1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/LoopUtils.h" 30 31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33 #else 34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35 #endif 36 37 using namespace llvm; 38 39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 40 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 41 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 42 "controls the budget that is considered cheap (default = 4)")); 43 44 using namespace PatternMatch; 45 46 PoisonFlags::PoisonFlags(const Instruction *I) { 47 NUW = false; 48 NSW = false; 49 Exact = false; 50 Disjoint = false; 51 NNeg = false; 52 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) { 53 NUW = OBO->hasNoUnsignedWrap(); 54 NSW = OBO->hasNoSignedWrap(); 55 } 56 if (auto *PEO = dyn_cast<PossiblyExactOperator>(I)) 57 Exact = PEO->isExact(); 58 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I)) 59 Disjoint = PDI->isDisjoint(); 60 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I)) 61 NNeg = PNI->hasNonNeg(); 62 if (auto *TI = dyn_cast<TruncInst>(I)) { 63 NUW = TI->hasNoUnsignedWrap(); 64 NSW = TI->hasNoSignedWrap(); 65 } 66 } 67 68 void PoisonFlags::apply(Instruction *I) { 69 if (isa<OverflowingBinaryOperator>(I)) { 70 I->setHasNoUnsignedWrap(NUW); 71 I->setHasNoSignedWrap(NSW); 72 } 73 if (isa<PossiblyExactOperator>(I)) 74 I->setIsExact(Exact); 75 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I)) 76 PDI->setIsDisjoint(Disjoint); 77 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I)) 78 PNI->setNonNeg(NNeg); 79 if (isa<TruncInst>(I)) { 80 I->setHasNoUnsignedWrap(NUW); 81 I->setHasNoSignedWrap(NSW); 82 } 83 } 84 85 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 86 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 87 /// creating a new one. 88 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 89 Instruction::CastOps Op, 90 BasicBlock::iterator IP) { 91 // This function must be called with the builder having a valid insertion 92 // point. It doesn't need to be the actual IP where the uses of the returned 93 // cast will be added, but it must dominate such IP. 94 // We use this precondition to produce a cast that will dominate all its 95 // uses. In particular, this is crucial for the case where the builder's 96 // insertion point *is* the point where we were asked to put the cast. 97 // Since we don't know the builder's insertion point is actually 98 // where the uses will be added (only that it dominates it), we are 99 // not allowed to move it. 100 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 101 102 Value *Ret = nullptr; 103 104 // Check to see if there is already a cast! 105 for (User *U : V->users()) { 106 if (U->getType() != Ty) 107 continue; 108 CastInst *CI = dyn_cast<CastInst>(U); 109 if (!CI || CI->getOpcode() != Op) 110 continue; 111 112 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 113 // the cast must also properly dominate the Builder's insertion point. 114 if (IP->getParent() == CI->getParent() && &*BIP != CI && 115 (&*IP == CI || CI->comesBefore(&*IP))) { 116 Ret = CI; 117 break; 118 } 119 } 120 121 // Create a new cast. 122 if (!Ret) { 123 SCEVInsertPointGuard Guard(Builder, this); 124 Builder.SetInsertPoint(&*IP); 125 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 126 } 127 128 // We assert at the end of the function since IP might point to an 129 // instruction with different dominance properties than a cast 130 // (an invoke for example) and not dominate BIP (but the cast does). 131 assert(!isa<Instruction>(Ret) || 132 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 133 134 return Ret; 135 } 136 137 BasicBlock::iterator 138 SCEVExpander::findInsertPointAfter(Instruction *I, 139 Instruction *MustDominate) const { 140 BasicBlock::iterator IP = ++I->getIterator(); 141 if (auto *II = dyn_cast<InvokeInst>(I)) 142 IP = II->getNormalDest()->begin(); 143 144 while (isa<PHINode>(IP)) 145 ++IP; 146 147 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 148 ++IP; 149 } else if (isa<CatchSwitchInst>(IP)) { 150 IP = MustDominate->getParent()->getFirstInsertionPt(); 151 } else { 152 assert(!IP->isEHPad() && "unexpected eh pad!"); 153 } 154 155 // Adjust insert point to be after instructions inserted by the expander, so 156 // we can re-use already inserted instructions. Avoid skipping past the 157 // original \p MustDominate, in case it is an inserted instruction. 158 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 159 ++IP; 160 161 return IP; 162 } 163 164 BasicBlock::iterator 165 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 166 // Cast the argument at the beginning of the entry block, after 167 // any bitcasts of other arguments. 168 if (Argument *A = dyn_cast<Argument>(V)) { 169 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 170 while ((isa<BitCastInst>(IP) && 171 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 172 cast<BitCastInst>(IP)->getOperand(0) != A) || 173 isa<DbgInfoIntrinsic>(IP)) 174 ++IP; 175 return IP; 176 } 177 178 // Cast the instruction immediately after the instruction. 179 if (Instruction *I = dyn_cast<Instruction>(V)) 180 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 181 182 // Otherwise, this must be some kind of a constant, 183 // so let's plop this cast into the function's entry block. 184 assert(isa<Constant>(V) && 185 "Expected the cast argument to be a global/constant"); 186 return Builder.GetInsertBlock() 187 ->getParent() 188 ->getEntryBlock() 189 .getFirstInsertionPt(); 190 } 191 192 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 193 /// which must be possible with a noop cast, doing what we can to share 194 /// the casts. 195 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 196 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 197 assert((Op == Instruction::BitCast || 198 Op == Instruction::PtrToInt || 199 Op == Instruction::IntToPtr) && 200 "InsertNoopCastOfTo cannot perform non-noop casts!"); 201 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 202 "InsertNoopCastOfTo cannot change sizes!"); 203 204 // inttoptr only works for integral pointers. For non-integral pointers, we 205 // can create a GEP on null with the integral value as index. Note that 206 // it is safe to use GEP of null instead of inttoptr here, because only 207 // expressions already based on a GEP of null should be converted to pointers 208 // during expansion. 209 if (Op == Instruction::IntToPtr) { 210 auto *PtrTy = cast<PointerType>(Ty); 211 if (DL.isNonIntegralPointerType(PtrTy)) 212 return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep"); 213 } 214 // Short-circuit unnecessary bitcasts. 215 if (Op == Instruction::BitCast) { 216 if (V->getType() == Ty) 217 return V; 218 if (CastInst *CI = dyn_cast<CastInst>(V)) { 219 if (CI->getOperand(0)->getType() == Ty) 220 return CI->getOperand(0); 221 } 222 } 223 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 224 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 225 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 226 if (CastInst *CI = dyn_cast<CastInst>(V)) 227 if ((CI->getOpcode() == Instruction::PtrToInt || 228 CI->getOpcode() == Instruction::IntToPtr) && 229 SE.getTypeSizeInBits(CI->getType()) == 230 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 231 return CI->getOperand(0); 232 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 233 if ((CE->getOpcode() == Instruction::PtrToInt || 234 CE->getOpcode() == Instruction::IntToPtr) && 235 SE.getTypeSizeInBits(CE->getType()) == 236 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 237 return CE->getOperand(0); 238 } 239 240 // Fold a cast of a constant. 241 if (Constant *C = dyn_cast<Constant>(V)) 242 return ConstantExpr::getCast(Op, C, Ty); 243 244 // Try to reuse existing cast, or insert one. 245 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 246 } 247 248 /// InsertBinop - Insert the specified binary operator, doing a small amount 249 /// of work to avoid inserting an obviously redundant operation, and hoisting 250 /// to an outer loop when the opportunity is there and it is safe. 251 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 252 Value *LHS, Value *RHS, 253 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 254 // Fold a binop with constant operands. 255 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 256 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 257 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 258 return Res; 259 260 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 261 unsigned ScanLimit = 6; 262 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 263 // Scanning starts from the last instruction before the insertion point. 264 BasicBlock::iterator IP = Builder.GetInsertPoint(); 265 if (IP != BlockBegin) { 266 --IP; 267 for (; ScanLimit; --IP, --ScanLimit) { 268 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 269 // generated code. 270 if (isa<DbgInfoIntrinsic>(IP)) 271 ScanLimit++; 272 273 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 274 // Ensure that no-wrap flags match. 275 if (isa<OverflowingBinaryOperator>(I)) { 276 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 277 return true; 278 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 279 return true; 280 } 281 // Conservatively, do not use any instruction which has any of exact 282 // flags installed. 283 if (isa<PossiblyExactOperator>(I) && I->isExact()) 284 return true; 285 return false; 286 }; 287 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 288 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 289 return &*IP; 290 if (IP == BlockBegin) break; 291 } 292 } 293 294 // Save the original insertion point so we can restore it when we're done. 295 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 296 SCEVInsertPointGuard Guard(Builder, this); 297 298 if (IsSafeToHoist) { 299 // Move the insertion point out of as many loops as we can. 300 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 301 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 302 BasicBlock *Preheader = L->getLoopPreheader(); 303 if (!Preheader) break; 304 305 // Ok, move up a level. 306 Builder.SetInsertPoint(Preheader->getTerminator()); 307 } 308 } 309 310 // If we haven't found this binop, insert it. 311 // TODO: Use the Builder, which will make CreateBinOp below fold with 312 // InstSimplifyFolder. 313 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 314 BO->setDebugLoc(Loc); 315 if (Flags & SCEV::FlagNUW) 316 BO->setHasNoUnsignedWrap(); 317 if (Flags & SCEV::FlagNSW) 318 BO->setHasNoSignedWrap(); 319 320 return BO; 321 } 322 323 /// expandAddToGEP - Expand an addition expression with a pointer type into 324 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 325 /// BasicAliasAnalysis and other passes analyze the result. See the rules 326 /// for getelementptr vs. inttoptr in 327 /// http://llvm.org/docs/LangRef.html#pointeraliasing 328 /// for details. 