1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Transforms/Utils/LoopUtils.h" 31 32 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 34 #else 35 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 36 #endif 37 38 using namespace llvm; 39 40 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 41 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 42 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 43 "controls the budget that is considered cheap (default = 4)")); 44 45 using namespace PatternMatch; 46 47 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 48 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 49 /// creating a new one. 50 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 51 Instruction::CastOps Op, 52 BasicBlock::iterator IP) { 53 // This function must be called with the builder having a valid insertion 54 // point. It doesn't need to be the actual IP where the uses of the returned 55 // cast will be added, but it must dominate such IP. 56 // We use this precondition to produce a cast that will dominate all its 57 // uses. In particular, this is crucial for the case where the builder's 58 // insertion point *is* the point where we were asked to put the cast. 59 // Since we don't know the builder's insertion point is actually 60 // where the uses will be added (only that it dominates it), we are 61 // not allowed to move it. 62 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 63 64 Value *Ret = nullptr; 65 66 // Check to see if there is already a cast! 67 for (User *U : V->users()) { 68 if (U->getType() != Ty) 69 continue; 70 CastInst *CI = dyn_cast<CastInst>(U); 71 if (!CI || CI->getOpcode() != Op) 72 continue; 73 74 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 75 // the cast must also properly dominate the Builder's insertion point. 76 if (IP->getParent() == CI->getParent() && &*BIP != CI && 77 (&*IP == CI || CI->comesBefore(&*IP))) { 78 Ret = CI; 79 break; 80 } 81 } 82 83 // Create a new cast. 84 if (!Ret) { 85 SCEVInsertPointGuard Guard(Builder, this); 86 Builder.SetInsertPoint(&*IP); 87 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 88 } 89 90 // We assert at the end of the function since IP might point to an 91 // instruction with different dominance properties than a cast 92 // (an invoke for example) and not dominate BIP (but the cast does). 93 assert(!isa<Instruction>(Ret) || 94 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 95 96 return Ret; 97 } 98 99 BasicBlock::iterator 100 SCEVExpander::findInsertPointAfter(Instruction *I, 101 Instruction *MustDominate) const { 102 BasicBlock::iterator IP = ++I->getIterator(); 103 if (auto *II = dyn_cast<InvokeInst>(I)) 104 IP = II->getNormalDest()->begin(); 105 106 while (isa<PHINode>(IP)) 107 ++IP; 108 109 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 110 ++IP; 111 } else if (isa<CatchSwitchInst>(IP)) { 112 IP = MustDominate->getParent()->getFirstInsertionPt(); 113 } else { 114 assert(!IP->isEHPad() && "unexpected eh pad!"); 115 } 116 117 // Adjust insert point to be after instructions inserted by the expander, so 118 // we can re-use already inserted instructions. Avoid skipping past the 119 // original \p MustDominate, in case it is an inserted instruction. 120 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 121 ++IP; 122 123 return IP; 124 } 125 126 BasicBlock::iterator 127 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 128 // Cast the argument at the beginning of the entry block, after 129 // any bitcasts of other arguments. 130 if (Argument *A = dyn_cast<Argument>(V)) { 131 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 132 while ((isa<BitCastInst>(IP) && 133 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 134 cast<BitCastInst>(IP)->getOperand(0) != A) || 135 isa<DbgInfoIntrinsic>(IP)) 136 ++IP; 137 return IP; 138 } 139 140 // Cast the instruction immediately after the instruction. 141 if (Instruction *I = dyn_cast<Instruction>(V)) 142 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 143 144 // Otherwise, this must be some kind of a constant, 145 // so let's plop this cast into the function's entry block. 146 assert(isa<Constant>(V) && 147 "Expected the cast argument to be a global/constant"); 148 return Builder.GetInsertBlock() 149 ->getParent() 150 ->getEntryBlock() 151 .getFirstInsertionPt(); 152 } 153 154 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 155 /// which must be possible with a noop cast, doing what we can to share 156 /// the casts. 157 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 158 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 159 assert((Op == Instruction::BitCast || 160 Op == Instruction::PtrToInt || 161 Op == Instruction::IntToPtr) && 162 "InsertNoopCastOfTo cannot perform non-noop casts!"); 163 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 164 "InsertNoopCastOfTo cannot change sizes!"); 165 166 // inttoptr only works for integral pointers. For non-integral pointers, we 167 // can create a GEP on i8* null with the integral value as index. Note that 168 // it is safe to use GEP of null instead of inttoptr here, because only 169 // expressions already based on a GEP of null should be converted to pointers 170 // during expansion. 171 if (Op == Instruction::IntToPtr) { 172 auto *PtrTy = cast<PointerType>(Ty); 173 if (DL.isNonIntegralPointerType(PtrTy)) { 174 auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 175 assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 && 176 "alloc size of i8 must by 1 byte for the GEP to be correct"); 177 auto *GEP = Builder.CreateGEP( 178 Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep"); 179 return Builder.CreateBitCast(GEP, Ty); 180 } 181 } 182 // Short-circuit unnecessary bitcasts. 183 if (Op == Instruction::BitCast) { 184 if (V->getType() == Ty) 185 return V; 186 if (CastInst *CI = dyn_cast<CastInst>(V)) { 187 if (CI->getOperand(0)->getType() == Ty) 188 return CI->getOperand(0); 189 } 190 } 191 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 192 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 193 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 194 if (CastInst *CI = dyn_cast<CastInst>(V)) 195 if ((CI->getOpcode() == Instruction::PtrToInt || 196 CI->getOpcode() == Instruction::IntToPtr) && 197 SE.getTypeSizeInBits(CI->getType()) == 198 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 199 return CI->getOperand(0); 200 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 201 if ((CE->getOpcode() == Instruction::PtrToInt || 202 CE->getOpcode() == Instruction::IntToPtr) && 203 SE.getTypeSizeInBits(CE->getType()) == 204 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 205 return CE->getOperand(0); 206 } 207 208 // Fold a cast of a constant. 209 if (Constant *C = dyn_cast<Constant>(V)) 210 return ConstantExpr::getCast(Op, C, Ty); 211 212 // Try to reuse existing cast, or insert one. 213 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 214 } 215 216 /// InsertBinop - Insert the specified binary operator, doing a small amount 217 /// of work to avoid inserting an obviously redundant operation, and hoisting 218 /// to an outer loop when the opportunity is there and it is safe. 219 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 220 Value *LHS, Value *RHS, 221 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 222 // Fold a binop with constant operands. 223 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 224 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 225 return ConstantExpr::get(Opcode, CLHS, CRHS); 226 227 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 228 unsigned ScanLimit = 6; 229 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 230 // Scanning starts from the last instruction before the insertion point. 231 BasicBlock::iterator IP = Builder.GetInsertPoint(); 232 if (IP != BlockBegin) { 233 --IP; 234 for (; ScanLimit; --IP, --ScanLimit) { 235 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 236 // generated code. 237 if (isa<DbgInfoIntrinsic>(IP)) 238 ScanLimit++; 239 240 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 241 // Ensure that no-wrap flags match. 242 if (isa<OverflowingBinaryOperator>(I)) { 243 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 244 return true; 245 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 246 return true; 247 } 248 // Conservatively, do not use any instruction which has any of exact 249 // flags installed. 250 if (isa<PossiblyExactOperator>(I) && I->isExact()) 251 return true; 252 return false; 253 }; 254 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 255 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 256 return &*IP; 257 if (IP == BlockBegin) break; 258 } 259 } 260 261 // Save the original insertion point so we can restore it when we're done. 262 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 263 SCEVInsertPointGuard Guard(Builder, this); 264 265 if (IsSafeToHoist) { 266 // Move the insertion point out of as many loops as we can. 267 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 268 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 269 BasicBlock *Preheader = L->getLoopPreheader(); 270 if (!Preheader) break; 271 272 // Ok, move up a level. 273 Builder.SetInsertPoint(Preheader->getTerminator()); 274 } 275 } 276 277 // If we haven't found this binop, insert it. 278 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 279 BO->setDebugLoc(Loc); 280 if (Flags & SCEV::FlagNUW) 281 BO->setHasNoUnsignedWrap(); 282 if (Flags & SCEV::FlagNSW) 283 BO->setHasNoSignedWrap(); 284 285 return BO; 286 } 287 288 /// FactorOutConstant - Test if S is divisible by Factor, using signed 289 /// division. If so, update S with Factor divided out and return true. 290 /// S need not be evenly divisible if a reasonable remainder can be 291 /// computed. 292 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 293 const SCEV *Factor, ScalarEvolution &SE, 294 const DataLayout &DL) { 295 // Everything is divisible by one. 296 if (Factor->isOne()) 297 return true; 298 299 // x/x == 1. 300 if (S == Factor) { 301 S = SE.getConstant(S->getType(), 1); 302 return true; 303 } 304 305 // For a Constant, check for a multiple of the given factor. 306 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 307 // 0/x == 0. 308 if (C->isZero()) 309 return true; 310 // Check for divisibility. 311 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 312 ConstantInt *CI = 313 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 314 // If the quotient is zero and the remainder is non-zero, reject 315 // the value at this scale. It will be considered for subsequent 316 // smaller scales. 317 if (!CI->isZero()) { 318 const SCEV *Div = SE.getConstant(CI); 319 S = Div; 320 Remainder = SE.getAddExpr( 321 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 322 return true; 323 } 324 } 325 } 326 327 // In a Mul, check if there is a constant operand which is a multiple 328 // of the given factor. 329 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 330 // Size is known, check if there is a constant operand which is a multiple 331 // of the given factor. If so, we can factor it. 332 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 333 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 334 if (!C->getAPInt().srem(FC->getAPInt())) { 335 SmallVector<const SCEV *, 4> NewMulOps(M->operands()); 336 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 337 S = SE.getMulExpr(NewMulOps); 338 return true; 339 } 340 } 341 342 // In an AddRec, check if both start and step are divisible. 343 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 344 const SCEV *Step = A->getStepRecurrence(SE); 345 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 346 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 347 return false; 348 if (!StepRem->isZero()) 349 return false; 350 const SCEV *Start = A->getStart(); 351 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 352 return false; 353 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 354 A->getNoWrapFlags(SCEV::FlagNW)); 355 return true; 356 } 357 358 return false; 359 } 360 361 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 362 /// is the number of SCEVAddRecExprs present, which are kept at the end of 363 /// the list. 364 /// 365 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 366 Type *Ty, 367 ScalarEvolution &SE) { 368 unsigned NumAddRecs = 0; 369 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 370 ++NumAddRecs; 371 // Group Ops into non-addrecs and addrecs. 372 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 373 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 374 // Let ScalarEvolution sort and simplify the non-addrecs list. 375 const SCEV *Sum = NoAddRecs.empty() ? 