dominates the loop header. 1326 Value *StepV = expandCodeForImpl( 1327 Step, IntTy, &*L->getHeader()->getFirstInsertionPt()); 1328 1329 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1330 // we actually do emit an addition. It does not apply if we emit a 1331 // subtraction. 1332 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1333 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1334 1335 // Create the PHI. 1336 BasicBlock *Header = L->getHeader(); 1337 Builder.SetInsertPoint(Header, Header->begin()); 1338 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1339 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1340 Twine(IVName) + ".iv"); 1341 1342 // Create the step instructions and populate the PHI. 1343 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1344 BasicBlock *Pred = *HPI; 1345 1346 // Add a start value. 1347 if (!L->contains(Pred)) { 1348 PN->addIncoming(StartV, Pred); 1349 continue; 1350 } 1351 1352 // Create a step value and add it to the PHI. 1353 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1354 // instructions at IVIncInsertPos. 1355 Instruction *InsertPos = L == IVIncInsertLoop ? 1356 IVIncInsertPos : Pred->getTerminator(); 1357 Builder.SetInsertPoint(InsertPos); 1358 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1359 1360 if (isa<OverflowingBinaryOperator>(IncV)) { 1361 if (IncrementIsNUW) 1362 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1363 if (IncrementIsNSW) 1364 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1365 } 1366 PN->addIncoming(IncV, Pred); 1367 } 1368 1369 // After expanding subexpressions, restore the PostIncLoops set so the caller 1370 // can ensure that IVIncrement dominates the current uses. 1371 PostIncLoops = SavedPostIncLoops; 1372 1373 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1374 // effective when we are able to use an IV inserted here, so record it. 1375 InsertedValues.insert(PN); 1376 InsertedIVs.push_back(PN); 1377 return PN; 1378 } 1379 1380 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1381 Type *STy = S->getType(); 1382 Type *IntTy = SE.getEffectiveSCEVType(STy); 1383 const Loop *L = S->getLoop(); 1384 1385 // Determine a normalized form of this expression, which is the expression 1386 // before any post-inc adjustment is made. 1387 const SCEVAddRecExpr *Normalized = S; 1388 if (PostIncLoops.count(L)) { 1389 PostIncLoopSet Loops; 1390 Loops.insert(L); 1391 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1392 } 1393 1394 // Strip off any non-loop-dominating component from the addrec start. 1395 const SCEV *Start = Normalized->getStart(); 1396 const SCEV *PostLoopOffset = nullptr; 1397 if (!SE.properlyDominates(Start, L->getHeader())) { 1398 PostLoopOffset = Start; 1399 Start = SE.getConstant(Normalized->getType(), 0); 1400 Normalized = cast<SCEVAddRecExpr>( 1401 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1402 Normalized->getLoop(), 1403 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1404 } 1405 1406 // Strip off any non-loop-dominating component from the addrec step. 1407 const SCEV *Step = Normalized->getStepRecurrence(SE); 1408 const SCEV *PostLoopScale = nullptr; 1409 if (!SE.dominates(Step, L->getHeader())) { 1410 PostLoopScale = Step; 1411 Step = SE.getConstant(Normalized->getType(), 1); 1412 if (!Start->isZero()) { 1413 // The normalization below assumes that Start is constant zero, so if 1414 // it isn't re-associate Start to PostLoopOffset. 1415 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1416 PostLoopOffset = Start; 1417 Start = SE.getConstant(Normalized->getType(), 0); 1418 } 1419 Normalized = 1420 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1421 Start, Step, Normalized->getLoop(), 1422 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1423 } 1424 1425 // Expand the core addrec. If we need post-loop scaling, force it to 1426 // expand to an integer type to avoid the need for additional casting. 1427 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1428 // We can't use a pointer type for the addrec if the pointer type is 1429 // non-integral. 1430 Type *AddRecPHIExpandTy = 1431 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1432 1433 // In some cases, we decide to reuse an existing phi node but need to truncate 1434 // it and/or invert the step. 1435 Type *TruncTy = nullptr; 1436 bool InvertStep = false; 1437 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1438 IntTy, TruncTy, InvertStep); 1439 1440 // Accommodate post-inc mode, if necessary. 1441 Value *Result; 1442 if (!PostIncLoops.count(L)) 1443 Result = PN; 1444 else { 1445 // In PostInc mode, use the post-incremented value. 1446 BasicBlock *LatchBlock = L->getLoopLatch(); 1447 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1448 Result = PN->getIncomingValueForBlock(LatchBlock); 1449 1450 // We might be introducing a new use of the post-inc IV that is not poison 1451 // safe, in which case we should drop poison generating flags. Only keep 1452 // those flags for which SCEV has proven that they always hold. 1453 if (isa<OverflowingBinaryOperator>(Result)) { 1454 auto *I = cast<Instruction>(Result); 1455 if (!S->hasNoUnsignedWrap()) 1456 I->setHasNoUnsignedWrap(false); 1457 if (!S->hasNoSignedWrap()) 1458 I->setHasNoSignedWrap(false); 1459 } 1460 1461 // For an expansion to use the postinc form, the client must call 1462 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1463 // or dominated by IVIncInsertPos. 1464 if (isa<Instruction>(Result) && 1465 !SE.DT.dominates(cast<Instruction>(Result), 1466 &*Builder.GetInsertPoint())) { 1467 // The induction variable's postinc expansion does not dominate this use. 1468 // IVUsers tries to prevent this case, so it is rare. However, it can 1469 // happen when an IVUser outside the loop is not dominated by the latch 1470 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1471 // all cases. Consider a phi outside whose operand is replaced during 1472 // expansion with the value of the postinc user. Without fundamentally 1473 // changing the way postinc users are tracked, the only remedy is 1474 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1475 // but hopefully expandCodeFor handles that. 1476 bool useSubtract = 1477 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1478 if (useSubtract) 1479 Step = SE.getNegativeSCEV(Step); 1480 Value *StepV; 1481 { 1482 // Expand the step somewhere that dominates the loop header. 