xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 580d00f42fdd94ce43583cc45fe3f1d9fdff47d4)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/LoopUtils.h"
30 
31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
33 #else
34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
35 #endif
36 
37 using namespace llvm;
38 
39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
40     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
41     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
42              "controls the budget that is considered cheap (default = 4)"));
43 
44 using namespace PatternMatch;
45 
46 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
47 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
48 /// creating a new one.
49 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
50                                        Instruction::CastOps Op,
51                                        BasicBlock::iterator IP) {
52   // This function must be called with the builder having a valid insertion
53   // point. It doesn't need to be the actual IP where the uses of the returned
54   // cast will be added, but it must dominate such IP.
55   // We use this precondition to produce a cast that will dominate all its
56   // uses. In particular, this is crucial for the case where the builder's
57   // insertion point *is* the point where we were asked to put the cast.
58   // Since we don't know the builder's insertion point is actually
59   // where the uses will be added (only that it dominates it), we are
60   // not allowed to move it.
61   BasicBlock::iterator BIP = Builder.GetInsertPoint();
62 
63   Value *Ret = nullptr;
64 
65   // Check to see if there is already a cast!
66   for (User *U : V->users()) {
67     if (U->getType() != Ty)
68       continue;
69     CastInst *CI = dyn_cast<CastInst>(U);
70     if (!CI || CI->getOpcode() != Op)
71       continue;
72 
73     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
74     // the cast must also properly dominate the Builder's insertion point.
75     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
76         (&*IP == CI || CI->comesBefore(&*IP))) {
77       Ret = CI;
78       break;
79     }
80   }
81 
82   // Create a new cast.
83   if (!Ret) {
84     SCEVInsertPointGuard Guard(Builder, this);
85     Builder.SetInsertPoint(&*IP);
86     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
87   }
88 
89   // We assert at the end of the function since IP might point to an
90   // instruction with different dominance properties than a cast
91   // (an invoke for example) and not dominate BIP (but the cast does).
92   assert(!isa<Instruction>(Ret) ||
93          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
94 
95   return Ret;
96 }
97 
98 BasicBlock::iterator
99 SCEVExpander::findInsertPointAfter(Instruction *I,
100                                    Instruction *MustDominate) const {
101   BasicBlock::iterator IP = ++I->getIterator();
102   if (auto *II = dyn_cast<InvokeInst>(I))
103     IP = II->getNormalDest()->begin();
104 
105   while (isa<PHINode>(IP))
106     ++IP;
107 
108   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
109     ++IP;
110   } else if (isa<CatchSwitchInst>(IP)) {
111     IP = MustDominate->getParent()->getFirstInsertionPt();
112   } else {
113     assert(!IP->isEHPad() && "unexpected eh pad!");
114   }
115 
116   // Adjust insert point to be after instructions inserted by the expander, so
117   // we can re-use already inserted instructions. Avoid skipping past the
118   // original \p MustDominate, in case it is an inserted instruction.
119   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
120     ++IP;
121 
122   return IP;
123 }
124 
125 BasicBlock::iterator
126 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
127   // Cast the argument at the beginning of the entry block, after
128   // any bitcasts of other arguments.
129   if (Argument *A = dyn_cast<Argument>(V)) {
130     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
131     while ((isa<BitCastInst>(IP) &&
132             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
133             cast<BitCastInst>(IP)->getOperand(0) != A) ||
134            isa<DbgInfoIntrinsic>(IP))
135       ++IP;
136     return IP;
137   }
138 
139   // Cast the instruction immediately after the instruction.
140   if (Instruction *I = dyn_cast<Instruction>(V))
141     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
142 
143   // Otherwise, this must be some kind of a constant,
144   // so let's plop this cast into the function's entry block.
145   assert(isa<Constant>(V) &&
146          "Expected the cast argument to be a global/constant");
147   return Builder.GetInsertBlock()
148       ->getParent()
149       ->getEntryBlock()
150       .getFirstInsertionPt();
151 }
152 
153 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
154 /// which must be possible with a noop cast, doing what we can to share
155 /// the casts.
156 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
157   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
158   assert((Op == Instruction::BitCast ||
159           Op == Instruction::PtrToInt ||
160           Op == Instruction::IntToPtr) &&
161          "InsertNoopCastOfTo cannot perform non-noop casts!");
162   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
163          "InsertNoopCastOfTo cannot change sizes!");
164 
165   // inttoptr only works for integral pointers. For non-integral pointers, we
166   // can create a GEP on i8* null  with the integral value as index. Note that
167   // it is safe to use GEP of null instead of inttoptr here, because only
168   // expressions already based on a GEP of null should be converted to pointers
169   // during expansion.
170   if (Op == Instruction::IntToPtr) {
171     auto *PtrTy = cast<PointerType>(Ty);
172     if (DL.isNonIntegralPointerType(PtrTy)) {
173       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
174       assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 &&
175              "alloc size of i8 must by 1 byte for the GEP to be correct");
176       auto *GEP = Builder.CreateGEP(
177           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
178       return Builder.CreateBitCast(GEP, Ty);
179     }
180   }
181   // Short-circuit unnecessary bitcasts.
182   if (Op == Instruction::BitCast) {
183     if (V->getType() == Ty)
184       return V;
185     if (CastInst *CI = dyn_cast<CastInst>(V)) {
186       if (CI->getOperand(0)->getType() == Ty)
187         return CI->getOperand(0);
188     }
189   }
190   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
191   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
192       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
193     if (CastInst *CI = dyn_cast<CastInst>(V))
194       if ((CI->getOpcode() == Instruction::PtrToInt ||
195            CI->getOpcode() == Instruction::IntToPtr) &&
196           SE.getTypeSizeInBits(CI->getType()) ==
197           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
198         return CI->getOperand(0);
199     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
200       if ((CE->getOpcode() == Instruction::PtrToInt ||
201            CE->getOpcode() == Instruction::IntToPtr) &&
202           SE.getTypeSizeInBits(CE->getType()) ==
203           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
204         return CE->getOperand(0);
205   }
206 
207   // Fold a cast of a constant.
208   if (Constant *C = dyn_cast<Constant>(V))
209     return ConstantExpr::getCast(Op, C, Ty);
210 
211   // Try to reuse existing cast, or insert one.
212   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
213 }
214 
215 /// InsertBinop - Insert the specified binary operator, doing a small amount
216 /// of work to avoid inserting an obviously redundant operation, and hoisting
217 /// to an outer loop when the opportunity is there and it is safe.
218 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
219                                  Value *LHS, Value *RHS,
220                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
221   // Fold a binop with constant operands.
222   if (Constant *CLHS = dyn_cast<Constant>(LHS))
223     if (Constant *CRHS = dyn_cast<Constant>(RHS))
224       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
225         return Res;
226 
227   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
228   unsigned ScanLimit = 6;
229   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
230   // Scanning starts from the last instruction before the insertion point.
231   BasicBlock::iterator IP = Builder.GetInsertPoint();
232   if (IP != BlockBegin) {
233     --IP;
234     for (; ScanLimit; --IP, --ScanLimit) {
235       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
236       // generated code.
237       if (isa<DbgInfoIntrinsic>(IP))
238         ScanLimit++;
239 
240       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
241         // Ensure that no-wrap flags match.
242         if (isa<OverflowingBinaryOperator>(I)) {
243           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
244             return true;
245           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
246             return true;
247         }
248         // Conservatively, do not use any instruction which has any of exact
249         // flags installed.
250         if (isa<PossiblyExactOperator>(I) && I->isExact())
251           return true;
252         return false;
253       };
254       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
255           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
256         return &*IP;
257       if (IP == BlockBegin) break;
258     }
259   }
260 
261   // Save the original insertion point so we can restore it when we're done.
262   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
263   SCEVInsertPointGuard Guard(Builder, this);
264 
265   if (IsSafeToHoist) {
266     // Move the insertion point out of as many loops as we can.
267     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
268       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
269       BasicBlock *Preheader = L->getLoopPreheader();
270       if (!Preheader) break;
271 
272       // Ok, move up a level.
273       Builder.SetInsertPoint(Preheader->getTerminator());
274     }
275   }
276 
277   // If we haven't found this binop, insert it.
278   // TODO: Use the Builder, which will make CreateBinOp below fold with
279   // InstSimplifyFolder.
280   Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
281   BO->setDebugLoc(Loc);
282   if (Flags & SCEV::FlagNUW)
283     BO->setHasNoUnsignedWrap();
284   if (Flags & SCEV::FlagNSW)
285     BO->setHasNoSignedWrap();
286 
287   return BO;
288 }
289 
290 /// FactorOutConstant - Test if S is divisible by Factor, using signed
291 /// division. If so, update S with Factor divided out and return true.
292 /// S need not be evenly divisible if a reasonable remainder can be
293 /// computed.
294 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
295                               const SCEV *Factor, ScalarEvolution &SE,
296                               const DataLayout &DL) {
297   // Everything is divisible by one.
298   if (Factor->isOne())
299     return true;
300 
301   // x/x == 1.
302   if (S == Factor) {
303     S = SE.getConstant(S->getType(), 1);
304     return true;
305   }
306 
307   // For a Constant, check for a multiple of the given factor.
308   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
309     // 0/x == 0.
310     if (C->isZero())
311       return true;
312     // Check for divisibility.
313     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
314       ConstantInt *CI =
315           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
316       // If the quotient is zero and the remainder is non-zero, reject
317       // the value at this scale. It will be considered for subsequent
318       // smaller scales.
319       if (!CI->isZero()) {
320         const SCEV *Div = SE.getConstant(CI);
321         S = Div;
322         Remainder = SE.getAddExpr(
323             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
324         return true;
325       }
326     }
327   }
328 
329   // In a Mul, check if there is a constant operand which is a multiple
330   // of the given factor.
331   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
332     // Size is known, check if there is a constant operand which is a multiple
333     // of the given factor. If so, we can factor it.
334     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
335       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
336         if (!C->getAPInt().srem(FC->getAPInt())) {
337           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
338           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
339           S = SE.getMulExpr(NewMulOps);
340           return true;
341         }
342   }
343 
344   // In an AddRec, check if both start and step are divisible.
345   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
346     const SCEV *Step = A->getStepRecurrence(SE);
347     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
348     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
349       return false;
350     if (!StepRem->isZero())
351       return false;
352     const SCEV *Start = A->getStart();
353     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
354       return false;
355     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
356                          A->getNoWrapFlags(SCEV::FlagNW));
357     return true;
358   }
359 
360   return false;
361 }
362 
363 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
364 /// is the number of SCEVAddRecExprs present, which are kept at the end of
365 /// the list.
366 ///
367 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
368                                 Type *Ty,
369                                 ScalarEvolution &SE) {
370   unsigned NumAddRecs = 0;
371   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
372     ++NumAddRecs;
373   // Group Ops into non-addrecs and addrecs.
374   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
375   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
376   // Let ScalarEvolution sort and simplify the non-addrecs list.