329 /// 330 /// Design note: The correctness of using getelementptr here depends on 331 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 332 /// they may introduce pointer arithmetic which may not be safely converted 333 /// into getelementptr. 334 /// 335 /// Design note: It might seem desirable for this function to be more 336 /// loop-aware. If some of the indices are loop-invariant while others 337 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 338 /// loop-invariant portions of the overall computation outside the loop. 339 /// However, there are a few reasons this is not done here. Hoisting simple 340 /// arithmetic is a low-level optimization that often isn't very 341 /// important until late in the optimization process. In fact, passes 342 /// like InstructionCombining will combine GEPs, even if it means 343 /// pushing loop-invariant computation down into loops, so even if the 344 /// GEPs were split here, the work would quickly be undone. The 345 /// LoopStrengthReduction pass, which is usually run quite late (and 346 /// after the last InstructionCombining pass), takes care of hoisting 347 /// loop-invariant portions of expressions, after considering what 348 /// can be folded using target addressing modes. 349 /// 350 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) { 351 assert(!isa<Instruction>(V) || 352 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 353 354 Value *Idx = expand(Offset); 355 356 // Fold a GEP with constant operands. 357 if (Constant *CLHS = dyn_cast<Constant>(V)) 358 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 359 return Builder.CreatePtrAdd(CLHS, CRHS); 360 361 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 362 unsigned ScanLimit = 6; 363 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 364 // Scanning starts from the last instruction before the insertion point. 365 BasicBlock::iterator IP = Builder.GetInsertPoint(); 366 if (IP != BlockBegin) { 367 --IP; 368 for (; ScanLimit; --IP, --ScanLimit) { 369 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 370 // generated code. 371 if (isa<DbgInfoIntrinsic>(IP)) 372 ScanLimit++; 373 if (IP->getOpcode() == Instruction::GetElementPtr && 374 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 375 cast<GEPOperator>(&*IP)->getSourceElementType() == 376 Builder.getInt8Ty()) 377 return &*IP; 378 if (IP == BlockBegin) break; 379 } 380 } 381 382 // Save the original insertion point so we can restore it when we're done. 383 SCEVInsertPointGuard Guard(Builder, this); 384 385 // Move the insertion point out of as many loops as we can. 386 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 387 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 388 BasicBlock *Preheader = L->getLoopPreheader(); 389 if (!Preheader) break; 390 391 // Ok, move up a level. 392 Builder.SetInsertPoint(Preheader->getTerminator()); 393 } 394 395 // Emit a GEP. 396 return Builder.CreatePtrAdd(V, Idx, "scevgep"); 397 } 398 399 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 400 /// SCEV expansion. If they are nested, this is the most nested. If they are 401 /// neighboring, pick the later. 402 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 403 DominatorTree &DT) { 404 if (!A) return B; 405 if (!B) return A; 406 if (A->contains(B)) return B; 407 if (B->contains(A)) return A; 408 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 409 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 410 return A; // Arbitrarily break the tie. 411 } 412 413 /// getRelevantLoop - Get the most relevant loop associated with the given 414 /// expression, according to PickMostRelevantLoop. 415 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 416 // Test whether we've already computed the most relevant loop for this SCEV. 417 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 418 if (!Pair.second) 419 return Pair.first->second; 420 421 switch (S->getSCEVType()) { 422 case scConstant: 423 case scVScale: 424 return nullptr; // A constant has no relevant loops. 425 case scTruncate: 426 case scZeroExtend: 427 case scSignExtend: 428 case scPtrToInt: 429 case scAddExpr: 430 case scMulExpr: 431 case scUDivExpr: 432 case scAddRecExpr: 433 case scUMaxExpr: 434 case scSMaxExpr: 435 case scUMinExpr: 436 case scSMinExpr: 437 case scSequentialUMinExpr: { 438 const Loop *L = nullptr; 439 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 440 L = AR->getLoop(); 441 for (const SCEV *Op : S->operands()) 442 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 443 return RelevantLoops[S] = L; 444 } 445 case scUnknown: { 446 const SCEVUnknown *U = cast<SCEVUnknown>(S); 447 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 448 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 449 // A non-instruction has no relevant loops. 450 return nullptr; 451 } 452 case scCouldNotCompute: 453 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 454 } 455 llvm_unreachable("Unexpected SCEV type!"); 456 } 457 458 namespace { 459 460 /// LoopCompare - Compare loops by PickMostRelevantLoop. 461 class LoopCompare { 462 DominatorTree &DT; 463 public: 464 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 465 466 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 467 std::pair<const Loop *, const SCEV *> RHS) const { 468 // Keep pointer operands sorted at the end. 469 if (LHS.second->getType()->isPointerTy() != 470 RHS.second->getType()->isPointerTy()) 471 return LHS.second->getType()->isPointerTy(); 472 473 // Compare loops with PickMostRelevantLoop. 474 if (LHS.first != RHS.first) 475 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 476 477 // If one operand is a non-constant negative and the other is not, 478 // put the non-constant negative on the right so that a sub can 479 // be used instead of a negate and add. 480 if (LHS.second->isNonConstantNegative()) { 481 if (!RHS.second->isNonConstantNegative()) 482 return false; 483 } else if (RHS.second->isNonConstantNegative()) 484 return true; 485 486 // Otherwise they are equivalent according to this comparison. 487 return false; 488 } 489 }; 490 491 } 492 493 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 494 // Recognize the canonical representation of an unsimplifed urem. 495 const SCEV *URemLHS = nullptr; 496 const SCEV *URemRHS = nullptr; 497 if (SE.matchURem(S, URemLHS, URemRHS)) { 498 Value *LHS = expand(URemLHS); 499 Value *RHS = expand(URemRHS); 500 return InsertBinop(Instruction::URem, LHS, RHS, SCEV::FlagAnyWrap, 501 /*IsSafeToHoist*/ false); 502 } 503 504 // Collect all the add operands in a loop, along with their associated loops. 505 // Iterate in reverse so that constants are emitted last, all else equal, and 506 // so that pointer operands are inserted first, which the code below relies on 507 // to form more involved GEPs. 508 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 509 for (const SCEV *Op : reverse(S->operands())) 510 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 511 512 // Sort by loop. Use a stable sort so that constants follow non-constants and 513 // pointer operands precede non-pointer operands. 514 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 515 516 // Emit instructions to add all the operands. Hoist as much as possible 517 // out of loops, and form meaningful getelementptrs where possible. 518 Value *Sum = nullptr; 519 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 520 const Loop *CurLoop = I->first; 521 const SCEV *Op = I->second; 522 if (!Sum) { 523 // This is the first operand. Just expand it. 524 Sum = expand(Op); 525 ++I; 526 continue; 527 } 528 529 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 530 if (isa<PointerType>(Sum->getType())) { 531 // The running sum expression is a pointer. Try to form a getelementptr 532 // at this level with that as the base. 533 SmallVector<const SCEV *, 4> NewOps; 534 for (; I != E && I->first == CurLoop; ++I) { 535 // If the operand is SCEVUnknown and not instructions, peek through 536 // it, to enable more of it to be folded into the GEP. 537 const SCEV *X = I->second; 538 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 539 if (!isa<Instruction>(U->getValue())) 540 X = SE.getSCEV(U->getValue()); 541 NewOps.push_back(X); 542 } 543 Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum); 544 } else if (Op->isNonConstantNegative()) { 545 // Instead of doing a negate and add, just do a subtract. 546 Value *W = expand(SE.getNegativeSCEV(Op)); 547 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 548 /*IsSafeToHoist*/ true); 549 ++I; 550 } else { 551 // A simple add. 552 Value *W = expand(Op); 553 // Canonicalize a constant to the RHS. 554 if (isa<Constant>(Sum)) 555 std::swap(Sum, W); 556 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 557 /*IsSafeToHoist*/ true); 558 ++I; 559 } 560 } 561 562 return Sum; 563 } 564 565 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 566 Type *Ty = S->getType(); 567 568 // Collect all the mul operands in a loop, along with their associated loops. 569 // Iterate in reverse so that constants are emitted last, all else equal. 570 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 571 for (const SCEV *Op : reverse(S->operands())) 572 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 573 574 // Sort by loop. Use a stable sort so that constants follow non-constants. 575 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 576 577 // Emit instructions to mul all the operands. Hoist as much as possible 578 // out of loops. 579 Value *Prod = nullptr; 580 auto I = OpsAndLoops.begin(); 581 582 // Expand the calculation of X pow N in the following manner: 583 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 584 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 585 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() { 586 auto E = I; 587 // Calculate how many times the same operand from the same loop is included 588 // into this power. 589 uint64_t Exponent = 0; 590 const uint64_t MaxExponent = UINT64_MAX >> 1; 591 // No one sane will ever try to calculate such huge exponents, but if we 592 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 593 // below when the power of 2 exceeds our Exponent, and we want it to be 594 // 1u << 31 at most to not deal with unsigned overflow. 595 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 596 ++Exponent; 597 ++E; 598 } 599 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 600 601 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 602 // that are needed into the result. 603 Value *P = expand(I->second); 604 Value *Result = nullptr; 605 if (Exponent & 1) 606 Result = P; 607 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 608 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 609 /*IsSafeToHoist*/ true); 610 if (Exponent & BinExp) 611 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 612 SCEV::FlagAnyWrap, 613 /*IsSafeToHoist*/ true) 614 : P; 615 } 616 617 I = E; 618 assert(Result && "Nothing was expanded?"); 619 return Result; 620 }; 621 622 while (I != OpsAndLoops.end()) { 623 if (!Prod) { 624 // This is the first operand. Just expand it. 625 Prod = ExpandOpBinPowN(); 626 } else if (I->second->isAllOnesValue()) { 627 // Instead of doing a multiply by negative one, just do a negate. 