1483 SCEVInsertPointGuard Guard(Builder, this); 1484 StepV = expandCodeForImpl( 1485 Step, IntTy, &*L->getHeader()->getFirstInsertionPt()); 1486 } 1487 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1488 } 1489 } 1490 1491 // We have decided to reuse an induction variable of a dominating loop. Apply 1492 // truncation and/or inversion of the step. 1493 if (TruncTy) { 1494 Type *ResTy = Result->getType(); 1495 // Normalize the result type. 1496 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1497 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1498 // Truncate the result. 1499 if (TruncTy != Result->getType()) 1500 Result = Builder.CreateTrunc(Result, TruncTy); 1501 1502 // Invert the result. 1503 if (InvertStep) 1504 Result = Builder.CreateSub( 1505 expandCodeForImpl(Normalized->getStart(), TruncTy), Result); 1506 } 1507 1508 // Re-apply any non-loop-dominating scale. 1509 if (PostLoopScale) { 1510 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1511 Result = InsertNoopCastOfTo(Result, IntTy); 1512 Result = Builder.CreateMul(Result, 1513 expandCodeForImpl(PostLoopScale, IntTy)); 1514 } 1515 1516 // Re-apply any non-loop-dominating offset. 1517 if (PostLoopOffset) { 1518 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1519 if (Result->getType()->isIntegerTy()) { 1520 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy); 1521 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1522 } else { 1523 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1524 } 1525 } else { 1526 Result = InsertNoopCastOfTo(Result, IntTy); 1527 Result = Builder.CreateAdd( 1528 Result, expandCodeForImpl(PostLoopOffset, IntTy)); 1529 } 1530 } 1531 1532 return Result; 1533 } 1534 1535 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1536 // In canonical mode we compute the addrec as an expression of a canonical IV 1537 // using evaluateAtIteration and expand the resulting SCEV expression. This 1538 // way we avoid introducing new IVs to carry on the computation of the addrec 1539 // throughout the loop. 1540 // 1541 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1542 // type wider than the addrec itself. Emitting a canonical IV of the 1543 // proper type might produce non-legal types, for example expanding an i64 1544 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1545 // back to non-canonical mode for nested addrecs. 1546 if (!CanonicalMode || (S->getNumOperands() > 2)) 1547 return expandAddRecExprLiterally(S); 1548 1549 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1550 const Loop *L = S->getLoop(); 1551 1552 // First check for an existing canonical IV in a suitable type. 1553 PHINode *CanonicalIV = nullptr; 1554 if (PHINode *PN = L->getCanonicalInductionVariable()) 1555 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1556 CanonicalIV = PN; 1557 1558 // Rewrite an AddRec in terms of the canonical induction variable, if 1559 // its type is more narrow. 1560 if (CanonicalIV && 1561 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1562 !S->getType()->isPointerTy()) { 1563 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1564 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1565 NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 1566 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1567 S->getNoWrapFlags(SCEV::FlagNW))); 1568 BasicBlock::iterator NewInsertPt = 1569 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1570 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1571 &*NewInsertPt); 1572 return V; 1573 } 1574 1575 // {X,+,F} --> X + {0,+,F} 1576 if (!S->getStart()->isZero()) { 1577 if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) { 1578 Value *StartV = expand(SE.getPointerBase(S)); 1579 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1580 return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV); 1581 } 1582 1583 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1584 NewOps[0] = SE.getConstant(Ty, 0); 1585 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1586 S->getNoWrapFlags(SCEV::FlagNW)); 1587 1588 // Just do a normal add. Pre-expand the operands to suppress folding. 1589 // 1590 // The LHS and RHS values are factored out of the expand call to make the 1591 // output independent of the argument evaluation order. 1592 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1593 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1594 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1595 } 1596 1597 // If we don't yet have a canonical IV, create one. 1598 if (!CanonicalIV) { 1599 // Create and insert the PHI node for the induction variable in the 1600 // specified loop. 1601 BasicBlock *Header = L->getHeader(); 1602 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1603 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1604 &Header->front()); 1605 rememberInstruction(CanonicalIV); 1606 1607 SmallSet<BasicBlock *, 4> PredSeen; 1608 Constant *One = ConstantInt::get(Ty, 1); 1609 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1610 BasicBlock *HP = *HPI; 1611 if (!PredSeen.insert(HP).second) { 1612 // There must be an incoming value for each predecessor, even the 1613 // duplicates! 1614 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1615 continue; 1616 } 1617 1618 if (L->contains(HP)) { 1619 // Insert a unit add instruction right before the terminator 1620 // corresponding to the back-edge. 1621 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1622 "indvar.next", 1623 HP->getTerminator()); 1624 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1625 rememberInstruction(Add); 1626 CanonicalIV->addIncoming(Add, HP); 1627 } else { 1628 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1629 } 1630 } 1631 } 1632 1633 // {0,+,1} --> Insert a canonical induction variable into the loop! 1634 if (S->isAffine() && S->getOperand(1)->isOne()) { 1635 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1636 "IVs with types different from the canonical IV should " 1637 "already have been handled!"); 1638 return CanonicalIV; 1639 } 1640 1641 // {0,+,F} --> {0,+,1} * F 1642 1643 // If this is a simple linear addrec, emit it now as a special case. 1644 if (S->isAffine()) // {0,+,F} --> i*F 1645 return 1646 expand(SE.getTruncateOrNoop( 1647 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1648 SE.getNoopOrAnyExtend(S->getOperand(1), 1649 CanonicalIV->getType())), 1650 Ty)); 1651 1652 // If this is a chain of recurrences, turn it into a closed form, using the 1653 // folders, then expandCodeFor the closed form. This allows the folders to 1654 // simplify the expression without having to build a bunch of special code 1655 // into this folder. 