377   const SCEV *Sum = NoAddRecs.empty() ?
378                     SE.getConstant(Ty, 0) :
379                     SE.getAddExpr(NoAddRecs);
380   // If it returned an add, use the operands. Otherwise it simplified
381   // the sum into a single value, so just use that.
382   Ops.clear();
383   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
384     append_range(Ops, Add->operands());
385   else if (!Sum->isZero())
386     Ops.push_back(Sum);
387   // Then append the addrecs.
388   Ops.append(AddRecs.begin(), AddRecs.end());
389 }
390 
391 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
392 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
393 /// This helps expose more opportunities for folding parts of the expressions
394 /// into GEP indices.
395 ///
396 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
397                          Type *Ty,
398                          ScalarEvolution &SE) {
399   // Find the addrecs.
400   SmallVector<const SCEV *, 8> AddRecs;
401   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
402     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
403       const SCEV *Start = A->getStart();
404       if (Start->isZero()) break;
405       const SCEV *Zero = SE.getConstant(Ty, 0);
406       AddRecs.push_back(SE.getAddRecExpr(Zero,
407                                          A->getStepRecurrence(SE),
408                                          A->getLoop(),
409                                          A->getNoWrapFlags(SCEV::FlagNW)));
410       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
411         Ops[i] = Zero;
412         append_range(Ops, Add->operands());
413         e += Add->getNumOperands();
414       } else {
415         Ops[i] = Start;
416       }
417     }
418   if (!AddRecs.empty()) {
419     // Add the addrecs onto the end of the list.
420     Ops.append(AddRecs.begin(), AddRecs.end());
421     // Resort the operand list, moving any constants to the front.
422     SimplifyAddOperands(Ops, Ty, SE);
423   }
424 }
425 
426 /// expandAddToGEP - Expand an addition expression with a pointer type into
427 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
428 /// BasicAliasAnalysis and other passes analyze the result. See the rules
429 /// for getelementptr vs. inttoptr in
430 /// http://llvm.org/docs/LangRef.html#pointeraliasing
431 /// for details.
432 ///
433 /// Design note: The correctness of using getelementptr here depends on
434 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
435 /// they may introduce pointer arithmetic which may not be safely converted
436 /// into getelementptr.
437 ///
438 /// Design note: It might seem desirable for this function to be more
439 /// loop-aware. If some of the indices are loop-invariant while others
440 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
441 /// loop-invariant portions of the overall computation outside the loop.
442 /// However, there are a few reasons this is not done here. Hoisting simple
443 /// arithmetic is a low-level optimization that often isn't very
444 /// important until late in the optimization process. In fact, passes
445 /// like InstructionCombining will combine GEPs, even if it means
446 /// pushing loop-invariant computation down into loops, so even if the
447 /// GEPs were split here, the work would quickly be undone. The
448 /// LoopStrengthReduction pass, which is usually run quite late (and
449 /// after the last InstructionCombining pass), takes care of hoisting
450 /// loop-invariant portions of expressions, after considering what
451 /// can be folded using target addressing modes.
452 ///
453 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
454                                     const SCEV *const *op_end,
455                                     PointerType *PTy,
456                                     Type *Ty,
457                                     Value *V) {
458   SmallVector<Value *, 4> GepIndices;
459   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
460   bool AnyNonZeroIndices = false;
461 
462   // Split AddRecs up into parts as either of the parts may be usable
463   // without the other.
464   SplitAddRecs(Ops, Ty, SE);
465 
466   Type *IntIdxTy = DL.getIndexType(PTy);
467 
468   // For opaque pointers, always generate i8 GEP.
469   if (!PTy->isOpaque()) {
470     // Descend down the pointer's type and attempt to convert the other
471     // operands into GEP indices, at each level. The first index in a GEP
472     // indexes into the array implied by the pointer operand; the rest of
473     // the indices index into the element or field type selected by the
474     // preceding index.
475     Type *ElTy = PTy->getNonOpaquePointerElementType();
476     for (;;) {
477       // If the scale size is not 0, attempt to factor out a scale for
478       // array indexing.
479       SmallVector<const SCEV *, 8> ScaledOps;
480       if (ElTy->isSized()) {
481         const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
482         if (!ElSize->isZero()) {
483           SmallVector<const SCEV *, 8> NewOps;
484           for (const SCEV *Op : Ops) {
485             const SCEV *Remainder = SE.getConstant(Ty, 0);
486             if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
487               // Op now has ElSize factored out.
488               ScaledOps.push_back(Op);
489               if (!Remainder->isZero())
490                 NewOps.push_back(Remainder);
491               AnyNonZeroIndices = true;
492             } else {
493               // The operand was not divisible, so add it to the list of
494               // operands we'll scan next iteration.
495               NewOps.push_back(Op);
496             }
497           }
498           // If we made any changes, update Ops.
499           if (!ScaledOps.empty()) {
500             Ops = NewOps;
501             SimplifyAddOperands(Ops, Ty, SE);
502           }
503         }
504       }
505 
506       // Record the scaled array index for this level of the type. If
507       // we didn't find any operands that could be factored, tentatively
508       // assume that element zero was selected (since the zero offset
509       // would obviously be folded away).
510       Value *Scaled =
511           ScaledOps.empty()
512               ? Constant::getNullValue(Ty)
513               : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty);
514       GepIndices.push_back(Scaled);
515 
516       // Collect struct field index operands.
517       while (StructType *STy = dyn_cast<StructType>(ElTy)) {
518         bool FoundFieldNo = false;
519         // An empty struct has no fields.
520         if (STy->getNumElements() == 0) break;
521         // Field offsets are known. See if a constant offset falls within any of
522         // the struct fields.
523         if (Ops.empty())
524           break;
525         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
526           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
527             const StructLayout &SL = *DL.getStructLayout(STy);
528             uint64_t FullOffset = C->getValue()->getZExtValue();
529             if (FullOffset < SL.getSizeInBytes()) {
530               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
531               GepIndices.push_back(
532                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
533               ElTy = STy->getTypeAtIndex(ElIdx);
534               Ops[0] =
535                   SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
536               AnyNonZeroIndices = true;
537               FoundFieldNo = true;
538             }
539           }
540         // If no struct field offsets were found, tentatively assume that
541         // field zero was selected (since the zero offset would obviously
542         // be folded away).
543         if (!FoundFieldNo) {
544           ElTy = STy->getTypeAtIndex(0u);
545           GepIndices.push_back(
546             Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
547         }
548       }
549 
550       if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
551         ElTy = ATy->getElementType();
552       else
553         // FIXME: Handle VectorType.
554         // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
555         // constant, therefore can not be factored out. The generated IR is less
556         // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
557         break;
558     }
559   }
560 
561   // If none of the operands were convertible to proper GEP indices, cast
562   // the base to i8* and do an ugly getelementptr with that. It's still
563   // better than ptrtoint+arithmetic+inttoptr at least.
564   if (!AnyNonZeroIndices) {
565     // Cast the base to i8*.
566     if (!PTy->isOpaque())
567       V = InsertNoopCastOfTo(V,
568          Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
569 
570     assert(!isa<Instruction>(V) ||
571            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
572 
573     // Expand the operands for a plain byte offset.
574     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty);
575 
576     // Fold a GEP with constant operands.
577     if (Constant *CLHS = dyn_cast<Constant>(V))
578       if (Constant *CRHS = dyn_cast<Constant>(Idx))
579         return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS);
580 
581     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
582     unsigned ScanLimit = 6;
583     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
584     // Scanning starts from the last instruction before the insertion point.
585     BasicBlock::iterator IP = Builder.GetInsertPoint();
586     if (IP != BlockBegin) {
587       --IP;
588       for (; ScanLimit; --IP, --ScanLimit) {
589         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
590         // generated code.
591         if (isa<DbgInfoIntrinsic>(IP))
592           ScanLimit++;
593         if (IP->getOpcode() == Instruction::GetElementPtr &&
594             IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
595             cast<GEPOperator>(&*IP)->getSourceElementType() ==
596                 Type::getInt8Ty(Ty->getContext()))
597           return &*IP;
598         if (IP == BlockBegin) break;
599       }
600     }
601 
602     // Save the original insertion point so we can restore it when we're done.
603     SCEVInsertPointGuard Guard(Builder, this);
604 
605     // Move the insertion point out of as many loops as we can.
606     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
607       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
608       BasicBlock *Preheader = L->getLoopPreheader();
609       if (!Preheader) break;
610 
611       // Ok, move up a level.
612       Builder.SetInsertPoint(Preheader->getTerminator());
613     }
614 
615     // Emit a GEP.
616     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
617   }
618 
619   {
620     SCEVInsertPointGuard Guard(Builder, this);
621 
622     // Move the insertion point out of as many loops as we can.
623     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
624       if (!L->isLoopInvariant(V)) break;
625 
626       bool AnyIndexNotLoopInvariant = any_of(
627           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
628 
629       if (AnyIndexNotLoopInvariant)
630         break;
631 
632       BasicBlock *Preheader = L->getLoopPreheader();
633       if (!Preheader) break;
634 
635       // Ok, move up a level.
636       Builder.SetInsertPoint(Preheader->getTerminator());
637     }
638 
639     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
640     // because ScalarEvolution may have changed the address arithmetic to
641     // compute a value which is beyond the end of the allocated object.
642     Value *Casted = V;
643     if (V->getType() != PTy)
644       Casted = InsertNoopCastOfTo(Casted, PTy);
645     Value *GEP = Builder.CreateGEP(PTy->getNonOpaquePointerElementType(),
646                                    Casted, GepIndices, "scevgep");
647     Ops.push_back(SE.getUnknown(GEP));
648   }
649 
650   return expand(SE.getAddExpr(Ops));
651 }
652 
653 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
654                                     Value *V) {
655   const SCEV *const Ops[1] = {Op};
656   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
657 }
658 
659 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
660 /// SCEV expansion. If they are nested, this is the most nested. If they are
661 /// neighboring, pick the later.
662 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
663                                         DominatorTree &DT) {
664   if (!A) return B;
665   if (!B) return A;
666   if (A->contains(B)) return B;
667   if (B->contains(A)) return A;
668   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
669   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
670   return A; // Arbitrarily break the tie.
671 }
672 
673 /// getRelevantLoop - Get the most relevant loop associated with the given
674 /// expression, according to PickMostRelevantLoop.
675 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
676   // Test whether we've already computed the most relevant loop for this SCEV.
677   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
678   if (!Pair.second)
679     return Pair.first->second;
680 
681   switch (S->getSCEVType()) {
682   case scConstant:
683     return nullptr; // A constant has no relevant loops.