376 SE.getConstant(Ty, 0) : 377 SE.getAddExpr(NoAddRecs); 378 // If it returned an add, use the operands. Otherwise it simplified 379 // the sum into a single value, so just use that. 380 Ops.clear(); 381 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 382 Ops.append(Add->op_begin(), Add->op_end()); 383 else if (!Sum->isZero()) 384 Ops.push_back(Sum); 385 // Then append the addrecs. 386 Ops.append(AddRecs.begin(), AddRecs.end()); 387 } 388 389 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 390 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 391 /// This helps expose more opportunities for folding parts of the expressions 392 /// into GEP indices. 393 /// 394 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 395 Type *Ty, 396 ScalarEvolution &SE) { 397 // Find the addrecs. 398 SmallVector<const SCEV *, 8> AddRecs; 399 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 400 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 401 const SCEV *Start = A->getStart(); 402 if (Start->isZero()) break; 403 const SCEV *Zero = SE.getConstant(Ty, 0); 404 AddRecs.push_back(SE.getAddRecExpr(Zero, 405 A->getStepRecurrence(SE), 406 A->getLoop(), 407 A->getNoWrapFlags(SCEV::FlagNW))); 408 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 409 Ops[i] = Zero; 410 Ops.append(Add->op_begin(), Add->op_end()); 411 e += Add->getNumOperands(); 412 } else { 413 Ops[i] = Start; 414 } 415 } 416 if (!AddRecs.empty()) { 417 // Add the addrecs onto the end of the list. 418 Ops.append(AddRecs.begin(), AddRecs.end()); 419 // Resort the operand list, moving any constants to the front. 420 SimplifyAddOperands(Ops, Ty, SE); 421 } 422 } 423 424 /// expandAddToGEP - Expand an addition expression with a pointer type into 425 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 426 /// BasicAliasAnalysis and other passes analyze the result. See the rules 427 /// for getelementptr vs. inttoptr in 428 /// http://llvm.org/docs/LangRef.html#pointeraliasing 429 /// for details. 430 /// 431 /// Design note: The correctness of using getelementptr here depends on 432 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 433 /// they may introduce pointer arithmetic which may not be safely converted 434 /// into getelementptr. 435 /// 436 /// Design note: It might seem desirable for this function to be more 437 /// loop-aware. If some of the indices are loop-invariant while others 438 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 439 /// loop-invariant portions of the overall computation outside the loop. 440 /// However, there are a few reasons this is not done here. Hoisting simple 441 /// arithmetic is a low-level optimization that often isn't very 442 /// important until late in the optimization process. In fact, passes 443 /// like InstructionCombining will combine GEPs, even if it means 444 /// pushing loop-invariant computation down into loops, so even if the 445 /// GEPs were split here, the work would quickly be undone. The 446 /// LoopStrengthReduction pass, which is usually run quite late (and 447 /// after the last InstructionCombining pass), takes care of hoisting 448 /// loop-invariant portions of expressions, after considering what 449 /// can be folded using target addressing modes. 450 /// 451 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 452 const SCEV *const *op_end, 453 PointerType *PTy, 454 Type *Ty, 455 Value *V) { 456 SmallVector<Value *, 4> GepIndices; 457 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 458 bool AnyNonZeroIndices = false; 459 460 // Split AddRecs up into parts as either of the parts may be usable 461 // without the other. 462 SplitAddRecs(Ops, Ty, SE); 463 464 Type *IntIdxTy = DL.getIndexType(PTy); 465 466 // For opaque pointers, always generate i8 GEP. 467 if (!PTy->isOpaque()) { 468 // Descend down the pointer's type and attempt to convert the other 469 // operands into GEP indices, at each level. The first index in a GEP 470 // indexes into the array implied by the pointer operand; the rest of 471 // the indices index into the element or field type selected by the 472 // preceding index. 473 Type *ElTy = PTy->getElementType(); 474 for (;;) { 475 // If the scale size is not 0, attempt to factor out a scale for 476 // array indexing. 477 SmallVector<const SCEV *, 8> ScaledOps; 478 if (ElTy->isSized()) { 479 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 480 if (!ElSize->isZero()) { 481 SmallVector<const SCEV *, 8> NewOps; 482 for (const SCEV *Op : Ops) { 483 const SCEV *Remainder = SE.getConstant(Ty, 0); 484 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 485 // Op now has ElSize factored out. 486 ScaledOps.push_back(Op); 487 if (!Remainder->isZero()) 488 NewOps.push_back(Remainder); 489 AnyNonZeroIndices = true; 490 } else { 491 // The operand was not divisible, so add it to the list of 492 // operands we'll scan next iteration. 493 NewOps.push_back(Op); 494 } 495 } 496 // If we made any changes, update Ops. 497 if (!ScaledOps.empty()) { 498 Ops = NewOps; 499 SimplifyAddOperands(Ops, Ty, SE); 500 } 501 } 502 } 503 504 // Record the scaled array index for this level of the type. If 505 // we didn't find any operands that could be factored, tentatively 506 // assume that element zero was selected (since the zero offset 507 // would obviously be folded away). 508 Value *Scaled = 509 ScaledOps.empty() 510 ? Constant::getNullValue(Ty) 511 : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false); 512 GepIndices.push_back(Scaled); 513 514 // Collect struct field index operands. 515 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 516 bool FoundFieldNo = false; 517 // An empty struct has no fields. 518 if (STy->getNumElements() == 0) break; 519 // Field offsets are known. See if a constant offset falls within any of 520 // the struct fields. 521 if (Ops.empty()) 522 break; 523 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 524 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 525 const StructLayout &SL = *DL.getStructLayout(STy); 526 uint64_t FullOffset = C->getValue()->getZExtValue(); 527 if (FullOffset < SL.getSizeInBytes()) { 528 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 529 GepIndices.push_back( 530 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 531 ElTy = STy->getTypeAtIndex(ElIdx); 532 Ops[0] = 533 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 534 AnyNonZeroIndices = true; 535 FoundFieldNo = true; 536 } 537 } 538 // If no struct field offsets were found, tentatively assume that 539 // field zero was selected (since the zero offset would obviously 540 // be folded away). 541 if (!FoundFieldNo) { 542 ElTy = STy->getTypeAtIndex(0u); 543 GepIndices.push_back( 544 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 545 } 546 } 547 548 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 549 ElTy = ATy->getElementType(); 550 else 551 // FIXME: Handle VectorType. 552 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 553 // constant, therefore can not be factored out. The generated IR is less 554 // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 555 break; 556 } 557 } 558 559 // If none of the operands were convertible to proper GEP indices, cast 560 // the base to i8* and do an ugly getelementptr with that. It's still 561 // better than ptrtoint+arithmetic+inttoptr at least. 562 if (!AnyNonZeroIndices) { 563 // Cast the base to i8*. 564 if (!PTy->isOpaque()) 565 V = InsertNoopCastOfTo(V, 566 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 567 568 assert(!isa<Instruction>(V) || 569 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 570 571 // Expand the operands for a plain byte offset. 572 Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false); 573 574 // Fold a GEP with constant operands. 575 if (Constant *CLHS = dyn_cast<Constant>(V)) 576 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 577 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 578 CLHS, CRHS); 579 580 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 581 unsigned ScanLimit = 6; 582 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 583 // Scanning starts from the last instruction before the insertion point. 584 BasicBlock::iterator IP = Builder.GetInsertPoint(); 585 if (IP != BlockBegin) { 586 --IP; 587 for (; ScanLimit; --IP, --ScanLimit) { 588 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 589 // generated code. 590 if (isa<DbgInfoIntrinsic>(IP)) 591 ScanLimit++; 592 if (IP->getOpcode() == Instruction::GetElementPtr && 593 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 594 return &*IP; 595 if (IP == BlockBegin) break; 596 } 597 } 598 599 // Save the original insertion point so we can restore it when we're done. 600 SCEVInsertPointGuard Guard(Builder, this); 601 602 // Move the insertion point out of as many loops as we can. 603 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 604 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 605 BasicBlock *Preheader = L->getLoopPreheader(); 606 if (!Preheader) break; 607 608 // Ok, move up a level. 609 Builder.SetInsertPoint(Preheader->getTerminator()); 610 } 611 612 // Emit a GEP. 613 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 614 } 615 616 { 617 SCEVInsertPointGuard Guard(Builder, this); 618 619 // Move the insertion point out of as many loops as we can. 620 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 621 if (!L->isLoopInvariant(V)) break; 622 623 bool AnyIndexNotLoopInvariant = any_of( 624 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 625 626 if (AnyIndexNotLoopInvariant) 627 break; 628 629 BasicBlock *Preheader = L->getLoopPreheader(); 630 if (!Preheader) break; 631 632 // Ok, move up a level. 633 Builder.SetInsertPoint(Preheader->getTerminator()); 634 } 635 636 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 637 // because ScalarEvolution may have changed the address arithmetic to 638 // compute a value which is beyond the end of the allocated object. 639 Value *Casted = V; 640 if (V->getType() != PTy) 641 Casted = InsertNoopCastOfTo(Casted, PTy); 642 Value *GEP = Builder.CreateGEP(PTy->getElementType(), Casted, GepIndices, 643 "scevgep"); 644 Ops.push_back(SE.getUnknown(GEP)); 645 } 646 647 return expand(SE.getAddExpr(Ops)); 648 } 649 650 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 651 Value *V) { 652 const SCEV *const Ops[1] = {Op}; 653 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 654 } 655 656 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 657 /// SCEV expansion. If they are nested, this is the most nested. If they are 658 /// neighboring, pick the later. 659 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 660 DominatorTree &DT) { 661 if (!A) return B; 662 if (!B) return A; 663 if (A->contains(B)) return B; 664 if (B->contains(A)) return A; 665 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 666 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 667 return A; // Arbitrarily break the tie. 668 } 669 670 /// getRelevantLoop - Get the most relevant loop associated with the given 671 /// expression, according to PickMostRelevantLoop. 672 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 673 // Test whether we've already computed the most relevant loop for this SCEV. 674 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 675 if (!Pair.second) 676 return Pair.first->second; 677 678 if (isa<SCEVConstant>(S)) 679 // A constant has no relevant loops. 680 return nullptr; 681 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 682 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 683 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 684 // A non-instruction has no relevant loops. 685 return nullptr; 686 } 687 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 688 const Loop *L = nullptr; 689 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 690 L = AR->getLoop(); 691 for (const SCEV *Op : N->operands()) 692 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 693 return RelevantLoops[N] = L; 694 } 695 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 696 const Loop *Result = getRelevantLoop(C->getOperand()); 697 return RelevantLoops[C] = Result; 698 } 699 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 700 const Loop *Result = PickMostRelevantLoop( 701 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 702 return RelevantLoops[D] = Result; 703 } 704 llvm_unreachable("Unexpected SCEV type!"); 705 } 706 707 namespace { 708 709 /// LoopCompare - Compare loops by PickMostRelevantLoop. 710 class LoopCompare { 711 DominatorTree &DT; 712 public: 713 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 714 715 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 716 std::pair<const Loop *, const SCEV *> RHS) const { 717 // Keep pointer operands sorted at the end. 718 if (LHS.second->getType()->isPointerTy() != 719 RHS.second->getType()->isPointerTy()) 720 return LHS.second->getType()->isPointerTy(); 721 722 // Compare loops with PickMostRelevantLoop. 