628 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 629 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 630 ++I; 631 } else { 632 // A simple mul. 633 Value *W = ExpandOpBinPowN(); 634 // Canonicalize a constant to the RHS. 635 if (isa<Constant>(Prod)) std::swap(Prod, W); 636 const APInt *RHS; 637 if (match(W, m_Power2(RHS))) { 638 // Canonicalize Prod*(1<<C) to Prod<<C. 639 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 640 auto NWFlags = S->getNoWrapFlags(); 641 // clear nsw flag if shl will produce poison value. 642 if (RHS->logBase2() == RHS->getBitWidth() - 1) 643 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 644 Prod = InsertBinop(Instruction::Shl, Prod, 645 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 646 /*IsSafeToHoist*/ true); 647 } else { 648 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 649 /*IsSafeToHoist*/ true); 650 } 651 } 652 } 653 654 return Prod; 655 } 656 657 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 658 Value *LHS = expand(S->getLHS()); 659 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 660 const APInt &RHS = SC->getAPInt(); 661 if (RHS.isPowerOf2()) 662 return InsertBinop(Instruction::LShr, LHS, 663 ConstantInt::get(SC->getType(), RHS.logBase2()), 664 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 665 } 666 667 Value *RHS = expand(S->getRHS()); 668 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 669 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 670 } 671 672 /// Determine if this is a well-behaved chain of instructions leading back to 673 /// the PHI. If so, it may be reused by expanded expressions. 674 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 675 const Loop *L) { 676 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 677 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 678 return false; 679 // If any of the operands don't dominate the insert position, bail. 680 // Addrec operands are always loop-invariant, so this can only happen 681 // if there are instructions which haven't been hoisted. 682 if (L == IVIncInsertLoop) { 683 for (Use &Op : llvm::drop_begin(IncV->operands())) 684 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 685 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 686 return false; 687 } 688 // Advance to the next instruction. 689 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 690 if (!IncV) 691 return false; 692 693 if (IncV->mayHaveSideEffects()) 694 return false; 695 696 if (IncV == PN) 697 return true; 698 699 return isNormalAddRecExprPHI(PN, IncV, L); 700 } 701 702 /// getIVIncOperand returns an induction variable increment's induction 703 /// variable operand. 704 /// 705 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 706 /// operands dominate InsertPos. 707 /// 708 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 709 /// simple patterns generated by getAddRecExprPHILiterally and 710 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 711 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 712 Instruction *InsertPos, 713 bool allowScale) { 714 if (IncV == InsertPos) 715 return nullptr; 716 717 switch (IncV->getOpcode()) { 718 default: 719 return nullptr; 720 // Check for a simple Add/Sub or GEP of a loop invariant step. 721 case Instruction::Add: 722 case Instruction::Sub: { 723 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 724 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 725 return dyn_cast<Instruction>(IncV->getOperand(0)); 726 return nullptr; 727 } 728 case Instruction::BitCast: 729 return dyn_cast<Instruction>(IncV->getOperand(0)); 730 case Instruction::GetElementPtr: 731 for (Use &U : llvm::drop_begin(IncV->operands())) { 732 if (isa<Constant>(U)) 733 continue; 734 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 735 if (!SE.DT.dominates(OInst, InsertPos)) 736 return nullptr; 737 } 738 if (allowScale) { 739 // allow any kind of GEP as long as it can be hoisted. 740 continue; 741 } 742 // GEPs produced by SCEVExpander use i8 element type. 743 if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 744 return nullptr; 745 break; 746 } 747 return dyn_cast<Instruction>(IncV->getOperand(0)); 748 } 749 } 750 751 /// If the insert point of the current builder or any of the builders on the 752 /// stack of saved builders has 'I' as its insert point, update it to point to 753 /// the instruction after 'I'. This is intended to be used when the instruction 754 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 755 /// different block, the inconsistent insert point (with a mismatched 756 /// Instruction and Block) can lead to an instruction being inserted in a block 757 /// other than its parent. 758 void SCEVExpander::fixupInsertPoints(Instruction *I) { 759 BasicBlock::iterator It(*I); 760 BasicBlock::iterator NewInsertPt = std::next(It); 761 if (Builder.GetInsertPoint() == It) 762 Builder.SetInsertPoint(&*NewInsertPt); 763 for (auto *InsertPtGuard : InsertPointGuards) 764 if (InsertPtGuard->GetInsertPoint() == It) 765 InsertPtGuard->SetInsertPoint(NewInsertPt); 766 } 767 768 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 769 /// it available to other uses in this loop. Recursively hoist any operands, 770 /// until we reach a value that dominates InsertPos. 771 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 772 bool RecomputePoisonFlags) { 773 auto FixupPoisonFlags = [this](Instruction *I) { 774 // Drop flags that are potentially inferred from old context and infer flags 775 // in new context. 776 rememberFlags(I); 777 I->dropPoisonGeneratingFlags(); 778 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 779 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 780 auto *BO = cast<BinaryOperator>(I); 781 BO->setHasNoUnsignedWrap( 782 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 783 BO->setHasNoSignedWrap( 784 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 785 } 786 }; 787 788 if (SE.DT.dominates(IncV, InsertPos)) { 789 if (RecomputePoisonFlags) 790 FixupPoisonFlags(IncV); 791 return true; 792 } 793 794 // InsertPos must itself dominate IncV so that IncV's new position satisfies 795 // its existing users. 796 if (isa<PHINode>(InsertPos) || 797 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 798 return false; 799 800 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 801 return false; 802 803 // Check that the chain of IV operands leading back to Phi can be hoisted. 804 SmallVector<Instruction*, 4> IVIncs; 805 for(;;) { 806 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 807 if (!Oper) 808 return false; 809 // IncV is safe to hoist. 810 IVIncs.push_back(IncV); 811 IncV = Oper; 812 if (SE.DT.dominates(IncV, InsertPos)) 813 break; 814 } 815 for (Instruction *I : llvm::reverse(IVIncs)) { 816 fixupInsertPoints(I); 817 I->moveBefore(InsertPos); 818 if (RecomputePoisonFlags) 819 FixupPoisonFlags(I); 820 } 821 return true; 822 } 823 824 bool SCEVExpander::canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi, 825 PHINode *WidePhi, 826 Instruction *OrigInc, 827 Instruction *WideInc) { 828 return match(OrigInc, m_c_BinOp(m_Specific(OrigPhi), m_Value())) && 829 match(WideInc, m_c_BinOp(m_Specific(WidePhi), m_Value())) && 830 OrigInc->getOpcode() == WideInc->getOpcode(); 831 } 832 833 /// Determine if this cyclic phi is in a form that would have been generated by 834 /// LSR. We don't care if the phi was actually expanded in this pass, as long 835 /// as it is in a low-cost form, for example, no implied multiplication. This 836 /// should match any patterns generated by getAddRecExprPHILiterally and 837 /// expandAddtoGEP. 838 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 839 const Loop *L) { 840 for(Instruction *IVOper = IncV; 841 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 842 /*allowScale=*/false));) { 843 if (IVOper == PN) 844 return true; 845 } 846 return false; 847 } 848 849 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 850 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 851 /// need to materialize IV increments elsewhere to handle difficult situations. 852 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 853 bool useSubtract) { 854 Value *IncV; 855 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 856 if (PN->getType()->isPointerTy()) { 857 // TODO: Change name to IVName.iv.next. 858 IncV = Builder.CreatePtrAdd(PN, StepV, "scevgep"); 859 } else { 860 IncV = useSubtract ? 861 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 862 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 863 } 864 return IncV; 865 } 866 867 /// Check whether we can cheaply express the requested SCEV in terms of 868 /// the available PHI SCEV by truncation and/or inversion of the step. 869 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 870 const SCEVAddRecExpr *Phi, 871 const SCEVAddRecExpr *Requested, 872 bool &InvertStep) { 873 // We can't transform to match a pointer PHI. 874 Type *PhiTy = Phi->getType(); 875 Type *RequestedTy = Requested->getType(); 876 if (PhiTy->isPointerTy() || RequestedTy->isPointerTy()) 877 return false; 878 879 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 880 return false; 881 882 // Try truncate it if necessary. 883 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 884 if (!Phi) 885 return false; 886 887 // Check whether truncation will help. 888 if (Phi == Requested) { 889 InvertStep = false; 890 return true; 891 } 892 893 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 894 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 895 InvertStep = true; 896 return true; 897 } 898 899 return false; 900 } 901 902 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 903 if (!isa<IntegerType>(AR->getType())) 904 return false; 905 906 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 907 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 908 const SCEV *Step = AR->getStepRecurrence(SE); 909 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 910 SE.getSignExtendExpr(AR, WideTy)); 911 const SCEV *ExtendAfterOp = 912 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 913 return ExtendAfterOp == OpAfterExtend; 914 } 915 916 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 917 if (!isa<IntegerType>(AR->getType())) 918 return false; 919 920 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 921 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 922 const SCEV *Step = AR->getStepRecurrence(SE); 923 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 924 SE.getZeroExtendExpr(AR, WideTy)); 925 const SCEV *ExtendAfterOp = 926 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 927 return ExtendAfterOp == OpAfterExtend; 928 } 929 930 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 931 /// the base addrec, which is the addrec without any non-loop-dominating 932 /// values, and return the PHI. 933 PHINode * 934 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 935 const Loop *L, Type *&TruncTy, 936 bool &InvertStep) { 937 assert((!IVIncInsertLoop || IVIncInsertPos) && 938 "Uninitialized insert position"); 939 940 // Reuse a previously-inserted PHI, if present. 