684   case scTruncate:
685   case scZeroExtend:
686   case scSignExtend:
687   case scPtrToInt:
688   case scAddExpr:
689   case scMulExpr:
690   case scUDivExpr:
691   case scAddRecExpr:
692   case scUMaxExpr:
693   case scSMaxExpr:
694   case scUMinExpr:
695   case scSMinExpr:
696   case scSequentialUMinExpr: {
697     const Loop *L = nullptr;
698     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
699       L = AR->getLoop();
700     for (const SCEV *Op : S->operands())
701       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
702     return RelevantLoops[S] = L;
703   }
704   case scUnknown: {
705     const SCEVUnknown *U = cast<SCEVUnknown>(S);
706     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
707       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
708     // A non-instruction has no relevant loops.
709     return nullptr;
710   }
711   case scCouldNotCompute:
712     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
713   }
714   llvm_unreachable("Unexpected SCEV type!");
715 }
716 
717 namespace {
718 
719 /// LoopCompare - Compare loops by PickMostRelevantLoop.
720 class LoopCompare {
721   DominatorTree &DT;
722 public:
723   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
724 
725   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
726                   std::pair<const Loop *, const SCEV *> RHS) const {
727     // Keep pointer operands sorted at the end.
728     if (LHS.second->getType()->isPointerTy() !=
729         RHS.second->getType()->isPointerTy())
730       return LHS.second->getType()->isPointerTy();
731 
732     // Compare loops with PickMostRelevantLoop.
733     if (LHS.first != RHS.first)
734       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
735 
736     // If one operand is a non-constant negative and the other is not,
737     // put the non-constant negative on the right so that a sub can
738     // be used instead of a negate and add.
739     if (LHS.second->isNonConstantNegative()) {
740       if (!RHS.second->isNonConstantNegative())
741         return false;
742     } else if (RHS.second->isNonConstantNegative())
743       return true;
744 
745     // Otherwise they are equivalent according to this comparison.
746     return false;
747   }
748 };
749 
750 }
751 
752 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
753   Type *Ty = SE.getEffectiveSCEVType(S->getType());
754 
755   // Collect all the add operands in a loop, along with their associated loops.
756   // Iterate in reverse so that constants are emitted last, all else equal, and
757   // so that pointer operands are inserted first, which the code below relies on
758   // to form more involved GEPs.
759   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
760   for (const SCEV *Op : reverse(S->operands()))
761     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
762 
763   // Sort by loop. Use a stable sort so that constants follow non-constants and
764   // pointer operands precede non-pointer operands.
765   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
766 
767   // Emit instructions to add all the operands. Hoist as much as possible
768   // out of loops, and form meaningful getelementptrs where possible.
769   Value *Sum = nullptr;
770   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
771     const Loop *CurLoop = I->first;
772     const SCEV *Op = I->second;
773     if (!Sum) {
774       // This is the first operand. Just expand it.
775       Sum = expand(Op);
776       ++I;
777       continue;
778     }
779 
780     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
781     if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
782       // The running sum expression is a pointer. Try to form a getelementptr
783       // at this level with that as the base.
784       SmallVector<const SCEV *, 4> NewOps;
785       for (; I != E && I->first == CurLoop; ++I) {
786         // If the operand is SCEVUnknown and not instructions, peek through
787         // it, to enable more of it to be folded into the GEP.
788         const SCEV *X = I->second;
789         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
790           if (!isa<Instruction>(U->getValue()))
791             X = SE.getSCEV(U->getValue());
792         NewOps.push_back(X);
793       }
794       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
795     } else if (Op->isNonConstantNegative()) {
796       // Instead of doing a negate and add, just do a subtract.
797       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty);
798       Sum = InsertNoopCastOfTo(Sum, Ty);
799       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
800                         /*IsSafeToHoist*/ true);
801       ++I;
802     } else {
803       // A simple add.
804       Value *W = expandCodeForImpl(Op, Ty);
805       Sum = InsertNoopCastOfTo(Sum, Ty);
806       // Canonicalize a constant to the RHS.
807       if (isa<Constant>(Sum)) std::swap(Sum, W);
808       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
809                         /*IsSafeToHoist*/ true);
810       ++I;
811     }
812   }
813 
814   return Sum;
815 }
816 
817 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
818   Type *Ty = SE.getEffectiveSCEVType(S->getType());
819 
820   // Collect all the mul operands in a loop, along with their associated loops.
821   // Iterate in reverse so that constants are emitted last, all else equal.
822   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
823   for (const SCEV *Op : reverse(S->operands()))
824     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
825 
826   // Sort by loop. Use a stable sort so that constants follow non-constants.
827   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
828 
829   // Emit instructions to mul all the operands. Hoist as much as possible
830   // out of loops.
831   Value *Prod = nullptr;
832   auto I = OpsAndLoops.begin();
833 
834   // Expand the calculation of X pow N in the following manner:
835   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
836   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
837   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
838     auto E = I;
839     // Calculate how many times the same operand from the same loop is included
840     // into this power.
841     uint64_t Exponent = 0;
842     const uint64_t MaxExponent = UINT64_MAX >> 1;
843     // No one sane will ever try to calculate such huge exponents, but if we
844     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
845     // below when the power of 2 exceeds our Exponent, and we want it to be
846     // 1u << 31 at most to not deal with unsigned overflow.
847     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
848       ++Exponent;
849       ++E;
850     }
851     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
852 
853     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
854     // that are needed into the result.
855     Value *P = expandCodeForImpl(I->second, Ty);
856     Value *Result = nullptr;
857     if (Exponent & 1)
858       Result = P;
859     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
860       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
861                       /*IsSafeToHoist*/ true);
862       if (Exponent & BinExp)
863         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
864                                       SCEV::FlagAnyWrap,
865                                       /*IsSafeToHoist*/ true)
866                         : P;
867     }
868 
869     I = E;
870     assert(Result && "Nothing was expanded?");
871     return Result;
872   };
873 
874   while (I != OpsAndLoops.end()) {
875     if (!Prod) {
876       // This is the first operand. Just expand it.
877       Prod = ExpandOpBinPowN();
878     } else if (I->second->isAllOnesValue()) {
879       // Instead of doing a multiply by negative one, just do a negate.
880       Prod = InsertNoopCastOfTo(Prod, Ty);
881       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
882                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
883       ++I;
884     } else {
885       // A simple mul.
886       Value *W = ExpandOpBinPowN();
887       Prod = InsertNoopCastOfTo(Prod, Ty);
888       // Canonicalize a constant to the RHS.
889       if (isa<Constant>(Prod)) std::swap(Prod, W);
890       const APInt *RHS;
891       if (match(W, m_Power2(RHS))) {
892         // Canonicalize Prod*(1<<C) to Prod<<C.
893         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
894         auto NWFlags = S->getNoWrapFlags();
895         // clear nsw flag if shl will produce poison value.
896         if (RHS->logBase2() == RHS->getBitWidth() - 1)
897           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
898         Prod = InsertBinop(Instruction::Shl, Prod,
899                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
900                            /*IsSafeToHoist*/ true);
901       } else {
902         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
903                            /*IsSafeToHoist*/ true);
904       }
905     }
906   }
907 
908   return Prod;
909 }
910 
911 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
912   Type *Ty = SE.getEffectiveSCEVType(S->getType());
913 
914   Value *LHS = expandCodeForImpl(S->getLHS(), Ty);
915   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
916     const APInt &RHS = SC->getAPInt();
917     if (RHS.isPowerOf2())
918       return InsertBinop(Instruction::LShr, LHS,
919                          ConstantInt::get(Ty, RHS.logBase2()),
920                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
921   }
922 
923   Value *RHS = expandCodeForImpl(S->getRHS(), Ty);
924   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
925                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
926 }
927 
928 /// Determine if this is a well-behaved chain of instructions leading back to
929 /// the PHI. If so, it may be reused by expanded expressions.
930 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
931                                          const Loop *L) {
932   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
933       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
934     return false;
935   // If any of the operands don't dominate the insert position, bail.
936   // Addrec operands are always loop-invariant, so this can only happen
937   // if there are instructions which haven't been hoisted.
938   if (L == IVIncInsertLoop) {
939     for (Use &Op : llvm::drop_begin(IncV->operands()))
940       if (Instruction *OInst = dyn_cast<Instruction>(Op))
941         if (!SE.DT.dominates(OInst, IVIncInsertPos))
942           return false;
943   }
944   // Advance to the next instruction.
945   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
946   if (!IncV)
947     return false;
948 
949   if (IncV->mayHaveSideEffects())
950     return false;
951 
952   if (IncV == PN)
953     return true;
954 
955   return isNormalAddRecExprPHI(PN, IncV, L);
956 }
957 
958 /// getIVIncOperand returns an induction variable increment's induction
959 /// variable operand.
960 ///
961 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
962 /// operands dominate InsertPos.
963 ///
964 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
965 /// simple patterns generated by getAddRecExprPHILiterally and
966 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
967 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
968                                            Instruction *InsertPos,
969                                            bool allowScale) {
970   if (IncV == InsertPos)
971     return nullptr;
972 
973   switch (IncV->getOpcode()) {
974   default:
975     return nullptr;
976   // Check for a simple Add/Sub or GEP of a loop invariant step.
977   case Instruction::Add:
978   case Instruction::Sub: {
979     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
980     if (!OInst || SE.DT.dominates(OInst, InsertPos))
981       return dyn_cast<Instruction>(IncV->getOperand(0));
982     return nullptr;
983   }
984   case Instruction::BitCast:
985     return dyn_cast<Instruction>(IncV->getOperand(0));
986   case Instruction::GetElementPtr:
987     for (Use &U : llvm::drop_begin(IncV->operands())) {
988       if (isa<Constant>(U))
989         continue;
990       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
991         if (!SE.DT.dominates(OInst, InsertPos))
992           return nullptr;
993       }
994       if (allowScale) {
995         // allow any kind of GEP as long as it can be hoisted.
996         continue;
997       }
998       // This must be a pointer addition of constants (pretty), which is already
999       // handled, or some number of address-size elements (ugly). Ugly geps
1000       // have 2 operands. i1* is used by the expander to represent an
1001       // address-size element.
1002       if (IncV->getNumOperands() != 2)
1003         return nullptr;
1004       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
1005       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
1006           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
1007         return nullptr;
1008       break;
1009     }
1010     return dyn_cast<Instruction>(IncV->getOperand(0));
1011   }
1012 }
1013 
1014 /// If the insert point of the current builder or any of the builders on the
1015 /// stack of saved builders has 'I' as its insert point, update it to point to
1016 /// the instruction after 'I'.  This is intended to be used when the instruction
1017 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
1018 /// different block, the inconsistent insert point (with a mismatched
1019 /// Instruction and Block) can lead to an instruction being inserted in a block
1020 /// other than its parent.
1021 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1022   BasicBlock::iterator It(*I);
1023   BasicBlock::iterator NewInsertPt = std::next(It);
1024   if (Builder.GetInsertPoint() == It)
1025     Builder.SetInsertPoint(&*NewInsertPt);
1026   for (auto *InsertPtGuard : InsertPointGuards)
1027     if (InsertPtGuard->GetInsertPoint() == It)
1028       InsertPtGuard->SetInsertPoint(NewInsertPt);
1029 }
1030 
1031 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1032 /// it available to other uses in this loop. Recursively hoist any operands,
1033 /// until we reach a value that dominates InsertPos.