723 if (LHS.first != RHS.first) 724 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 725 726 // If one operand is a non-constant negative and the other is not, 727 // put the non-constant negative on the right so that a sub can 728 // be used instead of a negate and add. 729 if (LHS.second->isNonConstantNegative()) { 730 if (!RHS.second->isNonConstantNegative()) 731 return false; 732 } else if (RHS.second->isNonConstantNegative()) 733 return true; 734 735 // Otherwise they are equivalent according to this comparison. 736 return false; 737 } 738 }; 739 740 } 741 742 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 743 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 744 745 // Collect all the add operands in a loop, along with their associated loops. 746 // Iterate in reverse so that constants are emitted last, all else equal, and 747 // so that pointer operands are inserted first, which the code below relies on 748 // to form more involved GEPs. 749 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 750 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 751 E(S->op_begin()); I != E; ++I) 752 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 753 754 // Sort by loop. Use a stable sort so that constants follow non-constants and 755 // pointer operands precede non-pointer operands. 756 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 757 758 // Emit instructions to add all the operands. Hoist as much as possible 759 // out of loops, and form meaningful getelementptrs where possible. 760 Value *Sum = nullptr; 761 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 762 const Loop *CurLoop = I->first; 763 const SCEV *Op = I->second; 764 if (!Sum) { 765 // This is the first operand. Just expand it. 766 Sum = expand(Op); 767 ++I; 768 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 769 // The running sum expression is a pointer. Try to form a getelementptr 770 // at this level with that as the base. 771 SmallVector<const SCEV *, 4> NewOps; 772 for (; I != E && I->first == CurLoop; ++I) { 773 // If the operand is SCEVUnknown and not instructions, peek through 774 // it, to enable more of it to be folded into the GEP. 775 const SCEV *X = I->second; 776 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 777 if (!isa<Instruction>(U->getValue())) 778 X = SE.getSCEV(U->getValue()); 779 NewOps.push_back(X); 780 } 781 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 782 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { 783 // The running sum is an integer, and there's a pointer at this level. 784 // Try to form a getelementptr. If the running sum is instructions, 785 // use a SCEVUnknown to avoid re-analyzing them. 786 SmallVector<const SCEV *, 4> NewOps; 787 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : 788 SE.getSCEV(Sum)); 789 for (++I; I != E && I->first == CurLoop; ++I) 790 NewOps.push_back(I->second); 791 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); 792 } else if (Op->isNonConstantNegative()) { 793 // Instead of doing a negate and add, just do a subtract. 794 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false); 795 Sum = InsertNoopCastOfTo(Sum, Ty); 796 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 797 /*IsSafeToHoist*/ true); 798 ++I; 799 } else { 800 // A simple add. 801 Value *W = expandCodeForImpl(Op, Ty, false); 802 Sum = InsertNoopCastOfTo(Sum, Ty); 803 // Canonicalize a constant to the RHS. 804 if (isa<Constant>(Sum)) std::swap(Sum, W); 805 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 806 /*IsSafeToHoist*/ true); 807 ++I; 808 } 809 } 810 811 return Sum; 812 } 813 814 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 815 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 816 817 // Collect all the mul operands in a loop, along with their associated loops. 818 // Iterate in reverse so that constants are emitted last, all else equal. 819 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 820 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 821 E(S->op_begin()); I != E; ++I) 822 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 823 824 // Sort by loop. Use a stable sort so that constants follow non-constants. 825 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 826 827 // Emit instructions to mul all the operands. Hoist as much as possible 828 // out of loops. 829 Value *Prod = nullptr; 830 auto I = OpsAndLoops.begin(); 831 832 // Expand the calculation of X pow N in the following manner: 833 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 834 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 835 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 836 auto E = I; 837 // Calculate how many times the same operand from the same loop is included 838 // into this power. 839 uint64_t Exponent = 0; 840 const uint64_t MaxExponent = UINT64_MAX >> 1; 841 // No one sane will ever try to calculate such huge exponents, but if we 842 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 843 // below when the power of 2 exceeds our Exponent, and we want it to be 844 // 1u << 31 at most to not deal with unsigned overflow. 845 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 846 ++Exponent; 847 ++E; 848 } 849 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 850 851 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 852 // that are needed into the result. 853 Value *P = expandCodeForImpl(I->second, Ty, false); 854 Value *Result = nullptr; 855 if (Exponent & 1) 856 Result = P; 857 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 858 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 859 /*IsSafeToHoist*/ true); 860 if (Exponent & BinExp) 861 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 862 SCEV::FlagAnyWrap, 863 /*IsSafeToHoist*/ true) 864 : P; 865 } 866 867 I = E; 868 assert(Result && "Nothing was expanded?"); 869 return Result; 870 }; 871 872 while (I != OpsAndLoops.end()) { 873 if (!Prod) { 874 // This is the first operand. Just expand it. 875 Prod = ExpandOpBinPowN(); 876 } else if (I->second->isAllOnesValue()) { 877 // Instead of doing a multiply by negative one, just do a negate. 878 Prod = InsertNoopCastOfTo(Prod, Ty); 879 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 880 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 881 ++I; 882 } else { 883 // A simple mul. 884 Value *W = ExpandOpBinPowN(); 885 Prod = InsertNoopCastOfTo(Prod, Ty); 886 // Canonicalize a constant to the RHS. 887 if (isa<Constant>(Prod)) std::swap(Prod, W); 888 const APInt *RHS; 889 if (match(W, m_Power2(RHS))) { 890 // Canonicalize Prod*(1<<C) to Prod<<C. 891 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 892 auto NWFlags = S->getNoWrapFlags(); 893 // clear nsw flag if shl will produce poison value. 894 if (RHS->logBase2() == RHS->getBitWidth() - 1) 895 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 896 Prod = InsertBinop(Instruction::Shl, Prod, 897 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 898 /*IsSafeToHoist*/ true); 899 } else { 900 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 901 /*IsSafeToHoist*/ true); 902 } 903 } 904 } 905 906 return Prod; 907 } 908 909 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 910 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 911 912 Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false); 913 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 914 const APInt &RHS = SC->getAPInt(); 915 if (RHS.isPowerOf2()) 916 return InsertBinop(Instruction::LShr, LHS, 917 ConstantInt::get(Ty, RHS.logBase2()), 918 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 919 } 920 921 Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false); 922 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 923 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 924 } 925 926 /// Move parts of Base into Rest to leave Base with the minimal 927 /// expression that provides a pointer operand suitable for a 928 /// GEP expansion. 929 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 930 ScalarEvolution &SE) { 931 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 932 Base = A->getStart(); 933 Rest = SE.getAddExpr(Rest, 934 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 935 A->getStepRecurrence(SE), 936 A->getLoop(), 937 A->getNoWrapFlags(SCEV::FlagNW))); 938 } 939 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 940 Base = A->getOperand(A->getNumOperands()-1); 941 SmallVector<const SCEV *, 8> NewAddOps(A->operands()); 942 NewAddOps.back() = Rest; 943 Rest = SE.getAddExpr(NewAddOps); 944 ExposePointerBase(Base, Rest, SE); 945 } 946 } 947 948 /// Determine if this is a well-behaved chain of instructions leading back to 949 /// the PHI. If so, it may be reused by expanded expressions. 950 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 951 const Loop *L) { 952 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 953 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 954 return false; 955 // If any of the operands don't dominate the insert position, bail. 956 // Addrec operands are always loop-invariant, so this can only happen 957 // if there are instructions which haven't been hoisted. 958 if (L == IVIncInsertLoop) { 959 for (Use &Op : llvm::drop_begin(IncV->operands())) 960 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 961 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 962 return false; 963 } 964 // Advance to the next instruction. 965 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 966 if (!IncV) 967 return false; 968 969 if (IncV->mayHaveSideEffects()) 970 return false; 971 972 if (IncV == PN) 973 return true; 974 975 return isNormalAddRecExprPHI(PN, IncV, L); 976 } 977 978 /// getIVIncOperand returns an induction variable increment's induction 979 /// variable operand. 980 /// 981 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 982 /// operands dominate InsertPos. 983 /// 984 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 985 /// simple patterns generated by getAddRecExprPHILiterally and 986 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 987 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 988 Instruction *InsertPos, 989 bool allowScale) { 990 if (IncV == InsertPos) 991 return nullptr; 992 993 switch (IncV->getOpcode()) { 994 default: 995 return nullptr; 996 // Check for a simple Add/Sub or GEP of a loop invariant step. 997 case Instruction::Add: 998 case Instruction::Sub: { 999 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 1000 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 1001 return dyn_cast<Instruction>(IncV->getOperand(0)); 1002 return nullptr; 1003 } 1004 case Instruction::BitCast: 1005 return dyn_cast<Instruction>(IncV->getOperand(0)); 1006 case Instruction::GetElementPtr: 1007 for (Use &U : llvm::drop_begin(IncV->operands())) { 1008 if (isa<Constant>(U)) 1009 continue; 1010 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 1011 if (!SE.DT.dominates(OInst, InsertPos)) 1012 return nullptr; 1013 } 1014 if (allowScale) { 1015 // allow any kind of GEP as long as it can be hoisted. 1016 continue; 1017 } 1018 // This must be a pointer addition of constants (pretty), which is already 1019 // handled, or some number of address-size elements (ugly). Ugly geps 1020 // have 2 operands. i1* is used by the expander to represent an 1021 // address-size element. 1022 if (IncV->getNumOperands() != 2) 1023 return nullptr; 1024 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 1025 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 1026 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 1027 return nullptr; 1028 break; 1029 } 1030 return dyn_cast<Instruction>(IncV->getOperand(0)); 1031 } 1032 } 1033 1034 /// If the insert point of the current builder or any of the builders on the 1035 /// stack of saved builders has 'I' as its insert point, update it to point to 1036 /// the instruction after 'I'. This is intended to be used when the instruction 1037 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 1038 /// different block, the inconsistent insert point (with a mismatched 1039 /// Instruction and Block) can lead to an instruction being inserted in a block 1040 /// other than its parent. 1041 void SCEVExpander::fixupInsertPoints(Instruction *I) { 1042 BasicBlock::iterator It(*I); 1043 BasicBlock::iterator NewInsertPt = std::next(It); 1044 if (Builder.GetInsertPoint() == It) 1045 Builder.SetInsertPoint(&*NewInsertPt); 1046 for (auto *InsertPtGuard : InsertPointGuards) 1047 if (InsertPtGuard->GetInsertPoint() == It) 1048 InsertPtGuard->SetInsertPoint(NewInsertPt); 1049 } 1050 1051 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1052 /// it available to other uses in this loop. Recursively hoist any operands, 1053 /// until we reach a value that dominates InsertPos. 1054 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 1055 if (SE.DT.dominates(IncV, InsertPos)) 1056 return true; 1057 1058 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1059 // its existing users. 