1656 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1657 1658 // Promote S up to the canonical IV type, if the cast is foldable. 1659 const SCEV *NewS = S; 1660 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1661 if (isa<SCEVAddRecExpr>(Ext)) 1662 NewS = Ext; 1663 1664 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1665 1666 // Truncate the result down to the original type, if needed. 1667 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1668 return expand(T); 1669 } 1670 1671 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1672 Value *V = 1673 expandCodeForImpl(S->getOperand(), S->getOperand()->getType()); 1674 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1675 GetOptimalInsertionPointForCastOf(V)); 1676 } 1677 1678 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1679 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1680 Value *V = expandCodeForImpl( 1681 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1682 ); 1683 return Builder.CreateTrunc(V, Ty); 1684 } 1685 1686 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1687 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1688 Value *V = expandCodeForImpl( 1689 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1690 ); 1691 return Builder.CreateZExt(V, Ty); 1692 } 1693 1694 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1695 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1696 Value *V = expandCodeForImpl( 1697 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1698 ); 1699 return Builder.CreateSExt(V, Ty); 1700 } 1701 1702 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1703 Intrinsic::ID IntrinID, Twine Name, 1704 bool IsSequential) { 1705 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1706 Type *Ty = LHS->getType(); 1707 if (IsSequential) 1708 LHS = Builder.CreateFreeze(LHS); 1709 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1710 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty); 1711 if (IsSequential && i != 0) 1712 RHS = Builder.CreateFreeze(RHS); 1713 Value *Sel; 1714 if (Ty->isIntegerTy()) 1715 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1716 /*FMFSource=*/nullptr, Name); 1717 else { 1718 Value *ICmp = 1719 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1720 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1721 } 1722 LHS = Sel; 1723 } 1724 return LHS; 1725 } 1726 1727 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1728 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1729 } 1730 1731 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1732 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1733 } 1734 1735 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1736 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1737 } 1738 1739 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1740 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1741 } 1742 1743 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1744 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1745 } 1746 1747 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1748 Instruction *IP) { 1749 setInsertPoint(IP); 1750 Value *V = expandCodeForImpl(SH, Ty); 1751 return V; 1752 } 1753 1754 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty) { 1755 // Expand the code for this SCEV. 1756 Value *V = expand(SH); 1757 1758 if (Ty) { 1759 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1760 "non-trivial casts should be done with the SCEVs directly!"); 1761 V = InsertNoopCastOfTo(V, Ty); 1762 } 1763 return V; 1764 } 1765 1766 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1767 const Instruction *InsertPt) { 1768 // If the expansion is not in CanonicalMode, and the SCEV contains any 1769 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1770 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1771 return nullptr; 1772 1773 // If S is a constant, it may be worse to reuse an existing Value. 1774 if (isa<SCEVConstant>(S)) 1775 return nullptr; 1776 1777 // Choose a Value from the set which dominates the InsertPt. 1778 // InsertPt should be inside the Value's parent loop so as not to break 1779 // the LCSSA form. 1780 for (Value *V : SE.getSCEVValues(S)) { 1781 Instruction *EntInst = dyn_cast<Instruction>(V); 1782 if (!EntInst) 1783 continue; 1784 1785 assert(EntInst->getFunction() == InsertPt->getFunction()); 1786 if (S->getType() == V->getType() && 1787 SE.DT.dominates(EntInst, InsertPt) && 1788 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1789 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1790 return V; 1791 } 1792 return nullptr; 1793 } 1794 1795 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1796 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1797 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1798 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1799 // the expansion will try to reuse Value from ExprValueMap, and only when it 1800 // fails, expand the SCEV literally. 1801 Value *SCEVExpander::expand(const SCEV *S) { 1802 // Compute an insertion point for this SCEV object. Hoist the instructions 1803 // as far out in the loop nest as possible. 1804 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1805 1806 // We can move insertion point only if there is no div or rem operations 1807 // otherwise we are risky to move it over the check for zero denominator. 1808 auto SafeToHoist = [](const SCEV *S) { 1809 return !SCEVExprContains(S, [](const SCEV *S) { 1810 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1811 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1812 // Division by non-zero constants can be hoisted. 1813 return SC->getValue()->isZero(); 1814 // All other divisions should not be moved as they may be 1815 // divisions by zero and should be kept within the 1816 // conditions of the surrounding loops that guard their 1817 // execution (see PR35406). 