1034 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos,
1035                               bool RecomputePoisonFlags) {
1036   auto FixupPoisonFlags = [this](Instruction *I) {
1037     // Drop flags that are potentially inferred from old context and infer flags
1038     // in new context.
1039     I->dropPoisonGeneratingFlags();
1040     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
1041       if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
1042         auto *BO = cast<BinaryOperator>(I);
1043         BO->setHasNoUnsignedWrap(
1044             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
1045         BO->setHasNoSignedWrap(
1046             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
1047       }
1048   };
1049 
1050   if (SE.DT.dominates(IncV, InsertPos)) {
1051     if (RecomputePoisonFlags)
1052       FixupPoisonFlags(IncV);
1053     return true;
1054   }
1055 
1056   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1057   // its existing users.
1058   if (isa<PHINode>(InsertPos) ||
1059       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1060     return false;
1061 
1062   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1063     return false;
1064 
1065   // Check that the chain of IV operands leading back to Phi can be hoisted.
1066   SmallVector<Instruction*, 4> IVIncs;
1067   for(;;) {
1068     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1069     if (!Oper)
1070       return false;
1071     // IncV is safe to hoist.
1072     IVIncs.push_back(IncV);
1073     IncV = Oper;
1074     if (SE.DT.dominates(IncV, InsertPos))
1075       break;
1076   }
1077   for (Instruction *I : llvm::reverse(IVIncs)) {
1078     fixupInsertPoints(I);
1079     I->moveBefore(InsertPos);
1080     if (RecomputePoisonFlags)
1081       FixupPoisonFlags(I);
1082   }
1083   return true;
1084 }
1085 
1086 /// Determine if this cyclic phi is in a form that would have been generated by
1087 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1088 /// as it is in a low-cost form, for example, no implied multiplication. This
1089 /// should match any patterns generated by getAddRecExprPHILiterally and
1090 /// expandAddtoGEP.
1091 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1092                                            const Loop *L) {
1093   for(Instruction *IVOper = IncV;
1094       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1095                                 /*allowScale=*/false));) {
1096     if (IVOper == PN)
1097       return true;
1098   }
1099   return false;
1100 }
1101 
1102 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1103 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1104 /// need to materialize IV increments elsewhere to handle difficult situations.
1105 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1106                                  Type *ExpandTy, Type *IntTy,
1107                                  bool useSubtract) {
1108   Value *IncV;
1109   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1110   if (ExpandTy->isPointerTy()) {
1111     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1112     // If the step isn't constant, don't use an implicitly scaled GEP, because
1113     // that would require a multiply inside the loop.
1114     if (!isa<ConstantInt>(StepV))
1115       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1116                                   GEPPtrTy->getAddressSpace());
1117     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1118     if (IncV->getType() != PN->getType())
1119       IncV = Builder.CreateBitCast(IncV, PN->getType());
1120   } else {
1121     IncV = useSubtract ?
1122       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1123       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1124   }
1125   return IncV;
1126 }
1127 
1128 /// Check whether we can cheaply express the requested SCEV in terms of
1129 /// the available PHI SCEV by truncation and/or inversion of the step.
1130 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1131                                     const SCEVAddRecExpr *Phi,
1132                                     const SCEVAddRecExpr *Requested,
1133                                     bool &InvertStep) {
1134   // We can't transform to match a pointer PHI.
1135   if (Phi->getType()->isPointerTy())
1136     return false;
1137 
1138   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1139   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1140 
1141   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1142     return false;
1143 
1144   // Try truncate it if necessary.
1145   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1146   if (!Phi)
1147     return false;
1148 
1149   // Check whether truncation will help.
1150   if (Phi == Requested) {
1151     InvertStep = false;
1152     return true;
1153   }
1154 
1155   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1156   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
1157     InvertStep = true;
1158     return true;
1159   }
1160 
1161   return false;
1162 }
1163 
1164 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1165   if (!isa<IntegerType>(AR->getType()))
1166     return false;
1167 
1168   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1169   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1170   const SCEV *Step = AR->getStepRecurrence(SE);
1171   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1172                                             SE.getSignExtendExpr(AR, WideTy));
1173   const SCEV *ExtendAfterOp =
1174     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1175   return ExtendAfterOp == OpAfterExtend;
1176 }
1177 
1178 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1179   if (!isa<IntegerType>(AR->getType()))
1180     return false;
1181 
1182   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1183   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1184   const SCEV *Step = AR->getStepRecurrence(SE);
1185   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1186                                             SE.getZeroExtendExpr(AR, WideTy));
1187   const SCEV *ExtendAfterOp =
1188     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1189   return ExtendAfterOp == OpAfterExtend;
1190 }
1191 
1192 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1193 /// the base addrec, which is the addrec without any non-loop-dominating
1194 /// values, and return the PHI.
1195 PHINode *
1196 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1197                                         const Loop *L,
1198                                         Type *ExpandTy,
1199                                         Type *IntTy,
1200                                         Type *&TruncTy,
1201                                         bool &InvertStep) {
1202   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1203 
1204   // Reuse a previously-inserted PHI, if present.
1205   BasicBlock *LatchBlock = L->getLoopLatch();
1206   if (LatchBlock) {
1207     PHINode *AddRecPhiMatch = nullptr;
1208     Instruction *IncV = nullptr;
1209     TruncTy = nullptr;
1210     InvertStep = false;
1211 
1212     // Only try partially matching scevs that need truncation and/or
1213     // step-inversion if we know this loop is outside the current loop.
1214     bool TryNonMatchingSCEV =
1215         IVIncInsertLoop &&
1216         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1217 
1218     for (PHINode &PN : L->getHeader()->phis()) {
1219       if (!SE.isSCEVable(PN.getType()))
1220         continue;
1221 
1222       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1223       // PHI has no meaning at all.
1224       if (!PN.isComplete()) {
1225         SCEV_DEBUG_WITH_TYPE(
1226             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1227         continue;
1228       }
1229 
1230       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1231       if (!PhiSCEV)
1232         continue;
1233 
1234       bool IsMatchingSCEV = PhiSCEV == Normalized;
1235       // We only handle truncation and inversion of phi recurrences for the
1236       // expanded expression if the expanded expression's loop dominates the
1237       // loop we insert to. Check now, so we can bail out early.
1238       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1239           continue;
1240 
1241       // TODO: this possibly can be reworked to avoid this cast at all.
1242       Instruction *TempIncV =
1243           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1244       if (!TempIncV)
1245         continue;
1246 
1247       // Check whether we can reuse this PHI node.
1248       if (LSRMode) {
1249         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1250           continue;
1251       } else {
1252         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1253           continue;
1254       }
1255 
1256       // Stop if we have found an exact match SCEV.
1257       if (IsMatchingSCEV) {
1258         IncV = TempIncV;
1259         TruncTy = nullptr;
1260         InvertStep = false;
1261         AddRecPhiMatch = &PN;
1262         break;
1263       }
1264 
1265       // Try whether the phi can be translated into the requested form
1266       // (truncated and/or offset by a constant).
1267       if ((!TruncTy || InvertStep) &&
1268           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1269         // Record the phi node. But don't stop we might find an exact match
1270         // later.
1271         AddRecPhiMatch = &PN;
1272         IncV = TempIncV;
1273         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1274       }
1275     }
1276 
1277     if (AddRecPhiMatch) {
1278       // Ok, the add recurrence looks usable.
1279       // Remember this PHI, even in post-inc mode.
1280       InsertedValues.insert(AddRecPhiMatch);
1281       // Remember the increment.
1282       rememberInstruction(IncV);
1283       // Those values were not actually inserted but re-used.
1284       ReusedValues.insert(AddRecPhiMatch);
1285       ReusedValues.insert(IncV);
1286       return AddRecPhiMatch;
1287     }
1288   }
1289 
1290   // Save the original insertion point so we can restore it when we're done.
1291   SCEVInsertPointGuard Guard(Builder, this);
1292 
1293   // Another AddRec may need to be recursively expanded below. For example, if
1294   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1295   // loop. Remove this loop from the PostIncLoops set before expanding such
1296   // AddRecs. Otherwise, we cannot find a valid position for the step
1297   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1298   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1299   // so it's not worth implementing SmallPtrSet::swap.
1300   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1301   PostIncLoops.clear();
1302 
1303   // Expand code for the start value into the loop preheader.
1304   assert(L->getLoopPreheader() &&
1305          "Can't expand add recurrences without a loop preheader!");
1306   Value *StartV =
1307       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1308                         L->getLoopPreheader()->getTerminator());
1309 
1310   // StartV must have been be inserted into L's preheader to dominate the new
1311   // phi.
1312   assert(!isa<Instruction>(StartV) ||
1313          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1314                                  L->getHeader()));
1315 
1316   // Expand code for the step value. Do this before creating the PHI so that PHI
1317   // reuse code doesn't see an incomplete PHI.
1318   const SCEV *Step = Normalized->getStepRecurrence(SE);
1319   // If the stride is negative, insert a sub instead of an add for the increment
1320   // (unless it's a constant, because subtracts of constants are canonicalized
1321   // to adds).
1322   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1323   if (useSubtract)
1324     Step = SE.getNegativeSCEV(Step);
1325   // Expand the step somewhere that dominates the loop header.
1326   Value *StepV = expandCodeForImpl(
1327       Step, IntTy, &*L->getHeader()->getFirstInsertionPt());
1328 
1329   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1330   // we actually do emit an addition.  It does not apply if we emit a
1331   // subtraction.
1332   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1333   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1334 
1335   // Create the PHI.
1336   BasicBlock *Header = L->getHeader();
1337   Builder.SetInsertPoint(Header, Header->begin());
1338   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1339   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1340                                   Twine(IVName) + ".iv");
1341 
1342   // Create the step instructions and populate the PHI.
1343   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1344     BasicBlock *Pred = *HPI;
1345 
1346     // Add a start value.
1347     if (!L->contains(Pred)) {
1348       PN->addIncoming(StartV, Pred);
1349       continue;
1350     }
1351 
1352     // Create a step value and add it to the PHI.
1353     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1354     // instructions at IVIncInsertPos.
1355     Instruction *InsertPos = L == IVIncInsertLoop ?
1356       IVIncInsertPos : Pred->getTerminator();
1357     Builder.SetInsertPoint(InsertPos);
1358     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1359 
1360     if (isa<OverflowingBinaryOperator>(IncV)) {
1361       if (IncrementIsNUW)
1362         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1363       if (IncrementIsNSW)
1364         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1365     }
1366     PN->addIncoming(IncV, Pred);
1367   }
1368 
1369   // After expanding subexpressions, restore the PostIncLoops set so the caller
1370   // can ensure that IVIncrement dominates the current uses.