1060 if (isa<PHINode>(InsertPos) || 1061 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1062 return false; 1063 1064 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1065 return false; 1066 1067 // Check that the chain of IV operands leading back to Phi can be hoisted. 1068 SmallVector<Instruction*, 4> IVIncs; 1069 for(;;) { 1070 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1071 if (!Oper) 1072 return false; 1073 // IncV is safe to hoist. 1074 IVIncs.push_back(IncV); 1075 IncV = Oper; 1076 if (SE.DT.dominates(IncV, InsertPos)) 1077 break; 1078 } 1079 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { 1080 fixupInsertPoints(*I); 1081 (*I)->moveBefore(InsertPos); 1082 } 1083 return true; 1084 } 1085 1086 /// Determine if this cyclic phi is in a form that would have been generated by 1087 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1088 /// as it is in a low-cost form, for example, no implied multiplication. This 1089 /// should match any patterns generated by getAddRecExprPHILiterally and 1090 /// expandAddtoGEP. 1091 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1092 const Loop *L) { 1093 for(Instruction *IVOper = IncV; 1094 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1095 /*allowScale=*/false));) { 1096 if (IVOper == PN) 1097 return true; 1098 } 1099 return false; 1100 } 1101 1102 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1103 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1104 /// need to materialize IV increments elsewhere to handle difficult situations. 1105 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1106 Type *ExpandTy, Type *IntTy, 1107 bool useSubtract) { 1108 Value *IncV; 1109 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1110 if (ExpandTy->isPointerTy()) { 1111 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1112 // If the step isn't constant, don't use an implicitly scaled GEP, because 1113 // that would require a multiply inside the loop. 1114 if (!isa<ConstantInt>(StepV)) 1115 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1116 GEPPtrTy->getAddressSpace()); 1117 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1118 if (IncV->getType() != PN->getType()) 1119 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1120 } else { 1121 IncV = useSubtract ? 1122 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1123 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1124 } 1125 return IncV; 1126 } 1127 1128 /// Hoist the addrec instruction chain rooted in the loop phi above the 1129 /// position. This routine assumes that this is possible (has been checked). 1130 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, 1131 Instruction *Pos, PHINode *LoopPhi) { 1132 do { 1133 if (DT->dominates(InstToHoist, Pos)) 1134 break; 1135 // Make sure the increment is where we want it. But don't move it 1136 // down past a potential existing post-inc user. 1137 fixupInsertPoints(InstToHoist); 1138 InstToHoist->moveBefore(Pos); 1139 Pos = InstToHoist; 1140 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); 1141 } while (InstToHoist != LoopPhi); 1142 } 1143 1144 /// Check whether we can cheaply express the requested SCEV in terms of 1145 /// the available PHI SCEV by truncation and/or inversion of the step. 1146 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1147 const SCEVAddRecExpr *Phi, 1148 const SCEVAddRecExpr *Requested, 1149 bool &InvertStep) { 1150 // We can't transform to match a pointer PHI. 1151 if (Phi->getType()->isPointerTy()) 1152 return false; 1153 1154 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1155 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1156 1157 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1158 return false; 1159 1160 // Try truncate it if necessary. 1161 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1162 if (!Phi) 1163 return false; 1164 1165 // Check whether truncation will help. 1166 if (Phi == Requested) { 1167 InvertStep = false; 1168 return true; 1169 } 1170 1171 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1172 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 1173 InvertStep = true; 1174 return true; 1175 } 1176 1177 return false; 1178 } 1179 1180 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1181 if (!isa<IntegerType>(AR->getType())) 1182 return false; 1183 1184 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1185 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1186 const SCEV *Step = AR->getStepRecurrence(SE); 1187 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1188 SE.getSignExtendExpr(AR, WideTy)); 1189 const SCEV *ExtendAfterOp = 1190 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1191 return ExtendAfterOp == OpAfterExtend; 1192 } 1193 1194 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1195 if (!isa<IntegerType>(AR->getType())) 1196 return false; 1197 1198 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1199 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1200 const SCEV *Step = AR->getStepRecurrence(SE); 1201 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1202 SE.getZeroExtendExpr(AR, WideTy)); 1203 const SCEV *ExtendAfterOp = 1204 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1205 return ExtendAfterOp == OpAfterExtend; 1206 } 1207 1208 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1209 /// the base addrec, which is the addrec without any non-loop-dominating 1210 /// values, and return the PHI. 1211 PHINode * 1212 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1213 const Loop *L, 1214 Type *ExpandTy, 1215 Type *IntTy, 1216 Type *&TruncTy, 1217 bool &InvertStep) { 1218 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1219 1220 // Reuse a previously-inserted PHI, if present. 1221 BasicBlock *LatchBlock = L->getLoopLatch(); 1222 if (LatchBlock) { 1223 PHINode *AddRecPhiMatch = nullptr; 1224 Instruction *IncV = nullptr; 1225 TruncTy = nullptr; 1226 InvertStep = false; 1227 1228 // Only try partially matching scevs that need truncation and/or 1229 // step-inversion if we know this loop is outside the current loop. 1230 bool TryNonMatchingSCEV = 1231 IVIncInsertLoop && 1232 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1233 1234 for (PHINode &PN : L->getHeader()->phis()) { 1235 if (!SE.isSCEVable(PN.getType())) 1236 continue; 1237 1238 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 1239 // PHI has no meaning at all. 1240 if (!PN.isComplete()) { 1241 SCEV_DEBUG_WITH_TYPE( 1242 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 1243 continue; 1244 } 1245 1246 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1247 if (!PhiSCEV) 1248 continue; 1249 1250 bool IsMatchingSCEV = PhiSCEV == Normalized; 1251 // We only handle truncation and inversion of phi recurrences for the 1252 // expanded expression if the expanded expression's loop dominates the 1253 // loop we insert to. Check now, so we can bail out early. 1254 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1255 continue; 1256 1257 // TODO: this possibly can be reworked to avoid this cast at all. 1258 Instruction *TempIncV = 1259 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1260 if (!TempIncV) 1261 continue; 1262 1263 // Check whether we can reuse this PHI node. 1264 if (LSRMode) { 1265 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1266 continue; 1267 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) 1268 continue; 1269 } else { 1270 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1271 continue; 1272 } 1273 1274 // Stop if we have found an exact match SCEV. 1275 if (IsMatchingSCEV) { 1276 IncV = TempIncV; 1277 TruncTy = nullptr; 1278 InvertStep = false; 1279 AddRecPhiMatch = &PN; 1280 break; 1281 } 1282 1283 // Try whether the phi can be translated into the requested form 1284 // (truncated and/or offset by a constant). 1285 if ((!TruncTy || InvertStep) && 1286 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1287 // Record the phi node. But don't stop we might find an exact match 1288 // later. 1289 AddRecPhiMatch = &PN; 1290 IncV = TempIncV; 1291 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1292 } 1293 } 1294 1295 if (AddRecPhiMatch) { 1296 // Potentially, move the increment. We have made sure in 1297 // isExpandedAddRecExprPHI or hoistIVInc that this is possible. 1298 if (L == IVIncInsertLoop) 1299 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); 1300 1301 // Ok, the add recurrence looks usable. 1302 // Remember this PHI, even in post-inc mode. 1303 InsertedValues.insert(AddRecPhiMatch); 1304 // Remember the increment. 1305 rememberInstruction(IncV); 1306 // Those values were not actually inserted but re-used. 1307 ReusedValues.insert(AddRecPhiMatch); 1308 ReusedValues.insert(IncV); 1309 return AddRecPhiMatch; 1310 } 1311 } 1312 1313 // Save the original insertion point so we can restore it when we're done. 1314 SCEVInsertPointGuard Guard(Builder, this); 1315 1316 // Another AddRec may need to be recursively expanded below. For example, if 1317 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1318 // loop. Remove this loop from the PostIncLoops set before expanding such 1319 // AddRecs. Otherwise, we cannot find a valid position for the step 1320 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1321 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1322 // so it's not worth implementing SmallPtrSet::swap. 1323 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1324 PostIncLoops.clear(); 1325 1326 // Expand code for the start value into the loop preheader. 1327 assert(L->getLoopPreheader() && 1328 "Can't expand add recurrences without a loop preheader!"); 1329 Value *StartV = 1330 expandCodeForImpl(Normalized->getStart(), ExpandTy, 1331 L->getLoopPreheader()->getTerminator(), false); 1332 1333 // StartV must have been be inserted into L's preheader to dominate the new 1334 // phi. 1335 assert(!isa<Instruction>(StartV) || 1336 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1337 L->getHeader())); 1338 1339 // Expand code for the step value. Do this before creating the PHI so that PHI 1340 // reuse code doesn't see an incomplete PHI. 1341 const SCEV *Step = Normalized->getStepRecurrence(SE); 1342 // If the stride is negative, insert a sub instead of an add for the increment 1343 // (unless it's a constant, because subtracts of constants are canonicalized 1344 // to adds). 1345 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1346 if (useSubtract) 1347 Step = SE.getNegativeSCEV(Step); 1348 // Expand the step somewhere that dominates the loop header. 1349 Value *StepV = expandCodeForImpl( 1350 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1351 1352 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1353 // we actually do emit an addition. It does not apply if we emit a 1354 // subtraction. 1355 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1356 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1357 1358 // Create the PHI. 1359 BasicBlock *Header = L->getHeader(); 1360 Builder.SetInsertPoint(Header, Header->begin()); 1361 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1362 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1363 Twine(IVName) + ".iv"); 1364 1365 // Create the step instructions and populate the PHI. 1366 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1367 BasicBlock *Pred = *HPI; 1368 1369 // Add a start value. 1370 if (!L->contains(Pred)) { 1371 PN->addIncoming(StartV, Pred); 1372 continue; 1373 } 1374 1375 // Create a step value and add it to the PHI. 1376 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1377 // instructions at IVIncInsertPos. 1378 Instruction *InsertPos = L == IVIncInsertLoop ? 1379 IVIncInsertPos : Pred->getTerminator(); 1380 Builder.SetInsertPoint(InsertPos); 1381 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1382 1383 if (isa<OverflowingBinaryOperator>(IncV)) { 1384 if (IncrementIsNUW) 1385 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1386 if (IncrementIsNSW) 1387 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1388 } 1389 PN->addIncoming(IncV, Pred); 1390 } 1391 1392 // After expanding subexpressions, restore the PostIncLoops set so the caller 1393 // can ensure that IVIncrement dominates the current uses. 1394 PostIncLoops = SavedPostIncLoops; 1395 1396 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1397 // effective when we are able to use an IV inserted here, so record it. 1398 InsertedValues.insert(PN); 1399 InsertedIVs.push_back(PN); 1400 return PN; 1401 } 1402 1403 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1404 Type *STy = S->getType(); 1405 Type *IntTy = SE.getEffectiveSCEVType(STy); 1406 const Loop *L = S->getLoop(); 1407 1408 // Determine a normalized form of this expression, which is the expression 1409 // before any post-inc adjustment is made. 1410 const SCEVAddRecExpr *Normalized = S; 1411 if (PostIncLoops.count(L)) { 1412 PostIncLoopSet Loops; 1413 Loops.insert(L); 1414 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1415 } 1416 1417 // Strip off any non-loop-dominating component from the addrec start. 