941 BasicBlock *LatchBlock = L->getLoopLatch(); 942 if (LatchBlock) { 943 PHINode *AddRecPhiMatch = nullptr; 944 Instruction *IncV = nullptr; 945 TruncTy = nullptr; 946 InvertStep = false; 947 948 // Only try partially matching scevs that need truncation and/or 949 // step-inversion if we know this loop is outside the current loop. 950 bool TryNonMatchingSCEV = 951 IVIncInsertLoop && 952 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 953 954 for (PHINode &PN : L->getHeader()->phis()) { 955 if (!SE.isSCEVable(PN.getType())) 956 continue; 957 958 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 959 // PHI has no meaning at all. 960 if (!PN.isComplete()) { 961 SCEV_DEBUG_WITH_TYPE( 962 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 963 continue; 964 } 965 966 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 967 if (!PhiSCEV) 968 continue; 969 970 bool IsMatchingSCEV = PhiSCEV == Normalized; 971 // We only handle truncation and inversion of phi recurrences for the 972 // expanded expression if the expanded expression's loop dominates the 973 // loop we insert to. Check now, so we can bail out early. 974 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 975 continue; 976 977 // TODO: this possibly can be reworked to avoid this cast at all. 978 Instruction *TempIncV = 979 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 980 if (!TempIncV) 981 continue; 982 983 // Check whether we can reuse this PHI node. 984 if (LSRMode) { 985 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 986 continue; 987 } else { 988 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 989 continue; 990 } 991 992 // Stop if we have found an exact match SCEV. 993 if (IsMatchingSCEV) { 994 IncV = TempIncV; 995 TruncTy = nullptr; 996 InvertStep = false; 997 AddRecPhiMatch = &PN; 998 break; 999 } 1000 1001 // Try whether the phi can be translated into the requested form 1002 // (truncated and/or offset by a constant). 1003 if ((!TruncTy || InvertStep) && 1004 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1005 // Record the phi node. But don't stop we might find an exact match 1006 // later. 1007 AddRecPhiMatch = &PN; 1008 IncV = TempIncV; 1009 TruncTy = Normalized->getType(); 1010 } 1011 } 1012 1013 if (AddRecPhiMatch) { 1014 // Ok, the add recurrence looks usable. 1015 // Remember this PHI, even in post-inc mode. 1016 InsertedValues.insert(AddRecPhiMatch); 1017 // Remember the increment. 1018 rememberInstruction(IncV); 1019 // Those values were not actually inserted but re-used. 1020 ReusedValues.insert(AddRecPhiMatch); 1021 ReusedValues.insert(IncV); 1022 return AddRecPhiMatch; 1023 } 1024 } 1025 1026 // Save the original insertion point so we can restore it when we're done. 1027 SCEVInsertPointGuard Guard(Builder, this); 1028 1029 // Another AddRec may need to be recursively expanded below. For example, if 1030 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1031 // loop. Remove this loop from the PostIncLoops set before expanding such 1032 // AddRecs. Otherwise, we cannot find a valid position for the step 1033 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1034 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1035 // so it's not worth implementing SmallPtrSet::swap. 1036 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1037 PostIncLoops.clear(); 1038 1039 // Expand code for the start value into the loop preheader. 1040 assert(L->getLoopPreheader() && 1041 "Can't expand add recurrences without a loop preheader!"); 1042 Value *StartV = 1043 expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator()); 1044 1045 // StartV must have been be inserted into L's preheader to dominate the new 1046 // phi. 1047 assert(!isa<Instruction>(StartV) || 1048 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1049 L->getHeader())); 1050 1051 // Expand code for the step value. Do this before creating the PHI so that PHI 1052 // reuse code doesn't see an incomplete PHI. 1053 const SCEV *Step = Normalized->getStepRecurrence(SE); 1054 Type *ExpandTy = Normalized->getType(); 1055 // If the stride is negative, insert a sub instead of an add for the increment 1056 // (unless it's a constant, because subtracts of constants are canonicalized 1057 // to adds). 1058 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1059 if (useSubtract) 1060 Step = SE.getNegativeSCEV(Step); 1061 // Expand the step somewhere that dominates the loop header. 1062 Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 1063 1064 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1065 // we actually do emit an addition. It does not apply if we emit a 1066 // subtraction. 1067 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1068 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1069 1070 // Create the PHI. 1071 BasicBlock *Header = L->getHeader(); 1072 Builder.SetInsertPoint(Header, Header->begin()); 1073 PHINode *PN = 1074 Builder.CreatePHI(ExpandTy, pred_size(Header), Twine(IVName) + ".iv"); 1075 1076 // Create the step instructions and populate the PHI. 1077 for (BasicBlock *Pred : predecessors(Header)) { 1078 // Add a start value. 1079 if (!L->contains(Pred)) { 1080 PN->addIncoming(StartV, Pred); 1081 continue; 1082 } 1083 1084 // Create a step value and add it to the PHI. 1085 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1086 // instructions at IVIncInsertPos. 1087 Instruction *InsertPos = L == IVIncInsertLoop ? 1088 IVIncInsertPos : Pred->getTerminator(); 1089 Builder.SetInsertPoint(InsertPos); 1090 Value *IncV = expandIVInc(PN, StepV, L, useSubtract); 1091 1092 if (isa<OverflowingBinaryOperator>(IncV)) { 1093 if (IncrementIsNUW) 1094 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1095 if (IncrementIsNSW) 1096 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1097 } 1098 PN->addIncoming(IncV, Pred); 1099 } 1100 1101 // After expanding subexpressions, restore the PostIncLoops set so the caller 1102 // can ensure that IVIncrement dominates the current uses. 1103 PostIncLoops = SavedPostIncLoops; 1104 1105 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1106 // effective when we are able to use an IV inserted here, so record it. 1107 InsertedValues.insert(PN); 1108 InsertedIVs.push_back(PN); 1109 return PN; 1110 } 1111 1112 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1113 const Loop *L = S->getLoop(); 1114 1115 // Determine a normalized form of this expression, which is the expression 1116 // before any post-inc adjustment is made. 1117 const SCEVAddRecExpr *Normalized = S; 1118 if (PostIncLoops.count(L)) { 1119 PostIncLoopSet Loops; 1120 Loops.insert(L); 1121 Normalized = cast<SCEVAddRecExpr>( 1122 normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 1123 } 1124 1125 [[maybe_unused]] const SCEV *Start = Normalized->getStart(); 1126 const SCEV *Step = Normalized->getStepRecurrence(SE); 1127 assert(SE.properlyDominates(Start, L->getHeader()) && 1128 "Start does not properly dominate loop header"); 1129 assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header"); 1130 1131 // In some cases, we decide to reuse an existing phi node but need to truncate 1132 // it and/or invert the step. 1133 Type *TruncTy = nullptr; 1134 bool InvertStep = false; 1135 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep); 1136 1137 // Accommodate post-inc mode, if necessary. 1138 Value *Result; 1139 if (!PostIncLoops.count(L)) 1140 Result = PN; 1141 else { 1142 // In PostInc mode, use the post-incremented value. 1143 BasicBlock *LatchBlock = L->getLoopLatch(); 1144 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1145 Result = PN->getIncomingValueForBlock(LatchBlock); 1146 1147 // We might be introducing a new use of the post-inc IV that is not poison 1148 // safe, in which case we should drop poison generating flags. Only keep 1149 // those flags for which SCEV has proven that they always hold. 1150 if (isa<OverflowingBinaryOperator>(Result)) { 1151 auto *I = cast<Instruction>(Result); 1152 if (!S->hasNoUnsignedWrap()) 1153 I->setHasNoUnsignedWrap(false); 1154 if (!S->hasNoSignedWrap()) 1155 I->setHasNoSignedWrap(false); 1156 } 1157 1158 // For an expansion to use the postinc form, the client must call 1159 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1160 // or dominated by IVIncInsertPos. 1161 if (isa<Instruction>(Result) && 1162 !SE.DT.dominates(cast<Instruction>(Result), 1163 &*Builder.GetInsertPoint())) { 1164 // The induction variable's postinc expansion does not dominate this use. 1165 // IVUsers tries to prevent this case, so it is rare. However, it can 1166 // happen when an IVUser outside the loop is not dominated by the latch 1167 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1168 // all cases. Consider a phi outside whose operand is replaced during 1169 // expansion with the value of the postinc user. Without fundamentally 1170 // changing the way postinc users are tracked, the only remedy is 1171 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1172 // but hopefully expandCodeFor handles that. 1173 bool useSubtract = 1174 !S->getType()->isPointerTy() && Step->isNonConstantNegative(); 1175 if (useSubtract) 1176 Step = SE.getNegativeSCEV(Step); 1177 Value *StepV; 1178 { 1179 // Expand the step somewhere that dominates the loop header. 1180 SCEVInsertPointGuard Guard(Builder, this); 1181 StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 1182 } 1183 Result = expandIVInc(PN, StepV, L, useSubtract); 1184 } 1185 } 1186 1187 // We have decided to reuse an induction variable of a dominating loop. Apply 1188 // truncation and/or inversion of the step. 1189 if (TruncTy) { 1190 // Truncate the result. 1191 if (TruncTy != Result->getType()) 1192 Result = Builder.CreateTrunc(Result, TruncTy); 1193 1194 // Invert the result. 1195 if (InvertStep) 1196 Result = Builder.CreateSub(expand(Normalized->getStart()), Result); 1197 } 1198 1199 return Result; 1200 } 1201 1202 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1203 // In canonical mode we compute the addrec as an expression of a canonical IV 1204 // using evaluateAtIteration and expand the resulting SCEV expression. This 1205 // way we avoid introducing new IVs to carry on the computation of the addrec 1206 // throughout the loop. 1207 // 1208 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1209 // type wider than the addrec itself. Emitting a canonical IV of the 1210 // proper type might produce non-legal types, for example expanding an i64 1211 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1212 // back to non-canonical mode for nested addrecs. 1213 if (!CanonicalMode || (S->getNumOperands() > 2)) 1214 return expandAddRecExprLiterally(S); 1215 1216 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1217 const Loop *L = S->getLoop(); 1218 1219 // First check for an existing canonical IV in a suitable type. 1220 PHINode *CanonicalIV = nullptr; 1221 if (PHINode *PN = L->getCanonicalInductionVariable()) 1222 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1223 CanonicalIV = PN; 1224 1225 // Rewrite an AddRec in terms of the canonical induction variable, if 1226 // its type is more narrow. 