1371   PostIncLoops = SavedPostIncLoops;
1372 
1373   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1374   // effective when we are able to use an IV inserted here, so record it.
1375   InsertedValues.insert(PN);
1376   InsertedIVs.push_back(PN);
1377   return PN;
1378 }
1379 
1380 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1381   Type *STy = S->getType();
1382   Type *IntTy = SE.getEffectiveSCEVType(STy);
1383   const Loop *L = S->getLoop();
1384 
1385   // Determine a normalized form of this expression, which is the expression
1386   // before any post-inc adjustment is made.
1387   const SCEVAddRecExpr *Normalized = S;
1388   if (PostIncLoops.count(L)) {
1389     PostIncLoopSet Loops;
1390     Loops.insert(L);
1391     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1392   }
1393 
1394   // Strip off any non-loop-dominating component from the addrec start.
1395   const SCEV *Start = Normalized->getStart();
1396   const SCEV *PostLoopOffset = nullptr;
1397   if (!SE.properlyDominates(Start, L->getHeader())) {
1398     PostLoopOffset = Start;
1399     Start = SE.getConstant(Normalized->getType(), 0);
1400     Normalized = cast<SCEVAddRecExpr>(
1401       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1402                        Normalized->getLoop(),
1403                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1404   }
1405 
1406   // Strip off any non-loop-dominating component from the addrec step.
1407   const SCEV *Step = Normalized->getStepRecurrence(SE);
1408   const SCEV *PostLoopScale = nullptr;
1409   if (!SE.dominates(Step, L->getHeader())) {
1410     PostLoopScale = Step;
1411     Step = SE.getConstant(Normalized->getType(), 1);
1412     if (!Start->isZero()) {
1413         // The normalization below assumes that Start is constant zero, so if
1414         // it isn't re-associate Start to PostLoopOffset.
1415         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1416         PostLoopOffset = Start;
1417         Start = SE.getConstant(Normalized->getType(), 0);
1418     }
1419     Normalized =
1420       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1421                              Start, Step, Normalized->getLoop(),
1422                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1423   }
1424 
1425   // Expand the core addrec. If we need post-loop scaling, force it to
1426   // expand to an integer type to avoid the need for additional casting.
1427   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1428   // We can't use a pointer type for the addrec if the pointer type is
1429   // non-integral.
1430   Type *AddRecPHIExpandTy =
1431       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1432 
1433   // In some cases, we decide to reuse an existing phi node but need to truncate
1434   // it and/or invert the step.
1435   Type *TruncTy = nullptr;
1436   bool InvertStep = false;
1437   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1438                                           IntTy, TruncTy, InvertStep);
1439 
1440   // Accommodate post-inc mode, if necessary.
1441   Value *Result;
1442   if (!PostIncLoops.count(L))
1443     Result = PN;
1444   else {
1445     // In PostInc mode, use the post-incremented value.
1446     BasicBlock *LatchBlock = L->getLoopLatch();
1447     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1448     Result = PN->getIncomingValueForBlock(LatchBlock);
1449 
1450     // We might be introducing a new use of the post-inc IV that is not poison
1451     // safe, in which case we should drop poison generating flags. Only keep
1452     // those flags for which SCEV has proven that they always hold.
1453     if (isa<OverflowingBinaryOperator>(Result)) {
1454       auto *I = cast<Instruction>(Result);
1455       if (!S->hasNoUnsignedWrap())
1456         I->setHasNoUnsignedWrap(false);
1457       if (!S->hasNoSignedWrap())
1458         I->setHasNoSignedWrap(false);
1459     }
1460 
1461     // For an expansion to use the postinc form, the client must call
1462     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1463     // or dominated by IVIncInsertPos.
1464     if (isa<Instruction>(Result) &&
1465         !SE.DT.dominates(cast<Instruction>(Result),
1466                          &*Builder.GetInsertPoint())) {
1467       // The induction variable's postinc expansion does not dominate this use.
1468       // IVUsers tries to prevent this case, so it is rare. However, it can
1469       // happen when an IVUser outside the loop is not dominated by the latch
1470       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1471       // all cases. Consider a phi outside whose operand is replaced during
1472       // expansion with the value of the postinc user. Without fundamentally
1473       // changing the way postinc users are tracked, the only remedy is
1474       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1475       // but hopefully expandCodeFor handles that.
1476       bool useSubtract =
1477         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1478       if (useSubtract)
1479         Step = SE.getNegativeSCEV(Step);
1480       Value *StepV;
1481       {
1482         // Expand the step somewhere that dominates the loop header.
1483         SCEVInsertPointGuard Guard(Builder, this);
1484         StepV = expandCodeForImpl(
1485             Step, IntTy, &*L->getHeader()->getFirstInsertionPt());
1486       }
1487       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1488     }
1489   }
1490 
1491   // We have decided to reuse an induction variable of a dominating loop. Apply
1492   // truncation and/or inversion of the step.
1493   if (TruncTy) {
1494     Type *ResTy = Result->getType();
1495     // Normalize the result type.
1496     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1497       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1498     // Truncate the result.
1499     if (TruncTy != Result->getType())
1500       Result = Builder.CreateTrunc(Result, TruncTy);
1501 
1502     // Invert the result.
1503     if (InvertStep)
1504       Result = Builder.CreateSub(
1505           expandCodeForImpl(Normalized->getStart(), TruncTy), Result);
1506   }
1507 
1508   // Re-apply any non-loop-dominating scale.
1509   if (PostLoopScale) {
1510     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1511     Result = InsertNoopCastOfTo(Result, IntTy);
1512     Result = Builder.CreateMul(Result,
1513                                expandCodeForImpl(PostLoopScale, IntTy));
1514   }
1515 
1516   // Re-apply any non-loop-dominating offset.
1517   if (PostLoopOffset) {
1518     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1519       if (Result->getType()->isIntegerTy()) {
1520         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy);
1521         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1522       } else {
1523         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1524       }
1525     } else {
1526       Result = InsertNoopCastOfTo(Result, IntTy);
1527       Result = Builder.CreateAdd(
1528           Result, expandCodeForImpl(PostLoopOffset, IntTy));
1529     }
1530   }
1531 
1532   return Result;
1533 }
1534 
1535 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1536   // In canonical mode we compute the addrec as an expression of a canonical IV
1537   // using evaluateAtIteration and expand the resulting SCEV expression. This
1538   // way we avoid introducing new IVs to carry on the computation of the addrec
1539   // throughout the loop.
1540   //
1541   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1542   // type wider than the addrec itself. Emitting a canonical IV of the
1543   // proper type might produce non-legal types, for example expanding an i64
1544   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1545   // back to non-canonical mode for nested addrecs.
1546   if (!CanonicalMode || (S->getNumOperands() > 2))
1547     return expandAddRecExprLiterally(S);
1548 
1549   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1550   const Loop *L = S->getLoop();
1551 
1552   // First check for an existing canonical IV in a suitable type.
1553   PHINode *CanonicalIV = nullptr;
1554   if (PHINode *PN = L->getCanonicalInductionVariable())
1555     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1556       CanonicalIV = PN;
1557 
1558   // Rewrite an AddRec in terms of the canonical induction variable, if
1559   // its type is more narrow.
1560   if (CanonicalIV &&
1561       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1562       !S->getType()->isPointerTy()) {
1563     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1564     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1565       NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType());
1566     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1567                                        S->getNoWrapFlags(SCEV::FlagNW)));
1568     BasicBlock::iterator NewInsertPt =
1569         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1570     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1571                           &*NewInsertPt);
1572     return V;
1573   }
1574 
1575   // {X,+,F} --> X + {0,+,F}
1576   if (!S->getStart()->isZero()) {
1577     if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) {
1578       Value *StartV = expand(SE.getPointerBase(S));
1579       assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1580       return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV);
1581     }
1582 
1583     SmallVector<const SCEV *, 4> NewOps(S->operands());
1584     NewOps[0] = SE.getConstant(Ty, 0);
1585     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1586                                         S->getNoWrapFlags(SCEV::FlagNW));
1587 
1588     // Just do a normal add. Pre-expand the operands to suppress folding.
1589     //
1590     // The LHS and RHS values are factored out of the expand call to make the
1591     // output independent of the argument evaluation order.
1592     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1593     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1594     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1595   }
1596 
1597   // If we don't yet have a canonical IV, create one.
1598   if (!CanonicalIV) {
1599     // Create and insert the PHI node for the induction variable in the
1600     // specified loop.
1601     BasicBlock *Header = L->getHeader();
1602     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1603     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1604                                   &Header->front());
1605     rememberInstruction(CanonicalIV);
1606 
1607     SmallSet<BasicBlock *, 4> PredSeen;
1608     Constant *One = ConstantInt::get(Ty, 1);
1609     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1610       BasicBlock *HP = *HPI;
1611       if (!PredSeen.insert(HP).second) {
1612         // There must be an incoming value for each predecessor, even the
1613         // duplicates!
1614         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1615         continue;
1616       }
1617 
1618       if (L->contains(HP)) {
1619         // Insert a unit add instruction right before the terminator
1620         // corresponding to the back-edge.
1621         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1622                                                      "indvar.next",
1623                                                      HP->getTerminator());
1624         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1625         rememberInstruction(Add);
1626         CanonicalIV->addIncoming(Add, HP);
1627       } else {
1628         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1629       }
1630     }
1631   }
1632 
1633   // {0,+,1} --> Insert a canonical induction variable into the loop!
1634   if (S->isAffine() && S->getOperand(1)->isOne()) {
1635     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1636            "IVs with types different from the canonical IV should "
1637            "already have been handled!");
1638     return CanonicalIV;
1639   }
1640 
1641   // {0,+,F} --> {0,+,1} * F
1642 
1643   // If this is a simple linear addrec, emit it now as a special case.
1644   if (S->isAffine())    // {0,+,F} --> i*F
1645     return
1646       expand(SE.getTruncateOrNoop(
1647         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1648                       SE.getNoopOrAnyExtend(S->getOperand(1),
1649                                             CanonicalIV->getType())),
1650         Ty));
1651 
1652   // If this is a chain of recurrences, turn it into a closed form, using the
1653   // folders, then expandCodeFor the closed form.  This allows the folders to
1654   // simplify the expression without having to build a bunch of special code
1655   // into this folder.
1656   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1657 
1658   // Promote S up to the canonical IV type, if the cast is foldable.
1659   const SCEV *NewS = S;
1660   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1661   if (isa<SCEVAddRecExpr>(Ext))
1662     NewS = Ext;
1663 
1664   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1665 
1666   // Truncate the result down to the original type, if needed.