1418 const SCEV *Start = Normalized->getStart(); 1419 const SCEV *PostLoopOffset = nullptr; 1420 if (!SE.properlyDominates(Start, L->getHeader())) { 1421 PostLoopOffset = Start; 1422 Start = SE.getConstant(Normalized->getType(), 0); 1423 Normalized = cast<SCEVAddRecExpr>( 1424 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1425 Normalized->getLoop(), 1426 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1427 } 1428 1429 // Strip off any non-loop-dominating component from the addrec step. 1430 const SCEV *Step = Normalized->getStepRecurrence(SE); 1431 const SCEV *PostLoopScale = nullptr; 1432 if (!SE.dominates(Step, L->getHeader())) { 1433 PostLoopScale = Step; 1434 Step = SE.getConstant(Normalized->getType(), 1); 1435 if (!Start->isZero()) { 1436 // The normalization below assumes that Start is constant zero, so if 1437 // it isn't re-associate Start to PostLoopOffset. 1438 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1439 PostLoopOffset = Start; 1440 Start = SE.getConstant(Normalized->getType(), 0); 1441 } 1442 Normalized = 1443 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1444 Start, Step, Normalized->getLoop(), 1445 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1446 } 1447 1448 // Expand the core addrec. If we need post-loop scaling, force it to 1449 // expand to an integer type to avoid the need for additional casting. 1450 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1451 // We can't use a pointer type for the addrec if the pointer type is 1452 // non-integral. 1453 Type *AddRecPHIExpandTy = 1454 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1455 1456 // In some cases, we decide to reuse an existing phi node but need to truncate 1457 // it and/or invert the step. 1458 Type *TruncTy = nullptr; 1459 bool InvertStep = false; 1460 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1461 IntTy, TruncTy, InvertStep); 1462 1463 // Accommodate post-inc mode, if necessary. 1464 Value *Result; 1465 if (!PostIncLoops.count(L)) 1466 Result = PN; 1467 else { 1468 // In PostInc mode, use the post-incremented value. 1469 BasicBlock *LatchBlock = L->getLoopLatch(); 1470 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1471 Result = PN->getIncomingValueForBlock(LatchBlock); 1472 1473 // We might be introducing a new use of the post-inc IV that is not poison 1474 // safe, in which case we should drop poison generating flags. Only keep 1475 // those flags for which SCEV has proven that they always hold. 1476 if (isa<OverflowingBinaryOperator>(Result)) { 1477 auto *I = cast<Instruction>(Result); 1478 if (!S->hasNoUnsignedWrap()) 1479 I->setHasNoUnsignedWrap(false); 1480 if (!S->hasNoSignedWrap()) 1481 I->setHasNoSignedWrap(false); 1482 } 1483 1484 // For an expansion to use the postinc form, the client must call 1485 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1486 // or dominated by IVIncInsertPos. 1487 if (isa<Instruction>(Result) && 1488 !SE.DT.dominates(cast<Instruction>(Result), 1489 &*Builder.GetInsertPoint())) { 1490 // The induction variable's postinc expansion does not dominate this use. 1491 // IVUsers tries to prevent this case, so it is rare. However, it can 1492 // happen when an IVUser outside the loop is not dominated by the latch 1493 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1494 // all cases. Consider a phi outside whose operand is replaced during 1495 // expansion with the value of the postinc user. Without fundamentally 1496 // changing the way postinc users are tracked, the only remedy is 1497 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1498 // but hopefully expandCodeFor handles that. 1499 bool useSubtract = 1500 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1501 if (useSubtract) 1502 Step = SE.getNegativeSCEV(Step); 1503 Value *StepV; 1504 { 1505 // Expand the step somewhere that dominates the loop header. 1506 SCEVInsertPointGuard Guard(Builder, this); 1507 StepV = expandCodeForImpl( 1508 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1509 } 1510 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1511 } 1512 } 1513 1514 // We have decided to reuse an induction variable of a dominating loop. Apply 1515 // truncation and/or inversion of the step. 1516 if (TruncTy) { 1517 Type *ResTy = Result->getType(); 1518 // Normalize the result type. 1519 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1520 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1521 // Truncate the result. 1522 if (TruncTy != Result->getType()) 1523 Result = Builder.CreateTrunc(Result, TruncTy); 1524 1525 // Invert the result. 1526 if (InvertStep) 1527 Result = Builder.CreateSub( 1528 expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result); 1529 } 1530 1531 // Re-apply any non-loop-dominating scale. 1532 if (PostLoopScale) { 1533 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1534 Result = InsertNoopCastOfTo(Result, IntTy); 1535 Result = Builder.CreateMul(Result, 1536 expandCodeForImpl(PostLoopScale, IntTy, false)); 1537 } 1538 1539 // Re-apply any non-loop-dominating offset. 1540 if (PostLoopOffset) { 1541 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1542 if (Result->getType()->isIntegerTy()) { 1543 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false); 1544 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1545 } else { 1546 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1547 } 1548 } else { 1549 Result = InsertNoopCastOfTo(Result, IntTy); 1550 Result = Builder.CreateAdd( 1551 Result, expandCodeForImpl(PostLoopOffset, IntTy, false)); 1552 } 1553 } 1554 1555 return Result; 1556 } 1557 1558 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1559 // In canonical mode we compute the addrec as an expression of a canonical IV 1560 // using evaluateAtIteration and expand the resulting SCEV expression. This 1561 // way we avoid introducing new IVs to carry on the comutation of the addrec 1562 // throughout the loop. 1563 // 1564 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1565 // type wider than the addrec itself. Emitting a canonical IV of the 1566 // proper type might produce non-legal types, for example expanding an i64 1567 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1568 // back to non-canonical mode for nested addrecs. 1569 if (!CanonicalMode || (S->getNumOperands() > 2)) 1570 return expandAddRecExprLiterally(S); 1571 1572 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1573 const Loop *L = S->getLoop(); 1574 1575 // First check for an existing canonical IV in a suitable type. 1576 PHINode *CanonicalIV = nullptr; 1577 if (PHINode *PN = L->getCanonicalInductionVariable()) 1578 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1579 CanonicalIV = PN; 1580 1581 // Rewrite an AddRec in terms of the canonical induction variable, if 1582 // its type is more narrow. 1583 if (CanonicalIV && 1584 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1585 !S->getType()->isPointerTy()) { 1586 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1587 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1588 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1589 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1590 S->getNoWrapFlags(SCEV::FlagNW))); 1591 BasicBlock::iterator NewInsertPt = 1592 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1593 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1594 &*NewInsertPt, false); 1595 return V; 1596 } 1597 1598 // {X,+,F} --> X + {0,+,F} 1599 if (!S->getStart()->isZero()) { 1600 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1601 NewOps[0] = SE.getConstant(Ty, 0); 1602 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1603 S->getNoWrapFlags(SCEV::FlagNW)); 1604 1605 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1606 // comments on expandAddToGEP for details. 1607 const SCEV *Base = S->getStart(); 1608 // Dig into the expression to find the pointer base for a GEP. 1609 const SCEV *ExposedRest = Rest; 1610 ExposePointerBase(Base, ExposedRest, SE); 1611 // If we found a pointer, expand the AddRec with a GEP. 1612 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1613 // Make sure the Base isn't something exotic, such as a multiplied 1614 // or divided pointer value. In those cases, the result type isn't 1615 // actually a pointer type. 1616 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { 1617 Value *StartV = expand(Base); 1618 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1619 return expandAddToGEP(ExposedRest, PTy, Ty, StartV); 1620 } 1621 } 1622 1623 // Just do a normal add. Pre-expand the operands to suppress folding. 1624 // 1625 // The LHS and RHS values are factored out of the expand call to make the 1626 // output independent of the argument evaluation order. 1627 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1628 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1629 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1630 } 1631 1632 // If we don't yet have a canonical IV, create one. 1633 if (!CanonicalIV) { 1634 // Create and insert the PHI node for the induction variable in the 1635 // specified loop. 1636 BasicBlock *Header = L->getHeader(); 1637 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1638 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1639 &Header->front()); 1640 rememberInstruction(CanonicalIV); 1641 1642 SmallSet<BasicBlock *, 4> PredSeen; 1643 Constant *One = ConstantInt::get(Ty, 1); 1644 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1645 BasicBlock *HP = *HPI; 1646 if (!PredSeen.insert(HP).second) { 1647 // There must be an incoming value for each predecessor, even the 1648 // duplicates! 1649 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1650 continue; 1651 } 1652 1653 if (L->contains(HP)) { 1654 // Insert a unit add instruction right before the terminator 1655 // corresponding to the back-edge. 1656 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1657 "indvar.next", 1658 HP->getTerminator()); 1659 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1660 rememberInstruction(Add); 1661 CanonicalIV->addIncoming(Add, HP); 1662 } else { 1663 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1664 } 1665 } 1666 } 1667 1668 // {0,+,1} --> Insert a canonical induction variable into the loop! 1669 if (S->isAffine() && S->getOperand(1)->isOne()) { 1670 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1671 "IVs with types different from the canonical IV should " 1672 "already have been handled!"); 1673 return CanonicalIV; 1674 } 1675 1676 // {0,+,F} --> {0,+,1} * F 1677 1678 // If this is a simple linear addrec, emit it now as a special case. 1679 if (S->isAffine()) // {0,+,F} --> i*F 1680 return 1681 expand(SE.getTruncateOrNoop( 1682 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1683 SE.getNoopOrAnyExtend(S->getOperand(1), 1684 CanonicalIV->getType())), 1685 Ty)); 1686 1687 // If this is a chain of recurrences, turn it into a closed form, using the 1688 // folders, then expandCodeFor the closed form. This allows the folders to 1689 // simplify the expression without having to build a bunch of special code 1690 // into this folder. 1691 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1692 1693 // Promote S up to the canonical IV type, if the cast is foldable. 1694 const SCEV *NewS = S; 1695 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1696 if (isa<SCEVAddRecExpr>(Ext)) 1697 NewS = Ext; 1698 1699 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1700 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1701 1702 // Truncate the result down to the original type, if needed. 1703 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1704 return expand(T); 1705 } 1706 1707 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1708 Value *V = 1709 expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false); 1710 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1711 GetOptimalInsertionPointForCastOf(V)); 1712 } 1713 1714 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1715 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1716 Value *V = expandCodeForImpl( 1717 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1718 false); 1719 return Builder.CreateTrunc(V, Ty); 1720 } 1721 1722 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1723 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1724 Value *V = expandCodeForImpl( 1725 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1726 false); 1727 return Builder.CreateZExt(V, Ty); 1728 } 1729 1730 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1731 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1732 Value *V = expandCodeForImpl( 1733 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1734 false); 1735 return Builder.CreateSExt(V, Ty); 1736 } 1737 1738 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1739 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1740 Type *Ty = LHS->getType(); 1741 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1742 // In the case of mixed integer and pointer types, do the 1743 // rest of the comparisons as integer. 