1818 return true; 1819 } 1820 return false; 1821 }); 1822 }; 1823 if (SafeToHoist(S)) { 1824 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1825 L = L->getParentLoop()) { 1826 if (SE.isLoopInvariant(S, L)) { 1827 if (!L) break; 1828 if (BasicBlock *Preheader = L->getLoopPreheader()) 1829 InsertPt = Preheader->getTerminator(); 1830 else 1831 // LSR sets the insertion point for AddRec start/step values to the 1832 // block start to simplify value reuse, even though it's an invalid 1833 // position. SCEVExpander must correct for this in all cases. 1834 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1835 } else { 1836 // If the SCEV is computable at this level, insert it into the header 1837 // after the PHIs (and after any other instructions that we've inserted 1838 // there) so that it is guaranteed to dominate any user inside the loop. 1839 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1840 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1841 1842 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1843 (isInsertedInstruction(InsertPt) || 1844 isa<DbgInfoIntrinsic>(InsertPt))) { 1845 InsertPt = &*std::next(InsertPt->getIterator()); 1846 } 1847 break; 1848 } 1849 } 1850 } 1851 1852 // Check to see if we already expanded this here. 1853 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1854 if (I != InsertedExpressions.end()) 1855 return I->second; 1856 1857 SCEVInsertPointGuard Guard(Builder, this); 1858 Builder.SetInsertPoint(InsertPt); 1859 1860 // Expand the expression into instructions. 1861 Value *V = FindValueInExprValueMap(S, InsertPt); 1862 if (!V) { 1863 V = visit(S); 1864 V = fixupLCSSAFormFor(V); 1865 } else { 1866 // If we're reusing an existing instruction, we are effectively CSEing two 1867 // copies of the instruction (with potentially different flags). As such, 1868 // we need to drop any poison generating flags unless we can prove that 1869 // said flags must be valid for all new users. 1870 if (auto *I = dyn_cast<Instruction>(V)) 1871 if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)) 1872 I->dropPoisonGeneratingFlags(); 1873 } 1874 // Remember the expanded value for this SCEV at this location. 1875 // 1876 // This is independent of PostIncLoops. The mapped value simply materializes 1877 // the expression at this insertion point. If the mapped value happened to be 1878 // a postinc expansion, it could be reused by a non-postinc user, but only if 1879 // its insertion point was already at the head of the loop. 1880 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1881 return V; 1882 } 1883 1884 void SCEVExpander::rememberInstruction(Value *I) { 1885 auto DoInsert = [this](Value *V) { 1886 if (!PostIncLoops.empty()) 1887 InsertedPostIncValues.insert(V); 1888 else 1889 InsertedValues.insert(V); 1890 }; 1891 DoInsert(I); 1892 } 1893 1894 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1895 /// replace them with their most canonical representative. Return the number of 1896 /// phis eliminated. 1897 /// 1898 /// This does not depend on any SCEVExpander state but should be used in 1899 /// the same context that SCEVExpander is used. 1900 unsigned 1901 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1902 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1903 const TargetTransformInfo *TTI) { 1904 // Find integer phis in order of increasing width. 1905 SmallVector<PHINode*, 8> Phis; 1906 for (PHINode &PN : L->getHeader()->phis()) 1907 Phis.push_back(&PN); 1908 1909 if (TTI) 1910 // Use stable_sort to preserve order of equivalent PHIs, so the order 1911 // of the sorted Phis is the same from run to run on the same loop. 1912 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1913 // Put pointers at the back and make sure pointer < pointer = false. 1914 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1915 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1916 return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1917 LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 1918 }); 1919 1920 unsigned NumElim = 0; 1921 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1922 // Process phis from wide to narrow. Map wide phis to their truncation 1923 // so narrow phis can reuse them. 1924 for (PHINode *Phi : Phis) { 1925 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1926 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1927 return V; 1928 if (!SE.isSCEVable(PN->getType())) 1929 return nullptr; 1930 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1931 if (!Const) 1932 return nullptr; 1933 return Const->getValue(); 1934 }; 1935 1936 // Fold constant phis. They may be congruent to other constant phis and 1937 // would confuse the logic below that expects proper IVs. 1938 if (Value *V = SimplifyPHINode(Phi)) { 1939 if (V->getType() != Phi->getType()) 1940 continue; 1941 SE.forgetValue(Phi); 1942 Phi->replaceAllUsesWith(V); 1943 DeadInsts.emplace_back(Phi); 1944 ++NumElim; 1945 SCEV_DEBUG_WITH_TYPE(DebugType, 1946 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1947 << '\n'); 1948 continue; 1949 } 1950 1951 if (!SE.isSCEVable(Phi->getType())) 1952 continue; 1953 1954 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1955 if (!OrigPhiRef) { 1956 OrigPhiRef = Phi; 1957 if (Phi->getType()->isIntegerTy() && TTI && 1958 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1959 // This phi can be freely truncated to the narrowest phi type. Map the 1960 // truncated expression to it so it will be reused for narrow types. 1961 const SCEV *TruncExpr = 1962 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 1963 ExprToIVMap[TruncExpr] = Phi; 1964 } 1965 continue; 1966 } 1967 1968 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1969 // sense. 1970 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1971 continue; 1972 1973 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1974 Instruction *OrigInc = dyn_cast<Instruction>( 1975 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1976 Instruction *IsomorphicInc = 1977 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1978 1979 if (OrigInc && IsomorphicInc) { 1980 // If this phi has the same width but is more canonical, replace the 1981 // original with it. As part of the "more canonical" determination, 1982 // respect a prior decision to use an IV chain. 1983 if (OrigPhiRef->getType() == Phi->getType() && 1984 !