1667   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1668   return expand(T);
1669 }
1670 
1671 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1672   Value *V =
1673       expandCodeForImpl(S->getOperand(), S->getOperand()->getType());
1674   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1675                            GetOptimalInsertionPointForCastOf(V));
1676 }
1677 
1678 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1679   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1680   Value *V = expandCodeForImpl(
1681       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType())
1682       );
1683   return Builder.CreateTrunc(V, Ty);
1684 }
1685 
1686 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1687   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1688   Value *V = expandCodeForImpl(
1689       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType())
1690       );
1691   return Builder.CreateZExt(V, Ty);
1692 }
1693 
1694 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1695   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1696   Value *V = expandCodeForImpl(
1697       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType())
1698       );
1699   return Builder.CreateSExt(V, Ty);
1700 }
1701 
1702 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
1703                                       Intrinsic::ID IntrinID, Twine Name,
1704                                       bool IsSequential) {
1705   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1706   Type *Ty = LHS->getType();
1707   if (IsSequential)
1708     LHS = Builder.CreateFreeze(LHS);
1709   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1710     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty);
1711     if (IsSequential && i != 0)
1712       RHS = Builder.CreateFreeze(RHS);
1713     Value *Sel;
1714     if (Ty->isIntegerTy())
1715       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
1716                                     /*FMFSource=*/nullptr, Name);
1717     else {
1718       Value *ICmp =
1719           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
1720       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1721     }
1722     LHS = Sel;
1723   }
1724   return LHS;
1725 }
1726 
1727 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1728   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
1729 }
1730 
1731 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1732   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
1733 }
1734 
1735 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1736   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
1737 }
1738 
1739 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1740   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
1741 }
1742 
1743 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1744   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
1745 }
1746 
1747 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1748                                        Instruction *IP) {
1749   setInsertPoint(IP);
1750   Value *V = expandCodeForImpl(SH, Ty);
1751   return V;
1752 }
1753 
1754 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty) {
1755   // Expand the code for this SCEV.
1756   Value *V = expand(SH);
1757 
1758   if (Ty) {
1759     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1760            "non-trivial casts should be done with the SCEVs directly!");
1761     V = InsertNoopCastOfTo(V, Ty);
1762   }
1763   return V;
1764 }
1765 
1766 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1767                                              const Instruction *InsertPt) {
1768   // If the expansion is not in CanonicalMode, and the SCEV contains any
1769   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1770   if (!CanonicalMode && SE.containsAddRecurrence(S))
1771     return nullptr;
1772 
1773   // If S is a constant, it may be worse to reuse an existing Value.
1774   if (isa<SCEVConstant>(S))
1775     return nullptr;
1776 
1777   // Choose a Value from the set which dominates the InsertPt.
1778   // InsertPt should be inside the Value's parent loop so as not to break
1779   // the LCSSA form.
1780   for (Value *V : SE.getSCEVValues(S)) {
1781     Instruction *EntInst = dyn_cast<Instruction>(V);
1782     if (!EntInst)
1783       continue;
1784 
1785     assert(EntInst->getFunction() == InsertPt->getFunction());
1786     if (S->getType() == V->getType() &&
1787         SE.DT.dominates(EntInst, InsertPt) &&
1788         (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1789          SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1790       return V;
1791   }
1792   return nullptr;
1793 }
1794 
1795 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1796 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1797 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1798 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1799 // the expansion will try to reuse Value from ExprValueMap, and only when it
1800 // fails, expand the SCEV literally.
1801 Value *SCEVExpander::expand(const SCEV *S) {
1802   // Compute an insertion point for this SCEV object. Hoist the instructions
1803   // as far out in the loop nest as possible.
1804   Instruction *InsertPt = &*Builder.GetInsertPoint();
1805 
1806   // We can move insertion point only if there is no div or rem operations
1807   // otherwise we are risky to move it over the check for zero denominator.
1808   auto SafeToHoist = [](const SCEV *S) {
1809     return !SCEVExprContains(S, [](const SCEV *S) {
1810               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1811                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1812                   // Division by non-zero constants can be hoisted.
1813                   return SC->getValue()->isZero();
1814                 // All other divisions should not be moved as they may be
1815                 // divisions by zero and should be kept within the
1816                 // conditions of the surrounding loops that guard their
1817                 // execution (see PR35406).
1818                 return true;
1819               }
1820               return false;
1821             });
1822   };
1823   if (SafeToHoist(S)) {
1824     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1825          L = L->getParentLoop()) {
1826       if (SE.isLoopInvariant(S, L)) {
1827         if (!L) break;
1828         if (BasicBlock *Preheader = L->getLoopPreheader())
1829           InsertPt = Preheader->getTerminator();
1830         else
1831           // LSR sets the insertion point for AddRec start/step values to the
1832           // block start to simplify value reuse, even though it's an invalid
1833           // position. SCEVExpander must correct for this in all cases.
1834           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1835       } else {
1836         // If the SCEV is computable at this level, insert it into the header
1837         // after the PHIs (and after any other instructions that we've inserted
1838         // there) so that it is guaranteed to dominate any user inside the loop.
1839         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1840           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1841 
1842         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1843                (isInsertedInstruction(InsertPt) ||
1844                 isa<DbgInfoIntrinsic>(InsertPt))) {
1845           InsertPt = &*std::next(InsertPt->getIterator());
1846         }
1847         break;
1848       }
1849     }
1850   }
1851 
1852   // Check to see if we already expanded this here.
1853   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1854   if (I != InsertedExpressions.end())
1855     return I->second;
1856 
1857   SCEVInsertPointGuard Guard(Builder, this);
1858   Builder.SetInsertPoint(InsertPt);
1859 
1860   // Expand the expression into instructions.
1861   Value *V = FindValueInExprValueMap(S, InsertPt);
1862   if (!V) {
1863     V = visit(S);
1864     V = fixupLCSSAFormFor(V);
1865   } else {
1866     // If we're reusing an existing instruction, we are effectively CSEing two
1867     // copies of the instruction (with potentially different flags).  As such,
1868     // we need to drop any poison generating flags unless we can prove that
1869     // said flags must be valid for all new users.
1870     if (auto *I = dyn_cast<Instruction>(V))
1871       if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))
1872         I->dropPoisonGeneratingFlags();
1873   }
1874   // Remember the expanded value for this SCEV at this location.
1875   //
1876   // This is independent of PostIncLoops. The mapped value simply materializes
1877   // the expression at this insertion point. If the mapped value happened to be
1878   // a postinc expansion, it could be reused by a non-postinc user, but only if
1879   // its insertion point was already at the head of the loop.
1880   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1881   return V;
1882 }
1883 
1884 void SCEVExpander::rememberInstruction(Value *I) {
1885   auto DoInsert = [this](Value *V) {
1886     if (!PostIncLoops.empty())
1887       InsertedPostIncValues.insert(V);
1888     else
1889       InsertedValues.insert(V);
1890   };
1891   DoInsert(I);
1892 }
1893 
1894 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1895 /// replace them with their most canonical representative. Return the number of
1896 /// phis eliminated.
1897 ///
1898 /// This does not depend on any SCEVExpander state but should be used in
1899 /// the same context that SCEVExpander is used.
1900 unsigned
1901 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1902                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1903                                   const TargetTransformInfo *TTI) {
1904   // Find integer phis in order of increasing width.
1905   SmallVector<PHINode*, 8> Phis;
1906   for (PHINode &PN : L->getHeader()->phis())
1907     Phis.push_back(&PN);
1908 
1909   if (TTI)
1910     // Use stable_sort to preserve order of equivalent PHIs, so the order
1911     // of the sorted Phis is the same from run to run on the same loop.
1912     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
1913       // Put pointers at the back and make sure pointer < pointer = false.
1914       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1915         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1916       return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() <
1917              LHS->getType()->getPrimitiveSizeInBits().getFixedValue();
1918     });
1919 
1920   unsigned NumElim = 0;
1921   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1922   // Process phis from wide to narrow. Map wide phis to their truncation
1923   // so narrow phis can reuse them.
1924   for (PHINode *Phi : Phis) {
1925     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1926       if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1927         return V;
1928       if (!SE.isSCEVable(PN->getType()))
1929         return nullptr;
1930       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1931       if (!Const)
1932         return nullptr;
1933       return Const->getValue();
1934     };
1935 
1936     // Fold constant phis. They may be congruent to other constant phis and
1937     // would confuse the logic below that expects proper IVs.
1938     if (Value *V = SimplifyPHINode(Phi)) {
1939       if (V->getType() != Phi->getType())
1940         continue;
1941       SE.forgetValue(Phi);
1942       Phi->replaceAllUsesWith(V);
1943       DeadInsts.emplace_back(Phi);
1944       ++NumElim;
1945       SCEV_DEBUG_WITH_TYPE(DebugType,
1946                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1947                                   << '\n');
1948       continue;
1949     }
1950 
1951     if (!SE.isSCEVable(Phi->getType()))
1952       continue;
1953 
1954     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1955     if (!OrigPhiRef) {
1956       OrigPhiRef = Phi;
1957       if (Phi->getType()->isIntegerTy() && TTI &&
1958           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1959         // This phi can be freely truncated to the narrowest phi type. Map the
1960         // truncated expression to it so it will be reused for narrow types.
1961         const SCEV *TruncExpr =
1962           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1963         ExprToIVMap[TruncExpr] = Phi;
1964       }
1965       continue;
1966     }
1967 
1968     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1969     // sense.
1970     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1971       continue;
1972 
1973     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1974       Instruction *OrigInc = dyn_cast<Instruction>(
1975           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1976       Instruction *IsomorphicInc =
1977           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1978 
1979       if (OrigInc && IsomorphicInc) {
1980         // If this phi has the same width but is more canonical, replace the
1981         // original with it. As part of the "more canonical" determination,
1982         // respect a prior decision to use an IV chain.
1983         if (OrigPhiRef->getType() == Phi->getType() &&
1984             !(ChainedPhis.count(Phi) ||
1985               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1986             (ChainedPhis.count(Phi) ||
1987              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1988           std::swap(OrigPhiRef, Phi);
1989           std::swap(OrigInc, IsomorphicInc);
1990         }
1991         // Replacing the congruent phi is sufficient because acyclic
1992         // redundancy elimination, CSE/GVN, should handle the
1993         // rest. However, once SCEV proves that a phi is congruent,
1994         // it's often the head of an IV user cycle that is isomorphic
1995         // with the original phi. It's worth eagerly cleaning up the
1996         // common case of a single IV increment so that DeleteDeadPHIs
1997         // can remove cycles that had postinc uses.
1998         // Because we may potentially introduce a new use of OrigIV that didn't
1999         // exist before at this point, its poison flags need readjustment.