1744 Type *OpTy = S->getOperand(i)->getType(); 1745 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1746 Ty = SE.getEffectiveSCEVType(Ty); 1747 LHS = InsertNoopCastOfTo(LHS, Ty); 1748 } 1749 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1750 Value *Sel; 1751 if (Ty->isIntegerTy()) 1752 Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS}, 1753 /*FMFSource=*/nullptr, "smax"); 1754 else { 1755 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); 1756 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1757 } 1758 LHS = Sel; 1759 } 1760 // In the case of mixed integer and pointer types, cast the 1761 // final result back to the pointer type. 1762 if (LHS->getType() != S->getType()) 1763 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1764 return LHS; 1765 } 1766 1767 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1768 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1769 Type *Ty = LHS->getType(); 1770 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1771 // In the case of mixed integer and pointer types, do the 1772 // rest of the comparisons as integer. 1773 Type *OpTy = S->getOperand(i)->getType(); 1774 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1775 Ty = SE.getEffectiveSCEVType(Ty); 1776 LHS = InsertNoopCastOfTo(LHS, Ty); 1777 } 1778 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1779 Value *Sel; 1780 if (Ty->isIntegerTy()) 1781 Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS}, 1782 /*FMFSource=*/nullptr, "umax"); 1783 else { 1784 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); 1785 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1786 } 1787 LHS = Sel; 1788 } 1789 // In the case of mixed integer and pointer types, cast the 1790 // final result back to the pointer type. 1791 if (LHS->getType() != S->getType()) 1792 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1793 return LHS; 1794 } 1795 1796 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1797 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1798 Type *Ty = LHS->getType(); 1799 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1800 // In the case of mixed integer and pointer types, do the 1801 // rest of the comparisons as integer. 1802 Type *OpTy = S->getOperand(i)->getType(); 1803 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1804 Ty = SE.getEffectiveSCEVType(Ty); 1805 LHS = InsertNoopCastOfTo(LHS, Ty); 1806 } 1807 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1808 Value *Sel; 1809 if (Ty->isIntegerTy()) 1810 Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS}, 1811 /*FMFSource=*/nullptr, "smin"); 1812 else { 1813 Value *ICmp = Builder.CreateICmpSLT(LHS, RHS); 1814 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin"); 1815 } 1816 LHS = Sel; 1817 } 1818 // In the case of mixed integer and pointer types, cast the 1819 // final result back to the pointer type. 1820 if (LHS->getType() != S->getType()) 1821 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1822 return LHS; 1823 } 1824 1825 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1826 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1827 Type *Ty = LHS->getType(); 1828 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1829 // In the case of mixed integer and pointer types, do the 1830 // rest of the comparisons as integer. 1831 Type *OpTy = S->getOperand(i)->getType(); 1832 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1833 Ty = SE.getEffectiveSCEVType(Ty); 1834 LHS = InsertNoopCastOfTo(LHS, Ty); 1835 } 1836 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1837 Value *Sel; 1838 if (Ty->isIntegerTy()) 1839 Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS}, 1840 /*FMFSource=*/nullptr, "umin"); 1841 else { 1842 Value *ICmp = Builder.CreateICmpULT(LHS, RHS); 1843 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin"); 1844 } 1845 LHS = Sel; 1846 } 1847 // In the case of mixed integer and pointer types, cast the 1848 // final result back to the pointer type. 1849 if (LHS->getType() != S->getType()) 1850 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1851 return LHS; 1852 } 1853 1854 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1855 Instruction *IP, bool Root) { 1856 setInsertPoint(IP); 1857 Value *V = expandCodeForImpl(SH, Ty, Root); 1858 return V; 1859 } 1860 1861 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) { 1862 // Expand the code for this SCEV. 1863 Value *V = expand(SH); 1864 1865 if (PreserveLCSSA) { 1866 if (auto *Inst = dyn_cast<Instruction>(V)) { 1867 // Create a temporary instruction to at the current insertion point, so we 1868 // can hand it off to the helper to create LCSSA PHIs if required for the 1869 // new use. 1870 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 1871 // would accept a insertion point and return an LCSSA phi for that 1872 // insertion point, so there is no need to insert & remove the temporary 1873 // instruction. 1874 Instruction *Tmp; 1875 if (Inst->getType()->isIntegerTy()) 1876 Tmp = 1877 cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user")); 1878 else { 1879 assert(Inst->getType()->isPointerTy()); 1880 Tmp = cast<Instruction>(Builder.CreatePtrToInt( 1881 Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user")); 1882 } 1883 V = fixupLCSSAFormFor(Tmp, 0); 1884 1885 // Clean up temporary instruction. 1886 InsertedValues.erase(Tmp); 1887 InsertedPostIncValues.erase(Tmp); 1888 Tmp->eraseFromParent(); 1889 } 1890 } 1891 1892 InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V; 1893 if (Ty) { 1894 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1895 "non-trivial casts should be done with the SCEVs directly!"); 1896 V = InsertNoopCastOfTo(V, Ty); 1897 } 1898 return V; 1899 } 1900 1901 ScalarEvolution::ValueOffsetPair 1902 SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1903 const Instruction *InsertPt) { 1904 auto *Set = SE.getSCEVValues(S); 1905 // If the expansion is not in CanonicalMode, and the SCEV contains any 1906 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1907 if (CanonicalMode || !SE.containsAddRecurrence(S)) { 1908 // If S is scConstant, it may be worse to reuse an existing Value. 1909 if (S->getSCEVType() != scConstant && Set) { 1910 // Choose a Value from the set which dominates the insertPt. 1911 // insertPt should be inside the Value's parent loop so as not to break 1912 // the LCSSA form. 1913 for (auto const &VOPair : *Set) { 1914 Value *V = VOPair.first; 1915 ConstantInt *Offset = VOPair.second; 1916 Instruction *EntInst = nullptr; 1917 if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && 1918 S->getType() == V->getType() && 1919 EntInst->getFunction() == InsertPt->getFunction() && 1920 SE.DT.dominates(EntInst, InsertPt) && 1921 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1922 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1923 return {V, Offset}; 1924 } 1925 } 1926 } 1927 return {nullptr, nullptr}; 1928 } 1929 1930 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1931 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1932 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1933 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1934 // the expansion will try to reuse Value from ExprValueMap, and only when it 1935 // fails, expand the SCEV literally. 1936 Value *SCEVExpander::expand(const SCEV *S) { 1937 // Compute an insertion point for this SCEV object. Hoist the instructions 1938 // as far out in the loop nest as possible. 1939 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1940 1941 // We can move insertion point only if there is no div or rem operations 1942 // otherwise we are risky to move it over the check for zero denominator. 1943 auto SafeToHoist = [](const SCEV *S) { 1944 return !SCEVExprContains(S, [](const SCEV *S) { 1945 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1946 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1947 // Division by non-zero constants can be hoisted. 1948 return SC->getValue()->isZero(); 1949 // All other divisions should not be moved as they may be 1950 // divisions by zero and should be kept within the 1951 // conditions of the surrounding loops that guard their 1952 // execution (see PR35406). 1953 return true; 1954 } 1955 return false; 1956 }); 1957 }; 1958 if (SafeToHoist(S)) { 1959 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1960 L = L->getParentLoop()) { 1961 if (SE.isLoopInvariant(S, L)) { 1962 if (!L) break; 1963 if (BasicBlock *Preheader = L->getLoopPreheader()) 1964 InsertPt = Preheader->getTerminator(); 1965 else 1966 // LSR sets the insertion point for AddRec start/step values to the 1967 // block start to simplify value reuse, even though it's an invalid 1968 // position. SCEVExpander must correct for this in all cases. 1969 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1970 } else { 1971 // If the SCEV is computable at this level, insert it into the header 1972 // after the PHIs (and after any other instructions that we've inserted 1973 // there) so that it is guaranteed to dominate any user inside the loop. 1974 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1975 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1976 1977 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1978 (isInsertedInstruction(InsertPt) || 1979 isa<DbgInfoIntrinsic>(InsertPt))) { 1980 InsertPt = &*std::next(InsertPt->getIterator()); 1981 } 1982 break; 1983 } 1984 } 1985 } 1986 1987 // Check to see if we already expanded this here. 1988 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1989 if (I != InsertedExpressions.end()) 1990 return I->second; 1991 1992 SCEVInsertPointGuard Guard(Builder, this); 1993 Builder.SetInsertPoint(InsertPt); 1994 1995 // Expand the expression into instructions. 1996 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); 1997 Value *V = VO.first; 1998 1999 if (!V) 2000 V = visit(S); 2001 else if (VO.second) { 2002 if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { 2003 Type *Ety = Vty->getPointerElementType(); 2004 int64_t Offset = VO.second->getSExtValue(); 2005 int64_t ESize = SE.getTypeSizeInBits(Ety); 2006 if ((Offset * 8) % ESize == 0) { 2007 ConstantInt *Idx = 2008 ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); 2009 V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); 2010 } else { 2011 ConstantInt *Idx = 2012 ConstantInt::getSigned(VO.second->getType(), -Offset); 2013 unsigned AS = Vty->getAddressSpace(); 2014 V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); 2015 V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, 2016 "uglygep"); 2017 V = Builder.CreateBitCast(V, Vty); 2018 } 2019 } else { 2020 V = Builder.CreateSub(V, VO.second); 2021 } 2022 } 2023 // Remember the expanded value for this SCEV at this location. 2024 // 2025 // This is independent of PostIncLoops. The mapped value simply materializes 2026 // the expression at this insertion point. If the mapped value happened to be 2027 // a postinc expansion, it could be reused by a non-postinc user, but only if 2028 // its insertion point was already at the head of the loop. 2029 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 2030 return V; 2031 } 2032 2033 void SCEVExpander::rememberInstruction(Value *I) { 2034 auto DoInsert = [this](Value *V) { 2035 if (!PostIncLoops.empty()) 2036 InsertedPostIncValues.insert(V); 2037 else 2038 InsertedValues.insert(V); 2039 }; 2040 DoInsert(I); 2041 2042 if (!PreserveLCSSA) 2043 return; 2044 2045 if (auto *Inst = dyn_cast<Instruction>(I)) { 2046 // A new instruction has been added, which might introduce new uses outside 2047 // a defining loop. Fix LCSSA from for each operand of the new instruction, 2048 // if required. 2049 for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd; 2050 OpIdx++) 2051 fixupLCSSAFormFor(Inst, OpIdx); 2052 } 2053 } 2054 2055 /// replaceCongruentIVs - Check for congruent phis in this loop header and 2056 /// replace them with their most canonical representative. Return the number of 2057 /// phis eliminated. 2058 /// 2059 /// This does not depend on any SCEVExpander state but should be used in 2060 /// the same context that SCEVExpander is used. 2061 unsigned 2062 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 2063 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2064 const TargetTransformInfo *TTI) { 2065 // Find integer phis in order of increasing width. 2066 SmallVector<PHINode*, 8> Phis; 2067 for (PHINode &PN : L->getHeader()->phis()) 2068 Phis.push_back(&PN); 2069 2070 if (TTI) 2071 llvm::sort(Phis, [](Value *LHS, Value *RHS) { 2072 // Put pointers at the back and make sure pointer < pointer = false. 