(ChainedPhis.count(Phi) || 1985 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 1986 (ChainedPhis.count(Phi) || 1987 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1988 std::swap(OrigPhiRef, Phi); 1989 std::swap(OrigInc, IsomorphicInc); 1990 } 1991 // Replacing the congruent phi is sufficient because acyclic 1992 // redundancy elimination, CSE/GVN, should handle the 1993 // rest. However, once SCEV proves that a phi is congruent, 1994 // it's often the head of an IV user cycle that is isomorphic 1995 // with the original phi. It's worth eagerly cleaning up the 1996 // common case of a single IV increment so that DeleteDeadPHIs 1997 // can remove cycles that had postinc uses. 1998 // Because we may potentially introduce a new use of OrigIV that didn't 1999 // exist before at this point, its poison flags need readjustment. 2000 const SCEV *TruncExpr = 2001 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2002 if (OrigInc != IsomorphicInc && 2003 TruncExpr == SE.getSCEV(IsomorphicInc) && 2004 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2005 hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) { 2006 SCEV_DEBUG_WITH_TYPE( 2007 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2008 << *IsomorphicInc << '\n'); 2009 Value *NewInc = OrigInc; 2010 if (OrigInc->getType() != IsomorphicInc->getType()) { 2011 Instruction *IP = nullptr; 2012 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2013 IP = &*PN->getParent()->getFirstInsertionPt(); 2014 else 2015 IP = OrigInc->getNextNode(); 2016 2017 IRBuilder<> Builder(IP); 2018 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2019 NewInc = Builder.CreateTruncOrBitCast( 2020 OrigInc, IsomorphicInc->getType(), IVName); 2021 } 2022 IsomorphicInc->replaceAllUsesWith(NewInc); 2023 DeadInsts.emplace_back(IsomorphicInc); 2024 } 2025 } 2026 } 2027 SCEV_DEBUG_WITH_TYPE(DebugType, 2028 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 2029 << '\n'); 2030 SCEV_DEBUG_WITH_TYPE( 2031 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 2032 ++NumElim; 2033 Value *NewIV = OrigPhiRef; 2034 if (OrigPhiRef->getType() != Phi->getType()) { 2035 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2036 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2037 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2038 } 2039 Phi->replaceAllUsesWith(NewIV); 2040 DeadInsts.emplace_back(Phi); 2041 } 2042 return NumElim; 2043 } 2044 2045 Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S, 2046 const Instruction *At, 2047 Loop *L) { 2048 using namespace llvm::PatternMatch; 2049 2050 SmallVector<BasicBlock *, 4> ExitingBlocks; 2051 L->getExitingBlocks(ExitingBlocks); 2052 2053 // Look for suitable value in simple conditions at the loop exits. 2054 for (BasicBlock *BB : ExitingBlocks) { 2055 ICmpInst::Predicate Pred; 2056 Instruction *LHS, *RHS; 2057 2058 if (!match(BB->getTerminator(), 2059 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2060 m_BasicBlock(), m_BasicBlock()))) 2061 continue; 2062 2063 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2064 return LHS; 2065 2066 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2067 return RHS; 2068 } 2069 2070 // Use expand's logic which is used for reusing a previous Value in 2071 // ExprValueMap. Note that we don't currently model the cost of 2072 // needing to drop poison generating flags on the instruction if we 2073 // want to reuse it. We effectively assume that has zero cost. 2074 return FindValueInExprValueMap(S, At); 2075 } 2076 2077 template<typename T> static InstructionCost costAndCollectOperands( 2078 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 2079 TargetTransformInfo::TargetCostKind CostKind, 2080 SmallVectorImpl<SCEVOperand> &Worklist) { 2081 2082 const T *S = cast<T>(WorkItem.S); 2083 InstructionCost Cost = 0; 2084 // Object to help map SCEV operands to expanded IR instructions. 2085 struct OperationIndices { 2086 OperationIndices(unsigned Opc, size_t min, size_t max) : 2087 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 2088 unsigned Opcode; 2089 size_t MinIdx; 2090 size_t MaxIdx; 2091 }; 2092 2093 // Collect the operations of all the instructions that will be needed to 2094 // expand the SCEVExpr. This is so that when we come to cost the operands, 2095 // we know what the generated user(s) will be. 2096 SmallVector<OperationIndices, 2> Operations; 2097 2098 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 2099 Operations.emplace_back(Opcode, 0, 0); 2100 return TTI.getCastInstrCost(Opcode, S->getType(), 2101 S->getOperand(0)->getType(), 2102 TTI::CastContextHint::None, CostKind); 2103 }; 2104 2105 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 2106 unsigned MinIdx = 0, 2107 unsigned MaxIdx = 1) -> InstructionCost { 2108 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2109 return NumRequired * 2110 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 2111 }; 2112 2113 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 2114 unsigned MaxIdx) -> InstructionCost { 2115 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2116 Type *OpType = S->getType(); 2117 return NumRequired * TTI.getCmpSelInstrCost( 2118 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 2119 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2120 }; 2121 2122 switch (S->getSCEVType()) { 2123 case scCouldNotCompute: 2124 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2125 case scUnknown: 2126 case scConstant: 2127 return 0; 2128 case scPtrToInt: 2129 Cost = CastCost(Instruction::PtrToInt); 2130 break; 2131 case scTruncate: 2132 Cost = CastCost(Instruction::Trunc); 2133 break; 2134 case scZeroExtend: 2135 Cost = CastCost(Instruction::ZExt); 2136 break; 2137 case scSignExtend: 2138 Cost = CastCost(Instruction::SExt); 2139 break; 2140 case scUDivExpr: { 2141 unsigned Opcode = Instruction::UDiv; 2142 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 2143 if (SC->getAPInt().isPowerOf2()) 2144 Opcode = Instruction::LShr; 2145 Cost = ArithCost(Opcode, 1); 2146 break; 2147 } 2148 case scAddExpr: 2149 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 2150 break; 2151 case scMulExpr: 2152 // TODO: this is a very pessimistic cost modelling for Mul, 2153 // because of Bin Pow algorithm actually used by the expander, 2154 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2155 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 2156 break; 2157 case scSMaxExpr: 2158 case scUMaxExpr: 2159 case scSMinExpr: 2160 case scUMinExpr: 2161 case scSequentialUMinExpr: { 2162 // FIXME: should this ask the cost for Intrinsic's? 2163 // The reduction tree. 2164 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 2165 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 2166 switch (S->getSCEVType()) { 2167 case scSequentialUMinExpr: { 2168 // The safety net against poison. 