2000         const SCEV *TruncExpr =
2001             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2002         if (OrigInc != IsomorphicInc &&
2003             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2004             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2005             hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) {
2006           SCEV_DEBUG_WITH_TYPE(
2007               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2008                                 << *IsomorphicInc << '\n');
2009           Value *NewInc = OrigInc;
2010           if (OrigInc->getType() != IsomorphicInc->getType()) {
2011             Instruction *IP = nullptr;
2012             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2013               IP = &*PN->getParent()->getFirstInsertionPt();
2014             else
2015               IP = OrigInc->getNextNode();
2016 
2017             IRBuilder<> Builder(IP);
2018             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2019             NewInc = Builder.CreateTruncOrBitCast(
2020                 OrigInc, IsomorphicInc->getType(), IVName);
2021           }
2022           IsomorphicInc->replaceAllUsesWith(NewInc);
2023           DeadInsts.emplace_back(IsomorphicInc);
2024         }
2025       }
2026     }
2027     SCEV_DEBUG_WITH_TYPE(DebugType,
2028                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
2029                                 << '\n');
2030     SCEV_DEBUG_WITH_TYPE(
2031         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
2032     ++NumElim;
2033     Value *NewIV = OrigPhiRef;
2034     if (OrigPhiRef->getType() != Phi->getType()) {
2035       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2036       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2037       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2038     }
2039     Phi->replaceAllUsesWith(NewIV);
2040     DeadInsts.emplace_back(Phi);
2041   }
2042   return NumElim;
2043 }
2044 
2045 Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S,
2046                                                  const Instruction *At,
2047                                                  Loop *L) {
2048   using namespace llvm::PatternMatch;
2049 
2050   SmallVector<BasicBlock *, 4> ExitingBlocks;
2051   L->getExitingBlocks(ExitingBlocks);
2052 
2053   // Look for suitable value in simple conditions at the loop exits.
2054   for (BasicBlock *BB : ExitingBlocks) {
2055     ICmpInst::Predicate Pred;
2056     Instruction *LHS, *RHS;
2057 
2058     if (!match(BB->getTerminator(),
2059                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2060                     m_BasicBlock(), m_BasicBlock())))
2061       continue;
2062 
2063     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2064       return LHS;
2065 
2066     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2067       return RHS;
2068   }
2069 
2070   // Use expand's logic which is used for reusing a previous Value in
2071   // ExprValueMap.  Note that we don't currently model the cost of
2072   // needing to drop poison generating flags on the instruction if we
2073   // want to reuse it.  We effectively assume that has zero cost.
2074   return FindValueInExprValueMap(S, At);
2075 }
2076 
2077 template<typename T> static InstructionCost costAndCollectOperands(
2078   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2079   TargetTransformInfo::TargetCostKind CostKind,
2080   SmallVectorImpl<SCEVOperand> &Worklist) {
2081 
2082   const T *S = cast<T>(WorkItem.S);
2083   InstructionCost Cost = 0;
2084   // Object to help map SCEV operands to expanded IR instructions.
2085   struct OperationIndices {
2086     OperationIndices(unsigned Opc, size_t min, size_t max) :
2087       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2088     unsigned Opcode;
2089     size_t MinIdx;
2090     size_t MaxIdx;
2091   };
2092 
2093   // Collect the operations of all the instructions that will be needed to
2094   // expand the SCEVExpr. This is so that when we come to cost the operands,
2095   // we know what the generated user(s) will be.
2096   SmallVector<OperationIndices, 2> Operations;
2097 
2098   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2099     Operations.emplace_back(Opcode, 0, 0);
2100     return TTI.getCastInstrCost(Opcode, S->getType(),
2101                                 S->getOperand(0)->getType(),
2102                                 TTI::CastContextHint::None, CostKind);
2103   };
2104 
2105   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2106                        unsigned MinIdx = 0,
2107                        unsigned MaxIdx = 1) -> InstructionCost {
2108     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2109     return NumRequired *
2110       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2111   };
2112 
2113   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2114                         unsigned MaxIdx) -> InstructionCost {
2115     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2116     Type *OpType = S->getType();
2117     return NumRequired * TTI.getCmpSelInstrCost(
2118                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2119                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2120   };
2121 
2122   switch (S->getSCEVType()) {
2123   case scCouldNotCompute:
2124     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2125   case scUnknown:
2126   case scConstant:
2127     return 0;
2128   case scPtrToInt:
2129     Cost = CastCost(Instruction::PtrToInt);
2130     break;
2131   case scTruncate:
2132     Cost = CastCost(Instruction::Trunc);
2133     break;
2134   case scZeroExtend:
2135     Cost = CastCost(Instruction::ZExt);
2136     break;
2137   case scSignExtend:
2138     Cost = CastCost(Instruction::SExt);
2139     break;
2140   case scUDivExpr: {
2141     unsigned Opcode = Instruction::UDiv;
2142     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2143       if (SC->getAPInt().isPowerOf2())
2144         Opcode = Instruction::LShr;
2145     Cost = ArithCost(Opcode, 1);
2146     break;
2147   }
2148   case scAddExpr:
2149     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2150     break;
2151   case scMulExpr:
2152     // TODO: this is a very pessimistic cost modelling for Mul,
2153     // because of Bin Pow algorithm actually used by the expander,
2154     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2155     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2156     break;
2157   case scSMaxExpr:
2158   case scUMaxExpr:
2159   case scSMinExpr:
2160   case scUMinExpr:
2161   case scSequentialUMinExpr: {
2162     // FIXME: should this ask the cost for Intrinsic's?
2163     // The reduction tree.
2164     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2165     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2166     switch (S->getSCEVType()) {
2167     case scSequentialUMinExpr: {
2168       // The safety net against poison.
2169       // FIXME: this is broken.
2170       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
2171       Cost += ArithCost(Instruction::Or,
2172                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
2173       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
2174       break;
2175     }
2176     default:
2177       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
2178              "Unhandled SCEV expression type?");
2179       break;
2180     }
2181     break;
2182   }
2183   case scAddRecExpr: {
2184     // In this polynominal, we may have some zero operands, and we shouldn't
2185     // really charge for those. So how many non-zero coefficients are there?
2186     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2187                                     return !Op->isZero();
2188                                   });
2189 
2190     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2191     assert(!(*std::prev(S->operands().end()))->isZero() &&
2192            "Last operand should not be zero");
2193 
2194     // Ignoring constant term (operand 0), how many of the coefficients are u> 1?
2195     int NumNonZeroDegreeNonOneTerms =
2196       llvm::count_if(S->operands(), [](const SCEV *Op) {
2197                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2198                       return !SConst || SConst->getAPInt().ugt(1);
2199                     });
2200 
2201     // Much like with normal add expr, the polynominal will require
2202     // one less addition than the number of it's terms.
2203     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2204                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
2205     // Here, *each* one of those will require a multiplication.
2206     InstructionCost MulCost =
2207         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2208     Cost = AddCost + MulCost;
2209 
2210     // What is the degree of this polynominal?
2211     int PolyDegree = S->getNumOperands() - 1;
2212     assert(PolyDegree >= 1 && "Should be at least affine.");
2213 
2214     // The final term will be:
2215     //   Op_{PolyDegree} * x ^ {PolyDegree}
2216     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2217     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2218     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2219     // FIXME: this is conservatively correct, but might be overly pessimistic.
2220     Cost += MulCost * (PolyDegree - 1);
2221     break;
2222   }
2223   }
2224 
2225   for (auto &CostOp : Operations) {
2226     for (auto SCEVOp : enumerate(S->operands())) {
2227       // Clamp the index to account for multiple IR operations being chained.
2228       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2229       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2230       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2231     }
2232   }
2233   return Cost;
2234 }
2235 
2236 bool SCEVExpander::isHighCostExpansionHelper(
2237     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2238     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2239     SmallPtrSetImpl<const SCEV *> &Processed,
2240     SmallVectorImpl<SCEVOperand> &Worklist) {
2241   if (Cost > Budget)
2242     return true; // Already run out of budget, give up.
2243 
2244   const SCEV *S = WorkItem.S;
2245   // Was the cost of expansion of this expression already accounted for?
2246   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2247     return false; // We have already accounted for this expression.
2248 
2249   // If we can find an existing value for this scev available at the point "At"
2250   // then consider the expression cheap.
2251   if (getRelatedExistingExpansion(S, &At, L))
2252     return false; // Consider the expression to be free.
2253 
2254   TargetTransformInfo::TargetCostKind CostKind =
2255       L->getHeader()->getParent()->hasMinSize()
2256           ? TargetTransformInfo::TCK_CodeSize
2257           : TargetTransformInfo::TCK_RecipThroughput;
2258 
2259   switch (S->getSCEVType()) {
2260   case scCouldNotCompute:
2261     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2262   case scUnknown:
2263     // Assume to be zero-cost.
2264     return false;
2265   case scConstant: {
2266     // Only evalulate the costs of constants when optimizing for size.
2267     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2268       return false;
2269     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2270     Type *Ty = S->getType();
2271     Cost += TTI.getIntImmCostInst(
2272         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2273     return Cost > Budget;
2274   }
2275   case scTruncate:
2276   case scPtrToInt:
2277   case scZeroExtend:
2278   case scSignExtend: {
2279     Cost +=
2280         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2281     return false; // Will answer upon next entry into this function.
2282   }
2283   case scUDivExpr: {
2284     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2285     // HowManyLessThans produced to compute a precise expression, rather than a
2286     // UDiv from the user's code. If we can't find a UDiv in the code with some
2287     // simple searching, we need to account for it's cost.
2288 
2289     // At the beginning of this function we already tried to find existing
2290     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2291     // pattern involving division. This is just a simple search heuristic.
2292     if (getRelatedExistingExpansion(
2293             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2294       return false; // Consider it to be free.
2295 
2296     Cost +=
2297         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2298     return false; // Will answer upon next entry into this function.
2299   }
2300   case scAddExpr:
2301   case scMulExpr:
2302   case scUMaxExpr:
2303   case scSMaxExpr:
2304   case scUMinExpr:
2305   case scSMinExpr:
2306   case scSequentialUMinExpr: {
2307     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2308            "Nary expr should have more than 1 operand.");
2309     // The simple nary expr will require one less op (or pair of ops)
2310     // than the number of it's terms.
2311     Cost +=
2312         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2313     return Cost > Budget;
2314   }
2315   case scAddRecExpr: {
2316     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2317            "Polynomial should be at least linear");
2318     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2319         WorkItem, TTI, CostKind, Worklist);
2320     return Cost > Budget;
2321   }
2322   }
2323   llvm_unreachable("Unknown SCEV kind!");
2324 }
2325 
2326 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2327                                             Instruction *IP) {
2328   assert(IP);
2329   switch (Pred->getKind()) {
2330   case SCEVPredicate::P_Union:
2331     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2332   case SCEVPredicate::P_Compare:
2333     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
2334   case SCEVPredicate::P_Wrap: {
2335     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2336     return expandWrapPredicate(AddRecPred, IP);
2337   }
2338   }
2339   llvm_unreachable("Unknown SCEV predicate type");
2340 }
2341 
2342 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
2343                                             Instruction *IP) {
2344   Value *Expr0 =
2345       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2346   Value *Expr1 =
2347       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2348 
2349   Builder.SetInsertPoint(IP);
2350   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
2351   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
2352   return I;
2353 }
2354 
2355 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2356                                            Instruction *Loc, bool Signed) {
2357   assert(AR->isAffine() && "Cannot generate RT check for "
2358                            "non-affine expression");
2359 
2360   // FIXME: It is highly suspicious that we're ignoring the predicates here.