2073 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 2074 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 2075 return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() < 2076 LHS->getType()->getPrimitiveSizeInBits().getFixedSize(); 2077 }); 2078 2079 unsigned NumElim = 0; 2080 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 2081 // Process phis from wide to narrow. Map wide phis to their truncation 2082 // so narrow phis can reuse them. 2083 for (PHINode *Phi : Phis) { 2084 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 2085 if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 2086 return V; 2087 if (!SE.isSCEVable(PN->getType())) 2088 return nullptr; 2089 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 2090 if (!Const) 2091 return nullptr; 2092 return Const->getValue(); 2093 }; 2094 2095 // Fold constant phis. They may be congruent to other constant phis and 2096 // would confuse the logic below that expects proper IVs. 2097 if (Value *V = SimplifyPHINode(Phi)) { 2098 if (V->getType() != Phi->getType()) 2099 continue; 2100 Phi->replaceAllUsesWith(V); 2101 DeadInsts.emplace_back(Phi); 2102 ++NumElim; 2103 SCEV_DEBUG_WITH_TYPE(DebugType, 2104 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 2105 << '\n'); 2106 continue; 2107 } 2108 2109 if (!SE.isSCEVable(Phi->getType())) 2110 continue; 2111 2112 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 2113 if (!OrigPhiRef) { 2114 OrigPhiRef = Phi; 2115 if (Phi->getType()->isIntegerTy() && TTI && 2116 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 2117 // This phi can be freely truncated to the narrowest phi type. Map the 2118 // truncated expression to it so it will be reused for narrow types. 2119 const SCEV *TruncExpr = 2120 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 2121 ExprToIVMap[TruncExpr] = Phi; 2122 } 2123 continue; 2124 } 2125 2126 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 2127 // sense. 2128 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 2129 continue; 2130 2131 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 2132 Instruction *OrigInc = dyn_cast<Instruction>( 2133 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 2134 Instruction *IsomorphicInc = 2135 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 2136 2137 if (OrigInc && IsomorphicInc) { 2138 // If this phi has the same width but is more canonical, replace the 2139 // original with it. As part of the "more canonical" determination, 2140 // respect a prior decision to use an IV chain. 2141 if (OrigPhiRef->getType() == Phi->getType() && 2142 !(ChainedPhis.count(Phi) || 2143 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 2144 (ChainedPhis.count(Phi) || 2145 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 2146 std::swap(OrigPhiRef, Phi); 2147 std::swap(OrigInc, IsomorphicInc); 2148 } 2149 // Replacing the congruent phi is sufficient because acyclic 2150 // redundancy elimination, CSE/GVN, should handle the 2151 // rest. However, once SCEV proves that a phi is congruent, 2152 // it's often the head of an IV user cycle that is isomorphic 2153 // with the original phi. It's worth eagerly cleaning up the 2154 // common case of a single IV increment so that DeleteDeadPHIs 2155 // can remove cycles that had postinc uses. 2156 const SCEV *TruncExpr = 2157 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2158 if (OrigInc != IsomorphicInc && 2159 TruncExpr == SE.getSCEV(IsomorphicInc) && 2160 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2161 hoistIVInc(OrigInc, IsomorphicInc)) { 2162 SCEV_DEBUG_WITH_TYPE( 2163 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2164 << *IsomorphicInc << '\n'); 2165 Value *NewInc = OrigInc; 2166 if (OrigInc->getType() != IsomorphicInc->getType()) { 2167 Instruction *IP = nullptr; 2168 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2169 IP = &*PN->getParent()->getFirstInsertionPt(); 2170 else 2171 IP = OrigInc->getNextNode(); 2172 2173 IRBuilder<> Builder(IP); 2174 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2175 NewInc = Builder.CreateTruncOrBitCast( 2176 OrigInc, IsomorphicInc->getType(), IVName); 2177 } 2178 IsomorphicInc->replaceAllUsesWith(NewInc); 2179 DeadInsts.emplace_back(IsomorphicInc); 2180 } 2181 } 2182 } 2183 SCEV_DEBUG_WITH_TYPE(DebugType, 2184 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 2185 << '\n'); 2186 SCEV_DEBUG_WITH_TYPE( 2187 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 2188 ++NumElim; 2189 Value *NewIV = OrigPhiRef; 2190 if (OrigPhiRef->getType() != Phi->getType()) { 2191 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2192 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2193 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2194 } 2195 Phi->replaceAllUsesWith(NewIV); 2196 DeadInsts.emplace_back(Phi); 2197 } 2198 return NumElim; 2199 } 2200 2201 Optional<ScalarEvolution::ValueOffsetPair> 2202 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, 2203 Loop *L) { 2204 using namespace llvm::PatternMatch; 2205 2206 SmallVector<BasicBlock *, 4> ExitingBlocks; 2207 L->getExitingBlocks(ExitingBlocks); 2208 2209 // Look for suitable value in simple conditions at the loop exits. 2210 for (BasicBlock *BB : ExitingBlocks) { 2211 ICmpInst::Predicate Pred; 2212 Instruction *LHS, *RHS; 2213 2214 if (!match(BB->getTerminator(), 2215 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2216 m_BasicBlock(), m_BasicBlock()))) 2217 continue; 2218 2219 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2220 return ScalarEvolution::ValueOffsetPair(LHS, nullptr); 2221 2222 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2223 return ScalarEvolution::ValueOffsetPair(RHS, nullptr); 2224 } 2225 2226 // Use expand's logic which is used for reusing a previous Value in 2227 // ExprValueMap. 2228 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); 2229 if (VO.first) 2230 return VO; 2231 2232 // There is potential to make this significantly smarter, but this simple 2233 // heuristic already gets some interesting cases. 2234 2235 // Can not find suitable value. 2236 return None; 2237 } 2238 2239 template<typename T> static InstructionCost costAndCollectOperands( 2240 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 2241 TargetTransformInfo::TargetCostKind CostKind, 2242 SmallVectorImpl<SCEVOperand> &Worklist) { 2243 2244 const T *S = cast<T>(WorkItem.S); 2245 InstructionCost Cost = 0; 2246 // Object to help map SCEV operands to expanded IR instructions. 2247 struct OperationIndices { 2248 OperationIndices(unsigned Opc, size_t min, size_t max) : 2249 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 2250 unsigned Opcode; 2251 size_t MinIdx; 2252 size_t MaxIdx; 2253 }; 2254 2255 // Collect the operations of all the instructions that will be needed to 2256 // expand the SCEVExpr. This is so that when we come to cost the operands, 2257 // we know what the generated user(s) will be. 2258 SmallVector<OperationIndices, 2> Operations; 2259 2260 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 2261 Operations.emplace_back(Opcode, 0, 0); 2262 return TTI.getCastInstrCost(Opcode, S->getType(), 2263 S->getOperand(0)->getType(), 2264 TTI::CastContextHint::None, CostKind); 2265 }; 2266 2267 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 2268 unsigned MinIdx = 0, 2269 unsigned MaxIdx = 1) -> InstructionCost { 2270 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2271 return NumRequired * 2272 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 2273 }; 2274 2275 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 2276 unsigned MaxIdx) -> InstructionCost { 2277 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2278 Type *OpType = S->getOperand(0)->getType(); 2279 return NumRequired * TTI.getCmpSelInstrCost( 2280 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 2281 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2282 }; 2283 2284 switch (S->getSCEVType()) { 2285 case scCouldNotCompute: 2286 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2287 case scUnknown: 2288 case scConstant: 2289 return 0; 2290 case scPtrToInt: 2291 Cost = CastCost(Instruction::PtrToInt); 2292 break; 2293 case scTruncate: 2294 Cost = CastCost(Instruction::Trunc); 2295 break; 2296 case scZeroExtend: 2297 Cost = CastCost(Instruction::ZExt); 2298 break; 2299 case scSignExtend: 2300 Cost = CastCost(Instruction::SExt); 2301 break; 2302 case scUDivExpr: { 2303 unsigned Opcode = Instruction::UDiv; 2304 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 2305 if (SC->getAPInt().isPowerOf2()) 2306 Opcode = Instruction::LShr; 2307 Cost = ArithCost(Opcode, 1); 2308 break; 2309 } 2310 case scAddExpr: 2311 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 2312 break; 2313 case scMulExpr: 2314 // TODO: this is a very pessimistic cost modelling for Mul, 2315 // because of Bin Pow algorithm actually used by the expander, 2316 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2317 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 2318 break; 2319 case scSMaxExpr: 2320 case scUMaxExpr: 2321 case scSMinExpr: 2322 case scUMinExpr: { 2323 // FIXME: should this ask the cost for Intrinsic's? 2324 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 2325 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 2326 break; 2327 } 2328 case scAddRecExpr: { 2329 // In this polynominal, we may have some zero operands, and we shouldn't 2330 // really charge for those. So how many non-zero coeffients are there? 2331 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 2332 return !Op->isZero(); 2333 }); 2334 2335 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2336 assert(!(*std::prev(S->operands().end()))->isZero() && 2337 "Last operand should not be zero"); 2338 2339 // Ignoring constant term (operand 0), how many of the coeffients are u> 1? 2340 int NumNonZeroDegreeNonOneTerms = 2341 llvm::count_if(S->operands(), [](const SCEV *Op) { 2342 auto *SConst = dyn_cast<SCEVConstant>(Op); 2343 return !SConst || SConst->getAPInt().ugt(1); 2344 }); 2345 2346 // Much like with normal add expr, the polynominal will require 2347 // one less addition than the number of it's terms. 2348 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 2349 /*MinIdx*/ 1, /*MaxIdx*/ 1); 2350 // Here, *each* one of those will require a multiplication. 2351 InstructionCost MulCost = 2352 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 2353 Cost = AddCost + MulCost; 2354 2355 // What is the degree of this polynominal? 2356 int PolyDegree = S->getNumOperands() - 1; 2357 assert(PolyDegree >= 1 && "Should be at least affine."); 2358 2359 // The final term will be: 2360 // Op_{PolyDegree} * x ^ {PolyDegree} 2361 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2362 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2363 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2364 // FIXME: this is conservatively correct, but might be overly pessimistic. 2365 Cost += MulCost * (PolyDegree - 1); 2366 break; 2367 } 2368 } 2369 2370 for (auto &CostOp : Operations) { 2371 for (auto SCEVOp : enumerate(S->operands())) { 2372 // Clamp the index to account for multiple IR operations being chained. 2373 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 2374 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 2375 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 2376 } 2377 } 2378 return Cost; 2379 } 2380 2381 bool SCEVExpander::isHighCostExpansionHelper( 2382 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 2383 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 2384 SmallPtrSetImpl<const SCEV *> &Processed, 2385 SmallVectorImpl<SCEVOperand> &Worklist) { 2386 if (Cost > Budget) 2387 return true; // Already run out of budget, give up. 2388 2389 const SCEV *S = WorkItem.S; 2390 // Was the cost of expansion of this expression already accounted for? 2391 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 2392 return false; // We have already accounted for this expression. 2393 2394 // If we can find an existing value for this scev available at the point "At" 2395 // then consider the expression cheap. 2396 if (getRelatedExistingExpansion(S, &At, L)) 2397 return false; // Consider the expression to be free. 2398 2399 TargetTransformInfo::TargetCostKind CostKind = 2400 L->getHeader()->getParent()->hasMinSize() 2401 ? TargetTransformInfo::TCK_CodeSize 2402 : TargetTransformInfo::TCK_RecipThroughput; 2403 2404 switch (S->getSCEVType()) { 2405 case scCouldNotCompute: 2406 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2407 case scUnknown: 2408 // Assume to be zero-cost. 2409 return false; 2410 case scConstant: { 2411 // Only evalulate the costs of constants when optimizing for size. 2412 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2413 return 0; 2414 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2415 Type *Ty = S->getType(); 2416 Cost += TTI.getIntImmCostInst( 2417 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2418 return Cost > Budget; 2419 } 2420 case scTruncate: 2421 case scPtrToInt: 2422 case scZeroExtend: 2423 case scSignExtend: { 2424 Cost += 2425 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2426 return false; // Will answer upon next entry into this function. 