2169 // FIXME: this is broken. 2170 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 2171 Cost += ArithCost(Instruction::Or, 2172 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 2173 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 2174 break; 2175 } 2176 default: 2177 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 2178 "Unhandled SCEV expression type?"); 2179 break; 2180 } 2181 break; 2182 } 2183 case scAddRecExpr: { 2184 // In this polynominal, we may have some zero operands, and we shouldn't 2185 // really charge for those. So how many non-zero coefficients are there? 2186 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 2187 return !Op->isZero(); 2188 }); 2189 2190 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2191 assert(!(*std::prev(S->operands().end()))->isZero() && 2192 "Last operand should not be zero"); 2193 2194 // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 2195 int NumNonZeroDegreeNonOneTerms = 2196 llvm::count_if(S->operands(), [](const SCEV *Op) { 2197 auto *SConst = dyn_cast<SCEVConstant>(Op); 2198 return !SConst || SConst->getAPInt().ugt(1); 2199 }); 2200 2201 // Much like with normal add expr, the polynominal will require 2202 // one less addition than the number of it's terms. 2203 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 2204 /*MinIdx*/ 1, /*MaxIdx*/ 1); 2205 // Here, *each* one of those will require a multiplication. 2206 InstructionCost MulCost = 2207 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 2208 Cost = AddCost + MulCost; 2209 2210 // What is the degree of this polynominal? 2211 int PolyDegree = S->getNumOperands() - 1; 2212 assert(PolyDegree >= 1 && "Should be at least affine."); 2213 2214 // The final term will be: 2215 // Op_{PolyDegree} * x ^ {PolyDegree} 2216 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2217 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2218 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2219 // FIXME: this is conservatively correct, but might be overly pessimistic. 2220 Cost += MulCost * (PolyDegree - 1); 2221 break; 2222 } 2223 } 2224 2225 for (auto &CostOp : Operations) { 2226 for (auto SCEVOp : enumerate(S->operands())) { 2227 // Clamp the index to account for multiple IR operations being chained. 2228 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 2229 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 2230 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 2231 } 2232 } 2233 return Cost; 2234 } 2235 2236 bool SCEVExpander::isHighCostExpansionHelper( 2237 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 2238 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 2239 SmallPtrSetImpl<const SCEV *> &Processed, 2240 SmallVectorImpl<SCEVOperand> &Worklist) { 2241 if (Cost > Budget) 2242 return true; // Already run out of budget, give up. 2243 2244 const SCEV *S = WorkItem.S; 2245 // Was the cost of expansion of this expression already accounted for? 2246 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 2247 return false; // We have already accounted for this expression. 2248 2249 // If we can find an existing value for this scev available at the point "At" 2250 // then consider the expression cheap. 2251 if (getRelatedExistingExpansion(S, &At, L)) 2252 return false; // Consider the expression to be free. 2253 2254 TargetTransformInfo::TargetCostKind CostKind = 2255 L->getHeader()->getParent()->hasMinSize() 2256 ? TargetTransformInfo::TCK_CodeSize 2257 : TargetTransformInfo::TCK_RecipThroughput; 2258 2259 switch (S->getSCEVType()) { 2260 case scCouldNotCompute: 2261 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2262 case scUnknown: 2263 // Assume to be zero-cost. 2264 return false; 2265 case scConstant: { 2266 // Only evalulate the costs of constants when optimizing for size. 2267 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2268 return false; 2269 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2270 Type *Ty = S->getType(); 2271 Cost += TTI.getIntImmCostInst( 2272 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2273 return Cost > Budget; 2274 } 2275 case scTruncate: 2276 case scPtrToInt: 2277 case scZeroExtend: 2278 case scSignExtend: { 2279 Cost += 2280 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2281 return false; // Will answer upon next entry into this function. 2282 } 2283 case scUDivExpr: { 2284 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2285 // HowManyLessThans produced to compute a precise expression, rather than a 2286 // UDiv from the user's code. If we can't find a UDiv in the code with some 2287 // simple searching, we need to account for it's cost. 2288 2289 // At the beginning of this function we already tried to find existing 2290 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2291 // pattern involving division. This is just a simple search heuristic. 2292 if (getRelatedExistingExpansion( 2293 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2294 return false; // Consider it to be free. 2295 2296 Cost += 2297 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2298 return false; // Will answer upon next entry into this function. 2299 } 2300 case scAddExpr: 2301 case scMulExpr: 2302 case scUMaxExpr: 2303 case scSMaxExpr: 2304 case scUMinExpr: 2305 case scSMinExpr: 2306 case scSequentialUMinExpr: { 2307 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2308 "Nary expr should have more than 1 operand."); 2309 // The simple nary expr will require one less op (or pair of ops) 2310 // than the number of it's terms. 