1227 if (CanonicalIV && 1228 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1229 !S->getType()->isPointerTy()) { 1230 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1231 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1232 NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 1233 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1234 S->getNoWrapFlags(SCEV::FlagNW))); 1235 BasicBlock::iterator NewInsertPt = 1236 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1237 V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt); 1238 return V; 1239 } 1240 1241 // {X,+,F} --> X + {0,+,F} 1242 if (!S->getStart()->isZero()) { 1243 if (isa<PointerType>(S->getType())) { 1244 Value *StartV = expand(SE.getPointerBase(S)); 1245 return expandAddToGEP(SE.removePointerBase(S), StartV); 1246 } 1247 1248 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1249 NewOps[0] = SE.getConstant(Ty, 0); 1250 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1251 S->getNoWrapFlags(SCEV::FlagNW)); 1252 1253 // Just do a normal add. Pre-expand the operands to suppress folding. 1254 // 1255 // The LHS and RHS values are factored out of the expand call to make the 1256 // output independent of the argument evaluation order. 1257 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1258 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1259 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1260 } 1261 1262 // If we don't yet have a canonical IV, create one. 1263 if (!CanonicalIV) { 1264 // Create and insert the PHI node for the induction variable in the 1265 // specified loop. 1266 BasicBlock *Header = L->getHeader(); 1267 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1268 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar"); 1269 CanonicalIV->insertBefore(Header->begin()); 1270 rememberInstruction(CanonicalIV); 1271 1272 SmallSet<BasicBlock *, 4> PredSeen; 1273 Constant *One = ConstantInt::get(Ty, 1); 1274 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1275 BasicBlock *HP = *HPI; 1276 if (!PredSeen.insert(HP).second) { 1277 // There must be an incoming value for each predecessor, even the 1278 // duplicates! 1279 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1280 continue; 1281 } 1282 1283 if (L->contains(HP)) { 1284 // Insert a unit add instruction right before the terminator 1285 // corresponding to the back-edge. 1286 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1287 "indvar.next", 1288 HP->getTerminator()->getIterator()); 1289 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1290 rememberInstruction(Add); 1291 CanonicalIV->addIncoming(Add, HP); 1292 } else { 1293 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1294 } 1295 } 1296 } 1297 1298 // {0,+,1} --> Insert a canonical induction variable into the loop! 1299 if (S->isAffine() && S->getOperand(1)->isOne()) { 1300 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1301 "IVs with types different from the canonical IV should " 1302 "already have been handled!"); 1303 return CanonicalIV; 1304 } 1305 1306 // {0,+,F} --> {0,+,1} * F 1307 1308 // If this is a simple linear addrec, emit it now as a special case. 1309 if (S->isAffine()) // {0,+,F} --> i*F 1310 return 1311 expand(SE.getTruncateOrNoop( 1312 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1313 SE.getNoopOrAnyExtend(S->getOperand(1), 1314 CanonicalIV->getType())), 1315 Ty)); 1316 1317 // If this is a chain of recurrences, turn it into a closed form, using the 1318 // folders, then expandCodeFor the closed form. This allows the folders to 1319 // simplify the expression without having to build a bunch of special code 1320 // into this folder. 1321 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1322 1323 // Promote S up to the canonical IV type, if the cast is foldable. 1324 const SCEV *NewS = S; 1325 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1326 if (isa<SCEVAddRecExpr>(Ext)) 1327 NewS = Ext; 1328 1329 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1330 1331 // Truncate the result down to the original type, if needed. 1332 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1333 return expand(T); 1334 } 1335 1336 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1337 Value *V = expand(S->getOperand()); 1338 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1339 GetOptimalInsertionPointForCastOf(V)); 1340 } 1341 1342 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1343 Value *V = expand(S->getOperand()); 1344 return Builder.CreateTrunc(V, S->getType()); 1345 } 1346 1347 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1348 Value *V = expand(S->getOperand()); 1349 return Builder.CreateZExt(V, S->getType(), "", 1350 SE.isKnownNonNegative(S->getOperand())); 1351 } 1352 1353 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1354 Value *V = expand(S->getOperand()); 1355 return Builder.CreateSExt(V, S->getType()); 1356 } 1357 1358 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1359 Intrinsic::ID IntrinID, Twine Name, 1360 bool IsSequential) { 1361 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1362 Type *Ty = LHS->getType(); 1363 if (IsSequential) 1364 LHS = Builder.CreateFreeze(LHS); 1365 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1366 Value *RHS = expand(S->getOperand(i)); 1367 if (IsSequential && i != 0) 1368 RHS = Builder.CreateFreeze(RHS); 1369 Value *Sel; 1370 if (Ty->isIntegerTy()) 1371 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1372 /*FMFSource=*/nullptr, Name); 1373 else { 1374 Value *ICmp = 1375 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1376 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1377 } 1378 LHS = Sel; 1379 } 1380 return LHS; 1381 } 1382 1383 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1384 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1385 } 1386 1387 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1388 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1389 } 1390 1391 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1392 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1393 } 1394 1395 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1396 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1397 } 1398 1399 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1400 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1401 } 1402 1403 Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 1404 return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 1405 } 1406 1407 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1408 BasicBlock::iterator IP) { 1409 setInsertPoint(IP); 1410 Value *V = expandCodeFor(SH, Ty); 1411 return V; 1412 } 1413 1414 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1415 // Expand the code for this SCEV. 1416 Value *V = expand(SH); 1417 1418 if (Ty) { 1419 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1420 "non-trivial casts should be done with the SCEVs directly!"); 1421 V = InsertNoopCastOfTo(V, Ty); 1422 } 1423 return V; 1424 } 1425 1426 Value *SCEVExpander::FindValueInExprValueMap( 1427 const SCEV *S, const Instruction *InsertPt, 1428 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1429 // If the expansion is not in CanonicalMode, and the SCEV contains any 1430 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1431 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1432 return nullptr; 1433 1434 // If S is a constant, it may be worse to reuse an existing Value. 1435 if (isa<SCEVConstant>(S)) 1436 return nullptr; 1437 1438 for (Value *V : SE.getSCEVValues(S)) { 1439 Instruction *EntInst = dyn_cast<Instruction>(V); 1440 if (!EntInst) 1441 continue; 1442 1443 // Choose a Value from the set which dominates the InsertPt. 1444 // InsertPt should be inside the Value's parent loop so as not to break 1445 // the LCSSA form. 1446 assert(EntInst->getFunction() == InsertPt->getFunction()); 1447 if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) || 1448 !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1449 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1450 continue; 1451 1452 // Make sure reusing the instruction is poison-safe. 1453 if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts)) 1454 return V; 1455 DropPoisonGeneratingInsts.clear(); 1456 } 1457 return nullptr; 1458 } 1459 1460 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1461 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1462 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1463 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1464 // the expansion will try to reuse Value from ExprValueMap, and only when it 1465 // fails, expand the SCEV literally. 1466 Value *SCEVExpander::expand(const SCEV *S) { 1467 // Compute an insertion point for this SCEV object. Hoist the instructions 1468 // as far out in the loop nest as possible. 1469 BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 1470 1471 // We can move insertion point only if there is no div or rem operations 1472 // otherwise we are risky to move it over the check for zero denominator. 1473 auto SafeToHoist = [](const SCEV *S) { 1474 return !SCEVExprContains(S, [](const SCEV *S) { 1475 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1476 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1477 // Division by non-zero constants can be hoisted. 1478 return SC->getValue()->isZero(); 1479 // All other divisions should not be moved as they may be 1480 // divisions by zero and should be kept within the 1481 // conditions of the surrounding loops that guard their 1482 // execution (see PR35406). 1483 return true; 1484 } 1485 return false; 1486 }); 1487 }; 1488 if (SafeToHoist(S)) { 1489 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1490 L = L->getParentLoop()) { 1491 if (SE.isLoopInvariant(S, L)) { 1492 if (!L) break; 1493 if (BasicBlock *Preheader = L->getLoopPreheader()) { 1494 InsertPt = Preheader->getTerminator()->getIterator(); 1495 } else { 1496 // LSR sets the insertion point for AddRec start/step values to the 1497 // block start to simplify value reuse, even though it's an invalid 1498 // position. SCEVExpander must correct for this in all cases. 1499 InsertPt = L->getHeader()->getFirstInsertionPt(); 1500 } 1501 } else { 1502 // If the SCEV is computable at this level, insert it into the header 1503 // after the PHIs (and after any other instructions that we've inserted 1504 // there) so that it is guaranteed to dominate any user inside the loop. 1505 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1506 InsertPt = L->getHeader()->getFirstInsertionPt(); 1507 1508 while (InsertPt != Builder.GetInsertPoint() && 1509 (isInsertedInstruction(&*InsertPt) || 1510 isa<DbgInfoIntrinsic>(&*InsertPt))) { 1511 InsertPt = std::next(InsertPt); 1512 } 1513 break; 1514 } 1515 } 1516 } 1517 1518 // Check to see if we already expanded this here. 1519 auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt)); 1520 if (I != InsertedExpressions.end()) 1521 return I->second; 1522 1523 SCEVInsertPointGuard Guard(Builder, this); 1524 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); 1525 1526 // Expand the expression into instructions. 