2427 } 2428 case scUDivExpr: { 2429 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2430 // HowManyLessThans produced to compute a precise expression, rather than a 2431 // UDiv from the user's code. If we can't find a UDiv in the code with some 2432 // simple searching, we need to account for it's cost. 2433 2434 // At the beginning of this function we already tried to find existing 2435 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2436 // pattern involving division. This is just a simple search heuristic. 2437 if (getRelatedExistingExpansion( 2438 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2439 return false; // Consider it to be free. 2440 2441 Cost += 2442 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2443 return false; // Will answer upon next entry into this function. 2444 } 2445 case scAddExpr: 2446 case scMulExpr: 2447 case scUMaxExpr: 2448 case scSMaxExpr: 2449 case scUMinExpr: 2450 case scSMinExpr: { 2451 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2452 "Nary expr should have more than 1 operand."); 2453 // The simple nary expr will require one less op (or pair of ops) 2454 // than the number of it's terms. 2455 Cost += 2456 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2457 return Cost > Budget; 2458 } 2459 case scAddRecExpr: { 2460 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2461 "Polynomial should be at least linear"); 2462 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2463 WorkItem, TTI, CostKind, Worklist); 2464 return Cost > Budget; 2465 } 2466 } 2467 llvm_unreachable("Unknown SCEV kind!"); 2468 } 2469 2470 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2471 Instruction *IP) { 2472 assert(IP); 2473 switch (Pred->getKind()) { 2474 case SCEVPredicate::P_Union: 2475 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2476 case SCEVPredicate::P_Equal: 2477 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); 2478 case SCEVPredicate::P_Wrap: { 2479 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2480 return expandWrapPredicate(AddRecPred, IP); 2481 } 2482 } 2483 llvm_unreachable("Unknown SCEV predicate type"); 2484 } 2485 2486 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, 2487 Instruction *IP) { 2488 Value *Expr0 = 2489 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false); 2490 Value *Expr1 = 2491 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false); 2492 2493 Builder.SetInsertPoint(IP); 2494 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); 2495 return I; 2496 } 2497 2498 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2499 Instruction *Loc, bool Signed) { 2500 assert(AR->isAffine() && "Cannot generate RT check for " 2501 "non-affine expression"); 2502 2503 SCEVUnionPredicate Pred; 2504 const SCEV *ExitCount = 2505 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2506 2507 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2508 2509 const SCEV *Step = AR->getStepRecurrence(SE); 2510 const SCEV *Start = AR->getStart(); 2511 2512 Type *ARTy = AR->getType(); 2513 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2514 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2515 2516 // The expression {Start,+,Step} has nusw/nssw if 2517 // Step < 0, Start - |Step| * Backedge <= Start 2518 // Step >= 0, Start + |Step| * Backedge > Start 2519 // and |Step| * Backedge doesn't unsigned overflow. 2520 2521 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2522 Builder.SetInsertPoint(Loc); 2523 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false); 2524 2525 IntegerType *Ty = 2526 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2527 Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; 2528 2529 Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false); 2530 Value *NegStepValue = 2531 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false); 2532 Value *StartValue = expandCodeForImpl( 2533 isa<PointerType>(ARExpandTy) ? Start 2534 : SE.getPtrToIntExpr(Start, ARExpandTy), 2535 ARExpandTy, Loc, false); 2536 2537 ConstantInt *Zero = 2538 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); 2539 2540 Builder.SetInsertPoint(Loc); 2541 // Compute |Step| 2542 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2543 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2544 2545 // Get the backedge taken count and truncate or extended to the AR type. 2546 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2547 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2548 Intrinsic::umul_with_overflow, Ty); 2549 2550 // Compute |Step| * Backedge 2551 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2552 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2553 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2554 2555 // Compute: 2556 // Start + |Step| * Backedge < Start 2557 // Start - |Step| * Backedge > Start 2558 Value *Add = nullptr, *Sub = nullptr; 2559 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) { 2560 const SCEV *MulS = SE.getSCEV(MulV); 2561 const SCEV *NegMulS = SE.getNegativeSCEV(MulS); 2562 Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), 2563 ARPtrTy); 2564 Sub = Builder.CreateBitCast( 2565 expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); 2566 } else { 2567 Add = Builder.CreateAdd(StartValue, MulV); 2568 Sub = Builder.CreateSub(StartValue, MulV); 2569 } 2570 2571 Value *EndCompareGT = Builder.CreateICmp( 2572 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2573 2574 Value *EndCompareLT = Builder.CreateICmp( 2575 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2576 2577 // Select the answer based on the sign of Step. 2578 Value *EndCheck = 2579 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2580 2581 // If the backedge taken count type is larger than the AR type, 2582 // check that we don't drop any bits by truncating it. If we are 2583 // dropping bits, then we have overflow (unless the step is zero). 2584 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2585 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2586 auto *BackedgeCheck = 2587 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2588 ConstantInt::get(Loc->getContext(), MaxVal)); 2589 BackedgeCheck = Builder.CreateAnd( 2590 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2591 2592 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2593 } 2594 2595 return Builder.CreateOr(EndCheck, OfMul); 2596 } 2597 2598 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2599 Instruction *IP) { 2600 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2601 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2602 2603 // Add a check for NUSW 2604 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2605 NUSWCheck = generateOverflowCheck(A, IP, false); 2606 2607 // Add a check for NSSW 2608 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2609 NSSWCheck = generateOverflowCheck(A, IP, true); 2610 2611 if (NUSWCheck && NSSWCheck) 2612 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2613 2614 if (NUSWCheck) 2615 return NUSWCheck; 2616 2617 if (NSSWCheck) 2618 return NSSWCheck; 2619 2620 return ConstantInt::getFalse(IP->getContext()); 2621 } 2622 2623 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2624 Instruction *IP) { 2625 auto *BoolType = IntegerType::get(IP->getContext(), 1); 2626 Value *Check = ConstantInt::getNullValue(BoolType); 2627 2628 // Loop over all checks in this set. 2629 for (auto Pred : Union->getPredicates()) { 2630 auto *NextCheck = expandCodeForPredicate(Pred, IP); 2631 Builder.SetInsertPoint(IP); 2632 Check = Builder.CreateOr(Check, NextCheck); 2633 } 2634 2635 return Check; 2636 } 2637 2638 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) { 2639 assert(PreserveLCSSA); 2640 SmallVector<Instruction *, 1> ToUpdate; 2641 2642 auto *OpV = User->getOperand(OpIdx); 2643 auto *OpI = dyn_cast<Instruction>(OpV); 2644 if (!OpI) 2645 return OpV; 2646 2647 Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent()); 2648 Loop *UseLoop = SE.LI.getLoopFor(User->getParent()); 2649 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2650 return OpV; 2651 2652 ToUpdate.push_back(OpI); 2653 SmallVector<PHINode *, 16> PHIsToRemove; 2654 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); 2655 for (PHINode *PN : PHIsToRemove) { 2656 if (!PN->use_empty()) 2657 continue; 2658 InsertedValues.erase(PN); 2659 InsertedPostIncValues.erase(PN); 2660 PN->eraseFromParent(); 2661 } 2662 2663 return User->getOperand(OpIdx); 2664 } 2665 2666 namespace { 2667 // Search for a SCEV subexpression that is not safe to expand. Any expression 2668 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2669 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2670 // instruction, but the important thing is that we prove the denominator is 2671 // nonzero before expansion. 2672 // 2673 // IVUsers already checks that IV-derived expressions are safe. So this check is 2674 // only needed when the expression includes some subexpression that is not IV 2675 // derived. 2676 // 2677 // Currently, we only allow division by a nonzero constant here. If this is 2678 // inadequate, we could easily allow division by SCEVUnknown by using 2679 // ValueTracking to check isKnownNonZero(). 2680 // 2681 // We cannot generally expand recurrences unless the step dominates the loop 2682 // header. The expander handles the special case of affine recurrences by 2683 // scaling the recurrence outside the loop, but this technique isn't generally 2684 // applicable. Expanding a nested recurrence outside a loop requires computing 2685 // binomial coefficients. This could be done, but the recurrence has to be in a 2686 // perfectly reduced form, which can't be guaranteed. 2687 struct SCEVFindUnsafe { 2688 ScalarEvolution &SE; 2689 bool IsUnsafe; 2690 2691 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} 2692 2693 bool follow(const SCEV *S) { 2694 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2695 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2696 if (!SC || SC->getValue()->isZero()) { 2697 IsUnsafe = true; 2698 return false; 2699 } 2700 } 2701 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2702 const SCEV *Step = AR->getStepRecurrence(SE); 2703 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2704 IsUnsafe = true; 2705 return false; 2706 } 2707 } 2708 return true; 2709 } 2710 bool isDone() const { return IsUnsafe; } 2711 }; 2712 } 2713 2714 namespace llvm { 2715 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { 2716 SCEVFindUnsafe Search(SE); 2717 visitAll(S, Search); 2718 return !Search.IsUnsafe; 2719 } 2720 2721 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 2722 ScalarEvolution &SE) { 2723 if (!isSafeToExpand(S, SE)) 2724 return false; 2725 // We have to prove that the expanded site of S dominates InsertionPoint. 2726 // This is easy when not in the same block, but hard when S is an instruction 2727 // to be expanded somewhere inside the same block as our insertion point. 2728 // What we really need here is something analogous to an OrderedBasicBlock, 2729 // but for the moment, we paper over the problem by handling two common and 2730 // cheap to check cases. 2731 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2732 return true; 2733 if (SE.dominates(S, InsertionPoint->getParent())) { 2734 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2735 return true; 2736 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2737 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2738 return true; 2739 } 2740 return false; 2741 } 2742 2743 void SCEVExpanderCleaner::cleanup() { 2744 // Result is used, nothing to remove. 2745 if (ResultUsed) 2746 return; 2747 2748 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2749 #ifndef NDEBUG 2750 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2751 InsertedInstructions.end()); 2752 (void)InsertedSet; 2753 #endif 2754 // Remove sets with value handles. 2755 Expander.clear(); 2756 2757 // Sort so that earlier instructions do not dominate later instructions. 2758 stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) { 2759 return DT.dominates(B, A); 2760 }); 2761 // Remove all inserted instructions. 2762 for (Instruction *I : InsertedInstructions) { 2763 2764 #ifndef NDEBUG 2765 assert(all_of(I->users(), 2766 [&InsertedSet](Value *U) { 2767 return InsertedSet.contains(cast<Instruction>(U)); 2768 }) && 2769 "removed instruction should only be used by instructions inserted " 2770 "during expansion"); 2771 #endif 2772 assert(!I->getType()->isVoidTy() && 2773 "inserted instruction should have non-void types"); 2774 I->replaceAllUsesWith(UndefValue::get(I->getType())); 2775 I->eraseFromParent(); 2776 } 2777 } 2778 } 2779