2311 Cost += 2312 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2313 return Cost > Budget; 2314 } 2315 case scAddRecExpr: { 2316 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2317 "Polynomial should be at least linear"); 2318 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2319 WorkItem, TTI, CostKind, Worklist); 2320 return Cost > Budget; 2321 } 2322 } 2323 llvm_unreachable("Unknown SCEV kind!"); 2324 } 2325 2326 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2327 Instruction *IP) { 2328 assert(IP); 2329 switch (Pred->getKind()) { 2330 case SCEVPredicate::P_Union: 2331 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2332 case SCEVPredicate::P_Compare: 2333 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2334 case SCEVPredicate::P_Wrap: { 2335 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2336 return expandWrapPredicate(AddRecPred, IP); 2337 } 2338 } 2339 llvm_unreachable("Unknown SCEV predicate type"); 2340 } 2341 2342 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2343 Instruction *IP) { 2344 Value *Expr0 = 2345 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP); 2346 Value *Expr1 = 2347 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP); 2348 2349 Builder.SetInsertPoint(IP); 2350 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2351 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2352 return I; 2353 } 2354 2355 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2356 Instruction *Loc, bool Signed) { 2357 assert(AR->isAffine() && "Cannot generate RT check for " 2358 "non-affine expression"); 2359 2360 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2361 SmallVector<const SCEVPredicate *, 4> Pred; 2362 const SCEV *ExitCount = 2363 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2364 2365 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2366 2367 const SCEV *Step = AR->getStepRecurrence(SE); 2368 const SCEV *Start = AR->getStart(); 2369 2370 Type *ARTy = AR->getType(); 2371 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2372 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2373 2374 // The expression {Start,+,Step} has nusw/nssw if 2375 // Step < 0, Start - |Step| * Backedge <= Start 2376 // Step >= 0, Start + |Step| * Backedge > Start 2377 // and |Step| * Backedge doesn't unsigned overflow. 2378 2379 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2380 Builder.SetInsertPoint(Loc); 2381 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc); 2382 2383 IntegerType *Ty = 2384 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2385 2386 Value *StepValue = expandCodeForImpl(Step, Ty, Loc); 2387 Value *NegStepValue = 2388 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc); 2389 Value *StartValue = expandCodeForImpl(Start, ARTy, Loc); 2390 2391 ConstantInt *Zero = 2392 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2393 2394 Builder.SetInsertPoint(Loc); 2395 // Compute |Step| 2396 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2397 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2398 2399 // Compute |Step| * Backedge 2400 // Compute: 2401 // 1. Start + |Step| * Backedge < Start 2402 // 2. Start - |Step| * Backedge > Start 2403 // 2404 // And select either 1. or 2. depending on whether step is positive or 2405 // negative. If Step is known to be positive or negative, only create 2406 // either 1. or 2. 2407 auto ComputeEndCheck = [&]() -> Value * { 2408 // Checking <u 0 is always false. 2409 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2410 return ConstantInt::getFalse(Loc->getContext()); 2411 2412 // Get the backedge taken count and truncate or extended to the AR type. 2413 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2414 2415 Value *MulV, *OfMul; 2416 if (Step->isOne()) { 2417 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2418 // needed, there is never an overflow, so to avoid artificially inflating 2419 // the cost of the check, directly emit the optimized IR. 2420 MulV = TruncTripCount; 2421 OfMul = ConstantInt::getFalse(MulV->getContext()); 2422 } else { 2423 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2424 Intrinsic::umul_with_overflow, Ty); 2425 CallInst *Mul = 2426 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2427 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2428 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2429 } 2430 2431 Value *Add = nullptr, *Sub = nullptr; 2432 bool NeedPosCheck = !SE.isKnownNegative(Step); 2433 bool NeedNegCheck = !SE.isKnownPositive(Step); 2434 2435 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) { 2436 StartValue = InsertNoopCastOfTo( 2437 StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace())); 2438 Value *NegMulV = Builder.CreateNeg(MulV); 2439 if (NeedPosCheck) 2440 Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV); 2441 if (NeedNegCheck) 2442 Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV); 2443 } else { 2444 if (NeedPosCheck) 2445 Add = Builder.CreateAdd(StartValue, MulV); 2446 if (NeedNegCheck) 2447 Sub = Builder.CreateSub(StartValue, MulV); 2448 } 2449 2450 Value *EndCompareLT = nullptr; 2451 Value *EndCompareGT = nullptr; 2452 Value *EndCheck = nullptr; 2453 if (NeedPosCheck) 2454 EndCheck = EndCompareLT = Builder.CreateICmp( 2455 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2456 if (NeedNegCheck) 2457 EndCheck = EndCompareGT = Builder.CreateICmp( 2458 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2459 if (NeedPosCheck && NeedNegCheck) { 2460 // Select the answer based on the sign of Step. 2461 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2462 } 2463 return Builder.CreateOr(EndCheck, OfMul); 2464 }; 2465 Value *EndCheck = ComputeEndCheck(); 2466 2467 // If the backedge taken count type is larger than the AR type, 2468 // check that we don't drop any bits by truncating it. If we are 2469 // dropping bits, then we have overflow (unless the step is zero). 2470 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2471 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2472 auto *BackedgeCheck = 2473 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2474 ConstantInt::get(Loc->getContext(), MaxVal)); 2475 BackedgeCheck = Builder.CreateAnd( 2476 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2477 2478 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2479 } 2480 2481 return EndCheck; 2482 } 2483 2484 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2485 Instruction *IP) { 2486 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2487 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2488 2489 // Add a check for NUSW 2490 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2491 NUSWCheck = generateOverflowCheck(A, IP, false); 2492 2493 // Add a check for NSSW 2494 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2495 NSSWCheck = generateOverflowCheck(A, IP, true); 2496 2497 if (NUSWCheck && NSSWCheck) 2498 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2499 