1527 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1528 Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts); 1529 if (!V) { 1530 V = visit(S); 1531 V = fixupLCSSAFormFor(V); 1532 } else { 1533 for (Instruction *I : DropPoisonGeneratingInsts) { 1534 rememberFlags(I); 1535 I->dropPoisonGeneratingAnnotations(); 1536 // See if we can re-infer from first principles any of the flags we just 1537 // dropped. 1538 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 1539 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 1540 auto *BO = cast<BinaryOperator>(I); 1541 BO->setHasNoUnsignedWrap( 1542 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 1543 BO->setHasNoSignedWrap( 1544 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 1545 } 1546 if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) { 1547 auto *Src = NNI->getOperand(0); 1548 if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src, 1549 Constant::getNullValue(Src->getType()), I, 1550 DL).value_or(false)) 1551 NNI->setNonNeg(true); 1552 } 1553 } 1554 } 1555 // Remember the expanded value for this SCEV at this location. 1556 // 1557 // This is independent of PostIncLoops. The mapped value simply materializes 1558 // the expression at this insertion point. If the mapped value happened to be 1559 // a postinc expansion, it could be reused by a non-postinc user, but only if 1560 // its insertion point was already at the head of the loop. 1561 InsertedExpressions[std::make_pair(S, &*InsertPt)] = V; 1562 return V; 1563 } 1564 1565 void SCEVExpander::rememberInstruction(Value *I) { 1566 auto DoInsert = [this](Value *V) { 1567 if (!PostIncLoops.empty()) 1568 InsertedPostIncValues.insert(V); 1569 else 1570 InsertedValues.insert(V); 1571 }; 1572 DoInsert(I); 1573 } 1574 1575 void SCEVExpander::rememberFlags(Instruction *I) { 1576 // If we already have flags for the instruction, keep the existing ones. 1577 OrigFlags.try_emplace(I, PoisonFlags(I)); 1578 } 1579 1580 void SCEVExpander::replaceCongruentIVInc( 1581 PHINode *&Phi, PHINode *&OrigPhi, Loop *L, const DominatorTree *DT, 1582 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1583 BasicBlock *LatchBlock = L->getLoopLatch(); 1584 if (!LatchBlock) 1585 return; 1586 1587 Instruction *OrigInc = 1588 dyn_cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1589 Instruction *IsomorphicInc = 1590 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1591 if (!OrigInc || !IsomorphicInc) 1592 return; 1593 1594 // If this phi has the same width but is more canonical, replace the 1595 // original with it. As part of the "more canonical" determination, 1596 // respect a prior decision to use an IV chain. 1597 if (OrigPhi->getType() == Phi->getType() && 1598 !(ChainedPhis.count(Phi) || 1599 isExpandedAddRecExprPHI(OrigPhi, OrigInc, L)) && 1600 (ChainedPhis.count(Phi) || 1601 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1602 std::swap(OrigPhi, Phi); 1603 std::swap(OrigInc, IsomorphicInc); 1604 } 1605 1606 // Replacing the congruent phi is sufficient because acyclic 1607 // redundancy elimination, CSE/GVN, should handle the 1608 // rest. However, once SCEV proves that a phi is congruent, 1609 // it's often the head of an IV user cycle that is isomorphic 1610 // with the original phi. It's worth eagerly cleaning up the 1611 // common case of a single IV increment so that DeleteDeadPHIs 1612 // can remove cycles that had postinc uses. 1613 // Because we may potentially introduce a new use of OrigIV that didn't 1614 // exist before at this point, its poison flags need readjustment. 1615 const SCEV *TruncExpr = 1616 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1617 if (OrigInc == IsomorphicInc || TruncExpr != SE.getSCEV(IsomorphicInc) || 1618 !SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc)) 1619 return; 1620 1621 bool BothHaveNUW = false; 1622 bool BothHaveNSW = false; 1623 auto *OBOIncV = dyn_cast<OverflowingBinaryOperator>(OrigInc); 1624 auto *OBOIsomorphic = dyn_cast<OverflowingBinaryOperator>(IsomorphicInc); 1625 if (OBOIncV && OBOIsomorphic) { 1626 BothHaveNUW = 1627 OBOIncV->hasNoUnsignedWrap() && OBOIsomorphic->hasNoUnsignedWrap(); 1628 BothHaveNSW = 1629 OBOIncV->hasNoSignedWrap() && OBOIsomorphic->hasNoSignedWrap(); 1630 } 1631 1632 if (!hoistIVInc(OrigInc, IsomorphicInc, 1633 /*RecomputePoisonFlags*/ true)) 1634 return; 1635 1636 // We are replacing with a wider increment. If both OrigInc and IsomorphicInc 1637 // are NUW/NSW, then we can preserve them on the wider increment; the narrower 1638 // IsomorphicInc would wrap before the wider OrigInc, so the replacement won't 1639 // make IsomorphicInc's uses more poisonous. 1640 assert(OrigInc->getType()->getScalarSizeInBits() >= 1641 IsomorphicInc->getType()->getScalarSizeInBits() && 1642 "Should only replace an increment with a wider one."); 1643 if (BothHaveNUW || BothHaveNSW) { 1644 OrigInc->setHasNoUnsignedWrap(OBOIncV->hasNoUnsignedWrap() || BothHaveNUW); 1645 OrigInc->setHasNoSignedWrap(OBOIncV->hasNoSignedWrap() || BothHaveNSW); 1646 } 1647 1648 SCEV_DEBUG_WITH_TYPE(DebugType, 1649 dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1650 << *IsomorphicInc << '\n'); 1651 Value *NewInc = OrigInc; 1652 if (OrigInc->getType() != IsomorphicInc->getType()) { 1653 BasicBlock::iterator IP; 1654 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1655 IP = PN->getParent()->getFirstInsertionPt(); 1656 else 1657 IP = OrigInc->getNextNonDebugInstruction()->getIterator(); 1658 1659 IRBuilder<> Builder(IP->getParent(), IP); 1660 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1661 NewInc = 1662 Builder.CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName); 1663 } 1664 IsomorphicInc->replaceAllUsesWith(NewInc); 1665 DeadInsts.emplace_back(IsomorphicInc); 1666 } 1667 1668 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1669 /// replace them with their most canonical representative. Return the number of 1670 /// phis eliminated. 1671 /// 1672 /// This does not depend on any SCEVExpander state but should be used in 1673 /// the same context that SCEVExpander is used. 1674 unsigned 1675 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1676 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1677 const TargetTransformInfo *TTI) { 1678 // Find integer phis in order of increasing width. 1679 SmallVector<PHINode*, 8> Phis; 1680 for (PHINode &PN : L->getHeader()->phis()) 1681 Phis.push_back(&PN); 1682 1683 if (TTI) 1684 // Use stable_sort to preserve order of equivalent PHIs, so the order 1685 // of the sorted Phis is the same from run to run on the same loop. 1686 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1687 // Put pointers at the back and make sure pointer < pointer = false. 1688 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1689 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1690 return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1691 LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 1692 }); 1693 1694 unsigned NumElim = 0; 1695 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1696 // Process phis from wide to narrow. Map wide phis to their truncation 1697 // so narrow phis can reuse them. 1698 for (PHINode *Phi : Phis) { 1699 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1700 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1701 return V; 1702 if (!SE.isSCEVable(PN->getType())) 1703 return nullptr; 1704 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1705 if (!Const) 1706 return nullptr; 1707 return Const->getValue(); 1708 }; 1709 1710 // Fold constant phis. They may be congruent to other constant phis and 1711 // would confuse the logic below that expects proper IVs. 1712 if (Value *V = SimplifyPHINode(Phi)) { 1713 if (V->getType() != Phi->getType()) 1714 continue; 1715 SE.forgetValue(Phi); 1716 Phi->replaceAllUsesWith(V); 1717 DeadInsts.emplace_back(Phi); 1718 ++NumElim; 1719 SCEV_DEBUG_WITH_TYPE(DebugType, 1720 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1721 << '\n'); 1722 continue; 1723 } 1724 1725 if (!SE.isSCEVable(Phi->getType())) 1726 continue; 1727 1728 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1729 if (!OrigPhiRef) { 1730 OrigPhiRef = Phi; 1731 if (Phi->getType()->isIntegerTy() && TTI && 1732 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1733 // Make sure we only rewrite using simple induction variables; 1734 // otherwise, we can make the trip count of a loop unanalyzable 1735 // to SCEV. 1736 const SCEV *PhiExpr = SE.getSCEV(Phi); 1737 if (isa<SCEVAddRecExpr>(PhiExpr)) { 1738 // This phi can be freely truncated to the narrowest phi type. Map the 1739 // truncated expression to it so it will be reused for narrow types. 1740 const SCEV *TruncExpr = 1741 SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 1742 ExprToIVMap[TruncExpr] = Phi; 1743 } 1744 } 1745 continue; 1746 } 1747 1748 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1749 // sense. 1750 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1751 continue; 1752 1753 replaceCongruentIVInc(Phi, OrigPhiRef, L, DT, DeadInsts); 1754 SCEV_DEBUG_WITH_TYPE(DebugType, 1755 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1756 << '\n'); 1757 SCEV_DEBUG_WITH_TYPE( 1758 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 1759 ++NumElim; 1760 Value *NewIV = OrigPhiRef; 1761 if (OrigPhiRef->getType() != Phi->getType()) { 1762 IRBuilder<> Builder(L->getHeader(), 1763 L->getHeader()->getFirstInsertionPt()); 1764 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1765 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1766 } 1767 Phi->replaceAllUsesWith(NewIV); 1768 DeadInsts.emplace_back(Phi); 1769 } 1770 return NumElim; 1771 } 1772 1773 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S, 1774 const Instruction *At, 1775 Loop *L) { 1776 using namespace llvm::PatternMatch; 1777 1778 SmallVector<BasicBlock *, 4> ExitingBlocks; 1779 L->getExitingBlocks(ExitingBlocks); 1780 1781 // Look for suitable value in simple conditions at the loop exits. 1782 for (BasicBlock *BB : ExitingBlocks) { 1783 ICmpInst::Predicate Pred; 1784 Instruction *LHS, *RHS; 1785 1786 if (!match(BB->getTerminator(), 1787 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1788 m_BasicBlock(), m_BasicBlock()))) 1789 continue; 1790 1791 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1792 return true; 1793 1794 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1795 return true; 1796 } 1797 1798 // Use expand's logic which is used for reusing a previous Value in 1799 // ExprValueMap. Note that we don't currently model the cost of 1800 // needing to drop poison generating flags on the instruction if we 1801 // want to reuse it. We effectively assume that has zero cost. 1802 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1803 return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr; 1804 } 1805 1806 template<typename T> static InstructionCost costAndCollectOperands( 1807 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1808 TargetTransformInfo::TargetCostKind CostKind, 1809 SmallVectorImpl<SCEVOperand> &Worklist) { 1810 1811 const T *S = cast<T>(WorkItem.S); 1812 InstructionCost Cost = 0; 1813 // Object to help map SCEV operands to expanded IR instructions. 