2361   SmallVector<const SCEVPredicate *, 4> Pred;
2362   const SCEV *ExitCount =
2363       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2364 
2365   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2366 
2367   const SCEV *Step = AR->getStepRecurrence(SE);
2368   const SCEV *Start = AR->getStart();
2369 
2370   Type *ARTy = AR->getType();
2371   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2372   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2373 
2374   // The expression {Start,+,Step} has nusw/nssw if
2375   //   Step < 0, Start - |Step| * Backedge <= Start
2376   //   Step >= 0, Start + |Step| * Backedge > Start
2377   // and |Step| * Backedge doesn't unsigned overflow.
2378 
2379   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2380   Builder.SetInsertPoint(Loc);
2381   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc);
2382 
2383   IntegerType *Ty =
2384       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2385 
2386   Value *StepValue = expandCodeForImpl(Step, Ty, Loc);
2387   Value *NegStepValue =
2388       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc);
2389   Value *StartValue = expandCodeForImpl(Start, ARTy, Loc);
2390 
2391   ConstantInt *Zero =
2392       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2393 
2394   Builder.SetInsertPoint(Loc);
2395   // Compute |Step|
2396   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2397   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2398 
2399   // Compute |Step| * Backedge
2400   // Compute:
2401   //   1. Start + |Step| * Backedge < Start
2402   //   2. Start - |Step| * Backedge > Start
2403   //
2404   // And select either 1. or 2. depending on whether step is positive or
2405   // negative. If Step is known to be positive or negative, only create
2406   // either 1. or 2.
2407   auto ComputeEndCheck = [&]() -> Value * {
2408     // Checking <u 0 is always false.
2409     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2410       return ConstantInt::getFalse(Loc->getContext());
2411 
2412     // Get the backedge taken count and truncate or extended to the AR type.
2413     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2414 
2415     Value *MulV, *OfMul;
2416     if (Step->isOne()) {
2417       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2418       // needed, there is never an overflow, so to avoid artificially inflating
2419       // the cost of the check, directly emit the optimized IR.
2420       MulV = TruncTripCount;
2421       OfMul = ConstantInt::getFalse(MulV->getContext());
2422     } else {
2423       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2424                                              Intrinsic::umul_with_overflow, Ty);
2425       CallInst *Mul =
2426           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2427       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2428       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2429     }
2430 
2431     Value *Add = nullptr, *Sub = nullptr;
2432     bool NeedPosCheck = !SE.isKnownNegative(Step);
2433     bool NeedNegCheck = !SE.isKnownPositive(Step);
2434 
2435     if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) {
2436       StartValue = InsertNoopCastOfTo(
2437           StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace()));
2438       Value *NegMulV = Builder.CreateNeg(MulV);
2439       if (NeedPosCheck)
2440         Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV);
2441       if (NeedNegCheck)
2442         Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV);
2443     } else {
2444       if (NeedPosCheck)
2445         Add = Builder.CreateAdd(StartValue, MulV);
2446       if (NeedNegCheck)
2447         Sub = Builder.CreateSub(StartValue, MulV);
2448     }
2449 
2450     Value *EndCompareLT = nullptr;
2451     Value *EndCompareGT = nullptr;
2452     Value *EndCheck = nullptr;
2453     if (NeedPosCheck)
2454       EndCheck = EndCompareLT = Builder.CreateICmp(
2455           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2456     if (NeedNegCheck)
2457       EndCheck = EndCompareGT = Builder.CreateICmp(
2458           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2459     if (NeedPosCheck && NeedNegCheck) {
2460       // Select the answer based on the sign of Step.
2461       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2462     }
2463     return Builder.CreateOr(EndCheck, OfMul);
2464   };
2465   Value *EndCheck = ComputeEndCheck();
2466 
2467   // If the backedge taken count type is larger than the AR type,
2468   // check that we don't drop any bits by truncating it. If we are
2469   // dropping bits, then we have overflow (unless the step is zero).
2470   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2471     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2472     auto *BackedgeCheck =
2473         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2474                            ConstantInt::get(Loc->getContext(), MaxVal));
2475     BackedgeCheck = Builder.CreateAnd(
2476         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2477 
2478     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2479   }
2480 
2481   return EndCheck;
2482 }
2483 
2484 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2485                                          Instruction *IP) {
2486   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2487   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2488 
2489   // Add a check for NUSW
2490   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2491     NUSWCheck = generateOverflowCheck(A, IP, false);
2492 
2493   // Add a check for NSSW
2494   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2495     NSSWCheck = generateOverflowCheck(A, IP, true);
2496 
2497   if (NUSWCheck && NSSWCheck)
2498     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2499 
2500   if (NUSWCheck)
2501     return NUSWCheck;
2502 
2503   if (NSSWCheck)
2504     return NSSWCheck;
2505 
2506   return ConstantInt::getFalse(IP->getContext());
2507 }
2508 
2509 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2510                                           Instruction *IP) {
2511   // Loop over all checks in this set.
2512   SmallVector<Value *> Checks;
2513   for (const auto *Pred : Union->getPredicates()) {
2514     Checks.push_back(expandCodeForPredicate(Pred, IP));
2515     Builder.SetInsertPoint(IP);
2516   }
2517 
2518   if (Checks.empty())
2519     return ConstantInt::getFalse(IP->getContext());
2520   return Builder.CreateOr(Checks);
2521 }
2522 
2523 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) {
2524   auto *DefI = dyn_cast<Instruction>(V);
2525   if (!PreserveLCSSA || !DefI)
2526     return V;
2527 
2528   Instruction *InsertPt = &*Builder.GetInsertPoint();
2529   Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent());
2530   Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent());
2531   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2532     return V;
2533 
2534   // Create a temporary instruction to at the current insertion point, so we
2535   // can hand it off to the helper to create LCSSA PHIs if required for the
2536   // new use.
2537   // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
2538   // would accept a insertion point and return an LCSSA phi for that
2539   // insertion point, so there is no need to insert & remove the temporary
2540   // instruction.
2541   Type *ToTy;
2542   if (DefI->getType()->isIntegerTy())
2543     ToTy = DefI->getType()->getPointerTo();
2544   else
2545     ToTy = Type::getInt32Ty(DefI->getContext());
2546   Instruction *User =
2547       CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt);
2548   auto RemoveUserOnExit =
2549       make_scope_exit([User]() { User->eraseFromParent(); });
2550 
2551   SmallVector<Instruction *, 1> ToUpdate;
2552   ToUpdate.push_back(DefI);
2553   SmallVector<PHINode *, 16> PHIsToRemove;
2554   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2555   for (PHINode *PN : PHIsToRemove) {
2556     if (!PN->use_empty())
2557       continue;
2558     InsertedValues.erase(PN);
2559     InsertedPostIncValues.erase(PN);
2560     PN->eraseFromParent();
2561   }
2562 
2563   return User->getOperand(0);
2564 }
2565 
2566 namespace {
2567 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2568 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2569 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2570 // instruction, but the important thing is that we prove the denominator is
2571 // nonzero before expansion.
2572 //
2573 // IVUsers already checks that IV-derived expressions are safe. So this check is
2574 // only needed when the expression includes some subexpression that is not IV
2575 // derived.
2576 //
2577 // Currently, we only allow division by a value provably non-zero here.
2578 //
2579 // We cannot generally expand recurrences unless the step dominates the loop
2580 // header. The expander handles the special case of affine recurrences by
2581 // scaling the recurrence outside the loop, but this technique isn't generally
2582 // applicable. Expanding a nested recurrence outside a loop requires computing
2583 // binomial coefficients. This could be done, but the recurrence has to be in a
2584 // perfectly reduced form, which can't be guaranteed.
2585 struct SCEVFindUnsafe {
2586   ScalarEvolution &SE;
2587   bool CanonicalMode;
2588   bool IsUnsafe = false;
2589 
2590   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2591       : SE(SE), CanonicalMode(CanonicalMode) {}
2592 
2593   bool follow(const SCEV *S) {
2594     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2595       if (!SE.isKnownNonZero(D->getRHS())) {
2596         IsUnsafe = true;
2597         return false;
2598       }
2599     }
2600     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2601       const SCEV *Step = AR->getStepRecurrence(SE);
2602       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2603         IsUnsafe = true;
2604         return false;
2605       }
2606 
2607       // For non-affine addrecs or in non-canonical mode we need a preheader
2608       // to insert into.
2609       if (!AR->getLoop()->getLoopPreheader() &&
2610           (!CanonicalMode || !AR->isAffine())) {
2611         IsUnsafe = true;
2612         return false;
2613       }
2614     }
2615     return true;
2616   }
2617   bool isDone() const { return IsUnsafe; }
2618 };
2619 } // namespace
2620 
2621 bool SCEVExpander::isSafeToExpand(const SCEV *S) const {
2622   SCEVFindUnsafe Search(SE, CanonicalMode);
2623   visitAll(S, Search);
2624   return !Search.IsUnsafe;
2625 }
2626 
2627 bool SCEVExpander::isSafeToExpandAt(const SCEV *S,
2628                                     const Instruction *InsertionPoint) const {
2629   if (!isSafeToExpand(S))
2630     return false;
2631   // We have to prove that the expanded site of S dominates InsertionPoint.
2632   // This is easy when not in the same block, but hard when S is an instruction
2633   // to be expanded somewhere inside the same block as our insertion point.
2634   // What we really need here is something analogous to an OrderedBasicBlock,
2635   // but for the moment, we paper over the problem by handling two common and
2636   // cheap to check cases.
2637   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2638     return true;
2639   if (SE.dominates(S, InsertionPoint->getParent())) {
2640     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2641       return true;
2642     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2643       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2644         return true;
2645   }
2646   return false;
2647 }
2648 
2649 void SCEVExpanderCleaner::cleanup() {
2650   // Result is used, nothing to remove.
2651   if (ResultUsed)
2652     return;
2653 
2654   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2655 #ifndef NDEBUG
2656   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2657                                             InsertedInstructions.end());
2658   (void)InsertedSet;
2659 #endif
2660   // Remove sets with value handles.
2661   Expander.clear();
2662 
2663   // Remove all inserted instructions.
2664   for (Instruction *I : reverse(InsertedInstructions)) {
2665 #ifndef NDEBUG
2666     assert(all_of(I->users(),
2667                   [&InsertedSet](Value *U) {
2668                     return InsertedSet.contains(cast<Instruction>(U));
2669                   }) &&
2670            "removed instruction should only be used by instructions inserted "
2671            "during expansion");
2672 #endif
2673     assert(!I->getType()->isVoidTy() &&
2674            "inserted instruction should have non-void types");
2675     I->replaceAllUsesWith(PoisonValue::get(I->getType()));
2676     I->eraseFromParent();
2677   }
2678 }
2679