2500 if (NUSWCheck) 2501 return NUSWCheck; 2502 2503 if (NSSWCheck) 2504 return NSSWCheck; 2505 2506 return ConstantInt::getFalse(IP->getContext()); 2507 } 2508 2509 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2510 Instruction *IP) { 2511 // Loop over all checks in this set. 2512 SmallVector<Value *> Checks; 2513 for (const auto *Pred : Union->getPredicates()) { 2514 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2515 Builder.SetInsertPoint(IP); 2516 } 2517 2518 if (Checks.empty()) 2519 return ConstantInt::getFalse(IP->getContext()); 2520 return Builder.CreateOr(Checks); 2521 } 2522 2523 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2524 auto *DefI = dyn_cast<Instruction>(V); 2525 if (!PreserveLCSSA || !DefI) 2526 return V; 2527 2528 Instruction *InsertPt = &*Builder.GetInsertPoint(); 2529 Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2530 Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2531 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2532 return V; 2533 2534 // Create a temporary instruction to at the current insertion point, so we 2535 // can hand it off to the helper to create LCSSA PHIs if required for the 2536 // new use. 2537 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2538 // would accept a insertion point and return an LCSSA phi for that 2539 // insertion point, so there is no need to insert & remove the temporary 2540 // instruction. 2541 Type *ToTy; 2542 if (DefI->getType()->isIntegerTy()) 2543 ToTy = DefI->getType()->getPointerTo(); 2544 else 2545 ToTy = Type::getInt32Ty(DefI->getContext()); 2546 Instruction *User = 2547 CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2548 auto RemoveUserOnExit = 2549 make_scope_exit([User]() { User->eraseFromParent(); }); 2550 2551 SmallVector<Instruction *, 1> ToUpdate; 2552 ToUpdate.push_back(DefI); 2553 SmallVector<PHINode *, 16> PHIsToRemove; 2554 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); 2555 for (PHINode *PN : PHIsToRemove) { 2556 if (!PN->use_empty()) 2557 continue; 2558 InsertedValues.erase(PN); 2559 InsertedPostIncValues.erase(PN); 2560 PN->eraseFromParent(); 2561 } 2562 2563 return User->getOperand(0); 2564 } 2565 2566 namespace { 2567 // Search for a SCEV subexpression that is not safe to expand. Any expression 2568 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2569 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2570 // instruction, but the important thing is that we prove the denominator is 2571 // nonzero before expansion. 2572 // 2573 // IVUsers already checks that IV-derived expressions are safe. So this check is 2574 // only needed when the expression includes some subexpression that is not IV 2575 // derived. 2576 // 2577 // Currently, we only allow division by a value provably non-zero here. 2578 // 2579 // We cannot generally expand recurrences unless the step dominates the loop 2580 // header. The expander handles the special case of affine recurrences by 2581 // scaling the recurrence outside the loop, but this technique isn't generally 2582 // applicable. Expanding a nested recurrence outside a loop requires computing 2583 // binomial coefficients. This could be done, but the recurrence has to be in a 2584 // perfectly reduced form, which can't be guaranteed. 2585 struct SCEVFindUnsafe { 2586 ScalarEvolution &SE; 2587 bool CanonicalMode; 2588 bool IsUnsafe = false; 2589 2590 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2591 : SE(SE), CanonicalMode(CanonicalMode) {} 2592 2593 bool follow(const SCEV *S) { 2594 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2595 if (!SE.isKnownNonZero(D->getRHS())) { 2596 IsUnsafe = true; 2597 return false; 2598 } 2599 } 2600 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2601 const SCEV *Step = AR->getStepRecurrence(SE); 2602 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2603 IsUnsafe = true; 2604 return false; 2605 } 2606 2607 // For non-affine addrecs or in non-canonical mode we need a preheader 2608 // to insert into. 2609 if (!AR->getLoop()->getLoopPreheader() && 2610 (!CanonicalMode || !AR->isAffine())) { 2611 IsUnsafe = true; 2612 return false; 2613 } 2614 } 2615 return true; 2616 } 2617 bool isDone() const { return IsUnsafe; } 2618 }; 2619 } // namespace 2620 2621 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2622 SCEVFindUnsafe Search(SE, CanonicalMode); 2623 visitAll(S, Search); 2624 return !Search.IsUnsafe; 2625 } 2626 2627 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2628 const Instruction *InsertionPoint) const { 2629 if (!isSafeToExpand(S)) 2630 return false; 2631 // We have to prove that the expanded site of S dominates InsertionPoint. 2632 // This is easy when not in the same block, but hard when S is an instruction 2633 // to be expanded somewhere inside the same block as our insertion point. 2634 // What we really need here is something analogous to an OrderedBasicBlock, 2635 // but for the moment, we paper over the problem by handling two common and 2636 // cheap to check cases. 2637 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2638 return true; 2639 if (SE.dominates(S, InsertionPoint->getParent())) { 2640 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2641 return true; 2642 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2643 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2644 return true; 2645 } 2646 return false; 2647 } 2648 2649 void SCEVExpanderCleaner::cleanup() { 2650 // Result is used, nothing to remove. 2651 if (ResultUsed) 2652 return; 2653 2654 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2655 #ifndef NDEBUG 2656 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2657 InsertedInstructions.end()); 2658 (void)InsertedSet; 2659 #endif 2660 // Remove sets with value handles. 2661 Expander.clear(); 2662 2663 // Remove all inserted instructions. 2664 for (Instruction *I : reverse(InsertedInstructions)) { 2665 #ifndef NDEBUG 2666 assert(all_of(I->users(), 2667 [&InsertedSet](Value *U) { 2668 return InsertedSet.contains(cast<Instruction>(U)); 2669 }) && 2670 "removed instruction should only be used by instructions inserted " 2671 "during expansion"); 2672 #endif 2673 assert(!I->getType()->isVoidTy() && 2674 "inserted instruction should have non-void types"); 2675 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2676 I->eraseFromParent(); 2677 } 2678 } 2679