1814 struct OperationIndices { 1815 OperationIndices(unsigned Opc, size_t min, size_t max) : 1816 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1817 unsigned Opcode; 1818 size_t MinIdx; 1819 size_t MaxIdx; 1820 }; 1821 1822 // Collect the operations of all the instructions that will be needed to 1823 // expand the SCEVExpr. This is so that when we come to cost the operands, 1824 // we know what the generated user(s) will be. 1825 SmallVector<OperationIndices, 2> Operations; 1826 1827 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1828 Operations.emplace_back(Opcode, 0, 0); 1829 return TTI.getCastInstrCost(Opcode, S->getType(), 1830 S->getOperand(0)->getType(), 1831 TTI::CastContextHint::None, CostKind); 1832 }; 1833 1834 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1835 unsigned MinIdx = 0, 1836 unsigned MaxIdx = 1) -> InstructionCost { 1837 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1838 return NumRequired * 1839 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1840 }; 1841 1842 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1843 unsigned MaxIdx) -> InstructionCost { 1844 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1845 Type *OpType = S->getType(); 1846 return NumRequired * TTI.getCmpSelInstrCost( 1847 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1848 CmpInst::BAD_ICMP_PREDICATE, CostKind); 1849 }; 1850 1851 switch (S->getSCEVType()) { 1852 case scCouldNotCompute: 1853 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1854 case scUnknown: 1855 case scConstant: 1856 case scVScale: 1857 return 0; 1858 case scPtrToInt: 1859 Cost = CastCost(Instruction::PtrToInt); 1860 break; 1861 case scTruncate: 1862 Cost = CastCost(Instruction::Trunc); 1863 break; 1864 case scZeroExtend: 1865 Cost = CastCost(Instruction::ZExt); 1866 break; 1867 case scSignExtend: 1868 Cost = CastCost(Instruction::SExt); 1869 break; 1870 case scUDivExpr: { 1871 unsigned Opcode = Instruction::UDiv; 1872 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1873 if (SC->getAPInt().isPowerOf2()) 1874 Opcode = Instruction::LShr; 1875 Cost = ArithCost(Opcode, 1); 1876 break; 1877 } 1878 case scAddExpr: 1879 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1880 break; 1881 case scMulExpr: 1882 // TODO: this is a very pessimistic cost modelling for Mul, 1883 // because of Bin Pow algorithm actually used by the expander, 1884 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1885 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1886 break; 1887 case scSMaxExpr: 1888 case scUMaxExpr: 1889 case scSMinExpr: 1890 case scUMinExpr: 1891 case scSequentialUMinExpr: { 1892 // FIXME: should this ask the cost for Intrinsic's? 1893 // The reduction tree. 1894 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1895 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 1896 switch (S->getSCEVType()) { 1897 case scSequentialUMinExpr: { 1898 // The safety net against poison. 1899 // FIXME: this is broken. 1900 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 1901 Cost += ArithCost(Instruction::Or, 1902 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 1903 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 1904 break; 1905 } 1906 default: 1907 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 1908 "Unhandled SCEV expression type?"); 1909 break; 1910 } 1911 break; 1912 } 1913 case scAddRecExpr: { 1914 // In this polynominal, we may have some zero operands, and we shouldn't 1915 // really charge for those. So how many non-zero coefficients are there? 1916 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 1917 return !Op->isZero(); 1918 }); 1919 1920 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 1921 assert(!(*std::prev(S->operands().end()))->isZero() && 1922 "Last operand should not be zero"); 1923 1924 // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 1925 int NumNonZeroDegreeNonOneTerms = 1926 llvm::count_if(S->operands(), [](const SCEV *Op) { 1927 auto *SConst = dyn_cast<SCEVConstant>(Op); 1928 return !SConst || SConst->getAPInt().ugt(1); 1929 }); 1930 1931 // Much like with normal add expr, the polynominal will require 1932 // one less addition than the number of it's terms. 1933 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 1934 /*MinIdx*/ 1, /*MaxIdx*/ 1); 1935 // Here, *each* one of those will require a multiplication. 1936 InstructionCost MulCost = 1937 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 1938 Cost = AddCost + MulCost; 1939 1940 // What is the degree of this polynominal? 1941 int PolyDegree = S->getNumOperands() - 1; 1942 assert(PolyDegree >= 1 && "Should be at least affine."); 1943 1944 // The final term will be: 1945 // Op_{PolyDegree} * x ^ {PolyDegree} 1946 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 1947 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 1948 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 1949 // FIXME: this is conservatively correct, but might be overly pessimistic. 1950 Cost += MulCost * (PolyDegree - 1); 1951 break; 1952 } 1953 } 1954 1955 for (auto &CostOp : Operations) { 1956 for (auto SCEVOp : enumerate(S->operands())) { 1957 // Clamp the index to account for multiple IR operations being chained. 1958 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1959 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1960 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1961 } 1962 } 1963 return Cost; 1964 } 1965 1966 bool SCEVExpander::isHighCostExpansionHelper( 1967 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1968 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1969 SmallPtrSetImpl<const SCEV *> &Processed, 1970 SmallVectorImpl<SCEVOperand> &Worklist) { 1971 if (Cost > Budget) 1972 return true; // Already run out of budget, give up. 1973 1974 const SCEV *S = WorkItem.S; 1975 // Was the cost of expansion of this expression already accounted for? 1976 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 1977 return false; // We have already accounted for this expression. 1978 1979 // If we can find an existing value for this scev available at the point "At" 1980 // then consider the expression cheap. 1981 if (hasRelatedExistingExpansion(S, &At, L)) 1982 return false; // Consider the expression to be free. 1983 1984 TargetTransformInfo::TargetCostKind CostKind = 1985 L->getHeader()->getParent()->hasMinSize() 1986 ? TargetTransformInfo::TCK_CodeSize 1987 : TargetTransformInfo::TCK_RecipThroughput; 1988 1989 switch (S->getSCEVType()) { 1990 case scCouldNotCompute: 1991 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1992 case scUnknown: 1993 case scVScale: 1994 // Assume to be zero-cost. 1995 return false; 1996 case scConstant: { 1997 // Only evalulate the costs of constants when optimizing for size. 1998 if (CostKind != TargetTransformInfo::TCK_CodeSize) 1999 return false; 2000 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2001 Type *Ty = S->getType(); 2002 Cost += TTI.getIntImmCostInst( 2003 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2004 return Cost > Budget; 2005 } 2006 case scTruncate: 2007 case scPtrToInt: 2008 case scZeroExtend: 2009 case scSignExtend: { 2010 Cost += 2011 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2012 return false; // Will answer upon next entry into this function. 2013 } 2014 case scUDivExpr: { 2015 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2016 // HowManyLessThans produced to compute a precise expression, rather than a 2017 // UDiv from the user's code. If we can't find a UDiv in the code with some 2018 // simple searching, we need to account for it's cost. 2019 2020 // At the beginning of this function we already tried to find existing 2021 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2022 // pattern involving division. This is just a simple search heuristic. 2023 if (hasRelatedExistingExpansion( 2024 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2025 return false; // Consider it to be free. 2026 2027 Cost += 2028 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2029 return false; // Will answer upon next entry into this function. 2030 } 2031 case scAddExpr: 2032 case scMulExpr: 2033 case scUMaxExpr: 2034 case scSMaxExpr: 2035 case scUMinExpr: 2036 case scSMinExpr: 2037 case scSequentialUMinExpr: { 2038 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2039 "Nary expr should have more than 1 operand."); 2040 // The simple nary expr will require one less op (or pair of ops) 2041 // than the number of it's terms. 2042 Cost += 2043 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2044 return Cost > Budget; 2045 } 2046 case scAddRecExpr: { 2047 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2048 "Polynomial should be at least linear"); 2049 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2050 WorkItem, TTI, CostKind, Worklist); 2051 return Cost > Budget; 2052 } 2053 } 2054 llvm_unreachable("Unknown SCEV kind!"); 2055 } 2056 2057 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2058 Instruction *IP) { 2059 assert(IP); 2060 switch (Pred->getKind()) { 2061 case SCEVPredicate::P_Union: 2062 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2063 case SCEVPredicate::P_Compare: 2064 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2065 case SCEVPredicate::P_Wrap: { 2066 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2067 return expandWrapPredicate(AddRecPred, IP); 2068 } 2069 } 2070 llvm_unreachable("Unknown SCEV predicate type"); 2071 } 2072 2073 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2074 Instruction *IP) { 2075 Value *Expr0 = expand(Pred->getLHS(), IP); 2076 Value *Expr1 = expand(Pred->getRHS(), IP); 2077 2078 Builder.SetInsertPoint(IP); 2079 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2080 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2081 return I; 2082 } 2083 2084 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2085 Instruction *Loc, bool Signed) { 2086 assert(AR->isAffine() && "Cannot generate RT check for " 2087 "non-affine expression"); 2088 2089 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2090 SmallVector<const SCEVPredicate *, 4> Pred; 2091 const SCEV *ExitCount = 2092 SE.getPredicatedSymbolicMaxBackedgeTakenCount(AR->getLoop(), Pred); 2093 2094 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2095 2096 const SCEV *Step = AR->getStepRecurrence(SE); 2097 const SCEV *Start = AR->getStart(); 2098 2099 Type *ARTy = AR->getType(); 2100 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2101 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2102 2103 // The expression {Start,+,Step} has nusw/nssw if 2104 // Step < 0, Start - |Step| * Backedge <= Start 2105 // Step >= 0, Start + |Step| * Backedge > Start 2106 // and |Step| * Backedge doesn't unsigned overflow. 2107 2108 Builder.SetInsertPoint(Loc); 2109 Value *TripCountVal = expand(ExitCount, Loc); 2110 2111 IntegerType *Ty = 2112 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2113 2114 Value *StepValue = expand(Step, Loc); 2115 Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc); 2116 Value *StartValue = expand(Start, Loc); 2117 2118 ConstantInt *Zero = 2119 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2120 2121 Builder.SetInsertPoint(Loc); 2122 // Compute |Step| 2123 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2124 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2125 2126 // Compute |Step| * Backedge 2127 // Compute: 2128 // 1. Start + |Step| * Backedge < Start 2129 // 2. Start - |Step| * Backedge > Start 2130 // 2131 // And select either 1. or 2. depending on whether step is positive or 2132 // negative. If Step is known to be positive or negative, only create 2133 // either 1. or 2. 2134 auto ComputeEndCheck = [&]() -> Value * { 2135 // Checking <u 0 is always false. 2136 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2137 return ConstantInt::getFalse(Loc->getContext()); 2138 2139 // Get the backedge taken count and truncate or extended to the AR type. 2140 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2141 2142 Value *MulV, *OfMul; 2143 if (Step->isOne()) { 2144 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2145 // needed, there is never an overflow, so to avoid artificially inflating 2146 // the cost of the check, directly emit the optimized IR. 2147 MulV = TruncTripCount; 2148 OfMul = ConstantInt::getFalse(MulV->getContext()); 2149 } else { 2150 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2151 Intrinsic::umul_with_overflow, Ty); 2152 CallInst *Mul = 2153 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2154 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2155 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2156 } 2157 2158 Value *Add = nullptr, *Sub = nullptr; 2159 bool NeedPosCheck = !SE.isKnownNegative(Step); 2160 bool NeedNegCheck = !SE.isKnownPositive(Step); 2161 2162 if (isa<PointerType>(ARTy)) { 2163 Value *NegMulV = Builder.CreateNeg(MulV); 2164 if (NeedPosCheck) 2165 Add = Builder.CreatePtrAdd(StartValue, MulV); 2166 if (NeedNegCheck) 2167 Sub = Builder.CreatePtrAdd(StartValue, NegMulV); 2168 } else { 2169 if (NeedPosCheck) 2170 Add = Builder.CreateAdd(StartValue, MulV); 2171 if (NeedNegCheck) 2172 Sub = Builder.CreateSub(StartValue, MulV); 2173 } 2174 2175 Value *EndCompareLT = nullptr; 2176 Value *EndCompareGT = nullptr; 2177 Value *EndCheck = nullptr; 2178 if (NeedPosCheck) 2179 EndCheck = EndCompareLT = Builder.CreateICmp( 2180 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2181 if (NeedNegCheck) 2182 EndCheck = EndCompareGT = Builder.CreateICmp( 2183 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2184 if (NeedPosCheck && NeedNegCheck) { 2185 // Select the answer based on the sign of Step. 2186 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2187 } 2188 return Builder.CreateOr(EndCheck, OfMul); 2189 }; 2190 Value *EndCheck = ComputeEndCheck(); 2191 2192 // If the backedge taken count type is larger than the AR type, 2193 // check that we don't drop any bits by truncating it. If we are 2194 // dropping bits, then we have overflow (unless the step is zero). 2195 if (SrcBits > DstBits) { 2196 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2197 auto *BackedgeCheck = 2198 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2199 ConstantInt::get(Loc->getContext(), MaxVal)); 2200 BackedgeCheck = Builder.CreateAnd( 2201 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2202 2203 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2204 } 2205 2206 return EndCheck; 2207 } 2208 2209 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2210 Instruction *IP) { 2211 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2212 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2213 2214 // Add a check for NUSW 2215 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2216 NUSWCheck = generateOverflowCheck(A, IP, false); 2217 2218 // Add a check for NSSW 2219 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2220 NSSWCheck = generateOverflowCheck(A, IP, true); 2221 2222 if (NUSWCheck && NSSWCheck) 2223 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2224 2225 if (NUSWCheck) 2226 return NUSWCheck; 2227 2228 if (NSSWCheck) 2229 return NSSWCheck; 2230 2231 return ConstantInt::getFalse(IP->getContext()); 2232 } 2233 2234 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2235 Instruction *IP) { 2236 // Loop over all checks in this set. 2237 SmallVector<Value *> Checks; 2238 for (const auto *Pred : Union->getPredicates()) { 2239 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2240 Builder.SetInsertPoint(IP); 2241 } 2242 2243 if (Checks.empty()) 2244 return ConstantInt::getFalse(IP->getContext()); 2245 return Builder.CreateOr(Checks); 2246 } 2247 2248 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2249 auto *DefI = dyn_cast<Instruction>(V); 2250 if (!PreserveLCSSA || !DefI) 2251 return V; 2252 2253 BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 2254 Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2255 Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2256 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2257 return V; 2258 2259 // Create a temporary instruction to at the current insertion point, so we 2260 // can hand it off to the helper to create LCSSA PHIs if required for the 2261 // new use. 2262 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2263 // would accept a insertion point and return an LCSSA phi for that 2264 // insertion point, so there is no need to insert & remove the temporary 2265 // instruction. 2266 Type *ToTy; 2267 if (DefI->getType()->isIntegerTy()) 2268 ToTy = PointerType::get(DefI->getContext(), 0); 2269 else 2270 ToTy = Type::getInt32Ty(DefI->getContext()); 2271 Instruction *User = 2272 CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2273 auto RemoveUserOnExit = 2274 make_scope_exit([User]() { User->eraseFromParent(); }); 2275 2276 SmallVector<Instruction *, 1> ToUpdate; 2277 ToUpdate.push_back(DefI); 2278 SmallVector<PHINode *, 16> PHIsToRemove; 2279 SmallVector<PHINode *, 16> InsertedPHIs; 2280 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 2281 &InsertedPHIs); 2282 for (PHINode *PN : InsertedPHIs) 2283 rememberInstruction(PN); 2284 for (PHINode *PN : PHIsToRemove) { 2285 if (!PN->use_empty()) 2286 continue; 2287 InsertedValues.erase(PN); 2288 InsertedPostIncValues.erase(PN); 2289 PN->eraseFromParent(); 2290 } 2291 2292 return User->getOperand(0); 2293 } 2294 2295 namespace { 2296 // Search for a SCEV subexpression that is not safe to expand. Any expression 2297 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2298 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2299 // instruction, but the important thing is that we prove the denominator is 2300 // nonzero before expansion. 2301 // 2302 // IVUsers already checks that IV-derived expressions are safe. So this check is 2303 // only needed when the expression includes some subexpression that is not IV 2304 // derived. 2305 // 2306 // Currently, we only allow division by a value provably non-zero here. 2307 // 2308 // We cannot generally expand recurrences unless the step dominates the loop 2309 // header. The expander handles the special case of affine recurrences by 2310 // scaling the recurrence outside the loop, but this technique isn't generally 2311 // applicable. Expanding a nested recurrence outside a loop requires computing 2312 // binomial coefficients. This could be done, but the recurrence has to be in a 2313 // perfectly reduced form, which can't be guaranteed. 2314 struct SCEVFindUnsafe { 2315 ScalarEvolution &SE; 2316 bool CanonicalMode; 2317 bool IsUnsafe = false; 2318 2319 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2320 : SE(SE), CanonicalMode(CanonicalMode) {} 2321 2322 bool follow(const SCEV *S) { 2323 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2324 if (!SE.isKnownNonZero(D->getRHS())) { 2325 IsUnsafe = true; 2326 return false; 2327 } 2328 } 2329 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2330 // For non-affine addrecs or in non-canonical mode we need a preheader 2331 // to insert into. 2332 if (!AR->getLoop()->getLoopPreheader() && 2333 (!CanonicalMode || !AR->isAffine())) { 2334 IsUnsafe = true; 2335 return false; 2336 } 2337 } 2338 return true; 2339 } 2340 bool isDone() const { return IsUnsafe; } 2341 }; 2342 } // namespace 2343 2344 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2345 SCEVFindUnsafe Search(SE, CanonicalMode); 2346 visitAll(S, Search); 2347 return !Search.IsUnsafe; 2348 } 2349 2350 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2351 const Instruction *InsertionPoint) const { 2352 if (!isSafeToExpand(S)) 2353 return false; 2354 // We have to prove that the expanded site of S dominates InsertionPoint. 2355 // This is easy when not in the same block, but hard when S is an instruction 2356 // to be expanded somewhere inside the same block as our insertion point. 2357 // What we really need here is something analogous to an OrderedBasicBlock, 2358 // but for the moment, we paper over the problem by handling two common and 2359 // cheap to check cases. 2360 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2361 return true; 2362 if (SE.dominates(S, InsertionPoint->getParent())) { 2363 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2364 return true; 2365 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2366 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2367 return true; 2368 } 2369 return false; 2370 } 2371 2372 void SCEVExpanderCleaner::cleanup() { 2373 // Result is used, nothing to remove. 2374 if (ResultUsed) 2375 return; 2376 2377 // Restore original poison flags. 2378 for (auto [I, Flags] : Expander.OrigFlags) 2379 Flags.apply(I); 2380 2381 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2382 #ifndef NDEBUG 2383 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2384 InsertedInstructions.end()); 2385 (void)InsertedSet; 2386 #endif 2387 // Remove sets with value handles. 2388 Expander.clear(); 2389 2390 // Remove all inserted instructions. 2391 for (Instruction *I : reverse(InsertedInstructions)) { 2392 #ifndef NDEBUG 2393 assert(all_of(I->users(), 2394 [&InsertedSet](Value *U) { 2395 return InsertedSet.contains(cast<Instruction>(U)); 2396 }) && 2397 "removed instruction should only be used by instructions inserted " 2398 "during expansion"); 2399 #endif 2400 assert(!I->getType()->isVoidTy() && 2401 "inserted instruction should have non-void types"); 2402 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2403 I->eraseFromParent(); 2404 } 2405 } 2406